Science.gov

Sample records for 12-lead ecg monitoring

  1. Accurate Interpretation of the 12-Lead ECG Electrode Placement: A Systematic Review

    ERIC Educational Resources Information Center

    Khunti, Kirti

    2014-01-01

    Background: Coronary heart disease (CHD) patients require monitoring through ECGs; the 12-lead electrocardiogram (ECG) is considered to be the non-invasive gold standard. Examples of incorrect treatment because of inaccurate or poor ECG monitoring techniques have been reported in the literature. The findings that only 50% of nurses and less than…

  2. A cloud computing based 12-lead ECG telemedicine service

    PubMed Central

    2012-01-01

    Background Due to the great variability of 12-lead ECG instruments and medical specialists’ interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists’ decision making support in emergency telecardiology. Methods We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. Results This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. Conclusions This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan. PMID:22838382

  3. 1.5 Tesla MRI-Conditional 12-lead ECG for MR Imaging and Intra-MR Intervention

    PubMed Central

    Tse, Zion Tsz Ho; Dumoulin, Charles L.; Clifford, Gari D.; Schweitzer, Jeff; Qin, Lei; Oster, Julien; Jerosch-Herold, Michael; Kwong, Raymond Y.; Michaud, Gregory; Stevenson, William G.; Schmidt, Ehud J.

    2013-01-01

    Propose High-fidelity 12-lead Electrocardiogram (ECG) is important for physiological monitoring of patients during MR-guided intervention and cardiac MR imaging. Issues in obtaining non-corrupted ECGs inside MRI include a superimposed Magneto-Hydro-Dynamic (MHD) voltage, gradient-switching induced-voltages, and radiofrequency (RF) heating. These problems increase with magnetic field. We intended to develop and clinically validate a 1.5T MRI-conditional 12-lead ECG system. Methods The system was constructed, including transmission-lines to reduce radio-frequency induction, and switching-circuits to remove induced voltages. Adaptive filters, trained by 12-lead measurements outside MRI and in two orientations inside MRI, were used to remove MHD. The system was tested on ten (one exercising) volunteers and four arrhythmia patients. Results Switching circuits removed most imaging-induced voltages (residual noise <3% of the R-wave). MHD removal provided intra-MRI ECGs that varied by <3.8% from those outside the MRI, preserving the true ST segment. In premature-ventricular-contraction (PVC) patients, clean ECGs separated PVC and sinus-rhythm beats. Measured heating was <1.5 C0. The system reliably acquired multiphase (SSFP) wall-motion-cine and phase-contrast-cine scans, including in subjects where 4-lead gating failed. The system required a minimum TR of 4ms to allow robust ECG processing. Conclusion High-fidelity intra-MRI 12-lead ECG is possible. PMID:23580148

  4. The Normal Electrocardiogram: Resting 12-Lead and Electrocardiogram Monitoring in the Hospital.

    PubMed

    Harris, Patricia R E

    2016-09-01

    The electrocardiogram (ECG) is a well-established diagnostic tool extensively used in clinical settings. Knowledge of cardiac rhythm and mastery of cardiac waveform interpretation are fundamental for intensive care nurses. Recognition of the normal findings for the 12-lead ECG and understanding the significance of changes from baseline in continuous cardiac monitoring are essential steps toward ensuring safe patient care. This article highlights historical developments in electrocardiography, describes the normal resting 12-lead ECG, and discusses the need for continuous cardiac monitoring. In addition, future directions for the ECG are explored briefly. PMID:27484657

  5. Learning how to perform a 12 lead ECG using virtual reality.

    PubMed

    Jeffries, P R

    1999-01-01

    The most common cardiac examination ordered by physicians is the 12 lead ECG, frequently obtained with a computerized recording device that not only provides the ECG tracing but, may also provide the diagnosis. In the past, only persons working in the ECG laboratory were allowed to perform a 12 lead ECG on a patient. Today, however, this task has been delegated to a variety of health professionals, including registered nurses, licensed practice nurses, and even nursing assistants in some health care facilities. New nurses are taught the skill of obtaining a 12 lead ECG during their initial hospital orientation. Because of this, it is not uncommon to have staff development nurses teaching groups of health professionals how to perform a 12 lead ECG content and skill as many as 5 times in 1 week. For delivery of repetitive content, the use of an interactive CD ROM can be very cost effective. Many health care institutions purchase commercially made CD ROM products, while elsewhere nurse educators develop their own. An interactive CD ROM based on the principles of best practice in education and using embedded virtual reality, was designed by the author to teach nurses, students, and other health professionals how to perform a 12 lead ECG. This article will: 1) describe the interactive CD ROM reality as a teaching methodology; 2) discuss the preliminary evaluation of learning outcomes using CD ROM as the instructional method; and 3) describe the applications interactive CD ROMs may have in nursing practice and education. PMID:10431313

  6. The 24-lead ECG display for enhanced recognition of STEMI-equivalent patterns in the 12-lead ECG.

    PubMed

    Pahlm, Ulrika; Pahlm, Olle; Wagner, Galen S

    2014-01-01

    In a patient with chest pain and suspected acute coronary syndrome, the electrocardiogram (ECG) is the only readily available diagnostic tool. It is important to maximize its usefulness to detect acute myocardial ischemia that may evolve to myocardial infarction unless the patient is treated expediently with reperfusion therapy. Since diagnostic guidelines have usually included only ST-elevation myocardial infarction (STEMI) as the entity that should be diagnosed and treated urgently, a patient with coronary occlusion represented on ECG as ST depression is likely not to be considered a candidate for receiving immediate coronary angiography and coronary intervention. ECG criteria for STEMI detection require that ST elevation meet predetermined millivolt thresholds and appear in at least two spatially contiguous ECG leads. The typical ECG reader recognizes only three contiguous pairs: aVL and I; II and aVF; aVF and III. However, viewing the "orderly sequenced" 12-lead ECG display, two more contiguous pairs become obvious in the frontal plane: +I and -aVR; -aVR and +II. The 24-lead ECG is a display of the standard 12-lead ECG as both the classical positive leads and their negative (inverted) counterparts. Leads +V1, +V2, +V3, +V4, +V5, and +V6 and their inverted counterparts are used to generate a "clock-face display" for the transverse plane. Similarly, +aVL, +I, -aVR, +II, +aVF, +III in the frontal plane and their inverted counterparts are used to generate a clock-face display for the frontal plane. Optimum results, 78% sensitivity and 93% specificity, were obtained using the following 19 ECG leads: frontal plane: +aVR, -III, +aVL, +I, -aVR, +II, +aVF, +III, -aVL; transverse plane: +V1, +V2, +V3, +V4, +V5, +V6, -V1, -V2, -V3. PMID:24880763

  7. New System for Digital to Analog Transformation and Reconstruction of 12-Lead ECGs

    PubMed Central

    Kothadia, Roshni; Kulecz, Walter B.; Kofman, Igor S.; Black, Adam J.; Grier, James W.; Schlegel, Todd T.

    2013-01-01

    Introduction We describe initial validation of a new system for digital to analog conversion (DAC) and reconstruction of 12-lead ECGs. The system utilizes an open and optimized software format with a commensurately optimized DAC hardware configuration to accurately reproduce, from digital files, the original analog electrocardiographic signals of previously instrumented patients. By doing so, the system also ultimately allows for transmission of data collected on one manufacturer's 12-lead ECG hardware/software into that of any other. Materials and Methods To initially validate the system, we compared original and post-DAC re-digitized 12-lead ECG data files (∼5-minutes long) in two types of validation studies in 10 patients. The first type quantitatively compared the total waveform voltage differences between the original and re-digitized data while the second type qualitatively compared the automated electrocardiographic diagnostic statements generated by the original versus re-digitized data. Results The grand-averaged difference in root mean squared voltage between the original and re-digitized data was 20.8 µV per channel when re-digitization involved the same manufacturer's analog to digital converter (ADC) as the original digitization, and 28.4 µV per channel when it involved a different manufacturer's ADC. Automated diagnostic statements generated by the original versus reconstructed data did not differ when using the diagnostic algorithm from the same manufacturer on whose device the original data were collected, and differed only slightly for just 1 of 10 patients when using a third-party diagnostic algorithm throughout. Conclusion Original analog 12-lead ECG signals can be reconstructed from digital data files with accuracy sufficient for clinical use. Such reconstructions can readily enable automated second opinions for difficult-to-interpret 12-lead ECGs, either locally or remotely through the use of dedicated or cloud-based servers. PMID:23613787

  8. Risk stratifying asymptomatic aortic stenosis: role of the resting 12-lead ECG.

    PubMed

    Greve, Anders M

    2014-02-01

    Despite being routinely performed in the clinical follow-up of asymptomatic AS patients, little or no evidence describes the prognostic value of ECG findings in asymptomatic AS populations. This PhD thesis examined the correlates of resting 12-lead ECG variables with echocardiographic measures of AS severity and cardiovascular outcomes in the till date largest cohort (n=1,563) of asymptomatic patients with mild-to-moderate AS. Most importantly, this PhD thesis demonstrated that QRS-duration adds independent predictive value of sudden cardiac death and that the additional presence of ECG LVH/strain for fixed AS severity represents a lethal risk attribute. Finally, ECG abnormalities displayed low/moderate concordance with echocardiographic parameters. This argues that the ECG should be regarded as a separate tool for obtaining prognostically important information. Treatment was not randomized by ECG findings, future studies should therefore examine if and which ECG variables should elicit closer follow-up and/or earlier intervention to improve prognosis in asymptomatic AS populations. PMID:24495893

  9. Wireless Self-Acquistion of 12-Lead ECG via Android Smart Phone

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.

    2012-01-01

    Researchers at NASA s Johnson Space Center and at Orbital Research, Inc. (a NASA SBIR grant recipient) have recently developed a dry-electrode harness that allows for self-acquisition of resting 12-lead ECGs by minimally trained laypersons. When used in conjunction with commercial wireless (e.g., Bluetooth(TM) or 802.11-enabled) 12-lead ECG devices and custom smart phone-based software, the collected 12-lead ECG data can also immediately be forwarded from any geographic location within cellular range to the user s physician(s) of choice. The system can also be used to immediately forward to central receiving stations 12-lead ECG data collected during space flight or during activities in any remote terrestrial location supported by an internet or cellular phone infrastructure. The main novel aspects of the system are first, the dry-electrode 12-lead ECG harness itself, and second, an accompanying Android(TM) smart phone-based wireless 12-lead ECG capability. The ECG harness nominally employs dry electrodes manufactured by Orbital Research, Inc, recently cleared through the Food and Drug Administration (FDA). However, other dry electrodes that are not yet FDA cleared, for example those recently developed by Nanosonic, Inc as part of another NASA SBIR grant, can also be used. The various advantageous features of the harness include: 1) laypersons can be quickly instructed on its correct use, remotely if necessary; 2) all tangled "leadwire spaghetti" is eliminated, as is the common clinical problem of "leadwire reversal"; 3) all adhesives and disposables are also eliminated, the harness being fully reusable; if multiple individuals intend to use use the same harness, then standard antimicrobial wipes can be employed to sterilize the dry electrodes (and harness surface if needed) between users; 5) padded cushions at the lateral sides of the torso function to press the left arm (LA) and right arm (RA) dry electrodes mounted on the cushions against sideward or downward

  10. Atrial electrical activity detection using linear combination of 12-lead ECG signals.

    PubMed

    Perlman, Or; Katz, Amos; Weissman, Noam; Amit, Guy; Zigel, Yaniv

    2014-04-01

    ECG analysis is the method for cardiac arrhythmia diagnosis. During the diagnostic process many features should be taken into consideration, such as regularity and atrial activity. Since in some arrhythmias, the atrial electrical activity (AEA) waves are hidden in other waves, and a precise classification from surface ECG is inapplicable, a confirmation diagnosis is usually performed during an invasive procedure. In this paper, we study a "semiautomatic" method for AEA-waves detection using a linear combination of 12-lead ECG signals. This method's objective is to be applicable to a variety of arrhythmias with emphasis given to detect concealed AEA waves. It includes two variations--using maximum energy ratio and a synthetic AEA signal. In the former variation, an energy ratio-based cost function is created and maximized using the gradient ascent method. The latter variation adapted the linear combiner method, when applied on a synthetic signal, combined with surface ECG leads. A study was performed evaluating the AEA-waves detection from 63 patients (nine training, 54 validation) presenting eight arrhythmia types. Averaged sensitivity of 92.21% and averaged precision of 92.08% were achieved compared to the definite diagnosis. In conclusion, the presented method may lead to early and accurate detection of arrhythmias, which will result in a better oriented treatment. PMID:24658228

  11. New Padded Harness for Self-Acquisition of Resting 12-Lead ECGs

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Rood, A. T.

    2011-01-01

    We have developed a dry-electrode harness that permits easy, rapid, and unsupervised self-acquisition of resting 12-lead ECGs without the use of any disposables. Various other advantageous features of the harness include: 1) padded or inflatable cushions at the lateral sides of the torso that function to press the left arm (LA) and right arm (RA) dry electrodes mounted on cushions against sideward (as shown in the Figure below) or downward-rested arms of the subject; 2) sufficient distal placement of the arm electrodes with good abutment and without the need for adhesives, straps, bands, bracelets, or gloves on the arms; 3) padding over the sternum to avoid "tenting" in the V1 through V3 (and V3R, when present) electrode positions; 4) easy-to-don, one-piece design with an adjustable single point of connection and an adjustable shoulder strap; and 5) Lund or "modified Lund" placement of the dry electrodes, the results of which more effectively reproduce results from "standard" 12-lead ECG placements than do results from Mason-Likar lead placements.

  12. Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals.

    PubMed

    Zettinig, Oliver; Mansi, Tommaso; Neumann, Dominik; Georgescu, Bogdan; Rapaka, Saikiran; Seegerer, Philipp; Kayvanpour, Elham; Sedaghat-Hamedani, Farbod; Amr, Ali; Haas, Jan; Steen, Henning; Katus, Hugo; Meder, Benjamin; Navab, Nassir; Kamen, Ali; Comaniciu, Dorin

    2014-12-01

    Diagnosis and treatment of dilated cardiomyopathy (DCM) is challenging due to a large variety of causes and disease stages. Computational models of cardiac electrophysiology (EP) can be used to improve the assessment and prognosis of DCM, plan therapies and predict their outcome, but require personalization. In this work, we present a data-driven approach to estimate the electrical diffusivity parameter of an EP model from standard 12-lead electrocardiograms (ECG). An efficient forward model based on a mono-domain, phenomenological Lattice-Boltzmann model of cardiac EP, and a boundary element-based mapping of potentials to the body surface is employed. The electrical diffusivity of myocardium, left ventricle and right ventricle endocardium is then estimated using polynomial regression which takes as input the QRS duration and electrical axis. After validating the forward model, we computed 9500 EP simulations on 19 different DCM patients in just under three seconds each to learn the regression model. Using this database, we quantify the intrinsic uncertainty of electrical diffusion for given ECG features and show in a leave-one-patient-out cross-validation that the regression method is able to predict myocardium diffusion within the uncertainty range. Finally, our approach is tested on the 19 cases using their clinical ECG. 84% of them could be personalized using our method, yielding mean prediction errors of 18.7ms for the QRS duration and 6.5° for the electrical axis, both values being within clinical acceptability. By providing an estimate of diffusion parameters from readily available clinical data, our data-driven approach could therefore constitute a first calibration step toward a more complete personalization of cardiac EP. PMID:24857832

  13. Construction and Use of Resting 12-Lead High Fidelity ECG "SuperScores" in Screening for Heart Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Arenare, B.; Greco, E. C.; DePalma, J. L.; Starc, V.; Nunez, T.; Medina, R.; Jugo, D.; Rahman, M.A.; Delgado, R.

    2007-01-01

    We investigated the accuracy of several conventional and advanced resting ECG parameters for identifying obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. Multiple conventional and advanced ECG parameters were studied for their individual and combined retrospective accuracies in detecting underlying disease, the advanced parameters falling within the following categories: 1) Signal averaged ECG, including 12-lead high frequency QRS (150-250 Hz) plus multiple filtered and unfiltered parameters from the derived Frank leads; 2) 12-lead P, QRS and T-wave morphology via singular value decomposition (SVD) plus signal averaging; 3) Multichannel (12-lead, derived Frank lead, SVD lead) beat-to-beat QT interval variability; 4) Spatial ventricular gradient (and gradient component) variability; and 5) Heart rate variability. Several multiparameter ECG SuperScores were derivable, using stepwise and then generalized additive logistic modeling, that each had 100% retrospective accuracy in detecting underlying CM or CAD. The performance of these same SuperScores was then prospectively evaluated using a test set of another 120 individuals (40 new individuals in each of the CM, CAD and control groups, respectively). All 12-lead ECG SuperScores retrospectively generated for CM continued to perform well in prospectively identifying CM (i.e., areas under the ROC curve greater than 0.95), with one such score (containing just 4 components) maintaining 100% prospective accuracy. SuperScores retrospectively generated for CAD performed somewhat less accurately, with prospective areas under the ROC curve typically in the 0.90-0.95 range. We conclude that resting 12-lead

  14. 3DQRS: A method to obtain reliable QRS complex detection within high field MRI using 12-lead ECG traces

    PubMed Central

    Gregory, T. Stan; Schmidt, Ehud J.; Zhang, Shelley Hualei; Tse, Zion Tsz Ho

    2014-01-01

    Purpose To develop a technique that accurately detects the QRS complex in 1.5T, 3T and 7T MRI scanners.” Theory and Methods During early systole, blood is rapidly ejected into the aortic arch, traveling perpendicular to the MRI’s main field, which produces a strong voltage (VMHD) that eclipses the QRS complex. Greater complexity arises in arrhythmia patients, since VMHD can vary between sinus-rhythm and arrhythmic beats. The 3DQRS method uses a kernel consisting of 6 ECG precordial leads, compiled from a 12-lead ECG performed outside the magnet. The kernel is cross-correlated with signals acquired inside the MRI in order to identify the QRS complex in real time. The 3DQRS method was evaluated against a Vectorcardiogram-based (VCG) approach in 2 Premature Ventricular Contraction (PVC) and 2 Atrial Fibrillation (AF) patients, a healthy exercising athlete and 8 healthy volunteers, within 1.5T and 3T MRIs, using a prototype MRI-conditional 12 lead ECG system. 2 volunteers were recorded at 7T using a Holter recorder. Results For QRS complex detection, 3DQRS subject-averaged sensitivity levels, relative to VCG were: 1.5T (100% vs. 96.7%), 3T (98.9% vs. 92.2%), 7T (96.2% vs. 77.7%). Conclusions The 3DQRS method was shown to be more effective in cardiac gating than a conventional VCG-based method. PMID:24453116

  15. Accuracy of advanced versus strictly conventional 12-lead ECG for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction

    PubMed Central

    2010-01-01

    Background Resting conventional 12-lead ECG has low sensitivity for detection of coronary artery disease (CAD) and left ventricular hypertrophy (LVH) and low positive predictive value (PPV) for prediction of left ventricular systolic dysfunction (LVSD). We hypothesized that a ~5-min resting 12-lead advanced ECG test ("A-ECG") that combined results from both the advanced and conventional ECG could more accurately screen for these conditions than strictly conventional ECG. Methods Results from nearly every conventional and advanced resting ECG parameter known from the literature to have diagnostic or predictive value were first retrospectively evaluated in 418 healthy controls and 290 patients with imaging-proven CAD, LVH and/or LVSD. Each ECG parameter was examined for potential inclusion within multi-parameter A-ECG scores derived from multivariate regression models that were designed to optimally screen for disease in general or LVSD in particular. The performance of the best retrospectively-validated A-ECG scores was then compared against that of optimized pooled criteria from the strictly conventional ECG in a test set of 315 additional individuals. Results Compared to optimized pooled criteria from the strictly conventional ECG, a 7-parameter A-ECG score validated in the training set increased the sensitivity of resting ECG for identifying disease in the test set from 78% (72-84%) to 92% (88-96%) (P < 0.0001) while also increasing specificity from 85% (77-91%) to 94% (88-98%) (P < 0.05). In diseased patients, another 5-parameter A-ECG score increased the PPV of ECG for LVSD from 53% (41-65%) to 92% (78-98%) (P < 0.0001) without compromising related negative predictive value. Conclusion Resting 12-lead A-ECG scoring is more accurate than strictly conventional ECG in screening for CAD, LVH and LVSD. PMID:20565702

  16. The future of remote ECG monitoring systems

    PubMed Central

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-01-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  17. The future of remote ECG monitoring systems.

    PubMed

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-09-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  18. Tissue Doppler Imaging Combined with Advanced 12-Lead ECG Analysis Might Improve Early Diagnosis of Hypertrophic Cardiomyopathy in Childhood

    NASA Technical Reports Server (NTRS)

    Femlund, E.; Schlegel, T.; Liuba, P.

    2011-01-01

    Optimization of early diagnosis of childhood hypertrophic cardiomyopathy (HCM) is essential in lowering the risk of HCM complications. Standard echocardiography (ECHO) has shown to be less sensitive in this regard. In this study, we sought to assess whether spatial QRS-T angle deviation, which has shown to predict HCM in adults with high sensitivity, and myocardial Tissue Doppler Imaging (TDI) could be additional tools in early diagnosis of HCM in childhood. Methods: Children and adolescents with familial HCM (n=10, median age 16, range 5-27 years), and without obvious hypertrophy but with heredity for HCM (n=12, median age 16, range 4-25 years, HCM or sudden death with autopsy-verified HCM in greater than or equal to 1 first-degree relative, HCM-risk) were additionally investigated with TDI and advanced 12-lead ECG analysis using Cardiax(Registered trademark) (IMED Co Ltd, Budapest, Hungary and Houston). Spatial QRS-T angle (SA) was derived from Kors regression-related transformation. Healthy age-matched controls (n=21) were also studied. All participants underwent thorough clinical examination. Results: Spatial QRS-T angle (Figure/ Panel A) and septal E/Ea ratio (Figure/Panel B) were most increased in HCM group as compared to the HCM-risk and control groups (p less than 0.05). Of note, these 2 variables showed a trend toward higher levels in HCM-risk group than in control group (p=0.05 for E/Ea and 0.06 for QRS/T by ANOVA). In a logistic regression model, increased SA and septal E/Ea ratio appeared to significantly predict both the disease (Chi-square in HCM group: 9 and 5, respectively, p less than 0.05 for both) and the risk for HCM (Chi-square in HCM-risk group: 5 and 4 respectively, p less than 0.05 for both), with further increased predictability level when these 2 variables were combined (Chi-square 10 in HCM group, and 7 in HCM-risk group, p less than 0.01 for both). Conclusions: In this small material, Tissue Doppler Imaging and spatial mean QRS-T angle

  19. Smartphone home monitoring of ECG

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Landa, Joseph; Nakajima, Hiroshi; Hata, Yutaka

    2012-06-01

    A system of ambulatory, halter, electrocardiography (ECG) monitoring system has already been commercially available for recording and transmitting heartbeats data by the Internet. However, it enjoys the confidence with a reservation and thus a limited market penetration, our system was targeting at aging global villagers having an increasingly biomedical wellness (BMW) homecare needs, not hospital related BMI (biomedical illness). It was designed within SWaP-C (Size, Weight, and Power, Cost) using 3 innovative modules: (i) Smart Electrode (lowpower mixed signal embedded with modern compressive sensing and nanotechnology to improve the electrodes' contact impedance); (ii) Learnable Database (in terms of adaptive wavelets transform QRST feature extraction, Sequential Query Relational database allowing home care monitoring retrievable Aided Target Recognition); (iii) Smartphone (touch screen interface, powerful computation capability, caretaker reporting with GPI, ID, and patient panic button for programmable emergence procedure). It can provide a supplementary home screening system for the post or the pre-diagnosis care at home with a build-in database searchable with the time, the place, and the degree of urgency happened, using in-situ screening.

  20. Non-contact ECG monitoring

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexey S.; Erlikh, Vadim V.; Kodkin, Vladimir L.; Keller, Andrei V.; Epishev, Vitaly V.

    2016-03-01

    The research is dedicated to non-contact methods of electrocardiography. The authors describe the routine of experimental procedure and suggest the approach to solving the problems which arise at indirect signal recording. The paper presents the results of experiments conducted by the authors, covers the flow charts of ECG recorders and reviews the drawbacks of filtering methods used in foreign equivalents.

  1. Technology-based vs. traditional instruction. A comparison of two methods for teaching the skill of performing a 12-lead ECG.

    PubMed

    Jeffries, Pamela R; Woolf, Shirley; Linde, Beverly

    2003-01-01

    The purpose of this study was to compare the effectiveness of an interactive, multimedia CD-ROM with traditional methods of teaching the skill of performing a 12-lead ECG. A randomized pre/posttest experimental design was used. Seventy-seven baccalaureate nursing students in a required, senior-level critical-care course at a large midwestern university were recruited for the study. Two teaching methods were compared. The traditional method included a self-study module, a brief lecture and demonstration by an instructor, and hands-on experience using a plastic manikin and a real 12-lead ECG machine in the learning laboratory. The second method covered the same content using an interactive, multimedia CD-ROM embedded with virtual reality and supplemented with a self-study module. There were no significant (p < .05) baseline differences in pretest scores between the two groups and no significant differences by group in cognitive gains, student satisfaction with their learning method, or perception of self-efficacy in performing the skill. Overall results indicated that both groups were satisfied with their instructional method and were similar in their ability to demonstrate the skill correctly on a live, simulated patient. This evaluation study is a beginning step to assess new and potentially more cost-effective teaching methods and their effects on student learning outcomes and behaviors, including the transfer of skill acquisition via a computer simulation to a real patient. PMID:12743975

  2. Left-ventricular mechanical activation and aortic-arch orientation recovered from Magneto-hydrodynamic Voltages observed in 12-lead ECGs obtained inside MRIs: A Feasibility Study

    PubMed Central

    Gregory, T. Stan; Schmidt, Ehud J.; Zhang, Shelley Hualei; Kwong, Raymond Y.; Stevenson, William G.; Murrow, Jonathan R.; Ho Tse, Zion Tsz

    2014-01-01

    Purpose To explore use of the Magnetohydrodynamic Voltage (VMHD), observed in intra-MRI 12-lead Electrocardiograms (ECG), to indicate the timing of the onset of left-ventricular mechanical activation (LVMA) and the orientation of the aortic-arch (AAO). Theory Blood flow through the aortic arch during systole, in the presence of the MRI magnetic field (B0), generates VMHD. Since the magnitude and direction of VMHD are determined by the timing and directionality of blood flow relative to B0, we hypothesized that clinically useful measures, LVMA and AAO, could be extracted from temporal and vectorial VMHD characteristics. Methods VMHD signals were extracted from 12-lead ECG traces by comparing traces obtained inside and outside the MRI scanner. VMHD was converted into the Vectorcardiogram frame of reference. LVMA was quantified in 1 subject at 1.5T and 3 subjects at 3T, and the result compared to CINE MRI. AAO was inferred for 4 subjects at 3T and compared to anatomical imaging of the aortic arch orientation in the transverse plane. Results and Conclusions A <10% error was observed in LVMA measurements, while a <3° error was observed in aortic arch orientation measurements. The temporal and vectorial nature of VMHD is useful in estimating these clinically relevant parameters. PMID:25224074

  3. Cloud-ECG for real time ECG monitoring and analysis.

    PubMed

    Xia, Henian; Asif, Irfan; Zhao, Xiaopeng

    2013-06-01

    Recent advances in mobile technology and cloud computing have inspired numerous designs of cloud-based health care services and devices. Within the cloud system, medical data can be collected and transmitted automatically to medical professionals from anywhere and feedback can be returned to patients through the network. In this article, we developed a cloud-based system for clients with mobile devices or web browsers. Specially, we aim to address the issues regarding the usefulness of the ECG data collected from patients themselves. Algorithms for ECG enhancement, ECG quality evaluation and ECG parameters extraction were implemented in the system. The system was demonstrated by a use case, in which ECG data was uploaded to the web server from a mobile phone at a certain frequency and analysis was performed in real time using the server. The system has been proven to be functional, accurate and efficient. PMID:23261079

  4. The Development of a Portable ECG Monitor Based on DSP

    NASA Astrophysics Data System (ADS)

    Nan, CHI Jian; Tao, YAN Yan; Meng Chen, LIU; Li, YANG

    With the advent of global information, researches of Smart Home system are in the ascendant, the ECG real-time detection, and wireless transmission of ECG become more useful. In order to achieve the purpose we developed a portable ECG monitor which achieves the purpose of cardiac disease remote monitoring, and will be used in the physical and psychological disease surveillance in smart home system, we developed this portable ECG Monitor, based on the analysis of existing ECG Monitor, using TMS320F2812 as the core controller, which complete the signal collection, storage, processing, waveform display and transmission.

  5. [Implementation of ECG Monitoring System Based on Internet of Things].

    PubMed

    Lu, Liangliang; Chen, Minya

    2015-11-01

    In order to expand the capabilities of hospital's traditional ECG device and enhance medical staff's work efficiency, an ECG monitoring system based on internet of things is introduced. The system can monitor ECG signals in real time and analyze data using ECG sensor, PDA, Web servers, which embeds C language, Android systems, .NET, wireless network and other technologies. After experiments, it can be showed that the system has high reliability and stability and can bring the convenience to medical staffs. PMID:27066681

  6. ECG patch monitors for assessment of cardiac rhythm abnormalities.

    PubMed

    Lobodzinski, S Suave

    2013-01-01

    The primary goal of long-term monitoring is the improvement of diagnostic yield. Despite the clear utility of Holter monitoring in clinical cardiology, issues of relatively low diagnostic yield, cost and inconvenience have motivated the development of ultra-portable devices referred to as ECG patch monitors. Although the "gold standard" for assessing cardiac rhythm abnormalities remains a 12-lead Holter, there is an increasing interest in portable monitoring devices that provide the opportunity for evaluating cardiac rhythm in real-world environments such as the workplace or home. To facilitate patient acceptance these monitors underwent a radical miniaturization and redesign to include wireless communication, water proofing and a patch carrier for attaching devices directly to the skin. We review recent developments in the field of "patch" devices primarily designed for very long-term monitoring of cardiac arrhythmic events. As the body of supporting clinical validation data grows, these devices hold promise for a variety of cardiac monitoring applications. From a clinical and research standpoint, the capacity to obtain longitudinal cardiac activity data by patch devices may have significant implications for device selection, monitoring duration, and care pathways for arrhythmia evaluation and atrial fibrillation surveillance. From a research standpoint, the new devices may allow for the development of novel diagnostic algorithms with the goal of finding patterns and correlations with exercise and drug regimens. PMID:24215754

  7. Saturation of the right-leg drive amplifier in low-voltage ECG monitors.

    PubMed

    Freeman, Daniel K; Gatzke, Ronald D; Mallas, Georgios; Chen, Yu; Brouse, Chris J

    2015-01-01

    Electrocardiogram (ECG) monitoring is a critical tool in patient care, but its utility is often balanced with frustration from clinicians who are constantly distracted by false alarms. This has motivated the need to readdress the major factors that contribute to ECG noise with the goal of reducing false alarms. In this study, we describe a previously unreported phenomenon in which ECG noise can result from an unintended interaction between two systems: 1) the dc lead-off circuitry that is used to detect whether electrodes fall off the patient; and 2) the right-leg drive (RLD) system that is responsible for reducing ac common-mode noise that couples into the body. Using a circuit model to study this interaction, we found that in the presence of a dc lead-off system, even moderate increases in the right-leg skin-electrode resistance can cause the RLD amplifier to saturate. Such saturation can produce ECG noise because the RLD amplifier will no longer be capable of attenuating ac common-mode noise on the body. RLD saturation is particularly a problem for modern ECG monitors that use low-voltage supply levels. For example, for a 12-lead ECG and a 2 V power supply, saturation will occur when the right-leg electrode resistance reaches only 2 MΩ. We discuss several design solutions that can be used in low-voltage monitors to avoid RLD saturation. PMID:25181288

  8. The evolution of ambulatory ECG monitoring.

    PubMed

    Kennedy, Harold L

    2013-01-01

    Ambulatory Holter electrocardiographic (ECG) monitoring has undergone continuous technological evolution since its invention and development in the 1950s era. With commercial introduction in 1963, there has been an evolution of Holter recorders from 1 channel to 12 channel recorders with increasingly smaller storage media, and there has evolved Holter analysis systems employing increasingly technologically advanced electronics providing a myriad of data displays. This evolution of smaller physical instruments with increasing technological capacity has characterized the development of electronics over the past 50 years. Currently the technology has been focused upon the conventional continuous 24 to 48 hour ambulatory ECG examination, and conventional extended ambulatory monitoring strategies for infrequent to rare arrhythmic events. However, the emergence of the Internet, Wi-Fi, cellular networks, and broad-band transmission has positioned these modalities at the doorway of the digital world. This has led to an adoption of more cost-effective strategies to these conventional methods of performing the examination. As a result, the emergence of the mobile smartphone coupled with this digital capacity is leading to the recent development of Holter smartphone applications. The potential of point-of-care applications utilizing the Holter smartphone and a vast array of new non-invasive sensors is evident in the not too distant future. The Holter smartphone is anticipated to contribute significantly in the future to the field of global health. PMID:24215744

  9. [The development of ECG trans-telephone popular monitoring system].

    PubMed

    Luo, Q; Fang, Z; Yang, C; Shen, Z

    1997-05-01

    In this essay a new kind of ECG telemetry and monitoring system based on public telephone network is presented, which is able to transfer four channels of ECG of two patients to monitoring center sited at hospital synchronizingly. At the same time doctors may make diagnosis and give instruction for treatment. The system has the functions of real time sample, reviewing, freezing, store, windows, and printing, etc. PMID:11189346

  10. A wireless ECG monitoring system for pervasive healthcare.

    PubMed

    Sneha, Sweta; Varshney, Upkar

    2007-01-01

    This paper presents an architectural framework of a system utilising mobile technologies to enable continuous, wireless, electrocardiogram (ECG) monitoring of cardiac patients. The proposed system has the potential to improve patients' quality of life by allowing them to move around freely while undergoing continuous heart monitoring and to reduce healthcare costs associated with prolonged hospitalisation, treatment and monitoring. PMID:18048260

  11. Novel electrodes for underwater ECG monitoring.

    PubMed

    Reyes, Bersain A; Posada-Quintero, Hugo F; Bales, Justin R; Clement, Amanda L; Pins, George D; Swiston, Albert; Riistama, Jarno; Florian, John P; Shykoff, Barbara; Qin, Michael; Chon, Ki H

    2014-06-01

    We have developed hydrophobic electrodes that provide all morphological waveforms without distortion of an ECG signal for both dry and water-immersed conditions. Our electrode is comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS). For feasibility testing of the CB/PDMS electrodes, various tests were performed. One of the tests included evaluation of the electrode-to-skin contact impedance for different diameters, thicknesses, and different pressure levels. As expected, the larger the diameter of the electrodes, the lower the impedance and the difference between the large sized CB/PDMS and the similarly-sized Ag/AgCl hydrogel electrodes was at most 200 kΩ, in favor of the latter. Performance comparison of CB/PDMS electrodes to Ag/AgCl hydrogel electrodes was carried out in three different scenarios: a dry surface, water immersion, and postwater immersion conditions. In the dry condition, no statistical differences were found for both the temporal and spectral indices of the heart rate variability analysis between the CB/PDMS and Ag/AgCl hydrogel (p > 0.05) electrodes. During water immersion, there was significant ECG amplitude reduction with CB/PDMS electrodes when compared to wet Ag/AgCl electrodes kept dry by their waterproof adhesive tape, but the reduction was not severe enough to obscure the readability of the recordings, and all morphological waveforms of the ECG signal were discernible even when motion artifacts were introduced. When water did not penetrate tape-wrapped Ag/AgCl electrodes, high fidelity ECG signals were observed. However, when water penetrated the Ag/AgCl electrodes, the signal quality degraded to the point where ECG morphological waveforms were not discernible. PMID:24845297

  12. A 24-HOUR AMBULATORY ECG MONITORING IN ASSESSMENT OF QT INTERVAL DURATION AND DISPERSION IN ROWERS WITH PHYSIOLOGICAL MYOCARDIAL HYPERTROPHY

    PubMed Central

    Kim, Z.F.; Bilalova, R.R.; Tsibulkin, N.A.; Almetova, R.R.; Mudarisova, R.R.; Ahmetov, I.I.

    2013-01-01

    Myocardial hypertrophy (MH) due to cardiac pathology is characterized by an increase in QT interval duration and dispersion, while the findings for exercise-induced myocardial hypertrophy are contradictory. The majority of published research findings have not explored this relationship, but there have only been a few conducted studies using 24-hour ECG monitoring. The aim of the study was to determine the QT interval duration and dispersion in short-term and 24-hour ECG in endurance athletes with myocardial hypertrophy and without it. Methods: A total of 26 well-trained rowers underwent a resting 12-lead ECG, 24-hour ECG monitoring and echocardiography. Results: Athletes with MH (n = 7) at rest did not show any increase in QTc interval duration and dispersion, or mean and maximal QTc duration in Holter monitoring compared to athletes without MH (n = 19). Left ventricular mass was not significantly correlated with any QTc characteristics. Furthermore, athletes with MH had significantly longer mean QT (P = 0.01) and maximal QT (P = 0.018) intervals in Holter monitoring and higher 24-hour heart rate variability indexes due to stronger vagal effects. Conclusions: The present study demonstrated that athlete's heart syndrome with myocardial hypertrophy as a benign phenomenon does not lead to an increase in QT interval duration, or increases in maximal and mean duration in a 24-hour ECG. An increase in QT interval duration in athletes may have an autonomic nature. PMID:24744494

  13. ECG Monitoring in Cardiac Rehabilitation: Is It Needed?

    ERIC Educational Resources Information Center

    Greenland, Philip; Pomilla, Paul V.

    1989-01-01

    Discusses the controversial use of continuous electrocardiogram (ECG) monitoring as a safety measure in cardiac rehabilitation exercise programs. Little evidence substantiates its value for all patients during exercise. In the absence of empirical evidence documenting the worth of this expensive procedure, it is recommended for use with high-risk…

  14. When Deriving the Spatial QRS-T Angle from the 12-lead ECG, which Transform is More Frank: Regression or Inverse Dower?

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Cortez, Daniel

    2010-01-01

    Our primary objective was to ascertain which commonly used 12-to-Frank-lead transformation yields spatial QRS-T angle values closest to those obtained from simultaneously collected true Frank-lead recordings. Simultaneous 12-lead and Frank XYZ-lead recordings were analyzed for 100 post-myocardial infarction patients and 50 controls. Relative agreement, with true Frank-lead results, of 12-to-Frank-lead transformed results for the spatial QRS-T angle using Kors regression versus inverse Dower was assessed via ANOVA, Lin s concordance and Bland-Altman plots. Spatial QRS-T angles from the true Frank leads were not significantly different than those derived from the Kors regression-related transformation but were significantly smaller than those derived from the inverse Dower-related transformation (P less than 0.001). Independent of method, spatial mean QRS-T angles were also always significantly larger than spatial maximum (peaks) QRS-T angles. Spatial QRS-T angles are best approximated by regression-related transforms. Spatial mean and spatial peaks QRS-T angles should also not be used interchangeably.

  15. QTc prolongation with antipsychotics: is routine ECG monitoring recommended?

    PubMed

    Shah, Asim A; Aftab, Awais; Coverdale, John

    2014-05-01

    Whether or not QTc interval should be routinely monitored in patients receiving antipsychotics is a controversial issue, given logistic and fiscal dilemmas. There is a link between antipsychotic medications and prolongation of QTc interval, which is associated with an increased risk of torsade de pointes (TdP). Our goal is to provide clinically practical guidelines for monitoring QTc intervals in patients being treated with antipsychotics. We provide an overview of the pathophysiology of the QT interval, its relationship to TdP, and a discussion of the QT prolonging effects of antipsychotics. A literature search for articles relevant to the QTc prolonging effects of antipsychotics and TdP was conducted utilizing the databases PubMed and Embase with various combinations of search words. The overall risk of TdP and sudden death associated with antipsychotics has been observed to be low. Medications, genetics, gender, cardiovascular status, pathological conditions, and electrolyte disturbances have been found to be related to prolongation of the QTc interval. We conclude that, while electrocardiogram (ECG) monitoring is useful when administering antipsychotic medications in the presence of co-existing risk factors, it is not mandatory to perform ECG monitoring as a prerequisite in the absence of cardiac risk factors. An ECG should be performed if the initial evaluation suggests increased cardiac risk or if the antipsychotic to be prescribed has been established to have an increased risk of TdP and sudden death. PMID:24847993

  16. Gold-195m first-pass radionuclide ventriculography, thallium-201 single-photon emission CT, and 12-lead ECG stress testing as a combined procedure

    SciTech Connect

    Kipper, S.L.; Ashburn, W.L.; Norris, S.L.; Rimkus, D.S.; Dillon, W.A.

    1985-09-01

    Graded, sequential, rest/exercise, gold-195m, first-pass ventriculography and thallium-201 (Tl-201) single-photon emission computed tomography (SPECT) were performed simultaneously during a single, electrocardiograph-monitored, bicycle stress test in 24 individuals. The technical aspects and logistics involved in performing this combined radionuclide study are stressed in this preliminary report. Fourteen healthy volunteers each had a normal left ventricular ejection fraction and wall-motion response, along with normal T1-201 perfusion and washout, as determined by both visual and quantitative analysis of the tomographic sections. Each of ten patients with coronary artery disease had at least one abnormality of these parameters. The authors suggest that it is technically feasible to evaluate both cardiac function and myocardial perfusion simultaneously by combing Au-195m ventriculography and Tl-201 SPECT imaging into a single, noninvasive, diagnostic package.

  17. Discussion of "Computational Electrocardiography: Revisiting Holter ECG Monitoring".

    PubMed

    Baumgartner, Christian; Caiani, Enrico G; Dickhaus, Hartmut; Kulikowski, Casimir A; Schiecke, Karin; van Bemmel, Jan H; Witte, Herbert

    2016-08-01

    This article is part of a For-Discussion-Section of Methods of Information in Medicine about the paper "Computational Electrocardiography: Revisiting Holter ECG Monitoring" written by Thomas M. Deserno and Nikolaus Marx. It is introduced by an editorial. This article contains the combined commentaries invited to independently comment on the paper of Deserno and Marx. In subsequent issues the discussion can continue through letters to the editor. PMID:27406570

  18. A portable ECG monitor using Bluetooth

    NASA Astrophysics Data System (ADS)

    Tejero-Calado, Juan C.; Bernal, Antonio; Lopez-Gomez, Miguel A.; Lopez-Casado, Carmen; Quesada, Guillermo; Lorca-Gomez, Julio

    2005-06-01

    New wireless technologies make possible the implementation of high level integration wireless devices which allow the replacement of traditional large wired monitoring devices. This kind of devices favours at-home hospitalization, reducing the affluence to sanitary assistance centers to make routine controls. This fact causes a really favourable social impact, especially for elder people, rural-zone inhabitant, chronic patients and handicapped people. Furthermore, it offers new functionalities to physicians and will reduce the sanitary cost. Among these functionalities, biomedical signals can be sent to other devices (screen, PDA, PC...) or processing centers, without restricting the patients' mobility. The aim of this project is the development and implementation of a reduced size multi-channel electrocardiograph based on BlueTooth, which allows wireless monitoring of patients, and the insertion of the information into the TCP/IP Hospital network.

  19. IEEE 802.11 ECG monitoring system.

    PubMed

    Tejero-Calado, Juan; Lopez-Casado, Carmen; Bernal-Martin, Antonio; Lopez-Gomez, Miguel; Romero-Romero, Marco; Quesada, Guillermo; Lorca, Julio; Rivas, Ramon

    2005-01-01

    New wireless technologies make possible the implementation of high level integration wireless devices which allow the replacement of traditional large wired monitoring devices. This kind of devices favours at-home hospitalization, reducing the affluence to sanitary assistance centers to make routine controls. This fact causes a really favourable social impact, especially for elder people, rural-zone inhabitant, chronic patients and handicapped people. Furthermore, it offers new functionalities to physicians and will reduce the sanitary cost. Among these functionalities, biomedical signals can be sent to other devices (screen, PDA, PC...) or processing centers, without restricting the patients' mobility. The aim of this project is the development and implementation of a reduced size multi-channel electrocardiograph based on IEEE 802.11, which allows wireless monitoring of patients, and the insertion of the information into the TCP/IP Hospital network. PMID:17281922

  20. Triage tests for identifying atrial fibrillation in primary care: a diagnostic accuracy study comparing single-lead ECG and modified BP monitors

    PubMed Central

    Kearley, Karen; Selwood, Mary; Van den Bruel, Ann; Thompson, Matthew; Mant, David; Hobbs, FD Richard; Fitzmaurice, David; Heneghan, Carl

    2014-01-01

    Objective New electronic devices offer an opportunity within routine primary care settings for improving the detection of atrial fibrillation (AF), which is a common cardiac arrhythmia and a modifiable risk factor for stroke. We aimed to assess the performance of a modified blood pressure (BP) monitor and two single-lead ECG devices, as diagnostic triage tests for the detection of AF. Setting 6 General Practices in the UK. Participants 1000 ambulatory patients aged 75 years and over. Primary and secondary outcome measures Comparative diagnostic accuracy of modified BP monitor and single-lead ECG devices, compared to reference standard of 12-lead ECG, independently interpreted by cardiologists. Results A total of 79 participants (7.9%) had AF diagnosed by 12-lead ECG. All three devices had a high sensitivity (93.9–98.7%) and are useful for ruling out AF. WatchBP is a better triage test than Omron autoanalysis because it is more specific—89.7% (95% CI 87.5% to 91.6%) compared to 78.3% (95% CI 73.0% to 82.9%), respectively. This would translate into a lower follow-on ECG rate of 17% to rule in/rule out AF compared to 29.7% with the Omron text message in the study population. The overall specificity of single-lead ECGs analysed by a cardiologist was 94.6% for Omron and 90.1% for Merlin. Conclusions WatchBP performs better as a triage test for identifying AF in primary care than the single-lead ECG monitors as it does not require expertise for interpretation and its diagnostic performance is comparable to single-lead ECG analysis by cardiologists. It could be used opportunistically to screen elderly patients for undiagnosed AF at regular intervals and/or during BP measurement. PMID:24793250

  1. Software design of a remote real-time ECG monitoring system

    NASA Astrophysics Data System (ADS)

    Yu, Chengbo; Tao, Hongyan

    2005-12-01

    Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.

  2. The study and design of a wireless ECG monitoring system.

    PubMed

    Yang, Hongli; Chai, Jihong

    2012-01-01

    This paper describes a research project on wireless electrocardiogram (ECG) monitoring systems. A detection and measurement processor designed by a MSP430 microcontroller accomplishes the analog-to-digital conversion, digital filtering, QRS wave detection, and heart rate calculation. The data of detection can be sent to the central controller and personal computer (PC) by wireless on-chip MG2455 through a ZigBee network. This design can be used widely in home healthcare, community healthcare, and sports training, as well as in healthcare facilities, due to its characteristics of low power consumption, small size, and reliability. PMID:23039742

  3. Personalized USB Biosensor Module for Effective ECG Monitoring.

    PubMed

    Sladojević, Srdjan; Arsenović, Marko; Lončar-Turukalo, Tatjana; Sladojević, Miroslava; Ćulibrk, Dubravko

    2016-01-01

    The burden of chronic disease and associated disability present a major threat to financial sustainability of healthcare delivery systems. The need for cost-effective early diagnosis and disease prevention is evident driving the development of personalized home health solutions. The proposed solution presents an easy to use ECG monitoring system. The core hardware component is a biosensor dongle with sensing probes at one end, and micro USB interface at the other end, offering reliable and unobtrusive sensing, preprocessing and storage. An additional component is a smart phone, providing both the biosensor's power supply and an intuitive user application for the real-time data reading. The system usage is simplified, with innovative solutions offering plug and play functionality avoiding additional driver installation. Personalized needs could be met with different sensor combinations enabling adequate monitoring in chronic disease, during physical activity and in the rehabilitation process. PMID:27225580

  4. [Design of the Mobile ECG Monitoring System Based on Android 4.3].

    PubMed

    Zhang, Shun; Lian, Yuxi; Qin, Yajie; Wang, Yuanyuan

    2015-07-01

    To monitor and record Electrocardiograph (ECG) signals for 24 hours, a mobile ECG monitoring system is designed based on Android 4.3. In this system, domestic indigenous E9622A is used to acquire ECG signals and TI CC2541 is adopted to communicate with mobile phones. The program is implemented on the Android platform to display and process ECG signals. The whole system is integrated on a 2 cm x 2 cm PCB. From experiments, it is shown that ECG signals can be obtained effectively when this system is worn, and clear ECG waveforms and parameters can be shown on the phones. With this system, arrhythmia can be diagnosed preliminarily. It is also shown that the system is low-power, low-cost, flexible and portable. PMID:26665945

  5. Web access to data in a mobile ECG monitoring system.

    PubMed

    Rodriguez, Jimena; Dranca, Lacramioara; Goñi, Alfredo; Illarramendi, Arantza

    2004-01-01

    Cardiovascular diseases and, in particular, diseases related to arrhythmias are a problem that affects a significant percentage of the population, being one of the major causes of death in Europe. New advances in the fields of PDAs, mobile phones, wireless communications and vital parameter sensors have permitted the development of revolutionary medical monitoring systems, which strikingly improve the lifestyle of patients. However, not all those monitoring systems provide patients with real assistance - anywhere and at any time. We have developed a system that goes a step further than the previous approaches, being designed to capture, record and, as a distinctive feature, locally analyze the ECG signals in a PDA carried by the patient. In that sense, the system has a decision support module based on decision tree methods that can detect, with high precision, any arrhythmias that the user may be suffering. Alarms can then be activated in time to alert a medical center in order to provide the proper medical assistance. One of our aims when building the system has been to optimize limited and expensive resources like PDA memory size and wireless communication costs. Moreover, accessibility is also an important feature of the system that has been achieved by the development of web services to query the data computed in the PDA. In this way, authorized personnel (physicians and relatives) can easily obtain access to that data. PMID:15718599

  6. Noncontact ECG system for unobtrusive long-term monitoring.

    PubMed

    McDonald, Neil J; Anumula, Harini A; Duff, Eric; Soussou, Walid

    2012-01-01

    This paper describes measurements made using an ECG system with QUASAR's capacitive bioelectrodes integrated into a pad system that is placed over a chair. QUASAR's capacitive bioelectrode has the property of measuring bioelectric potentials at a small separation from the body. This enables the measurement of ECG signals through fabric, without the removal of clothing or preparation of skin. The ECG was measured through the subject's clothing while the subject sat in the chair without any supporting action from the subject. The ECG pad system is an example of a high compliance system that places minimal requirements upon the subject and, consequently, can be used to generate a long-term record from ECG segments collected on a daily basis, providing valuable information on long-term trends in cardiac health. PMID:23366215

  7. Design and implementation of a 3-lead ECG wireless remote monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, Shi; Jia, Xiaonan; Shang, Shuai

    2006-11-01

    Cardiovascular disease is one of the main diseases that menaces human health. It is necessary to monitor the patient's real-time electrocardiograph (ECG) for a long time to realize diagnosis and salvage. Remote ECG monitoring system is the solution. This paper introduces the design and implement of a 3-lead ECG wireless remote monitoring system. It collects, stores and transmits user's ECG which can be received by hospital and diagnosed by doctors. The development of the whole system contains three parts, the hardware and embedded software implementation of MONITOR, software of the MONITORING CENTER, and the routing software of NETWORK CENTER. According to the clinic experimentation, this system has high reliability and utility. There will be great social and economic benefit if this system is put into use.

  8. A Study on the Optimal Positions of ECG Electrodes in a Garment for the Design of ECG-Monitoring Clothing for Male.

    PubMed

    Cho, Hakyung; Lee, Joo Hyeon

    2015-09-01

    Smart clothing is a sort of wearable device used for ubiquitous health monitoring. It provides comfort and efficiency in vital sign measurements and has been studied and developed in various types of monitoring platforms such as T-shirt and sports bra. However, despite these previous approaches, smart clothing for electrocardiography (ECG) monitoring has encountered a serious shortcoming relevant to motion artifacts caused by wearer movement. In effect, motion artifacts are one of the major problems in practical implementation of most wearable health-monitoring devices. In the ECG measurements collected by a garment, motion artifacts are usually caused by improper location of the electrode, leading to lack of contact between the electrode and skin with body motion. The aim of this study was to suggest a design for ECG-monitoring clothing contributing to reduction of motion artifacts. Based on the clothing science theory, it was assumed in this study that the stability of the electrode in a dynamic state differed depending on the electrode location in an ECG-monitoring garment. Founded on this assumption, effects of 56 electrode positions were determined by sectioning the surface of the garment into grids with 6 cm intervals in the front and back of the bodice. In order to determine the optimal locations of the ECG electrodes from the 56 positions, ECG measurements were collected from 10 participants at every electrode position in the garment while the wearer was in motion. The electrode locations indicating both an ECG measurement rate higher than 80.0 % and a large amplitude during motion were selected as the optimal electrode locations. The results of this analysis show four electrode locations with consistently higher ECG measurement rates and larger amplitudes amongst the 56 locations. These four locations were abstracted to be least affected by wearer movement in this research. Based on this result, a design of the garment-formed ECG monitoring platform

  9. ECG artefacts mimicking atrial flutter in posterior fossa surgery.

    PubMed

    Rudigwa, Priya; Elakkumanan, Lenin Babu; Rajan, Sakthi P; Prakash, M V Satya

    2015-01-01

    ECG artefacts are defined as abnormalities in the monitored ECG, which result from measurement of cardiac potentials on the body surface and are not related to the electrical activity of the heart. In the operation theatre, the use of various types of electrical equipment may interfere with ECG interpretation. We describe our experience with artefacts resembling atrial fibrillation when a nerve integrity monitoring device was used on a patient undergoing posterior fossa surgery for epidermoid tumour. These artefacts resemble serious arrhythmias and may result in unwanted interventions. To enable better identification of such artefacts, a 12-lead ECG should be considered as it will display rhythm in all the leads; while artefacts will present in only a few leads, true arrhythmia will be present in all the 12 leads. Our case report aims to increase awareness regarding ECG artefacts and to explain how to distinguish them from actual arrhythmias. PMID:26021382

  10. A Primary Study of Indirect ECG Monitor Embedded in a Bed for Home Health Care

    NASA Astrophysics Data System (ADS)

    Ueno, Akinori; Shiogai, Yuuki; Ishiyama, Yoji

    A system for monitoring electrocardiogram (ECG) through clothes inserted between the measuring electrodes and the body surface of a subject when lying on a mattress has been proposed. The principle of the system is based on capacitive coupling involving the electrode, the clothes, and the skin. Validation of the system revealed the following: (1) In spite of the gain attenuation in the pass band of the system, distortion of the detected signal was subtle even when clothes thicker than 1mm were inserted, (2) The system was able to yield a stable ECG from a subject particularly during sound sleep, (3) The system succeeded in detecting ECG after changing the posture into any of supine, right lateral, or left lateral positions by adopting a newly devised electrode configuration. Therefore, the proposed system appears promising for application to bedding as a non-invasive and awareness-free system for ECG monitoring during sleep.

  11. An innovative non-contact ECG sensor for monitoring heart disease

    NASA Astrophysics Data System (ADS)

    Sun, Ye; Yu, Xiong (Bill); Berilla, Jim

    2011-06-01

    This paper describes the development of a non-contact sensing platform to monitor the ECG signals. The non-contact sensing will be based on capacitive coupling the bioelectricity produced by cardiovascular activities around the heart. High sensitivity sensor and electronics are designed to amplify the signals. Our preliminary study has pointed to the promise of this sensing concept. A sensor prototype was able to clearly detect the ECG signals from 10 cm away from the body. Research tasks continue improving the sensor design to detect the polarization in the ECG signals. The final goal is a non-contact sensing platform for ECG signals and for real time diagnostics of the mental distress and cardiovascular diseases.

  12. A configurable and low-power mixed signal SoC for portable ECG monitoring applications.

    PubMed

    Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat

    2014-04-01

    This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly. PMID:24875285

  13. Intelligent Classification of Heartbeats for Automated Real-Time ECG Monitoring

    PubMed Central

    Park, Juyoung

    2014-01-01

    Abstract Background: The automatic interpretation of electrocardiography (ECG) data can provide continuous analysis of heart activity, allowing the effective use of wireless devices such as the Holter monitor. Materials and Methods: We propose an intelligent heartbeat monitoring system to detect the possibility of arrhythmia in real time. We detected heartbeats and extracted features such as the QRS complex and P wave from ECG signals using the Pan–Tompkins algorithm, and the heartbeats were then classified into 16 types using a decision tree. Results: We tested the sensitivity, specificity, and accuracy of our system against data from the MIT-BIH Arrhythmia Database. Our system achieved an average accuracy of 97% in heartbeat detection and an average heartbeat classification accuracy of above 96%, which is comparable with the best competing schemes. Conclusions: This work provides a guide to the systematic design of an intelligent classification system for decision support in Holter ECG monitoring. PMID:25010717

  14. [A Smart Low-Power-Consumption ECG Monitor Based on MSP430F5529 and CC2540].

    PubMed

    Gong, Yuan; Cao, Jin; Luo, Zehui; Zhou, Guohui

    2015-07-01

    A design of ECG monitor was presented in this paper. It is based on the latest MCU and BLE4.0 technologies and can interact with multi-platform smart devices with extra low power consumption. Besides, a clinical expansion part can realize functions including displaying the real-time ECG and heart rate curve, reading abnormal ECG signals stored in the monitor, and setting alarm threshold. These functions are suitable for follow-up use. PMID:26665940

  15. A portable ECG monitoring device with Bluetooth and Holter capabilities for telemedicine applications.

    PubMed

    Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara

    2006-01-01

    A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission. PMID:17946295

  16. Performance evaluation of carbon black based electrodes for underwater ECG monitoring.

    PubMed

    Reyes, Bersain A; Posada-Quintero, Hugo F; Bales, Justin R; Chon, Ki H

    2014-01-01

    Underwater electrocardiogram (ECG) monitoring currently uses Ag/AgCl electrodes and requires sealing of the electrodes to avoid water intrusion, but this procedure is time consuming and often results in severe irritations or even tearing of the skin. To alleviate these problems, our research team developed hydrophobic electrodes comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS) that provide all morphological waveforms without distortion of an ECG signal for dry and water-immersed conditions. Performance comparison of CB/PDMS electrodes to adhesive Ag/AgCl hydrogel electrodes was carried out in three different scenarios which included recordings from a dry surface, water immersion, and post-water immersion conditions. CB/PDMS electrodes were able to acquire ECG signals highly correlated with those from adhesive Ag/AgCl electrodes during all conditions. Statistical reduction in ECG amplitude (p<0.05) was only found during the immersed condition with CB/PDMS electrodes when compared to Ag/AgCl electrodes sealed with their waterproof adhesive tape. Besides this reduction readability of the recordings was not obscured and all morphological waveforms of the ECG signal were discernible. The advantages of our CB/PDMS electrodes are that they are reusable, can be fabricated economically, and most importantly, high-fidelity underwater ECG signals can be acquired without relying on the heavy use of waterproof sealing. PMID:25570300

  17. Energy-efficient Compressed Sensing for ambulatory ECG monitoring.

    PubMed

    Craven, Darren; McGinley, Brian; Kilmartin, Liam; Glavin, Martin; Jones, Edward

    2016-04-01

    Advances in Compressed Sensing (CS) are enabling promising low-energy implementation solutions for wireless Body Area Networks (BAN). While studies demonstrate the potential of CS in terms of overall energy efficiency compared to state-of-the-art lossy compression techniques, the performance of CS remains limited. The aim of this study is to improve the performance of CS-based compression for electrocardiogram (ECG) signals. This paper proposes a CS architecture that combines a novel redundancy removal scheme with quantization and Huffman entropy coding to effectively extend the Compression Ratio (CR). Reconstruction is performed using overcomplete sparse dictionaries created with Dictionary Learning (DL) techniques to exploit the highly structured nature of ECG signals. Performance of the proposed CS implementation is evaluated by analyzing energy-based distortion metrics and diagnostic metrics including QRS beat-detection accuracy across a range of CRs. The proposed CS approach offers superior performance to the most recent state-of-the-art CS implementations in terms of signal reconstruction quality across all CRs tested. Furthermore, QRS detection accuracy of the technique is compared with the well-known lossy Set Partitioning in Hierarchical Trees (SPIHT) compression technique. The proposed CS approach outperforms SPIHT in terms of achievable CR, using the area under the receiver operator characteristic (ROC) curve (AUC). For an application where a minimum AUC performance threshold of 0.9 is required, the proposed technique extends the CR from 64.6 to 90.45 compared with SPIHT, ensuring a 40% saving on wireless transmission costs. Therefore, the results highlight the potential of the proposed technique for ECG computer-aided diagnostic systems. PMID:26854730

  18. Community-Based ECG Monitoring System for Patients with Cardiovascular Diseases.

    PubMed

    Lin, Bor-Shyh; Wong, Alice M; Tseng, Kevin C

    2016-04-01

    This study aims to develop a community-based electrocardiogram (ECG) monitoring system for cardiac outpatients to wirelessly detect heart rate, provide personalized healthcare, and enhance interactive social contact because of the prevalence of deaths from cardiovascular disease and the growing problem of aging in the world. The system not only strengthens the performance of the ECG monitoring system but also emphasizes the ergonomic design of wearable devices and user interfaces. In addition, it enables medical professionals to diagnose cardiac symptoms remotely and electronically manage medical reports and suggestions. The experimental result shows high performance of the dry electrode, even in dynamic conditions. The comparison result with different ECG healthcare systems shows the essential factors that the system should possess and the capability of the proposed system. Finally, a user survey was conducted based on the unified theory of acceptance and users of technology (UTAUT) model. PMID:26802010

  19. A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Smartphone.

    PubMed

    Miao, Fen; Cheng, Yayu; He, Yi; He, Qingyun; Li, Ye

    2015-01-01

    Continuously monitoring the ECG signals over hours combined with activity status is very important for preventing cardiovascular diseases. A traditional ECG holter is often inconvenient to carry because it has many electrodes attached to the chest and because it is heavy. This work proposes a wearable, low power context-aware ECG monitoring system integrated built-in kinetic sensors of the smartphone with a self-designed ECG sensor. The wearable ECG sensor is comprised of a fully integrated analog front-end (AFE), a commercial micro control unit (MCU), a secure digital (SD) card, and a Bluetooth module. The whole sensor is very small with a size of only 58 × 50 × 10 mm for wearable monitoring application due to the AFE design, and the total power dissipation in a full round of ECG acquisition is only 12.5 mW. With the help of built-in kinetic sensors of the smartphone, the proposed system can compute and recognize user's physical activity, and thus provide context-aware information for the continuous ECG monitoring. The experimental results demonstrated the performance of proposed system in improving diagnosis accuracy for arrhythmias and identifying the most common abnormal ECG patterns in different activities. In conclusion, we provide a wearable, accurate and energy-efficient system for long-term and context-aware ECG monitoring without any extra cost on kinetic sensor design but with the help of the widespread smartphone. PMID:25996508

  20. A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Smartphone

    PubMed Central

    Miao, Fen; Cheng, Yayu; He, Yi; He, Qingyun; Li, Ye

    2015-01-01

    Continuously monitoring the ECG signals over hours combined with activity status is very important for preventing cardiovascular diseases. A traditional ECG holter is often inconvenient to carry because it has many electrodes attached to the chest and because it is heavy. This work proposes a wearable, low power context-aware ECG monitoring system integrated built-in kinetic sensors of the smartphone with a self-designed ECG sensor. The wearable ECG sensor is comprised of a fully integrated analog front-end (AFE), a commercial micro control unit (MCU), a secure digital (SD) card, and a Bluetooth module. The whole sensor is very small with a size of only 58 × 50 × 10 mm for wearable monitoring application due to the AFE design, and the total power dissipation in a full round of ECG acquisition is only 12.5 mW. With the help of built-in kinetic sensors of the smartphone, the proposed system can compute and recognize user’s physical activity, and thus provide context-aware information for the continuous ECG monitoring. The experimental results demonstrated the performance of proposed system in improving diagnosis accuracy for arrhythmias and identifying the most common abnormal ECG patterns in different activities. In conclusion, we provide a wearable, accurate and energy-efficient system for long-term and context-aware ECG monitoring without any extra cost on kinetic sensor design but with the help of the widespread smartphone. PMID:25996508

  1. The development of wireless sensor network for ECG monitoring.

    PubMed

    Lin, Jun-Liang; Liu, Hsien-Chieh; Tai, Yu-Ting; Wu, Hsin-Hsien; Hsu, Shuo-Jen; Jaw, Fu-Shan; Chen, You-Yin

    2006-01-01

    The main problem we want to solve contains two subjects: The first one is the patient's pressure due to wired physiological signal estimation. With wireless sensor network technique, patients only need to carry a few small nodes, and then the physiological signal can be transmitted in the air. The other subject of the vital problem is that some protocols, like Bluetooth, provide a peer to peer wireless communication technique, but such peer to peer network may need a complex algorithm to find the best data transmission path. In this study, we use the hierarchy routing as network topology that three-layer architecture contains PAN coordinator, router and device. The study focuses on implementation of a prototype electrocardiography (ECG) system which replaces wired connections between sensor points and a central node with wireless links. Successful implementation of the final system would be of benefit to all involved in the use of ECG as access to and movement of the patient would not be impeded by the physical constraints imposed by the cables. Most aspects of the design would also be portable to other sensor applications, making the work relevant to a vast range of systems where movement of sensors is desirable and constrained by hard-wired links. PMID:17946570

  2. Continuous ECG monitoring on civil air crews during flight operations.

    PubMed

    Sekiguchi, C; Yamaguchi, O; Kitajima, T; Ueda, Y

    1977-09-01

    Cardiovascular disease is one of the disorders resulting in sudden incapacitation and is the most common malady leading to medical retirement. It is very important for us to control this disease among pilots. Generally, pilots undergo medical checkups at health control service on the ground, but they do not undergo these checkups during flight operations. We obtained a continuous ECG recording on four pilots to assess cardiac reserve capacity for mental load during flight operation. Results show that no significant ischemic changes of ST-segment and T-wave during flight were noticed except in one case of atrial fibrillation in which significant depression of ST-segment occurred while walking up a stairway after flight. An increased number of ectopic beats was found in another normal case. In general, it was suspected that mental load is greater at landing than takeoff. PMID:907598

  3. Real-Time 12-Lead High-Frequency QRS Electrocardiography for Enhanced Detection of Myocardial Ischemia and Coronary Artery Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Kulecz, Walter B.; DePalma, Jude L.; Feiveson, Alan H.; Wilson, John S.; Rahman, M. Atiar; Bungo, Michael W.

    2004-01-01

    Several studies have shown that diminution of the high-frequency (HF; 150-250 Hz) components present within the central portion of the QRS complex of an electrocardiogram (ECG) is a more sensitive indicator for the presence of myocardial ischemia than are changes in the ST segments of the conventional low-frequency ECG. However, until now, no device has been capable of displaying, in real time on a beat-to-beat basis, changes in these HF QRS ECG components in a continuously monitored patient. Although several software programs have been designed to acquire the HF components over the entire QRS interval, such programs have involved laborious off-line calculations and postprocessing, limiting their clinical utility. We describe a personal computer-based ECG software program developed recently at the National Aeronautics and Space Administration (NASA) that acquires, analyzes, and displays HF QRS components in each of the 12 conventional ECG leads in real time. The system also updates these signals and their related derived parameters in real time on a beat-to-beat basis for any chosen monitoring period and simultaneously displays the diagnostic information from the conventional (low-frequency) 12-lead ECG. The real-time NASA HF QRS ECG software is being evaluated currently in multiple clinical settings in North America. We describe its potential usefulness in the diagnosis of myocardial ischemia and coronary artery disease.

  4. Inkjet printed ECG electrodes for long term biosignal monitoring in personalized and ubiquitous healthcare.

    PubMed

    Batchelor, John C; Casson, Alexander J

    2015-08-01

    This paper investigates the performance of inkjet printed electrodes for electrocardiogram (ECG) monitoring in personalized and ubiquitous healthcare. As a rapid prototyping, additive manufacturing approach, inkjet printing can allow personalization of electrode sizes and shapes and can be used with a range of substrates to achieve good long term connections to the skin. We compare the performance of two types of inkjet electrodes printed using different substrates. Results demonstrate that both new electrodes can record ECG information, with comparable signal-to-noise ratios to conventional Ag/AgCl electrodes. The time-frequency decomposition of the collected signals is also explored. PMID:26737174

  5. Apnea MedAssist: real-time sleep apnea monitor using single-lead ECG.

    PubMed

    Bsoul, Majdi; Minn, Hlaing; Tamil, Lakshman

    2011-05-01

    We have developed a low-cost, real-time sleep apnea monitoring system ''Apnea MedAssist" for recognizing obstructive sleep apnea episodes with a high degree of accuracy for both home and clinical care applications. The fully automated system uses patient's single channel nocturnal ECG to extract feature sets, and uses the support vector classifier (SVC) to detect apnea episodes. "Apnea MedAssist" is implemented on Android operating system (OS) based smartphones, uses either the general adult subject-independent SVC model or subject-dependent SVC model, and achieves a classification F-measure of 90% and a sensitivity of 96% for the subject-independent SVC. The real-time capability comes from the use of 1-min segments of ECG epochs for feature extraction and classification. The reduced complexity of "Apnea MedAssist" comes from efficient optimization of the ECG processing, and use of techniques to reduce SVC model complexity by reducing the dimension of feature set from ECG and ECG-derived respiration signals and by reducing the number of support vectors. PMID:20952340

  6. Issues in implementing a knowledge-based ECG analyzer for personal mobile health monitoring.

    PubMed

    Goh, K W; Kim, E; Lavanya, J; Kim, Y; Soh, C B

    2006-01-01

    Advances in sensor technology, personal mobile devices, and wireless broadband communications are enabling the development of an integrated personal mobile health monitoring system that can provide patients with a useful tool to assess their own health and manage their personal health information anytime and anywhere. Personal mobile devices, such as PDAs and mobile phones, are becoming more powerful integrated information management tools and play a major role in many people's lives. We focus on designing a health-monitoring system for people who suffer from cardiac arrhythmias. We have developed computer simulation models to evaluate the performance of appropriate electrocardiogram (ECG) analysis techniques that can be implemented on personal mobile devices. This paper describes an ECG analyzer to perform ECG beat and episode detection and classification. We have obtained promising preliminary results from our study. Also, we discuss several key considerations when implementing a mobile health monitoring solution. The mobile ECG analyzer would become a front-end patient health data acquisition module, which is connected to the Personal Health Information Management System (PHIMS) for data repository. PMID:17947185

  7. Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring

    PubMed Central

    Wang, Jie; Lin, Chung-Chih; Yu, Yan-Shuo; Yu, Tsang-Chu

    2015-01-01

    The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis. PMID:26640512

  8. Evaluation of heart rate variability indices using a real-time handheld remote ECG monitor.

    PubMed

    Singh, Swaroop S; Carlson, Barbara W; Hsiao, Henry S

    2007-12-01

    Studies on retrospective electrocardiogram (ECG) recordings of patients during cardiac arrest have shown significant changes in heart rate variability (HRV) indices prior to the onset of cardiac arrhythmia. The early detection of these changes in HRV indices increases the chances for a successful medical intervention by increasing the response time window. A portable, handheld remote ECG monitor designed in this research detects the QRS complex and calculates short-term HRV indices in real-time. The QRS detection of the ECG recordings of subjects from the MIT-Arrhythmia database yielded a mean sensitivity of 99.34% and a specificity of 99.31%. ECG recordings from normal subjects and subjects with congestive heart failure were used to identify the differences in HRV indices. An increase in heart rate, high-frequency spectral power (HFP), total spectral power, the ratio of HFP to low-frequency spectral power (LFP), and a decrease in root mean square sum of RR differences were observed. No difference was found on comparison of the standard deviation of normal to normal interval between adjacent R-waves, LFP, and very-low-frequency spectral power. Based on these, additional analytical calculations could be made to provide early warnings of impending cardiac conditions. PMID:18047419

  9. An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 μ m CMOS.

    PubMed

    Mansano, Andre L; Li, Yongjia; Bagga, Sumit; Serdijn, Wouter A

    2016-06-01

    The design of a 13.56 MHz/402 MHz autonomous wireless sensor node with asynchronous ECG monitoring for near field communication is presented. The sensor node consists of an RF energy harvester (RFEH), a power management unit, an ECG readout, a data encoder and an RF backscattering transmitter. The energy harvester supplies the system with 1.25 V and offers a power conversion efficiency of 19% from a -13 dBm RF source at 13.56 MHz. The power management unit regulates the output voltage of the RFEH to supply the ECG readout with VECG = 0.95 V and the data encoder with VDE = 0.65 V . The ECG readout comprises an analog front-end (low noise amplifier and programmable voltage to current converter) and an asynchronous level crossing ADC with 8 bits resolution. The ADC output is encoded by a pulse generator that drives a backscattering transmitter at 402 MHz. The total power consumption of the sensor node circuitry is 9.7 μ W for a data rate of 90 kb/s and a heart rate of 70 bpm. The chip has been designed in a 0.18 μm CMOS process and shows superior RF input power sensitivity and lower power consumption when compared to previous works. PMID:26812734

  10. Wearable real-time ecg monitoring with emergency alert system for scuba diving.

    PubMed

    Cibis, Tobias; Groh, Benjamin H; Gatermann, Heike; Leutheuser, Heike; Eskofier, Bjoern M

    2015-08-01

    Medical diagnosis is the first level for recognition and treatment of diseases. To realize fast diagnosis, we propose a concept of a basic framework for the underwater monitoring of a diver's ECG signal, including an alert system that warns the diver of predefined medical emergency situations. The framework contains QRS detection, heart rate calculation and an alert system. After performing a predefined study protocol, the algorithm's accuracy was evaluated with 10 subjects in a dry environment and with 5 subjects in an underwater environment. The results showed that, in 3 out of 5 dives as well as in dry environment, data transmission remained stable. In these cases, the subjects were able to trigger the alert system. The evaluated data showed a clear ECG signal with a QRS detection accuracy of 90 %. Thus, the proposed framework has the potential to detect and to warn of health risks. Further developments of this sample concept can imply an extension for monitoring different biomedical parameters. PMID:26737677

  11. Synthesize, optimize, analyze, repeat (SOAR): Application of neural network tools to ECG patient monitoring

    SciTech Connect

    Watrous, R.; Towell, G.; Glassman, M.S.

    1995-12-31

    Results are reported from the application of tools for synthesizing, optimizing and analyzing neural networks to an ECG Patient Monitoring task. A neural network was synthesized from a rule-based classifier and optimized over a set of normal and abnormal heartbeats. The classification error rate on a separate and larger test set was reduced by a factor of 2. When the network was analyzed and reduced in size by a factor of 40%, the same level of performance was maintained.

  12. WIH-based IEEE 802.11 ECG monitoring implementation.

    PubMed

    Moein, A; Pouladian, M

    2007-01-01

    New wireless technologies make possible the implementation of high level integration wireless devices which allow the replacement of traditional large wired monitoring devices. It offers new functionalities to physicians and will reduce the costs. Among these functionalities, biomedical signals can be sent to other devices (PDA, PC . . . ) or processing centers, without restricting the patients' mobility. This article discusses the WIH (Ward-In-Hand) structure and the software required for its implementation before an operational example is presented with its results. The aim of this project is the development and implementation of a reduced size electrocardiograph based on IEEE 802.11 with high speed and more accuracy, which allows wireless monitoring of patients, and the insertion of the information into the Wi-Fi hospital networks. PMID:18002795

  13. Low data rate ultra wideband ECG monitoring system.

    PubMed

    Keong, Ho Chee; Yuce, Mehmet R

    2008-01-01

    This paper presents a successfully implemented wireless electrocardiograph monitoring using low data rate ultra wideband (UWB) transmission. Low data rate ultra wideband is currently under consideration for the newly formed wireless body area network (WBAN) group (IEEE802.15.6) to develop a standard for wireless vital sign monitoring. Maximizing the transmission power of the transmitter and reducing the stringent requirements and complexity of the receiver have always been the key considerations for an UWB transceiver. Multiple pulses per bit has been sent in our low data rate UWB prototype system to increase the transmitter power, to reduce the complexity of the receiver and to ease the requirement on the receiver's analog to digital converter. Non-coherent technique has been used for the demodulation of UWB signals at the receiver that reduces the receiver complexity further. PMID:19163442

  14. Predictable and reliable ECG monitoring over IEEE 802.11 WLANs within a hospital.

    PubMed

    Park, Juyoung; Kang, Kyungtae

    2014-09-01

    Telecardiology provides mobility for patients who require constant electrocardiogram (ECG) monitoring. However, its safety is dependent on the predictability and robustness of data delivery, which must overcome errors in the wireless channel through which the ECG data are transmitted. We report here a framework that can be used to gauge the applicability of IEEE 802.11 wireless local area network (WLAN) technology to ECG monitoring systems in terms of delay constraints and transmission reliability. For this purpose, a medical-grade WLAN architecture achieved predictable delay through the combination of a medium access control mechanism based on the point coordination function provided by IEEE 802.11 and an error control scheme based on Reed-Solomon coding and block interleaving. The size of the jitter buffer needed was determined by this architecture to avoid service dropout caused by buffer underrun, through analysis of variations in transmission delay. Finally, we assessed this architecture in terms of service latency and reliability by modeling the transmission of uncompressed two-lead electrocardiogram data from the MIT-BIH Arrhythmia Database and highlight the applicability of this wireless technology to telecardiology. PMID:25083792

  15. Mobile cloud-computing-based healthcare service by noncontact ECG monitoring.

    PubMed

    Fong, Ee-May; Chung, Wan-Young

    2013-01-01

    Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service. PMID:24316562

  16. Adaptive motion artefact reduction in respiration and ECG signals for wearable healthcare monitoring systems.

    PubMed

    Zhang, Zhengbo; Silva, Ikaro; Wu, Dalei; Zheng, Jiewen; Wu, Hao; Wang, Weidong

    2014-12-01

    Wearable healthcare monitoring systems (WHMSs) have received significant interest from both academia and industry with the advantage of non-intrusive and ambulatory monitoring. The aim of this paper is to investigate the use of an adaptive filter to reduce motion artefact (MA) in physiological signals acquired by WHMSs. In our study, a WHMS is used to acquire ECG, respiration and triaxial accelerometer (ACC) signals during incremental treadmill and cycle ergometry exercises. With these signals, performances of adaptive MA cancellation are evaluated in both respiration and ECG signals. To achieve effective and robust MA cancellation, three axial outputs of the ACC are employed to estimate the MA by a bank of gradient adaptive Laguerre lattice (GALL) filter, and the outputs of the GALL filters are further combined with time-varying weights determined by a Kalman filter. The results show that for the respiratory signals, MA component can be reduced and signal quality can be improved effectively (the power ratio between the MA-corrupted respiratory signal and the adaptive filtered signal was 1.31 in running condition, and the corresponding signal quality was improved from 0.77 to 0.96). Combination of the GALL and Kalman filters can achieve robust MA cancellation without supervised selection of the reference axis from the ACC. For ECG, the MA component can also be reduced by adaptive filtering. The signal quality, however, could not be improved substantially just by the adaptive filter with the ACC outputs as the reference signals. PMID:25273839

  17. Mobile Cloud-Computing-Based Healthcare Service by Noncontact ECG Monitoring

    PubMed Central

    Fong, Ee-May; Chung, Wan-Young

    2013-01-01

    Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service. PMID:24316562

  18. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology

    PubMed Central

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet. PMID:27006940

  19. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.

    PubMed

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet. PMID:27006940

  20. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  1. CardioGuard: A Brassiere-Based Reliable ECG Monitoring Sensor System for Supporting Daily Smartphone Healthcare Applications

    PubMed Central

    Kwon, Sungjun; Kim, Jeehoon; Kang, Seungwoo; Lee, Youngki; Baek, Hyunjae

    2014-01-01

    Abstract We propose CardioGuard, a brassiere-based reliable electrocardiogram (ECG) monitoring sensor system, for supporting daily smartphone healthcare applications. It is designed to satisfy two key requirements for user-unobtrusive daily ECG monitoring: reliability of ECG sensing and usability of the sensor. The system is validated through extensive evaluations. The evaluation results showed that the CardioGuard sensor reliably measure the ECG during 12 representative daily activities including diverse movement levels; 89.53% of QRS peaks were detected on average. The questionnaire-based user study with 15 participants showed that the CardioGuard sensor was comfortable and unobtrusive. Additionally, the signal-to-noise ratio test and the washing durability test were conducted to show the high-quality sensing of the proposed sensor and its physical durability in practical use, respectively. PMID:25405527

  2. An RFID tag system-on-chip with wireless ECG monitoring for intelligent healthcare systems.

    PubMed

    Wang, Cheng-Pin; Lee, Shuenn-Yuh; Lai, Wei-Chih

    2013-01-01

    This paper presents a low-power wireless ECG acquisition system-on-chip (SoC), including an RF front-end circuit, a power unit, an analog front-end circuit, and a digital circuitry. The proposed RF front-end circuit can provide the amplitude shift keying demodulation and distance to digital conversion to accurately receive the data from the reader. The received data will wake up the power unit to provide the required supply voltages of analog front-end (AFE) and digital circuitry. The AFE, including a pre-amplifier, an analog filter, a post-amplifier, and an analog-to-digital converter, is used for the ECG acquisition. Moreover, the EPC Class I Gen 2 UHF standard is employed in the digital circuitry for the handshaking of communication and the control of the system. The proposed SoC has been implemented in 0.18-µm standard CMOS process and the measured results reveal the communication is compatible to the RFID protocol. The average power consumption for the operating chip is 12 µW. Using a Sony PR44 battery to the supply power (605mAh@1.4V), the RFID tag SoC operates continuously for about 50,000 hours (>5 years), which is appropriate for wireless wearable ECG monitoring systems. PMID:24110979

  3. Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions

    PubMed Central

    Thap, Tharoeun; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    We proposed new electrodes that are applicable for electrocardiogram (ECG) monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL), a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS) electrode and a pencil lead powder type (PLP) electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes. PMID:27092502

  4. Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions.

    PubMed

    Thap, Tharoeun; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    We proposed new electrodes that are applicable for electrocardiogram (ECG) monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL), a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS) electrode and a pencil lead powder type (PLP) electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes. PMID:27092502

  5. ECG-based detection of body position changes in ischemia monitoring.

    PubMed

    García, José; Aström, Magnus; Mendive, Javier; Laguna, Pablo; Sörnmo, Leif

    2003-06-01

    The purpose of this paper is to analyze and detect changes in body position (BPC) during electrocardiogram (ECG) recording. These changes are often manifested as shifts in the electrical axis and may be misclassified as ischemic changes during ambulatory monitoring. We investigate two ECG signal processing methods for detecting BPCs. Different schemes for feature extraction are used (spatial and scalar), while preprocessing, trend postprocessing and detection are identical. The spatial approach is based on VCG loop rotation angles and the scalar approach is based on the Karhunen-Loève transform (KLT) coefficients. The methods are evaluated on two different databases: a database with annotated BPCs and the STAFF III database with recordings from rest and during angioplasty-induced ischemia but not including BPCs. The angle-based detector results in performance values of detection probability PD = 95%, false alarm probability PF = 3% in the BPC database and false alarm rate in the STAFF III database in control ECGs during rest RF(c) = 2 h(-1) (episodes per hour) and in ischemia recordings during angioplasty RF(a) = 7 h(-1), whereas the KLT-based detector produces values of PD = 89%, PF = 3%, RF(c) = 4 h(-1), and RF(a) = 11 h(-1), respectively. Including information on noise level in the detection process to reduce the number of false alarms, performance values of PD approximately equal to 90%, PF approximately equal to 1%, RF(c) approximately equal to 1 h(-1) and RF(a) approximately equal to 2 h(-1) are obtained with both methods. It is concluded that reliable detection of BPCs may be achieved using the ECG signal and should work in parallel to ischemia detectors. PMID:12814234

  6. A full custom analog front-end for long-time ECG monitoring.

    PubMed

    Wen, Meiying; Cheng, Yayu; Li, Ye

    2013-01-01

    An analog front-end (AFE) used in portable electrocardiogram (ECG) monitoring devices is proposed. This AFE has included all necessary functions for the commercial applications. The core circuit consists of the instrumentation amplifier (IA), a 2(nd) order Butterworth low pass filter, and the second amplifying stage. The driven-right-leg circuit is integrated in the IA to effectively suppress the common mode interference. And the power management circuits provide a stable supply voltage, bias current and reference voltage for the other circuits. To guarantee the validity of the continuous monitoring data, the leadoff monitoring circuit is developed to monitor the connection of the leads. The chip is taped out with SMIC 0.18 µm CMOS process, and the measured results show that the common mode rejection ratio (CMRR) and power supply rejection ratio (PSRR) achieve 75 dB and 90dB respectively, and the equivalent input referred noise is 12 µV. PMID:24110417

  7. A 58 nW ECG ASIC With Motion-Tolerant Heartbeat Timing Extraction for Wearable Cardiovascular Monitoring.

    PubMed

    Da He, David; Sodini, Charles G

    2015-06-01

    An ASIC for wearable cardiovascular monitoring is implemented using a topology that takes advantage of the electrocardiogram's (ECG) waveform to replace the traditional ECG instrumentation amplifier, ADC, and signal processor with a single chip solution. The ASIC can extract heartbeat timings in the presence of baseline drift, muscle artifact, and signal clipping. The circuit can operate with ECGs ranging from the chest location to remote locations where the ECG magnitude is as low as 30 μV. Besides heartbeat detection, a midpoint estimation method can accurately extract the ECG R-wave timing, enabling the calculations of heart rate variability. With 58 nW of power consumption at 0.8 V supply voltage and 0.76 mm (2) of active die area in standard 0.18 μm CMOS technology, the ECG ASIC is sufficiently low power and compact to be suitable for long term and wearable cardiovascular monitoring applications under stringent battery and size constraints. PMID:25252285

  8. Embroidered Electrode with Silver/Titanium Coating for Long-Term ECG Monitoring

    PubMed Central

    Weder, Markus; Hegemann, Dirk; Amberg, Martin; Hess, Markus; Boesel, Luciano F.; Abächerli, Roger; Meyer, Veronika R.; Rossi, René M.

    2015-01-01

    For the long-time monitoring of electrocardiograms, electrodes must be skin-friendly and non-irritating, but in addition they must deliver leads without artifacts even if the skin is dry and the body is moving. Today's adhesive conducting gel electrodes are not suitable for such applications. We have developed an embroidered textile electrode from polyethylene terephthalate yarn which is plasma-coated with silver for electrical conductivity and with an ultra-thin titanium layer on top for passivation. Two of these electrodes are embedded into a breast belt. They are moisturized with a very low amount of water vapor from an integrated reservoir. The combination of silver, titanium and water vapor results in an excellent electrode chemistry. With this belt the long-time monitoring of electrocardiography (ECG) is possible at rest as well as when the patient is moving. PMID:25599424

  9. Embroidered electrode with silver/titanium coating for long-term ECG monitoring.

    PubMed

    Weder, Markus; Hegemann, Dirk; Amberg, Martin; Hess, Markus; Boesel, Luciano F; Abächerli, Roger; Meyer, Veronika R; Rossi, René M

    2015-01-01

    For the long-time monitoring of electrocardiograms, electrodes must be skin-friendly and non-irritating, but in addition they must deliver leads without artifacts even if the skin is dry and the body is moving. Today's adhesive conducting gel electrodes are not suitable for such applications. We have developed an embroidered textile electrode from polyethylene terephthalate yarn which is plasma-coated with silver for electrical conductivity and with an ultra-thin titanium layer on top for passivation. Two of these electrodes are embedded into a breast belt. They are moisturized with a very low amount of water vapor from an integrated reservoir. The combination of silver, titanium and water vapor results in an excellent electrode chemistry. With this belt the long-time monitoring of electrocardiography (ECG) is possible at rest as well as when the patient is moving. PMID:25599424

  10. Ambulance 12-lead electrocardiography transmission via cell phone technology to cardiologists.

    PubMed

    Hsieh, Jui-Chien; Lin, Bo-Xuan; Wu, Feng-Ren; Chang, Pei-Chann; Tsuei, Yi-Wei; Yang, Chung-Chi

    2010-10-01

    This study demonstrates transmission of 12-lead electrocardiography (ECG) in an ambulance to the cell phone of the attendant emergency medical technician and then to the hospital and to cell phones of off-site cardiologists. The emergency medical technician cell phone receives Extensible Markup Language files generated by a Phillips Extensible Markup Language ECG instrument via Wi-Fi-based wireless network and then sends them to an ECG-processing server at the hospital over the mobile telephone network. After reducing ECG noises and artifacts, the server converts files to Digital Imaging and Communications in Medicine-based ECG reports stored in Picture Archiving and Communication System. These reports are sent to the cell phones of off-site cardiologists. Consequently, on-site Emergency Department physicians and off-site cardiologists can discuss ECG reports via Picture Archiving and Communication System on their computers or cell phones to prepare for the most appropriate treatment while the patient is on the way to the hospital. In conclusion, this 12-lead ECG transmission e-technology expands the functions of a 12-lead ECG instrument and facilitates more efficient prehospital cardiac care. PMID:20925562

  11. Training and competency evaluation for interpretation of 12-lead electrocardiograms: recommendations from the American College of Physicians.

    PubMed

    Salerno, Stephen M; Alguire, Patrick C; Waxman, Herbert S

    2003-05-01

    This paper is part 1 of a 2-part series on interpretation of 12-lead resting electrocardiograms (ECGs). Part 1 is a position paper that presents recommendations for initial competency, competency assessment, and maintenance of competency on ECG interpretation, as well as recommendations for the role of computer-assisted ECG interpretation. Part 2 is a systematic review of detailed supporting evidence for the recommendations. Despite several earlier consensus-based recommendations on ECG interpretation, substantive evidence on the training needed to obtain and maintain ECG interpretation skills is not available. Some studies show that noncardiologist physicians have more ECG interpretation errors than do cardiologists, but the rate of adverse patient outcomes from ECG interpretation errors is low. Computers may decrease the time needed to interpret ECGs and can reduce ECG interpretation errors. However, they have shown less accuracy than physician interpreters and must be relied on only as an adjunct interpretation tool for a trained provider. Interpretation of ECGs varies greatly, even among expert electrocardiographers. Noncardiologists seem to be more influenced by patient history in interpreting ECGs than are cardiologists. Cardiologists also perform better than other specialists on standardized ECG examinations when minimal patient history is provided. Pending more definitive research, residency training in internal medicine with Advanced Cardiac Life Support instruction should continue to be sufficient for bedside interpretation of resting 12-lead ECGs in routine and emergency situations. Additional experience or training in ECG interpretation when the patient's clinical condition is unknown may be useful but requires further study. PMID:12729430

  12. Passive RFID tag based heart rate monitoring from an ECG signal.

    PubMed

    Vora, Shrenik; Dandekar, Kapil; Kurzweg, Timothy

    2015-08-01

    In this paper, we propose a monitoring system that employs a passive RFID tag to transmit heart rate using an ECG signal as its source. This system operates without a battery and has been constructed with easily available commercial components. Here, an RFID tag is used as an on-off keying device, wherein it is normally transmitting, but turns off every time a heart beat is detected. Heart beats ranging from 30BPM through 300BPM are successfully measured using our device. It is shown that the system is capable of providing accurate heart rate measurements up to a distance of ten feet with a standard deviation of less than one beat per minute without a local power source. The proposed system is also found to be resilient in the presence of an additional RFID tag. PMID:26737271

  13. Validation of a short rhythm strip compared to ambulatory ECG monitoring for ventricular ectopy.

    PubMed

    Evenson, K R; Welch, V L; Cascio, W E; Simpson, R J

    2000-05-01

    Premature ventricular contractions (PVCs) are associated with an increased risk of cardiovascular disease and mortality. Many epidemiologic studies measure a continuous short rhythm strip to ascertain PVCs as a screening tool to identify persons at highest risk. Despite its widespread use in epidemiologic studies, the rhythm strip has not been completely validated. Therefore, a continuous 2-min rhythm strip was measured on 242 consecutive individuals referred for ambulatory ECG monitoring. Prevalence of at least one PVC on the 2-min rhythm strip was compared to a gold standard, the average number of PVCs per hr on ambulatory recording. The prevalence of any PVCs on the 2-min rhythm strip was 19%. As average PVCs per hr increased on the ambulatory ECG recording, sensitivity increased while specificity slowly decreased. Sensitivity ranged from 26-100% and specificity ranged from 81-100% across the distribution of average PVCs per hr on ambulatory monitoring. Area under the receiver operator characteristic (ROC) curve of the 2-min rhythm strip compared to 24-hr results was 0.943. Area under ROC curves were not statistically different (P > 0.05) by age, gender, hypertension status, or history of myocardial infarction. In this clinical population, utilizing the 2-min rhythm strip as an indicator of average PVCs per hr had excellent specificity and moderate to low sensitivity across most of the distribution of average PVCs per hr. The use of a short rhythm strip to detect PVCs may be considered useful in epidemiologic investigations of cardiovascular disease and mortality for detecting high frequency PVCs in populations. The use of a short rhythm strip as a screening tool to detect PVCs in clinical practice is not warranted, based on our findings and the existing literature. However, an awareness that PVCs on a 2-min rhythm strip consistently identify high frequency PVCs on 24-hr recordings should be helpful to clinicians. PMID:10812321

  14. ECG/PPG integer signal processing for a ubiquitous health monitoring system.

    PubMed

    Shin, Woosik; Cha, Yong Dae; Yoon, Gilwon

    2010-10-01

    A compact ubiquitous-health monitor operated by single 8-bit microcontroller was made. An integer signal processing algorithm for this microcontroller was developed and digital filtering of ECG (electrocardiogram) and PPG (photoplethysmogram) was performed. Rounding-off errors due to integer operation was solved by increasing the number of effective integer digits during CPU operation; digital filter coefficients and data expressed in decimal points were multiplied by a certain number and converted into integers. After filter operation, the actual values were retrieved by dividing with the same number and selecting available highest bits. Our results showed comparable accuracies to those computed by a commercial software. Compared with a floating-point calculation by the same microcontroller, the computation speed became faster by 1.45 ∼ 2.0 times depending on various digital filtering cases. Our algorithm was successfully tested for remote health monitoring with multiple users. If our algorithm were not used, our health monitor should have used additional microcontrollers or DSP chip. The proposed algorithm reduced the size and cost of our health monitor substantially. PMID:20703619

  15. Advances in ambulatory monitoring: regulatory considerations.

    PubMed

    Buckles, David; Aguel, Felipe; Brockman, Randall; Cheng, James; Demian, Cindy; Ho, Charles; Jensen, Donald; Mallis, Elias

    2004-01-01

    Conventional ambulatory electrocardiogram (ECG) (Holter) monitoring involves 2 or 3 surface leads recorded with electrode positions and signal characteristics that are different from diagnostic quality 12-lead ECGs due to the limitations imposed by technology on the ambulatory recorders. The rapid pace of technological development for medical devices, particularly electrocardiography, has now enabled the recording of diagnostic quality 12-lead ECG waveforms for extended time periods. This capability allows Holter recording to become another source for diagnostic 12-lead ECG records on a par with other modalities such as resting ECG and exercise stress testing. Additionally, other diagnostic techniques such as S-T segment analysis and Q-T interval analysis that rely on diagnostic quality waveforms can now be applied. All of these enhancements to the traditional Holter modality have altered the regulatory perspective of these devices, since the enhancements may represent a new intended use for the device. PMID:15534803

  16. Troubleshooting the ECG.

    PubMed

    Hatlestad, Dan

    2003-09-01

    Improper ECG monitoring is dangerous to patient care. Artifact in ECG monitoring can be annoying, costly and produce delays in proper care. Understanding the technical sources of artifact and care in the application of monitoring electrodes can significantly reduce or even eliminate the problem. Critical to the success of ECG monitoring are the technical aspects of proper equipment selection, preventive maintenance, and timely and rapid application to the patient, all to deliver the highest quality patient care. Just as critical is the prehospital clinician's understanding of equipment capabilities and limitations. Take time to read and understand the operator's manual for the ECG monitor/defibrillator in use in your ambulance. The ECG offers invaluable diagnostic information to EMS clinicians. With recent technological advances, today's ECG monitors provide even greater ease and versatility, which results in enhanced patient monitoring. Many factors can affect the quality of the ECG trace and therefore must be controlled in order to gain the most accurate and meaningful reading. Electrode placement and selection, as well as site preparation, are key considerations when applying and monitoring a patient's ECG. PMID:14503159

  17. MS-QI: A Modulation Spectrum-Based ECG Quality Index for Telehealth Applications.

    PubMed

    Tobon V, Diana P; Falk, Tiago H; Maier, Martin

    2016-08-01

    As telehealth applications emerge, the need for accurate and reliable biosignal quality indices has increased. One typical modality used in remote patient monitoring is the electrocardiogram (ECG), which is inherently susceptible to several different noise sources, including environmental (e.g., powerline interference), experimental (e.g., movement artifacts), and physiological (e.g., muscle and breathing artifacts). Accurate measurement of ECG quality can allow for automated decision support systems to make intelligent decisions about patient conditions. This is particularly true for in-home monitoring applications, where the patient is mobile and the ECG signal can be severely corrupted by movement artifacts. In this paper, we propose an innovative ECG quality index based on the so-called modulation spectral signal representation. The representation quantifies the rate of change of ECG spectral components, which are shown to be different from the rate of change of typical ECG noise sources. The proposed modulation spectral-based quality index, MS-QI, was tested on 1) synthetic ECG signals corrupted by varying levels of noise, 2) single-lead recorded data using the Hexoskin garment during three activity levels (sitting, walking, running), 3) 12-lead recorded data using conventional ECG machines (Computing in Cardiology 2011 dataset), and 4) two-lead ambulatory ECG recorded from arrhythmia patients (MIT-BIH Arrhythmia Database). Experimental results showed the proposed index outperforming two conventional benchmark quality measures, particularly in the scenarios involving recorded data in real-world environments. PMID:25203983

  18. Wearable ECG recorder with acceleration sensors for monitoring daily stress: office work simulation study.

    PubMed

    Okada, Y; Yoto, T Y; Suzuki, T; Sakuragawa, S; Sugiura, T

    2013-01-01

    A small and light-weight wearable electrocardiograph (ECG) equipment with a tri-axis accelerometer (x, y and z-axis) was developed for prolonged monitoring of everyday stress. It consists of an amplifier, a microcomputer with an AD converter, a triaxial accelerometer, and a memory card. Four parameters can be sampled at 1 kHz for more than 24 h and a maximum of 27 h with a default battery and a memory card of one giga byte (1 GB). Off-line data processing includes motion information along three axes and autonomic nervous system (ANS) activity bispectral analysis and the tone-entropy method (T-E method) from HRV data. The availability of the system was tested through simulated office work and three-day monitoring by replacing the battery and the memory card every 24 h. Both short-term and circadian rhythms of ANS activity were clearly observed. In addition, sympathetic nervous activities gradually increased from the second to the third day. The experimental data presented verifies the functionality of the proposed system. PMID:24110788

  19. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications.

    PubMed

    Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat

    2011-01-01

    This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption. PMID:22254775

  20. 12-lead electrocardiogram features of arrhythmic risk: A focus on early repolarization

    PubMed Central

    Rizzo, Caterina; Monitillo, Francesco; Iacoviello, Massimo

    2016-01-01

    The 12-lead electrocardiogram (ECG) is still the most used tool in cardiology clinical practice. Considering its easy accessibility, low cost and the information that it provides, it remains the starting point for diagnosis and prognosis. More specifically, its ability to detect prognostic markers for sudden cardiac death due to arrhythmias by identifying specific patterns that express electrical disturbances of the heart muscle, which may predispose to malignant arrhythmias, is universally recognized. Alterations in the ventricular repolarization process, identifiable on a 12-lead ECG, play a role in the genesis of ventricular arrhythmias in different cardiac diseases. The aim of this paper is to focus the attention on a new marker of arrhythmic risk, the early repolarization pattern in order to highlight the prognostic role of the 12-lead ECG.

  1. 12-lead electrocardiogram features of arrhythmic risk: A focus on early repolarization.

    PubMed

    Rizzo, Caterina; Monitillo, Francesco; Iacoviello, Massimo

    2016-08-26

    The 12-lead electrocardiogram (ECG) is still the most used tool in cardiology clinical practice. Considering its easy accessibility, low cost and the information that it provides, it remains the starting point for diagnosis and prognosis. More specifically, its ability to detect prognostic markers for sudden cardiac death due to arrhythmias by identifying specific patterns that express electrical disturbances of the heart muscle, which may predispose to malignant arrhythmias, is universally recognized. Alterations in the ventricular repolarization process, identifiable on a 12-lead ECG, play a role in the genesis of ventricular arrhythmias in different cardiac diseases. The aim of this paper is to focus the attention on a new marker of arrhythmic risk, the early repolarization pattern in order to highlight the prognostic role of the 12-lead ECG. PMID:27621772

  2. Finite difference and lead field methods in designing implantable ECG monitor.

    PubMed

    Väisänen, Juho; Hyttinen, Jari; Malmivuo, Jaakko

    2006-10-01

    To minimize time-consuming and expensive in vitro and in vivo testing, information regarding the effects of implantation and the implants on measurements should be available during the designing of active implantable devices measuring bioelectric signals such as electrocardiograms (ECG). Modeling offers a fairly inexpensive and effective means of studying and demonstrating the effects of implantation on ECG measurements prior to any in vivo tests, and can thus provide the designer with valuable information. Finite difference model (FDM) and lead field approaches offer straightforward and effective modeling methods supporting the designing of active implantable ECG devices. The present study demonstrates such methods in developing and studying ECG implants. They were applied in demonstrating the effects of implant dimensions and of electrode implantation on the measurement sensitivity of the ECG device. The results of the simulations indicated that the interelectrode distance is the factor of the implant design determining the lead sensitivity. Other parameters related implant dimensions and shape have minor effect on the morphology of the ECG or on the average sensitivity of the measurement. This is shown for example when the interelectrode distance was reduced to 1/3 of original the average lead sensitivity decreased by 69.1% while larger relative changes in other dimensions produced clearly smaller changes. It was also observed here that implanting the electrodes deeper under the skin has major effects on the local sensitivities in heart muscle and thus affect to the morphology of the ECG. The study indicated also that non-conducting medium (i.e. implant insulated body) between the electrodes increases the sensitivity on heart muscle compared to cases where only electrodes are implanted. PMID:17031715

  3. Real-Time Online Monitoring of Electrocardiogram (ECG) using Very Low Cost for Developing Countries

    NASA Astrophysics Data System (ADS)

    Singh, Gavendra; Gupta, Varun; Sekharmantri, Anil Kumar; Gupta, Akash; Kumar, Pankaj

    2010-11-01

    An electrocardiogram or ECG (also known as EKG—abbreviated from the German word Elektro-Kardiographie), is an electrical recording of the heart and is used in the investigation of heart disease. `An electrocardiogram (ECG) is a graphic tracing of the electric current generated by the heart muscle during a heartbeat'. The electrocardiogram (ECG)/(EKG) is a surface measurement of the electrical potential generated by electrical activity in cardiac tissue. It has been used extensively in medicine sine its inventions in the early 1900' sand has been proven to be invaluable in various diagnostics applications such as the detection of irregular heartbeat patterns (i.e. fibrillation & arrhythmia), hearts murmurs (other abnormal sounds), tissue/structural damage (such as valve malfunction) and coronary artery blockage. In this paper we made a circuit network by using this circuit we can acquire an ECG signal of the heart electrical activity. This is one of the cheapest circuit to acquire ECG signal. It's whole cost around Rs.250/- only. Instrumentation amplifier AD620AN, notch filter, various resistances, capacitors, wires etc. are used to made this circuit.

  4. [Various systems of long-term ECG (Holter) monitoring in clinical practice].

    PubMed

    Janousek, J

    1989-03-31

    Seven various 24-hour ambulatory ECG systems from six producers (Trendsetter 9000A--Del Mar Avionics, Epicardia HC and PC--Medicomp, Epicardia FD--Hellige, Spacelabs 90,101-Spacelabs, Medilog 4000--Oxford, Laser Holter 8000T--Marquette) were used over a 4-year period to gather the experience with a total of 449 24-hour ECG recordings. The quality of the automatic analysis, the mode of access to the ECG data, control and correction possibilities, operator time consumption, report quality, costs and availability of consumeables were individually evaluated. In the country's specific conditions/shortage of some type of consumeables), Laser Holter 8000T was regarded as the most useful device followed by Epicardia FD and Medilog 4000. PMID:2731211

  5. A Low-Voltage Chopper-Stabilized Amplifier for Fetal ECG Monitoring With a 1.41 Power Efficiency Factor.

    PubMed

    Song, Shuang; Rooijakkers, Michael; Harpe, Pieter; Rabotti, Chiara; Mischi, Massimo; van Roermund, Arthur H M; Cantatore, Eugenio

    2015-04-01

    This paper presents a low-voltage current-reuse chopper-stabilized frontend amplifier for fetal ECG monitoring. The proposed amplifier allows for individual tuning of the noise in each measurement channel, minimizing the total power consumption while satisfying all application requirements. The low-voltage current reuse topology exploits power optimization in both the current and the voltage domain, exploiting multiple supply voltages (0.3, 0.6 and 1.2 V). The power management circuitry providing the different supplies is optimized for high efficiency (peak charge-pump efficiency = 90%).The low-voltage amplifier together with its power management circuitry is implemented in a standard 0.18 μm CMOS process and characterized experimentally. The amplifier core achieves both good noise efficiency factor (NEF=1.74) and power efficiency factor (PEF=1.05). Experiments show that the amplifier core can provide a noise level of 0.34 μVrms in a 0.7 to 182 Hz band, consuming 1.17 μW power. The amplifier together with its power management circuitry consumes 1.56 μW, achieving a PEF of 1.41. The amplifier is also validated with adult ECG and pre-recorded fetal ECG measurements. PMID:25879971

  6. The ECG as decision support in STEMI.

    PubMed

    Ripa, Maria Sejersten

    2012-03-01

    The electrocardiogram (ECG) can be used for determining the presence, location and extent of jeopardized myocardium during acute coronary occlusion. Accordingly, the ECG has become essential in the treatment of patients with acute coronary syndrome (ACS). This thesis aims at optimizing the decision support, provided by the ECG, for choosing the best treatment strategy in the individual patient with ST-segment elevation acute myocardial infarction (STEMI). ECG recorded in the prehospital setting has become the standard of care in many communities, but to achieve the full advantage of this early approach it is important that the ECG is recorded from accurately placed electrodes to produce an ECG that resembles the standard 12-lead ECG. Accurate electrode placement is difficult especially in the acute setting, and we investigated an alternative lead system with fewer electrodes in easily identified positions. We showed that the system produced waveforms similar to the standard 12-lead ECG. However, occasional diagnostic errors were seen, compromising general acceptance of the system. Once the ECG has been recorded a decision regarding triage must be made on the basis of a correct ECG diagnosis. We found that trained paramedics can diagnose STEMI correctly in patients without ECG confounding factors, while the presence of ECG confounding factors decreased their ability substantially. Consequently, since many patients do present with ECG confounding factors, transmission to an on-call cardiologist for an early correct diagnosis is needed. We showed that time to pPCI was reduced by more than 1 hour by transmitting prehospital ECG to a cardiologist's handheld device for diagnosis, triage, and activation of the catheterization laboratory when needed. The optimal treatment strategy is dependent on the duration of ischemia however patient information is often inaccurate. Accordingly, it would be advantageous if the first available ECG can help identify patients who will

  7. The importance of bioimpedance (BIA) analysis and Cardio Tens (24-h ABPM and ECG) monitoring in the dialysis programme.

    PubMed

    Löcsey, L; Szlanka, B; Ménes, I; Kövér, A; Vitai, E; Malkócs, Z; Keresztes, P; Paragh, G

    1999-01-01

    The authors performed bioimpedance analysis and Cardio Tens (24-h ABPM and ECG) monitoring in 66 patients (28 males, 38 females) treated in the chronic haemodialysis programme. They investigated the correlations between the body weights before, during and after dialysis, the changes of the water compartments and fat body weight, and the recorded values of blood pressure and ECG alterations. On the basis of the measurements by this non-invasive method it is concluded that, as a result of dialysis and ultrafiltration, the total body weight and total body water are decreasing in a greater extent in men than in women. By gradually decreasing the body weight, the optimal dry weight could be attained, which resulted in the reduction of blood pressure or even normotension. In the course of dialysis the values of bioimpedance and bioreactance increase. The intradialytic hypotensive indispositions were accompanied by a significant reduction of bioreactance (n = 16). The BMI, total body weight and total body water hyperlipidaemic, hypalbuminic patients with treatment-resistant hypertension are considerably larger than those of the patients with normal blood pressure (p<0.01). During Cardio Tens monitoring 53% of the patients proved to be dippers, 47% of whom had ST depression, while in 73% of the non-dippers ischaemic alterations were encountered together with high hyperbaric impact values. The total body weights and total water compartments of patients returning to dialysis with an excess body weight of more than 3.5 kg were significantly larger than of patients who were cooperative and had no oedemas. In the last hour of dialysis and during the following few hours, arrhythmias and ST depressions of the cardiovascularly instable patients appeared more frequently. The total water compartments of these patients are significantly larger than normotensive, normolipaemic patients with appropriate serum albumin concentrations. The importance of the BIA and Cardio Tens monitoring

  8. Feasibility and efficacy of a remote real-time wireless ECG monitoring and stimulation system for management of ventricular arrhythmia in rabbits with myocardial infarction

    PubMed Central

    ZHOU, ZHI-WEN; GOU, KAI; LUO, ZHANG-YUAN; LI, WEI; ZHANG, WEN-ZAN; LI, YI-GANG

    2014-01-01

    The purpose of this study was to explore the feasibility of continuous remote monitoring, and the induction and termination of malignant ventricular arrhythmias (VAs) by a novel implantable electronic cardiovascular device (IECD) system in rabbits with myocardial infarction (MI). The IECD was implanted and MI was induced by ligation of the left anterior descending coronary artery in 20 adult rabbits. Internet-based remote electrocardiogram (ECG) monitoring and ventricular stimulation were conducted in remote locations with internet access. The voltage amplitudes of the stimulation signals were recorded synchronously by remote and surface ECG. Programmed stimulation with regular stimuli and regular stimuli with an added extra stimulus were performed prior to and following the MI surgery to induce and terminate VAs. IECD implantation and MI surgery, as well as qualified remote and bidirectional signal communications between the implanted IECD and extracorporeal system, were successfully achieved in 18 rabbits. The voltage of the stimulation signals recorded by the remote and surface ECGs showed a good correlation with the stimulation current (remote ECG, r=0.972 and surface ECG, r=0.988; P<0.001). Sustained ventricular tachycardia (VT) was induced in five rabbits (5/20, 25%) prior to MI induction and in 12 rabbits (12/16, 75%) following MI induction. Of the 17 induced VTs, 16 were successfully terminated by remote ventricular stimulation. The novel IECD system provides qualified remote wireless ECG monitoring and possesses the potential to induce and terminate VAs by remote ventricular pacing in this rabbit model of MI. Thus, this model of MI may be used to test the efficacy of novel drugs and devices for the management of VAs. PMID:24944622

  9. Feasibility and efficacy of a remote real-time wireless ECG monitoring and stimulation system for management of ventricular arrhythmia in rabbits with myocardial infarction.

    PubMed

    Zhou, Zhi-Wen; Gou, Kai; Luo, Zhang-Yuan; Li, Wei; Zhang, Wen-Zan; Li, Yi-Gang

    2014-07-01

    The purpose of this study was to explore the feasibility of continuous remote monitoring, and the induction and termination of malignant ventricular arrhythmias (VAs) by a novel implantable electronic cardiovascular device (IECD) system in rabbits with myocardial infarction (MI). The IECD was implanted and MI was induced by ligation of the left anterior descending coronary artery in 20 adult rabbits. Internet-based remote electrocardiogram (ECG) monitoring and ventricular stimulation were conducted in remote locations with internet access. The voltage amplitudes of the stimulation signals were recorded synchronously by remote and surface ECG. Programmed stimulation with regular stimuli and regular stimuli with an added extra stimulus were performed prior to and following the MI surgery to induce and terminate VAs. IECD implantation and MI surgery, as well as qualified remote and bidirectional signal communications between the implanted IECD and extracorporeal system, were successfully achieved in 18 rabbits. The voltage of the stimulation signals recorded by the remote and surface ECGs showed a good correlation with the stimulation current (remote ECG, r=0.972 and surface ECG, r=0.988; P<0.001). Sustained ventricular tachycardia (VT) was induced in five rabbits (5/20, 25%) prior to MI induction and in 12 rabbits (12/16, 75%) following MI induction. Of the 17 induced VTs, 16 were successfully terminated by remote ventricular stimulation. The novel IECD system provides qualified remote wireless ECG monitoring and possesses the potential to induce and terminate VAs by remote ventricular pacing in this rabbit model of MI. Thus, this model of MI may be used to test the efficacy of novel drugs and devices for the management of VAs. PMID:24944622

  10. Assessing ECG signal quality indices to discriminate ECGs with artefacts from pathologically different arrhythmic ECGs.

    PubMed

    Daluwatte, C; Johannesen, L; Galeotti, L; Vicente, J; Strauss, D G; Scully, C G

    2016-08-01

    False and non-actionable alarms in critical care can be reduced by developing algorithms which assess the trueness of an arrhythmia alarm from a bedside monitor. Computational approaches that automatically identify artefacts in ECG signals are an important branch of physiological signal processing which tries to address this issue. Signal quality indices (SQIs) derived considering differences between artefacts which occur in ECG signals and normal QRS morphology have the potential to discriminate pathologically different arrhythmic ECG segments as artefacts. Using ECG signals from the PhysioNet/Computing in Cardiology Challenge 2015 training set, we studied previously reported ECG SQIs in the scientific literature to differentiate ECG segments with artefacts from arrhythmic ECG segments. We found that the ability of SQIs to discriminate between ECG artefacts and arrhythmic ECG varies based on arrhythmia type since the pathology of each arrhythmic ECG waveform is different. Therefore, to reduce the risk of SQIs classifying arrhythmic events as noise it is important to validate and test SQIs with databases that include arrhythmias. Arrhythmia specific SQIs may also minimize the risk of misclassifying arrhythmic events as noise. PMID:27454007

  11. Classification of acute coronary syndromes using the 12-lead electrocardiogram as a guide.

    PubMed

    Pyne, Clifford C

    2004-01-01

    The management of patients with acute coronary syndromes (ACS) is becoming more complicated. With the advent of new therapies and surgical techniques, the likelihood that patients will make a full recovery improves. Cardiovascular disease remains the leading cause of death for adults in the United States, and with continually increasing trends such as obesity and diabetes, will likely remain so in the future. With the introduction of improved therapies, the numbers of patients dying after their first myocardial infarction continues to decline. Electrocardiogram (ECG) technology has improved, and further research has improved its sensitivity and specificity allowing for earlier, more consistent diagnosis of ACS. As a result, guidelines have been developed to assist nurses and clinicians in the management of patients with ACS. Nurses are in a unique position to provide primary triage, recognize ACS based on the patient's presentation and initial 12-lead ECG, and initiate an appropriate response. Key elements of 12-lead ECG interpretation and their application to established guidelines are essential skills for nurses working in clinical arenas frequented by patients with ACS. PMID:15586157

  12. The 12-lead electrocardiogram and risk of sudden death: current utility and future prospects.

    PubMed

    Narayanan, Kumar; Chugh, Sumeet S

    2015-10-01

    More than 100 years after it was first invented, the 12-lead electrocardiogram (ECG) continues to occupy an important place in the diagnostic armamentarium of the practicing clinician. With the recognition of relatively rare but important clinical entities such as Wolff-Parkinson-White and the long QT syndrome, this clinical tool was firmly established as a test for assessing risk of sudden cardiac death (SCD). However, over the past two decades the role of the ECG in risk prediction for common forms of SCD, for example in patients with coronary artery disease, has been the focus of considerable investigation. Especially in light of the limitations of current risk stratification approaches, there is a renewed focus on this broadly available and relatively inexpensive test. Various abnormalities of depolarization and repolarization on the ECG have been linked to SCD risk; however, more focused work is needed before they can be deployed in the clinical arena. The present review summarizes the current knowledge on various ECG risk markers for prediction of SCD and discusses some future directions in this field. PMID:26842119

  13. Development and clinical study of mobile 12-lead electrocardiography based on cloud computing for cardiac emergency.

    PubMed

    Fujita, Hideo; Uchimura, Yuji; Waki, Kayo; Omae, Koji; Takeuchi, Ichiro; Ohe, Kazuhiko

    2013-01-01

    To improve emergency services for accurate diagnosis of cardiac emergency, we developed a low-cost new mobile electrocardiography system "Cloud Cardiology®" based upon cloud computing for prehospital diagnosis. This comprises a compact 12-lead ECG unit equipped with Bluetooth and Android Smartphone with an application for transmission. Cloud server enables us to share ECG simultaneously inside and outside the hospital. We evaluated the clinical effectiveness by conducting a clinical trial with historical comparison to evaluate this system in a rapid response car in the real emergency service settings. We found that this system has an ability to shorten the onset to balloon time of patients with acute myocardial infarction, resulting in better clinical outcome. Here we propose that cloud-computing based simultaneous data sharing could be powerful solution for emergency service for cardiology, along with its significant clinical outcome. PMID:23920851

  14. Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis.

    PubMed

    Lee, W K; Yoon, H; Park, K S

    2016-07-01

    Since heart rate variability (HRV) analysis is widely used to evaluate the physiological status of the human body, devices specifically designed for such applications are needed. To this end, we developed a smart electrocardiography (ECG) patch. The smart patch measures ECG using three electrodes integrated into the patch, filters the measured signals to minimize noise, performs analog-to-digital conversion, and detects R-peaks. The measured raw ECG data and the interval between the detected R-peaks can be recorded to enable long-term HRV analysis. Experiments were performed to evaluate the performance of the built-in R-wave detection, robustness of the device under motion, and applicability to the evaluation of mental stress. The R-peak detection results obtained with the device exhibited a sensitivity of 99.29%, a positive predictive value of 100.00%, and an error of 0.71%. The device also exhibited less motional noise than conventional ECG recording, being stable up to a walking speed of 5 km/h. When applied to mental stress analysis, the device evaluated the variation in HRV parameters in the same way as a normal ECG, with very little difference. This device can help users better understand their state of health and provide physicians with more reliable data for objective diagnosis. PMID:26558395

  15. Real-time arrhythmia detection with supplementary ECG quality and pulse wave monitoring for the reduction of false alarms in ICUs.

    PubMed

    Krasteva, Vessela; Jekova, Irena; Leber, Remo; Schmid, Ramun; Abächerli, Roger

    2016-08-01

    False intensive care unit (ICU) alarms induce stress in both patients and clinical staff and decrease the quality of care, thus significantly increasing both the hospital recovery time and rehospitalization rates. In the PhysioNet/CinC Challenge 2015 for reducing false arrhythmia alarms in ICU bedside monitor data, this paper validates the application of a real-time arrhythmia detection library (ADLib, Schiller AG) for the robust detection of five types of life-threatening arrhythmia alarms. The strength of the application is to give immediate feedback on the arrhythmia event within a scan interval of 3 s-7.5 s, and to increase the noise immunity of electrocardiogram (ECG) arrhythmia analysis by fusing its decision with supplementary ECG quality interpretation and real-time pulse wave monitoring (quality and hemodynamics) using arterial blood pressure or photoplethysmographic signals. We achieved the third-ranked real-time score (79.41) in the challenge (Event 1), however, the rank was not officially recognized due to the 'closed-source' entry. This study shows the optimization of the alarm decision module, using tunable parameters such as the scan interval, lead quality threshold, and pulse wave features, with a follow-up improvement of the real-time score (80.07). The performance (true positive rate, true negative rate) is reported in the blinded challenge test set for different arrhythmias: asystole (83%, 96%), extreme bradycardia (100%, 90%), extreme tachycardia (98%, 80%), ventricular tachycardia (84%, 82%), and ventricular fibrillation (78%, 84%). Another part of this study considers the validation of ADLib with four reference ECG databases (AHA, EDB, SVDB, MIT-BIH) according to the international recommendations for performance reports in ECG monitors (ANSI/AAMI EC57). The sensitivity (Se) and positive predictivity (+P) are: QRS detector QRS (Se, +P)  >  99.7%, ventricular ectopic beat (VEB) classifier VEB (Se, +P)  =  95%, and ventricular

  16. Prehospital 12-Lead Electrocardiogram within 60 Minutes Differentiates Proximal versus Nonproximal Left Anterior Descending Artery Myocardial Infarction

    PubMed Central

    Aertker, Robert A; Barker, Colin M; Anderson, H. Vernon; Denktas, Ali E; Giesler, Gregory M; Julapalli, Vinay R; Ledoux, John F; Persse, David E; Sdringola, Stefano; Vooletich, Mary T; McCarthy, James J; Smalling, Richard W

    2011-01-01

    Introduction Acute anterior myocardial infarctions caused by proximal left anterior descending (LAD) artery occlusions are associated with a higher morbidity and mortality. Early identification of high-risk patients via the 12-lead electrocardiogram (ECG) could assist physicians and emergency response teams in providing early and aggressive care for patients with anterior ST-elevation myocardial infarctions (STEMI). Approximately 25% of US hospitals have primary percutaneous coronary intervention (PCI) capability for the treatment of acute myocardial infarctions. Given the paucity of hospitals capable of PCI, early identification of more severe myocardial infarction may prompt emergency medical service routing of these patients to PCI-capable hospitals. We sought to determine if the 12 lead ECG is capable of predicting proximal LAD artery occlusions. Methods In a retrospective, post-hoc analysis of the Pre-Hospital Administration of Thrombolytic Therapy with Urgent Culprit Artery Revascularization pilot trial, we compared the ECG findings of proximal and nonproximal LAD occlusions for patients who had undergone an ECG within 180 minutes of symptom onset. Results In this study, 72 patients had anterior STEMIs, with ECGs performed within 180 minutes of symptom onset. In patients who had undergone ECGs within 60 minutes (n = 35), the mean sum of ST elevation (STE) in leads V1 through V6 plus ST depression (STD) in leads II, III, and aVF was 19.2 mm for proximal LAD occlusions and 11.7 mm for nonproximal LAD occlusions (P = 0.007). A sum STE in V1 through V6 plus STD in II, III, and aVF of at least 17.5 mm had a sensitivity of 52.3%, specificity of 92.9%, positive predictive value of 91.7%, and negative predictive value of 56.5% for proximal LAD occlusions. When the ECG was performed more than 60 minutes after symptom onset (n = 37), there was no significant difference in ST-segment deviation between the 2 groups. Conclusion The sum STE (V1-V6) and STD (II, III, a

  17. An optimized DSP implementation of adaptive filtering and ICA for motion artifact reduction in ambulatory ECG monitoring.

    PubMed

    Berset, Torfinn; Geng, Di; Romero, Iñaki

    2012-01-01

    Noise from motion artifacts is currently one of the main challenges in the field of ambulatory ECG recording. To address this problem, we propose the use of two different approaches. First, an adaptive filter with electrode-skin impedance as a reference signal is described. Secondly, a multi-channel ECG algorithm based on Independent Component Analysis is introduced. Both algorithms have been designed and further optimized for real-time work embedded in a dedicated Digital Signal Processor. We show that both algorithms improve the performance of a beat detection algorithm when applied in high noise conditions. In addition, an efficient way of choosing this methods is suggested with the aim of reduce the overall total system power consumption. PMID:23367417

  18. Incidence and Predictors of New-Onset Atrial Fibrillation in Septic Shock Patients in a Medical ICU: Data from 7-Day Holter ECG Monitoring

    PubMed Central

    Guenancia, Charles; Binquet, Christine; Laurent, Gabriel; Vinault, Sandrine; Bruyère, Rémi; Prin, Sébastien; Pavon, Arnaud; Charles, Pierre-Emmanuel; Quenot, Jean-Pierre

    2015-01-01

    Purpose We investigated incidence, risk factors for new-onset atrial fibrillation (NAF), and prognostic impact during septic shock in medical Intensive Care Unit (ICU) patients. Methods Prospective, observational study in a university hospital. Consecutive patients from 03/2011 to 05/2013 with septic shock were eligible. Exclusion criteria were age <18 years, history of AF, transfer with prior septic shock. Included patients were equipped with long-duration (7 days) Holter ECG monitoring. NAF was defined as an AF episode lasting >30 seconds. Patient characteristics, infection criteria, cardiovascular parameters, severity of illness, support therapies were recorded. Results Among 66 patients, 29(44%) developed NAF; 10 (34%) would not have been diagnosed without Holter ECG monitoring. NAF patients were older, with more markers of heart failure (troponin and NT-pro-BNP), lower left ventricular ejection fraction (LVEF), longer QRS duration and more nonsustained supra ventricular arrhythmias (<30s) on day 1 than patients who maintained sinus rhythm. By multivariate analysis, age (OR: 1.06; p = 0.01) and LVEF<45% (OR: 13.01, p = 0.03) were associated with NAF. NAF did not predict 28 or 90 day mortality. Conclusions NAF is common, especially in older patients, and is associated with low ejection fraction. We did not find NAF to be independently associated with higher mortality. PMID:25965915

  19. A WBAN based cableless ECG acquisition system.

    PubMed

    Pan, Rui; Chua, Dingjuan; Pathmasuntharam, Jaya Shankar; Xu, Yong Ping

    2014-01-01

    A Wireless Body Area Network (WBAN) based 3-lead cableless electrocardiography (ECG) acquisition system is described. To enable truly cableless ECG monitoring, a new ECG measurement configuration and method that acquires ECG signals at individual lead locations referenced to a localized ground is proposed. The synthesized ECG signals are evaluated against the standard wired 3-lead configuration on the same test subject. Average Pearson correlation coefficients of 0.82, 0.95 and 0.86 have been achieved for Lead I, II and III signals respectively, demonstrating a high degree of similarity in the synthesized signals. Measurements are obtained via a custom wireless network platform utilizing a TDMA-based MAC protocol supporting the star topology and a proprietary front-end ECG acquisition system. PMID:25570107

  20. Holter ECG for pacemaker/defibrillator carriers: what is its role in the era of remote monitoring?

    PubMed

    Diemberger, Igor; Gardini, Beatrice; Martignani, Cristian; Ziacchi, Matteo; Corzani, Alessandro; Biffi, Mauro; Boriani, Giuseppe

    2015-08-01

    Nowadays several diagnostic tools are available to investigate cardiovascular symptoms like palpitations, dizziness and syncope: ECG Holter (or ambulatory ECG, AECG), external and implantable event/loop recorders. Despite this technological burden, many diagnoses are still missed. In the meantime, we are facing an increasing use of implantable devices for cardiac pacing/defibrillation (CIED), which have rapidly evolved from simple pacing/shock boxes to devices including several diagnostic features. However, these functions are not adequately exploited in current clinical practice and several redundant diagnostic tests, like AECG, are still prescribed to CIED carriers, leading to an increase of costs and a delay in final diagnosis. This review is aimed at identifying the current role of AECG in CIED carriers in view of this technological improvement. First, we will briefly present the indications for AECG according to current guidelines. We will then provide a direct comparison of the different diagnostic features provided by AECG (and event/loop recorders) versus automatic diagnostic CIED to highlight the respective pros and cons. This will serve to carefully discuss these indications in view of the results of recent studies on CIED carriers, highlighting the need for proper implantation and follow-up. Eventually, we will provide useful hints to properly analyse AECG in CIED carriers, considering the different behaviours according to the implemented algorithms. We will conclude by suggesting updated indications for AECG. PMID:26001846

  1. Smart wireless sensor for physiological monitoring.

    PubMed

    Tomasic, Ivan; Avbelj, Viktor; Trobec, Roman

    2015-01-01

    Presented is a wireless body sensor capable of measuring local potential differences on a body surface. By using on-sensor signal processing capabilities, and developed algorithms for off-line signal processing on a personal computing device, it is possible to record single channel ECG, heart rate, breathing rate, EMG, and when three sensors are applied, even the 12-lead ECG. The sensor is portable, unobtrusive, and suitable for both inpatient and outpatient monitoring. The paper presents the sensor's hardware and results of power consumption analysis. The sensor's capabilities of recording various physiological parameters are also presented and illustrated. The paper concludes with envisioned sensor's future developments and prospects. PMID:25980886

  2. Value of posterior and right ventricular leads in comparison to the standard 12-lead electrocardiogram in evaluation of ST-segment elevation in suspected acute myocardial infarction.

    PubMed

    Zalenski, R J; Rydman, R J; Sloan, E P; Hahn, K H; Cooke, D; Fagan, J; Fligner, D J; Hessions, W; Justis, D; Kampe, L M; Shah, S; Tucker, J; Zwicke, D

    1997-06-15

    In this multicenter prospective trial, we studied posterior (V7 to V9) and right ventricular (V4R to V6R) leads to assess their accuracy compared with standard 12-lead electrocardiograms (ECGs) for the diagnosis of acute myocardial infarction (AMI). Patients aged >34 years with suspected AMI received posterior and right ventricular leads immediately after the initial 12-lead ECG. ST elevation of 0.1 mV in 2 leads was blindly determined and inter-rater reliability estimated. AMI was diagnosed by World Health Organization criteria. The diagnostic value of nonstandard leads was determined when 12-lead ST elevation was absent and present and multivariate stepwise regression analysis was also performed. Of 533 study patients, 64.7% (345 of 533) had AMI and 24.8% received thrombolytic therapy. Posterior and right ventricular leads increased sensitivity for AMI by 8.4% (p = 0.03) but decreased specificity by 7.0% (p = 0.06). The likelihood ratios of a positive test for 12, 12 + posterior, and 12 + right ventricular ECGs were 6.4, 5.6, and 4.5, respectively. Increased AMI rates (positive predictive values) were found when ST elevation was present on 6 nonstandard leads (69.1%), on 12 leads only (88.4%), and on both 6 and 12 leads (96.8%; p <0.001). Treatment rates with thrombolytic therapy increased in parallel with this electrocardiographic gradient. Logistic regression analysis showed that 4 leads were independently predictive of AMI (p <0.001): leads I, II, V3, V5R; V9 approached statistical significance (p = 0.055). The standard ECG is not optimal for detecting ST-segment elevation in AMI, but its accuracy is only modestly improved by the addition of posterior and right ventricular leads. PMID:9202344

  3. [A USB-Based Digital ECG Sensor].

    PubMed

    Shi Bol; Kong, Xiangyong; Ma, Xiaozhi; Zhang, Genxuan

    2016-01-01

    Based on the ECG-specific BMD 101 integrated circun chip, this study designed a digital ECG sensor. In practical application, users just need to connect the ECG sensor 'o upper computer (such as PC or mobile phone) through USB interface, to realize the functions including display, alarm, saving, transfer etc. After tests, They demonstrate that the sensor can be applied to the detection of arrhythmia, such as bigeminy coupled rhythm, proiosystole etc. Besides, the sensor has various advantages in monitoring an managing the heart health of people out of hospital, including low cost, small volume, usableness, simplicity of operation etc. PMID:27197497

  4. ECG-ELECTRODE INDUCED HYPOPIGMENTATION.

    PubMed

    Tripi, Paul A; Parthasarathy, Supraja N; Honda, Kord

    2016-06-01

    Skin reactions following the application of electrocardiography (ECG) electrodes have been reported in adults and children, and are postulated to result from contact with the conductive gel or adhesive used on the electrodes. Although contact dermatitis is the usual cause of such reactions, contact depigmentation or hypopigmentation may also occur. We report a case of hypopigmentation in a healthy boy following continuous electrocardiography monitoring during general anesthesia for dental rehabilitation. PMID:27487645

  5. Integrated approach for smart implantable cardioverter defibrillator (ICD) device with real time ECG monitoring: use of flexible sensors for localized arrhythmia sensing and stimulation

    PubMed Central

    Puri, Munish; Chapalamadugu, Kalyan C.; Miranda, Aimon C.; Gelot, Shyam; Moreno, Wilfrido; Adithya, Prashanth C.; Law, Catherine; Tipparaju, Srinivas M.

    2013-01-01

    Arrhythmias are the most common cause of death associated with sudden death and are common in US and worldwide. Cardiac resynchronization therapy (CRT), evolving from pacemakers and development of implantable cardioverter defibrillator (ICD), has been adopted for therapeutic use and demonstrated benefits in patients over the years due to its design and intricate functionality. Recent research has been focused on significant design improvement and efforts are dedicated toward device size reduction, weight and functionality in commercially available ICD's since its invention in the 1960's. Commercially available CRT-D has shown advancement on both clinical and technical side. However, improved focus is required on the device miniaturization, technologically supported and integrated wireless based system for real time heart monitoring electrocardiogram (ECG). In the present report a concise overview for the state-of-the art technology in ICDs and avenues for future development are presented. A unique perspective is also included for ICD device miniaturization and integration of flexible sensing array. Sensor array integration along with its capabilities for identifying localized arrhythmia detection and targeted stimulation for enhancing ICD device capabilities is reviewed. PMID:24167492

  6. From agonal to output: An ECG history of a successful pre-hospital thoracotomy.

    PubMed

    Deakin, Charles D

    2007-12-01

    This case report describes the first reported successful UK pre-hospital thoracotomy performed outside the London HEMS system. Continuous ECG monitoring during the procedure has allowed presentation of sequential ECGs recorded during the procedure. PMID:17697740

  7. Electrocardiographic patch devices and contemporary wireless cardiac monitoring

    PubMed Central

    Fung, Erik; Järvelin, Marjo-Riitta; Doshi, Rahul N.; Shinbane, Jerold S.; Carlson, Steven K.; Grazette, Luanda P.; Chang, Philip M.; Sangha, Rajbir S.; Huikuri, Heikki V.; Peters, Nicholas S.

    2015-01-01

    Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG), Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable “on-body” ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks) is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery. PMID:26074823

  8. High Resolution ECG for Evaluation of Heart Function During Exposure to Subacute Hypobaric Hypoxia

    NASA Technical Reports Server (NTRS)

    Zupet, Petra; Finderle, Zarko; Schlegel, Todd T.; Princi, Tanja; Starc, Vito

    2010-01-01

    High altitude climbing presents a wide spectrum of health risks, including exposure to hypobaric hypoxia. Risks are also typically exacerbated by the difficulty in appropriately monitoring for early signs of organ dysfunction in remote areas. We investigated whether high resolution advanced ECG analysis might be helpful as a non-invasive and easy-to-use tool (e.g., instead of Doppler echocardiography) for evaluating early signs of heart overload in hypobaric hypoxia. Nine non-acclimatized healthy trained alpine rescuers (age 43.7 plus or minus 7.3 years) climbed in four days to the altitude of 4,200 m on Mount Ararat. Five-minute high-resolution 12-lead electrocardiograms (ECGs) were recorded (Cardiosoft) in each subject at rest in the supine position on different days but at the same time of day at four different altitudes: 400 m (reference altitude), 1,700 m, 3,200 m and 4,200 m. Changes in conventional and advanced resting ECG parameters, including in beat-to-beat QT and RR variability, waveform complexity, signal-averaged, high-frequency and spatial/spatiotemporal ECG was estimated by calculation of the regression coefficients in independent linear regression models. A p-value of less than 0.05 was adopted as statistically significant. As expected, the RR interval and its variability both decreased with increasing altitude, with trends k = -96 ms/1000 m with p = 0.000 and k = -9 ms/1000 m with p = 0.001, respectively. Significant changes were found in P-wave amplitude, which nearly doubled from the lowest to the highest altitude (k = 41.6 microvolt/1000 m with p = 0.000), and nearly significant changes in P-wave duration (k = 2.9 ms/1000 m with p = 0.059). Changes were less significant or non-significant in other studied parameters including those of waveform complexity, signal-averaged, high-frequency and spatial/spatiotemporal ECG. High resolution ECG analysis, particularly of the P wave, shows promise as a tool for monitoring early changes in heart function

  9. Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian

    2006-01-01

    method is the presence versus the absence of reduced-amplitude zones (RAZs). In terms that must be simplified for the sake of brevity, an RAZ comprises several cycles of a high-frequency QRS signal during which the amplitude of the high-frequency oscillation in a portion of the signal is abnormally low (see figure). A given signal sample exhibiting an interval of reduced amplitude may or may not be classified as an RAZ, depending on quantitative criteria regarding peaks and troughs within the reduced-amplitude portion of the high-frequency QRS signal. This analysis is performed in all 12 leads in real time.

  10. Cardiovascular effects of social support in the work place: twenty-four-hour ECG monitoring of men and women.

    PubMed

    Undén, A L; Orth-Gomér, K; Elofsson, S

    1991-01-01

    Psychosocial work characteristics, such as work demand, work control, and social support at work, have been shown to be related to the development of coronary heart disease in epidemiological studies. However, the mechanisms which mediate the social and psychological effects on the cardiovascular system are not known. We have studied the direct cardiovascular effects of psychosocial work environment characteristics in 148 working men and women, representing seven different occupational groups (physicians, teachers, musicians, policemen, train engineers, prison personnel, and saw mill workers). Besides standardized measures of work demand, work control, and social support, ambulatory 24-hour monitoring of electrocardiograms in the customary work and home environment was performed. Systolic and diastolic blood pressure were measured as well as other standard physiologic risk factors for coronary heart disease. Mean heart rates were found to be significantly higher in persons reporting low social support at work. This effect was maintained during working hours as well as during leisure time and rest. Of the other related physiologic risk factors, systolic, but not diastolic blood pressure was found to be higher in persons reporting low social support. Smoking, alcohol consumption and relative body mass index were not related to social support at work. Controlling for age, sex and physical strain at work, strengthened the association of low social support with elevated heart rates. PMID:2011650

  11. Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S. R.; Muruganand, S.

    2012-01-01

    Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.

  12. Towards the clinical use of concentric electrodes in ECG recordings: influence of ring dimensions and electrode position

    NASA Astrophysics Data System (ADS)

    Prats-Boluda, G.; Ye-Lin, Y.; Bueno-Barrachina, JM; Rodriguez de Sanabria, R.; Garcia-Casado, J.

    2016-02-01

    To overcome the limited spatial resolution of standard 12-lead ECG recordings, concentric ring electrodes (CRE) have been proposed to provide valuable data for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. Although theoretical studies indicate that the dimensions of the CRE regulate the depth of the electric dipoles sensed by these electrodes, this has not been experimentally confirmed. The aim of this work was to analyze the influence of CRE dimensions and position of a wireless multi-CRE sensor node on the cardiac signal recorded. For this, four wireless multichannel ECG recording nodes based on flexible multi-ring electrodes were placed at positions CMV1 (position comparable to V1), CMV2, CMV4R and CMV5; each node providing three bipolar concentric ECG signals (BC-ECG). Standard 12-lead ECG and 12 BC-ECG signals were recorded in 29 volunteers. The results revealed that a ring with an outer diameter of 33.5 mm achieves a balance between the ease-of-use and spatial resolution of smaller electrodes and improved detectability and higher amplitudes of signals from larger ring electrodes. Although a standard 12-lead ECG outperforms BC-ECC recordings in detectability of cardiac waves, if the relative amplitude of the wave is also considered, BC-ECG at CMV1 proved superior at picking up atrial activity. In fact, in most of the BC-ECG signals picked up at CMV1, P1 and P2 atrial activity waves were more clearly identified than in simultaneous 12-Lead ECG signals. Likewise, BC-ECG signals revealed higher spatial resolution in detecting anomalous electrical activity in local regions, such as impaired intraventricular driving, or atrioventricular blocks. Finally, the wireless multi-CRE sensor node provides enhanced comfort and handling to both patient and clinician over wired systems.

  13. Holter monitoring to detect silent atrial fibrillation in high-risk subjects: the Perugia General Practitioner Study.

    PubMed

    Salvatori, Valentina; Becattini, Cecilia; Laureti, Stefano; Baglioni, Gregorio; Germini, Fabrizio; Grilli, Piero; Guercini, Francesco; Filippucci, Esmeralda; Agnelli, Giancarlo

    2015-08-01

    Atrial fibrillation (AF) is diagnosed for the first time in about 5 % of patients admitted for acute ischemic stroke. Advanced aged and arterial hypertension are risk factors for AF. We evaluated the prevalence of silent AF in subjects with advanced age and systemic arterial hypertension. Subjects of both gender, aged 65 years or more with systemic arterial hypertension were randomly identified from the patient lists of the participating general practitioners in the Perugia area, in Italy. Study subjects underwent baseline 12-lead ECG and, if this did not show AF, 48-h Holter monitoring was performed. AF was known and confirmed by 12-lead ECG in 4 out of the 308 evaluated subjects (1.3 %). Baseline 12-lead ECG showed no cases of silent AF. Holter monitoring was performed in 300 subjects, mean age 70 ± 4. Twenty-six recordings were not evaluable for the presence of artifacts; therefore, 274 subjects were included in the analysis. Holter monitoring showed AF in 27 out of 274 subjects (10 %; 95 % confidence interval 6.4-13.5 %); AF was longer than 30 s in four of the subjects. In 56 additional subjects, Holter monitoring revealed excessive supraventricular ectopic activity (20 %; 95 % confidence interval 15.3-24.7 %). Holter monitoring was able to detect silent AF in about 10 % of subjects aged 65 or above with systemic arterial hypertension. The risk of stroke associated with screened silent AF should be carefully evaluated. PMID:25944128

  14. High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P less than 0.00l). Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.

  15. High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging

    NASA Technical Reports Server (NTRS)

    Rahman, Atiar

    2006-01-01

    Background: Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). Methods and Results: 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P<0.001). Conclusions: Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.

  16. Remote health monitoring system for detecting cardiac disorders.

    PubMed

    Bansal, Ayush; Kumar, Sunil; Bajpai, Anurag; Tiwari, Vijay N; Nayak, Mithun; Venkatesan, Shankar; Narayanan, Rangavittal

    2015-12-01

    Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, deployed on patient's mobile device, that receives 12-lead ECG signals from any ECG sensor, (b) remote server component that hosts algorithms for accurate annotation and analysis of the ECG signal and (c) point of care device of the doctor to receive a diagnostic report from the server based on the analysis of ECG signals. In the present study, their focus has been toward developing a system capable of detecting critical cardiac events well in advance using an advanced remote monitoring system. A system of this kind is expected to have applications ranging from tracking wellness/fitness to detection of symptoms leading to fatal cardiac events. PMID:26577166

  17. A method of ECG template extraction for biometrics applications.

    PubMed

    Zhou, Xiang; Lu, Yang; Chen, Meng; Bao, Shu-Di; Miao, Fen

    2014-01-01

    ECG has attracted widespread attention as one of the most important non-invasive physiological signals in healthcare-system related biometrics for its characteristics like ease-of-monitoring, individual uniqueness as well as important clinical value. This study proposes a method of dynamic threshold setting to extract the most stable ECG waveform as the template for the consequent ECG identification process. With the proposed method, the accuracy of ECG biometrics using the dynamic time wraping for difference measures has been significantly improved. Analysis results with the self-built electrocardiogram database show that the deployment of the proposed method was able to reduce the half total error rate of the ECG biometric system from 3.35% to 1.45%. Its average running time on the platform of android mobile terminal was around 0.06 seconds, and thus demonstrates acceptable real-time performance. PMID:25570031

  18. High Resolution ECG for Evaluation of QT Interval Variability during Exposure to Acute Hypoxia

    NASA Technical Reports Server (NTRS)

    Zupet, P.; Finderle, Z.; Schlegel, Todd T.; Starc, V.

    2010-01-01

    Ventricular repolarization instability as quantified by the index of QT interval variability (QTVI) is one of the best predictors for risk of malignant ventricular arrhythmias and sudden cardiac death. Because it is difficult to appropriately monitor early signs of organ dysfunction at high altitude, we investigated whether high resolution advanced ECG (HR-ECG) analysis might be helpful as a non-invasive and easy-to-use tool for evaluating the risk of cardiac arrhythmias during exposure to acute hypoxia. 19 non-acclimatized healthy trained alpinists (age 37, 8 plus or minus 4,7 years) participated in the study. Five-minute high-resolution 12-lead electrocardiograms (ECGs) were recorded (Cardiosoft) in each subject at rest in the supine position breathing room air and then after breathing 12.5% oxygen for 30 min. For beat-to-beat RR and QT variability, the program of Starc was utilized to derive standard time domain measures such as root mean square of the successive interval difference (rMSSD) of RRV and QTV, the corrected QT interval (QTc) and the QTVI in lead II. Changes were evaluated with paired-samples t-test with p-values less than 0.05 considered statistically significant. As expected, the RR interval and its variability both decreased with increasing altitude, with p = 0.000 and p = 0.005, respectively. Significant increases were found in both the rMSSDQT and the QTVI in lead II, with p = 0.002 and p = 0.003, respectively. There was no change in QTc interval length (p = non significant). QT variability parameters may be useful for evaluating changes in ventricular repolarization caused by hypoxia. These changes might be driven by increases in sympathetic nervous system activity at ventricular level.

  19. Hybrid ECG signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Circuit with high common-mode rejection has ability to filter and amplify accepted analog electrocardiogram (ECG) signals of varying amplitude, shape, and polarity. In addition, low power circuit develops standardized pulses that can be counted and averaged by heart/breath rate processor.

  20. Data processing of exercise ECG's

    NASA Astrophysics Data System (ADS)

    Pahlm, Olle; Sornmo, Leif

    1987-02-01

    Computer processing of exercise ECG's is a well-established technique which aims at improving the signal-to-noise ratio of the ECG for more accurate measurements. In this way the interpretation of the ECG response to exercise is facilitated. This brief review considers the problems pertinent to signal processing in exercise ECG analysis and provides an overview of algorithms employed by research groups as well as manufacturers. The clinical utility of computer measurements and criteria for ECG changes in patients with suspected coronary artery disease is treated.

  1. Sequential Total Variation Denoising for the Extraction of Fetal ECG from Single-Channel Maternal Abdominal ECG

    PubMed Central

    Lee, Kwang Jin; Lee, Boreom

    2016-01-01

    Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR. PMID:27376296

  2. Sequential Total Variation Denoising for the Extraction of Fetal ECG from Single-Channel Maternal Abdominal ECG.

    PubMed

    Lee, Kwang Jin; Lee, Boreom

    2016-01-01

    Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR. PMID:27376296

  3. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  4. A method for the determination of ECG gate signal delays

    SciTech Connect

    Wery, R.; Hill, J.; Dworkin, H.J.

    1981-06-01

    A simple device using a rotating radioactive source was developed to monitor the presence of a delay between the patient's R wave and the gate signal being sent to the computer. Three commercial ECG gates were tested and significant delays were found in two of them. Identical patient data evaluated using ECG gates with and without significant delays produced calculated left-ventricular ejection fractions of 0.05 and 0.64, respectively.

  5. Near Field Communication-based telemonitoring with integrated ECG recordings

    PubMed Central

    Morak, J.; Kumpusch, H.; Hayn, D.; Leitner, M.; Scherr, D.; Fruhwald, F.M.; Schreier, G.

    2011-01-01

    Objectives Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. Methods We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system’s technical feasibility, usability and patient’s adherence to twice daily usage. Results 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Conclusions Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients. PMID:23616890

  6. Microprocessor-based simulator of surface ECG signals

    NASA Astrophysics Data System (ADS)

    Martínez, A. E.; Rossi, E.; Siri, L. Nicola

    2007-11-01

    In this work, a simulator of surface electrocardiogram recorded signals (ECG) is presented. The device, based on a microcontroller and commanded by a personal computer, produces an analog signal resembling actual ECGs, not only in time course and voltage levels, but also in source impedance. The simulator is a useful tool for electrocardiograph calibration and monitoring, to incorporate as well in educational tasks and in clinical environments for early detection of faulty behaviour.

  7. Advanced ECG in 2016: is there more than just a tracing?

    PubMed

    Reichlin, Tobias; Abächerli, Roger; Twerenbold, Raphael; Kühne, Michael; Schaer, Beat; Müller, Christian; Sticherling, Christian; Osswald, Stefan

    2016-01-01

    The 12-lead electrocardiogram (ECG) is the most frequently used technology in clinical cardiology. It is critical for evidence-based management of patients with most cardiovascular conditions, including patients with acute myocardial infarction, suspected chronic cardiac ischaemia, cardiac arrhythmias, heart failure and implantable cardiac devices. In contrast to many other techniques in cardiology, the ECG is simple, small, mobile, universally available and cheap, and therefore particularly attractive. Standard ECG interpretation mainly relies on direct visual assessment. The progress in biomedical computing and signal processing, and the available computational power offer fascinating new options for ECG analysis relevant to all fields of cardiology. Several digital ECG markers and advanced ECG technologies have shown promise in preliminary studies. This article reviews promising novel surface ECG technologies in three different fields. (1) For the detection of myocardial ischaemia and infarction, QRS morphology feature analysis, the analysis of high frequency QRS components (HF-QRS) and methods using vectorcardiography as well as ECG imaging are discussed. (2) For the identification and management of patients with cardiac arrhythmias, methods of advanced P-wave analysis are discussed and the concept of ECG imaging for noninvasive localisation of cardiac arrhythmias is presented. (3) For risk stratification of sudden cardiac death and the selection of patients for medical device therapy, several novel markers including an automated QRS-score for scar quantification, the QRS-T angle or the T-wave peak-to-end-interval are discussed. Despite the existing preliminary data, none of the advanced ECG markers and technologies has yet accomplished the transition into clinical practice. Further refinement of these technologies and broader validation in large unselected patient cohorts are the critical next step needed to facilitate translation of advanced ECG technologies

  8. Utilizing ECG-Based Heartbeat Classification for Hypertrophic Cardiomyopathy Identification.

    PubMed

    Rahman, Quazi Abidur; Tereshchenko, Larisa G; Kongkatong, Matthew; Abraham, Theodore; Abraham, M Roselle; Shatkay, Hagit

    2015-07-01

    Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease where the heart muscle is partially thickened and blood flow is (potentially fatally) obstructed. A test based on electrocardiograms (ECG) that record the heart electrical activity can help in early detection of HCM patients. This paper presents a cardiovascular-patient classifier we developed to identify HCM patients using standard 10-second, 12-lead ECG signals. Patients are classified as having HCM if the majority of their recorded heartbeats are recognized as characteristic of HCM. Thus, the classifier's underlying task is to recognize individual heartbeats segmented from 12-lead ECG signals as HCM beats, where heartbeats from non-HCM cardiovascular patients are used as controls. We extracted 504 morphological and temporal features—both commonly used and newly-developed ones—from ECG signals for heartbeat classification. To assess classification performance, we trained and tested a random forest classifier and a support vector machine classifier using 5-fold cross validation. We also compared the performance of these two classifiers to that obtained by a logistic regression classifier, and the first two methods performed better than logistic regression. The patient-classification precision of random forests and of support vector machine classifiers is close to 0.85. Recall (sensitivity) and specificity are approximately 0.90. We also conducted feature selection experiments by gradually removing the least informative features; the results show that a relatively small subset of 264 highly informative features can achieve performance measures comparable to those achieved by using the complete set of features. PMID:25915962

  9. Live ECG readings using Google Glass in emergency situations.

    PubMed

    Schaer, Roger; Salamin, Fanny; Jimenez Del Toro, Oscar Alfonso; Atzori, Manfredo; Muller, Henning; Widmer, Antoine

    2015-01-01

    Most sudden cardiac problems require rapid treatment to preserve life. In this regard, electrocardiograms (ECG) shown on vital parameter monitoring systems help medical staff to detect problems. In some situations, such monitoring systems may display information in a less than convenient way for medical staff. For example, vital parameters are displayed on large screens outside the field of view of a surgeon during cardiac surgery. This may lead to losing time and to mistakes when problems occur during cardiac operations. In this paper we present a novel approach to display vital parameters such as the second derivative of the ECG rhythm and heart rate close to the field of view of a surgeon using Google Glass. As a preliminary assessment, we run an experimental study to verify the possibility for medical staff to identify abnormal ECG rhythms from Google Glass. This study compares 6 ECG rhythms readings from a 13.3 inch laptop screen and from the prism of Google Glass. Seven medical residents in internal medicine participated in the study. The preliminary results show that there is no difference between identifying these 6 ECG rhythms from the laptop screen versus Google Glass. Both allow close to perfect identification of the 6 common ECG rhythms. This shows the potential of connected glasses such as Google Glass to be useful in selected medical applications. PMID:26736263

  10. e-SCP-ECG+ Protocol: An Expansion on SCP-ECG Protocol for Health Telemonitoring—Pilot Implementation

    PubMed Central

    Mandellos, George J.; Koukias, Michael N.; Styliadis, Ioannis St.; Lymberopoulos, Dimitrios K.

    2010-01-01

    Standard Communication Protocol for Computer-assisted Electrocardiography (SCP-ECG) provides standardized communication among different ECG devices and medical information systems. This paper extends the use of this protocol in order to be included in health monitoring systems. It introduces new sections into SCP-ECG structure for transferring data for positioning, allergies, and five additional biosignals: noninvasive blood pressure (NiBP), body temperature (Temp), Carbon dioxide (CO2), blood oxygen saturation (SPO2), and pulse rate. It also introduces new tags in existing sections for transferring comprehensive demographic data. The proposed enhanced version is referred to as e-SCP-ECG+ protocol. This paper also considers the pilot implementation of the new protocol as a software component in a Health Telemonitoring System. PMID:20628537

  11. [ECG mapping in clinical practice].

    PubMed

    Boudík, F; Aschermann, M; Anger, Z

    2002-12-01

    First the authors present a review of important cornerstones in the history of the electrocardiogram (ECG) and ECG mapping. The first to describe the electric cardiac field based on twenty ECGs was A.D. Waller in 1889. The decisive cornerstone for practical use was the introduction of a string galvanometer in 1901 by W. Einthoven and his triaxial lead system. Another very important cornerstone in the development of ECG were the findings of F.N. Wilson. Merits as regards the development and application of ECG mapping are due to B. Taccardi. Workers of the Second Medical Clinic in Prague enhanced after 15 years of studies and comparison of ECG maps with coronarographic findings in subjects with ischaemic heart disease (IHD) and microvascular coronary dysfunction (syndrome X--SyX) substantially the specificity of this method in impaired myocardial vascularization. Better diagnosis was achieved by introduction of diagnostic tests which influence coronary vascularization such as e.g. hyperventilation, as well as other tests. After their application progression of chronic myocardial ischaemia occurs, e.g. by the mechanism of the "steal phenomenon" or restriction of the microcirculation after hyperventilation in patients with SyX. Furthermore the authors present examples of ECG maps after PTCA, after application of diagnostic tests in IHD and SyX and also regression of myocardial ischaemia after marked reduction of total cholesterol. PMID:12744039

  12. A Practical and Cheap Circuit for ECG Sensing and Heart Frequency Alarm

    NASA Astrophysics Data System (ADS)

    Aviña-Cervantes, J. G.; González-García, A. E.; Alvarado-Méndez, E.; Trejo-Durán, M.; Torres-Cisneros, M.; Sánchez-Yáñez, R.; Ayala-Ramírez, V.

    2006-09-01

    A practical electronic circuit for ECG sensing, using high gain instrumentation amplifiers, a PIC microcontroller and two electrodes is presented. It allows to identify and to amplify a well-delimited ECG signal for a further wave analysis, and using a zero crossing detector a heart frequency detector is also implemented. By the moment, the conventional electrocardiogram (ECG) configurations making use of separate electrical connections to the arms and legs (bipolar limb lead 1) is exploited. This device is a practical and cheap way to monitoring ECG signal and some heart anomalies (e.g., arrhythmias, tachycardia) that can be used in a network to communicate anytime with a far health supervisor.

  13. ECG recording on a bed during sleep without direct skin-contact.

    PubMed

    Lim, Yong Gyu; Kim, Ko Keun; Park, Kwang Suk

    2007-04-01

    A new indirect contact (IDC) electrocardiogram (ECG) measurement method (IDC-ECG) for monitoring ECG during sleep that is adequate for long-term use is provided. The provided method did not require any direct conductive contact between the instrument and bare skin. This method utilizes an array of high-input-impedance active electrodes fixed on the mattress and an indirect-skin-contact ground made of a large conductive textile sheet. A thin cotton bedcover covered the mattress, electrodes, and conductive textile, and the participants were positioned on the mattress over the bedcover. An ECG was successfully obtained, although the signal quality was lower and the motion artifact was larger than in conventional direct-contact measurements (DC-ECG). The results showed that further studies are required to apply the provided method to an ECG diagnosis of cardiovascular diseases. However, currently the method can be used for HRV assessment with easy discrimination of R-peaks. PMID:17405379

  14. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P < 0.001) from a linear combination of 5 independent variables: QRS elevation in the frontal plane (p<0.001), a new repolarization parameter QTcorr (p<0.001), mean high frequency QRS amplitude (p=0.009), the variability parameter % VLF of RRV (p=0.021) and the P-wave width (p=0.10). Here, QTcorr represents the correlation between the calculated QT and the measured QT signal. Conclusions: In apparently healthy subjects with normal conventional ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  15. Deployment of an Advanced Electrocardiographic Analysis (A-ECG) to Detect Cardiovascular Risk in Career Firefighters

    NASA Technical Reports Server (NTRS)

    Dolezal, B. A.; Storer, T. W.; Abrazado, M.; Watne, R.; Schlegel, T. T.; Batalin, M.; Kaiser, W.; Smith, D. L.; Cooper, C. B.

    2011-01-01

    INTRODUCTION: Sudden cardiac death is the leading cause of line of duty death among firefighters, accounting for approximately 45% of fatalities annually. Firefighters perform strenuous muscular work while wearing heavy, encapsulating personal protective equipment in high ambient temperatures, under chaotic and emotionally stressful conditions. These factors can precipitate sudden cardiac events like myocardial infarction, serious dysrhythmias, or cerebrovascular accidents in firefighters with underlying cardiovascular disease. PURPOSE: The purpose of this study was to deploy and then evaluate the contribution of resting advanced ECG (A-ECG) in addition to other screening tools (family history, lipid profiles, and cardiopulmonary exercise tests, XT) in assessment of an individual fs cardiac risk profile. METHODS: Forty-four career firefighters were recruited to perform comprehensive baseline assessments including tests of aerobic performance, fasting lipids and glucose. Five-min resting 12-lead A-ECGs were obtained in a subset of firefighters (n=21) and transmitted over a secure networked system to a NASA physician collaborator. Using myocardial perfusion and other imaging as the gold standard, A-ECG scoring has been proven useful in accurately identifying a number of cardiac pathologies including coronary artery disease (CAD), left ventricular hypertrophy, hypertrophic cardiomyopathy, and non-ischemic and ischemic cardiomyopathy. RESULTS: Subjects f mean (SD) age was 43 (8) years, weight 91 (13) kg, and BMI 28 (3) kg/m2. Fifty-one percent of subjects had .3 cardiovascular risk factors. One subject had ST depression on XT ECG, at least one positive A-ECG score for CAD, and documented CAD based on cardiology referral. While all other subjects, including those with fewer risk factors, higher aerobic fitness, and normal exercise ECGs, were classified as healthy by A-ECG, there was no trend for association between risk factors and any of 20 A-ECG parameters in the

  16. Embedding patients confidential data in ECG signal for healthcare information systems.

    PubMed

    Ibaida, Ayman; Khalil, Ibrahim; Al-Shammary, Dhiah

    2010-01-01

    In Wireless tele-cardiology applications, ECG signal is widely used to monitor cardiac activities of patients. Accordingly, in most e-health applications, ECG signals need to be combined with patient confidential information. Data hiding and watermarking techniques can play a crucial role in ECG wireless tele-monitoring systems by combining the confidential information with the ECG signal since digital ECG data is huge enough to act as host to carry tiny amount of additional secret data. In this paper, a new steganography technique is proposed that helps embed confidential information of patients into specific locations (called special range numbers) of digital ECG host signal that will cause minimal distortion to ECG, and at the same time, any secret information embedded is completely extractable. We show that there are 2.1475 × 10(9) possible special range numbers making it extremely difficult for intruders to identify locations of secret bits. Experiments show that percentage residual difference (PRD) of watermarked ECGs can be as low as 0.0247% and 0.0678% for normal and abnormal ECG segments (taken from MIT-BIH Arrhythmia database) respectively. PMID:21097076

  17. Convolutional Neural Networks for patient-specific ECG classification.

    PubMed

    Kiranyaz, Serkan; Ince, Turker; Hamila, Ridha; Gabbouj, Moncef

    2015-08-01

    We propose a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system using an adaptive implementation of 1D Convolutional Neural Networks (CNNs) that can fuse feature extraction and classification into a unified learner. In this way, a dedicated CNN will be trained for each patient by using relatively small common and patient-specific training data and thus it can also be used to classify long ECG records such as Holter registers in a fast and accurate manner. Alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. The experimental results demonstrate that the proposed system achieves a superior classification performance for the detection of ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB). PMID:26736826

  18. Development of a portable wireless system for bipolar concentric ECG recording

    NASA Astrophysics Data System (ADS)

    Prats-Boluda, G.; Ye-Lin, Y.; Bueno Barrachina, J. M.; Senent, E.; Rodriguez de Sanabria, R.; Garcia-Casado, J.

    2015-07-01

    Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization).

  19. ECG data compression by modeling.

    PubMed Central

    Madhukar, B.; Murthy, I. S.

    1992-01-01

    This paper presents a novel algorithm for data compression of single lead Electrocardiogram (ECG) data. The method is based on Parametric modeling of the Discrete Cosine Transformed ECG signal. Improved high frequency reconstruction is achieved by separately modeling the low and the high frequency regions of the transformed signal. Differential Pulse Code Modulation is applied on the model parameters to obtain a further increase in the compression. Compression ratios up to 1:40 were achieved without significant distortion. PMID:1482940

  20. Capacitive ECG recording and beat-to-beat interval estimation after major cardiac event.

    PubMed

    Leicht, Lennart; Skobel, Erik; Mathissen, Marcel; Leonhardt, Steffen; Weyer, Soren; Wartzek, Tobias; Reith, Sebastian; Mohler, Werner; Teichmann, Daniel

    2015-08-01

    Today, heart diseases are the most common cause of death in the U.S.. Due to improved healthcare, more and more patients survive a major cardiac event, e.g. a heart attack. However, participation in everyday activity (e.g. driving a car) can be impaired afterwards. Patients might benefit from heart activity monitoring while driving using a capacitive ECG (cECG). However, it is unknown whether cECG is an appropriate monitoring tool for such patients. In this work, first results from a study including 10 patients having survived at least one major cardiac event are presented. It is shown that cECG can be used to diagnose heart rhythm deviations and estimate beat-to-beat intervals similar to conventional ECG. PMID:26738055

  1. Biosignal PI, an affordable open-source ECG and respiration measurement system.

    PubMed

    Abtahi, Farhad; Snäll, Jonatan; Aslamy, Benjamin; Abtahi, Shirin; Seoane, Fernando; Lindecrantz, Kaj

    2015-01-01

    Bioimedical pilot projects e.g., telemedicine, homecare, animal and human trials usually involve several physiological measurements. Technical development of these projects is time consuming and in particular costly. A versatile but affordable biosignal measurement platform can help to reduce time and risk while keeping the focus on the important goal and making an efficient use of resources. In this work, an affordable and open source platform for development of physiological signals is proposed. As a first step an 8-12 leads electrocardiogram (ECG) and respiration monitoring system is developed. Chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 for patient safety. The result shows the potential of this platform as a base for prototyping compact, affordable, and medically safe measurement systems. Further work involves both hardware and software development to develop modules. These modules may require development of front-ends for other biosignals or just collect data wirelessly from different devices e.g., blood pressure, weight, bioimpedance spectrum, blood glucose, e.g., through Bluetooth. All design and development documents, files and source codes will be available for non-commercial use through project website, BiosignalPI.org. PMID:25545268

  2. Biosignal PI, an Affordable Open-Source ECG and Respiration Measurement System

    PubMed Central

    Abtahi, Farhad; Snäll, Jonatan; Aslamy, Benjamin; Abtahi, Shirin; Seoane, Fernando; Lindecrantz, Kaj

    2015-01-01

    Bioimedical pilot projects e.g., telemedicine, homecare, animal and human trials usually involve several physiological measurements. Technical development of these projects is time consuming and in particular costly. A versatile but affordable biosignal measurement platform can help to reduce time and risk while keeping the focus on the important goal and making an efficient use of resources. In this work, an affordable and open source platform for development of physiological signals is proposed. As a first step an 8–12 leads electrocardiogram (ECG) and respiration monitoring system is developed. Chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 for patient safety. The result shows the potential of this platform as a base for prototyping compact, affordable, and medically safe measurement systems. Further work involves both hardware and software development to develop modules. These modules may require development of front-ends for other biosignals or just collect data wirelessly from different devices e.g., blood pressure, weight, bioimpedance spectrum, blood glucose, e.g., through Bluetooth. All design and development documents, files and source codes will be available for non-commercial use through project website, BiosignalPI.org. PMID:25545268

  3. A New Algorithm to Diagnose Atrial Ectopic Origin from Multi Lead ECG Systems - Insights from 3D Virtual Human Atria and Torso

    PubMed Central

    Alday, Erick A. Perez; Colman, Michael A.; Langley, Philip; Butters, Timothy D.; Higham, Jonathan; Workman, Antony J.; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms. PMID

  4. A combined application of lossless and lossy compression in ECG processing and transmission via GSM-based SMS.

    PubMed

    Mukhopadhyay, S K; Mitra, S; Mitra, M

    2015-02-01

    This paper presents a software-based scheme for reliable and robust Electrocardiogram (ECG) data compression and its efficient transmission using Second Generation (2G) Global System for Mobile Communication (GSM) based Short Message Service (SMS). To achieve a firm lossless compression in high standard deviating QRS complex regions and an acceptable lossy compression in the rest of the signal, two different algorithms have been used. The combined compression module is such that it outputs only American Standard Code for Information Interchange (ASCII) characters and, hence, SMS service is found to be most suitable for transmitting the compressed signal. At the receiving end, the ECG signal is reconstructed using just the reverse algorithm. The module has been tested to all the 12 leads of different types of ECG signals (healthy and abnormal) collected from the PTB Diagnostic ECG Database. The compression algorithm achieves an average compression ratio of ∼22.51, without any major alteration of clinical morphology. PMID:25534118

  5. [Noninvasive hemodynamic monitoring via the integration of data obtained by ECG, aortic flow by Doppler esophageal probe and by finger plethysmography].

    PubMed

    Muchada, R; Rinaldi, A; Vernier, F; Fady, J F; Lavandier, B; Cathignol, D

    1990-05-01

    The aims of this work are to describe the general and technical characteristics of a new device for the noninvasive monitoring of patients in intensive care and during general anaesthesia, and the results concerning the reliability of this method. An ultrasonic esophageal probe and an echo-Doppler device have been used to obtain continuous data of the aortic diameter and of blood velocity. Aortic output is calculated automatically. This method, together with other non-invasive monitoring techniques (blood pressure, heart rate, rhythm and cardiac conduction), gives on the one hand the data of aortic output, systemic peripheral resistance and stroke volume; on the other, through a computerized elaboration, the systolic time intervals (PEP pre-ejection period, LVET left ventricular ejection time, QS2 electromechanical systole, PEP/LVET ratio of PEP to LVET). The validation of STI data, has been obtained through 125 comparative measurements for each of the three parameters. The data obtained through the aortic velocity waveform in descending aorta (pulsed Doppler) have been compared with those obtained through the aortic pressure waveform (intra aortic catheter). The correlation was: PEP 0.92, LVET 0.95, QS2 0.93. The clinical application of this method supplies data concerning cardiac load, after-load and indirectly cardiac pre-load. This non-invasive procedure gives us a continuous measurement of hemo-dynamic situation, which allows the physician to plan and evaluate the therapeutical efficacy. Finally new pathologic events may be opportunely faced. PMID:2247249

  6. An Adaptive Framework for Real-Time ECG Transmission in Mobile Environments

    PubMed Central

    2014-01-01

    Wireless electrocardiogram (ECG) monitoring involves the measurement of ECG signals and their timely transmission over wireless networks to remote healthcare professionals. However, fluctuations in wireless channel conditions pose quality-of-service challenges for real-time ECG monitoring services in a mobile environment. We present an adaptive framework for layered coding and transmission of ECG data that can cope with a time-varying wireless channel. The ECG is segmented into layers with differing importance with respect to the quality of the reconstructed signal. According to this observation, we have devised a simple and efficient real-time scheduling algorithm based on the earliest deadline first (EDF) policy, which decides the order of transmitting or retransmitting packets that contain ECG data at any given time for the delivery of scalable ECG data over a lossy channel. The algorithm takes into account the differing priorities of packets in each layer, which prevents the perceived quality of the reconstructed ECG signal from degrading abruptly as channel conditions worsen, while using the available bandwidth efficiently. Extensive simulations demonstrate this improvement in perceived quality. PMID:25097886

  7. Design intelligent wheelchair with ECG measurement and wireless transmission function.

    PubMed

    Chou, Hsi-Chiang; Wang, Yi-Ming; Chang, Huai-Yuan

    2015-01-01

    The phenomenon of aging populations has produced widespread health awareness and magnified the need for improved medical quality and technologies. Statistics show that ischemic heart disease is the leading cause of death for older people and people with reduced mobility; therefore, wheelchairs have become their primary means of transport. Hence, an arrhythmia-detecting smart wheelchair was proposed in this study to provide real-time electrocardiography (ECG)-monitoring to patients with heart disease and reduced mobility. A self-developed, handheld ECG-sensing instrument was integrated with a wheelchair and a lab-written, arrhythmia-detecting program. The measured ECG data were transmitted through a Wi-Fi module and analyzed and diagnosed using the human-machine interface. PMID:26444818

  8. On ECG reconstruction using weighted-compressive sensing

    PubMed Central

    Kassim, Ashraf A.

    2014-01-01

    The potential of the new weighted-compressive sensing approach for efficient reconstruction of electrocardiograph (ECG) signals is investigated. This is motivated by the observation that ECG signals are hugely sparse in the frequency domain and the sparsity changes slowly over time. The underlying idea of this approach is to extract an estimated probability model for the signal of interest, and then use this model to guide the reconstruction process. The authors show that the weighted-compressive sensing approach is able to achieve reconstruction performance comparable with the current state-of-the-art discrete wavelet transform-based method, but with substantially less computational cost to enable it to be considered for use in the next generation of miniaturised wearable ECG monitoring devices. PMID:26609381

  9. Performance evaluation of cellular phone network based portable ECG device.

    PubMed

    Hong, Joo-Hyun; Cha, Eun-Jong; Lee, Tae-Soo

    2008-01-01

    In this study, cellular phone network based portable ECG device was developed and three experiments were performed to evaluate the accuracy, reliability and operability, applicability during daily life of the developed device. First, ECG signals were measured using the developed device and Biopac device (reference device) during sitting and marking time and compared to verify the accuracy of R-R intervals. Second, the reliable data transmission to remote server was verified on two types of simulated emergency event using patient simulator. Third, during daily life with five types of motion, accuracy of data transmission to remote server was verified on two types of event occurring. By acquiring and comparing subject's biomedical signal and motion signal, the accuracy, reliability and operability, applicability during daily life of the developed device were verified. Therefore, cellular phone network based portable ECG device can monitor patient with inobtrusive manner. PMID:19162767

  10. On ECG reconstruction using weighted-compressive sensing.

    PubMed

    Zonoobi, Dornoosh; Kassim, Ashraf A

    2014-06-01

    The potential of the new weighted-compressive sensing approach for efficient reconstruction of electrocardiograph (ECG) signals is investigated. This is motivated by the observation that ECG signals are hugely sparse in the frequency domain and the sparsity changes slowly over time. The underlying idea of this approach is to extract an estimated probability model for the signal of interest, and then use this model to guide the reconstruction process. The authors show that the weighted-compressive sensing approach is able to achieve reconstruction performance comparable with the current state-of-the-art discrete wavelet transform-based method, but with substantially less computational cost to enable it to be considered for use in the next generation of miniaturised wearable ECG monitoring devices. PMID:26609381

  11. Wavelet transformation based watermarking technique for human electrocardiogram (ECG).

    PubMed

    Engin, Mehmet; Cidam, Oğuz; Engin, Erkan Zeki

    2005-12-01

    Nowadays, watermarking has become a technology of choice for a broad range of multimedia copyright protection applications. Watermarks have also been used to embed prespecified data in biomedical signals. Thus, the watermarked biomedical signals being transmitted through communication are resistant to some attacks. This paper investigates discrete wavelet transform based watermarking technique for signal integrity verification in an Electrocardiogram (ECG) coming from four ECG classes for monitoring application of cardiovascular diseases. The proposed technique is evaluated under different noisy conditions for different wavelet functions. Daubechies (db2) wavelet function based technique performs better than those of Biorthogonal (bior5.5) wavelet function. For the beat-to-beat applications, all performance results belonging to four ECG classes are highly moderate. PMID:16235811

  12. Fast multi-scale feature fusion for ECG heartbeat classification

    NASA Astrophysics Data System (ADS)

    Ai, Danni; Yang, Jian; Wang, Zeyu; Fan, Jingfan; Ai, Changbin; Wang, Yongtian

    2015-12-01

    Electrocardiogram (ECG) is conducted to monitor the electrical activity of the heart by presenting small amplitude and duration signals; as a result, hidden information present in ECG data is difficult to determine. However, this concealed information can be used to detect abnormalities. In our study, a fast feature-fusion method of ECG heartbeat classification based on multi-linear subspace learning is proposed. The method consists of four stages. First, baseline and high frequencies are removed to segment heartbeat. Second, as an extension of wavelets, wavelet-packet decomposition is conducted to extract features. With wavelet-packet decomposition, good time and frequency resolutions can be provided simultaneously. Third, decomposed confidences are arranged as a two-way tensor, in which feature fusion is directly implemented with generalized N dimensional ICA (GND-ICA). In this method, co-relationship among different data information is considered, and disadvantages of dimensionality are prevented; this method can also be used to reduce computing compared with linear subspace-learning methods (PCA). Finally, support vector machine (SVM) is considered as a classifier in heartbeat classification. In this study, ECG records are obtained from the MIT-BIT arrhythmia database. Four main heartbeat classes are used to examine the proposed algorithm. Based on the results of five measurements, sensitivity, positive predictivity, accuracy, average accuracy, and t-test, our conclusion is that a GND-ICA-based strategy can be used to provide enhanced ECG heartbeat classification. Furthermore, large redundant features are eliminated, and classification time is reduced.

  13. Accuracy of localization of acute myocardial infarction by 12 lead electrocardiography

    SciTech Connect

    Yasuda, T.; Ribeiro, L.G.; Holman, B.L.; Alpert, J.S.; Maroko, P.R.

    1982-04-01

    Until recently, ECG accuracy in localizing acute myocardial infarction (AMI) could be assessed only by comparing the ECGs with autopsy findings. This approach, however, preselected patients, including only those who died. It is possible that this postmortem group of patients would be different from the whole population of patients with AMI. Myocardial imaging with /sup 99/mTc-pyrophosphate offers the advantage of directly localizing the region of injured myocardium in the acute phase of AMI. In 34 patients with confirmed AMI and focal uptake of /sup 99/mTc-pyrophosphate, serial ECGs were obtained and interpreted by two independent observers. The sensitivity and specificity of serial ECGs in determining the location of AMI in the five left ventricular (LV) wall segments were determined: (1) in the anterior wall sensitivity was 86.7% and specificity was 89.5%; (2) in the lateral wall sensitivity was 73.7% and specificity was 80.0%; (3) in the high lateral wall sensitivity was 80.0% and specificity was 87.5%; (4) in the inferior wall sensitivity was 87.5% and specificity was 100%; (5) in the true posterior wall sensitivity was 83.3% and specificity was 86.4%. Overall, in the 170 LV wall segments (five per patient) examined, scans localized with a sensitivity of 81.9% and a specificity of 88.8%. After four patients with LBBB were excluded, sensitivity increased to 87.1%. Overall, localization of AMI by serial ECG was accurate in 85.9% of the 34 patients included in the study.

  14. Deployment of an Advanced Electrocardiographic Analysis (A-ECG) to Detect Cardiovascular Risk in Career Firefighters

    NASA Technical Reports Server (NTRS)

    Dolezal, B. A.; Storer, T. W.; Abrazado, M.; Watne, R.; Schlegel, T. T.; Batalin, M.; Kaiser, W.; Smith, D. L.; Cooper, C. B.

    2011-01-01

    INTRODUCTION Sudden cardiac death is the leading cause of line of duty death among firefighters, accounting for approximately 45% of fatalities annually. Firefighters perform strenuous muscular work while wearing heavy, encapsulating personal protective equipment in high ambient temperatures, under chaotic and emotionally stressful conditions. These factors can precipitate sudden cardiac events like myocardial infarction, serious dysrhythmias, or cerebrovascular accidents in firefighters with underlying cardiovascular disease. Screening for cardiovascular risk factors is recommended but not always followed in this population. PHASER is a project charged with identifying and prioritizing risk factors in emergency responders. We have deployed an advanced ECG (A-ECG) system developed at NASA for improved sensitivity and specificity in the detection of cardiac risk. METHODS Forty-four professional firefighters were recruited to perform comprehensive baseline assessments including tests of aerobic performance and laboratory tests for fasting lipid profiles and glucose. Heart rate and conventional 12-lead ECG were obtained at rest and during incremental treadmill exercise testing (XT). In addition, a 5-min resting 12-lead A-ECG was obtained in a subset of firefighters (n=18) and transmitted over a secure networked system to a physician collaborator at NASA for advanced-ECG analysis. This A-ECG system has been proven, using myocardial perfusion and other imaging, to accurately identify a number of cardiac pathologies including coronary artery disease (CAD), left ventricular hypertrophy, hypertrophic cardiomyopathy, non-ischemic cardiomyopathy, and ischemic cardiomyopathy. RESULTS Subjects mean (SD) age was 43 (8) years, weight 91 (13) kg, and BMI of 28 (3) kg/square meter. Maximum oxygen uptake (VO2max) was 39 (9) ml/kg/min. This compares with the 45th %ile in healthy reference values and a recommended standard of 42 ml/kg/min for firefighters. The metabolic threshold (VO

  15. Electrocardiographic Total 12-Lead QRS Voltage in Patients Having Operative Resection of Syphilitic Aortic Aneurysm.

    PubMed

    Roberts, William C; Barbin, Clay M; Weissenborn, Matthew R; Ko, Jong M

    2015-09-15

    Electrocardiographic voltage has been used to determine the presence of left ventricular hypertrophy for about 70 years. Varying electrocardiographic criteria have been applied. We have found total 12-lead QRS voltage to be most useful in this regard. We measured total 12-lead QRS voltage in 24 patients in whom an ascending aortic aneurysm was resected and histologic study of its wall was classic of syphilitic aortitis. In these 24 patients total 12-lead QRS voltage ranged from 57 to 161 mm, averaging 120 ± 32 in the 11 men and 106 ± 24 mm in the 13 women. If normal 12-lead QRS voltage in adults is considered to be >175 mm not a single one of the 24 patients had normal voltage. Indeed, most were in the low normal area. Thus, this study provides some evidence via this indirect means that the heart itself is infrequently involved by syphilitic aortitis which produces an ascending aortic aneurysm of sufficient size to warrant resection. PMID:26209115

  16. Heart Rhythm Monitoring in the Constellation Lunar and Launch/Landing EVA Suit: Recommendations from an Expert Panel

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Hamilton, D.; Jones, J. A.; Alexander, D.

    2008-01-01

    Currently there are several physiological monitoring requirements for Extravehicular Activity (EVA) in the Human-Systems Interface Requirements (HSIR) document, including continuous heart rhythm monitoring. However, it is not known whether heart rhythm monitoring in the lunar surface space suit is a necessary capability for lunar surface operations or in launch/landing suit the event of a cabin depressurization enroute to or from the moon. Methods: Current US astronaut corps demographic information was provided to an expert panel of cardiovascular medicine experts, including specialists in electrophysiology, exercise physiology, interventional cardiology and arrhythmia. This information included averages for male/female age, body mass index (BMI), blood pressure, cholesterol, inflammatory markers, echocardiogram, ranges for coronary artery calcium (CAC) scores for long duration astronauts, and ranges for heart rate (HR) and metabolic (MET) rates obtained during microgravity and lunar EVA. Results: The panel determined that no uncontrolled hazard was likely to occur in the suit during lunar surface or contingency microgravity ops that would require ECG monitoring in the highly screened US astronaut population. However having the capability for rhythm monitoring inside the vehicle (IVA) was considered critical to manage an astronaut in distress. Discussion: Heart rate (HR) monitoring alone allows effective monitoring of astronaut health and function. Consequently, electrocardiographic (ECG) monitoring capability as a clinical tool is not essential in the lunar or launch/landing space suit. However, the panel considered that rhythm monitoring could be useful in certain clinical situations, it was not considered required for safe operations. Also, lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG (derived 12- lead) for IVA medical assessments.

  17. [The design of handheld fast ECG detector].

    PubMed

    Shi, Bo; Zhang, Genxuan; Tsau, Young

    2013-03-01

    A new handheld fast ECG detector based on low gain amplifier, the high resolution analog to digital converter, the real-time digital filter, fast P-QRS-T wave detection and abstraction algorithm was designed. The results showed that the ECG detector can meet the requirements of fast detecting heart rate and ECG P-QRS-T waveforms. PMID:23777065

  18. Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation

    NASA Astrophysics Data System (ADS)

    Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates

    2014-06-01

    The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.

  19. ECG telemonitoring during home-based cardiac rehabilitation in heart failure patients.

    PubMed

    Piotrowicz, Ewa; Jasionowska, Anna; Banaszak-Bednarczyk, Maria; Gwilkowska, Joanna; Piotrowicz, Ryszard

    2012-06-01

    We assessed ECGs recorded during home-based telemonitored cardiac rehabilitation (HTCR) in stable patients with heart-failure. The study included 75 patients with heart failure (NYHA II, III), with a mean age of 56 years. They participated in an eight-week programme of home cardiac rehabilitation which was telemonitored with a device which recorded 16-s fragments of their ECG. These fragments were transmitted via mobile phone to a monitoring centre. The times of the automatic ECG recordings were pre-set and coordinated with the cardiac rehabilitation. Patients were able to make additional recordings when they felt unwell using a tele-event-Holter ECG facility. During the study, 5757 HTCR sessions were recorded and 11,534 transmitted ECG fragments were evaluated. Most ECGs originated from the automatic recordings. Singular supraventricular and ventricular premature beats and ventricular couplets were detected in 16%, 69% and 16% of patients, respectively. Twenty ECGs were recorded when patients felt unwell: non sustained ventricular tachycardia occurred in three patients and paroxysmal atrial fibrillation episode in two patients. Heart failure patients undergoing HTCR did not develop any arrhythmia which required a change of the procedure, confirming it was safe. Cardiac rehabilitation at home was improved by utilizing the tele-event-Holter ECG facility. PMID:22604276

  20. Technology-Based vs. Traditional Instruction: A Comparison of Two Methods for Teaching the Skill of Performing a 12-Lead ECG.

    ERIC Educational Resources Information Center

    Jeffries, Pamela R.; Woolf, Shirley; Linde, Beverly

    2003-01-01

    Electrocardiogram technique was taught to 32 nursing students using a self-study module, lecture-demonstration, and hands-on learning laboratories and to 45 students using interactive multimedia CD-ROM with self-study module. Pre/postprogram data show satisfaction and score improvement was high for both, with no significant differences. (Contains…

  1. Competency in ECG Interpretation Among Medical Students

    PubMed Central

    Kopeć, Grzegorz; Magoń, Wojciech; Hołda, Mateusz; Podolec, Piotr

    2015-01-01

    Background Electrocardiogram (ECG) is commonly used in diagnosis of heart diseases, including many life-threatening disorders. We aimed to assess skills in ECG interpretation among Polish medical students and to analyze the determinants of these skills. Material/Methods Undergraduates from all Polish medical schools were asked to complete a web-based survey containing 18 ECG strips. Questions concerned primary ECG parameters (rate, rhythm, and axis), emergencies, and common ECG abnormalities. Analysis was restricted to students in their clinical years (4th–6th), and students in their preclinical years (1st–3rd) were used as controls. Results We enrolled 536 medical students (females: n=299; 55.8%), aged 19 to 31 (23±1.6) years from all Polish medical schools. Most (72%) were in their clinical years. The overall rate of good response was better in students in years 4th–5th than those in years 1st–3rd (66% vs. 56%; p<0.0001). Competency in ECG interpretation was higher in students who reported ECG self-learning (69% vs. 62%; p<0.0001) but no difference was found between students who attended or did not attend regular ECG classes (66% vs. 66%; p=0.99). On multivariable analysis (p<0.0001), being in clinical years (OR: 2.45 [1.35–4.46] and self-learning (OR: 2.44 [1.46–4.08]) determined competency in ECG interpretation. Conclusions Polish medical students in their clinical years have a good level of competency in interpreting the primary ECG parameters, but their ability to recognize ECG signs of emergencies and common heart abnormalities is low. ECG interpretation skills are determined by self-education but not by attendance at regular ECG classes. Our results indicate qualitative and quantitative deficiencies in teaching ECG interpretation at medical schools. PMID:26541993

  2. Cost-effectiveness of pre-participation screening of athletes with ECG in Europe and Algeria.

    PubMed

    Assanelli, Deodato; Levaggi, Rosella; Carré, François; Sharma, Sanjay; Deligiannis, Asterios; Mellwig, Klaus Peter; Tahmi, Mohamed; Vinetti, Giovanni; Aliverti, Paola

    2015-03-01

    The aim of this study is to evaluate the cost-effectiveness of ECG in combination with family and personal history and physical examination in order to detect cardiovascular diseases that might cause sudden death in athletes. The study was conducted on a cohort of 6,634, mainly young professional and recreational athletes, 1,071 from Algeria and 5,563 from Europe (France, Germany and Greece). Each athlete underwent medical history, physical examination, and resting 12-lead ECG. 293 athletes (4.4 %), 149 in Europe (2.7 %) and 144 in Algeria (13.4 %) required further tests, and 56 were diagnosed with cardiovascular disease and thus disqualified. The cost-effectiveness ratio (CER) was calculated as the ratio between the cost of screening and the number of statistical life-years saved by the intervention. The estimated reduced risk of death deriving from treatment or disqualification resulted in the saving of 79.1 statistical life-years in Europe and 136.3 in Algeria. CER of screening was 4,071 purchasing-power-parity-adjusted US dollars ($PPP) in Europe and 582 $PPP in Algeria. The results of this study strongly support the utilisation of 12-lead ECG in the pre-participation screening of young athletes, especially in countries where secondary preventive care is not highly developed. PMID:25164412

  3. Disease Classification and Biomarker Discovery Using ECG Data

    PubMed Central

    Huang, Rong; Zhou, Yingchun

    2015-01-01

    In the recent decade, disease classification and biomarker discovery have become increasingly important in modern biological and medical research. ECGs are comparatively low-cost and noninvasive in screening and diagnosing heart diseases. With the development of personal ECG monitors, large amounts of ECGs are recorded and stored; therefore, fast and efficient algorithms are called for to analyze the data and make diagnosis. In this paper, an efficient and easy-to-interpret procedure of cardiac disease classification is developed through novel feature extraction methods and comparison of classifiers. Motivated by the observation that the distributions of various measures on ECGs of the diseased group are often skewed, heavy-tailed, or multimodal, we characterize the distributions by sample quantiles which outperform sample means. Three classifiers are compared in application both to all features and to dimension-reduced features by PCA: stepwise discriminant analysis (SDA), SVM, and LASSO logistic regression. It is found that SDA applied to dimension-reduced features by PCA is the most stable and effective procedure, with sensitivity, specificity, and accuracy being 89.68%, 84.62%, and 88.52%, respectively. PMID:26688816

  4. Wavelet-Based ECG Steganography for Protecting Patient Confidential Information in Point-of-Care Systems.

    PubMed

    Ibaida, Ayman; Khalil, Ibrahim

    2013-12-01

    With the growing number of aging population and a significant portion of that suffering from cardiac diseases, it is conceivable that remote ECG patient monitoring systems are expected to be widely used as point-of-care (PoC) applications in hospitals around the world. Therefore, huge amount of ECG signal collected by body sensor networks from remote patients at homes will be transmitted along with other physiological readings such as blood pressure, temperature, glucose level, etc., and diagnosed by those remote patient monitoring systems. It is utterly important that patient confidentiality is protected while data are being transmitted over the public network as well as when they are stored in hospital servers used by remote monitoring systems. In this paper, a wavelet-based steganography technique has been introduced which combines encryption and scrambling technique to protect patient confidential data. The proposed method allows ECG signal to hide its corresponding patient confidential data and other physiological information thus guaranteeing the integration between ECG and the rest. To evaluate the effectiveness of the proposed technique on the ECG signal, two distortion measurement metrics have been used: the percentage residual difference and the wavelet weighted PRD. It is found that the proposed technique provides high-security protection for patients data with low (less than 1%) distortion and ECG data remain diagnosable after watermarking (i.e., hiding patient confidential data) and as well as after watermarks (i.e., hidden data) are removed from the watermarked data. PMID:23708767

  5. Real-time ECG transmission via Internet for nonclinical applications.

    PubMed

    Hernández, A I; Mora, F; Villegas, G; Passariello, G; Carrault, G

    2001-09-01

    Telemedicine is producing a great impact in the monitoring of patients located in remote nonclinical environments such as homes, elder communities, gymnasiums, schools, remote military bases, ships, and the like. A number of applications, ranging from data collection, to chronic patient surveillance, and even to the control of therapeutic procedures, are being implemented in many parts of the world. As part of this growing trend, this paper discusses the problems in electrocardiogram (ECG) real-time data acquisition, transmission, and visualization over the Internet. ECG signals are transmitted in real time from a patient in a remote nonclinical environment to the specialist in a hospital or clinic using the current capabilities and availability of the Internet. A prototype system is composed of a portable data acquisition and preprocessing module connected to the computer in the remote site via its RS-232 port, a Java-based client-server platform, and software modules to handle communication protocols between data acquisition module and the patient's personal computer, and to handle client-server communication. The purpose of the system is the provision of extended monitoring for patients under drug therapy after infarction, data collection in some particular cases, remote consultation, and low-cost ECG monitoring for the elderly. PMID:11550848

  6. High resolution ECG-aided early prognostic model for comatose survivors of out of hospital cardiac arrest.

    PubMed

    Rauber, Martin; Štajer, Dušan; Noč, Marko; Schlegel, Todd T; Starc, Vito

    2015-01-01

    Out of hospital cardiac arrest (OHCA) has a high mortality despite modern treatment. Reliable early prognosis in OHCA could significantly improve clinical decision making. We explored prognostic utility of advanced ECG parameters, obtained from high-resolution ECG, in combination with clinical and OHCA-related parameters during treatment with mild induced hypothermia (MIH) and after rewarming in unconscious survivors of OHCA. Ninety-two patients during MIH and 66 after rewarming were included. During MIH, a score based on initial rhythm, QRS-upslope and systolic pressure resulted in an area under curve (AUC) of 0.82 and accuracy of 80% for survival. After rewarming, a score based on admission rhythm, sum of 12 lead QRS voltages, and mean lateral ST segment level in leads I and V6 resulted in an AUC of 0.88 and accuracy of 85% for survival. ECG can assist with early prognostication in unconscious survivors of OHCA during MIH and after rewarming. PMID:25911585

  7. Compressed ECG biometric: a fast, secured and efficient method for identification of CVD patient.

    PubMed

    Sufi, Fahim; Khalil, Ibrahim; Mahmood, Abdun

    2011-12-01

    Adoption of compression technology is often required for wireless cardiovascular monitoring, due to the enormous size of Electrocardiography (ECG) signal and limited bandwidth of Internet. However, compressed ECG must be decompressed before performing human identification using present research on ECG based biometric techniques. This additional step of decompression creates a significant processing delay for identification task. This becomes an obvious burden on a system, if this needs to be done for a trillion of compressed ECG per hour by the hospital. Even though the hospital might be able to come up with an expensive infrastructure to tame the exuberant processing, for small intermediate nodes in a multihop network identification preceded by decompression is confronting. In this paper, we report a technique by which a person can be identified directly from his / her compressed ECG. This technique completely obviates the step of decompression and therefore upholds biometric identification less intimidating for the smaller nodes in a multihop network. The biometric template created by this new technique is lower in size compared to the existing ECG based biometrics as well as other forms of biometrics like face, finger, retina etc. (up to 8302 times lower than face template and 9 times lower than existing ECG based biometric template). Lower size of the template substantially reduces the one-to-many matching time for biometric recognition, resulting in a faster biometric authentication mechanism. PMID:20703779

  8. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors

    PubMed Central

    Choi, Minho; Jeong, Jae Jin; Kim, Seung Hun; Kim, Sang Woo

    2016-01-01

    Non-intrusive electrocardiogram (ECG) monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs) to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements. PMID:27196910

  9. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors.

    PubMed

    Choi, Minho; Jeong, Jae Jin; Kim, Seung Hun; Kim, Sang Woo

    2016-01-01

    Non-intrusive electrocardiogram (ECG) monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs) to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements. PMID:27196910

  10. An integrated healthcare information system for end-to-end standardized exchange and homogeneous management of digital ECG formats.

    PubMed

    Trigo, Jesús Daniel; Martínez, Ignacio; Alesanco, Alvaro; Kollmann, Alexander; Escayola, Javier; Hayn, Dieter; Schreier, Günter; García, José

    2012-07-01

    This paper investigates the application of the enterprise information system (EIS) paradigm to standardized cardiovascular condition monitoring. There are many specifications in cardiology, particularly in the ECG standardization arena. The existence of ECG formats, however, does not guarantee the implementation of homogeneous, standardized solutions for ECG management. In fact, hospital management services need to cope with various ECG formats and, moreover, several different visualization applications. This heterogeneity hampers the normalization of integrated, standardized healthcare information systems, hence the need for finding an appropriate combination of ECG formats and a suitable EIS-based software architecture that enables standardized exchange and homogeneous management of ECG formats. Determining such a combination is one objective of this paper. The second aim is to design and develop the integrated healthcare information system that satisfies the requirements posed by the previous determination. The ECG formats selected include ISO/IEEE11073, Standard Communications Protocol for Computer-Assisted Electrocardiography, and an ECG ontology. The EIS-enabling techniques and technologies selected include web services, simple object access protocol, extensible markup language, or business process execution language. Such a selection ensures the standardized exchange of ECGs within, or across, healthcare information systems while providing modularity and accessibility. PMID:22453644

  11. The Moli-sani project: computerized ECG database in a population-based cohort study.

    PubMed

    Iacoviello, Licia; Rago, Livia; Costanzo, Simona; Di Castelnuovo, Augusto; Zito, Francesco; Assanelli, Deodato; Badilini, Fabio; Donati, Maria Benedetta; de Gaetano, Giovanni

    2012-01-01

    Computerized electrocardiogram (ECG) acquisition and interpretation may be extremely useful in handling analysis of data from large cohort studies and exploit research on the use of ECG data as prognostic markers for cardiovascular disease. The Moli-sani project (http://www.moli-sani.org) is a population-based cohort study aiming at evaluating the risk factors linked to chronic-degenerative disease with particular regard to cardiovascular disease and cancer and intermediate metabolic phenotypes such as hypertension, diabetes, dyslipidemia, obesity, and metabolic syndrome. Between March 2005 and April 2010, 24 325 people aged 35 years or older, living in the Molise region (Italy), were randomly recruited. A follow-up based on linkage with hospital discharge records and mortality regional registry and reexamination of the cohort is ongoing and will be repeated at prefixed times. Each subject was administered questionnaires on personal and medical history, food consumption, quality of life (FS36), and psychometry. Plasma serum, cellular pellet, and urinary spots were stored in liquid nitrogen. Subjects were measured blood pressure, weight, height, and waist and hip circumferences, and underwent spirometry to evaluate pulmonary diffusion capacity, gas diffusion, and pulmonary volumes. Standard 12-lead resting ECG was performed by a Cardiette ar2100-view electrocardiograph and tracings stored in digital standard communication protocol format for subsequent analysis. The digital ECG database of the Moli-sani project is currently being used to assess the association between physiologic variables and pathophyiosiologic conditions and parameters derived from the ECG signal. This computerized ECG database represents a unique opportunity to identify and assess prognostic factors associated with cardiovascular and metabolic diseases. PMID:23021814

  12. Modern standards of ECG interpretation in young athletes: yield and effectiveness.

    PubMed

    Asif, Irfan M; Prutkin, Jordan M

    2015-01-01

    Although cardiovascular screening is recommended before participating in competitive sports, the role of the 12-lead electrocardiogram (ECG) has been debated. When added to the medical history and physical examination, an ECG used during the pre-participation screening (PPS) of young athletes can greatly enhance the ability to detect underlying cardiovascular pathology. Concerns over false positive rates, however, have posed an obstacle to large-scale implementation. The recent development of modern athlete-specific ECG interpretation criteria has dramatically reduced false positive rates to levels below other commonly used screening tests (e.g. breast cancer, prostate cancer) and subsequently improved cost effectiveness. There are also emerging data that certain sub-groups have a higher prevalence of ECG abnormalities, including males, athletes of Afro-Caribbean descent, basketball players, and endurance athletes. While false positive rates from a number of studies are reduced with the improved standards, there may be room for continued improvements. Future efforts should focus on refining criteria based on age, race, gender, ethnicity, and sport, while also clearly delineating the appropriate work-up strategies for those with abnormal findings, as this can lead to improved resource utilization. PMID:25595717

  13. How can computerized interpretation algorithms adapt to gender/age differences in ECG measurements?

    PubMed

    Xue, Joel; Farrell, Robert M

    2014-01-01

    It is well known that there are gender differences in 12 lead ECG measurements, some of which can be statistically significant. It is also an accepted practice that we should consider those differences when we interpret ECGs, by either a human overreader or a computerized algorithm. There are some major gender differences in 12 lead ECG measurements based on automatic algorithms, including global measurements such as heart rate, QRS duration, QT interval, and lead-by-lead measurements like QRS amplitude, ST level, etc. The interpretation criteria used in the automatic algorithms can be adapted to the gender differences in the measurements. The analysis of a group of 1339 patients with acute inferior MI showed that for patients under age 60, women had lower ST elevations at the J point in lead II than men (57±91μV vs. 86±117μV, p<0.02). This trend was reversed for patients over age 60 (lead aVF: 102±126μV vs. 84±117μV, p<0.04; lead III: 130±146μV vs. 103±131μV, p<0.007). Therefore, the ST elevation thresholds were set based on available gender and age information, which resulted in 25% relative sensitivity improvement for women under age 60, while maintaining a high specificity of 98%. Similar analyses were done for prolonged QT interval and LVH cases. The paper uses several design examples to demonstrate (1) how to design a gender-specific algorithm, and (2) how to design a robust ECG interpretation algorithm which relies less on absolute threshold-based criteria and is instead more reliant on overall morphology features, which are especially important when gender information is unavailable for automatic analysis. PMID:25175175

  14. Removing movement artifacts from equine ECG recordings acquired with textile electrodes.

    PubMed

    Lanata, Antonio; Guidi, Andrea; Baragli, Paolo; Paradiso, Rita; Valenza, Gaetano; Scilingo, Enzo Pasquale

    2015-08-01

    This study reports on the implementation of a novel system to detect and reduce movement artifact (MA) contribution in electrocardiogram (ECG) recordings acquired from horses in free movement conditions. The system comprises both integrated textile electrodes for ECG acquisition and one triaxial accelerometer for movement monitoring. Here, ECG and physical activity are continuously acquired from seven horses through the wearable system and a model that integrates cardiovascular and movement information to estimate the MA contribution is implemented. Moreover, in this study we propose a new algorithm where the Stationary Wavelet Transform (SWT) decomposition algorithm is employed to identify and remove movement artifacts from ECG recodigns. Achieved results showed a reduction of MA percentage greater than 40% between before- and after- the application of the proposed algorithm to seven hours of recordings. PMID:26736667

  15. An ECG ambulatory system with mobile embedded architecture for ST-segment analysis.

    PubMed

    Miranda-Cid, Alejandro; Alvarado-Serrano, Carlos

    2010-01-01

    A prototype of a ECG ambulatory system for long term monitoring of ST segment of 3 leads, low power, portability and data storage in solid state memory cards has been developed. The solution presented is based in a mobile embedded architecture of a portable entertainment device used as a tool for storage and processing of bioelectric signals, and a mid-range RISC microcontroller, PIC 16F877, which performs the digitalization and transmission of ECG. The ECG amplifier stage is a low power, unipolar voltage and presents minimal distortion of the phase response of high pass filter in the ST segment. We developed an algorithm that manages access to files through an implementation for FAT32, and the ECG display on the device screen. The records are stored in TXT format for further processing. After the acquisition, the system implemented works as a standard USB mass storage device. PMID:21095640

  16. A PD control-based QRS detection algorithm for wearable ECG applications.

    PubMed

    Choi, Changmok; Kim, Younho; Shin, Kunsoo

    2012-01-01

    We present a QRS detection algorithm for wearable ECG applications using a proportional-derivative (PD) control. ECG data of arrhythmia have irregular intervals and magnitudes of QRS waves that impede correct QRS detection. To resolve the problem, PD control is applied to avoid missing a small QRS wave followed from a large QRS wave and to avoid falsely detecting noise as QRS waves when an interval between two adjacent QRS waves is large (e.g. bradycardia, pause, and arioventricular block). ECG data was obtained from 78 patients with various cardiovascular diseases and tested for the performance evaluation of the proposed algorithm. The overall sensitivity and positive predictive value were 99.28% and 99.26%, respectively. The proposed algorithm has low computational complexity, so that it can be suitable to apply mobile ECG monitoring system in real time. PMID:23367208

  17. ECG-Based Detection of Early Myocardial Ischemia in a Computational Model: Impact of Additional Electrodes, Optimal Placement, and a New Feature for ST Deviation

    PubMed Central

    Loewe, Axel; Schulze, Walther H. W.; Jiang, Yuan; Wilhelms, Mathias; Luik, Armin; Dössel, Olaf; Seemann, Gunnar

    2015-01-01

    In case of chest pain, immediate diagnosis of myocardial ischemia is required to respond with an appropriate treatment. The diagnostic capability of the electrocardiogram (ECG), however, is strongly limited for ischemic events that do not lead to ST elevation. This computational study investigates the potential of different electrode setups in detecting early ischemia at 10 minutes after onset: standard 3-channel and 12-lead ECG as well as body surface potential maps (BSPMs). Further, it was assessed if an additional ECG electrode with optimized position or the right-sided Wilson leads can improve sensitivity of the standard 12-lead ECG. To this end, a simulation study was performed for 765 different locations and sizes of ischemia in the left ventricle. Improvements by adding a single, subject specifically optimized electrode were similar to those of the BSPM: 2–11% increased detection rate depending on the desired specificity. Adding right-sided Wilson leads had negligible effect. Absence of ST deviation could not be related to specific locations of the ischemic region or its transmurality. As alternative to the ST time integral as a feature of ST deviation, the K point deviation was introduced: the baseline deviation at the minimum of the ST-segment envelope signal, which increased 12-lead detection rate by 7% for a reasonable threshold. PMID:26587538

  18. Application of Handheld Tele-ECG for Health Care Delivery in Rural India

    PubMed Central

    Singh, Meenu; Sinha, Vineet; Manoj Kumar, Rohit; Pant, Pankaj; Kumar, Munish

    2014-01-01

    Telemonitoring is a medical practice that involves remotely monitoring patients who are not at the same location as the health care provider. The purpose of our study was to use handheld tele-electrocardiogram (ECG) developed by Bhabha Atomic Research Center (BARC) to identify heart conditions in the rural underserved population where the doctor-patient ratio is low and access to health care is difficult. The objective of our study was clinical validation of handheld tele-ECG as a screening tool for evaluation of cardiac diseases in the rural population. ECG was obtained in 450 individuals (mean age 31.49 ± 20.058) residing in the periphery of Chandigarh, India, from April 2011 to March 2013, using the handheld tele-ECG machine. The data were then transmitted to physicians in Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, for their expert opinion. ECG was interpreted as normal in 70% individuals. Left ventricular hypertrophy (9.3%) was the commonest abnormality followed closely by old myocardial infarction (5.3%). Patient satisfaction was reported to be ~95%. Thus, it can be safely concluded that tele-ECG is a portable, cost-effective, and convenient tool for diagnosis and monitoring of heart diseases and thus improves quality and accessibility, especially in rural areas. PMID:25368654

  19. Application of Handheld Tele-ECG for Health Care Delivery in Rural India.

    PubMed

    Singh, Meenu; Agarwal, Amit; Sinha, Vineet; Manoj Kumar, Rohit; Jaiswal, Nishant; Jindal, Ishita; Pant, Pankaj; Kumar, Munish

    2014-01-01

    Telemonitoring is a medical practice that involves remotely monitoring patients who are not at the same location as the health care provider. The purpose of our study was to use handheld tele-electrocardiogram (ECG) developed by Bhabha Atomic Research Center (BARC) to identify heart conditions in the rural underserved population where the doctor-patient ratio is low and access to health care is difficult. The objective of our study was clinical validation of handheld tele-ECG as a screening tool for evaluation of cardiac diseases in the rural population. ECG was obtained in 450 individuals (mean age 31.49 ± 20.058) residing in the periphery of Chandigarh, India, from April 2011 to March 2013, using the handheld tele-ECG machine. The data were then transmitted to physicians in Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, for their expert opinion. ECG was interpreted as normal in 70% individuals. Left ventricular hypertrophy (9.3%) was the commonest abnormality followed closely by old myocardial infarction (5.3%). Patient satisfaction was reported to be ~95%. Thus, it can be safely concluded that tele-ECG is a portable, cost-effective, and convenient tool for diagnosis and monitoring of heart diseases and thus improves quality and accessibility, especially in rural areas. PMID:25368654

  20. Motion artifact removal algorithm by ICA for e-bra: a women ECG measurement system

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.

    2013-04-01

    Wearable ECG(ElectroCardioGram) measurement systems have increasingly been developing for people who suffer from CVD(CardioVascular Disease) and have very active lifestyles. Especially, in the case of female CVD patients, several abnormal CVD symptoms are accompanied with CVDs. Therefore, monitoring women's ECG signal is a significant diagnostic method to prevent from sudden heart attack. The E-bra ECG measurement system from our previous work provides more convenient option for women than Holter monitor system. The e-bra system was developed with a motion artifact removal algorithm by using an adaptive filter with LMS(least mean square) and a wandering noise baseline detection algorithm. In this paper, ICA(independent component analysis) algorithms are suggested to remove motion artifact factor for the e-bra system. Firstly, the ICA algorithms are developed with two kinds of statistical theories: Kurtosis, Endropy and evaluated by performing simulations with a ECG signal created by sgolayfilt function of MATLAB, a noise signal including 0.4Hz, 1.1Hz and 1.9Hz, and a weighed vector W estimated by kurtosis or entropy. A correlation value is shown as the degree of similarity between the created ECG signal and the estimated new ECG signal. In the real time E-Bra system, two pseudo signals are extracted by multiplying with a random weighted vector W, the measured ECG signal from E-bra system, and the noise component signal by noise extraction algorithm from our previous work. The suggested ICA algorithm basing on kurtosis or entropy is used to estimate the new ECG signal Y without noise component.

  1. [Continuous ECG recording for freely moving patients].

    PubMed

    Shi, Bo; Liu, Shengyang; Chen, Jianfang; Zhang, Genxuan; Tsau, Young

    2013-04-01

    As more and more people are becoming aged in China and many of them tend to suffer from chronic cardiac problems, the long-term dynamic cardiac monitoring for freely moving patients becomes essential. A new design for continuous ECG recording on the freely moving patients at home and/or at work is proposed here. It is miniature in size, using digital technologies of the low gain amplifier, the high resolution analog to digital converter and the real-time digital filter that features > 100dB input signal dynamic range (ISDR), > 100dB common-mode rejection ratio (CMRR), and < 5microV (RMS) internal noise. The device works continuously more than 24 hours with a pair of AAA batteries, and is capable of storing the recorded data into a storage card. The preliminary tests showed that the P-QRS-T waveforms were captured and displayed smoothly in resting, walking, and activities, making the device useful in monitoring and analyzing for the patients on the move. PMID:23858751

  2. Heritability of ECG Biomarkers in the Netherlands Twin Registry Measured from Holter ECGs

    PubMed Central

    Hodkinson, Emily C.; Neijts, Melanie; Sadrieh, Arash; Imtiaz, Mohammad S.; Baumert, Mathias; Subbiah, Rajesh N.; Hayward, Christopher S.; Boomsma, Dorret; Willemsen, Gonneke; Vandenberg, Jamie I.; Hill, Adam P.; De Geus, Eco

    2016-01-01

    Introduction: The resting ECG is the most commonly used tool to assess cardiac electrophysiology. Previous studies have estimated heritability of ECG parameters based on these snapshots of the cardiac electrical activity. In this study we set out to determine whether analysis of heart rate specific data from Holter ECGs allows more complete assessment of the heritability of ECG parameters. Methods and Results: Holter ECGs were recorded from 221 twin pairs and analyzed using a multi-parameter beat binning approach. Heart rate dependent estimates of heritability for QRS duration, QT interval, Tpeak–Tend and Theight were calculated using structural equation modeling. QRS duration is largely determined by environmental factors whereas repolarization is primarily genetically determined. Heritability estimates of both QT interval and Theight were significantly higher when measured from Holter compared to resting ECGs and the heritability estimate of each was heart rate dependent. Analysis of the genetic contribution to correlation between repolarization parameters demonstrated that covariance of individual ECG parameters at different heart rates overlap but at each specific heart rate there was relatively little overlap in the genetic determinants of the different repolarization parameters. Conclusions: Here we present the first study of heritability of repolarization parameters measured from Holter ECGs. Our data demonstrate that higher heritability can be estimated from the Holter than the resting ECG and reveals rate dependence in the genetic—environmental determinants of the ECG that has not previously been tractable. Future applications include deeper dissection of the ECG of participants with inherited cardiac electrical disease. PMID:27199769

  3. III Lead ECG Pulse Measurement Sensor

    NASA Astrophysics Data System (ADS)

    Thangaraju, S. K.; Munisamy, K.

    2015-09-01

    Heart rate sensing is very important. Method of measuring heart pulse by using an electrocardiogram (ECG) technique is described. Electrocardiogram is a measurement of the potential difference (the electrical pulse) generated by a cardiac tissue, mainly the heart. This paper also reports the development of a three lead ECG hardware system that would be the basis of developing a more cost efficient, portable and easy to use ECG machine. Einthoven's Three Lead method [1] is used for ECG signal extraction. Using amplifiers such as the instrumentation amplifier AD620BN and the conventional operational amplifier Ua741 that would be used to amplify the ECG signal extracted develop this system. The signal would then be filtered from noise using Butterworth filter techniques to obtain optimum output. Also a right leg guard was implemented as a safety feature to this system. Simulation was carried out for development of the system using P-spice Program.

  4. ECG boy: low-cost medical instrumentation using mass-produced, hand-held entertainment computers. A preliminary report.

    PubMed

    Rohde, M M; Bement, S L; Lupa, R S

    1998-01-01

    A prototype low-cost, portable ECG monitor, the "ECG Boy," is described. A mass produced hand-held video game platform is the basis for a complete three-lead, driven right-leg electrocardiogram (ECG). The ECG circuitry is planned to fit in a standard modular cartridge that is inserted in a production Nintendo "Gameboy." The combination is slightly smaller than a paperback book and weighs less than 500 g. The unit contains essential safety features such as optical isolation and is powered by 9-V and AA batteries. Functionally, the ECG Boy permits viewing ECG recordings in real time on the integrated screen. The user can select both the lead displayed on the screen and the time scale used. A 1-mV reference allows for calibration. Other ECG enhancements such as data transmission via telephone can be easily and inexpensively added to this system. The ECG Boy is intended as a proof of concept for a new class of low-cost biomedical instruments. Rising health care costs coupled with tightened funding have created an acute demand for low-cost medical equipment that satisfies safety and quality standards. A mass-produced microprocessor-based platform designed for the entertainment market can keep costs low while providing a functional basis for a biomedical instrument. PMID:9800006

  5. Improving ECG Services at a Children's Hospital: Implementation of a Digital ECG System

    PubMed Central

    Osei, Frank A.; Gates, Gregory J.; Choi, Steven J.; Hsu, Daphne T.; Pass, Robert H.; Ceresnak, Scott R.

    2015-01-01

    Background. The use of digital ECG software and services is becoming common. We hypothesized that the introduction of a completely digital ECG system would increase the volume of ECGs interpreted at our children's hospital. Methods. As part of a hospital wide quality improvement initiative, a digital ECG service (MUSE, GE) was implemented at the Children's Hospital at Montefiore in June 2012. The total volume of ECGs performed in the first 6 months of the digital ECG era was compared to 18 months of the predigital era. Predigital and postdigital data were compared via t-tests. Results. The mean ECGs interpreted per month were 53 ± 16 in the predigital era and 216 ± 37 in the postdigital era (p < 0.001), a fourfold increase in ECG volume after introduction of the digital system. There was no significant change in inpatient or outpatient service volume during that time. The mean billing time decreased from 21 ± 27 days in the postdigital era to 12 ± 5 days in the postdigital era (p < 0.001). Conclusion. Implementation of a digital ECG system increased the volume of ECGs officially interpreted and reported. PMID:26451150

  6. A technique to evaluate the performance of computerized ECG analysis systems.

    PubMed

    Teppner, U; Lobodzinski, S; Neubert, D; Laks, M M

    1987-10-01

    No objective method to test computerized ECG systems has been available. Until now, tests have been conducted separately for instrumentation and algorithms. Hence, to facilitate objective verification and testing of modern computerized ECG equipment, a dedicated high resolution, low noise instrument (an "electronic test patient") has been developed. The purpose of this communication is to describe this new instrument and its electrocardiographic database. The instrument is designed not to cause any disturbances to the original ECG signals in the frequency range from 0 to 1 kHz. The input channels accommodating standard 12-lead and 3-lead Frank systems are sampled simultaneously at 10 kHz each with 90 dB dynamic range. The overall RMS noise figure of the instrument is 1 microV. The integral part of the instrument is a high resolution, high bandwidth minidatabase consisting of selected A-type and B-type verified electrocardiograms such as infarctions, ventricular hypertrophies, atrial fibrillations, etc. The minidatabase was collected with the aid of a computerized ECG system, which has a program for searching for specific electrocardiographic diagnosis. Each database record consists of simultaneous electrocardiographic signals of all standard leads and Frank leads, and a validated diagnostic report. A system under test is typically connected via its patient cable to the analog output of the instrument. The testing is performed with reference to the validated ECG from the database. In that way, our minidatabase is compatible with any electrocardiographic system. The only similar database assembled for testing purposes is that of the CSE group.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3694104

  7. A robust approach for ECG-based analysis of cardiopulmonary coupling.

    PubMed

    Zheng, Jiewen; Wang, Weidong; Zhang, Zhengbo; Wu, Dalei; Wu, Hao; Peng, Chung-Kang

    2016-07-01

    Deriving respiratory signal from a surface electrocardiogram (ECG) measurement has advantage of simultaneously monitoring of cardiac and respiratory activities. ECG-based cardiopulmonary coupling (CPC) analysis estimated by heart period variability and ECG-derived respiration (EDR) shows promising applications in medical field. The aim of this paper is to provide a quantitative analysis of the ECG-based CPC, and further improve its performance. Two conventional strategies were tested to obtain EDR signal: R-S wave amplitude and area of the QRS complex. An adaptive filter was utilized to extract the common component of inter-beat interval (RRI) and EDR, generating enhanced versions of EDR signal. CPC is assessed through probing the nonlinear phase interactions between RRI series and respiratory signal. Respiratory oscillations presented in both RRI series and respiratory signals were extracted by ensemble empirical mode decomposition for coupling analysis via phase synchronization index. The results demonstrated that CPC estimated from conventional EDR series exhibits constant and proportional biases, while that estimated from enhanced EDR series is more reliable. Adaptive filtering can improve the accuracy of the ECG-based CPC estimation significantly and achieve robust CPC analysis. The improved ECG-based CPC estimation may provide additional prognostic information for both sleep medicine and autonomic function analysis. PMID:27118307

  8. ECG findings after myocardial infarction in children after Kawasaki disease

    SciTech Connect

    Nakanishi, T.; Takao, A.; Kondoh, C.; Nakazawa, M.; Hiroe, M.; Matsumoto, Y.

    1988-10-01

    Standard 12-lead ECGs were evaluated in 17 children with myocardial infarction and 78 children without myocardial infarction after Kawasaki disease; sensitivity and specificity of the ECG infarction criteria were determined. The presence or absence of myocardial infarction was determined from either clinical examination results (coronary angiography, ventriculography, and thallium-201 myocardial imaging) or autopsy findings. Of seven patients with inferior infarction, abnormally deep Q waves in lead II, III, or aVF were observed in six, but the duration was greater than 0.04 second in only one (14%). The sensitivity and specificity of inferior infarction criteria based on Q wave amplitude were 86% and 97%, respectively. Of eight patients with anterior infarction, seven (88%) had abnormally deep and wide (greater than or equal to 0.04 second) Q waves in anterior chest leads. The sensitivity and specificity of the infarction criteria based on the amplitude and duration of the Q wave were 75% and 99%, respectively. Of seven patients with lateral infarction, Q waves were observed in lead I, aVL, or both in four patients, and in all of these patients Q waves were wider than 0.04 second. In two patients with both inferior and anterior infarction, Q waves were observed only in leads II, III, and aVF; in only one patient were the Q waves wider than 0.04 second. Thus deep Q waves in lead II, III, or aVF that are not wider than 0.04 second may indicate inferior infarction in children. Q waves in lead I, aVL, and chest leads associated with anterolateral infarction are in most instances deep and wide.

  9. The use of the SPSA method in ECG analysis.

    PubMed

    Gerencsér, László; Kozmann, György; Vágó, Zsuzsanna; Haraszti, Kristóf

    2002-10-01

    The classification, monitoring, and compression of electrocardiogram (ECG) signals recorded of a single patient over a relatively long period of time is considered. The particular application we have in mind is high-resolution ECG analysis, such as late potential analysis, morphology changes in QRS during arrythmias, T-wave alternants, or the study of drug effects on ventricular activation. We propose to apply a modification of a classical method of cluster analysis or vector quantization. The novelty of our approach is that we use a new distortion measure to quantify the distance of two ECG cycles, and the class-distortion measure is defined using a min-max criterion. The new class-distortion-measure is much more sensitive to outliers than the usual distortion measures using average-distance. The price of this practical advantage is that computational complexity is significantly increased. The resulting nonsmooth optimization problem is solved by an adapted version of the simultaneous perturbation stochastic approximation (SPSA) method of. The main idea is to generate a smooth approximation by a randomization procedure. The viability of the method is demonstrated on both simulated and real data. An experimental comparison with the widely used correlation method is given on real data. PMID:12374333

  10. A comparison of single channel fetal ECG extraction methods.

    PubMed

    Behar, Joachim; Johnson, Alistair; Clifford, Gari D; Oster, Julien

    2014-06-01

    The abdominal electrocardiogram (ECG) provides a non-invasive method for monitoring the fetal cardiac activity in pregnant women. However, the temporal and frequency overlap between the fetal ECG (FECG), the maternal ECG (MECG) and noise results in a challenging source separation problem. This work seeks to compare temporal extraction methods for extracting the fetal signal and estimating fetal heart rate. A novel method for MECG cancelation using an echo state neural network (ESN) based filtering approach was compared with the least mean square (LMS), the recursive least square (RLS) adaptive filter and template subtraction (TS) techniques. Analysis was performed using real signals from two databases composing a total of 4 h 22 min of data from nine pregnant women with 37,452 reference fetal beats. The effects of preprocessing the signals was empirically evaluated. The results demonstrate that the ESN based algorithm performs best on the test data with an F1 measure of 90.2% as compared to the LMS (87.9%), RLS (88.2%) and the TS (89.3%) techniques. Results suggest that a higher baseline wander high pass cut-off frequency than traditionally used for FECG analysis significantly increases performance for all evaluated methods. Open source code for the benchmark methods are made available to allow comparison and reproducibility on the public domain data. PMID:24604619

  11. Cardiac loop ECG recording: a new noninvasive diagnostic test in recurrent syncope.

    PubMed

    Cumbee, S R; Pryor, R E; Linzer, M

    1990-01-01

    The most crucial step in diagnosing syncope is determining whether or not an arrhythmia is the cause. A new recording device, the continuous cardiac loop ECG recorder, affords prolonged ambulatory monitoring and can capture the rhythm at the time of syncope. To determine the impact of cardiac loop ECG recorders in diagnosing syncope, we reviewed the records of the first 48 patients referred for cardiac loop recording because of unexplained syncope or presyncope. Previous cardiac studies were nondiagnostic in all patients. In 36% of these patients, loop recording definitively determined whether an arrhythmia was the cause of symptoms. Median duration of monitoring was 28 days, with an average charge of $180 per month. Cardiac loop ECG recording is a convenient, safe, inexpensive, and potentially highly effective means of diagnosing unexplained syncope. PMID:2300833

  12. ECG variable cine: computer program for presentation of temporal changes in ECG variables over different number of ECG leads.

    PubMed

    Viik, J; Vänttinen, H; Malmivuo, J

    2000-10-01

    The analysis of exercise electrocardiogram (ECG) is based on the alteration of the measured variables in the detection of coronary artery disease (CAD). In its existing form the analysis of the exercise ECG is laborious and requires much time. The temporal analysis of the ECG variable and the comparison between different phases of the exercise test is difficult and time consuming, especially the simultaneous examination of the variables over several leads. In this article we present a computer program, ECG Variable Cine, for the visualization of the temporal changes of values of exercise ECG variables over the selected ECG lead system. The program includes the stationary 3-D presentation for the variables' alteration simultaneously in all selected leads over the time of exercise test. In addition, the program determines two parameters; the average value of the variable over the selected leads at every sample moment, and the chronotropic index, a parameter that indicates heart rate response to exercise. According to the results the average value of ST-segment deviation at the end of the exercise over the leads and chronotropic index are clinically more competent than the maximum value of ST-segment depression in the detection of CAD. PMID:10960747

  13. Wavelets for full reconfigurable ECG acquisition system

    NASA Astrophysics Data System (ADS)

    Morales, D. P.; García, A.; Castillo, E.; Meyer-Baese, U.; Palma, A. J.

    2011-06-01

    This paper presents the use of wavelet cores for a full reconfigurable electrocardiogram signal (ECG) acquisition system. The system is compound by two reconfigurable devices, a FPGA and a FPAA. The FPAA is in charge of the ECG signal acquisition, since this device is a versatile and reconfigurable analog front-end for biosignals. The FPGA is in charge of FPAA configuration, digital signal processing and information extraction such as heart beat rate and others. Wavelet analysis has become a powerful tool for ECG signal processing since it perfectly fits ECG signal shape. The use of these cores has been integrated in the LabVIEW FPGA module development tool that makes possible to employ VHDL cores within the usual LabVIEW graphical programming environment, thus freeing the designer from tedious and time consuming design of communication interfaces. This enables rapid test and graphical representation of results.

  14. The chaos and order in human ECG under the influence of the external perturbations

    NASA Astrophysics Data System (ADS)

    Ragulskaya, Maria; Valeriy, Pipin

    The results of the many-year telecommunication heliomedical monitoring "Heliomed" show, that space weather and geophysical factor variations serve as a training factor for the adaptation-resistant member of the human population. Here we discuss the specific properties of the human ECG discovered in our experiment. The program "Heliomed" is carried out simultaneously at the different geographical areas that cover the different latitudes. The daily registered param-eters include: the psycho-emotional tests and the 1-st lead ECG, the arterial pressure, the variability cardiac contraction, the electric conduction of bioactive points on skin. The results time series compared with daily values of space weather and geomagnetic parameters. The analysis of ECG signal proceeds as follows. At first step we construct the ECG embedding into 3D phase space using the first 3 Principal Components of the ECG time series. Next, we divide ECG on the separate cycles using the maxima of the ECG's QRS complex. Then, we filter out the non-typical ECG beats by means of the Housdorff distance. Finally, we average the example of the ECG time series along the reference trajectory and study of the dynamical characteristics of the averaged ECG beat. It is found, that the ECG signal embeded in 3D phase space can be considered as a mix of a few states. At the rest, the occurrence of the primary ECG state compare to additional ones is about 8:2. The occurrence of the primary state increases after the stress. The main effect of the external perturbation is observed in structural change of the cardio-cycle and not in the variability of the R-R interval. The num-ber of none-typical cycles increase during an isolated magnetic storm. At the all monitoring centers participating experiment the same type of changes in the cardiac activity parameters is detected to go nearly simultaneously during an isolated magnetic storm. To understand the origin of the standard cardio-cycle changes we use the dynamical

  15. Wearable technology and ECG processing for fall risk assessment, prevention and detection.

    PubMed

    Melillo, Paolo; Castaldo, Rossana; Sannino, Giovanna; Orrico, Ada; de Pietro, Giuseppe; Pecchia, Leandro

    2015-08-01

    Falls represent one of the most common causes of injury-related morbidity and mortality in later life. Subjects with cardiovascular disorders (e.g., related to autonomic dysfunctions and postural hypotension) are at higher risk of falling. Autonomic dysfunctions increasing the risk of falling in the short and mid-term could be assessed by Heart Rate Variability (HRV) extracted by electrocardiograph (ECG). We developed three trials for assessing the usefulness of ECG monitoring using wearable devices for: risk assessment of falling in the next few weeks; prevention of imminent falls due to standing hypotension; and fall detection. Statistical and data-mining methods are adopted to develop classification and regression models, validated with the cross-validation approach. The first classifier based on HRV features enabled to identify future fallers among hypertensive patients with an accuracy of 72% (sensitivity: 51.1%, specificity: 80.2%). The regression model to predict falls due to orthostatic dropdown from HRV recorded before standing achieved an overall accuracy of 80% (sensitivity: 92%, specificity: 90%). Finally, the classifier to detect simulated falls using ECG achieved an accuracy of 77.3% (sensitivity: 81.8%, specificity: 72.7%). The evidence from these three studies showed that ECG monitoring and processing could achieve satisfactory performances compared to other system for risk assessment, fall prevention and detection. This is interesting as differently from other technologies actually employed to prevent falls, ECG is recommended for many other pathologies of later life and is more accepted by senior citizens. PMID:26738086

  16. ECG Feature Extraction using Time Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Nair, Mahesh A.

    The proposed algorithm is a novel method for the feature extraction of ECG beats based on Wavelet Transforms. A combination of two well-accepted methods, Pan Tompkins algorithm and Wavelet decomposition, this system is implemented with the help of MATLAB. The focus of this work is to implement the algorithm, which can extract the features of ECG beats with high accuracy. The performance of this system is evaluated in a pilot study using the MIT-BIH Arrhythmia database.

  17. A Mobile Device System for Early Warning of ECG Anomalies

    PubMed Central

    Szczepański, Adam; Saeed, Khalid

    2014-01-01

    With the rapid increase in computational power of mobile devices the amount of ambient intelligence-based smart environment systems has increased greatly in recent years. A proposition of such a solution is described in this paper, namely real time monitoring of an electrocardiogram (ECG) signal during everyday activities for identification of life threatening situations. The paper, being both research and review, describes previous work of the authors, current state of the art in the context of the authors' work and the proposed aforementioned system. Although parts of the solution were described in earlier publications of the authors, the whole concept is presented completely for the first time along with the prototype implementation on mobile device—a Windows 8 tablet with Modern UI. The system has three main purposes. The first goal is the detection of sudden rapid cardiac malfunctions and informing the people in the patient's surroundings, family and friends and the nearest emergency station about the deteriorating health of the monitored person. The second goal is a monitoring of ECG signals under non-clinical conditions to detect anomalies that are typically not found during diagnostic tests. The third goal is to register and analyze repeatable, long-term disturbances in the regular signal and finding their patterns. PMID:24955946

  18. A mobile device system for early warning of ECG anomalies.

    PubMed

    Szczepański, Adam; Saeed, Khalid

    2014-01-01

    With the rapid increase in computational power of mobile devices the amount of ambient intelligence-based smart environment systems has increased greatly in recent years. A proposition of such a solution is described in this paper, namely real time monitoring of an electrocardiogram (ECG) signal during everyday activities for identification of life threatening situations. The paper, being both research and review, describes previous work of the authors, current state of the art in the context of the authors' work and the proposed aforementioned system. Although parts of the solution were described in earlier publications of the authors, the whole concept is presented completely for the first time along with the prototype implementation on mobile device-a Windows 8 tablet with Modern UI. The system has three main purposes. The first goal is the detection of sudden rapid cardiac malfunctions and informing the people in the patient's surroundings, family and friends and the nearest emergency station about the deteriorating health of the monitored person. The second goal is a monitoring of ECG signals under non-clinical conditions to detect anomalies that are typically not found during diagnostic tests. The third goal is to register and analyze repeatable, long-term disturbances in the regular signal and finding their patterns. PMID:24955946

  19. Fragmented ECG as a Risk Marker in Cardiovascular Diseases

    PubMed Central

    Jain, Rahul; Singh, Robin; Yamini, Sundermurthy; Das, Mithilesh K

    2014-01-01

    Various noninvasive tests for risk stratification of sudden cardiac death (SCD) were studied, mostly in the context of structural heart disease such as coronary artery disease (CAD), cardiomyopathy and heart failure but have low positive predictive value for SCD. Fragmented QRS complexes (fQRS) on a 12-lead ECG is a marker of depolarization abnormality. fQRS include presence of various morphologies of the QRS wave with or without a Q wave and includes the presence of an additional R wave (R’) or notching in the nadir of the R’ (fragmentation) in two contiguous leads, corresponding to a major coronary artery territory. fQRS represents conduction delay from inhomogeneous activation of the ventricles due to myocardial scar. It has a high predictive value for myocardial scar and mortality in patients CAD. fQRS also predicts arrhythmic events and mortality in patients with implantable cardioverter defibrillator. It also signifies poor prognosis in patients with nonischemic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and Brugada syndrome. However, fQRS is a nonspecific finding and its diagnostic prognostic should only be interpreted in the presence of pertinent clinical evidence and type of myocardial involvement (structural vs. structurally normal heart). PMID:24827794

  20. How Will I Be Monitored After Heart Surgery?

    MedlinePlus

    ... monitor you are described below. What is an ECG? •An electrocardiogram, or ECG or EKG machine, records your heartbeat. • Tiny wires, ... normally. •A highly trained nurse will watch the ECG at all times. •You’ll be hooked up ...

  1. ECG-based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach

    PubMed Central

    2013-01-01

    Background In Cardiovascular Magnetic Resonance (CMR), the synchronization of image acquisition with heart motion is performed in clinical practice by processing the electrocardiogram (ECG). The ECG-based synchronization is well established for MR scanners with magnetic fields up to 3 T. However, this technique is prone to errors in ultra high field environments, e.g. in 7 T MR scanners as used in research applications. The high magnetic fields cause severe magnetohydrodynamic (MHD) effects which disturb the ECG signal. Image synchronization is thus less reliable and yields artefacts in CMR images. Methods A strategy based on Independent Component Analysis (ICA) was pursued in this work to enhance the ECG contribution and attenuate the MHD effect. ICA was applied to 12-lead ECG signals recorded inside a 7 T MR scanner. An automatic source identification procedure was proposed to identify an independent component (IC) dominated by the ECG signal. The identified IC was then used for detecting the R-peaks. The presented ICA-based method was compared to other R-peak detection methods using 1) the raw ECG signal, 2) the raw vectorcardiogram (VCG), 3) the state-of-the-art gating technique based on the VCG, 4) an updated version of the VCG-based approach and 5) the ICA of the VCG. Results ECG signals from eight volunteers were recorded inside the MR scanner. Recordings with an overall length of 87 min accounting for 5457 QRS complexes were available for the analysis. The records were divided into a training and a test dataset. In terms of R-peak detection within the test dataset, the proposed ICA-based algorithm achieved a detection performance with an average sensitivity (Se) of 99.2%, a positive predictive value (+P) of 99.1%, with an average trigger delay and jitter of 5.8 ms and 5.0 ms, respectively. Long term stability of the demixing matrix was shown based on two measurements of the same subject, each being separated by one year, whereas an averaged detection

  2. Electrocardiographic (ECG) criteria for determining left ventricular mass in young healthy men; data from the LARGE Heart study

    PubMed Central

    Sohaib, Syed M Afzal; Payne, John R; Shukla, Rajeev; World, Michael; Pennell, Dudley J; Montgomery, Hugh E

    2009-01-01

    Background Doubts remain over the use of the ECG in identifying those with increased left ventricular (LV) mass. This is especially so in young individuals, despite their high prevalence of ECG criteria for LV hypertrophy. We performed a study using cardiovascular magnetic resonance (CMR), which provides an in vivo non-invasive gold standard method of measuring LV mass, allowing accurate assessment of electrocardiography as a tool for defining LV hypertrophy in the young. Methods and results Standard 12-lead ECGs were obtained from 101 Caucasian male army recruits aged (mean ± SEM) 19.7 ± 0.2 years. LV mass was measured using CMR. LV mass indexed to body surface area demonstrated no significant correlation with the Cornell Amplitude criteria or Cornell Product for LV hypertrophy. Moderate correlations were seen with the Sokolow-Lyon Amplitude (0.28) and Sokolow-Lyon Product (0.284). Defining LV hypertrophy as a body surface area indexed left ventricular mass of 93 g/m2, calculated sensitivities [and specificities] were as follows; 38.7% [74.3%] for the Sokolow-Lyon criteria, 43.4% [61.4%] for the Sokolow-Lyon Product, 19.4% [91.4%] for Cornell Amplitude, and 22.6% [85.7%] for Cornell Product. These values are substantially less than those reported for older age groups. Conclusion ECG criteria for LV hypertrophy may have little value in determining LV mass or the presence of LV hypertrophy in young fit males. PMID:19149884

  3. Robust human identification using ecg: eigenpulse revisited

    NASA Astrophysics Data System (ADS)

    Jang, Daniel; Wendelken, Suzanne; Irvine, John M.

    2010-04-01

    Biometrics, such as fingerprint, iris scan, and face recognition, offer methods for identifying individuals based on a unique physiological measurement. Recent studies indicate that a person's electrocardiogram (ECG) may also provide a unique biometric signature. Several methods for processing ECG data have appeared in the literature and most approaches rest on an initial detection and segmentation of the heartbeats. Various sources of noise, such as sensor noise, poor sensor placement, or muscle movements, can degrade the ECG signal and introduce errors into the heartbeat segmentation. This paper presents a screening technique for assessing the quality of each segmented heartbeat. Using this technique, a higher quality signal can be extracted to support the identification task. We demonstrate the benefits of this quality screening using a principal component technique known as eigenpulse. The analysis demonstrated the improvement in performance attributable to the quality screening.

  4. ECG R-R peak detection on mobile phones.

    PubMed

    Sufi, F; Fang, Q; Cosic, I

    2007-01-01

    Mobile phones have become an integral part of modern life. Due to the ever increasing processing power, mobile phones are rapidly expanding its arena from a sole device of telecommunication to organizer, calculator, gaming device, web browser, music player, audio/video recording device, navigator etc. The processing power of modern mobile phones has been utilized by many innovative purposes. In this paper, we are proposing the utilization of mobile phones for monitoring and analysis of biosignal. The computation performed inside the mobile phone's processor will now be exploited for healthcare delivery. We performed literature review on RR interval detection from ECG and selected few PC based algorithms. Then, three of those existing RR interval detection algorithms were programmed on Java platform. Performance monitoring and comparison studies were carried out on three different mobile devices to determine their application on a realtime telemonitoring scenario. PMID:18002800

  5. Independent component analysis of parameterized ECG signals.

    PubMed

    Tanskanen, Jarno M A; Viik, Jari J; Hyttinen, Jari A K

    2006-01-01

    Independent component analysis (ICA) of measured signals yields the independent sources, given certain fulfilled requirements. Properly parameterized signals provide a better view to the considered system aspects, while reducing the amount of data. It is little acknowledged that appropriately parameterized signals may be subjected to ICA, yielding independent components (ICs) displaying more clearly the investigated properties of the sources. In this paper, we propose ICA of parameterized signals, and demonstrate the concept with ICA of ST and R parameterizations of electrocardiogram (ECG) signals from ECG exercise test measurements from two coronary artery disease (CAD) patients. PMID:17945912

  6. Intermittent short ECG recording is more effective than 24-hour Holter ECG in detection of arrhythmias

    PubMed Central

    2014-01-01

    Background Many patients report symptoms of palpitations or dizziness/presyncope. These patients are often referred for 24-hour Holter ECG, although the sensitivity for detecting relevant arrhythmias is comparatively low. Intermittent short ECG recording over a longer time period might be a convenient and more sensitive alternative. The objective of this study is to compare the efficacy of 24-hour Holter ECG with intermittent short ECG recording over four weeks to detect relevant arrhythmias in patients with palpitations or dizziness/presyncope. Methods Design: prospective, observational, cross-sectional study. Setting: Clinical Physiology, University Hospital. Patients: 108 consecutive patients referred for ambiguous palpitations or dizziness/presyncope. Interventions: All individuals underwent a 24-hour Holter ECG and additionally registered 30-second handheld ECG (Zenicor EKG® thumb) recordings at home, twice daily and when having cardiac symptoms, during 28 days. Main outcome measures: Significant arrhythmias: atrial fibrillation (AF), paroxysmal supraventricular tachycardia (PSVT), atrioventricular (AV) block II–III, sinus arrest (SA), wide complex tachycardia (WCT). Results 95 patients, 42 men and 53 women with a mean age of 54.1 years, completed registrations. Analysis of Holter registrations showed atrial fibrillation (AF) in two patients and atrioventricular (AV) block II in one patient (= 3.2% relevant arrhythmias [95% CI 1.1–8.9]). Intermittent handheld ECG detected nine patients with AF, three with paroxysmal supraventricular tachycardia (PSVT) and one with AV-block-II (= 13.7% relevant arrhythmias [95% CI 8.2–22.0]). There was a significant difference between the two methods in favour of intermittent ECG with regard to the ability to detect relevant arrhythmias (P = 0.0094). With Holter ECG, no symptoms were registered during any of the detected arrhythmias. With intermittent ECG, symptoms were registered during half of the arrhythmia

  7. Usefulness of the 12-lead electrocardiogram in the follow-up of patients with cardiac resynchronization devices. Part II.

    PubMed

    Barold, S Serge; Herweg, Bengt

    2011-01-01

    The interval from the pacemaker stimulus to the onset of the earliest paced QRS complex (latency) may be prolonged during left ventricular (LV) pacing. Marked latency is more common with LV than right ventricular (RV) pacing because of indirect stimulation through a coronary vein and higher incidence of LV pathology including scars. During simultaneous biventricular (BiV) pacing a prolonged latency interval may give rise to an ECG dominated by the pattern of RV pacing with a left bundle branch block configuration and commonly a QS complex in lead V1. With marked latency programming the V-V interval (LV before RV) often restore the dominant R wave in lead V1 representing the visible contribution of the LV to overall myocardial depolarization. When faced with a negative QRS complex in lead V1 during simultaneous BiV pacing especially in setting of a relatively short PR interval, the most likely diagnosis is ventricular fusion with the intrinsic rhythm. Fusion may cause misinterpretation of the ECG because narrowing of the paced QRS complex simulates appropriate BiV capture. The diagnosis of fusion depends on temporary reprogramming a very short atrio-ventricular delay or an asynchronous BiV pacing mode. Sequential programming of various interventricular (V-V) delays may bring out a diagnostic dominant QRS complex in lead V1 that was previously negative with simultaneous LV and RV apical pacing even in the absence of an obvious latency problem. The emergence of a dominant R wave by V-V programming strongly indicates that the LV lead captures the LV from the posterior or the posterolateral coronary vein and therefore rules out pacing from the middle or anterior coronary vein. In some cardiac resynchronization systems LV pacing is achieved with the tip electrode of the LV lead as the cathode and the proximal electrode of the bipolar RV as the anode. This arrangement creates a common anode for both RV and LV pacing. RV anodal capture can occur at a high LV output during

  8. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  9. Multichannel ECG and Noise Modeling: Application to Maternal and Fetal ECG Signals

    NASA Astrophysics Data System (ADS)

    Sameni, Reza; Clifford, Gari D.; Jutten, Christian; Shamsollahi, Mohammad B.

    2007-12-01

    A three-dimensional dynamic model of the electrical activity of the heart is presented. The model is based on the single dipole model of the heart and is later related to the body surface potentials through a linear model which accounts for the temporal movements and rotations of the cardiac dipole, together with a realistic ECG noise model. The proposed model is also generalized to maternal and fetal ECG mixtures recorded from the abdomen of pregnant women in single and multiple pregnancies. The applicability of the model for the evaluation of signal processing algorithms is illustrated using independent component analysis. Considering the difficulties and limitations of recording long-term ECG data, especially from pregnant women, the model described in this paper may serve as an effective means of simulation and analysis of a wide range of ECGs, including adults and fetuses.

  10. Switching Kalman filter based methods for apnea bradycardia detection from ECG signals.

    PubMed

    Montazeri Ghahjaverestan, Nasim; Shamsollahi, Mohammad B; Ge, Di; Hernández, Alfredo I

    2015-09-01

    Apnea bradycardia (AB) is an outcome of apnea occurrence in preterm infants and is an observable phenomenon in cardiovascular signals. Early detection of apnea in infants under monitoring is a critical challenge for the early intervention of nurses. In this paper, we introduce two switching Kalman filter (SKF) based methods for AB detection using electrocardiogram (ECG) signal.The first SKF model uses McSharry's ECG dynamical model integrated in two Kalman filter (KF) models trained for normal and AB intervals. Whereas the second SKF model is established by using only the RR sequence extracted from ECG and two AR models to be fitted in normal and AB intervals. In both SKF approaches, a discrete state variable called a switch is considered that chooses one of the models (corresponding to normal and AB) during the inference phase. According to the probability of each model indicated by this switch, the model with larger probability determines the observation label at each time instant.It is shown that the method based on ECG dynamical model can be effectively used for AB detection. The detection performance is evaluated by comparing statistical metrics and the amount of time taken to detect AB compared with the annotated onset. The results demonstrate the superiority of this method, with sensitivity and specificity 94.74[Formula: see text] and 94.17[Formula: see text], respectively. The presented approaches may therefore serve as an effective algorithm for monitoring neonates suffering from AB. PMID:26235524

  11. Preprocessing and analysis of the ECG signals

    NASA Astrophysics Data System (ADS)

    Zhu, Jianmin; Zhang, Xiaolan; Wang, Zhongyu; Wang, Xiaoling

    2008-10-01

    According to the request of automatic analysis and depressing high frequency interference of the ECG signals, this paper applies low-pass filter to preprocess ECG signals, and proposes a QRS complex detection method based on wavelet transform, which takes advantage of Marr wavelet to decompose and filter the ECG signals with Mallat algorithm, using the relationship between wavelet transform and signal singularity to detect QRS complex with amplitude threshold method in scale 3, and to detect P wave and R wave in scale 4. Meanwhile, compositive detection method is used for re-detection, thus to improving the detection accuracy ratio. At last, records from ECG database of MIT/BIH which is widely accepted in the world are used to test the algorithm. And the result shows that correction detecting ratio under this algorithm has been more than 99.8 percent. The detection method in this paper is simple and running fast, and is easy to be realized in the real-time detecting system using for clinical diagnosis.

  12. A Mathematical Model for Segmenting ECG Signals

    NASA Astrophysics Data System (ADS)

    Feier, Horea; Roşu, Doina; Falniţǎ, Lucian; Roşu, Şerban; Pater, Liana

    2010-09-01

    This paper deals with the behavior of the modulus of the continuous wavelet transform (CWT) for some known mother wavelets like the Morlet wavelet and the Mexican Hat. By exploiting these properties, the models presented can behave as a segmentation/ recognition signal processing tool by modeling the temporal structure of the observed surface ECG.

  13. Allometry of ECG waves in mammals.

    PubMed

    Günther, B; Morgado, E

    1997-01-01

    The present allometric study deals with the duration of three electrocardiographic intervals (PQ, QRS, QT) and their relationships with the corresponding cardiac cycle length (R-R interval) in mammals across a wide body mass range. The numerical values of the different ECG intervals were obtained from Grauwiler's (1965) monograph on the subject. Because the corresponding body masses were not given by this author, Heusner's (1991) data on basal metabolic rate as function of body mass were used to establish the most likely body mass figure for each case, based on the taxonomic identity between the corresponding specimens. On the other hand, in a recent study we established the "duality" of physiological times (Günther & Morgado, 1996) and, therefore, we adopted this novel approach to investigate the ECG intervals and their relationships with the R-R interval (heart rate reciprocal). Considering that the anatomy and physiology of auricles and ventricles are different (spheroids versus quasi-cylinders), and that excitation (sino-atrial node and His-Purkinje's system) and contraction processes can be described either by Euclidean or fractal geometries, only a quantitative analysis of the different ECG waves could resolve the dilemma. From the present preliminary study we can conclude that fractal geometry is prevalent with regard to ECG intervals. PMID:9711327

  14. QRS detection based ECG quality assessment.

    PubMed

    Hayn, Dieter; Jammerbund, Bernhard; Schreier, Günter

    2012-09-01

    Although immediate feedback concerning ECG signal quality during recording is useful, up to now not much literature describing quality measures is available. We have implemented and evaluated four ECG quality measures. Empty lead criterion (A), spike detection criterion (B) and lead crossing point criterion (C) were calculated from basic signal properties. Measure D quantified the robustness of QRS detection when applied to the signal. An advanced Matlab-based algorithm combining all four measures and a simplified algorithm for Android platforms, excluding measure D, were developed. Both algorithms were evaluated by taking part in the Computing in Cardiology Challenge 2011. Each measure's accuracy and computing time was evaluated separately. During the challenge, the advanced algorithm correctly classified 93.3% of the ECGs in the training-set and 91.6 % in the test-set. Scores for the simplified algorithm were 0.834 in event 2 and 0.873 in event 3. Computing time for measure D was almost five times higher than for other measures. Required accuracy levels depend on the application and are related to computing time. While our simplified algorithm may be accurate for real-time feedback during ECG self-recordings, QRS detection based measures can further increase the performance if sufficient computing power is available. PMID:22902864

  15. A Computer Language for ECG Contour Analysis

    PubMed Central

    McConnochie, John W.

    1982-01-01

    The purpose of this paper is to demonstrate contructively that criteria for ECG contour analysis can be interpreted directly by a computer. Thereby, the programming task is greatly reduced. Direct interpretation is achieved by the creation of a computer language that is well-suited for the expression of such criteria. Further development of the language is planned.

  16. Human Identification Using Compressed ECG Signals.

    PubMed

    Camara, Carmen; Peris-Lopez, Pedro; Tapiador, Juan E

    2015-11-01

    As a result of the increased demand for improved life styles and the increment of senior citizens over the age of 65, new home care services are demanded. Simultaneously, the medical sector is increasingly becoming the new target of cybercriminals due the potential value of users' medical information. The use of biometrics seems an effective tool as a deterrent for many of such attacks. In this paper, we propose the use of electrocardiograms (ECGs) for the identification of individuals. For instance, for a telecare service, a user could be authenticated using the information extracted from her ECG signal. The majority of ECG-based biometrics systems extract information (fiducial features) from the characteristics points of an ECG wave. In this article, we propose the use of non-fiducial features via the Hadamard Transform (HT). We show how the use of highly compressed signals (only 24 coefficients of HT) is enough to unequivocally identify individuals with a high performance (classification accuracy of 0.97 and with identification system errors in the order of 10(-2)). PMID:26364201

  17. ECG biometric identification: A compression based approach.

    PubMed

    Bras, Susana; Pinho, Armando J

    2015-08-01

    Using the electrocardiogram signal (ECG) to identify and/or authenticate persons are problems still lacking satisfactory solutions. Yet, ECG possesses characteristics that are unique or difficult to get from other signals used in biometrics: (1) it requires contact and liveliness for acquisition (2) it changes under stress, rendering it potentially useless if acquired under threatening. Our main objective is to present an innovative and robust solution to the above-mentioned problem. To successfully conduct this goal, we rely on information-theoretic data models for data compression and on similarity metrics related to the approximation of the Kolmogorov complexity. The proposed measure allows the comparison of two (or more) ECG segments, without having to follow traditional approaches that require heartbeat segmentation (described as highly influenced by external or internal interferences). As a first approach, the method was able to cluster the data in three groups: identical record, same participant, different participant, by the stratification of the proposed measure with values near 0 for the same participant and closer to 1 for different participants. A leave-one-out strategy was implemented in order to identify the participant in the database based on his/her ECG. A 1NN classifier was implemented, using as distance measure the method proposed in this work. The classifier was able to identify correctly almost all participants, with an accuracy of 99% in the database used. PMID:26737619

  18. Computer Interpretations of ECGs in Rural Hospitals

    PubMed Central

    Thompson, James M.

    1992-01-01

    Computer-assisted interpretation of electrocardiograms offers theoretical benefits to rural physicians. This study compared computer-assisted interpretations by a rural physician certified to read ECGs with interpretations by the computer alone. The computer interpretation alone could have led to major errors in patient management, but was correct sufficiently often to warrant purchase by small rural hospitals. PMID:21221365

  19. Cardiovascular screening in adolescents and young adults: a prospective study comparing the Pre-participation Physical Evaluation Monograph 4th Edition and ECG

    PubMed Central

    Fudge, Jessie; Harmon, Kimberly G; Owens, David S; Prutkin, Jordan M; Salerno, Jack C; Asif, Irfan M; Haruta, Alison; Pelto, Hank; Rao, Ashwin L; Toresdahl, Brett G; Drezner, Jonathan A

    2015-01-01

    Background This study compares the accuracy of cardiovascular screening in active adolescents and young adults using a standardised history, physical examination and resting 12-lead ECG. Methods Participants were prospectively screened using a standardised questionnaire based on the Pre-participation Physical Evaluation Monograph 4th Edition (PPE-4), physical examination and ECG interpreted using modern standards. Participants with abnormal findings had focused echocardiography and further evaluation. Primary outcomes included disorders associated with sudden cardiac arrest (SCA). Results From September 2010 to July 2011, 1339 participants underwent screening: age 13–24 (mean 16) years, 49% male, 68% Caucasian, 17% African-American and 1071 (80%) participating in organised sports. Abnormal history responses were reported on 916 (68%) questionnaires. After physician review, 495/ 916 (54%) participants with positive questionnaires were thought to have non-cardiac symptoms and/or a benign family history and did not warrant additional evaluation. Physical examination was abnormal in 124 (9.3%) participants, and 72 (5.4%) had ECG abnormalities. Echocardiograms were performed in 586 (44%) participants for abnormal history (31%), physical examination (8%) or ECG (5%). Five participants (0.4%) were identified with a disorder associated with SCA, all with ECG-detected Wolff-Parkinson-White. The false-positive rates for history, physical examination and ECG were 31.3%, 9.3% and 5%, respectively. Conclusions A standardised history and physical examination using the PPE-4 yields a high false-positive rate in a young active population with limited sensitivity to identify those at risk for SCA. ECG screening has a low false-positive rate using modern interpretation standards and improves detection of primary electrical disease at risk of SCA. PMID:24948082

  20. Prenatal Foetal Non-invasive ECG instead of Doppler CTG – A Better Alternative?

    PubMed Central

    Sänger, N.; Hayes-Gill, B. R.; Schiermeier, S.; Hatzmann, W.; Yuan, J.; Herrmann, E.; Louwen, F.; Reinhard, J.

    2012-01-01

    Introduction: This study aimed to evaluate foetal signal quality obtained using an antenatal foetal ECG system (Monica 24™) and compare it with Doppler ultrasound CTG monitoring (Corometrics® 250 series). Material and Methods: Seventy pregnant women (gestational age: between 20 + 0 weeks and 40 + 0 weeks) were examined using the Monica AN24™ system and also underwent Doppler CTG. The signal quality of both methods was compared and correlated with gestational age and pre-pregnancy body mass index (BMI). Results: Overall, ECG had a signal quality of 77.4 % and CTG had a signal quality of 73.1 % (p > 0.05). In gestational weeks (GW) 20–26, the signal quality of ECG was significantly better compared to that obtained with CTG (75.5 vs. 45.3 %; p = 0.003), while in GW 27–36, the signal quality was better with CTG (72.3 vs. 83.0 %, p = 0.001). No difference in signal quality was found between the two methods after the 37th GW (87.7 vs. 86.1 %; p > 0.05). CTG showed a statistically significant correlation with BMI (rho 0.25, p < 0.05) while ECG showed no such correlation. Conclusion: The use of non-invasive ECG is particularly indicated in the early weeks of pregnancy, while CTG offers superior results during the vernix period. There was no difference in signal quality after the vernix period. The signal quality with ECG was found to be independent of BMI, while the signal quality of CTG deteriorated with increasing BMI. PMID:25278624

  1. Semisupervised ECG Ventricular Beat Classification With Novelty Detection Based on Switching Kalman Filters.

    PubMed

    Oster, Julien; Behar, Joachim; Sayadi, Omid; Nemati, Shamim; Johnson, Alistair E W; Clifford, Gari D

    2015-09-01

    Automatic processing and accurate diagnosis of pathological electrocardiogram (ECG) signals remains a challenge. As long-term ECG recordings continue to increase in prevalence, driven partly by the ease of remote monitoring technology usage, the need to automate ECG analysis continues to grow. In previous studies, a model-based ECG filtering approach to ECG data from healthy subjects has been applied to facilitate accurate online filtering and analysis of physiological signals. We propose an extension of this approach, which models not only normal and ventricular heartbeats, but also morphologies not previously encountered. A switching Kalman filter approach is introduced to enable the automatic selection of the most likely mode (beat type), while simultaneously filtering the signal using appropriate prior knowledge. Novelty detection is also made possible by incorporating a third mode for the detection of unknown (not previously observed) morphologies, and denoted as X-factor. This new approach is compared to state-of-the-art techniques for the ventricular heartbeat classification in the MIT-BIH arrhythmia and Incart databases. F1 scores of 98.3% and 99.5% were found on each database, respectively, which are superior to other published algorithms' results reported on the same databases. Only 3% of all the beats were discarded as X-factor, and the majority of these beats contained high levels of noise. The proposed technique demonstrates accurate beat classification in the presence of previously unseen (and unlearned) morphologies and noise, and provides an automated method for morphological analysis of arbitrary (unknown) ECG leads. PMID:25680203

  2. E-Bra system for women ECG measurement with GPRS communication, Nanosensor, and motion artifact remove algorithm

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Kumar, Prashanth S.; Varadan, Vijay K.

    2012-10-01

    CardioVascular Disease(CVD)s lead the sudden cardiac death due to irregular phenomenon of the cardiac signal by the abnormal case of blood vessel and cardiac structure. For last two decades, cardiac disease research for man is under active discussion. As a result, the death rate by cardiac disease in men has been falling gradually compared with relatively increasing the women death rate due to CVD[2]. The main reason of this phenomenon causes the lack a sense of the seriousness to female CVD and different symptom of female CVD compared with the symptoms of male CVD. Usually, because the women CVD accompanies with ordinary symptoms unrecognizing the heart abnormality signal such as unusual fatigue, sleep disturbances, shortness of breath, anxiety, chest discomfort, and indigestion dyspepsia, most women CVD patients do not realize that these symptoms are related to the CVD symptoms. Therefore, periodic ECG signal observation is required for women cardiac disease patients. ElectroCardioGram(ECG) detection, treadmill test/exercise ECG, nuclear scan, coronary angiography, and intracoronary ultrasound are used to diagnose abnormality of heart. Among the medical checkup methods for CVDs checkup, it is very effective method for the diagnosis of cardiac disease and the early detection of heart abnormality to monitor ECG periodically. This paper suggests the effective ECG monitoring system for woman by attaching the system on woman's brassiere by using augmented chest lead attachment method. The suggested system in this paper consists of ECG signal transmission system and a server program to display and analyze the transmitted ECG. The ECG signal transmission system consists of three parts such as ECG physical signal detection part with two electrodes made by gold nanowire structure, data acquisition with AD converter, and data transmission part with GPRS(General Packet Radio Service) communication. Usually, to detect human bio signal, Ag/AgCl or gold cup electrodes are used

  3. Sparse Matrix for ECG Identification with Two-Lead Features

    PubMed Central

    Tseng, Kuo-Kun; Luo, Jiao; Wang, Wenmin; Haiting, Dong

    2015-01-01

    Electrocardiograph (ECG) human identification has the potential to improve biometric security. However, improvements in ECG identification and feature extraction are required. Previous work has focused on single lead ECG signals. Our work proposes a new algorithm for human identification by mapping two-lead ECG signals onto a two-dimensional matrix then employing a sparse matrix method to process the matrix. And that is the first application of sparse matrix techniques for ECG identification. Moreover, the results of our experiments demonstrate the benefits of our approach over existing methods. PMID:25961074

  4. Denoising ECG signal based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Zhi-dong, Zhao; Liu, Juan; Wang, Sheng-tao

    2011-10-01

    The electrocardiogram (ECG) has been used extensively for detection of heart disease. Frequently the signal is corrupted by various kinds of noise such as muscle noise, electromyogram (EMG) interference, instrument noise etc. In this paper, a new ECG denoising method is proposed based on the recently developed ensemble empirical mode decomposition (EEMD). Noisy ECG signal is decomposed into a series of intrinsic mode functions (IMFs). The statistically significant information content is build by the empirical energy model of IMFs. Noisy ECG signal collected from clinic recording is processed using the method. The results show that on contrast with traditional methods, the novel denoising method can achieve the optimal denoising of the ECG signal.

  5. Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study.

    PubMed

    Lowres, Nicole; Neubeck, Lis; Salkeld, Glenn; Krass, Ines; McLachlan, Andrew J; Redfern, Julie; Bennett, Alexandra A; Briffa, Tom; Bauman, Adrian; Martinez, Carlos; Wallenhorst, Christopher; Lau, Jerrett K; Brieger, David B; Sy, Raymond W; Freedman, S Ben

    2014-06-01

    Atrial fibrillation (AF) causes a third of all strokes, but often goes undetected before stroke. Identification of unknown AF in the community and subsequent anti-thrombotic treatment could reduce stroke burden. We investigated community screening for unknown AF using an iPhone electrocardiogram (iECG) in pharmacies, and determined the cost-effectiveness of this strategy.Pharmacists performedpulse palpation and iECG recordings, with cardiologist iECG over-reading. General practitioner review/12-lead ECG was facilitated for suspected new AF. An automated AF algorithm was retrospectively applied to collected iECGs. Cost-effectiveness analysis incorporated costs of iECG screening, and treatment/outcome data from a United Kingdom cohort of 5,555 patients with incidentally detected asymptomatic AF. A total of 1,000 pharmacy customers aged ≥65 years (mean 76 ± 7 years; 44% male) were screened. Newly identified AF was found in 1.5% (95% CI, 0.8-2.5%); mean age 79 ± 6 years; all had CHA2DS2-VASc score ≥2. AF prevalence was 6.7% (67/1,000). The automated iECG algorithm showed 98.5% (CI, 92-100%) sensitivity for AF detection and 91.4% (CI, 89-93%) specificity. The incremental cost-effectiveness ratio of extending iECG screening into the community, based on 55% warfarin prescription adherence, would be $AUD5,988 (€3,142; $USD4,066) per Quality Adjusted Life Year gained and $AUD30,481 (€15,993; $USD20,695) for preventing one stroke. Sensitivity analysis indicated cost-effectiveness improved with increased treatment adherence.Screening with iECG in pharmacies with an automated algorithm is both feasible and cost-effective. The high and largely preventable stroke/thromboembolism risk of those with newly identified AF highlights the likely benefits of community AF screening. Guideline recommendation of community iECG AF screening should be considered. PMID:24687081

  6. Single frequency RF powered ECG telemetry system

    NASA Technical Reports Server (NTRS)

    Ko, W. H.; Hynecek, J.; Homa, J.

    1979-01-01

    It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.

  7. An unusual ECG pattern in restrictive cardimyopathy

    PubMed Central

    Selvaganesh, M.; Arul, A.S.; Balasubramanian, S.; Ganesan, N.; Naina Mohammed, S.; Sivakumar, G.S.; Veeramani, S.R.; Jeyasingh, P.; Sathishkumar, S.; Selvaraju, S.

    2015-01-01

    Restrictive cardiomyopathy is the least common type of primary cardiomyopathies. Electrocardiographic recording is abnormal in 99% of patients with RCM. Biatrial enlargement, obliquely elevated ST segment with notched or biphasic late peaking T waves are considered characteristic ECG finding. Significant ST depression with T inversion mimicking subendocardial ischemia has also been reported in patients with RCM and is even suggested as a predictor of sudden cardiac death. We noted a similar ECG pattern in a 16 yr girl with Idiopathic restrictive cardiomyopathy. Coronaries were normal, stress perfusion imaging did not show any perfusion defect. This diffuse resting ST depression with T inversion in precordial & inferior leads along with ST elevation in aVR was persistent for more than six months. PMID:26304570

  8. An unusual ECG pattern in restrictive cardimyopathy.

    PubMed

    Selvaganesh, M; Arul, A S; Balasubramanian, S; Ganesan, N; Naina Mohammed, S; Sivakumar, G S; Veeramani, S R; Jeyasingh, P; Sathishkumar, S; Selvaraju, S

    2015-01-01

    Restrictive cardiomyopathy is the least common type of primary cardiomyopathies. Electrocardiographic recording is abnormal in 99% of patients with RCM. Biatrial enlargement, obliquely elevated ST segment with notched or biphasic late peaking T waves are considered characteristic ECG finding. Significant ST depression with T inversion mimicking subendocardial ischemia has also been reported in patients with RCM and is even suggested as a predictor of sudden cardiac death. We noted a similar ECG pattern in a 16 yr girl with Idiopathic restrictive cardiomyopathy. Coronaries were normal, stress perfusion imaging did not show any perfusion defect. This diffuse resting ST depression with T inversion in precordial & inferior leads along with ST elevation in aVR was persistent for more than six months. PMID:26304570

  9. Capacitive measurement of ECG for ubiquitous healthcare.

    PubMed

    Lim, Yong Gyu; Lee, Jeong Su; Lee, Seung Min; Lee, Hong Ji; Park, Kwang Suk

    2014-11-01

    The technology for measuring ECG using capacitive electrodes and its applications are reviewed. Capacitive electrodes are built with a high-input-impedance preamplifier and a shield on their rear side. Guarding and driving ground are used to reduce noise. An analysis of the intrinsic noise shows that the thermal noise caused by the resistance in the preamplifier is the dominant factor of the intrinsic noise. A fully non-contact capacitive measurement has been developed using capacitive grounding and applied to a non-intrusive ECG measurement in daily life. Many ongoing studies are examining how to enhance the quality and ease of applying electrodes, thus extending their applications in ubiquitous healthcare from attached-on-object measurements to wearable or EEG measurements. PMID:25052344

  10. A Novel Algorithm for Movement Artifact Removal in ECG Signals Acquired from Wearable Systems Applied to Horses.

    PubMed

    Lanata, Antonio; Guidi, Andrea; Baragli, Paolo; Valenza, Gaetano; Scilingo, Enzo Pasquale

    2015-01-01

    This study reports on a novel method to detect and reduce the contribution of movement artifact (MA) in electrocardiogram (ECG) recordings gathered from horses in free movement conditions. We propose a model that integrates cardiovascular and movement information to estimate the MA contribution. Specifically, ECG and physical activity are continuously acquired from seven horses through a wearable system. Such a system employs completely integrated textile electrodes to monitor ECG and is also equipped with a triaxial accelerometer for movement monitoring. In the literature, the most used technique to remove movement artifacts, when noise bandwidth overlaps the primary source bandwidth, is the adaptive filter. In this study we propose a new algorithm, hereinafter called Stationary Wavelet Movement Artifact Reduction (SWMAR), where the Stationary Wavelet Transform (SWT) decomposition algorithm is employed to identify and remove movement artifacts from ECG signals in horses. A comparative analysis with the Normalized Least Mean Square Adaptive Filter technique (NLMSAF) is performed as well. Results achieved on seven hours of recordings showed a reduction greater than 40% of MA percentage (between before- and after- the application of the proposed algorithm). Moreover, the comparative analysis with the NLMSAF, applied to the same ECG recordings, showed a greater reduction of MA percentage in favour of SWMAR with a statistical significant difference (p-value < 0.0.5). PMID:26484686

  11. A Novel Algorithm for Movement Artifact Removal in ECG Signals Acquired from Wearable Systems Applied to Horses

    PubMed Central

    Lanata, Antonio; Guidi, Andrea; Baragli, Paolo; Valenza, Gaetano; Scilingo, Enzo Pasquale

    2015-01-01

    This study reports on a novel method to detect and reduce the contribution of movement artifact (MA) in electrocardiogram (ECG) recordings gathered from horses in free movement conditions. We propose a model that integrates cardiovascular and movement information to estimate the MA contribution. Specifically, ECG and physical activity are continuously acquired from seven horses through a wearable system. Such a system employs completely integrated textile electrodes to monitor ECG and is also equipped with a triaxial accelerometer for movement monitoring. In the literature, the most used technique to remove movement artifacts, when noise bandwidth overlaps the primary source bandwidth, is the adaptive filter. In this study we propose a new algorithm, hereinafter called Stationary Wavelet Movement Artifact Reduction (SWMAR), where the Stationary Wavelet Transform (SWT) decomposition algorithm is employed to identify and remove movement artifacts from ECG signals in horses. A comparative analysis with the Normalized Least Mean Square Adaptive Filter technique (NLMSAF) is performed as well. Results achieved on seven hours of recordings showed a reduction greater than 40% of MA percentage (between before- and after- the application of the proposed algorithm). Moreover, the comparative analysis with the NLMSAF, applied to the same ECG recordings, showed a greater reduction of MA percentage in favour of SWMAR with a statistical significant difference (p–value < 0.0.5). PMID:26484686

  12. Compression and Encryption of ECG Signal Using Wavelet and Chaotically Huffman Code in Telemedicine Application.

    PubMed

    Raeiatibanadkooki, Mahsa; Quchani, Saeed Rahati; KhalilZade, MohammadMahdi; Bahaadinbeigy, Kambiz

    2016-03-01

    In mobile health care monitoring, compression is an essential tool for solving storage and transmission problems. The important issue is able to recover the original signal from the compressed signal. The main purpose of this paper is compressing the ECG signal with no loss of essential data and also encrypting the signal to keep it confidential from everyone, except for physicians. In this paper, mobile processors are used and there is no need for any computers to serve this purpose. After initial preprocessing such as removal of the baseline noise, Gaussian noise, peak detection and determination of heart rate, the ECG signal is compressed. In compression stage, after 3 steps of wavelet transform (db04), thresholding techniques are used. Then, Huffman coding with chaos for compression and encryption of the ECG signal are used. The compression rates of proposed algorithm is 97.72 %. Then, the ECG signals are sent to a telemedicine center to acquire specialist diagnosis by TCP/IP protocol. PMID:26779641

  13. Physical activities recognition from ambulatory ECG signals using neuro-fuzzy classifiers and support vector machines.

    PubMed

    Kher, Rahul; Pawar, Tanmay; Thakar, Vishvjit; Shah, Hitesh

    2015-02-01

    The use of wearable recorders for long-term monitoring of physiological parameters has increased in the last few years. The ambulatory electrocardiogram (A-ECG) signals of five healthy subjects with four body movements or physical activities (PA)-left arm up down, right arm up down, waist twisting and walking-have been recorded using a wearable ECG recorder. The classification of these four PAs has been performed using neuro-fuzzy classifier (NFC) and support vector machines (SVM). The PA classification is based on the distinct, time-frequency features of the extracted motion artifacts contained in recorded A-ECG signals. The motion artifacts in A-ECG signals have been separated first by the discrete wavelet transform (DWT) and the time-frequency features of these motion artifacts have then been extracted using the Gabor transform. The Gabor energy feature vectors have been fed to the NFC and SVM classifiers. Both the classifiers have achieved a PA classification accuracy of over 95% for all subjects. PMID:25641014

  14. FPGA-core defibrillator using wavelet-fuzzy ECG arrhythmia classification.

    PubMed

    Nambakhsh, Mohammad; Tavakoli, Vahid; Sahba, Nima

    2008-01-01

    An electrocardiogram (ECG) feature extraction and classification system has been developed and evaluated using Quartus II 7.1 belong to Altera Ltd. In wavelet domain QRS complexes were detected and each complex was used to locate the peaks of the individual waves. Then, fuzzy classifier block used these features to classify ECG beats. Three types of arrhythmias and abnormalities were detected using the procedure. The completed algorithm was embedded into Field Programmable Gate Array (FPGA). The completed prototype was tested through software-generated signals, in which test scenarios covering several kinds of ECG signals on MIT-BIH Database. For the purpose of feeding signals into the FPGA, a software was designed to read signal files and import them to the LPT port of computer that was connected to FPGA. From the results, it was achieved that the proposed prototype could do real time monitoring of ECG signal for arrhythmia detection. We also implemented algorithm in a sequential structure device like AVR microcontroller with 16 MHZ clock for the same purpose. External clock of FPGA is 50 MHZ and by utilizing of Phase Lock Loop (PLL) component inside device, it was possible to increase the clock up to 1.2 GHZ in internal blocks. Final results compare speed and cost of resource usage in both devices. It shows that in cost of more resource usage, FPGA provides higher speed of computation; because FPGA makes the algorithm able to compute most parts in parallel manner. PMID:19163255

  15. ECG Sensor Card with Evolving RBP Algorithms for Human Verification.

    PubMed

    Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi

    2015-01-01

    It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack-the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals. PMID:26307995

  16. ECG Sensor Card with Evolving RBP Algorithms for Human Verification

    PubMed Central

    Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi

    2015-01-01

    It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack—the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals. PMID:26307995

  17. Interpretation module for screening normal ECG.

    PubMed

    Holzmann, C; Hasseldieck, U; Rosselot, E; Estévez, P; Andrade, A; Acuña, G

    1990-01-01

    This work concerns the development of a module for automatic recognition of normal ECGs, i.e. those whose waves morphology do not suggest physiopathological or structural heart alterations. Such a unit constitutes the central part of an administrative system under development which will aid in the management of ECG testing in the primary care delivery level in Chile. This system greatly contributes to the optimal allocation of resources in order to increase the test delivery coverage and to reduce the social and private costs involved. A main feature of the system is that it operates through the screening of normal ECG. This process is performed in a computerized unit whose core is the interpretation module. The design of such a module uses concepts and methods previously developed for the general problem of medical diagnosis, based on fuzzy set theory. The interpretation module parameters were adjusted considering hypothetical and real data covering a wide variety of normal and pathological cases. Then its performance was tested using more than one hundred patients' records chosen at random. Results of this test are given and a discussion, including a comparison with similar commercial equipment, is provided. PMID:2146480

  18. Arm and wrist surface potential mapping for wearable ECG rhythm recording devices: a pilot clinical study

    NASA Astrophysics Data System (ADS)

    Lynn, W. D.; Escalona, O. J.; McEneaney, D. J.

    2013-06-01

    This study addresses an important question in the development of a ECG device that enables long term monitoring of cardiac rhythm. This device would utilise edge sensor technologies for dry, non-irritant skin contact suitable for distal limb application and would be supported by embedded ECG denoising processes. Contemporary ECG databases including those provided by MIT-BIH and Physionet are focused on interpretation of cardiac disease and rhythm tracking. The data is recorded using chest leads as in standard clinical practise. For the development of a peripherally located heart rhythm monitor, such data would be of limited use. To provide a useful database adequate for the development of the above mentioned cardiac monitoring device a unipolar body surface potential map from the left arm and wrist was gathered in 37 volunteer patients and characterized in this study. For this, the reference electrode was placed at the wrist. Bipolar far-field electrogram leads were derived and analysed. Factors such as skin variability, 50Hz noise interference, electrode contact noise, motion artifacts and electromyographic noise, presented a challenge. The objective was quantify the signal-to-noise ratio (SNR) at the far-field locations. Preliminary results reveal that an electrogram indicative of the QRS complex can be recorded on the distal portion of the left arm when denoised using signal averaging techniques.

  19. A model-based approach to human identification using ECG

    NASA Astrophysics Data System (ADS)

    Homer, Mark; Irvine, John M.; Wendelken, Suzanne

    2009-05-01

    Biometrics, such as fingerprint, iris scan, and face recognition, offer methods for identifying individuals based on a unique physiological measurement. Recent studies indicate that a person's electrocardiogram (ECG) may also provide a unique biometric signature. Current techniques for identification using ECG rely on empirical methods for extracting features from the ECG signal. This paper presents an alternative approach based on a time-domain model of the ECG trace. Because Auto-Regressive Integrated Moving Average (ARIMA) models form a rich class of descriptors for representing the structure of periodic time series data, they are well-suited to characterizing the ECG signal. We present a method for modeling the ECG, extracting features from the model representation, and identifying individuals using these features.

  20. Case study of ECG signal used as a reference signal in optical pulse transit time measurement of blood flow: the effect of different electrode placements on pulse transit time

    NASA Astrophysics Data System (ADS)

    Myllylä, Teemu S.; Vihriälä, Erkki V.; Korhonen, Vesa O.; Sorvoja, Hannu S. S.

    2013-02-01

    The electrocardiography (ECG) signal is often used as a reference signal when calculating pulse transit times (PTT) measured by photoplethysmographic (PPG) sensors. In addition, ECG measurements are widely used in clinical health monitoring. In clinical measurements, small changes in the time delays of R waves in relation to blood flow pulsations between each ECG measurement are not relevant. In most cases, they would not even be observed, due to the rather low sampling rates used in clinical ECG devices. However, in PTT measurements, where time delays are measured with an accuracy of milliseconds, the placement of ECG electrodes can have a distinct effect on the results. This paper presents case studies of ECG signals measured simultaneously and independently by two ECG devices. We explore what effect different placements of ECG electrodes have on the R wave of the QRS complex and how it should be taken into account when used as a reference signal in pulse transit time measurements of blood flow. Additionally, we study what kind of ECG electrode placements are most suitable for PTT measurements.

  1. Accurate and consistent automatic seismocardiogram annotation without concurrent ECG.

    PubMed

    Laurin, A; Khosrow-Khavar, F; Blaber, A P; Tavakolian, Kouhyar

    2016-09-01

    Seismocardiography (SCG) is the measurement of vibrations in the sternum caused by the beating of the heart. Precise cardiac mechanical timings that are easily obtained from SCG are critically dependent on accurate identification of fiducial points. So far, SCG annotation has relied on concurrent ECG measurements. An algorithm capable of annotating SCG without the use any other concurrent measurement was designed. We subjected 18 participants to graded lower body negative pressure. We collected ECG and SCG, obtained R peaks from the former, and annotated the latter by hand, using these identified peaks. We also annotated the SCG automatically. We compared the isovolumic moment timings obtained by hand to those obtained using our algorithm. Mean  ±  confidence interval of the percentage of accurately annotated cardiac cycles were [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for levels of negative pressure 0, -20, -30, -40, and  -50 mmHg. LF/HF ratios, the relative power of low-frequency variations to high-frequency variations in heart beat intervals, obtained from isovolumic moments were also compared to those obtained from R peaks. The mean differences  ±  confidence interval were [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for increasing levels of negative pressure. The accuracy and consistency of the algorithm enables the use of SCG as a stand-alone heart monitoring tool in healthy individuals at rest, and could serve as a basis for an eventual application in pathological cases. PMID:27510446

  2. ST/HR hysteresis: exercise and recovery phase ST depression/heart rate analysis of the exercise ECG.

    PubMed

    Lehtinen, R

    1999-01-01

    ST segment depression/heart rate (ST/HR) hysteresis is a recently introduced novel computer method for integrating the exercise and recovery phase ST/HR analysis for improved detection of coronary artery disease (CAD). It is a continuous diagnostic variable that extracts the prevailing direction and average magnitude of the hysteresis in ST depression against HR during the first 3 consecutive minutes of postexercise recovery. This article reviews the development and evaluation of this new method in a clinical population of 347 patients referred for a routine bicycle exercise electrocardiographic (ECG) test at Tampere University Hospital, Finland. Of these patients, 127 had angiographically proven CAD, whereas 13 had no CAD according to angiography, 18 had no perfusion defect according to Tc-99m-sestamibi myocardial imaging and single photon emission computed tomography, and 189 were clinically normal with respect to cardiac diseases. For each patient, the values for ST/HR hysteresis, ST/HR index, end-exercise ST depression, and recovery ST depression were determined for each lead of the Mason-Likar modification of the standard 12-lead exercise ECG and maximum value from the lead system (aVL, aVR, and V1 excluded). The area under the receiver operating characteristics curve (ie, the discriminative capacity) of the ST/HR hysteresis was 89%, which was significantly larger than that of the end-exercise ST depression (76%, P < .0001), recovery ST depression (84%, P = .0063) or ST/HR index (83%, P = .0023), indicating the best diagnostic performance of the ST/HR hysteresis in detection of CAD regardless of the partition value selection. Furthermore, the superior diagnostic performance of the method was relatively insensitive to the ST segment measurement point or to the ECG lead selection. These results suggest that the ST/HR hysteresis improves the clinical utility of the exercise ECG test in detection of CAD. PMID:10688326

  3. Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.

    PubMed

    Wang, Liang-Hung; Chen, Tsung-Yen; Lin, Kuang-Hao; Fang, Qiang; Lee, Shuenn-Yuh

    2015-01-01

    This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals. PMID:25561447

  4. ECG feature extraction and disease diagnosis.

    PubMed

    Bhyri, Channappa; Hamde, S T; Waghmare, L M

    2011-01-01

    An important factor to consider when using findings on electrocardiograms for clinical decision making is that the waveforms are influenced by normal physiological and technical factors as well as by pathophysiological factors. In this paper, we propose a method for the feature extraction and heart disease diagnosis using wavelet transform (WT) technique and LabVIEW (Laboratory Virtual Instrument Engineering workbench). LabVIEW signal processing tools are used to denoise the signal before applying the developed algorithm for feature extraction. First, we have developed an algorithm for R-peak detection using Haar wavelet. After 4th level decomposition of the ECG signal, the detailed coefficient is squared and the standard deviation of the squared detailed coefficient is used as the threshold for detection of R-peaks. Second, we have used daubechies (db6) wavelet for the low resolution signals. After cross checking the R-peak location in 4th level, low resolution signal of daubechies wavelet P waves and T waves are detected. Other features of diagnostic importance, mainly heart rate, R-wave width, Q-wave width, T-wave amplitude and duration, ST segment and frontal plane axis are also extracted and scoring pattern is applied for the purpose of heart disease diagnosis. In this study, detection of tachycardia, bradycardia, left ventricular hypertrophy, right ventricular hypertrophy and myocardial infarction have been considered. In this work, CSE ECG data base which contains 5000 samples recorded at a sampling frequency of 500 Hz and the ECG data base created by the S.G.G.S. Institute of Engineering and Technology, Nanded (Maharashtra) have been used. PMID:21770825

  5. ECG signal compression and classification algorithm with quad level vector for ECG holter system.

    PubMed

    Kim, Hyejung; Yazicioglu, Refet Firat; Merken, Patrick; Van Hoof, Chris; Yoo, Hoi-Jun

    2010-01-01

    An ECG signal processing method with quad level vector (QLV) is proposed for the ECG holter system. The ECG processing consists of the compression flow and the classification flow, and the QLV is proposed for both flows to achieve better performance with low-computation complexity. The compression algorithm is performed by using ECG skeleton and the Huffman coding. Unit block size optimization, adaptive threshold adjustment, and 4-bit-wise Huffman coding methods are applied to reduce the processing cost while maintaining the signal quality. The heartbeat segmentation and the R-peak detection methods are employed for the classification algorithm. The performance is evaluated by using the Massachusetts Institute of Technology-Boston's Beth Israel Hospital Arrhythmia Database, and the noise robust test is also performed for the reliability of the algorithm. Its average compression ratio is 16.9:1 with 0.641% percentage root mean square difference value and the encoding rate is 6.4 kbps. The accuracy performance of the R-peak detection is 100% without noise and 95.63% at the worst case with -10-dB SNR noise. The overall processing cost is reduced by 45.3% with the proposed compression techniques. PMID:19775975

  6. A novel biometric authentication approach using ECG and EMG signals.

    PubMed

    Belgacem, Noureddine; Fournier, Régis; Nait-Ali, Amine; Bereksi-Reguig, Fethi

    2015-05-01

    Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject's being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication. PMID:25836061

  7. Portable obstructive sleep apnea screening system using overnight ECG and a PDA-based wireless transmission system.

    PubMed

    Chang, Kang-Ming

    2009-05-01

    Sleep disorders such as obstructive sleep apnea (OSA) are now regarded as an important risk factor for cardiovascular diseases. The increasing demands for home-based sleep monitoring have prompted studies to develop devices that monitor sleep using fewer sensors. This paper proposes an electrocardiogram (ECG)-based sleep monitoring system that uses a personal digital assistant to display signals and a wireless transmission system. An OSA detection algorithm based only on the overnight-ECG-derived heart-rate-variability low-frequency component (0.02-0.04 Hz) exhibited detection sensitivity of 68.97% and specificity of 100%. This system could meet the future demands of home-based sleep monitoring and thereby reduce the current considerable burdens on hospital sleep centers. PMID:19441954

  8. VLSI implementation of a new LMS-based algorithm for noise removal in ECG signal

    NASA Astrophysics Data System (ADS)

    Satheeskumaran, S.; Sabrigiriraj, M.

    2016-06-01

    Least mean square (LMS)-based adaptive filters are widely deployed for removing artefacts in electrocardiogram (ECG) due to less number of computations. But they posses high mean square error (MSE) under noisy environment. The transform domain variable step-size LMS algorithm reduces the MSE at the cost of computational complexity. In this paper, a variable step-size delayed LMS adaptive filter is used to remove the artefacts from the ECG signal for improved feature extraction. The dedicated digital Signal processors provide fast processing, but they are not flexible. By using field programmable gate arrays, the pipelined architectures can be used to enhance the system performance. The pipelined architecture can enhance the operation efficiency of the adaptive filter and save the power consumption. This technique provides high signal-to-noise ratio and low MSE with reduced computational complexity; hence, it is a useful method for monitoring patients with heart-related problem.

  9. Real Time Processing and Transferring ECG Signal by a Mobile Phone

    PubMed Central

    Raeiatibanadkooki, Mahsa; Quachani, Saeed Rahati; Khalilzade, Mohammadmahdi; Bahaadinbeigy, Kambiz

    2014-01-01

    The real-time ECG signal processing system based on mobile phones is very effective in identifying continuous ambulatory patients. It could monitor cardiovascular patients in their daily life and warns them in case of cardiac arrhythmia. An ECG signal of a patient is processed by a mobile phone with this proposed algorithm. An IIR low-pass filter is used to remove the noise and it has the 55 Hz cutoff frequency and order 3. The obtained SNR showed a desirable noise removal and it helps physicians in their diagnosis. In this paper, Hilbert transform was used and the R peaks are important component to differ normal beats from abnormal ones. The results of sensitivity and positive predictivity of algorithm are 96.97% and 95.63% respectively. If an arrhythmia occurred, 4 seconds of this signal is displayed on the mobile phone then it will be sent to a remote medical center by TCP/IP protocol. PMID:25684847

  10. Real Time Processing and Transferring ECG Signal by a Mobile Phone.

    PubMed

    Raeiatibanadkooki, Mahsa; Quachani, Saeed Rahati; Khalilzade, Mohammadmahdi; Bahaadinbeigy, Kambiz

    2014-12-01

    The real-time ECG signal processing system based on mobile phones is very effective in identifying continuous ambulatory patients. It could monitor cardiovascular patients in their daily life and warns them in case of cardiac arrhythmia. An ECG signal of a patient is processed by a mobile phone with this proposed algorithm. An IIR low-pass filter is used to remove the noise and it has the 55 Hz cutoff frequency and order 3. The obtained SNR showed a desirable noise removal and it helps physicians in their diagnosis. In this paper, Hilbert transform was used and the R peaks are important component to differ normal beats from abnormal ones. The results of sensitivity and positive predictivity of algorithm are 96.97% and 95.63% respectively. If an arrhythmia occurred, 4 seconds of this signal is displayed on the mobile phone then it will be sent to a remote medical center by TCP/IP protocol. PMID:25684847

  11. Ambulatory respiratory rate detection using ECG and a triaxial accelerometer.

    PubMed

    Chan, Alexander M; Ferdosi, Nima; Narasimhan, Ravi

    2013-01-01

    Continuous monitoring of respiratory rate in ambulatory conditions has widespread applications for screening of respiratory diseases and remote patient monitoring. Unfortunately, minimally obtrusive techniques often suffer from low accuracy. In this paper, we describe an algorithm with low computational complexity for combining multiple respiratory measurements to estimate breathing rate from an unobtrusive chest patch sensor. Respiratory rates derived from the respiratory sinus arrhythmia (RSA) and modulation of the QRS amplitude of electrocardiography (ECG) are combined with a respiratory rate derived from tri-axial accelerometer data. The three respiration rates are combined by a weighted average using weights based on quality metrics for each signal. The algorithm was evaluated on 15 elderly subjects who performed spontaneous and metronome breathing as well as a variety of activities of daily living (ADLs). When compared to a reference device, the mean absolute error was 1.02 breaths per minute (BrPM) during metronome breathing, 1.67 BrPM during spontaneous breathing, and 2.03 BrPM during ADLs. PMID:24110623

  12. Multiprocessor system for Holter tape analysis (ECG)

    SciTech Connect

    Feldman, C.L.; Hubelbank, M.; Valvo, V.; Lane, B.

    1983-01-01

    Although techniques for recording and analyzing longterm ambulatory ECGS have been in existence for more than 20 years, the clinical usefulness and frequency of application of the technique continue to grow at an extraordinary rate. To meet the need for faster, more efficient processing of Holter tapes and the growing requirement that the analysis of the tape be quantitatively accurate, a new Holter analysis system has been developed. This system is built around two LSI11 microprocessors and a special purpose byte processor which incorporates an AMD 2903 bit slice chip. It includes 30 MB of mass storage and an impact printer with alphanumeric and graphic capabilities. In a test which included 55 separate readings of 34 12- or 24-hour tapes, correlations with hand counts of vpbs was greater than .99. The system processes either cassette or reel-to-reel tapes at 120* with simultaneous print/process capabilities, has a variety of user interactive displays to assure continuous operator validation, is remarkably nonfatiguing to operate, and automatically produces reports with tables, graphs, and sample ECG strips. 8 references.

  13. Autoadaptivity and optimization in distributed ECG interpretation.

    PubMed

    Augustyniak, Piotr

    2010-03-01

    This paper addresses principal issues of the ECG interpretation adaptivity in a distributed surveillance network. In the age of pervasive access to wireless digital communication, distributed biosignal interpretation networks may not only optimally solve difficult medical cases, but also adapt the data acquisition, interpretation, and transmission to the variable patient's status and availability of technical resources. The background of such adaptivity is the innovative use of results from the automatic ECG analysis to the seamless remote modification of the interpreting software. Since the medical relevance of issued diagnostic data depends on the patient's status, the interpretation adaptivity implies the flexibility of report content and frequency. Proposed solutions are based on the research on human experts behavior, procedures reliability, and usage statistics. Despite the limited scale of our prototype client-server application, the tests yielded very promising results: the transmission channel occupation was reduced by 2.6 to 5.6 times comparing to the rigid reporting mode and the improvement of the remotely computed diagnostic outcome was achieved in case of over 80% of software adaptation attempts. PMID:20064764

  14. The common, less common and uncommon examples of exercise ECG.

    PubMed

    Jacob, M J; Kumar, Puneet; Ravina, Mudalsha; Sharma, Amit; Jora, Charu; Jain, Anurag; Kumar, Rajeev

    2013-07-01

    We present three interesting and representative cases of exercise ECGs which were done as part of Stress Myocardial Perfusion study. Aim is to emphasize the point that the stress part of the test should be conducted by an expert in the field and recovery phase ECG records should be analyzed carefully for maximum benefit from this test. PMID:24772761

  15. Empirical mode decomposition of the ECG signal for noise removal

    NASA Astrophysics Data System (ADS)

    Khan, Jesmin; Bhuiyan, Sharif; Murphy, Gregory; Alam, Mohammad

    2011-04-01

    Electrocardiography is a diagnostic procedure for the detection and diagnosis of heart abnormalities. The electrocardiogram (ECG) signal contains important information that is utilized by physicians for the diagnosis and analysis of heart diseases. So good quality ECG signal plays a vital role for the interpretation and identification of pathological, anatomical and physiological aspects of the whole cardiac muscle. However, the ECG signals are corrupted by noise which severely limit the utility of the recorded ECG signal for medical evaluation. The most common noise presents in the ECG signal is the high frequency noise caused by the forces acting on the electrodes. In this paper, we propose a new ECG denoising method based on the empirical mode decomposition (EMD). The proposed method is able to enhance the ECG signal upon removing the noise with minimum signal distortion. Simulation is done on the MIT-BIH database to verify the efficacy of the proposed algorithm. Experiments show that the presented method offers very good results to remove noise from the ECG signal.

  16. Recording of ECG signals on a portable MiniDisc recorder for time and frequency domain heart rate variability analysis.

    PubMed

    Norman, S E; Eager, R A; Waran, N K; Jeffery, L; Schroter, R C; Marlin, D J

    2005-01-17

    Analysis of heart rate variability (HRV) is a non-invasive technique useful for investigating autonomic function in both humans and animals. It has been used for research into both behaviour and physiology. Commercial systems for human HRV analysis are expensive and may not have sufficient flexibility for appropriate analysis in animals. Some heart rate monitors have the facility to provide inter-beat interval (IBI), but verification following collection is not possible as only IBIs are recorded, and not the raw electrocardiogram (ECG) signal. Computer-based data acquisition and analysis systems such as Po-Ne-Mah and Biopac offer greater flexibility and control but have limited portability. Many laboratories and veterinary surgeons have access to ECG machines but do not have equipment to record ECG signals for further analysis. The aim of the present study was to determine whether suitable HRV data could be obtained from ECG signals recorded onto a MiniDisc (MD) and subsequently digitised and analysed using a commercial data acquisition and analysis package. ECG signals were obtained from six Thoroughbred horses by telemetry. A split BNC connecter was used to allow simultaneous digitisation of analogue output from the ECG receiver unit by a computerised data acquisition system (Po-Ne-Mah) and MiniDisc player (MZ-N710, Sony). Following recording, data were played back from the MiniDisc into the same input channel of the data acquisition system as previously used to record the direct ECG. All data were digitised at a sampling rate of 500 Hz. IBI data were analysed in both time and frequency domains and comparisons between direct recorded and MiniDisc data were made using Bland-Altman analysis. Despite some changes in ECG morphology due to loss of low frequency content (primarily below 5 Hz) following MiniDisc recording, there was minimal difference in IBI or time or frequency domain analysis between the two recording methods. The MiniDisc offers a cost

  17. ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Kaur, Inderbir; Rajni, Rajni; Marwaha, Anupma

    2016-06-01

    Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.

  18. Intra-QRS high-frequency ECG changes with ischemia. Is it possible to evaluate these changes using the signal-averaged Holter ECG in dogs?

    PubMed

    Yakubo, S; Ozawa, Y; Komaki, K

    1995-01-01

    The purpose of this experiment is to study the possibility of intra-QRS high-frequency electrocardiographic (HFECG) changes for the evaluation of and recovery from myocardial ischemia in both the time-domain and spectral-turbulence analyses on the signal-averaged ECG using the Holter ECG monitoring (Holter SAECG) system. A balloon catheter was inserted into the left anterior descending coronary artery (LAD of 8 mongrel dogs and was maintained inflated for 2 hours to occlude the LAD and then was deflated to allow for reperfusion. The cardiac signal from the three orthogonal leads of the surface ECG (X, Y, and Z) was recorded and analyzed with a Del Mar Avionics (model 459, Irvine, CA) recorder and analyzer (model 563). The Holter SAECG was assessed before the LAD occlusion phase (control), during the coronary occlusion phase (ischemia), after the reperfusion phase (recovery). To evaluate intra-QRS ECG changes in the time-domain analysis, root-mean-square (RMS) voltage of the entire QRS in 40-250 HZ (40 RMS), 100-250 Hz (100 RMS), and 150-250 Hz (150 RMS) were studied and the vector magnitude of the QRS was depicted. In the spectral-turbulence analysis and spectrocardiogram to study the discordance of the ECG wave front velocity by fast Fourier transformation analysis, the interslice correlation mean (IC mean) and interslice correlation standard deviation (IC SD), which were calculated as the mean and standard deviation of the Pearson correlation coefficient of each time slice with its neighbor, were investigated. In the time-domain analysis, the LAD occlusion by balloon catheter at ischemia produced a reduction in 40 RMS, 100 RMS, and 150 RMS, while a restoration was seen at recovery in 40 RMS and 100 RMS. In the spectral-turbulence analysis, LAD occlusion at ischemia caused a decrease in IC mean and an increase in IC SD. The waveform of the vector magnitude and the spectrocardiogram seen at control showed changes with ischemia and was restored at recovery with the

  19. ECG Manifestations of the Biggest Outbreak of Chagas Disease due to Oral Infection in Latin-America

    PubMed Central

    Marques, Juan; Mendoza, Iván; Noya, Belkisyolé; Acquatella, Harry; Palacios, Igor; Marques-Mejias, María

    2013-01-01

    Background Chagas disease affects more than 15 million people worldwide. Although vector-borne transmission has decreased, oral transmission has become important. Recently, our group published the clinical and epidemiological characteristics of the largest outbreak of orally transmitted Chagas disease reported till date. Objective: To describe electrocardiographic changes occurring in the study population during the outbreak caused by ingestion of contaminated guava juice. Methods We evaluated 103 positive cases, of which 76 (74%) were aged ≤ 18 years (average age: 9.1 ± 3.1 years) and 27 (26%) were aged > 18 years (average age: 46 ± 11.8 years). All patients underwent clinical evaluations and ECG. If the patients had palpitations or evident alterations of rhythm at baseline, ambulatory ECG monitoring was performed. Results A total of 68 cases (66%; 53 children and 15 adults) had ECG abnormalities. Further, 69.7% (53/76) of those aged ≤ 18 years and 56% (15/27) of those aged >18 years showed some ECG alteration (p = ns). ST-T abnormalities were observed in 37.86% cases (39/103) and arrhythmias were evident in 28.16% cases (29/103). ST alterations occurred in 72% of those aged ≤18 years compared with 19% of th ose aged >18 years (p < 0.0001). Conclusion This study reports the largest number of cases in the same outbreak of acute Chagas disease caused by oral contamination, with recorded ECGs. ECG changes suggestive of acute myocarditis and arrhythmias were the most frequent abnormalities found. PMID:23887736

  20. Performance characterstics of a commerical ECG gate

    SciTech Connect

    Graham, M.; Cavailloles, F.; Ritchie, J.L.; Williams, D.L.; Hamilton, G.W.

    1980-04-01

    A commercial ECG gate was tested to evaluate its ability to predict accurately the time of end-systole. The predicted times followed the manufacturer's specifications quite well. These times were compared with the actual times of end-systole as determined by computer-derived left-ventricular time-activity curves using Tc-99m-labeled red blood cells. Although there was moderate scatter, the predicted times of end-systole correlated well with the actual time (n = 59, r = 0.829). If the left-ventricular ejection fraction was calculated using the predicted time of end-systole, the error would be 0.03, or less, for 95% of the subjects.

  1. Nonlocal means denoising of ECG signals.

    PubMed

    Tracey, Brian H; Miller, Eric L

    2012-09-01

    Patch-based methods have attracted significant attention in recent years within the field of image processing for a variety of problems including denoising, inpainting, and super-resolution interpolation. Despite their prevalence for processing 2-D signals, they have received little attention in the 1-D signal processing literature. In this letter, we explore application of one such method, the nonlocal means (NLM) approach, to the denoising of biomedical signals. Using ECG as an example, we demonstrate that a straightforward NLM-based denoising scheme provides signal-to-noise ratio improvements very similar to state of the art wavelet-based methods, while giving ~3 × or greater reduction in metrics measuring distortion of the denoised waveform. PMID:22829361

  2. An ECG simulator for generating maternal-foetal activity mixtures on abdominal ECG recordings.

    PubMed

    Behar, Joachim; Andreotti, Fernando; Zaunseder, Sebastian; Li, Qiao; Oster, Julien; Clifford, Gari D

    2014-08-01

    Accurate foetal electrocardiogram (FECG) morphology extraction from non-invasive sensors remains an open problem. This is partly due to the paucity of available public databases. Even when gold standard information (i.e derived from the scalp electrode) is present, the collection of FECG can be problematic, particularly during stressful or clinically important events.In order to address this problem we have introduced an FECG simulator based on earlier work on foetal and adult ECG modelling. The open source foetal ECG synthetic simulator, fecgsyn, is able to generate maternal-foetal ECG mixtures with realistic amplitudes, morphology, beat-to-beat variability, heart rate changes and noise. Positional (rotation and translation-related) movements in the foetal and maternal heart due to respiration, foetal activity and uterine contractions were also added to the simulator.The simulator was used to generate some of the signals that were part of the 2013 PhysioNet Computing in Cardiology Challenge dataset and has been posted on Physionet.org (together with scripts to generate realistic scenarios) under an open source license. The toolbox enables further research in the field and provides part of a standard for industry and regulatory testing of rare pathological scenarios. PMID:25071094

  3. ECG of the Month: ECG in a 30-Year-Old Woman.

    PubMed

    Glancy, D Luke; Diwan, Pranav M

    2015-01-01

    Sinus rhythm; an atrial premature complex; sagging ST-segments, low T-waves, and prominent U-waves suggesting hypokalemia. The ST-T and U-wave changes described above are characteristic of hypokalemia. When the serum potassium level is between 3.0 and 3.5 mEq/L, one or more of the findings may be present. All three are common when the serum potassium level is below 2.5 mEq/L. At the lowest serum potassium levels the T-wave becomes a notch on the upstroke of a giant U-wave, as occurs here in the ECG of this woman with a serum potassium of 1.7 mEq/L.1,2 This configuration is occasionally mistaken for the ST-segment depression and long QT interval of myocardial ischemia.3 Atrial premature complexes are common with hypokalemia, and atrial fibrillation may occur. This patient's potassium was repleted, and the following day her ECG was essentially normal (Figure 2) and virtually unchanged from an ECG recorded two years earlier. PMID:27159459

  4. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  5. Variable threshold method for ECG R-peak detection.

    PubMed

    Kew, Hsein-Ping; Jeong, Do-Un

    2011-10-01

    In this paper, a wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenient in wearing. ECG signal is detected using a potential instrument system. The measured ECG signal is transmits via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. ECG signals carry a lot of clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed. There will be errors in peak detection when the baseline changes due to motion artifacts and signal size changes. Preprocessing process which includes differentiation process and Hilbert transform is used as signal preprocessing algorithm. Thereafter, variable threshold method is used to detect the R-peak which is more accurate and efficient than fixed threshold value method. R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research in order to evaluate the performance analysis. PMID:21695499

  6. ECG signals denoising using wavelet transform and independent component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Manjin; Hui, Mei; Liu, Ming; Dong, Liquan; Zhao, Zhu; Zhao, Yuejin

    2015-08-01

    A method of two channel exercise electrocardiograms (ECG) signals denoising based on wavelet transform and independent component analysis is proposed in this paper. First of all, two channel exercise ECG signals are acquired. We decompose these two channel ECG signals into eight layers and add up the useful wavelet coefficients separately, getting two channel ECG signals with no baseline drift and other interference components. However, it still contains electrode movement noise, power frequency interference and other interferences. Secondly, we use these two channel ECG signals processed and one channel signal constructed manually to make further process with independent component analysis, getting the separated ECG signal. We can see the residual noises are removed effectively. Finally, comparative experiment is made with two same channel exercise ECG signals processed directly with independent component analysis and the method this paper proposed, which shows the indexes of signal to noise ratio (SNR) increases 21.916 and the root mean square error (MSE) decreases 2.522, proving the method this paper proposed has high reliability.

  7. Searching biosignal databases by content and context: Research Oriented Integration System for ECG Signals (ROISES).

    PubMed

    Kokkinaki, Alexandra; Chouvarda, Ioanna; Maglaveras, Nicos

    2012-11-01

    Technological advances in textile, biosensor and electrocardiography domain induced the wide spread use of bio-signal acquisition devices leading to the generation of massive bio-signal datasets. Among the most popular bio-signals, electrocardiogram (ECG) possesses the longest tradition in bio-signal monitoring and recording, being a strong and relatively robust signal. As research resources are fostered, research community promotes the need to extract new knowledge from bio-signals towards the adoption of new medical procedures. However, integrated access, query and management of ECGs are impeded by the diversity and heterogeneity of bio-signal storage data formats. In this scope, the proposed work introduces a new methodology for the unified access to bio-signal databases and the accompanying metadata. It allows decoupling information retrieval from actual underlying datasource structures and enables transparent content and context based searching from multiple data resources. Our approach is based on the definition of an interactive global ontology which manipulates the similarities and the differences of the underlying sources to either establish similarity mappings or enrich its terminological structure. We also introduce ROISES (Research Oriented Integration System for ECG Signals), for the definition of complex content based queries against the diverse bio-signal data sources. PMID:21397354

  8. Development and evaluation of multilead wavelet-based ECG delineation algorithms for embedded wireless sensor nodes.

    PubMed

    Rincón, Francisco; Recas, Joaquin; Khaled, Nadia; Atienza, David

    2011-11-01

    This work is devoted to the evaluation of multilead digital wavelet transform (DWT)-based electrocardiogram (ECG) wave delineation algorithms, which were optimized and ported to a commercial wearable sensor platform. More specifically, we investigate the use of root-mean squared (RMS)-based multilead followed by a single-lead online delineation algorithm, which is based on a state-of-the-art offline single-lead delineator. The algorithmic transformations and software optimizations necessary to enable embedded ECG delineation notwithstanding the limited processing and storage resources of the target platform are described, and the performance of the resulting implementations are analyzed in terms of delineation accuracy, execution time, and memory usage. Interestingly, RMS-based multilead delineation is shown to perform equivalently to the best single-lead delineation for the 2-lead QT database (QTDB), within a fraction of a sample duration of the Common Standards for Electrocardiography (CSE) committee tolerances. Finally, a comprehensive evaluation of the energy consumption entailed by the considered algorithms is proposed, which allows very relevant insights into the dominant energy-draining functionalities and which suggests suitable design guidelines for long-lasting wearable ECG monitoring systems. PMID:21827976

  9. Bluetooth Heart Rate Monitors For Spaceflight

    NASA Technical Reports Server (NTRS)

    Buxton, R. E.; West, M. R.; Kalogera, K. L.; Hanson, A. M.

    2016-01-01

    Heart rate monitoring is required for crewmembers during exercise aboard the International Space Station (ISS) and will be for future exploration missions. The cardiovascular system must be sufficiently stressed throughout a mission to maintain the ability to perform nominal and contingency/emergency tasks. High quality heart rate data are required to accurately determine the intensity of exercise performed by the crewmembers and show maintenance of VO2max. The quality of the data collected on ISS is subject to multiple limitations and is insufficient to meet current requirements. PURPOSE: To evaluate the performance of commercially available Bluetooth heart rate monitors (BT_HRM) and their ability to provide high quality heart rate data to monitor crew health aboard the ISS and during future exploration missions. METHODS: Nineteen subjects completed 30 data collection sessions of various intensities on the treadmill and/or cycle. Subjects wore several BT_HRM technologies for each testing session. One electrode-based chest strap (CS) was worn, while one or more optical sensors (OS) were worn. Subjects were instrumented with a 12-lead ECG to compare the heart rate data from the Bluetooth sensors. Each BT_HRM data set was time matched to the ECG data and a +/-5bpm threshold was applied to the difference between the 2 data sets. Percent error was calculated based on the number of data points outside the threshold and the total number of data points. RESULTS: The electrode-based chest straps performed better than the optical sensors. The best performing CS was CS1 (1.6% error), followed by CS4 (3.3% error), CS3 (6.4% error), and CS2 (9.2% error). The OS resulted in 10.4% error for OS1 and 14.9% error for OS2. CONCLUSIONS: The highest quality data came from CS1, but unfortunately it has been discontinued by the manufacturer. The optical sensors have not been ruled out for use, but more investigation is needed to determine how to obtain the best quality data. CS2 will be

  10. Bluetooth Heart Rate Monitors for Spaceflight

    NASA Technical Reports Server (NTRS)

    Buxton, R. E.; West, M. R.; Kalogera, K. L.; Hanson, A. M.

    2016-01-01

    Heart rate monitoring is required for crewmembers during exercise aboard the International Space Station (ISS) and will be for future exploration missions. The cardiovascular system must be sufficiently stressed throughout a mission to maintain the ability to perform nominal and contingency/emergency tasks. High quality heart rate data are required to accurately determine the intensity of exercise performed by the crewmembers and show maintenance of VO2max. The quality of the data collected on ISS is subject to multiple limitations and is insufficient to meet current requirements. PURPOSE: To evaluate the performance of commercially available Bluetooth heart rate monitors (BT HRM) and their ability to provide high quality heart rate data to monitor crew health aboard the ISS and during future exploration missions. METHODS: Nineteen subjects completed 30 data collection sessions of various intensities on the treadmill and/or cycle. Subjects wore several BT HRM technologies for each testing session. One electrode-based chest strap (CS) was worn, while one or more optical sensors (OS) were worn. Subjects were instrumented with a 12-lead ECG to compare the heart rate data from the Bluetooth sensors. Each BT HRM data set was time matched to the ECG data and a +/-5bpm threshold was applied to the difference between the 2 data sets. Percent error was calculated based on the number of data points outside the threshold and the total number of data points. RESULTS: The electrode-based chest straps performed better than the optical sensors. The best performing CS was CS1 (1.6% error), followed by CS4 (3.3% error), CS3 (6.4% error), and CS2 (9.2% error). The OS resulted in 10.4% error for OS1 and 14.9% error for OS2. CONCLUSIONS: The highest quality data came from CS1, but unfortunately it has been discontinued by the manufacturer. The optical sensors have not been ruled out for use, but more investigation is needed to determine how to obtain the best quality data. CS2 will be

  11. Estimating actigraphy from motion artifacts in ECG and respiratory effort signals.

    PubMed

    Fonseca, Pedro; Aarts, Ronald M; Long, Xi; Rolink, Jérôme; Leonhardt, Steffen

    2016-01-01

    Recent work in unobtrusive sleep/wake classification has shown that cardiac and respiratory features can help improve classification performance. Nevertheless, actigraphy remains the single most discriminative modality for this task. Unfortunately, it requires the use of dedicated devices in addition to the sensors used to measure electrocardiogram (ECG) or respiratory effort. This paper proposes a method to estimate actigraphy from the body movement artifacts present in the ECG and respiratory inductance plethysmography (RIP) based on the time-frequency analysis of those signals. Using a continuous wavelet transform to analyze RIP, and ECG and RIP combined, it provides a surrogate measure of actigraphy with moderate correlation (for ECG+RIP, ρ = 0.74, p  <  0.001) and agreement (mean bias ratio of 0.94 and 95% agreement ratios of 0.11 and 8.45) with reference actigraphy. More important, it can be used as a replacement of actigraphy in sleep/wake classification: after cross-validation with a data set comprising polysomnographic (PSG) recordings of 15 healthy subjects and 25 insomniacs annotated by an external sleep technician, it achieves a statistically non-inferior classification performance when used together with respiratory features (average κ of 0.64 for 15 healthy subjects, and 0.50 for a dataset with 40 healthy and insomniac subjects), and when used together with respiratory and cardiac features (average κ of 0.66 for 15 healthy subjects, and 0.56 for 40 healthy and insomniac subjects). Since this method eliminates the need for a dedicated actigraphy device, it reduces the number of sensors needed for sleep/wake classification to a single sensor when using respiratory features, and to two sensors when using respiratory and cardiac features without any loss in performance. It offers a major benefit in terms of comfort for long-term home monitoring and is immediately applicable for legacy ECG and RIP monitoring devices already used in clinical

  12. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System

    PubMed Central

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-01-01

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user’s ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user’s high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user’s daily smartphone use. PMID:26978364

  13. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System.

    PubMed

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-01-01

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user's ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user's high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user's daily smartphone use. PMID:26978364

  14. ECG risk markers for atrial fibrillation and sudden cardiac death in minimally symptomatic obstructive sleep apnoea: the MOSAIC randomised trial

    PubMed Central

    Schlatzer, Christian; Bratton, Daniel J; Craig, Sonja E; Kohler, Malcolm; Stradling, John R

    2016-01-01

    Objective Obstructive sleep apnoea (OSA), atrial fibrillation (AF) and sudden cardiac death (SCD) may occur concomitantly, and are of considerable epidemiological interest, potentially leading to morbidity and mortality. Effective treatment of OSA with continuous positive airway pressure (CPAP) could prevent progression and/or recurrence of AF and factors leading to SCD. Recently, a randomised controlled trial showed a statistically and clinically significant prolongation of measures of cardiac repolarisation after CPAP withdrawal in symptomatic patients with moderate to severe OSA. Whether or not CPAP therapy improves ECG risk markers of AF and SCD in patients with minimally symptomatic OSA as well, is unknown. Methods 3 centres taking part in the MOSAIC (Multicentre Obstructive Sleep Apnoea Interventional Cardiovascular) trial randomisd 303 patients with minimally symptomatic OSA to receive either CPAP or standard care for 6 months. Treatment effects of CPAP on P-wave duration, P-wave dispersion, QT interval, QT dispersion, Tpeak-to-Tend (TpTe) and TpTe/QT ratio were analysed. Results Participants were primarily men (83%). Mean age was 57.8 (7.2) and mean ODI (Oxygen Desaturation Index) at baseline was 13.1/h (12.3). Full 12-lead ECG data was available in 250 patients. Mean (SD) baseline intervals of P-wave duration, P-wave dispersion, QTc interval, QT dispersion, TpTe and TpTe/QT ratio in ms were 87.4 (8.3), 42.3 (11.9), 397.8 (22.7), 43.1 (16.7), 73.5 (13.7) and 0.19 (0.0), respectively. No treatment effect of CPAP on risk markers for AF and SCD was found. Conclusions There seems to be no effect of CPAP on ECG measures of arrhythmia risk in patients with minimally symptomatic OSA. Trial registration number ISRCTN34164388; Post-results. PMID:26983946

  15. ECG scores for a triage of patients with acute myocardial infarction transported by the emergency medical system.

    PubMed

    Zalenski, R J; Grzybowski, M; Ross, M A; Blaustein, N; Bock, B

    2000-01-01

    Prehospital triage of cardiac patients for bypass from community hospitals to cardiac centers may improve survival. This article determines if electrocardiogram (ECG)-based scoring triage methods (Aldrich MI scoring, QRS distortion, and the TIMI classification) and location of infarct (via 12 lead ECG) are associated with mortality before and after adjusting for age, sex, and race. It is a retrospective study of 291 AMI adult patients transported by ambulance to community hospitals or cardiac centers. Patients with an ED chief complaint of chest pain or dyspnea, presence of MI as defined by ECG findings of 0.1 mV of ST segment elevation in two leads or positive CPK-MB were eligible for the study. The primary outcome variable was 2-year mortality as determined with a metropolitan Detroit tri-county death index. Logistic regression was used to calculate the unadjusted and adjusted odds ratios (with 95% CIs) of the predictor variables with mortality. Of the initial population selected for the study (n = 291), 229 patients were eligible for the analysis. The mean age was 66 years (SD of 14.4) with 63.8% being male and 54% being white. The overall mortality point estimate was 21.3% (95% CI of 15.2 to 27.3%). Aldrich scores and QRS distortion (yes/no) were not associated with mortality. Patients classified as a "high risk" for AMI per TIMI status were almost 3 times more likely to die than those at "low risk" and reached borderline statistical significance (P = .06) after adjusting for the covariates. Having an anterior infarct, as opposed to an inferior infarct, was significantly associated with death before and after adjusting for the covariates (Unadjusted OR = 2.6, Adjusted OR = 2.8). Properly training emergency medical system professionals in this area may prove useful for identifying higher risk AMI patients in the prehospital setting. PMID:11265729

  16. A Differential ECG Amplifier with Single-Ended Output

    NASA Technical Reports Server (NTRS)

    Katchis, L.

    1972-01-01

    Three-stage amplifier is used for ECG measurements which require conversion of differential input to single-ended output. Circuit may be useful in biological telemetry for amplification of signals from specimen-implanted sensors.

  17. Long-term ECG in ambulatory clinical practice. Analysis and 2-year follow-up of 100 patients studied with a portable ECG tape recorder.

    PubMed

    Johansson, B W

    1977-01-01

    A portable tape recorder for long-term ECG monitoring is described. Its light weight (500 g) and small size (138 X 115 X 39 mm) make its usage in routine clinical practice a practical proposition. The most important application has been in the differential diagnosis of Adams--Strokes syndrome. The results from the first 100 patients with a 2-yr follow-up are presented. The importance of GCG recording during the patients' relevant subjective symptoms is stressed. The mean duration of recording was 2.8 days. In the 28 patients with histories which fitted the symptoms of Adams--Stokes syndrome this diagnosis was confirmed by an arrhythmia recorded simultaneously with the symptoms. In 36 other patients with a similar history the diagnosis was excluded becase of a normal ECG during subjective symptoms. Of the 28 patients with Adams--Stokes sydrome, bradyarrhthmia was the causal factor in 20 patients and these had a pacemaker implanted, whereas the remaining 8 patients had a tachyarrhythmia, which wa treated with antiarrhythmic drugs. The 2-yrs follow-up revealed an improvement and a disappearance of the Adams--Stokes attack in all the patients with an implanted pacemaker. In several of the 36 patients in whom Adams--Stokes syndrome could not be confirmed the syncopal attacks disappeared spontaneously. A large number of arrhythmias, including ventricular and supraventricular tachycardia, 2nd degree AV block and sinus bradycardia were observed during symptom-free intervals in these 36 patients. The introduction of long-term ECG recording routinely in patients with dizziness and syncope of unknown reason has resulted in an increase of the number of patients with a confirmed diagnosis of the Adams--Stokes syndrome, and it has contributed to an increase in the incidence of pacemaker implantation in Malmö from 130 per million inhabitants in 1971 to 220 in 1973, and 1974, respectively. PMID:837958

  18. Human ECG signal parameters estimation during controlled physical activity

    NASA Astrophysics Data System (ADS)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  19. A particle filter framework for the estimation of heart rate from ECG signals corrupted by motion artifacts.

    PubMed

    Nathan, Viswam; Akkaya, Ilge; Jafari, Roozbeh

    2015-01-01

    In this work, we describe a methodology to probabilistically estimate the R-peak locations of an electrocardiogram (ECG) signal using a particle filter. This is useful for heart rate estimation, which is an important metric for medical diagnostics. Some scenarios require constant in-home monitoring using a wearable device. This poses a particularly challenging environment for heart rate detection, due to the susceptibility of ECG signals to motion artifacts. In this work, we show how the particle filter can effectively track the true R-peak locations amidst the motion artifacts, given appropriate heart rate and R-peak observation models. A particle filter based framework has several advantages due to its freedom from strict assumptions on signal and noise models, as well as its ability to simultaneously track multiple possible heart rate hypotheses. Moreover, the proposed framework is not exclusive to ECG signals and could easily be leveraged for tracking other physiological parameters. We describe the implementation of the particle filter and validate our approach on real ECG data affected by motion artifacts from the MIT-BIH noise stress test database. The average heart rate estimation error is about 5 beats per minute for signal streams contaminated with noisy segments with SNR as low as -6 dB. PMID:26737796

  20. Variability in surface ECG morphology: signal or noise?

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.

    1988-01-01

    Using data collected from canine models of acute myocardial ischemia, we investigated two issues of major relevance to electrocardiographic signal averaging: ECG epoch alignment, and the spectral characteristics of the beat-to-beat variability in ECG morphology. With initial digitization rates of 1 kHz, an iterative a posteriori matched filtering alignment scheme, and linear interpolation, we demonstrated that there is sufficient information in the body surface ECG to merit alignment to a precision of 0.1 msecs. Applying this technique to align QRS complexes and atrial pacing artifacts independently, we demonstrated that the conduction delay from atrial stimulus to ventricular activation may be so variable as to preclude using atrial pacing as an alignment mechanism, and that this variability in conduction time be modulated at the frequency of respiration and at a much lower frequency (0.02-0.03Hz). Using a multidimensional spectral technique, we investigated the beat-to-beat variability in ECG morphology, demonstrating that the frequency spectrum of ECG morphological variation reveals a readily discernable modulation at the frequency of respiration. In addition, this technique detects a subtle beat-to-beat alternation in surface ECG morphology which accompanies transient coronary artery occlusion. We conclude that physiologically important information may be stored in the variability in the surface electrocardiogram, and that this information is lost by conventional averaging techniques.

  1. Automatic ECG quality scoring methodology: mimicking human annotators.

    PubMed

    Johannesen, Lars; Galeotti, Loriano

    2012-09-01

    An algorithm to determine the quality of electrocardiograms (ECGs) can enable inexperienced nurses and paramedics to record ECGs of sufficient diagnostic quality. Previously, we proposed an algorithm for determining if ECG recordings are of acceptable quality, which was entered in the PhysioNet Challenge 2011. In the present work, we propose an improved two-step algorithm, which first rejects ECGs with macroscopic errors (signal absent, large voltage shifts or saturation) and subsequently quantifies the noise (baseline, powerline or muscular noise) on a continuous scale. The performance of the improved algorithm was evaluated using the PhysioNet Challenge database (1500 ECGs rated by humans for signal quality). We achieved a classification accuracy of 92.3% on the training set and 90.0% on the test set. The improved algorithm is capable of detecting ECGs with macroscopic errors and giving the user a score of the overall quality. This allows the user to assess the degree of noise and decide if it is acceptable depending on the purpose of the recording. PMID:22902927

  2. Unveiling the Biometric Potential of Finger-Based ECG Signals

    PubMed Central

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications. PMID:21837235

  3. Standard-compliant real-time transmission of ECGs: harmonization of ISO/IEEE 11073-PHD and SCP-ECG.

    PubMed

    Trigo, Jesús D; Chiarugi, Franco; Alesanco, Alvaro; Martínez-Espronceda, Miguel; Chronaki, Catherine E; Escayola, Javier; Martínez, Ignacio; García, José

    2009-01-01

    Ambient assisted living and integrated care in an aging society is based on the vision of the lifelong Electronic Health Record calling for HealthCare Information Systems and medical device interoperability. For medical devices this aim can be achieved by the consistent implementation of harmonized international interoperability standards. The ISO/IEEE 11073 (x73) family of standards is a reference standard for medical device interoperability. In its Personal Health Device (PHD) version several devices have been included, but an ECG device specialization is not yet available. On the other hand, the SCP-ECG standard for short-term diagnostic ECGs (EN1064) has been recently approved as an international standard ISO/IEEE 11073-91064:2009. In this paper, the relationships between a proposed x73-PHD model for an ECG device and the fields of the SCP-ECG standard are investigated. A proof-of-concept implementation of the proposed x73-PHD ECG model is also presented, identifying open issues to be addressed by standards development for the wider interoperability adoption of x73-PHD standards. PMID:19963856

  4. False ventricular tachycardia alarm suppression in the ICU based on the discrete wavelet transform in the ECG signal.

    PubMed

    Salas-Boni, Rebeca; Bai, Yong; Harris, Patricia Rae Eileen; Drew, Barbara J; Hu, Xiao

    2014-01-01

    Over the past few years, reducing the number of false positive cardiac monitor alarms (FA) in the intensive care unit (ICU) has become an issue of the utmost importance. In our work, we developed a robust methodology that, without the need for additional non-ECG waveforms, suppresses false positive ventricular tachycardia (VT) alarms without resulting in false negative alarms. Our approach is based on features extracted from the ECG signal 20 seconds prior to a triggered alarm. We applied a multi resolution wavelet transform to the ECG data 20seconds prior to the alarm trigger, extracted features from appropriately chosen scales and combined them across all available leads. These representations are presented to a L1-regularized logistic regression classifier. Results are shown in two datasets of physiological waveforms with manually assessed cardiac monitor alarms: the MIMIC II dataset, where we achieved a false alarm (FA) suppression of 21% with zero true alarm (TA) suppression; and a dataset compiled by UCSF and General Electric, where a 36% FA suppression was achieved with a zero TA suppression. The methodology described in this work could be implemented to reduce the number of false monitor alarms in other arrhythmias. PMID:25172188

  5. Countermeasures (iRED, ARED CEVIS, MEC, TVIS, T2, Periodic Fitness Evaluation, BP-ECG, HRM). Critical Readiness Review Increment 23 and 24

    NASA Technical Reports Server (NTRS)

    Toder, Carly; Gipson, Iona; Conly, Danielle; Nieschwitz, Linda; Perk, Austin

    2010-01-01

    This slide presentation reviews attempts to counteract the effects of being in space. It includes information on the Resistive Exercise Device (RED), the Advanced Resistive Exercise Device (ARED), Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), Treadmill with Vibration Isolation and Stabilization (TVIS) and periodic fitness evaluation with specific information on BP/ECG, heart rate monitor 2 and data distribution.

  6. An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET

    NASA Astrophysics Data System (ADS)

    Koivumäki, Tuomas; Nekolla, Stephan G.; Fürst, Sebastian; Loher, Simone; Vauhkonen, Marko; Schwaiger, Markus; Hakulinen, Mikko A.

    2014-10-01

    Respiratory motion may degrade image quality in cardiac PET imaging. Since cardiac PET studies often involve cardiac gating by ECG, a separate respiratory monitoring system is required increasing the logistic complexity of the examination, in case respiratory gating is also needed. Thus, we investigated the simultaneous acquisition of both respiratory and cardiac gating signals using II limb lead mimicking electrode configuration during cardiac PET scans of 11 patients. In addition to conventional static and ECG-gated images, bioimpedance technique was utilized to generate respiratory- and dual-gated images. The ability of the bioimpedance technique to monitor intrathoracic respiratory motion was assessed estimating cardiac displacement between end-inspiration and -expiration. The relevance of dual gating was evaluated in left ventricular volume and myocardial wall thickness measurements. An average 7.6  ±  3.3 mm respiratory motion was observed in the study population. Dual gating showed a small but significant increase (4 ml, p = 0.042) in left ventricular myocardial volume compared to plain cardiac gating. In addition, a thinner myocardial wall was observed in dual-gated images (9.3  ±  1.3 mm) compared to cardiac-gated images (11.3  ±  1.3 mm, p = 0.003). This study shows the feasibility of bioimpedance measurements for dual gating in a clinical setting. The method enables simultaneous acquisition of respiratory and cardiac gating signals using a single device with standard ECG electrodes.

  7. Effects of eCG and FSH on ovarian response, recovery rate and number and quality of oocytes obtained by ovum pick-up in Holstein cows.

    PubMed

    Sendag, Sait; Cetin, Yunus; Alan, Muhammet; Hadeler, Klaus-Gerd; Niemann, Heiner

    2008-06-01

    The goal of the present study was to compare the ovarian response, oocyte yields per animal, and the morphological quality of oocytes collected by ultrasound guided follicular aspiration from Holstein cows treated either with FSH or eCG. Twenty four normal cyclic, German Holstein cows were randomly divided into two groups. Fourteen cows received 3000 IU eCG on day-4 prior to ovum pick-up (OPU) (day 0), 2 days later (day-2), 625 microg cloprostenol was administered. On day-1 GnRH was administered i.m. and 24h later OPU (day 0) was performed. In ten cows a total dose of 500 IU follicle stimulating hormone (Pluset) was administered intramuscularly in a constant dosage for 4 days with intervals of 12h, starting on day-5. Luteolysis was induced by application of 625 microg cloprostenol on day-2. On day-1 (24h after the last FSH treatment) GnRH was administered i.m. and 24h later OPU (day 0) was performed. Ovarian follicles were visualized on the ultrasound monitor, counted and recorded. All visible antral follicles were punctured. Recovered oocytes were graded morphologically based on the cumulus investment. Average follicle number in ovaries was higher in FSH group than eCG group (p<0.05). Oocyte yields per animal did not differ between FSH and eCG groups. The proportion of grade A oocytes was higher in the FSH group in the than eCG group (p<0.05). Likewise, rate of grade C oocytes in FSH group were lower than eCG group (p<0.05). In conclusion, these results suggest that ovarian response, follicle number in ovaries and oocyte quality are affected by the type of gonadotropin and FSH is better alternative than eCG for OPU treatment. PMID:18294785

  8. Improving Use of Prehospital 12-Lead Electrocardiography for Early Identification and Treatment of Acute Coronary Syndrome and ST-Elevation Myocardial Infarction

    PubMed Central

    Daudelin, Denise H.; Sayah, Assaad J.; Kwong, Manlik; Restuccia, Marc C.; Porcaro, William A.; Ruthazer, Robin; Goetz, Jessica D.; Lane, William M.; Beshansky, Joni R.; Selker, Harry P.

    2010-01-01

    Background Performance of Prehospital electrocardiograms (PH-ECGs) expedites identification of ST-elevation myocardial infarction (STEMI) and reduces door-to-balloon (D2B) times for patients receiving reperfusion therapy. To fully realize this benefit, emergency medical service (EMS) performance must be measured and used in feedback reporting and quality improvement (QI). Methods and Results This quasi-experimental design trial tested an approach to improving EMS PH-ECG using feedback reporting and QI interventions in two cities' EMS agencies and receiving hospitals. All patients ≥ 30 years, calling 9-1-1 with possible acute coronary syndrome (ACS) were included. In total 6,994 patients were included: 1,589 patients in the baseline period without feedback and 5,405 in the intervention period when there were feedback reports and QI interventions. Mean age (SD) was 66 (±17) and women represented 51%. Feedback and QI increased PH-ECG performance for patients with ACS from 76% to 93% (p=<.0001) and for patients with STEMI from 77% to 99% (p= <.0001). Aspirin administration increased from 75% to 82% (p=0.001) but the median total EMS run time remained the same at 22 minutes. The proportion of patients with D2B times of ≤90 minutes increased from 27% to 67% (p=0.006). Conclusion Feedback reports and QI improved PH-ECG performance for patients with ACS and STEMI and increased aspirin administration, without prehospital transport delays. Improvements in D2B times were also seen. PMID:20484201

  9. Arrhythmias Seen in Baseline 24-Hour Holter ECG Recordings in Healthy Normal Volunteers During Phase 1 Clinical Trials.

    PubMed

    Hingorani, Pooja; Karnad, Dilip R; Rohekar, Prashant; Kerkar, Vaibhav; Lokhandwala, Yash Y; Kothari, Snehal

    2016-07-01

    Regulatory agencies encourage sponsors to submit 24-hour ambulatory ECG data for assessing cardiac safety of new drugs, and some arrhythmias, hitherto considered rare, have been observed in some early-phase studies. Interpretation of these observations is difficult given the dearth of published data on the prevalence of cardiac arrhythmias seen during 24-hour continuous ECG monitoring in healthy volunteers (HV) from clinical trials. We analyzed drug-free ambulatory ECG recordings from 1273 HV (1000 males, 273 females; age 18-65 years) from 22 phase 1 studies that were analyzed in a core ECG laboratory; all subjects had normal screening ECGs. Supraventricular arrhythmias such as supraventricular premature complexes were observed in 60.8% of healthy volunteers, supraventricular tachycardia in 2.2%, and atrial fibrillation in 0.1%. Ventricular arrhythmias included premature ventricular complexes (PVCs) in 43.4%, >200 PVCs per 24 hours in 3.3%, multifocal PVCs in 5.3%, nonsustained ventricular tachycardia in 0.7%, and accelerated idioventricular rhythm in 0.3%. Bradyarrhythmias included sinus pause >3 seconds in 0.3%, and second-degree AV block in 2.4%. Complete heart block and torsades de pointes were not seen in any subject. Based on the observed incidence, we estimated the maximum number of healthy subjects in whom these arrhythmias may be seen as a matter of chance in studies with smaller sample sizes if the study drug has no arrhythmogenic effect. Our results and these estimates could help interpret whether cardiac arrhythmias observed in early-phase studies are due to chance or possibly are a drug effect. PMID:26626443

  10. Foetal ECG recovery using dynamic neural networks.

    PubMed

    Camps-Valls, Gustavo; Martínez-Sober, Marcelino; Soria-Olivas, Emilio; Magdalena-Benedito, Rafael; Calpe-Maravilla, Javier; Guerrero-Martínez, Juan

    2004-07-01

    Non-invasive electrocardiography has proven to be a very interesting method for obtaining information about the foetus state and thus to assure its well-being during pregnancy. One of the main applications in this field is foetal electrocardiogram (ECG) recovery by means of automatic methods. Evident problems found in the literature are the limited number of available registers, the lack of performance indicators, and the limited use of non-linear adaptive methods. In order to circumvent these problems, we first introduce the generation of synthetic registers and discuss the influence of different kinds of noise to the modelling. Second, a method which is based on numerical (correlation coefficient) and statistical (analysis of variance, ANOVA) measures allows us to select the best recovery model. Finally, finite impulse response (FIR) and gamma neural networks are included in the adaptive noise cancellation (ANC) scheme in order to provide highly non-linear, dynamic capabilities to the recovery model. Neural networks are benchmarked with classical adaptive methods such as the least mean squares (LMS) and the normalized LMS (NLMS) algorithms in simulated and real registers and some conclusions are drawn. For synthetic registers, the most determinant factor in the identification of the models is the foetal-maternal signal-to-noise ratio (SNR). In addition, as the electromyogram contribution becomes more relevant, neural networks clearly outperform the LMS-based algorithm. From the ANOVA test, we found statistical differences between LMS-based models and neural models when complex situations (high foetal-maternal and foetal-noise SNRs) were present. These conclusions were confirmed after doing robustness tests on synthetic registers, visual inspection of the recovered signals and calculation of the recognition rates of foetal R-peaks for real situations. Finally, the best compromise between model complexity and outcomes was provided by the FIR neural network. Both

  11. Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  12. Prediction of implantable ECG lead systems by using thorax models.

    PubMed

    Vaisanen, J; Hyttinen, J; Puurtinen, M; Kauppinen, P; Malmivuo, J

    2004-01-01

    New implantable ECG devices may provide more stable and noiseless measurements compared to body surface ECG measurements. When the electrodes are moved to inside of the body the way the ECG measurement is done is changing. Modeling can be an effective way to study effects of implantation to the capacity of electrodes to measure ECG compared to surface measurements. This work introduces a project where effects of electrode implantation to the magnitude and direction of lead sensitivity to detect cardiac source, lead field, was studied with a model of the thorax as a volume conductor. The study was based on 3D finite difference method (FDM) featuring visible human man. The results of the study indicate that the effect of electrode implantation under the skin (5-15 mm) to the way they measure ECG is rather small. Magnitude change is dependent of the studied lead and the change of the sensitivity to heart's equivalent sources in direction of lead field is minor. PMID:17271800

  13. SLOPE--a real-time ECG data compressor.

    PubMed

    Tai, S C

    1991-03-01

    An ECG sampled at a rate of 250 samples s-1 or more produces a large amount of redundant data that are difficult to store and transmit. In the paper, a real-time ECG data compressor, SLOPE, is presented. SLOPE considers some adjacent samples as a vector, and this vector is extended if the coming sample falls in a fan spanned by this vector and a threshold angle; otherwise, it is delimited as a linear segment. By this means SLOPE repeatedly delimits linear segments of different lengths and different slopes. The Huffman codes for the parameters to describe this linear segment are transmitted for that linear segment. SLOPEa, which is a slightly modified version of SLOPE, is used to compress ambulatory ECG data. All the operations used by SLOPE and SLOPEa are simple integer operations, both SLOPE and SLOPEa being real-time compressors. Experimental results show that an average of 192 bits per channel per second (bpcs) for each ECG signal is obtained by SLOPE and an average of 148 bpcs for each ECG signal is obtained by SLOPEa. PMID:1857123

  14. An Effective Feature Set for ECG Pattern Classification

    NASA Astrophysics Data System (ADS)

    Ghongade, Rajesh; Ghatol, Ashok

    In this paper, QRS morphological features and the artificial neural network method was used for Electrocardiogram (ECG) pattern classification. Four types of ECG patterns were chosen from the MIT-BIH database to be recognized, including normal sinus rhythm, premature ventricular contraction, atrial premature beat and left bundle branch block beat. Authors propose a set of six ECG morphological features to reduce the feature vector size considerably and make the training process fast in addition to a simple but effective ECG heartbeat extraction scheme. Three types of artificial neural network models, MLP, RBF neural networks and SOFM were separately trained and tested for ECG pattern recognition and the experimental results of the different models have been compared. The MLP network exhibited the best performance and reached an overall test accuracy of 99.65%, and RBF and SOFM network both reached 99.1%. The performance of these classifiers was also evaluated in presence of additive Gaussian noise. MLP network was found to be more robust in this respect.

  15. Human Authentication Based on ECG Waves Using Radon Transform

    NASA Astrophysics Data System (ADS)

    Hegde, Chetana; Prabhu, H. Rahul; Sagar, D. S.; Shenoy, P. Deepa; Venugopal, K. R.; Patnaik, L. M.

    Automated security is one of the major concerns of modern times. Secure and reliable authentication systems are in great demand. A biometric trait like electrocardiogram (ECG) of a person is unique and secure. In this paper, we propose a human authentication system based on ECG waves considering a plotted ECG wave signal as an image. The Radon Transform is applied on the preprocessed ECG image to get a radon image consisting of projections for θ varying from 0 o to 180 o . The pairwise distance between the columns of Radon image is computed to get a feature vector. Correlation Coefficient between feature vector stored in the database and that of input image is computed to check the authenticity of a person. Then the confusion matrix is generated to find False Acceptance Ratio (FAR) and False Rejection Ratio (FRR). This methodology of authentication is tested on ECG wave data set of 105 individuals taken from Physionet QT Database. The proposed authentication system is found to have FAR of about 3.19% and FRR of about 0.128%. The overall accuracy of the system is found to be 99.85%.

  16. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

    PubMed

    Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing

    2015-03-01

    Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission. PMID:25751844

  17. [An improved wavelet threshold algorithm for ECG denoising].

    PubMed

    Liu, Xiuling; Qiao, Lei; Yang, Jianli; Dong, Bin; Wang, Hongrui

    2014-06-01

    Due to the characteristics and environmental factors, electrocardiogram (ECG) signals are usually interfered by noises in the course of signal acquisition, so it is crucial for ECG intelligent analysis to eliminate noises in ECG signals. On the basis of wavelet transform, threshold parameters were improved and a more appropriate threshold expression was proposed. The discrete wavelet coefficients were processed using the improved threshold parameters, the accurate wavelet coefficients without noises were gained through inverse discrete wavelet transform, and then more original signal coefficients could be preserved. MIT-BIH arrythmia database was used to validate the method. Simulation results showed that the improved method could achieve better denoising effect than the traditional ones. PMID:25219225

  18. Statistical performance evaluation of ECG transmission using wireless networks.

    PubMed

    Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad

    2013-07-01

    This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation. PMID:23777301

  19. ECG-synchronized DSA exposure control: improved cervicothoracic image quality

    SciTech Connect

    Kelly, W.M.; Gould, R.; Norman, D.; Brant-Zawadzki, M.; Cox, L.

    1984-10-01

    An electrocardiogram (ECG)-synchronized x-ray exposure sequence was used to acquire digital subtraction angiographic (DSA) images during 13 arterial injection studies of the aortic arch or carotid bifurcations. These gated images were compared with matched ungated DSA images acquired using the same technical factors, contrast material volume, and patient positioning. Subjective assessments by five experienced observers of edge definition, vessel conspicuousness, and overall diagnostic quality showed overall preference for one of the two acquisition methods in 69% of cases studied. Of these, the ECG-synchronized exposure series were rated superior in 76%. These results, as well as the relatively simple and inexpensive modifications required, suggest that routine use of ECG exposure control can facilitate improved arterial DSA evaluations of suspected cervicothoracic vascular disease.

  20. The use of the Hilbert transform in ECG signal analysis.

    PubMed

    Benitez, D; Gaydecki, P A; Zaidi, A; Fitzpatrick, A P

    2001-09-01

    This paper presents a new robust algorithm for QRS detection using the first differential of the ECG signal and its Hilbert transformed data to locate the R wave peaks in the ECG waveform. Using this method, the differentiation of R waves from large, peaked T and P waves is achieved with a high degree of accuracy. In addition, problems with baseline drift, motion artifacts and muscular noise are minimised. The performance of the algorithm was tested using standard ECG waveform records from the MIT-BITH Arrhythmia database. An average detection rate of 99.87%, a sensitivity (Se) of 99.94% and a positive prediction (+P) of 99.93% have been achieved against study records from the MIT-BITH Arrhythmia database. A detection error rate of less than 0.8% was achieved in every study case. The reliability of the proposed detector compares very favorably with published results for other QRS detectors. PMID:11535204

  1. Chaos control applied to cardiac rhythms represented by ECG signals

    NASA Astrophysics Data System (ADS)

    Borem Ferreira, Bianca; Amorim Savi, Marcelo; Souza de Paula, Aline

    2014-10-01

    The control of irregular or chaotic heartbeats is a key issue in cardiology. In this regard, chaos control techniques represent a good alternative since they suggest treatments different from those traditionally used. This paper deals with the application of the extended time-delayed feedback control method to stabilize pathological chaotic heart rhythms. Electrocardiogram (ECG) signals are employed to represent the cardiovascular behavior. A mathematical model is employed to generate ECG signals using three modified Van der Pol oscillators connected with time delay couplings. This model provides results that qualitatively capture the general behavior of the heart. Controlled ECG signals show the ability of the strategy either to control or to suppress the chaotic heart dynamics generating less-critical behaviors.

  2. Conditional Random Fields for Morphological Analysis of Wireless ECG Signals

    PubMed Central

    Natarajan, Annamalai; Gaiser, Edward; Angarita, Gustavo; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin

    2015-01-01

    Thanks to advances in mobile sensing technologies, it has recently become practical to deploy wireless electrocardiograph sensors for continuous recording of ECG signals. This capability has diverse applications in the study of human health and behavior, but to realize its full potential, new computational tools are required to effectively deal with the uncertainty that results from the noisy and highly non-stationary signals collected using these devices. In this work, we present a novel approach to the problem of extracting the morphological structure of ECG signals based on the use of dynamically structured conditional random field (CRF) models. We apply this framework to the problem of extracting morphological structure from wireless ECG sensor data collected in a lab-based study of habituated cocaine users. Our results show that the proposed CRF-based approach significantly out-performs independent prediction models using the same features, as well as a widely cited open source toolkit. PMID:26726321

  3. ECG Interpretation Using the CRISP Method: A Guide for Nurses.

    PubMed

    Atwood, Denise; Wadlund, Diana L

    2015-10-01

    Nurses often struggle with identifying electrocardiogram (ECG) rhythms, but rapidly interpreting these rhythms is an essential skill that every nurse should master, especially in the perioperative setting. The CRISP (Cardiac Rhythm Identification for Simple People) method is an algorithm designed to help nurses rapidly interpret ECGs. Key aspects of assisting patients with suspected cardiac issues include the nursing assessment, correct three-lead ECG placement, and calculation of the heart rate. Then the perioperative nurse can use the steps of the CRISP method to identify nursing actions related to specific arrhythmias, including determining whether QRS complexes are present, P waves are present, and QRS complexes are wide or narrow or whether there are more P waves than QRS complexes. PMID:26411823

  4. Effect of a real-time tele-transmission system of 12-lead electrocardiogram on the first-aid for athletes with ST-elevation myocardial infarction.

    PubMed

    Zhang, Huan; Song, Donghan; An, Lina

    2016-05-01

    To study the effect of a real-time tele-transmission system of 12-lead electrocardiogram on door-to-balloon time in athletes with ST-elevation myocardial infarction. A total of 60 athletes with chest pain diagnosed as ST-elevation myocardial infarction (STEMI) from our hospital were randomly divided into group A (n=35) and group B (n=25), the patients in group A transmitted the real-time tele-transmission system of 12-lead electrocardiogram to the chest pain center before arriving in hospital, however, the patients in group B not. The median door-to-balloon time was significant shorter in-group A than group B (38min vs 94 min, p<0.01) and the ratio of door-to-balloon time below 90 min was remarkable higher in-group A (94.2% vs 60%, p<0.01). The rate of catheter laboratory occupied was 5.7% in-group A and 40% in group B respectively (p=0.001). There was no statistically difference in mortality between the two groups (5.7% vs 4%, p>0.05). The median length of stay was significant reduced in-group A (5 days vs 7 days, p<0.01). Real-time tele-transmission system of 12 lead electrocardiogram is beneficial to the pre-hospital diagnosis of STEMI. PMID:27383498

  5. Bluetooth(Registered Trademark) Heart Rate Monitors for Spaceflight

    NASA Technical Reports Server (NTRS)

    Buxton, Roxanne E.; West, Michael R.; Kalogera, Kent L.; Hanson, Andrea M.

    2016-01-01

    Heart rate monitoring is required during exercise for crewmembers aboard the International Space Station (ISS) and will be for future exploration missions. The cardiovascular system must be sufficiently stressed throughout a mission to maintain the ability to perform nominal and contingency/emergency tasks. High quality heart rate data is required to accurately determine the intensity of exercise performed by the crewmembers and show maintenance of VO2max. The quality of the data collected on ISS is subject to multiple limitations and is insufficient to meet current requirements. PURPOSE: To evaluate the performance of commercially available Bluetooth® heart rate monitors (BT_HRM) and their ability to provide high quality heart rate data to monitor crew health on board ISS and during future exploration missions. METHODS: Nineteen subjects completed 30 data collection sessions of various intensities on the treadmill and/or cycle. Subjects wore several BT_HRM technologies for each testing session. One electrode-based chest strap (CS) was worn, while one or more optical sensors (OS) was worn. Subjects were instrumented with a 12-lead ECG to compare the heart rate data from the Bluetooth sensors. Each BT_RHM data set was time matched to the ECG data and a +/-5bpm threshold was applied to the difference between the two data sets. Percent error was calculated based on the number of data points outside the threshold and the total number of data points. REULTS: The electrode-based chest straps performed better than the optical sensors. The best performing CS was CS1 (1.6%error), followed by CS4 (3.3%error), CS3 (6.4%error), and CS2 (9.2%error). The OS resulted in 10.4% error for OS1 and 14.9% error for OS2. CONCLUSIONS: The highest quality data came from CS1, unfortunately it has been discontinued by the manufacturer. The optical sensors have not been ruled out for use, but more investigation is needed to determine how to get the best quality data. CS2 will be used in an

  6. Validity of a heart rate monitor during work in the laboratory and on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Moore, A. D. Jr; Lee, S. M.; Greenisen, M. C.; Bishop, P.

    1997-01-01

    Accurate heart rate measurement during work is required for many industrial hygiene and ergonomics situations. The purpose of this investigation was to determine the validity of heart rate measurements obtained by a simple, lightweight, commercially available wrist-worn heart rate monitor (HRM) during work (cycle exercise) sessions conducted in the laboratory and also during the particularly challenging work environment of space flight. Three different comparisons were made. The first compared HRM data to simultaneous electrocardiogram (ECG) recordings of varying heart rates that were generated by an ECG simulator. The second compared HRM data to ECG recordings collected during work sessions of 14 subjects in the laboratory. Finally, ECG downlink and HRM data were compared in four astronauts who performed cycle exercise during space flight. The data were analyzed using regression techniques. The results were that the HRM recorded virtually identical heart rates compared with ECG recordings for the data set generated by an ECG simulator. The regression equation for the relationship between ECG versus HRM heart rate data during work in the laboratory was: ECG HR = 0.99 x (HRM) + 0.82 (r2 = 0.99). Finally, the agreement between ECG downlink data and HRM data during space flight was also very high, with the regression equation being: Downlink ECG HR = 1.05 x (HRM) -5.71 (r2 = 0.99). The results of this study indicate that the HRM provides accurate data and may be used to reliably obtain valid data regarding heart rate responses during work.

  7. Normally Off ECG SoC With Non-Volatile MCU and Noise Tolerant Heartbeat Detector.

    PubMed

    Izumi, Shintaro; Yamashita, Ken; Nakano, Masanao; Yoshimoto, Shusuke; Nakagawa, Tomoki; Nakai, Yozaburo; Kawaguchi, Hiroshi; Kimura, Hiromitsu; Marumoto, Kyoji; Fuchikami, Takaaki; Fujimori, Yoshikazu; Nakajima, Hiroshi; Shiga, Toshikazu; Yoshimoto, Masahiko

    2015-10-01

    This paper describes an electrocardiograph (ECG) monitoring SoC using a non-volatile MCU (NVMCU) and a noise-tolerant instantaneous heartbeat detector. The novelty of this work is the combination of the non-volatile MCU for normally off computing and a noise-tolerant-QRS (heartbeat) detector to achieve both low-power and noise tolerance. To minimize the stand-by current of MCU, a non-volatile flip-flop and a 6T-4C NVRAM are used. Proposed plate-line charge-share and bit-line non-precharge techniques also contribute to mitigate the active power overhead of 6T-4C NVRAM. The proposed accurate heartbeat detector uses coarse-fine autocorrelation and a template matching technique. Accurate heartbeat detection also contributes system-level power reduction because the active ratio of ADC and digital block can be reduced using heartbeat prediction. Measurement results show that the fully integrated ECG-SoC consumes 6.14 μ A including 1.28- μA non-volatile MCU and 0.7- μA heartbeat detector. PMID:26390500

  8. ECG gated NMR-CT for cardiovascular diseases

    SciTech Connect

    Nishikawa, J.; Ohtake, T.; Machida, K.; Iio, M.; Yoshimoto, N.; Sugimoto, T.

    1985-05-01

    The authors have been applying ECG gated NMR-CT to mainly patients with myocardial infarction (MI), and hypertrophic cardiomyopathy (HCM). Thirteen patients with MI, 8 with HCM and 5 without any heart diseases were studied by ECG gated NMR imaging (spin-echo technique, TR: depends on patient heart rate, TE: 35 and 70 msec.) with 0.35 T superconducting magnet. On NMR images (MRI), the authors examined the wall thickness, wall motion and T/sub 2/ relaxation time in the area of diseased myocardium. The lesions of old MI were depicted as the area of thin wall and T/sub 2/ relaxation time of those lesions were similar to the area of non-infarcted myocardium. The lesions of recent MI (up to 3.5 months from the recent attack) were shown as the same wall thickness as the non-infarcted myocardium and the area of prolonged T/sub 2/ relaxation time compared with that of non-infarcted myocardium. MRI demonstrated diffusely thick myocardium in all patients with HCM. T/sub 2/ relaxation time of the areas of HCM was almost the same as that of normal myocardium, and it's difference among each ventricular wall in patients with HCM was not statistically significant. The authors conclude that ECG gated NMR-CT offers 3-D morphological information of the heart without any contrast material nor radioisotopes. ECG gated MRI provides the useful informations to diagnose MI, especially in the differential diagnosis between old and recent MI.

  9. Measurement of ventricular function by ECG gating during atrial fibrillation

    SciTech Connect

    Bacharach, S.L.; Green, M.V.; Bonow, R.O.; Findley, S.L.; Ostrow, H.G.; Johnston, G.S.

    1981-03-01

    The assumptions necessary to perform ECG-gated cardiac studies are seemingly not valid for patients in atrial fibrillation (AF). To evaluate the effect of AF on equilibrium gated scintigraphy, beat-by-beat measurements of left-ventricular function were made on seven subjects in AF (mean heart rate 64 bpm), using a high-efficiency nonimaging detector. The parameters evaluated were ejection fraction (EF), time to end-systole (TES), peak rates of ejection and filling (PER,PFR), and their times of occurrence (TPER, TPFR). By averaging together single-beat values of EF, PER, etc., it was possible to determine the true mean values of these parameters. The single-beam mean values were compared with the corresponding parameters calculated from one ECG-gated time-activity curve (TAC) obtained by superimposing all the single-beat TACs irrespective of their length. For this population with slow heart rates, we find that the values for EF, etc., produced from ECG-gated time-activity curves, are very similar to those obtained from the single-beat data. Thus use of ECG gating at low heart rates may allow reliable estimation of average cardiac function even in subjects with AF.

  10. Thyroid hormones concentrations and ECG picture in the dog.

    PubMed

    Pasławska, U; Noszczyk-Nowak, A; Kungl, K; Bioły, K; Popiel, J; Nicpoń, J

    2006-01-01

    Disorders of the thyroid gland activity are the most commonly encountered disturbances of endocrine origin in the dog. Hypo- or hyperthyroidism may disturb the function of the cardiovascular system and cause arrhythmias. The aim of this study was to evaluate the influence of thyroid gland activity on electrocardiogram (ECG) picture in the dog by comparing ECG curves of healthy dogs, dogs with hypothyroidism and dogs with cardiac insufficiency caused by endocardiosis of the mitral valve. The study was performed on 38 dogs, patients of the Department of Internal and Parasitic Diseases with Clinic for Horses, Dogs and Cats in Wrocław. The animals were assigned to 3 groups: Group I--control group, 13 clinically healthy dogs; Group II--14 dogs with diagnosed cardiac insufficiency caused by endocardiosis of the mitral valve; Group III--11 dogs with hypothyroidism. Clinical examination of the animals was conducted according to the following pattern: anamnesis, general clinical examination, cardiological examination (ECG, USG of the heart) and laboratory analysis (triacylglycerydes, cholesterol, T3, T4, FT4). In this study, the significant influence of thyroid gland activity on ECG picture of the evaluated dogs was found. In the dogs with hypothyroidism a decrease in the sino-atrial node activity was observed, which led to decreased heart rate. In dogs with hypothyroidism, the innerheart conduction was reduced, which was demonstrated by prolongation of the P wave, QRS complex and the QT interval. PMID:17203744

  11. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiographic ECG/respirator synchronizer. 892.1970 Section 892.1970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic...

  12. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiographic ECG/respirator synchronizer. 892.1970 Section 892.1970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic...

  13. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970 Section 892.1970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic...

  14. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiographic ECG/respirator synchronizer. 892.1970 Section 892.1970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic...

  15. Effective ECG reference ranges for Northern Thai people

    PubMed Central

    Khumrin, Piyapong; Srisuwan, Pratya; Lertprayoonmit, Wongsapat; Leelarphat, Linlada; Phumphuang, Chitawat

    2015-01-01

    Background The numerical values and ranges of the ECG are used as criteria for classifying types of arrhythmia. However, one criterion cannot be generically applied for all patient groups. Several studies have shown that age, gender, and race are the major key factors which produce variations in ECG values. Methods From May 2013 to February 2014, we collected 12 993 normal ECG data from 9853 Northern Thai patients at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand, to analyse their ECG reference ranges. Results The results showed that the average heart rate decreased, while the PR interval and QTcB increased with increasing age in both genders. The normal range of heart rate was lower than the standard interval. QRS duration was stable in all age groups but longer in males than females. QRS axis deviated to the left with increasing age. SV1+RV5 amplitude slightly changed in both genders, but the upper limit crossed over the criteria of ventricular hypertrophy. Conclusions We observed that the general trend of data was mainly similar to that found in other studies in Chinese, American, and African populations. However, some minor differences should be considered specifically for the Northern Thai population. Flexible criteria on conditions depending on age and gender should be adjusted for Northern Thai patients according to the results of this research. PMID:27326211

  16. A Sequential Procedure for Individual Identity Verification Using ECG

    NASA Astrophysics Data System (ADS)

    Irvine, John M.; Israel, Steven A.

    2009-12-01

    The electrocardiogram (ECG) is an emerging novel biometric for human identification. One challenge for the practical use of ECG as a biometric is minimizing the time needed to acquire user data. We present a methodology for identity verification that quantifies the minimum number of heartbeats required to authenticate an enrolled individual. The approach rests on the statistical theory of sequential procedures. The procedure extracts fiducial features from each heartbeat to compute the test statistics. Sampling of heartbeats continues until a decision is reached—either verifying that the acquired ECG matches the stored credentials of the individual or that the ECG clearly does not match the stored credentials for the declared identity. We present the mathematical formulation of the sequential procedure and illustrate the performance with measured data. The initial test was performed on a limited population, twenty-nine individuals. The sequential procedure arrives at the correct decision in fifteen heartbeats or fewer in all but one instance and in most cases the decision is reached with half as many heartbeats. Analysis of an additional 75 subjects measured under different conditions indicates similar performance. Issues of generalizing beyond the laboratory setting are discussed and several avenues for future investigation are identified.

  17. ECG-cryptography and authentication in body area networks.

    PubMed

    Zhang, Zhaoyang; Wang, Honggang; Vasilakos, Athanasios V; Fang, Hua

    2012-11-01

    Wireless body area networks (BANs) have drawn much attention from research community and industry in recent years. Multimedia healthcare services provided by BANs can be available to anyone, anywhere, and anytime seamlessly. A critical issue in BANs is how to preserve the integrity and privacy of a person's medical data over wireless environments in a resource efficient manner. This paper presents a novel key agreement scheme that allows neighboring nodes in BANs to share a common key generated by electrocardiogram (ECG) signals. The improved Jules Sudan (IJS) algorithm is proposed to set up the key agreement for the message authentication. The proposed ECG-IJS key agreement can secure data communications over BANs in a plug-n-play manner without any key distribution overheads. Both the simulation and experimental results are presented, which demonstrate that the proposed ECG-IJS scheme can achieve better security performance in terms of serval performance metrics such as false acceptance rate (FAR) and false rejection rate (FRR) than other existing approaches. In addition, the power consumption analysis also shows that the proposed ECG-IJS scheme can achieve energy efficiency for BANs. PMID:22752143

  18. ECG-based heartbeat classification for arrhythmia detection: A survey.

    PubMed

    Luz, Eduardo José da S; Schwartz, William Robson; Cámara-Chávez, Guillermo; Menotti, David

    2016-04-01

    An electrocardiogram (ECG) measures the electric activity of the heart and has been widely used for detecting heart diseases due to its simplicity and non-invasive nature. By analyzing the electrical signal of each heartbeat, i.e., the combination of action impulse waveforms produced by different specialized cardiac tissues found in the heart, it is possible to detect some of its abnormalities. In the last decades, several works were developed to produce automatic ECG-based heartbeat classification methods. In this work, we survey the current state-of-the-art methods of ECG-based automated abnormalities heartbeat classification by presenting the ECG signal preprocessing, the heartbeat segmentation techniques, the feature description methods and the learning algorithms used. In addition, we describe some of the databases used for evaluation of methods indicated by a well-known standard developed by the Association for the Advancement of Medical Instrumentation (AAMI) and described in ANSI/AAMI EC57:1998/(R)2008 (ANSI/AAMI, 2008). Finally, we discuss limitations and drawbacks of the methods in the literature presenting concluding remarks and future challenges, and also we propose an evaluation process workflow to guide authors in future works. PMID:26775139

  19. Some regularity on how to locate electrodes for higher fECG SNRs

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-Min; Huang, Xiao-Lin; Guan, Qun; Liu, Tie-Bing; Li, Ping; Zhao, Ying; Liu, Hong-Xing

    2015-03-01

    The electrocardiogram (ECG) recorded from the abdominal surface of a pregnant woman is a composite of maternal ECG, fetal ECG (fECG) and other noises, while only the fECG component is always needed by us. With different locations of electrode pairs on the maternal abdominal surface to measure fECGs, the signal-to-noise ratios (SNRs) of the recorded abdominal ECGs are also correspondingly different. Some regularity on how to locate electrodes to obtain higher fECG SNRs is needed practically. In this paper, 343 groups of abdominal ECG records were acquired from 78 pregnant women with different electrode pairs locating, and an appropriate extended research database is formed. Then the regularity on fECG SNRs corresponding to different electrode pairs locating was studied. Based on statistical analysis, it is shown that the fECG SNRs are significantly higher in certain locations than others. Reasonable explanation is also provided to the statistical result using the theories of the fetal cardiac electrical axis and the signal phase delay. Project supported by the National Natural Science Foundation of China (Grant No. 61271079) and the Supporting Plan Project of Jiangsu Province, China (Grant No. BE2010720).

  20. A new feature detection mechanism and its application in secured ECG transmission with noise masking.

    PubMed

    Sufi, Fahim; Khalil, Ibrahim

    2009-04-01

    With cardiovascular disease as the number one killer of modern era, Electrocardiogram (ECG) is collected, stored and transmitted in greater frequency than ever before. However, in reality, ECG is rarely transmitted and stored in a secured manner. Recent research shows that eavesdropper can reveal the identity and cardiovascular condition from an intercepted ECG. Therefore, ECG data must be anonymized before transmission over the network and also stored as such in medical repositories. To achieve this, first of all, this paper presents a new ECG feature detection mechanism, which was compared against existing cross correlation (CC) based template matching algorithms. Two types of CC methods were used for comparison. Compared to the CC based approaches, which had 40% and 53% misclassification rates, the proposed detection algorithm did not perform any single misclassification. Secondly, a new ECG obfuscation method was designed and implemented on 15 subjects using added noises corresponding to each of the ECG features. This obfuscated ECG can be freely distributed over the internet without the necessity of encryption, since the original features needed to identify personal information of the patient remain concealed. Only authorized personnel possessing a secret key will be able to reconstruct the original ECG from the obfuscated ECG. Distribution of the would appear as regular ECG without encryption. Therefore, traditional decryption techniques including powerful brute force attack are useless against this obfuscation. PMID:19397097

  1. Mobile remote monitoring of biological signals.

    PubMed

    da Rocha, Murilo F; de Azevedo, Dario F G; Russomano, Thais; Figueira, Marcio V; Helegda, Sergio

    2006-01-01

    This research purposes the development of a telemedicine system capable of remote monitoring and digitalization the patients biological signals. It includes a mobile device which transmits the patient electroencephalogram (EEG) and electrocardiogram (ECG) to a monitoring host using the wireless communication, allowing mobility to the patient in hospital or in his daily routine. PMID:17946934

  2. ECG-based detection of body position changes using a Laplacian noise model.

    PubMed

    Mincholé, Ana; Sörnmo, Leif; Laguna, Pablo

    2011-01-01

    Body position changes (BPC), which are often manifested in the ECG as shifts in the electrical axis of the heart, result in ST changes, and thus, may be misclassified as ischemic events during ambulatory monitoring. We have developed a BPC detector by modeling shifts as changes in the Karhunen-Loève transform coefficients of the QRS complex and the ST-T waveform. The noise is assumed to have a Laplacian distribution. A generalized likelihood ratio test has been chosen as the strategy to detect BPCs. Two different databases have been used to assess detection performance. The obtained results were 93%/99% in terms of sensitivity/positive predictivity value (S/+PV) and a false alarm rate of 2 events/hour. The results clearly outperform current techniques (S/+PV: 85%/99%) based on the Gaussian noise assumption. PMID:22255932

  3. Defibrillator/monitor/pacemakers.

    PubMed

    2003-05-01

    Defibrillator/monitors allow operators to assess and monitor a patient's ECG and, when necessary, deliver a defibrillating shock to the heart. When integral noninvasive pacing is added, the device is called a defibrillator/monitor/pacemaker. In this Evaluation, we present our findings for two newly evaluated models, the Welch Allyn PIC 50 and the Zoll M Series CCT, and we summarize our findings for the previously evaluated models that are still on the market. We rate the models for the following applications: general crash-cart use, in-hospital transport use, and emergency medical service (EMS) use. PMID:12827940

  4. Mobile measurement system of ECG signal in vehicle environment

    NASA Astrophysics Data System (ADS)

    Oh, Kwang-seok; Lee, Sang-Ryong; Lee, Choon-Young; Kim, Myun-Hee

    2005-12-01

    This paper proposed a new method to measure the ECG signal from the driver. The ECG signal is often measured in the room. But it is mixed with many kinds of noise when it is measured during the vehicle moving. Noise occupied most many parts as the experimental among them was classified. And one suitable filter for each noise was designed. It used ALE(Adaptive Line Enhancement) to remove the noise occurred to electromagnetic wave in vehicle. To remove the noise occurred to steering or vibration of vehicle, the paper used Wavelet transformation after ALE(preprocessing filter). To realize unconscious measurement, this research used the stainless steel(not the electrode) fixed at steering wheel and designed the adaptive filter without using reference signal.

  5. Combining Wavelet Transform and Hidden Markov Models for ECG Segmentation

    NASA Astrophysics Data System (ADS)

    Andreão, Rodrigo Varejão; Boudy, Jérôme

    2006-12-01

    This work aims at providing new insights on the electrocardiogram (ECG) segmentation problem using wavelets. The wavelet transform has been originally combined with a hidden Markov models (HMMs) framework in order to carry out beat segmentation and classification. A group of five continuous wavelet functions commonly used in ECG analysis has been implemented and compared using the same framework. All experiments were realized on the QT database, which is composed of a representative number of ambulatory recordings of several individuals and is supplied with manual labels made by a physician. Our main contribution relies on the consistent set of experiments performed. Moreover, the results obtained in terms of beat segmentation and premature ventricular beat (PVC) detection are comparable to others works reported in the literature, independently of the type of the wavelet. Finally, through an original concept of combining two wavelet functions in the segmentation stage, we achieve our best performances.

  6. Patient ECG recording control for an automatic implantable defibrillator

    NASA Technical Reports Server (NTRS)

    Fountain, Glen H. (Inventor); Lee, Jr., David G. (Inventor); Kitchin, David A. (Inventor)

    1986-01-01

    An implantable automatic defibrillator includes sensors which are placed on or near the patient's heart to detect electrical signals indicative of the physiology of the heart. The signals are digitally converted and stored into a FIFO region of a RAM by operation of a direct memory access (DMA) controller. The DMA controller operates transparently with respect to the microprocessor which is part of the defibrillator. The implantable defibrillator includes a telemetry communications circuit for sending data outbound from the defibrillator to an external device (either a patient controller or a physician's console or other) and a receiver for sensing at least an externally generated patient ECG recording command signal. The patient recording command signal is generated by the hand held patient controller. Upon detection of the patient ECG recording command, DMA copies the contents of the FIFO into a specific region of the RAM.

  7. ECG contamination of EEG signals: effect on entropy.

    PubMed

    Chakrabarti, Dhritiman; Bansal, Sonia

    2016-02-01

    Entropy™ is a proprietary algorithm which uses spectral entropy analysis of electroencephalographic (EEG) signals to produce indices which are used as a measure of depth of hypnosis. We describe a report of electrocardiographic (ECG) contamination of EEG signals leading to fluctuating erroneous Entropy values. An explanation is provided for mechanism behind this observation by describing the spread of ECG signals in head and neck and its influence on EEG/Entropy by correlating the observation with the published Entropy algorithm. While the Entropy algorithm has been well conceived, there are still instances in which it can produce erroneous values. Such erroneous values and their cause may be identified by close scrutiny of the EEG waveform if Entropy values seem out of sync with that expected at given anaesthetic levels. PMID:25900143

  8. Using ordinal partition transition networks to analyze ECG data

    NASA Astrophysics Data System (ADS)

    Kulp, Christopher W.; Chobot, Jeremy M.; Freitas, Helena R.; Sprechini, Gene D.

    2016-07-01

    Electrocardiogram (ECG) data from patients with a variety of heart conditions are studied using ordinal pattern partition networks. The ordinal pattern partition networks are formed from the ECG time series by symbolizing the data into ordinal patterns. The ordinal patterns form the nodes of the network and edges are defined through the time ordering of the ordinal patterns in the symbolized time series. A network measure, called the mean degree, is computed from each time series-generated network. In addition, the entropy and number of non-occurring ordinal patterns (NFP) is computed for each series. The distribution of mean degrees, entropies, and NFPs for each heart condition studied is compared. A statistically significant difference between healthy patients and several groups of unhealthy patients with varying heart conditions is found for the distributions of the mean degrees, unlike for any of the distributions of the entropies or NFPs.

  9. An extensive Markov system for ECG exact coding.

    PubMed

    Tai, S C

    1995-02-01

    In this paper, an extensive Markov process, which considers both the coding redundancy and the intersample redundancy, is presented to measure the entropy value of an ECG signal more accurately. It utilizes the intersample correlations by predicting the incoming n samples based on the previous m samples which constitute an extensive Markov process state. Theories of the extensive Markov process and conventional n repeated applications of m-th order Markov process are studied first in this paper. After that, they are realized for ECG exact coding. Results show that a better performance can be achieved by our system. The average code length for the extensive Markov system on the second difference signals was 2.512 b/sample, while the average Huffman code length for the second difference signals was 3.326 b/sample. PMID:7868151

  10. Diverse and composite features for ECG signals processing.

    PubMed

    Ubeyli, Elif Derya

    2008-01-01

    The automated diagnostic systems employing diverse and composite features for electrocardiogram (ECG) signals were analyzed and their accuracies were determined. Because of the importance of making the right decision, classification procedures classifying the ECG signals with high accuracy were investigated. The classification accuracies of multilayer perceptron neural network (MLPNN), recurrent neural network (RNN), and mixture of experts (ME) trained on composite features and modified mixture of experts (MME) trained on diverse features were compared. The inputs of these automated diagnostic systems were composed of diverse or composite features (wavelet coefficients and power levels of the power spectral density estimates obtained by the eigenvector methods) and were chosen according to the network structures. The conclusions of this study demonstrated that the MME trained on diverse features achieved accuracy rates which were higher than that of the other automated diagnostic systems trained on composite features. PMID:18408257

  11. Psychophysiology of disgust: ECG noise entropy as a biomarker.

    PubMed

    Bras, Susana; Ferreira, Jacqueline; Soares, Sandra C; Silva, Carlos F

    2015-08-01

    The identification or classification of emotions allows the description of the person's state and, therefore, the inference of their preferences. The basic emotion of disgust, in particular, allows the organism to protect itself against diseases. Usually, the decrease in heart rate is associated with this emotion. As an avoidance behavior, when facing with disgust stimuli, the body reacts with movements, such as muscle contraction, etc. These reactions are evidenced in the electrocardiogram (ECG) as noise responses. In this paper, we propose the amount of ECG noise measured by the noise entropy as a new biomarker in emotion identification, which has been neglected in the literature. Our results showed that the noise entropy was able to discriminate between disgust, fear and neutral conditions in 88% (p<;0.05). It was also evidenced in this dataset that the median noise entropy in disgust was higher than in neutral and in fear conditions. PMID:26736765

  12. Wavelet based ECG compression with adaptive thresholding and efficient coding.

    PubMed

    Alshamali, A

    2010-01-01

    This paper proposes a new wavelet-based ECG compression technique. It is based on optimized thresholds to determine significant wavelet coefficients and an efficient coding for their positions. Huffman encoding is used to enhance the compression ratio. The proposed technique is tested using several records taken from the MIT-BIH arrhythmia database. Simulation results show that the proposed technique outperforms others obtained by previously published schemes. PMID:20608811

  13. Capacitive driven-right-leg grounding in Indirect-contact ECG measurement.

    PubMed

    Lim, Yong Gyu; Chung, Gih Sung; Park, Kwang Suk

    2010-01-01

    For the reduction of common-mode noise level in Indirect-contact ECG (IDC-ECG) measurement, a driven-right-leg grounding method was applied to the IDC-ECG. Because the IDC-ECG does not require any direct contact between the electrodes and the human skin, it is adequate for un-constraining long-term ECG measurement at home and its various applications are now under development. However, larger 60 Hz noise induced by power line appears in IDC-ECG than in conventional ECG, that is a restriction of IDC-ECG application. In this study, the driven-right-leg ground which has been used in conventional direct-contact ECG, was adapted to the IDC-ECG measurement, by feedback of the inversion of amplified common-mode noise to the body through the conductive textile laid on the chair seat. It was shown that the level of 60Hz power line noise was reduced to about -40 dB when the driven-right-leg gain was 1000. PMID:21095911

  14. Compressive sensing exploiting wavelet-domain dependencies for ECG compression

    NASA Astrophysics Data System (ADS)

    Polania, Luisa F.; Carrillo, Rafael E.; Blanco-Velasco, Manuel; Barner, Kenneth E.

    2012-06-01

    Compressive sensing (CS) is an emerging signal processing paradigm that enables sub-Nyquist sampling of sparse signals. Extensive previous work has exploited the sparse representation of ECG signals in compression applications. In this paper, we propose the use of wavelet domain dependencies to further reduce the number of samples in compressive sensing-based ECG compression while decreasing the computational complexity. R wave events manifest themselves as chains of large coefficients propagating across scales to form a connected subtree of the wavelet coefficient tree. We show that the incorporation of this connectedness as additional prior information into a modified version of the CoSaMP algorithm can significantly reduce the required number of samples to achieve good quality in the reconstruction. This approach also allows more control over the ECG signal reconstruction, in particular, the QRS complex, which is typically distorted when prior information is not included in the recovery. The compression algorithm was tested upon records selected from the MIT-BIH arrhythmia database. Simulation results show that the proposed algorithm leads to high compression ratios associated with low distortion levels relative to state-of-the-art compression algorithms.

  15. A constrained two-layer compression technique for ECG waves.

    PubMed

    Byun, Kyungguen; Song, Eunwoo; Shim, Hwan; Lim, Hyungjoon; Kang, Hong-Goo

    2015-08-01

    This paper proposes a constrained two-layer compression technique for electrocardiogram (ECG) waves, of which encoded parameters can be directly used for the diagnosis of arrhythmia. In the first layer, a single ECG beat is represented by one of the registered templates in the codebook. Since the required coding parameter in this layer is only the codebook index of the selected template, its compression ratio (CR) is very high. Note that the distribution of registered templates is also related to the characteristics of ECG waves, thus it can be used as a metric to detect various types of arrhythmias. The residual error between the input and the selected template is encoded by a wavelet-based transform coding in the second layer. The number of wavelet coefficients is constrained by pre-defined maximum distortion to be allowed. The MIT-BIH arrhythmia database is used to evaluate the performance of the proposed algorithm. The proposed algorithm shows around 7.18 CR when the reference value of percentage root mean square difference (PRD) is set to ten. PMID:26737691

  16. Tensor-based detection of T wave alternans using ECG.

    PubMed

    Goovaerts, Griet; Vandenberk, Bert; Willems, Rik; Van Huffel, Sabine

    2015-08-01

    T wave alternans is defined as changes in the T wave amplitude in an ABABAB-pattern. It can be found in ECG signals of patients with heart diseases and is a possible indicator to predict the risk on sudden cardiac death. Due to its low amplitude, robust automatic T wave alternans detection is a difficult task. We present a new method to detect T wave alternans in multichannel ECG signals. The use of tensors (multidimensional matrices) permits the combination of the information present in different channels, making detection more reliable. The possibility of decomposition of incomplete tensors is exploited to deal with noisy ECG segments. Using a sliding window of 128 heartbeats, a tensor is constructed of the T waves of all channels. Canonical Polyadic Decomposition is applied to this tensor and the resulting loading vectors are examined for information about the T wave behavior in three dimensions. T wave alternans is detected using a sign change counting method that is able to extract both the T wave alternans length and magnitude. When applying this novel method to a database of patients with multiple positive T wave alternans tests using the clinically available spectral method tests, both the length and the magnitude of the detected T wave alternans is larger for these subjects than for subjects in a control group. PMID:26737901

  17. [The athletes' ECG and the exercise related sudden cardiac death].

    PubMed

    Trachsel, Lukas-Daniel; Wilhelm, Matthias

    2015-05-01

    Regular physical activity induces structural, electrical and functional cardiac adaptations. The main challenge for the athletes' physician is to distinguish abnormal structural changes of the heart from training-induced adaptations (so-called “athlete's heart”). In athletes with underlying cardiac disease, physical activity may be a trigger, not the cause of exercise-induced tachyarrhythmia's and sudden cardiac death (SCD). To identify athletes with cardiac diseases and increased risk for an SCD, the European society of cardiology (ESC) recommends a pre-participation screening in elite athletes which was adopted by the Swiss society of sports medicine. The screening includes a specific medical history, cardiac auscultation and a resting ECG. Due to the high number of false-positive cases of athletes' ECGs based on traditional criteria, the ESC assessment criteria were adjusted to account for training-related changes of the ECG. The sensitivity and especially the specificity could be improved in the “revised Seattle criteria” in 2014. During the last years main attention has been shifted to the early repolarization pattern: additionally to (endurance-) training there is a clear association with male gender, ethnicity, changes in autonomic nervous system activity and high QRS-voltage criteria PMID:26098068

  18. Adjustment of QT dispersion assessed from 12 lead electrocardiograms for different numbers of analysed electrocardiographic leads: comparison of stability of different methods.

    PubMed Central

    Hnatkova, K; Malik, M; Kautzner, J; Gang, Y; Camm, A J

    1994-01-01

    OBJECTIVE--Normal electrocardiographic recordings were analysed to establish the influence of measurement of different numbers of electrocardiographic leads on the results of different formulas expressing QT dispersion and the effects of adjustment of QT dispersion obtained from a subset of an electrocardiogram to approximate to the true QT dispersion obtained from a complete electrocardiogram. SUBJECTS AND METHODS--Resting 12 lead electrocardiograms of 27 healthy people were investigated. In each lead, the QT interval was measured with a digitising board and QT dispersion was evaluated by three formulas: (A) the difference between the longest and the shortest QT interval among all leads; (B) the difference between the second longest and the second shortest QT interval; (C) SD of QT intervals in different leads. For each formula, the "true" dispersion was assessed from all measurable leads and then different combinations of leads were omitted. The mean relative differences between the QT dispersion with a given number of omitted leads and the "true" QT dispersion (mean relative errors) and the coefficients of variance of the results of QT dispersion obtained when omitting combinations of leads were compared for the different formulas. The procedure was repeated with an adjustment of each formula dividing its results by the square root of the number of measured leads. The same approach was used for the measurement of QT dispersion from the chest leads including a fourth formula (D) the SD of interlead differences weighted according to the distances between leads. For different formulas, the mean relative errors caused by omitting individual electrocardiographic leads were also assessed and the importance of individual leads for correct measurement of QT dispersion was investigated. RESULTS--The study found important differences between different formulas for assessment of QT dispersion with respect to compensation for missing measurements of QT interval. The

  19. Delineation of QRS offset by instantaneous changes in ECG vector angle can improve detection of acute inferior myocardial infarctions.

    PubMed

    Starc, Vito; Schlegel, Todd T

    2016-01-01

    We developed an automated new method for determining QRS offset, based on angular velocity (AV) changes around the QRS loop, and compared the method's performance to that of manual and more established automated methods for determining QRS offset in both healthy subjects and patients with acute myocardial infarction (AMI). Specifically, using Frank leads reconstructed from standard 12-lead ECGs, we determined AV in the direction of change raised to the 4th power, d(t). We found that the d(t)-determined AV transition (ΔAV) nearly coincided with manually determined QRS offset in healthy subjects, and in 27 patients with anterior AMI. However, in 31 patients with inferior AMI, ΔAV typically preceded that of QRS offset determined by the established automated methods, and by more than 10ms in 32% of cases. While this "ΔAV precedence" coincided with diagnostic ST elevation in only a minority of patients with recent inferior AMI, the use of ΔAV precedence as a complement to traditional determination of ST elevation increased the sensitivity for detecting inferior AMIs from 23 to 42%. PMID:26979381

  20. FPGA Implementation of Heart Rate Monitoring System.

    PubMed

    Panigrahy, D; Rakshit, M; Sahu, P K

    2016-03-01

    This paper describes a field programmable gate array (FPGA) implementation of a system that calculates the heart rate from Electrocardiogram (ECG) signal. After heart rate calculation, tachycardia, bradycardia or normal heart rate can easily be detected. ECG is a diagnosis tool routinely used to access the electrical activities and muscular function of the heart. Heart rate is calculated by detecting the R peaks from the ECG signal. To provide a portable and the continuous heart rate monitoring system for patients using ECG, needs a dedicated hardware. FPGA provides easy testability, allows faster implementation and verification option for implementing a new design. We have proposed a five-stage based methodology by using basic VHDL blocks like addition, multiplication and data conversion (real to the fixed point and vice-versa). Our proposed heart rate calculation (R-peak detection) method has been validated, using 48 first channel ECG records of the MIT-BIH arrhythmia database. It shows an accuracy of 99.84%, the sensitivity of 99.94% and the positive predictive value of 99.89%. Our proposed method outperforms other well-known methods in case of pathological ECG signals and successfully implemented in FPGA. PMID:26643079

  1. A Randomized Trial of Intrapartum Fetal ECG ST-Segment Analysis

    PubMed Central

    Belfort, Michael A.; Saade, George R.; Thom, Elizabeth; Blackwell, Sean C.; Reddy, Uma M.; Thorp, John M.; Tita, Alan T.N.; Miller, Russell S.; Peaceman, Alan M.; McKenna, David S.; Chien, Edward K.S.; Rouse, Dwight J.; Gibbs, Ronald S.; El-Sayed, Yasser Y.; Sorokin, Yoram; Caritis, Steve N.; VanDorsten, J. Peter

    2015-01-01

    BACKGROUND It is unclear whether using fetal electrocardiographic (ECG) ST-segment analysis as an adjunct to conventional intrapartum electronic fetal heart-rate monitoring modifies intrapartum and neonatal outcomes. METHODS We performed a multicenter trial in which women with a singleton fetus who were attempting vaginal delivery at more than 36 weeks of gestation and who had cervical dilation of 2 to 7 cm were randomly assigned to “open” or “masked” monitoring with fetal ST-segment analysis. The masked system functioned as a normal fetal heart-rate monitor. The open system displayed additional information for use when uncertain fetal heart-rate patterns were detected. The primary outcome was a composite of intrapartum fetal death, neonatal death, an Apgar score of 3 or less at 5 minutes, neonatal seizure, an umbilical-artery blood pH of 7.05 or less with a base deficit of 12 mmol per liter or more, intubation for ventilation at delivery, or neonatal encephalopathy. RESULTS A total of 11,108 patients underwent randomization; 5532 were assigned to the open group, and 5576 to the masked group. The primary outcome occurred in 52 fetuses or neonates of women in the open group (0.9%) and 40 fetuses or neonates of women in the masked group (0.7%) (relative risk, 1.31; 95% confidence interval, 0.87 to 1.98; P = 0.20). Among the individual components of the primary outcome, only the frequency of a 5-minute Apgar score of 3 or less differed significantly between neonates of women in the open group and those in the masked group (0.3% vs. 0.1%, P = 0.02). There were no significant between-group differences in the rate of cesarean delivery (16.9% and 16.2%, respectively; P = 0.30) or any operative delivery (22.8% and 22.0%, respectively; P = 0.31). Adverse events were rare and occurred with similar frequency in the two groups. CONCLUSIONS Fetal ECG ST-segment analysis used as an adjunct to conventional intrapartum electronic fetal heart-rate monitoring did not improve

  2. ECG De-noising: A comparison between EEMD-BLMS and DWT-NN algorithms.

    PubMed

    Kærgaard, Kevin; Jensen, Søren Hjøllund; Puthusserypady, Sadasivan

    2015-08-01

    Electrocardiogram (ECG) is a widely used non-invasive method to study the rhythmic activity of the heart and thereby to detect the abnormalities. However, these signals are often obscured by artifacts from various sources and minimization of these artifacts are of paramount important. This paper proposes two adaptive techniques, namely the EEMD-BLMS (Ensemble Empirical Mode Decomposition in conjunction with the Block Least Mean Square algorithm) and DWT-NN (Discrete Wavelet Transform followed by Neural Network) methods in minimizing the artifacts from recorded ECG signals, and compares their performance. These methods were first compared on two types of simulated noise corrupted ECG signals: Type-I (desired ECG+noise frequencies outside the ECG frequency band) and Type-II (ECG+noise frequencies both inside and outside the ECG frequency band). Subsequently, they were tested on real ECG recordings. Results clearly show that both the methods works equally well when used on Type-I signals. However, on Type-II signals the DWT-NN performed better. In the case of real ECG data, though both methods performed similar, the DWT-NN method was a slightly better in terms of minimizing the high frequency artifacts. PMID:26737124

  3. Wavelet-based ECG compression by bit-field preserving and running length encoding.

    PubMed

    Chan, Hsiao-Lung; Siao, You-Chen; Chen, Szi-Wen; Yu, Shih-Fan

    2008-04-01

    Efficient electrocardiogram (ECG) compression can reduce the payload of real-time ECG transmission as well as reduce the amount of data storage in long-term ECG recording. In this paper an ECG compression/decompression architecture based on the bit-field preserving (BFP) and running length encoding (RLE)/decoding schemes incorporated with the discrete wavelet transform (DWT) is proposed. Compared to complex and repetitive manipulations in the set partitioning in hierarchical tree (SPIHT) coding and the vector quantization (VQ), the proposed algorithm has advantages of simple manipulations and a feedforward structure that would be suitable to implement on very-large-scale integrated circuits and general microcontrollers. PMID:18164098

  4. The Telemetric and Holter ECG Warehouse (THEW) The first three years of development and Research

    PubMed Central

    Couderc, Jean-Philippe

    2012-01-01

    The Telemetric and Holter ECG Warehouse (THEW) hosts more than 3,700 digital 24-Holter ECG recordings from 13 independent studies. In addition to the ECGs, the repository includes patient information in separate clinical database with a content varying according to the study focus. In its third year of activities, the THEW database has been accessed by researchers from 37 universities and 16 corporations located in 16 countries worldwide. Twenty publications have been released primarily focusing on the development and validation of ECG-based technologies. This communication describes the content of the databases of the repository, with brief summary of the research and development projects completed using these data. PMID:23022305

  5. Simulation of ECG Repolarization Phase with Improved Model of Cell Action Potentials

    NASA Astrophysics Data System (ADS)

    Trobec, Roman; Depolli, Matjaž; Avbelj, Viktor

    An improved model of action potentials (AP) is proposed to increase the accuracy of simulated electrocardiograms (ECGs). ECG simulator is based on a spatial model of a left ventricle, composed of cubic cells. Three distinct APs, modeled with functions proposed by Wohlfard, have been assigned to the cells, forming epicardial, mid, and endocardial layers. Identification of exact parameter values for AP models has been done through optimization of the simulated ECGs. Results have shown that only through an introduction of a minor extension to the AP model, simulator is able to produce more realistic ECGs. The same extension also proves essential for achieving a better fit between the measured and modeled APs.

  6. Mouse ECG findings in aging, with conduction system affecting drugs and in cardiac pathologies: Development and validation of ECG analysis algorithm in mice.

    PubMed

    Merentie, Mari; Lipponen, Jukka A; Hedman, Marja; Hedman, Antti; Hartikainen, Juha; Huusko, Jenni; Lottonen-Raikaslehto, Line; Parviainen, Viktor; Laidinen, Svetlana; Karjalainen, Pasi A; Ylä-Herttuala, Seppo

    2015-12-01

    Mouse models are extremely important in studying cardiac pathologies and related electrophysiology, but very few mouse ECG analysis programs are readily available. Therefore, a mouse ECG analysis algorithm was developed and validated. Surface ECG (lead II) was acquired during transthoracic echocardiography from C57Bl/6J mice under isoflurane anesthesia. The effect of aging was studied in young (2-3 months), middle-aged (14 months) and old (20-24 months) mice. The ECG changes associated with pharmacological interventions and common cardiac pathologies, that is, acute myocardial infarction (AMI) and progressive left ventricular hypertrophy (LVH), were studied. The ECG raw data were analyzed with an in-house ECG analysis program, modified specially for mouse ECG. Aging led to increases in P-wave duration, atrioventricular conduction time (PQ interval), and intraventricular conduction time (QRS complex width), while the R-wave amplitude decreased. In addition, the prevalence of arrhythmias increased during aging. Anticholinergic atropine shortened PQ time, and beta blocker metoprolol and calcium-channel blocker verapamil increased PQ interval and decreased heart rate. The ECG changes after AMI included early JT elevation, development of Q waves, decreased R-wave amplitude, and later changes in JT/T segment. In progressive LVH model, QRS complex width was increased at 2 and especially 4 weeks timepoint, and also repolarization abnormalities were seen. Aging, drugs, AMI, and LVH led to similar ECG changes in mice as seen in humans, which could be reliably detected with this new algorithm. The developed method will be very useful for studies on cardiovascular diseases in mice. PMID:26660552

  7. Cardiac Repolarization Abnormalities and Potential Evidence for Loss of Cardiac Sodium Currents on ECGs of Patients with Chagas' Heart Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Medina, R.; Jugo, D.; Nunez, T. J.; Borrego, A.; Arellano, E.; Arenare, B.; DePalma, J. L.; Greco, E. C.; Starc, V.

    2007-01-01

    Some individuals with Chagas disease develop right precordial lead ST segment elevation in response to an ajmaline challenge test, and the prevalence of right bundle branch block (RBBB) is also high in Chagas disease. Because these same electrocardiographic abnormalities occur in the Brugada syndrome, which involves genetically defective cardiac sodium channels, acquired damage to cardiac sodium channels may also occur in Chagas disease. We studied several conventional and advanced resting 12-lead/derived Frank-lead ECG parameters in 34 patients with Chagas -related heart disease (mean age 39 14 years) and in 34 age-/gender-matched healthy controls. All ECG recordings were of 5-10 min duration, obtained in the supine position using high fidelity hardware/software (CardioSoft, Houston, TX). Even after excluding those Chagas patients who had resting BBBs, tachycardia and/or pathologic arrhythmia (n=8), significant differences remained in multiple conventional and advanced ECG parameters between the Chagas and control groups (n=26/group), especially in their respective QT interval variability indices, maximal spatial QRS-T angles and low frequency HRV powers (p=0.0006, p=0.0015 and p=0.0314 respectively). In relation to the issue of potential damage to cardiac sodium channels, the Chagas patients had: 1) greater than or equal to twice the incidence of resting ST segment elevation in leads V1-V3 (n=10/26 vs. n=5/26) and of both leftward (n=5/26 versus n=0/26) and rightward (n=7/26 versus n=3/26) QRS axis deviation than controls; 2) significantly increased filtered (40-250 Hz) QRS interval durations (92.1 8.5 versus 85.3 plus or minus 9.0 ms, p=0.022) versus controls; and 3) significantly decreased QT and especially JT interval durations versus controls (QT interval: 387.5 plus or minus 26.4 versus 408.9 plus or minus 34.6 ms, p=0.013; JT interval: 290.5 plus or minus 26.3 versus 314.8 plus or minus 31.3 ms; p=0.0029). Heart rates and Bazett-corrected QTc/JTc intervals

  8. Holter triage ambulatory ECG analysis. Accuracy and time efficiency.

    PubMed

    Cooper, D H; Kennedy, H L; Lyyski, D S; Sprague, M K

    1996-01-01

    Triage ambulatory electrocardiographic (ECG) analysis permits relatively unskilled office workers to submit 24-hour ambulatory ECG Holter tapes to an automatic instrument (model 563, Del Mar Avionics, Irvine, CA) for interpretation. The instrument system "triages" what it is capable of automatically interpreting and rejects those tapes (with high ventricular arrhythmia density) requiring thorough analysis. Nevertheless, a trained cardiovascular technician ultimately edits what is accepted for analysis. This study examined the clinical validity of one manufacturer's triage instrumentation with regard to accuracy and time efficiency for interpreting ventricular arrhythmia. A database of 50 Holter tapes stratified for frequency of ventricular ectopic beats (VEBs) was examined by triage, conventional, and full-disclosure hand-count Holter analysis. Half of the tapes were found to be automatically analyzable by the triage method. Comparison of the VEB accuracy of triage versus conventional analysis using the full-disclosure hand count as the standard showed that triage analysis overall appeared as accurate as conventional Holter analysis but had limitations in detecting ventricular tachycardia (VT) runs. Overall sensitivity, positive predictive accuracy, and false positive rate for the triage ambulatory ECG analysis were 96, 99, and 0.9%, respectively, for isolated VEBs, 92, 93, and 7%, respectively, for ventricular couplets, and 48, 93, and 7%, respectively, for VT. Error in VT detection by triage analysis occurred on a single tape. Of the remaining 11 tapes containing VT runs, accuracy was significantly increased, with a sensitivity of 86%, positive predictive accuracy of 90%, and false positive rate of 10%. Stopwatch-recorded time efficiency was carefully logged during both triage and conventional ambulatory ECG analysis and divided into five time phases: secretarial, machine, analysis, editing, and total time. Triage analysis was significantly (P < .05) more time

  9. Independent Prognostic Value of Single and Multiple Non-Specific 12-Lead Electrocardiographic Findings for Long-Term Cardiovascular Outcomes: A Prospective Cohort Study

    PubMed Central

    Sawano, Mitsuaki; Kohsaka, Shun; Okamura, Tomonori; Inohara, Taku; Sugiyama, Daisuke; Shiraishi, Yasuyuki; Watanabe, Makoto; Nakamura, Yasuyuki; Higashiyama, Aya; Kadota, Aya; Okuda, Nagako; Murakami, Yoshitaka; Ohkubo, Takayoshi; Fujiyoshi, Akira; Miura, Katsuyuki; Okayama, Akira; Ueshima, Hirotsugu

    2016-01-01

    Aims The long-term prognostic effect of non-specific 12-lead electrocardiogram findings is unknown. We aimed to evaluate the cumulative prognostic impact of axial, structural, and repolarization categorical abnormalities on cardiovascular death, independent from traditional risk scoring systems such as the Framingham risk score and the NIPPON DATA80 risk chart. Methods and Results A total of 16,816 healthy men and women from two prospective, longitudinal cohort studies were evaluated. 3,794 (22.6%) individuals died during a median follow-up of 15 years (range, 2.0–24 years). Hazard ratios for cardiovascular death, all-cause death, coronary death and stroke death were calculated for the cumulative and independent axial, structural, and repolarization categorical abnormalities adjusted for the Framingham risk score and the NIPPON DATA80 risk chart. Individuals with two or more abnormal categories had a higher risk of cardiovascular death after adjustment for Framingham risk score (men: HR 4.27, 95%CI 3.35–5.45; women: HR 4.83, 95%CI 3.76–6.22) and NIPPON DATA80 risk chart (men: HR 2.39, 95%CI 1.87–3.07; women: HR 2.04, 95%CI 1.58–2.64). Conclusion Cumulative findings of axial, structural, and repolarization abnormalities are significant predictors of long-term cardiovascular death in asymptomatic, healthy individuals independent of traditional risk stratification systems. PMID:27362562

  10. ECG of the Month: Subtle ECG Change in a 31 Year-Old Man with Recent Chest Pain.

    PubMed

    Glancy, D Luke

    2016-01-01

    A 31-year-old man had an hour of pain across the upper portion of his chest anteriorly, and it radiated down the inner aspects of both arms. The pain came while he was walking and gradually disappeared as he sat quietly. Six Rolaid tablets did not seem to alter the pain. The pain was unaccompanied by dyspnea, sweating, nausea or vomiting. The night before the patient had had similar pain relieved by Rolaids and belching. After the second episode of pain, he went to the emergency department of a local hospital where an ECG was recorded. PMID:27598900

  11. Analysis of ECG from pole-zero models.

    PubMed

    Murthy, I S; Prasad, G S

    1992-07-01

    A complete solution to the fundamental problem of ECG analysis, viz., delineation of the signal into its component waves, is proposed from a system theoretic point of view. The discrete cosine transform of a bell shaped biphasic function is approximated mathematically by a system function with two poles and two zeros, i.e., of order (2, 2). Using this concept as the basis, a pole-zero model of suitable order is derived from the discrete cosine transform (DCT) of the given signal using Steiglitz-McBride method. This model is expanded into a unique set of partial fractions each of order (2, 2), and a biphasic function is recovered from each one of these fractions in the inverse process. Each of the P and T waves usually requires only one biphasic function, while the QRS complex needs two or at most three such fractions. A one-to-one relationship between the pole pattern in the z-plane and component wave pattern in the time signal is established. Results of analysis of continuous strips of ECG show that the delineated component waves are in excellent agreement with the original waves both qualitatively and quantitatively. The method is robust for the analysis of signals with artifacts of various kinds, independent of the sampling rate used, and is free from ad hoc back and forth search procedures. PMID:1516941

  12. Respiration effect on single and multi lead ECG delineation strategies.

    PubMed

    Noriega, M; Martinez, J P; Laguna, P; Romero, D; Bailon, R; Almeida, R

    2010-01-01

    The main purpose of this work is to study the influence of the mechanical effect of the respiration over T wave end delineation. The performance of automatic delineation systems based in Wavelet Transform (WT) was compared, considering single lead (SL), post processing selection rules (SLR) and multi lead (ML) approaches. The T wave locations obtained over real and simulated ECG signals were analyzed together with the respective respiratory signal (ECG-derived or simulated). The linear relation between the variations on obtained marks and the mechanical effect of the respiration was measured using spectral coherence. With respect to the ML strategy we also explored the evolution of the vectorcardiographic spatial loop using the direction of maximum projection of the WT in the region close to the T wave end (T(e)). The relation between this direction and the respiration is also explored. The marks obtained from the SLR and ML delineation strategies show advantage over the SL strategy based marks. The coherence around the respiratory frequency between the respiratory signal and the error in T end marks was found to be higher using SLR (a minimum of 0.92) than using ML (a maximum of 0.80). According to obtained results, the multi lead delineation presents a lower sensibility to the mechanical effect of the respiration for the T wave end delineation, particularly the obtained with ML. PMID:21096831

  13. Ubiquitous wireless ECG recording: a powerful tool physicians should embrace.

    PubMed

    Saxon, Leslie A

    2013-04-01

    The use of smart phones has increased dramatically and there are nearly a billion users on 3G and 4G networks worldwide. Nearly 60% of the U.S. population uses smart phones to access the internet, and smart phone sales now surpass those of desktop and laptop computers. The speed of wireless communication technology on 3G and 4G networks and the widespread adoption and use of iOS equipped smart phones (Apple Inc., Cupertino, CA, USA) provide infrastructure for the transmission of wireless biomedical data, including ECG data. These technologies provide an unprecedented opportunity for physicians to continually access data that can be used to detect issues before symptoms occur or to have definitive data when symptoms are present. The technology also greatly empowers and enables the possibility for unprecedented patient participation in their own medical education and health status as well as that of their social network. As patient advocates, physicians and particularly cardiac electrophysiologists should embrace the future and promise of wireless ECG recording, a technology solution that can truly scale across the global population. PMID:23421574

  14. An XML based middleware for ECG format conversion.

    PubMed

    Li, Xuchen; Vojisavljevic, Vuk; Fang, Qiang

    2009-01-01

    With the rapid development of information and communication technologies, various e-health solutions have been proposed. The digitized medical images as well as the mono-dimension medical signals are two major forms of medical information that are stored and manipulated within an electronic medical environment. Though a variety of industrial and international standards such as DICOM and HL7 have been proposed, many proprietary formats are still pervasively used by many Hospital Information System (HIS) and Picture Archiving and Communication System (PACS) vendors. Those proprietary formats are the big hurdle to form a nationwide or even worldwide e-health network. Thus there is an imperative need to solve the medical data integration problem. Moreover, many small clinics, many hospitals in developing countries and some regional hospitals in developed countries, which have limited budget, have been shunned from embracing the latest medical information technologies due to their high costs. In this paper, we propose an XML based middleware which acts as a translation engine to seamlessly integrate clinical ECG data from a variety of proprietary data formats. Furthermore, this ECG translation engine is designed in a way that it can be integrated into an existing PACS to provide a low cost medical information integration and storage solution. PMID:19964551

  15. Computationally efficient sub-band coding of ECG signals.

    PubMed

    Husøy, J H; Gjerde, T

    1996-03-01

    A data compression technique is presented for the compression of discrete time electrocardiogram (ECG) signals. The compression system is based on sub-band coding, a technique traditionally used for compressing speech and images. The sub-band coder employs quadrature mirror filter banks (QMF) with up to 32 critically sampled sub-bands. Both finite impulse response (FIR) and the more computationally efficient infinite impulse response (IIR) filter banks are considered as candidates in a complete ECG coding system. The sub-bands are threshold, quantized using uniform quantizers and run-length coded. The output of the run-length coder is further compressed by a Huffman coder. Extensive simulations indicate that 16 sub-bands are a suitable choice for this application. Furthermore, IIR filter banks are preferable due to their superiority in terms of computational efficiency. We conclude that the present scheme, which is suitable for real time implementation on a PC, can provide compression ratios between 5 and 15 without loss of clinical information. PMID:8673319

  16. Scoring consensus of multiple ECG annotators by optimal sequence alignment.

    PubMed

    Haghpanahi, Masoumeh; Sameni, Reza; Borkholder, David A

    2014-01-01

    Development of ECG delineation algorithms has been an area of intense research in the field of computational cardiology for the past few decades. However, devising evaluation techniques for scoring and/or merging the results of such algorithms, both in the presence or absence of gold standards, still remains as a challenge. This is mainly due to existence of missed or erroneous determination of fiducial points in the results of different annotation algorithms. The discrepancy between different annotators increases when the reference signal includes arrhythmias or significant noise and its morphology deviates from a clean ECG signal. In this work, we propose a new approach to evaluate and compare the results of different annotators under such conditions. Specifically, we use sequence alignment techniques similar to those used in bioinformatics for the alignment of gene sequences. Our approach is based on dynamic programming where adequate mismatch penalties, depending on the type of the fiducial point and the underlying signal, are defined to optimally align the annotation sequences. We also discuss how to extend the algorithm for more than two sequences by using suitable data structures to align multiple annotation sequences with each other. Once the sequences are aligned, different heuristics are devised to evaluate the performance against a gold standard annotation, or to merge the results of multiple annotations when no gold standard exists. PMID:25570339

  17. Simple electrocardiogram (ECG) signal analyzer for homecare system among the elderly.

    PubMed

    Lin, Liuh-Chii; Yeh, Yun-Chi; Ho, Kuei-Jung

    2015-01-01

    This study presents a simple electrocardiogram (ECG) signal analyzer for homecare system among the elderly. It can transmit ECG signals of patient around his/her house through Bluetooth to computers in house. ECG signals are analyzed by the computer. If abnormal case of heartbeat is found, the emergency call is automatically dialed. Meanwhile, the determined heartbeat case of ECG signals will be forwarded to patient's MD through internet. Therefore, the patient can do whatever he/she wants around his/her house with our proposed simple cardiac arrhythmias signal analyzer. The proposed consists of five major processing stages: (i) preprocessing stage for enlarging ECG signals' amplitude and eliminating noises; (ii) ECG signal transmitter/receiver stage, ECG signals are transmitted through Bluetooth to the signal receiver in patient's house; (iii) QRS extraction stage for detecting QRS waveform using the Difference Operation Method (DOM) method; (iv) qualitative features stage for qualitative feature selection on ECG signals; and (v) classification stage for determining patient's heartbeat cases using the Principal Component Analysis (PCA) method. In the experiment, the total classification accuracy (TCA) was approximately 93.19% in average. PMID:26684565

  18. Interactive Videoconference Supported Teaching in Undergraduate Nursing: A Case Study for ECG

    ERIC Educational Resources Information Center

    Celikkan, Ufuk; Senuzun, Fisun; Sari, Dilek; Sahin, Yasar Guneri

    2013-01-01

    This paper describes how interactive videoconference can benefit the Electrocardiography (ECG) skills of undergraduate nursing students. We have implemented a learning system that interactively transfers the visual and practical aspects of ECG from a nursing skills lab into a classroom where the theoretical part of the course is taught. The…

  19. Anomaly Detection using Multi-channel FLAC for Supporting Diagnosis of ECG

    NASA Astrophysics Data System (ADS)

    Ye, Jiaxing; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Otsu, Nobuyuki

    In this paper, we propose an approach for abnormality detection in multi-channel ECG signals. This system serves as front end to detect the irregular sections in ECG signals, where symptoms may be observed. Thereby, the doctor can focus on only the detected suspected symptom sections, ignoring the disease-free parts. Hence the workload of the inspection by the doctors is significantly reduced and the diagnosis efficiency can be sharply improved. For extracting the predominant characteristics of multi-channel ECG signals, we propose multi-channel Fourier local auto-correlations (m-FLAC) features on multi-channel complex spectrograms. The method characterizes the amplitude and phase information as well as temporal dynamics of the multi-channel ECG signal. At the anomaly detection stage, we employ complex subspace method for statistically modeling the normal (healthy) ECG patterns as in one-class learning. Then, we investigate the input ECG signals by measuring its deviation distance to the trained subspace. The ECG sections with disordered spectral distributions can be effectively discerned based on such distance metric. To validate the proposed approach, we conducted experiments on ECG dataset. The experimental results demonstrated the effectiveness of the proposed approach including promising performance and high efficiency, compared to conventional methods.

  20. Dry Electrodes for ECG and Pulse Transit Time for Blood Pressure: A Wearable Sensor and Smartphone Communication Approach

    NASA Astrophysics Data System (ADS)

    Shyamkumar, Prashanth

    Cardiovascular Diseases (CVDs) have been a major cause for deaths in both men and women in United States. Cerebrovascular Diseases like Strokes are known to have origins in CVDs as well. Moreover, nearly 18 Million Americans have a history of myocardial infarction and are currently undergoing cardiac rehabilitation. Consequently, CVDs are the highest costing disease groups and cost more than all types of cancer combined. However, significant cost reduction is possible through the effective use of the vast advances in embedded and pervasive electronic devices for healthcare. These devices can automate and move a significant portion of disease management to the patient's home through cyber connectivity, a concept known as point-of-care (POC) diagnostics and healthcare services. POC can minimize hospital visits and potentially avoid admission altogether with prognostic tools that give advanced notice of any abnormalities or chronic illnesses so that the treatment can be planned in advance. The POC concept requires continuous remote health monitoring. Therefore, the various sensors needed for comprehensive monitoring need to be worn daily and throughout the day. Moreover, true "roaming" capability is necessary so that it does not restrict the user's travel or his/her quotidian activities. Two biomedical signals namely, Electrocardiogram (ECG) and Blood Pressure are important diagnostic tests in assessing the cardiac health of a person. To that end, the research presented in this thesis: First , describes the development of a remote monitoring solution based on Bluetooth(TM), smartphones and cyber infrastructure for cardiac care called e-nanoflex. Second, Sensors for ECG that are compatible with everyday life style namely, (a) dry, gel-less vertically aligned gold nanowire electrodes, (b) dry textile-based conductive sensor electrodes to address the need for this technology to monitor cardiovascular diseases in women are tested with e-nanoflex and discussed. Third, non

  1. How can we identify the best implantation site for an ECG event recorder?

    PubMed

    Zellerhoff, C; Himmrich, E; Nebeling, D; Przibille, O; Nowak, B; Liebrich, A

    2000-10-01

    The aim of this study was to show how to find the preferable implantation site for an ECG event recorder (ECG-ER). We compared the quality of bipolar ECG recordings (4-cm electrode distance, vertical position) in 65 patients at the following sites: left and right subclavicular, left and right anterior axillary line (4th-5th interspace), left and right of the sternum (4th-5th interspace), heart apex, and subxyphoidal. The results were compared to the standard ECG lead II. In 30 patients, an additional comparison between vertical and horizontal ECG registrations was done using the same sites. ECG signals in five patients were compared positioning the electrodes towards the skin with turning them towards the muscle during ECG-ER implantation. The best ECG quality (defined as highest QRS amplitude, best visible P wave and/or pacemaker spike, best measurable QRS duration, and QT interval) and best agreement with the standard lead II was found in 68% on the left of the sternum, significantly less often (P < 0.001) on the right of the sternum (14.1%), left subclavicular (6.9%), apical (5.5%) and subxyphoidal (4.2%). A significantly higher QRS amplitude was measured and the P wave was more often visible in the vertical electrode position than in the horizontal position. In all five ECG-ER patients, there was a good agreement between the bipolar surface ECG at the implantation site and ECG-ER stored signals. A significant noise signal occurred in all five patients when the ECG-ER was implanted with electrodes towards the muscle. A P wave was visible in only three of those patients, but there was an insignificantly higher QRS amplitude than in ECG-ERs implanted with electrodes towards the skin. From these results, it can be concluded that the best implantation site for an ECG-ER is right or left of the sternum, positioning the electrodes vertically and towards the skin. PMID:11060877

  2. Identification of hypoglycemia and hyperglycemia in type 1 diabetic patients using ECG parameters.

    PubMed

    Nguyen, Linh Lan; Su, Steven; Nguyen, Hung T

    2012-01-01

    Hypoglycemia and Hyperglycemia are both serious diseases related to diabetes mellitus. Among Type 1 Diabetic patients, there are who experience both hypoglycemic and hyperglycemic events. The aim of this study was to identify of hypoglycemia and hyperglycemia based on ECG changes in this population. An ECG Acquisition and Analysis System based on LabVIEW software has been developed for collecting ECG signals and extracting features with abnormal changes. ECG parameters included Heart rate (HR), corrected QT interval (QTeC), PR interval, corrected RT interval (RTC) and corrected TpTe interval (TpTe(C)). Blood glucose levels were used to classify glycemic states in subjects as hypoglycemic state (≤ 60 mml/l, Hypo), as normoglycemic state (80 to 110 mmol/l, Normo), and as hyperglycemic state 150 mml/l, Hyper). The results indicated that hypoglycemic and hyperglycemic states produce significant inverse changes on those ECG parameters. PMID:23366486

  3. Left Ventricular Hypertrophy: An allometric comparative analysis of different ECG markers

    NASA Astrophysics Data System (ADS)

    Bonomini, M. P.; Ingallina, F.; Barone, V.; Valentinuzzi, M. E.; Arini, P. D.

    2011-12-01

    Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Left ventricular hypertrophy (LVH) is the heart adaptation to excessive load (systolic or diastolic). The increase in left ventricular mass leads to an increase in the electrocardiographic voltages. Based on clinical data, we compared the allometric behavior of three different ECG markers of LVH. To do this, the allometric fit AECG = δ + β (VM) relating left ventricular mass (estimated from ecocardiographic data) and ECG amplitudes (expressed as the Cornell-Voltage, Sokolow and the ECG overall voltage indexes) were compared. Besides, sensitivity and specifity for each index were analyzed. The more sensitive the ECG criteria, the better the allometric fit. In conclusion: The allometric paradigm should be regarded as the way to design new and more sensitive ECG-based LVH markers.

  4. [ECG QRS signal detection and control system design of ventricular assist device].

    PubMed

    Liao, Huogen; Yang, Ming; Zhuang, Xiaoqi; Huang, Huan

    2013-06-01

    In order to achieve auxiliary timing of ventricular assisting device to automatically track the ECG signals, we designed a set of ECG acquisition circuit in our study for the first time. Then we carried out ECG acquisition, smoothing filter and QRS detection on the LabVIEW. With the QRS signal as a benchmark, the control system immediately triggered ventricular assisting device to trigger the heart to contract for ejection for about 300 ms, and then to assist to make it relax. The practical effects of the experiment proved that ECG acquisition circuit had the feature of strong anti-interference, and control system had no false QRS detection and no false triggering of assist device. This achieves the auxiliary timing which could automatically track the ECG signal. PMID:23865330

  5. The Abnormal vs. Normal ECG Classification Based on Key Features and Statistical Learning

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Tong, Jia-Fei; Liu, Xia

    As cardiovascular diseases appear frequently in modern society, the medicine and health system should be adjusted to meet the new requirements. Chinese government has planned to establish basic community medical insurance system (BCMIS) before 2020, where remote medical service is one of core issues. Therefore, we have developed the "remote network hospital system" which includes data server and diagnosis terminal by the aid of wireless detector to sample ECG. To improve the efficiency of ECG processing, in this paper, abnormal vs. normal ECG classification approach based on key features and statistical learning is presented, and the results are analyzed. Large amount of normal ECG could be filtered by computer automatically and abnormal ECG is left to be diagnosed specially by physicians.

  6. Non-invasive Foetal ECG – a Comparable Alternative to the Doppler CTG?

    PubMed Central

    Reinhard, J.; Louwen, F.

    2012-01-01

    This review discusses the alternative of using the non-invasive foetal ECG compared with the conventionally used Doppler CTG. Non-invasive abdominal electrocardiograms (ECG) have been approved for clinical routine since 2008; subsequently they were also approved for antepartum and subpartum procedures. The first study results have been published. Non-invasive foetal ECG is especially indicated during early pregnancy, while the Doppler CTG is recommended for the vernix period. Beyond the vernix period no difference has been recorded in the success rate of either approach. The foetal ECG signal quality is independent of the BMI, whereas the success rate of the Doppler CTG is diminished with an increased BMI. During the first stage of labour, non-invasive foetal ECG demonstrates better signal quality; however during the second stage of labour no difference has been identified between the methods. PMID:25308981

  7. Relative Amplitude based Features of characteristic ECG-Peaks for Identification of Coronary Artery Disease

    NASA Astrophysics Data System (ADS)

    Gohel, Bakul; Tiwary, U. S.; Lahiri, T.

    Coronary artery disease or Myocardial Infarction is the leading cause of death and disability in the world. ECG is widely used as a cheap diagnostic tool for diagnosis of coronary artery disease but has low sensitivity with the present criteria based on ST-segment, T wave and Q wave changes. So to increase the sensitivity of the ECG we have introduced relative amplitude based new features of characteristic ‘R’ and ‘S’ ECG-peaks between two leads. Relative amplitude based features shows remarkable capability in discriminating Myocardial Infarction and Healthy pattern using backpropogation neural network classifier yield results with 81.82% sensitivity and 81.82% specificity. Also relative amplitude might be an efficient method in minimizing the effect of body composition on ECG amplitude based features without use of any information from other than ECG

  8. Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation.

    PubMed

    Sidek, Khairul Azami; Khalil, Ibrahim

    2013-01-01

    Electrocardiogram (ECG) based biometric matching suffers from high misclassification error with lower sampling frequency data. This situation may lead to an unreliable and vulnerable identity authentication process in high security applications. In this paper, quality enhancement techniques for ECG data with low sampling frequency has been proposed for person identification based on piecewise cubic Hermite interpolation (PCHIP) and piecewise cubic spline interpolation (SPLINE). A total of 70 ECG recordings from 4 different public ECG databases with 2 different sampling frequencies were applied for development and performance comparison purposes. An analytical method was used for feature extraction. The ECG recordings were segmented into two parts: the enrolment and recognition datasets. Three biometric matching methods, namely, Cross Correlation (CC), Percent Root-Mean-Square Deviation (PRD) and Wavelet Distance Measurement (WDM) were used for performance evaluation before and after applying interpolation techniques. Results of the experiments suggest that biometric matching with interpolated ECG data on average achieved higher matching percentage value of up to 4% for CC, 3% for PRD and 94% for WDM. These results are compared with the existing method when using ECG recordings with lower sampling frequency. Moreover, increasing the sample size from 56 to 70 subjects improves the results of the experiment by 4% for CC, 14.6% for PRD and 0.3% for WDM. Furthermore, higher classification accuracy of up to 99.1% for PCHIP and 99.2% for SPLINE with interpolated ECG data as compared of up to 97.2% without interpolation ECG data verifies the study claim that applying interpolation techniques enhances the quality of the ECG data. PMID:23062461

  9. P wave detection in ECG signals using an extended Kalman filter: an evaluation in different arrhythmia contexts.

    PubMed

    Rahimpour, M; Mohammadzadeh Asl, B

    2016-07-01

    Monitoring atrial activity via P waves, is an important feature of the arrhythmia detection procedure. The aim of this paper is to present an algorithm for P wave detection in normal and some abnormal records by improving existing methods in the field of signal processing. In contrast to the classical approaches, which are completely blind to signal dynamics, our proposed method uses the extended Kalman filter, EKF25, to estimate the state variables of the equations modeling the dynamic of an ECG signal. This method is a modified version of the nonlinear dynamical model previously introduced for a generation of synthetic ECG signals and fiducial point extraction in normal ones. It is capable of estimating the separate types of activity of the heart with reasonable accuracy and performs well in the presence of morphological variations in the waveforms and ectopic beats. The MIT-BIH Arrhythmia and QT databases have been used to evaluate the performance of the proposed method. The results show that this method has Se  =  98.38% and Pr  =  96.74% in the overall records (considering normal and abnormal rhythms). PMID:27321699

  10. P and T wave detection on multichannel ECG using FRI.

    PubMed

    Nair, Amrish; Marziliano, Pina

    2014-01-01

    This paper proposes a new method for detecting P and T waves in multilead ECG based on the Finite Rate of Innovation(FRI) technique [8]. A simple QRS detection scheme will be presented followed by a novel P and T wave detection algorithm. The novelty here is the modelling of the P and T wave using a Gaussian kernel. Using a 2D wavelet decomposition, the approximation coefficients are windowed based on the QRS locations. The FRI method is then used to identify the Gaussian distribution present in the window which will in turn provide the locations of the P and T wave. This method was tested on more than an hour of clean and noisy data and shows good performance in the noisy case. PMID:25570440

  11. Modes of heart rate compensations during exercise ECG test.

    PubMed

    Viik, Jari

    2005-12-01

    Heart rate (HR) compensation of electrocardiographic (ECG) parameters is not an unique concept. However, in the detection of coronary artery disease (CAD) ST-segment plotted as a function HR has been studied extensively during the last 20 years. In clinical practice quantitative methods are evolved for the exercise phase of the exercise test and post-exercise recovery phase has not been studied as extensively. Quantitative parameters, as ST/HR hysteresis, which represents the average difference in ST depressions between the exercise and recovery phases at an identical HR up to three minutes of recovery, has been shown to improve the detection of CAD. Furthermore, the ST/HR parameters have been demonstrated to be very competent in a prediction of mortality. PMID:16330399

  12. [ECG indices in dogs after inhalation of 239Pu].

    PubMed

    Karpova, V N

    1985-11-01

    Dogs of both sexes aged 2 to 4 were subjected to inhalation inoculation with polymer 239Pu or submicron 239PuO2 aerosols in amounts close to acute, subacute and chronically effective ones. ECG was recorded in standard, amplified and single leads (V3). All calculations were done by lead II. Signs of the right heart overburdening were noted in the presence of the P-pulmonale complex, deep S1 wave or cardiac electrical axis of SI-SII-SIII type. Signs of the right heart overburdening were revealed after inhalation of polimer 239Pu (70%). The absence of similar changes in damage caused by 239Pu could be attributed to its fast resorption from the lungs resulting in more moderate lesion of the respiratory organs. PMID:4068946

  13. Low-power analog integrated circuits for wireless ECG acquisition systems.

    PubMed

    Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh

    2012-09-01

    This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs. PMID:22374371

  14. A Hygroscopic Sensor Electrode for Fast Stabilized Non-Contact ECG Signal Acquisition

    PubMed Central

    Fong, Ee-May; Chung, Wan-Young

    2015-01-01

    A capacitive electrocardiography (cECG) technique using a non-invasive ECG measuring technology that does not require direct contact between the sensor and the skin has attracted much interest. The system encounters several challenges when the sensor electrode and subject’s skin are weakly coupled. Because there is no direct physical contact between the subject and any grounding point, there is no discharge path for the built-up electrostatic charge. Subsequently, the electrostatic charge build-up can temporarily contaminate the ECG signal from being clearly visible; a stabilization period (3–15 min) is required for the measurement of a clean, stable ECG signal at low humidity levels (below 55% relative humidity). Therefore, to obtain a clear ECG signal without noise and to reduce the ECG signal stabilization time to within 2 min in a dry ambient environment, we have developed a fabric electrode with embedded polymer (FEEP). The designed hygroscopic FEEP has an embedded superabsorbent polymer layer. The principle of FEEP as a conductive electrode is to provide humidity to the capacitive coupling to ensure strong coupling and to allow for the measurement of a stable, clear biomedical signal. The evaluation results show that hygroscopic FEEP is capable of rapidly measuring high-accuracy ECG signals with a higher SNR ratio. PMID:26251913

  15. A Review of Fetal ECG Signal Processing; Issues and Promising Directions

    PubMed Central

    Sameni, Reza; Clifford, Gari D.

    2010-01-01

    The field of electrocardiography has been in existence for over a century, yet despite significant advances in adult clinical electrocardiography, signal processing techniques and fast digital processors, the analysis of fetal ECGs is still in its infancy. This is, partly due to a lack of availability of gold standard databases, partly due to the relatively low signal-to-noise ratio of the fetal ECG compared to the maternal ECG (caused by the various media between the fetal heart and the measuring electrodes, and the fact that the fetal heart is simply smaller), and in part, due to the less complete clinical knowledge concerning fetal cardiac function and development. In this paper we review a range of promising recording and signal processing techniques for fetal ECG analysis that have been developed over the last forty years, and discuss both their shortcomings and advantages. Before doing so, however, we review fetal cardiac development, and the etiology of the fetal ECG. A selection of relevant models for the fetal/maternal ECG mixture is also discussed. In light of current understanding of the fetal ECG, we then attempt to justify recommendations for promising future directions in signal processing, and database creation. PMID:21614148

  16. Assurance of energy efficiency and data security for ECG transmission in BASNs.

    PubMed

    Ma, Tao; Shrestha, Pradhumna Lal; Hempel, Michael; Peng, Dongming; Sharif, Hamid; Chen, Hsiao-Hwa

    2012-04-01

    With the technological advancement in body area sensor networks (BASNs), low cost high quality electrocardiographic (ECG) diagnosis systems have become important equipment for healthcare service providers. However, energy consumption and data security with ECG systems in BASNs are still two major challenges to tackle. In this study, we investigate the properties of compressed ECG data for energy saving as an effort to devise a selective encryption mechanism and a two-rate unequal error protection (UEP) scheme. The proposed selective encryption mechanism provides a simple and yet effective security solution for an ECG sensor-based communication platform, where only one percent of data is encrypted without compromising ECG data security. This part of the encrypted data is essential to ECG data quality due to its unequally important contribution to distortion reduction. The two-rate UEP scheme achieves a significant additional energy saving due to its unequal investment of communication energy to the outcomes of the selective encryption, and thus, it maintains a high ECG data transmission quality. Our results show the improvements in communication energy saving of about 40%, and demonstrate a higher transmission quality and security measured in terms of wavelet-based weighted percent root-mean-squared difference. PMID:22231147

  17. A Hygroscopic Sensor Electrode for Fast Stabilized Non-Contact ECG Signal Acquisition.

    PubMed

    Fong, Ee-May; Chung, Wan-Young

    2015-01-01

    A capacitive electrocardiography (cECG) technique using a non-invasive ECG measuring technology that does not require direct contact between the sensor and the skin has attracted much interest. The system encounters several challenges when the sensor electrode and subject's skin are weakly coupled. Because there is no direct physical contact between the subject and any grounding point, there is no discharge path for the built-up electrostatic charge. Subsequently, the electrostatic charge build-up can temporarily contaminate the ECG signal from being clearly visible; a stabilization period (3-15 min) is required for the measurement of a clean, stable ECG signal at low humidity levels (below 55% relative humidity). Therefore, to obtain a clear ECG signal without noise and to reduce the ECG signal stabilization time to within 2 min in a dry ambient environment, we have developed a fabric electrode with embedded polymer (FEEP). The designed hygroscopic FEEP has an embedded superabsorbent polymer layer. The principle of FEEP as a conductive electrode is to provide humidity to the capacitive coupling to ensure strong coupling and to allow for the measurement of a stable, clear biomedical signal. The evaluation results show that hygroscopic FEEP is capable of rapidly measuring high-accuracy ECG signals with a higher SNR ratio. PMID:26251913

  18. Detection of Cardiac Abnormalities from Multilead ECG using Multiscale Phase Alternation Features.

    PubMed

    Tripathy, R K; Dandapat, S

    2016-06-01

    The cardiac activities such as the depolarization and the relaxation of atria and ventricles are observed in electrocardiogram (ECG). The changes in the morphological features of ECG are the symptoms of particular heart pathology. It is a cumbersome task for medical experts to visually identify any subtle changes in the morphological features during 24 hours of ECG recording. Therefore, the automated analysis of ECG signal is a need for accurate detection of cardiac abnormalities. In this paper, a novel method for automated detection of cardiac abnormalities from multilead ECG is proposed. The method uses multiscale phase alternation (PA) features of multilead ECG and two classifiers, k-nearest neighbor (KNN) and fuzzy KNN for classification of bundle branch block (BBB), myocardial infarction (MI), heart muscle defect (HMD) and healthy control (HC). The dual tree complex wavelet transform (DTCWT) is used to decompose the ECG signal of each lead into complex wavelet coefficients at different scales. The phase of the complex wavelet coefficients is computed and the PA values at each wavelet scale are used as features for detection and classification of cardiac abnormalities. A publicly available multilead ECG database (PTB database) is used for testing of the proposed method. The experimental results show that, the proposed multiscale PA features and the fuzzy KNN classifier have better performance for detection of cardiac abnormalities with sensitivity values of 78.12 %, 80.90 % and 94.31 % for BBB, HMD and MI classes. The sensitivity value of proposed method for MI class is compared with the state-of-art techniques from multilead ECG. PMID:27118009

  19. Faxing ECGs from peripheral hospitals to Tertiary Paediatric Cardiology Units- Is it Safe and Sustainable?

    PubMed Central

    McGrath, Sam; Skinner, Greg; Morgan, Gareth J

    2014-01-01

    Intoduction Recent local involvement with the United Kingdom“Safe and Sustainable review of paediatric cardiology services” has highlighted the need for development of clinical networks and improvement of the communication infrastructure within and between teams. One common communication between peripheral and tertiary hospitals is facsimile transfer of electrocardiograms. The quality of fax transmission can be variable, raising concerns regarding the quality of the received image, accuracy of the diagnosis and appropriateness of the resultant advice. Methods We performed a systematic quality evaluation of faxed ECGs to determine whether they should be replaced on the basis of patient safety and information governance. A sample of 50 ECGs was selected from over 300 which had been faxed to our tertiary department. These were scored according to a structured system leading to a 10 point Likert scale, assessing technical quality and the ability to make a clinically relevant assessment of the information. Results Only 1 from 50 faxed ECGs fulfilled all 9 objective criteria set. Heart rate and quadrant of the QRS axis were only identifiable in 10%. Comparing the faxed ECGs with the rating given to an original ECG confirmed a significant difference in the interpretability of faxed and original ECGs (p<0.05). Conclusion Our study suggests that faxed ECGs do not provide consistent, accurate diagnostic information. It suggests that this currently widespread practice should be considered as a potential patient safety issue within developing paediatric cardiology networks. We would recommend that faxing of ECGs be replaced with scanning of ECGs, transmitted via secure email. PMID:24757263

  20. Diagnosis of cardiovascular abnormalities from compressed ECG: a data mining-based approach.

    PubMed

    Sufi, Fahim; Khalil, Ibrahim

    2011-01-01

    Usage of compressed ECG for fast and efficient telecardiology application is crucial, as ECG signals are enormously large in size. However, conventional ECG diagnosis algorithms require the compressed ECG packets to be decompressed before diagnosis can be performed. This added step of decompression before performing diagnosis for every ECG packet introduces unnecessary delay, which is undesirable for cardiovascular diseased (CVD) patients. In this paper, we are demonstrating an innovative technique that performs real-time classification of CVD. With the help of this real-time classification of CVD, the emergency personnel or the hospital can automatically be notified via SMS/MMS/e-mail when a life-threatening cardiac abnormality of the CVD affected patient is detected. Our proposed system initially uses data mining techniques, such as attribute selection (i.e., selects only a few features from the compressed ECG) and expectation maximization (EM)-based clustering. These data mining techniques running on a hospital server generate a set of constraints for representing each of the abnormalities. Then, the patient's mobile phone receives these set of constraints and employs a rule-based system that can identify each of abnormal beats in real time. Our experimentation results on 50 MIT-BIH ECG entries reveal that the proposed approach can successfully detect cardiac abnormalities (e.g., ventricular flutter/fibrillation, premature ventricular contraction, atrial fibrillation, etc.) with 97% accuracy on average. This innovative data mining technique on compressed ECG packets enables faster identification of cardiac abnormality directly from the compressed ECG, helping to build an efficient telecardiology diagnosis system. PMID:21097383

  1. Diagnostic quality of time-averaged ECG-gated CT data

    NASA Astrophysics Data System (ADS)

    Klein, Almar; Oostveen, Luuk J.; Greuter, Marcel J. W.; Hoogeveen, Yvonne; Schultze Kool, Leo J.; Slump, Cornelis H.; Renema, W. Klaas Jan

    2009-02-01

    Purpose: ECG-gated CTA allows visualization of the aneurysm and stentgraft during the different phases of the cardiac cycle, although with a lower SNR per cardiac phase than without ECG gating using the same dose. In our institution, abdominal aortic aneurysm (AAA) is evaluated using non-ECG-gated CTA. Some common CT scanners cannot reconstruct a non-gated volume from ECG-gated acquired data. In order to obtain the same diagnostic image quality, we propose offline temporal averaging of the ECG-gated data. This process, though straightforward, is fundamentally different from taking a non-gated scan, and its result will certainly differ as well. The purpose of this study is to quantitatively investigate how good off-line averaging approximates a non-gated scan. Method: Non-gated and ECG-gated CT scans have been performed on a phantom (Catphan 500). Afterwards the phases of the ECG-gated CTA data were averaged to create a third dataset. The three sets are compared with respect to noise properties (NPS) and frequency response (MTF). To study motion artifacts identical scans were acquired on a programmable dynamic phantom. Results and Conclusions: The experiments show that the spatial frequency content is not affected by the averaging process. The minor differences observed for the noise properties and motion artifacts are in favor of the averaged data. Therefore the averaged ECG-gated phases can be used for diagnosis. This enables the use of ECG-gating for research on stentgrafts in AAA, without impairing clinical patient care.

  2. Smartphone-based mobile health monitoring.

    PubMed

    Lee, Yong-Gyu; Jeong, Won Sig; Yoon, Gilwon

    2012-10-01

    We developed a health monitoring system based on the smartphone. A compact and low-power-consuming biosignal monitoring unit (BMU) measured electrocardiogram (ECG), photoplethysmogram (PPG), temperature, oxygen saturation, energy expenditure, and location information. The 2.4 GHz Bluetooth(®) (Bluetooth SIG) network in the BMU communicated with a smartphone. Health information was sent to a remote healthcare server through a built-in 3G or Wi-Fi network in the smartphone. The remote server monitored multiple users in real-time. Normally data of vital signs were being transmitted to the server. In an emergency or for a special care case, additional information such as the waveform of the ECG and PPG were displayed at the server. For increased transmission efficiency, data compression and a simple error correction algorithm were implemented. Using a widespread smartphone, an efficient personal health monitoring system was developed and tested successfully for multiple users. PMID:23061640

  3. Estrus response and follicular development in Boer does synchronized with flugestone acetate and PGF2α or their combination with eCG or FSH.

    PubMed

    Bukar, Muhammad Modu; Yusoff, Rosnina; Haron, Abd Wahid; Dhaliwal, Gurmeet Kaur; Khan, Mohd Azam Goriman; Omar, Mohammed Ariff

    2012-10-01

    The effects of different estrus synchronization techniques on follicular development and estrus response were studied in 81 nulliparous Boer does. The does were divided into nine groups. Eight of the nine groups were synchronized with prostaglandin F2-alpha (PGF(2α)) or flugestone acetate (FGA) or their combinations, and the ninth group was a control group. In addition to the above combinations, four of the eight synchronized groups were given 5 mg follicle-stimulating hormone (FSH) and the remaining four groups were administered 300 IU equine chorionic gonadotrophin (eCG). Posttreatment follicular development was monitored until ovulation occurred using a real-time B-mode ultrasound scanner (Aloka, 500 SSD, Japan), with a 7.5-MHz transrectal linear probe. All the does from the synchronized groups that were given eCG exhibited oestrus while only 88.9% of the does synchronized with FSH showed estrus. The estrus response was observed to be the least among the does synchronized with PGF(2α) + FSH (33.3%) combination followed closely by the FGA + FSH (42.9%) combinations. It was observed that the combinations of FGA + PGF(2α) + FSH resulted in increased percentage of estrus response, duration of estrus, and ovulation. The number of follicles was higher (P < 0.05) in FSH-synchronized groups than the eCG-synchronized groups. It was concluded that the best estrus synchronization protocol in goats is the FGA + eCG with or without PGF(2α). However, the PGF(2α) + FGA + FSH method of estrus synchronization is the most promising combination for further development as a better alternative to estrus synchronization with eCG in does. PMID:22461200

  4. ECG-Guided Surveillance Technique in Cryoballoon Ablation for Paroxysmal and Persistent Atrial Fibrillation: A Strategy to Prevent From Phrenic Nerve Palsy

    PubMed Central

    Meissner, Axel; Maagh, Petra; Christoph, Arndt; Oernek, Ahmet; Plehn, Gunnar

    2016-01-01

    Aims: Phrenic nerve palsy (PNP) is still a cause for concern in Cryoballoon ablation (CBA) procedures. New surveillance techniques, such as invasive registration of the compound motor action potential (CMAP), have been thought to prevent the occurrence of PNP. The present study investigates the impact of CMAP surveillance via an alternative and non-invasive ECG-conduction technique during CBA. Methods: PVI with CBA was performed in 166 patients suffering from AF. Diaphragmal contraction was monitored by abdominal hands-on observation in Observation Group I; Observation Group II was treated using additional ECG-conduction, as a means of modified CMAP surveillance method. During the ablation of the right superior and inferior pulmonary veins, the upper extremities lead I was newly adjusted between the inferior sternum and the right chest, thereby recording the maximum CMAP. The CMAP in the above-mentioned ECG leads was continuously observed in a semi-quantitative manner. Results: PNP was observed in 10 (6%) patients in total. In Observation Group I, 6 out of 61 (9.8%) demonstrated PNP. In Observation Group II a significant decrease of PNP could be demonstrated (p <0,001) and occurred in 4 out of 105 patients (3.8%). While three patients from Observation Group I left the EP lap with an ongoing PNP, none of the patients in Observation Group II had persistent PNP outside of the EP lab. Conclusion: The present study demonstrates that additional ECG-conduction, used as modified CMAP surveillance, is an easy, effective and helpful additional safety measure to prevent PNP in CBA. PMID:27279788

  5. An integrated circuit for wireless ambulatory arrhythmia monitoring systems.

    PubMed

    Kim, Hyejung; Yazicioglu, Refet Firat; Torfs, Tom; Merken, Patrick; Van Hoof, Chris; Yoo, Hoi-Jun

    2009-01-01

    An ECG signal processor (ESP) is proposed for the low energy wireless ambulatory arrhythmia monitoring system. The ECG processor mainly performs filtering, compression, classification and encryption. The data compression flow consisting of skeleton and modified Huffman coding is the essential function to reduce the transmission energy consumption and the memory capacity, which are the most energy consuming part. The classification flow performs the arrhythmia analysis to alert the abnormality. The proposed ESP IC is implemented in 0.18-microm CMOS process and integrated into the wireless arrhythmia monitoring sensor platform. By integration of the ESP, the total system energy reduction is evaluated by 95.6%. PMID:19963908

  6. Pharmacokinetics of eCG and induction of fertile estrus in bitches using eCG followed by hCG.

    PubMed

    Stornelli, M C; García Mitacek, M C; Giménez, F; Bonaura, M C; Videla Dorna, I; de la Sota, R L; Stornelli, M A

    2012-09-15

    The aim was to design a protocol combining eCG followed by hCG for estrus induction in the bitch. In Experiment 1, three ovariohysterectomized bitches received 10 000 IU of eCG iv, and 15 days later 10 000 IU of eCG im. Blood samples were taken up to 144 h after each injection to measure eCG concentrations. In Experiment 2, 25 healthy, intact late anestrous bitches were assigned to one of five doses of eCG (5, 10, 15, 20, 44, or 50 IU/kg eCG im; [TRT5-TRT50]). Sexual behavior (SB), clinical signs of estrus (CSE) and vaginal cytology (VC) samples were obtained and scored before eCG administration and every other day until onset of estrus, or for 14 days. In Experiment 3, intact late anestrous bitches were assigned to a treatment group (TRT; n = 16) and received eCG (50 IU/kg im) followed by hCG (500 IU im) 7 days later; or to a placebo group (PLA; n = 8) where they received 1 mL saline solution im. All bitches that were induced in estrus were mated or AI with fresh semen. In Experiment 1, maximum observed concentration (C(max)) eCG were similar between im and iv routes (6.1 ± 0.9 vs. 8.6 ± 0.5 IU/mL, P > 0.08), whereas time for maximum observed concentration (T(max.)) was longer for im compared to iv routes (17.5 ± 0.5 vs. 11.6 ± 0.3 h, P < 0.01). The area under the curve (AUC) was similar for im and iv routes (P > 0.48), and eCG was detectable in serum for at least 144 h for both routes. In Experiment 2, 3 days or 3 to 5 days after treatment, all bitches in TRT50 had higher scores compared to TRT5-44 animals (P < 0.01). In TRT50, the mean interval from treatment to estrus was 4.0 ± 0.4 days. In Experiment 3, the mean interval from treatment to estrus was shorter in the TRT group compared to the PLA group (4.1 ± 3.3 vs. 68.5 ± 4.4 days, P < 0.01). The previous interestrus interval was similar for TRT and PLA groups (199.6 ± 7.2 vs. 197.5 ± 10.2 days), but the new interestrus interval was shorter for the TRT compared to the PLA group (164.0 ± 7.2 vs. 212

  7. Segmentation of ECG from Surface EMG Using DWT and EMD: A Comparison Study

    NASA Astrophysics Data System (ADS)

    Shahbakhti, Mohammad; Heydari, Elnaz; Luu, Gia Thien

    2014-10-01

    The electrocardiographic (ECG) signal is a major artifact during recording the surface electromyography (SEMG). Removal of this artifact is one of the important tasks before SEMG analysis for biomedical goals. In this paper, the application of discrete wavelet transform (DWT) and empirical mode decomposition (EMD) for elimination of ECG artifact from SEMG is investigated. The focus of this research is to reach the optimized number of decomposed levels using mean power frequency (MPF) by both techniques. In order to implement the proposed methods, ten simulated and three real ECG contaminated SEMG signals have been tested. Signal-to-noise ratio (SNR) and mean square error (MSE) between the filtered and the pure signals are applied as the performance indexes of this research. The obtained results suggest both techniques could remove ECG artifact from SEMG signals fair enough, however, DWT performs much better and faster in real data.

  8. ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA.

    PubMed

    Abbaspour, Sara; Lindén, Maria; Gholamhosseini, Hamid

    2015-01-01

    This study aims at proposing an efficient method for automated electrocardiography (ECG) artifact removal from surface electromyography (EMG) signals recorded from upper trunk muscles. Wavelet transform is applied to the simulated data set of corrupted surface EMG signals to create multidimensional signal. Afterward, independent component analysis (ICA) is used to separate ECG artifact components from the original EMG signal. Components that correspond to the ECG artifact are then identified by an automated detection algorithm and are subsequently removed using a conventional high pass filter. Finally, the results of the proposed method are compared with wavelet transform, ICA, adaptive filter and empirical mode decomposition-ICA methods. The automated artifact removal method proposed in this study successfully removes the ECG artifacts from EMG signals with a signal to noise ratio value of 9.38 while keeping the distortion of original EMG to a minimum. PMID:25980853

  9. A Human ECG Identification System Based on Ensemble Empirical Mode Decomposition

    PubMed Central

    Zhao, Zhidong; Yang, Lei; Chen, Diandian; Luo, Yi

    2013-01-01

    In this paper, a human electrocardiogram (ECG) identification system based on ensemble empirical mode decomposition (EEMD) is designed. A robust preprocessing method comprising noise elimination, heartbeat normalization and quality measurement is proposed to eliminate the effects of noise and heart rate variability. The system is independent of the heart rate. The ECG signal is decomposed into a number of intrinsic mode functions (IMFs) and Welch spectral analysis is used to extract the significant heartbeat signal features. Principal component analysis is used reduce the dimensionality of the feature space, and the K-nearest neighbors (K-NN) method is applied as the classifier tool. The proposed human ECG identification system was tested on standard MIT-BIH ECG databases: the ST change database, the long-term ST database, and the PTB database. The system achieved an identification accuracy of 95% for 90 subjects, demonstrating the effectiveness of the proposed method in terms of accuracy and robustness. PMID:23698274

  10. Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification.

    PubMed

    Owis, Mohamed I; Abou-Zied, Ahmed H; Youssef, Abou-Bakr M; Kadah, Yasser M

    2002-07-01

    We present a study of the nonlinear dynamics of electrocardiogram (ECG) signals for arrhythmia characterization. The correlation dimension and largest Lyapunov exponent are used to model the chaotic nature of five different classes of ECG signals. The model parameters are evaluated for a large number of real ECG signals within each class and the results are reported. The presented algorithms allow automatic calculation of the features. The statistical analysis of the calculated features indicates that they differ significantly between normal heart rhythm and the different arrhythmia types and, hence, can be rather useful in ECG arrhythmia detection. On the other hand, the results indicate that the discrimination between different arrhythmia types is difficult using such features. The results of this work are supported by statistical analysis that provides a clear outline for the potential uses and limitations of these features. PMID:12083309

  11. CinC Challenge 2013: comparing three algorithms to extract fetal ECG

    NASA Astrophysics Data System (ADS)

    Loja, Juan; Velecela, Esteban; Palacio-Baus, Kenneth; Astudillo, Darwin; Medina, Rubén.; Wong, Sara

    2015-12-01

    This paper reports a comparison between three fetal ECG (fECG) detectors developed during the CinC 2013 challenge for fECG detection. Algorithm A1 is based on Independent Component Analysis, A2 is based on fECG detection of RS Slope and A3 is based on Expectation-Weighted Estimation of Fiducial Points. The proposed methodology was validated using the annotated database available for the challenge. Each detector was characterized in terms of its performance by using measures of sensitivity, (Se), positive predictive value (P+) and delay time (td). Additionally, the database was contaminated with white noise for two SNR conditions. Decision fusion was tested considering the most common types of combination of detectors. Results show that the decision fusion of A1 and A2 improves fQRS detection, maintaining high Se and P+ even under low SNR conditions without a significant td increase.

  12. Broadband noise suppression and feature identification of ECG waveforms using mathematical morphology and embedding theorem.

    PubMed

    Ji, T Y; Wu, Q H

    2013-12-01

    The paper presents an adaptive morphological filter developed using multiscale mathematical morphology (MM) to reject broadband noise from ECG signals without affecting the feature waveforms. As a pre-processing procedure, the adaptive morphological filter cleans an ECG signal to prepare it for further analysis. The noiseless ECG signal is embedded within a two-dimensional phase space to form a binary image and the identification of the feature waveforms is carried out based on the information presented by the image. The classification of the feature waveforms is implemented by an adaptive clustering technique according to the geometric information represented by the image in the phase space. Simulation studies on ECG records from the MIT-BIH and BIDMC databases have demonstrated the effectiveness and accuracy of the proposed methods. PMID:24094825

  13. Misinterpretation of the mouse ECG: ‘musing the waves of Mus musculus’

    PubMed Central

    Boukens, Bastiaan J; Rivaud, Mathilde R; Rentschler, Stacey; Coronel, Ruben

    2014-01-01

    The ECG is a primary diagnostic tool in patients suffering from heart disease, underscoring the importance of understanding factors contributing to normal and abnormal electrical patterns. Over the past few decades, transgenic mouse models have been increasingly used to study pathophysiological mechanisms of human heart diseases. In order to allow extrapolation of insights gained from murine models to the human condition, knowledge of the similarities and differences between the mouse and human ECG is of crucial importance. In this review, we briefly discuss the physiological mechanisms underlying differences between the baseline ECG of humans and mice, and provide a framework for understanding how these inherent differences are relevant to the interpretation of the mouse ECG during pathology and to the translation of the results from the mouse to man. PMID:25260630

  14. Wavelet packets feasibility study for the design of an ECG compressor.

    PubMed

    Blanco-Velasco, Manuel; Cruz-Roldán, Fernando; Godino-Llorente, Juan Ignacio; Barner, Kenneth E

    2007-04-01

    Most of the recent electrocardiogram (ECG) compression approaches developed with the wavelet transform are implemented using the discrete wavelet transform. Conversely, wavelet packets (WP) are not extensively used, although they are an adaptive decomposition for representing signals. In this paper, we present a thresholding-based method to encode ECG signals using WP. The design of the compressor has been carried out according to two main goals: (1) The scheme should be simple to allow real-time implementation; (2) quality, i.e., the reconstructed signal should be as similar as possible to the original signal. The proposed scheme is versatile as far as neither QRS detection nor a priori signal information is required. As such, it can thus be applied to any ECG. Results show that WP perform efficiently and can now be considered as an alternative in ECG compression applications. PMID:17405386

  15. [An algorithm based on ECG signal for sleep apnea syndrome detection].

    PubMed

    Yu, Xiaomin; Tu, Yuewen; Huang, Chao; Ye, Shuming; Chen, Hang

    2013-10-01

    The diagnosis of sleep apnea syndrome (SAS) has a significant importance in clinic for preventing diseases of hypertention, coronary heart disease, arrhythmia and cerebrovascular disorder, etc. This study presents a novel method for SAS detection based on single-channel electrocardiogram (ECG) signal. The method preprocessed ECG and detected QRS waves to get RR signal and ECG-derived respiratory (EDR) signal. Then 40 time- and spectral-domain features were extracted to normalize the signals. After that support vector machine (SVM) was used to classify the signals as "apnea" or "normal". Finally, the performance of the method was evaluated by the MIT-BIH Apnea-ECG database, and an accuracy of 95% in train sets and an accuracy of 88% in test sets were achieved. PMID:24459959

  16. Vital signs monitoring system

    NASA Technical Reports Server (NTRS)

    Steffen, Dale A. (Inventor); Sturm, Ronald E. (Inventor); Rinard, George A. (Inventor)

    1981-01-01

    A system is disclosed for monitoring vital physiological signs. Each of the system components utilizes a single hybrid circuit with each component having high accuracy without the necessity of repeated calibration. The system also has low power requirements, provides a digital display, and is of sufficiently small size to be incorporated into a hand-carried case for portable use. Components of the system may also provide independent outputs making the component useful, of itself, for monitoring one or more vital signs. The overall system preferably includes an ECG amplifier and cardiotachometer signal conditioner unit, an impedance pneumograph and respiration rate signal conditioner unit, a heart/breath rate processor unit, a temperature monitoring unit, a selector switch, a clock unit, and an LCD driver unit and associated LCDs, with the system being capable of being expanded as needed or desired, such as, for example, by addition of a systolic/diastolic blood pressure unit.

  17. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals.

    PubMed

    Elhaj, Fatin A; Salim, Naomie; Harris, Arief R; Swee, Tan Tian; Ahmed, Taqwa

    2016-04-01

    Arrhythmia is a cardiac condition caused by abnormal electrical activity of the heart, and an electrocardiogram (ECG) is the non-invasive method used to detect arrhythmias or heart abnormalities. Due to the presence of noise, the non-stationary nature of the ECG signal (i.e. the changing morphology of the ECG signal with respect to time) and the irregularity of the heartbeat, physicians face difficulties in the diagnosis of arrhythmias. The computer-aided analysis of ECG results assists physicians to detect cardiovascular diseases. The development of many existing arrhythmia systems has depended on the findings from linear experiments on ECG data which achieve high performance on noise-free data. However, nonlinear experiments characterize the ECG signal more effectively sense, extract hidden information in the ECG signal, and achieve good performance under noisy conditions. This paper investigates the representation ability of linear and nonlinear features and proposes a combination of such features in order to improve the classification of ECG data. In this study, five types of beat classes of arrhythmia as recommended by the Association for Advancement of Medical Instrumentation are analyzed: non-ectopic beats (N), supra-ventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F) and unclassifiable and paced beats (U). The characterization ability of nonlinear features such as high order statistics and cumulants and nonlinear feature reduction methods such as independent component analysis are combined with linear features, namely, the principal component analysis of discrete wavelet transform coefficients. The features are tested for their ability to differentiate different classes of data using different classifiers, namely, the support vector machine and neural network methods with tenfold cross-validation. Our proposed method is able to classify the N, S, V, F and U arrhythmia classes with high accuracy (98.91%) using a combined support

  18. [The design of ECG sample device based on Windows 98/95].

    PubMed

    Li, Y; Sha, X Z; Yin, Y; Wang, X Z

    2001-05-01

    The ECG sample system which is based on Microsoft Windows98/95 and IBM-compatible PCs ISA bus, is introduced here. It includes ECG sample device, virtual device driver(VxD) and application program, By the method, we can design the device simply and make good use of the computer to programming powerful auto recognition software and telediagnosis software. The system is a cheap and mini medical apparatus. Applications in family care and community medical treatment are encouraging. PMID:12583282

  19. Sleep apnea classification using ECG-signal wavelet-PCA features.

    PubMed

    Rachim, Vega Pradana; Li, Gang; Chung, Wan-Young

    2014-01-01

    Sleep apnea is often diagnosed using an overnight sleep test called a polysomnography (PSG). Unfortunately, though it is the gold standard of sleep disorder diagnosis, a PSG is time consuming, inconvenient, and expensive. Many researchers have tried to ameliorate this problem by developing other reliable methods, such as using electrocardiography (ECG) as an observed signal source. Respiratory rate interval, ECG-derived respiration, and heart rate variability analysis have been studied recently as a means of detecting apnea events using ECG during normal sleep, but these methods have performance weaknesses. Thus, the aim of this study is to classify the subject into normal- or apnea-subject based on their single-channel ECG measurement in regular sleep. In this proposed study, ECG is decomposed into five levels using wavelet decomposition for the initial processing to determine the detail coefficients (D3-D5) of the signal. Approximately 15 features were extracted from every minute of ECG. Principal component analysis and a support vector machine are used for feature dimension reduction and classification, respectively. According to classification that been done from a data set consisting of thirty-five patients, the proposed minute-to-minute classifier specificity, sensitivity, and subject-based classification accuracy are 95.20%, 92.65%, and 94.3%, respectively. Furthermore, the proposed system can be used as a basis for future development of sleep apnea screening tools. PMID:25226993

  20. Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model

    NASA Astrophysics Data System (ADS)

    Mäntynen, Ville; Konttila, Teijo; Stenroos, Matti

    2014-12-01

    Solving the inverse problem of electrocardiography (ECG) and magnetocardiography (MCG) is often referred to as cardiac source imaging. Spatial properties of ECG and MCG as imaging systems are, however, not well known. In this modelling study, we investigate the sensitivity and point-spread function (PSF) of ECG, MCG, and combined ECG+MCG as a function of source position and orientation, globally around the ventricles: signal topographies are modelled using a realistically-shaped volume conductor model, and the inverse problem is solved using a distributed source model and linear source estimation with minimal use of prior information. The results show that the sensitivity depends not only on the modality but also on the location and orientation of the source and that the sensitivity distribution is clearly reflected in the PSF. MCG can better characterize tangential anterior sources (with respect to the heart surface), while ECG excels with normally-oriented and posterior sources. Compared to either modality used alone, the sensitivity of combined ECG+MCG is less dependent on source orientation per source location, leading to better source estimates. Thus, for maximal sensitivity and optimal source estimation, the electric and magnetic measurements should be combined.

  1. ECG Wave-Maven: a self-assessment program for students and clinicians.

    PubMed Central

    Nathanson, L. A.; Safran, C.; McClennen, S.; Goldberger, A. L.

    2001-01-01

    Proficiency in the interpretation of electrocardiograms (ECGs) is an essential skill for medical students, house officers, and attending physicians. However, resources to develop and upgrade the necessary high level of "ECG literacy" are limited. A small number of centers have attempted to address this challenge by developing "ECG of the week" internet sites. These resources are difficult to maintain and update, and many of them quickly become stagnant. We present "ECG Wave-Maven," an innovative web-based tutorial that overcomes these obstacles via a direct link to the hospital's extensive and increasing clinical ECG repository. By interfacing our educational tool to live data, we can greatly decrease the time and effort required from the time a practitioner notes an interesting case to its inclusion in the program. Users can opt to encounter the test cases sequentially or randomly, or by reviewing a list of questions or diagnoses, making this not just a quiz, but a basic educational reference. This tool may be useful in meeting the challenge of reducing serious medical errors related to ECG misinterpretation. PMID:11825236

  2. Anomalous ECG downloads from semi-automatic external defibrillators.

    PubMed

    Calle, P A; Vanhaute, O; Ranhoff, J F; Buylaert, W A

    1998-08-01

    The coincidental print-out by two different Laerdal systems (subsequently called 'system A' and 'system B') of the same medical control module (MCM) for a Laerdal Heartstart 2000 semi-automatic external defibrillator (SAED) led to the discovery of three deficiencies in the information storage and printing processes. First, we noted that the impedance reported via system A was consistently higher. Second, we found the attachment of 'mysterious' ECG samples in the reports from system B, but not from system A. A third problem was the unpredictable (in)ability of system B to print out the information from the MCMs. Further investigations with help from the company suggested that the above-mentioned problems were caused by incompatibilities between the software in the different parts of equipment used (i.e. SAED devices, MCMs, printing systems and a computer program to store the information in a database). These observations demonstrate the need for strict medical supervision on all aspects of a SAED project, and for feed-back from clinicians to manufacturers. PMID:9863574

  3. ECG gated NMR-CT for cardiovascular diseases

    SciTech Connect

    Nishikawa, J.; Machida, K.; Iio, M.; Yoshimoto, N.; Sugimoto, T.; Kawaguchi, H.; Mano, H.

    1984-01-01

    The authors applied NMR-CT to cardiac study with ECG gated technique to evaluate the left ventricular (LV) function and compared it with cardiovascular nuclear medicine study (NM). The NMR-CT machine has resistive air-core magnet with 0.15 Tesla. The saturation recovery image or inversion recovery image were obtained as 256 x 256 matrix and 15 mm in thickness. The study population was ten patients who were evaluated both by NMR image and by NM performed within one week interval. The heart muscle was able to be visualized without any contrast material nor radioisotopes in inversion recovery images, whereas saturation recovery images failed to separate heart muscle from blood pool. The wall motions of LV in both methods were well correlated except for inferior wall. The values of ejection fraction in NMR image were moderately low, but two modalities showed satisfactory correlation (r=0.85). The region of myocardial infarction was revealed as wall thinning and/or wall motion abnormality. It is still preliminary to draw a conclusion, however, it can be said that in the evaluation of LV function, method by NMR might be of equal value to those of NM. It can be certain that eventually gated NMR-CT will become more effective method for various aspects of cardiovascular evaluation.

  4. ECG response of koalas to tourists proximity: a preliminary study.

    PubMed

    Ropert-Coudert, Yan; Brooks, Lisa; Yamamoto, Maki; Kato, Akiko

    2009-01-01

    Koalas operate on a tight energy budget and, thus, may not always display behavioral avoidance reaction when placed in a stressful condition. We investigated the physiological response of captive koalas Phascolarctos cinereus in a conservation centre to the presence of tourists walking through their habitat. We compared, using animal-attached data-recorders, the electrocardiogram activity of female koalas in contact with tourists and in a human-free area. One of the koalas in the tourist zone presented elevated heart rate values and variability throughout the recording period. The remaining female in the exhibit area showed a higher field resting heart rates during the daytime than that in the isolated area. In the evening, heart rate profiles changed drastically and both the koalas in the exhibit and in the tourist-free zones displayed similar field resting heart rates, which were lower than those during the day. In parallel, the autonomic nervous systems of these two individuals evolved from sympathetic-dominant during the day to parasympathetic-dominant in the evening. Our results report ECG of free-living koalas for the first time. Although they are preliminary due to the difficulty of having sufficient samples of animals of the same sex and age, our results stress out the importance of studies investigating the physiological reaction of animals to tourists. PMID:19823679

  5. Clinically accurate fetal ECG parameters acquired from maternal abdominal sensors

    PubMed Central

    CLIFFORD, Gari; SAMENI, Reza; WARD, Mr. Jay; ROBINSON, Julian; WOLFBERG, Adam J.

    2011-01-01

    OBJECTIVE To evaluate the accuracy of a novel system for measuring fetal heart rate and ST-segment changes using non-invasive electrodes on the maternal abdomen. STUDY DESIGN Fetal ECGs were recorded using abdominal sensors from 32 term laboring women who had a fetal scalp electrode (FSE) placed for a clinical indication. RESULTS Good quality data for FHR estimation was available in 91.2% of the FSE segments, and 89.9% of the abdominal electrode segments. The root mean square (RMS) error between the FHR data calculated by both methods over all processed segments was 0.36 beats per minute. ST deviation from the isoelectric point ranged from 0 to 14.2% of R-wave amplitude. The RMS error between the ST change calculated by both methods averaged over all processed segments was 3.2%. CONCLUSION FHR and ST change acquired from the maternal abdomen is highly accurate and on average is clinically indistinguishable from FHR and ST change calculated using FSE data. PMID:21514560

  6. Research of the Heart Information Monitoring Robert Based on the 3G Wireless Communication Platform

    NASA Astrophysics Data System (ADS)

    Zhang, Fuli; Yang, Huazhe; Li, Gensong; Hong, Yang; Hu, Qingzhe

    Electrocardiogram (ECG) of a person can be recorded and the diagnostic results can be displayed through touching the heart information monitoring Robert. In addition, the heart rate, phonocardiogram (PCG) and the dynamic three-dimensional echocardiography can also be displayed synchronously. Then the difficult ECG can be transmitted to the service center through 3G wireless communication center, followed by diagnosing the ECG by doctors and transmitting the feedback diagnostic results. I-lead ECG of the person can be recorded by the amplification circuit with high gain and low noise. Then, the heart rate and output phonocardiogram are displayed and the model of heart beat are started to trace through the recognition of R wave. Finally, the difficult ECG is transmitted to the service center via 3G communication chips. The displayed ECG is clear, and the stimulated heart beat is synchronous with that of the person. Furthermore, ECG received by the service center is in accordance with the one recorded by the Robert.

  7. Heart Rhythm Monitoring in the Constellation Lunar and Launch/Landing EVA Suit: Recommendations from an Expert Panel

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Hamilton, Doug; Jones, Jeffrey A.; Alexander, David

    2009-01-01

    There are currently several physiological monitoring requirements for EVA in the Human-Systems Interface Requirements (HSIR) document. There are questions as to whether the capability to monitor heart rhythm in the lunar surface space suit is a necessary capability for lunar surface operations. Similarly, there are questions as to whether the capability to monitor heart rhythm during a cabin depressurization scenario in the launch/landing space suit is necessary. This presentation seeks to inform space medicine personnel of recommendations made by an expert panel of cardiovascular medicine specialists regarding in-suit ECG heart rhythm monitoring requirements during lunar surface operations. After a review of demographic information and clinical cases and panel discussion, the panel recommended that ECG monitoring capability as a clinical tool was not essential in the lunar space suit; ECG monitoring was not essential in the launch/landing space suit for contingency scenarios; the current hear rate monitoring capability requirement for both launch/landing and lunar space suits should be maintained; lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG for IVA medical assessments; and, exercise stress testing for astronaut selection and retention should be changed from the current 85% maximum heart rate limit to maximal, exhaustive 'symptom-limited' testing to maximize diagnostic utility as a screening tool for evaluating the functional capacity of astronauts and their cardiovascular health.

  8. Cardiac safety of tiotropium in patients with COPD: a combined analysis of Holter-ECG data from four randomised clinical trials

    PubMed Central

    Hohlfeld, J M; Furtwaengler, A; Könen-Bergmann, M; Wallenstein, G; Walter, B; Bateman, E D

    2015-01-01

    Background Tiotropium is generally well tolerated; however, there has been debate whether antimuscarinics, particularly tiotropium administered via Respimat® Soft Mist™ Inhaler, may induce cardiac arrhythmias in a vulnerable subpopulation with cardiovascular comorbidity. The aim of this study was to provide evidence of the cardiac safety of tiotropium maintenance therapy. Methods Combined analysis of Holter electrocardiogram (ECG) data from clinical trials of tiotropium in chronic obstructive pulmonary disease (COPD). Trials in the Boehringer Ingelheim clinical trials database conducted between 2003 and 2012, involving tiotropium HandiHaler® 18 μg and/or tiotropium Respimat® (1.25-, 2.5-, 5.0- and 10-μg doses) were reviewed. All trials involving Holter-ECG monitoring during this period were included in the analysis. Men and women aged ≥ 40 years with a smoking history of ≥ 10 pack-years, and a clinical diagnosis of COPD were included. Holter ECGs were evaluated for heart rate (HR), supraventricular premature beats (SVPBs), ventricular premature beats (VPBs) and pauses. Quantitative and categorical end-points were derived for each of the Holter monitoring days. Results Four trials (n = 727) were included in the analysis. Respimat® (1.25–10 μg) or HandiHaler® (18 μg) was not associated with changes in HR, SVPBs, VPBs and pauses compared with placebo or the pretreatment baseline period. In terms of cardiac arrhythmia end-points, there was no evidence for an exposure–effect relationship. Conclusions In this analysis, tiotropium maintenance therapy administered using Respimat® (1.25–10 μg) or HandiHaler® (18 μg) once daily for periods of up to 48 weeks was well tolerated with no increased risk of cardiac arrhythmia in patients with COPD. PMID:25496316

  9. Electrocardiographic practices: the current report of monitoring and education in Veterans Affairs facilities.

    PubMed

    Zaremba, Jennifer L; Carroll, Karen; Manley, Kathleen

    2014-01-01

    In 2004, practice standards for electrocardiographic (ECG) monitoring were published to address the need for an expanded use of ECG monitoring beyond heart rate and basic rhythm determination. This article reports the data collected from a survey distributed throughout the Veterans Healthcare Administration hospitals to determine the extent to which practice standards have been adopted. Survey data were used to identify the differences between actual practice and evidence-based standards. The results were divided into ECG electrode application, lead selection, alarm limits, monitoring capabilities, monitoring during patient transport, and education and competencies. The results confirm the need for improvement, including a thorough evaluation of facility practices and education. The data demonstrate the differences among actual practice and evidence-based recommendations. PMID:24496259

  10. A cell phone based health monitoring system with self analysis processor using wireless sensor network technology.

    PubMed

    Chung, Wan-Young; Yau, Chiew-Lian; Shin, Kwang-Sig; Myllyla, Risto

    2007-01-01

    This paper describes the integrated wireless CDMA-based ubiquitous healthcare monitoring system for disease and chronic management and better patient care in the hospital, home or travel environments with extended standalone simple electrocardiogram (ECG) diagnosis algorithm at cell phone. This system utilizes a wireless dongles prototype as the intermediary devices to remotely monitor the physiological signs of patient's from a tiny wireless sensor to transmit directly to medical center monitoring/PDA wirelessly within 802.15.4 wireless LAN or using cell phone to relay the medical data through CDMA network when outside the coverage LAN. The external standalone ECG diagnosis was implemented to enable continuous monitoring and evaluation of the ECG signal locally before any medical data could be sent to the medical center. PMID:18002802

  11. Construction of a Resting High Fidelity ECG "SuperScore" for Management and Screening of Heart Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Delgado, Reynolds; Poulin, Greg; Starc, Vito; Arenare, Brian; Rahman, M. A.

    2006-01-01

    Resting conventional ECG is notoriously insensitive for detecting coronary artery disease (CAD) and only nominally useful in screening for cardiomyopathy (CM). Similarly, conventional exercise stress test ECG is both time- and labor-consuming and its accuracy in identifying CAD is suboptimal for use in population screening. We retrospectively investigated the accuracy of several advanced resting electrocardiographic (ECG) parameters, both alone and in combination, for detecting CAD and cardiomyopathy (CM).

  12. The emergency department ECG and immediately life-threatening complications in initially uncomplicated suspected myocardial ischemia.

    PubMed

    Zalenski, R J; Sloan, E P; Chen, E H; Hayden, R F; Gold, I W; Cooke, D

    1988-03-01

    The emergency physician's disposition of patients with suspected myocardial ischemia is currently debated; some physicians believe that a subgroup of patients can be managed safely outside the coronary care unit. Clinical predictors are needed in assessing the patient with suspected myocardial ischemia to help identify this subgroup. Through a retrospective cohort study, we investigated the value of the initial emergency department ECG in discriminating between chest pain patients with low and high risk for immediately life-threatening complications. Two hundred eleven initially uncomplicated consecutive coronary care unit admissions with suspected unstable angina or myocardial infarction were studied. Patient outcome, including the incidence of myocardial infarction, complications, and mechanical and pharmacologic interventions, was reviewed. Immediately life-threatening complications included ventricular fibrillation, ventricular tachycardia, shock, 2 degrees and 3 degrees block, and death. Mechanical interventions included electrocardioversion or defibrillation, endotracheal intubation, intra-aortic balloon pump, Swan-Ganz catheter, or pacemaker insertion. Pressors, antiarrhythmics, and vasodilators were the reviewed pharmacologic interventions. A positive ECG was defined by the presence of ST elevation or depression, T wave inversion, left ventricular hypertrophy, left bundle branch block, paced rhythm, or new Q waves. All other ECG interpretations were considered negative. Patients were divided into two groups based on this initial emergency physician ECG interpretation and their complication incidences compared. Of the 211 patients, 96 had a positive ECG; 115 had negative ECGs. Patients with positive ECGs were older, had a greater history and concurrent incidence of myocardial infarction, and more complications and intensive interventions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3345014

  13. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    NASA Astrophysics Data System (ADS)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  14. [Research on ECG de-noising method based on ensemble empirical mode decomposition and wavelet transform using improved threshold function].

    PubMed

    Ye, Linlin; Yang, Dan; Wang, Xu

    2014-06-01

    A de-noising method for electrocardiogram (ECG) based on ensemble empirical mode decomposition (EEMD) and wavelet threshold de-noising theory is proposed in our school. We decomposed noised ECG signals with the proposed method using the EEMD and calculated a series of intrinsic mode functions (IMFs). Then we selected IMFs and reconstructed them to realize the de-noising for ECG. The processed ECG signals were filtered again with wavelet transform using improved threshold function. In the experiments, MIT-BIH ECG database was used for evaluating the performance of the proposed method, contrasting with de-noising method based on EEMD and wavelet transform with improved threshold function alone in parameters of signal to noise ratio (SNR) and mean square error (MSE). The results showed that the ECG waveforms de-noised with the proposed method were smooth and the amplitudes of ECG features did not attenuate. In conclusion, the method discussed in this paper can realize the ECG denoising and meanwhile keep the characteristics of original ECG signal. PMID:25219236

  15. Comparing twelve-lead electrocardiography with close-to-heart patch based electrocardiography.

    PubMed

    Hansen, Ingeborg H; Hoppe, Karsten; Gjerde, Anna; Kanters, Joergen K; Sorensen, Helge B D

    2015-01-01

    Electrocardiographic (ECG) recording using adhesive patch-type ECG monitors (PEMs) has several advantages over conventional ECG recorders. However, due to the unconventional electrode locations used in PEM systems, the morphology of the acquired ECG signals may differ from conventional ECG leads used in the clinic impeding clinical interpretation. In this study, recordings from an ePatch® lead system involving three torso sites are compared with concurrently recorded standard 12-lead ECG. Pearson's correlation coefficients (CC) of -0.90 and 0.91 is found between two of the PEM signals and the standard 12-lead ECG signals aVR and V2, respectively. Deriving the 12-lead ECG from the PEM leads through linear transforms on a subject-specific basis yield CC values ranging from 0.78 to 0.96 between measured and derived leads. The corresponding CC values for the PEM ECG leads range from 0.88 to 0.95. It is found that the PEM lead system captures "residual" information not contained in the standard 12-lead ECG and i.a. a negative deflection after the T-wave is discovered in the PEM signals. PMID:26736266

  16. Discrete wavelet transform and singular value decomposition based ECG steganography for secured patient information transmission.

    PubMed

    Edward Jero, S; Ramu, Palaniappan; Ramakrishnan, S

    2014-10-01

    ECG Steganography provides secured transmission of secret information such as patient personal information through ECG signals. This paper proposes an approach that uses discrete wavelet transform to decompose signals and singular value decomposition (SVD) to embed the secret information into the decomposed ECG signal. The novelty of the proposed method is to embed the watermark using SVD into the two dimensional (2D) ECG image. The embedding of secret information in a selected sub band of the decomposed ECG is achieved by replacing the singular values of the decomposed cover image by the singular values of the secret data. The performance assessment of the proposed approach allows understanding the suitable sub-band to hide secret data and the signal degradation that will affect diagnosability. Performance is measured using metrics like Kullback-Leibler divergence (KL), percentage residual difference (PRD), peak signal to noise ratio (PSNR) and bit error rate (BER). A dynamic location selection approach for embedding the singular values is also discussed. The proposed approach is demonstrated on a MIT-BIH database and the observations validate that HH is the ideal sub-band to hide data. It is also observed that the signal degradation (less than 0.6%) is very less in the proposed approach even with the secret data being as large as the sub band size. So, it does not affect the diagnosability and is reliable to transmit patient information. PMID:25187409

  17. A new statistical PCA-ICA algorithm for location of R-peaks in ECG.

    PubMed

    Chawla, M P S; Verma, H K; Kumar, Vinod

    2008-09-16

    The success of ICA to separate the independent components from the mixture depends on the properties of the electrocardiogram (ECG) recordings. This paper discusses some of the conditions of independent component analysis (ICA) that could affect the reliability of the separation and evaluation of issues related to the properties of the signals and number of sources. Principal component analysis (PCA) scatter plots are plotted to indicate the diagnostic features in the presence and absence of base-line wander in interpreting the ECG signals. In this analysis, a newly developed statistical algorithm by authors, based on the use of combined PCA-ICA for two correlated channels of 12-channel ECG data is proposed. ICA technique has been successfully implemented in identifying and removal of noise and artifacts from ECG signals. Cleaned ECG signals are obtained using statistical measures like kurtosis and variance of variance after ICA processing. This analysis also paper deals with the detection of QRS complexes in electrocardiograms using combined PCA-ICA algorithm. The efficacy of the combined PCA-ICA algorithm lies in the fact that the location of the R-peaks is bounded from above and below by the location of the cross-over points, hence none of the peaks are ignored or missed. PMID:17655943

  18. A new ECG biomarker for drug toxicity: a combined signal processing and computational modeling study.

    PubMed

    Jie, Xiao; Rodriguez, Blanca; Pueyo, Esther

    2010-01-01

    QT prolongation is the only clinically proven, yet insufficient, electrocardiogram (ECG) biomarker for drug-induced cardiac toxicity. The goal of this study is to evaluate whether JT area, i.e., total area of the T-wave, can serve as an ECG biomarker for drug-induced cardiac toxicity using both signal processing and computational modeling approaches. An ECG dataset that contained recordings from patients under control and sotalol condition was analyzed. In order to relate sotalol-induced ECG changes to its effect on ion channel level, i.e., blockade of the rapid component of the delayed rectifier potassium channel (I(Kr)), varied degrees of I(Kr) blockade were simulated in a slab of ventricular tissue. The mean JT area increased by 36.5% following the administration of sotalol in patients. Simulations in the slab tissue showed that sotalol increased action potential duration preferentially in the midmyocardium, which led to increased transmural dispersion of repolarization and JT area. In conclusion, JT area reflects the transmural dispersion of repolarization and may be a potentially useful surrogate/supplemental ECG biomarker to assess drug safety. PMID:21096447

  19. Performance evaluation of wavelet-based ECG compression algorithms for telecardiology application over CDMA network.

    PubMed

    Kim, Byung S; Yoo, Sun K

    2007-09-01

    The use of wireless networks bears great practical importance in instantaneous transmission of ECG signals during movement. In this paper, three typical wavelet-based ECG compression algorithms, Rajoub (RA), Embedded Zerotree Wavelet (EZ), and Wavelet Transform Higher-Order Statistics Coding (WH), were evaluated to find an appropriate ECG compression algorithm for scalable and reliable wireless tele-cardiology applications, particularly over a CDMA network. The short-term and long-term performance characteristics of the three algorithms were analyzed using normal, abnormal, and measurement noise-contaminated ECG signals from the MIT-BIH database. In addition to the processing delay measurement, compression efficiency and reconstruction sensitivity to error were also evaluated via simulation models including the noise-free channel model, random noise channel model, and CDMA channel model, as well as over an actual CDMA network currently operating in Korea. This study found that the EZ algorithm achieves the best compression efficiency within a low-noise environment, and that the WH algorithm is competitive for use in high-error environments with degraded short-term performance with abnormal or contaminated ECG signals. PMID:17701824

  20. Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems

    PubMed Central

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices. PMID:24409290

  1. Subject identification via ECG fiducial-based systems: influence of the type of QT interval correction.

    PubMed

    Gargiulo, Francesco; Fratini, Antonio; Sansone, Mario; Sansone, Carlo

    2015-10-01

    Electrocardiography (ECG) has been recently proposed as biometric trait for identification purposes. Intra-individual variations of ECG might affect identification performance. These variations are mainly due to Heart Rate Variability (HRV). In particular, HRV causes changes in the QT intervals along the ECG waveforms. This work is aimed at analysing the influence of seven QT interval correction methods (based on population models) on the performance of ECG-fiducial-based identification systems. In addition, we have also considered the influence of training set size, classifier, classifier ensemble as well as the number of consecutive heartbeats in a majority voting scheme. The ECG signals used in this study were collected from thirty-nine subjects within the Physionet open access database. Public domain software was used for fiducial points detection. Results suggested that QT correction is indeed required to improve the performance. However, there is no clear choice among the seven explored approaches for QT correction (identification rate between 0.97 and 0.99). MultiLayer Perceptron and Support Vector Machine seemed to have better generalization capabilities, in terms of classification performance, with respect to Decision Tree-based classifiers. No such strong influence of the training-set size and the number of consecutive heartbeats has been observed on the majority voting scheme. PMID:26143963

  2. Mass exponent spectrum analysis of human ECG signals and its application to complexity detection

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Du, Sidan; Ning, Xinbao; Bian, Chunhua

    2008-06-01

    The complexity of electrocardiogram (ECG) signal may reflect the physiological function and healthy status of the heart. In this paper, we introduced two novel intermediate parameters of multifractality, the mass exponent spectrum curvature and area, to characterize the nonlinear complexity of ECG signal. These indicators express the nonlinear superposition of the discrepancies of singularity strengths from all the adjacent points of the spectrum curve and thus overall subsets of original fractal structure. The evaluation of binomial multifractal sets validated these two variables were entirely effective in exploring the complexity of this time series. We then studied the ECG mass exponent spectra taken from the cohorts of healthy, ischemia and myocardial infarction (MI) sufferer based on a large sets of 12 leads’ recordings, and took the statistical averages among each crowd. Experimental results suggest the two values from healthy ECG are apparently larger than those from the heart diseased. While the values from ECG of MI sufferer are much smaller than those from the other two groups. As for the ischemia sufferer, they are almost of moderate magnitude. Afterward, we compared these new indicators with the nonlinear parameters of singularity spectrum. The classification indexes and results of total separating ratios (TSR, defined in the paper) both indicated that our method could achieve a better effect. These conclusions may be of some values in early diagnoses and clinical applications.

  3. Modeling left and right atrial contributions to the ECG: A dipole-current source approach.

    PubMed

    Jacquemet, Vincent

    2015-10-01

    This paper presents the mathematical formulation, the numerical validation and several illustrations of a forward-modeling approach based on dipole-current sources to compute the contribution of a part of the heart to the electrocardiogram (ECG). Clinically relevant applications include identifying in the ECG the contributions from the right and the left atrium. In a Courtemanche-based monodomain computer model of the atria and torso, 1000 dipoles distributed throughout the atrial mid-myocardium are found to be sufficient to reproduce body surface potential maps with a relative error <1% during both sinus rhythm and atrial fibrillation. When the boundary element method is applied to solve the forward problem, this approach enables fast offline computation of the ECG contribution of any anatomical part of the atria by applying the principle of superposition to the dipole sources. In the presence of a right-left activation delay (sinus rhythm), pulmonary vein isolation (sinus rhythm) or left-right differences in refractory period (atrial fibrillation), the decomposition of the ECG is shown to help interpret ECG morphology in relation to the atrial substrate. These tools provide a theoretical basis for a deeper understanding of the genesis of the P wave or fibrillatory waves in normal and pathological cases. PMID:26149374

  4. A Novel Technique for Muscle Onset Detection Using Surface EMG Signals without Removal of ECG Artifacts

    PubMed Central

    Zhou, Ping; Zhang, Xu

    2014-01-01

    Surface electromyogram (EMG) signal from trunk muscles is often contaminated by electrocardiogram (ECG) artifacts. This study presents a novel method for muscle activity onset detection by processing surface EMG against ECG artifacts. The method does not require removal of ECG artifacts from raw surface EMG signals. Instead, it applies the sample entropy (SampEn) analysis to highlight EMG activity and suppress ECG artifacts in the signal complexity domain. A SampEn threshold can then be determined for detection of muscle activity. The performance of the proposed method was examined with different SampEn analysis window lengths, using a series of combinations of “clean” experimental EMG and ECG recordings over a wide range of signal to noise ratios (SNRs) from −10 dB to 10 dB. For all the examined SNRs, the window length of 128 ms yielded the best performance among all the tested lengths. Compared with the conventional amplitude thresholding and integrated profile methods, the SampEn analysis based method achieved significantly better performance, demonstrated as the shortest average latency or error among the three methods (p<0.001 for any of the examined SNRs except 10 dB). PMID:24345857

  5. QTC intervals can be assessed with the AliveCor heart monitor in patients on dofetilide for atrial fibrillation.

    PubMed

    Chung, Eugene H; Guise, Kimberly D

    2015-01-01

    We assessed the feasibility of AliveCor tracings for QTC assessment in patients receiving dofetilide. Five patients with persistent AF underwent the two-handed measurement (mimicks Lead I). On the ECG, Lead I or II was used. There was no significant difference between the AliveCor-QTC and ECG-QTC (all ±20 msec). The AliveCor device can be used to monitor the QTC in these patients. PMID:25453194

  6. An Ear-Worn Vital Signs Monitor.

    PubMed

    He, David Da; Winokur, Eric S; Sodini, Charles G

    2015-11-01

    This paper presents a wearable vital signs monitor at the ear. The monitor measures the electrocardiogram (ECG), ballistocardiogram (BCG), and photoplethysmogram (PPG) to obtain pre-ejection period (PEP), stroke volume (SV), cardiac output (CO), and pulse transit time (PTT). The ear is demonstrated as a natural anchoring point for the integrated sensing of physiological signals. All three signals measured can be used to obtain heart rate (HR). Combining the ECG and BCG allows for the estimation of the PEP, while combining the BCG and PPG allows for the measurement of PTT. Additionally, the J-wave amplitude of the BCG is correlated with the SV and, when combined with HR, yields CO. Results from a clinical human study on 13 subjects demonstrate this proof-of-concept device. PMID:26208264

  7. A real time, wearable ECG and continous blood pressure monitoring system for first responders.

    PubMed

    Ribeiro, David M D; Colunas, Marcio F M; Marques, Fabio A Ferreira; Fernandes, Jose M; Cunha, Joao P Silva

    2011-01-01

    The study of stress and fatigue among First Responders is a major step in mitigating this public health problem. Blood pressure, heart rate variability and fatigue related arrhythmia are three of the main "windows" to study stress and fatigue. In this paper we present a wearable medical device, capable of acquiring an electrocardiogram and estimating blood pressure in real time, through a pulse wave transit time approach. The system is based on an existent certified wearable medical device called "Vital Jacket" and is aimed to become a tool to allow cardiologists in studying stress and fatigue among first response professionals. PMID:22255923

  8. Scuba diving, acute left anterior descending artery occlusion and normal ECG

    PubMed Central

    Doll, Sébastien Xavier; Rigamonti, Fabio; Roffi, Marco; Noble, Stéphane

    2013-01-01

    We report the case of an acute proximal occlusion of the left anterior descending coronary (LAD) artery following a scuba diving decompression accident and associated with normal ECG. Following uneventful thromboaspiration and coronary stenting, the patient was discharged on day  4 with secondary preventative therapies. A transthoracic echocardiography performed at this point showed a complete recovery compared with an initial localised akinesia involving the anterior and apical portion of the left ventricle upon admission. This case highlights that significant acute coronary lesions involving the LAD can occur without any ECG anomaly. The presence of acute and persistent angina associated with troponin elevation should prompt physicians to consider coronary angiography without delay, independently of the ECG results. PMID:23376677

  9. On the application of optimal wavelet filter banks for ECG signal classification

    NASA Astrophysics Data System (ADS)

    Hadjiloucas, S.; Jannah, N.; Hwang, F.; Galvão, R. K. H.

    2014-03-01

    This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier.

  10. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster.

    PubMed

    Volna, Eva; Kotyrba, Martin; Habiballa, Hashim

    2015-01-01

    The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series. PMID:26221620

  11. Powerline interference reduction in ECG signals using empirical wavelet transform and adaptive filtering.

    PubMed

    Singh, Omkar; Sunkaria, Ramesh Kumar

    2015-01-01

    Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods. PMID:25412942

  12. Hiding patients confidential datainthe ECG signal viaa transform-domain quantization scheme.

    PubMed

    Chen, Shuo-Tsung; Guo, Yuan-Jie; Huang, Huang-Nan; Kung, Woon-Man; Tseng, Kuo-Kun; Tu, Shu-Yi

    2014-06-01

    Watermarking is the most widely used technology in the field of copyright and biological information protection. In this paper, we use quantization based digital watermark encryption technology on the Electrocardiogram (ECG) to protect patient rights and information. Three transform domains, DWT, DCT, and DFT are adopted to implement the quantization based watermarking technique. Although the watermark embedding process is not invertible, the change of the PQRST complexes and amplitude of the ECG signal is very small and so the watermarked data can meet the requirements of physiological diagnostics. In addition, the hidden information can be extracted without knowledge of the original ECG data. In other words, the proposed watermarking scheme is blind. Experimental results verify the efficiency of the proposed scheme. PMID:24832688

  13. A PC-based generator of surface ECG potentials for computer electrocardiograph testing.

    PubMed

    Franchi, D; Palagi, G; Bedini, R

    1994-02-01

    The system is composed of an electronic circuit, connected to a PC, whose outputs, starting from ECGs digitally collected by commercial interpretative electrocardiographs, simulate virtual patients' limb and chest electrode potentials. Appropriate software manages the D/A conversion and lines up the original short-term signal in a ring buffer to generate continuous ECG traces. The device also permits the addition of artifacts and/or baseline wanders/shifts on each lead separately. The system has been accurately tested and statistical indexes have been computed to quantify the reproduction accuracy analyzing, in the generated signal, both the errors induced on the fiducial point measurements and the capability to retain the diagnostic significance. The device integrated with an annotated ECG data base constitutes a reliable and powerful system to be used in the quality assurance testing of computer electrocardiographs. PMID:8004944

  14. A Hierarchical Method for Removal of Baseline Drift from Biomedical Signals: Application in ECG Analysis

    PubMed Central

    Luo, Yurong; Hargraves, Rosalyn H.; Bai, Ou; Qi, Xuguang; Ward, Kevin R.; Pfaffenberger, Michael Paul

    2013-01-01

    Noise can compromise the extraction of some fundamental and important features from biomedical signals and hence prohibit accurate analysis of these signals. Baseline wander in electrocardiogram (ECG) signals is one such example, which can be caused by factors such as respiration, variations in electrode impedance, and excessive body movements. Unless baseline wander is effectively removed, the accuracy of any feature extracted from the ECG, such as timing and duration of the ST-segment, is compromised. This paper approaches this filtering task from a novel standpoint by assuming that the ECG baseline wander comes from an independent and unknown source. The technique utilizes a hierarchical method including a blind source separation (BSS) step, in particular independent component analysis, to eliminate the effect of the baseline wander. We examine the specifics of the components causing the baseline wander and the factors that affect the separation process. Experimental results reveal the superiority of the proposed algorithm in removing the baseline wander. PMID:23766720

  15. Asymptomatic coronary artery spasm with acute pathological ST elevation on routine ECG: Is it common?

    PubMed Central

    Mohammed, Ishaq; Zaatari, Mohamad Sadek El; Tyrogalas, Nikos; Khalid, M I

    2014-01-01

    Asymptomatic spontaneous coronary artery spasm is rare and there are no case reports in literature presenting with acute ST elevation on routine ECG. We present the case of a 68-year-old Caucasian man who presented to a primary care physician for a routine ECG as part of hypertension follow-up. ECG revealed ST elevation in inferior leads II, III and aVF with reciprocal ST depression in leads I, aVL and also ST depression in anterior leads V1, V2 and V3 suggesting ongoing inferoposterior ST elevation myocardial infarction. The patient was completely well, stable and asymptomatic and he was rushed immediately to the coronary care unit via emergency ambulance. The patient was subjected to a battery of urgent investigations which were all normal. Also an urgent coronary angiogram was undertaken which showed completely normal coronary anatomy. PMID:25115779

  16. Sleep apnoea episodes recognition by a committee of ELM classifiers from ECG signal.

    PubMed

    Sadr, Nadi; de Chazal, Philip; van Schaik, Andre; Breen, Paul

    2015-08-01

    This paper describes a system for the recognition of sleep apnoea episodes from ECG signals using a committee of extreme learning machine (ELM) classifiers. RR-interval parameters (heart rate variability) have been used as the identifying features as they are directly affected by sleep apnoea. The MIT PhysioNet Apnea-ECG database was used. A committee of five ELM classifiers has been employed to classify one-minute epochs of ECG into normal or apnoeic epochs. Our results show that the classification performance from the committee of networks was superior to the results of a single ELM classifier for fan-outs from 1 to 100. Classification performance reached a plateau at a fan-out of 10. The maximum accuracy was 82.5% with a sensitivity of 81.9% and a specificity of 82.8%. The results were comparable to other published research with the same input data. PMID:26738070

  17. A linear quality control design for high efficient wavelet-based ECG data compression.

    PubMed

    Hung, King-Chu; Tsai, Chin-Feng; Ku, Cheng-Tung; Wang, Huan-Sheng

    2009-05-01

    In ECG data compression, maintaining reconstructed signal with desired quality is crucial for clinical application. In this paper, a linear quality control design based on the reversible round-off non-recursive discrete periodized wavelet transform (RRO-NRDPWT) is proposed for high efficient ECG data compression. With the advantages of error propagation resistance and octave coefficient normalization, RRO-NRDPWT enables the non-linear quantization control to obtain an approximately linear distortion by using a single control variable. Based on the linear programming, a linear quantization scale prediction model is presented for the quality control of reconstructed ECG signal. Following the use of the MIT-BIH arrhythmia database, the experimental results show that the proposed system, with lower computational complexity, can obtain much better quality control performance than that of other wavelet-based systems. PMID:19070935

  18. Wavelet-based watermarking and compression for ECG signals with verification evaluation.

    PubMed

    Tseng, Kuo-Kun; He, Xialong; Kung, Woon-Man; Chen, Shuo-Tsung; Liao, Minghong; Huang, Huang-Nan

    2014-01-01

    In the current open society and with the growth of human rights, people are more and more concerned about the privacy of their information and other important data. This study makes use of electrocardiography (ECG) data in order to protect individual information. An ECG signal can not only be used to analyze disease, but also to provide crucial biometric information for identification and authentication. In this study, we propose a new idea of integrating electrocardiogram watermarking and compression approach, which has never been researched before. ECG watermarking can ensure the confidentiality and reliability of a user's data while reducing the amount of data. In the evaluation, we apply the embedding capacity, bit error rate (BER), signal-to-noise ratio (SNR), compression ratio (CR), and compressed-signal to noise ratio (CNR) methods to assess the proposed algorithm. After comprehensive evaluation the final results show that our algorithm is robust and feasible. PMID:24566636

  19. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster

    PubMed Central

    Volna, Eva; Kotyrba, Martin; Habiballa, Hashim

    2015-01-01

    The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series. PMID:26221620

  20. Wavelet-Based Watermarking and Compression for ECG Signals with Verification Evaluation

    PubMed Central

    Tseng, Kuo-Kun; He, Xialong; Kung, Woon-Man; Chen, Shuo-Tsung; Liao, Minghong; Huang, Huang-Nan

    2014-01-01

    In the current open society and with the growth of human rights, people are more and more concerned about the privacy of their information and other important data. This study makes use of electrocardiography (ECG) data in order to protect individual information. An ECG signal can not only be used to analyze disease, but also to provide crucial biometric information for identification and authentication. In this study, we propose a new idea of integrating electrocardiogram watermarking and compression approach, which has never been researched before. ECG watermarking can ensure the confidentiality and reliability of a user's data while reducing the amount of data. In the evaluation, we apply the embedding capacity, bit error rate (BER), signal-to-noise ratio (SNR), compression ratio (CR), and compressed-signal to noise ratio (CNR) methods to assess the proposed algorithm. After comprehensive evaluation the final results show that our algorithm is robust and feasible. PMID:24566636

  1. Robust off-line heartbeat detection using ECG and pressure-signals.

    PubMed

    Hoeben, Bart; Teo, Soo Kng; Yang, Bo; Su, Yi

    2016-01-01

    Artefacts in pressure- and ECG-signals generally arise due to different causes. Therefore, the combined analysis of both signals can increase the effectiveness of heartbeat detection compared to analysis using solely ECG-signals. In this paper, we present an algorithm for heartbeat annotation by combining the analysis of both the pressure- and ECG-signals. The novelties of our algorithm are as follows: (1) development of a new approach for annotating heartbeats using pressure-signals, (2) development of a mechanism that identifies and corrects paced rhythms, and (3) development of a noise detection approach. Our algorithm is tested on the datasets from the extended phase of the Physionet CINC-2014 challenge and produces an overall score of 87.31%. Finally, we put forth several recommendations that could further improve our algorithm. PMID:26641478

  2. Pseudo-ischaemic ECG in a patient with amyotrophic lateral sclerosis surviving for a decade

    PubMed Central

    Zhang, Jian; Yang, Shi-Wei; Wang, Zheng; Wei, Guang-Ru; Zhou, Yu-Jie

    2012-01-01

    A 58-year-old female with no history of heart disease was admitted to our hospital for abnormal ECG mimicking myocardial ischaemia. The ECG revealed persistent T-wave inversion in almost all leads, especially in precordial leads V2–V6. The patient had no complaints of chest pain, chest distress, short of breath or other atypical myocardial ischaemia symptoms. She had a history of amyotrophic lateral sclerosis (ALS) with a disease course more than 20 years. Examinations help rule out other diseases causing persistent T-wave inversion. Importantly, cardiac catheterisation showed nearly normal coronary arteries that could rule out myocardial ischaemia. Accordingly, the authors presumed that the pseudo-ischaemic ECG was associated with ALS in this patient. The findings of the present case provide new evidence that autonomic nervous system may involve in the pathophysiological progress of ALS. PMID:22665549

  3. Non-ECG-Gated Myocardial Perfusion MRI Using Continuous Magnetization-Driven Radial Sampling

    PubMed Central

    Sharif, Behzad; Dharmakumar, Rohan; Arsanjani, Reza; Thomson, Louise; Merz, C. Noel Bairey; Berman, Daniel S.; Li, Debiao

    2014-01-01

    Purpose Establishing a high-resolution non-ECG-gated first-pass perfusion (FPP) cardiac MRI technique may improve accessibility and diagnostic capability of FPP imaging. We propose a non-ECG-gated FPP imaging technique using continuous magnetization-driven golden-angle radial acquisition. The main purpose of this preliminary study is to evaluate whether, in the simple case of single-slice 2D imaging, adequate myocardial contrast can be obtained for accurate visualization of hypoperfused territories in the setting of myocardial ischemia. Methods A T1-weighted pulse sequence with continuous golden-angle radial sampling was developed for non-ECG-gated FPP imaging. A sliding-window scheme with no temporal acceleration was used to reconstruct 8 frames/second. Canines were imaged at 3T with and without coronary stenosis using the proposed scheme and a conventional magnetization-prepared ECG-gated FPP method. Results Our studies showed that the proposed non-ECG-gated method is capable of generating high-resolution (1.7×1.7×6 mm3) artifact-free FPP images of a single slice at high heart rates (92±21 beats/minute), while matching the performance of conventional FPP imaging in terms of hypoperfused-to-normal myocardial contrast-to-noise ratio (proposed: 5.18±0.70, conventional: 4.88±0.43). Furthermore, the detected perfusion defect areas were consistent with the conventional FPP images. Conclusion Non-ECG-gated FPP imaging using optimized continuous golden-angle radial acquisition achieves desirable image quality (i.e., adequate myocardial contrast, high spatial resolution, and minimal artifacts) in the setting of ischemia. PMID:24443160

  4. A 0.83- μW QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35- μm CMOS.

    PubMed

    Ieong, Chio-In; Mak, Pui-In; Lam, Chi-Pang; Dong, Cheng; Vai, Mang-I; Mak, Peng-Un; Pun, Sio-Hang; Wan, Feng; Martins, Rui P

    2012-12-01

    Healthcare electronics count on the effectiveness of the on-patient signal preprocessing unit to moderate the wireless data transfer for better power efficiency. In order to reduce the system power in long-time ECG acquisition, this work describes an on-patient QRS detection processor for arrhythmia monitoring. It extracts the concerned ECG part, i.e., the RR-interval between the QRS complex for evaluating the heart rate variability. The processor is structured by a scale-3 quadratic spline wavelet transform followed by a maxima modulus recognition stage. The former is implemented via a symmetric FIR filter, whereas the latter includes a number of feature extraction steps: zero-crossing detection, peak (zero-derivative) detection, threshold adjustment and two finite state machines for executing the decision rules. Fabricated in 0.35-μm CMOS the 300-Hz processor draws only 0.83 μW, which is favorably comparable with the prior arts. In the system tests, the input data is placed via an on-chip 10-bit SAR analog-to-digital converter, while the output data is emitted via an off-the-shelf wireless transmitter (TI CC2500) that is configurable by the processor for different data transmission modes: 1) QRS detection result, 2) raw ECG data or 3) both. Validated with all recordings from the MIT-BIH arrhythmia database, 99.31% sensitivity and 99.70% predictivity are achieved. Mode 1 with solely the result of QRS detection exhibits 6× reduction of system power over modes 2 and 3. PMID:23853259

  5. False alarms during patient monitoring in clinical intensive care units are highly related to poor quality of the monitored electrocardiogram signals.

    PubMed

    Tsimenidis, Charalampos; Murray, Alan

    2016-08-01

    Electrocardiograms (ECGs) recorded from patients in intensive care were investigated to quantify any relationship between ECG signal quality and false monitoring alarms. False alarms are a considerable problem for nursing and medical staff as they distract from clinical care, and are also a problem for patients as they disturb rest, which is important for clinical recovery. ECG and alarm data were obtained for 750 patient alarms from the PhysioNet database. The final 8 s period before the alarm was triggered was investigated. All but one ECG channel in 38 ECG recordings with out-of-range data were associated with false positive alarms (p  <  0.0001). The frequency contributions for baseline (BL) instability, electromyogram (EMG) muscle noise, and high frequency (HF) noise were calculated. For all three frequency bands, the contributions associated with false positive alarms were very significantly greater than for true positive alarms (p  <  0.0001). The greatest difference was for BL with a mean level for false positive alarms 4.0 times greater than for true positive alarms, followed by EMG and HF at 1.6 times and 1.4 times respectively. These results confirm that attention needs to be taken to improve ECG signal quality to reduce the frequency of clinical false alarms, and hence improve conditions for clinical staff and patients. PMID:27454130

  6. Skin-electrode impedance measurement during ECG acquisition: method’s validation

    NASA Astrophysics Data System (ADS)

    Casal, Leonardo; La Mura, Guillermo

    2016-04-01

    Skm-electrode impedance measurement can provide valuable information prior. dunng and post electrocardiographic (ECG) or electroencephalographs (EEG) acquisitions. In this work we validate a method for skm-electrode impedance measurement using test circuits with known resistance and capacitor values, at different frequencies for injected excitation current. Finally the method is successfully used for impedance measurement during ECG acquisition on a subject usmg 125 Hz and 6 nA square wave excitation signal at instrumentation amplifier mput. The method can be used for many electrodes configuration.

  7. Cardiac Monitoring in the Emergency Department.

    PubMed

    Zègre-Hemsey, Jessica K; Garvey, J Lee; Carey, Mary G

    2016-09-01

    Patients present to the emergency department (ED) with a wide range of complaints and ED clinicians are responsible for identifying which conditions are life threatening. Cardiac monitoring strategies in the ED include, but are not limited to, 12-lead electrocardiography and bedside cardiac monitoring for arrhythmia and ischemia detection as well as QT-interval monitoring. ED nurses are in a unique position to incorporate cardiac monitoring into the early triage and risk stratification of patients with cardiovascular emergencies to optimize patient management and outcomes. PMID:27484661

  8. Anatomic distribution of culprit lesions in patients with non-ST-segment elevation myocardial infarction and normal ECG

    PubMed Central

    Moustafa, Abdelmoniem; Abi-Saleh, Bernard; El-Baba, Mohammad; Hamoui, Omar

    2016-01-01

    Background In patients presenting with non-ST-elevation myocardial infarction (NSTEMI), left anterior descending (LAD) coronary artery and three-vessel disease are the most commonly encountered culprit lesions in the presence of ST depression, while one third of patients with left circumflex (LCX) artery related infarction have normal ECG. We sought to determine the predictors of presence of culprit lesion in NSTEMI patients based on ECG, echocardiographic, and clinical characteristics. Methods Patients admitted to the coronary care unit with the diagnosis of NSTEMI between June 2012 and December 2013 were retrospectively identified. Admission ECG was interpreted by an electrophysiologist that was blinded to the result of the coronary angiogram. Patients were dichotomized into either normal or abnormal ECG group. The primary endpoint was presence of culprit lesion. Secondary endpoints included length of stay, re-hospitalization within 60 days, and in-hospital mortality. Results A total of 118 patients that were identified; 47 with normal and 71 with abnormal ECG. At least one culprit lesion was identified in 101 patients (86%), and significantly more among those with abnormal ECG (91.5% vs. 76.6%, P=0.041).The LAD was the most frequently detected culprit lesion in both groups. There was a higher incidence of two and three-vessel disease in the abnormal ECG group (P=0.041).On the other hand, there was a trend of higher LCX involvement (25% vs. 13.8%, P=0.18) and more normal coronary arteries in the normal ECG group (23.4% vs. 8.5%, P=0.041). On multivariate analysis, prior history of coronary artery disease (CAD) [odds ratio (OR) 6.4 (0.8-52)], male gender [OR 5.0 (1.5-17)], and abnormal admission ECG [OR 3.6 (1.12-12)], were independent predictors of a culprit lesion. There was no difference in secondary endpoints between those with normal and abnormal ECG. Conclusions Among patients presenting with NSTEMI, prior history of CAD, male gender and abnormal admission

  9. [ANMCO/AIIC/SIT Consensus document: Definition, precision and appropriateness of the electrocardiographic signal of electrocardiographic recorders, ergometry systems, Holter systems, telemetry and bedside monitors].

    PubMed

    Gulizia, Michele Massimo; Casolo, Giancarlo; Zuin, Guerrino; Morichelli, Loredana; Calcagnini, Giovanni; Ventimiglia, Vincenzo; Censi, Federica; Caldarola, Pasquale; Russo, Giancarmine; Leogrande, Lorenzo; Gensini, Gian Franco

    2016-06-01

    The ECG signal can be derived from different sources. These include systems for surface ECG, Holter monitoring, ergometric stress tests and systems for telemetry and bedside monitoring of vital parameters, useful to rhythm and ST-segment analysis and ECG screening of cardiac electrical sudden death predictors. A precise ECG diagnosis is based upon a correct recording, elaboration and presentation of the signal. Several sources of artifacts and potential external causes may influence the quality of the original ECG waveforms. Other factors that may affect the quality of the information presented depends upon the technical solutions employed to improve the signal. The choice of the instrumentations and solutions used to offer a high quality ECG signal are therefore of paramount importance. Some requirements are reported in detail in scientific statements and recommendations. The aim of this consensus document is to offer a scientific reference for the choice of systems able to offer a high quality ECG signal acquisition, processing and presentation suitable for clinical use. PMID:27311085

  10. Development of living body information monitoring system

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko

    2010-03-01

    The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.

  11. Development of living body information monitoring system

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko

    2009-12-01

    The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.

  12. Fixed-time induction of ovulation in camels superovulated by different eCG modalities during the transition period in Egypt : Superovulation in camels during the transition period.

    PubMed

    Khalifa, Marwa Ahmed; Rateb, Sherif Abdel-Razzak; El-Bahrawy, Khalid Ahmed

    2016-04-01

    The current investigation aimed to establish a fixed-time induction of ovulation/ insemination protocol in camels superovulated by different equine chorionic gonadotropin (eCG) regimens during the transition period in Egypt (mid-October to mid-November). Seventeen pluriparous camels, Camelus dromedarius, were used. All females retained controlled intra-vaginal drug releasers (CIDRs) for 13 consecutive days, and at CIDR withdrawal, the camels were randomly divided into three groups. The control group (n = 5) received 1 ml saline intra-muscularly (i.m.), whereas remaining camels were superovulated by 2500 IU eCG either in a single shot (SS, n = 6) or in serial decreasing doses over 3 days (DD, n = 6). Ovarian dynamics were monitored by transrectal ultrasonography at 2-day intervals, and ovulation was induced by 5000 IU hCG i.m. The changes in reproductive hormones throughout the period of the study were determined. The results showed that mean values of total no. of follicles and size of dominant follicles remained low (P < 0.05) in all groups until day of CIDR removal. Thereafter, total follicle no. increased (P < 0.05) in both superovulated groups compared to the control, where the dominant follicles attained the highest (P < 0.05) diameter 12 days after the eCG treatment. Double-ovulation rate was higher (P < 0.05) in SS (50%) and DD (66.6%) groups compared to that of control (0.0%). However, 33.3% of the SS group developed large anovulatory follicles (ø > 25 mm), which did not respond to induction to ovulation. These results elucidate that eCG administration in serial decreasing doses generates a reliable superovulatory response in camels, and ovulation can be blindly induced 12 days after the gonadotropin treatment. This fixed-time hormonal protocol represents a sufficient alternative to conventional day-to-day ultrasonography and would have profound implication for enhanced fertility in dromedary camels by facilitating infield application of embryo transfer

  13. Application for the wearable heart activity monitoring system: analysis of the autonomic function of HRV.

    PubMed

    Yang, Heui-Kyung; Lee, Jeong-Whan; Lee, Kang-Hwi; Lee, Young-Jae; Kim, Kyeong-Seop; Choi, Hee-Jung; Kim, Dong-Jun

    2008-01-01

    The wearable patch-style heart activity monitoring system (HAMS) which was used for recording ECG signal in this study is self-developed. This electrode design helps the non-restricted, non-aware and non-invasive ECG measurement. The modified bipolar electrode is convenient in use because it is designed for easy attachment and detachment with ECG measuring module by snap button. Besides, it minimizes EMI by removing the cables. In the same subjects who were exposed under stress and non-stress, the questionnaire was given out, the amount of the stress hormone was measured by blood test and the ECG signal was recorded. Through the analysis of ECG signal which is measured with wearable patch-style HAMS, the parameter highly related with mental stress were extracted from frequency and time domain. These parameters were certified as the meaningful factor after correlation analysis on the results from questionnaire and stress hormone test. Also, it is proved that the availability of wearable patch-style heart monitoring system is efficient as health monitoring system in any places and occasion. PMID:19162895

  14. Exploring Neuro-Physiological Correlates of Drivers' Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data.

    PubMed

    Ahn, Sangtae; Nguyen, Thien; Jang, Hyojung; Kim, Jae G; Jun, Sung C

    2016-01-01

    Investigations of the neuro-physiological correlates of mental loads, or states, have attracted significant attention recently, as it is particularly important to evaluate mental fatigue in drivers operating a motor vehicle. In this research, we collected multimodal EEG/ECG/EOG and fNIRS data simultaneously to develop algorithms to explore neuro-physiological correlates of drivers' mental states. Each subject performed simulated driving under two different conditions (well-rested and sleep-deprived) on different days. During the experiment, we used 68 electrodes for EEG/ECG/EOG and 8 channels for fNIRS recordings. We extracted the prominent features of each modality to distinguish between the well-rested and sleep-deprived conditions, and all multimodal features, except EOG, were combined to quantify mental fatigue during driving. Finally, a novel driving condition level (DCL) was proposed that distinguished clearly between the features of well-rested and sleep-deprived conditions. This proposed DCL measure may be applicable to real-time monitoring of the mental states of vehicle drivers. Further, the combination of methods based on each classifier yielded substantial improvements in the classification accuracy between these two conditions. PMID:27242483

  15. Exploring Neuro-Physiological Correlates of Drivers' Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data

    PubMed Central

    Ahn, Sangtae; Nguyen, Thien; Jang, Hyojung; Kim, Jae G.; Jun, Sung C.

    2016-01-01

    Investigations of the neuro-physiological correlates of mental loads, or states, have attracted significant attention recently, as it is particularly important to evaluate mental fatigue in drivers operating a motor vehicle. In this research, we collected multimodal EEG/ECG/EOG and fNIRS data simultaneously to develop algorithms to explore neuro-physiological correlates of drivers' mental states. Each subject performed simulated driving under two different conditions (well-rested and sleep-deprived) on different days. During the experiment, we used 68 electrodes for EEG/ECG/EOG and 8 channels for fNIRS recordings. We extracted the prominent features of each modality to distinguish between the well-rested and sleep-deprived conditions, and all multimodal features, except EOG, were combined to quantify mental fatigue during driving. Finally, a novel driving condition level (DCL) was proposed that distinguished clearly between the features of well-rested and sleep-deprived conditions. This proposed DCL measure may be applicable to real-time monitoring of the mental states of vehicle drivers. Further, the combination of methods based on each classifier yielded substantial improvements in the classification accuracy between these two conditions. PMID:27242483

  16. Efficient ECG signal analysis using wavelet technique for arrhythmia detection: an ANFIS approach

    NASA Astrophysics Data System (ADS)

    Khandait, P. D.; Bawane, N. G.; Limaye, S. S.

    2010-02-01

    This paper deals with improved ECG signal analysis using Wavelet Transform Techniques and employing subsequent modified feature extraction for Arrhythmia detection based on Neuro-Fuzzy technique. This improvement is based on suitable choice of features in evaluating and predicting life threatening Ventricular Arrhythmia . Analyzing electrocardiographic signals (ECG) includes not only inspection of P, QRS and T waves, but also the causal relations they have and the temporal sequences they build within long observation periods. Wavelet-transform is used for effective feature extraction and Adaptive Neuro-Fuzzy Inference System (ANFIS) is considered for the classifier model. In a first step, QRS complexes are detected. Then, each QRS is delineated by detecting and identifying the peaks of the individual waves, as well as the complex onset and end. Finally, the determination of P and T wave peaks, onsets and ends is performed. We evaluated the algorithm on several manually annotated databases, such as MIT-BIH Arrhythmia and CSE databases, developed for validation purposes. Features based on the ECG waveform shape and heart beat intervals are used as inputs to the classifiers. The performance of the ANFIS model is evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the ECG signals. Cross validation is used to measure the classifier performance. A testing classification accuracy of 95.13% is achieved which is a significant improvement.

  17. Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction

    NASA Astrophysics Data System (ADS)

    Sayadi, Omid; Shamsollahi, Mohammad B.

    2007-12-01

    We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.

  18. Food and Insulin Effect on QT/QTC Interval of ECG

    ClinicalTrials.gov

    2014-08-19

    Effects of Different Meals on the QT/QTc Interval; Insulin and Oral Hypoglycemic [Antidiabetic] Drugs Causing Adverse Effects in Therapeutic Use; C-Peptide Effects on the QT/QTc Interval; Moxifloxacin ECG Profile in Fed and Fasted State; Japanese vs. Caucasian TQT Comparison

  19. Extracting the respiration cycle lengths from ECG signal recorded with bed sheet electrodes

    NASA Astrophysics Data System (ADS)

    Vehkaoja, A.; Peltokangas, M.; Lekkala, J.

    2013-09-01

    A method for recognizing the respiration cycle lengths from the electrocardiographic (ECG) signal recorded with textile electrodes that are attached to a bed sheet is proposed. The method uses two features extracted from the ECG that are affected by the respiration: respiratory sinus arrhythmia and the amplitude of the R-peaks. The proposed method was tested in one hour long recordings with ten healthy young adults. A relative mean absolute error of 5.6 % was achieved when the algorithm was able to provide a result for approximately 40 % of the time. 90 % of the values were within 0.5 s and 97 % within 1 s from the reference respiration value. In addition to the instantaneous respiration cycle lengths, also the mean values during 1 and 5 minutes epochs are calculated. The effect of the ECG signal source is evaluated by calculating the result also from the simultaneously recorded reference ECG signal. The acquired respiration information can be used in the estimation of sleep quality and the detection of sleep disorders.

  20. Consistent quality control in ECG compression by means of direct metrics.

    PubMed

    Hernando-Ramiro, Carlos; Blanco-Velasco, Manuel; Lovisolo, Lisandro; Cruz-Roldán, Fernando

    2015-09-01

    The aim of electrocardiogram (ECG) compression is to reduce the amount of data as much as possible while preserving the significant information for diagnosis. Objective metrics that are derived directly from the signal are suitable for controlling the quality of the compressed ECGs in practical applications. Many approaches have employed figures of merit based on the percentage root mean square difference (PRD) for this purpose. The benefits and drawbacks of the PRD measures, along with other metrics for quality assessment in ECG compression, are analysed in this work. We propose the use of the root mean square error (RMSE) for quality control because it provides a clearer and more stable idea about how much the retrieved ECG waveform, which is the reference signal for establishing diagnosis, separates from the original. For this reason, the RMSE is applied here as the target metric in a thresholding algorithm that relies on the retained energy. A state of the art compressor based on this approach, and its PRD-based counterpart, are implemented to test the actual capabilities of the proposed technique. Both compression schemes are employed in several experiments with the whole MIT-BIH Arrhythmia Database to assess both global and local signal distortion. The results show that, using the RMSE for quality control, the distortion of the reconstructed signal is better controlled without reducing the compression ratio. PMID:26260978

  1. Evaluation of Digital Compressed Sensing for Real-Time Wireless ECG System with Bluetooth low Energy.

    PubMed

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2016-07-01

    In this paper, a wearable and wireless ECG system is firstly designed with Bluetooth Low Energy (BLE). It can detect 3-lead ECG signals and is completely wireless. Secondly the digital Compressed Sensing (CS) is implemented to increase the energy efficiency of wireless ECG sensor. Different sparsifying basis, various compression ratio (CR) and several reconstruction algorithms are simulated and discussed. Finally the reconstruction is done by the android application (App) on smartphone to display the signal in real time. The power efficiency is measured and compared with the system without CS. The optimum satisfying basis built by 3-level decomposed db4 wavelet coefficients, 1-bit Bernoulli random matrix and the most suitable reconstruction algorithm are selected by the simulations and applied on the sensor node and App. The signal is successfully reconstructed and displayed on the App of smartphone. Battery life of sensor node is extended from 55 h to 67 h. The presented wireless ECG system with CS can significantly extend the battery life by 22 %. With the compact characteristic and long term working time, the system provides a feasible solution for the long term homecare utilization. PMID:27240841

  2. ECG Rhythm Analysis with Expert and Learner-Generated Schemas in Novice Learners

    ERIC Educational Resources Information Center

    Blissett, Sarah; Cavalcanti, Rodrigo; Sibbald, Matthew

    2015-01-01

    Although instruction using expert-generated schemas is associated with higher diagnostic performance, implementation is resource intensive. Learner-generated schemas are an alternative, but may be limited by increases in cognitive load. We compared expert- and learner-generated schemas for learning ECG rhythm interpretation on diagnostic accuracy,…

  3. Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents.

    PubMed

    Ubeyli, Elif Derya

    2009-03-01

    This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for classification of electrocardiogram (ECG) signals. Decision making was performed in two stages: feature extraction by computation of Lyapunov exponents and classification by the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. Four types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, and atrial fibrillation beat) obtained from the PhysioBank database were classified by four ANFIS classifiers. To improve diagnostic accuracy, the fifth ANFIS classifier (combining ANFIS) was trained using the outputs of the four ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the saliency of features on classification of the ECG signals were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the ECG signals. PMID:19084286

  4. Improving the reliability of venous Doppler flow measurements: relevance of combined ECG, training and repeated measures.

    PubMed

    Staelens, Anneleen S E; Tomsin, Kathleen; Oben, Jolien; Mesens, Tinne; Grieten, Lars; Gyselaers, Wilfried

    2014-07-01

    The nature of venous Doppler waves is highly variable. An additional electrocardiogram (ECG) improves the interpretation of venous Doppler wave characteristics and allows measurement of venous pulse transit time. The purpose of this study was to assess the reproducibility of ECG-guided repeated measurements of venous Doppler flow characteristics before and after sonographer training and the inter- and intra-observer variability. In four groups of 25 healthy women, venous Doppler flow measurements were performed at the level of the kidneys and liver according to a standardized protocol. Intra-observer Pearson correlation coefficients of the renal interlobar vein Doppler indices were ≥ 0.80 with the addition of the ECG, which are higher than the results of a former study. The inter-observer correlation between an experienced ultrasonographer and an inexperienced ultrasonographer improved from ≥ 0.71 to ≥ 0.91 after training. The correlation range of all parameters between two independent observers improved when values were based on repeated measures. The addition of an ECG to the Doppler image, training and repeated measurements are helpful in improving venous Doppler wave interpretation. PMID:24631376

  5. Cardiac preparticipation screening for the young athlete: why the routine use of ECG is not necessary.

    PubMed

    Roberts, William O; Asplund, Chad A; O'Connor, Francis G; Stovitz, Steven D

    2015-01-01

    The addition of an electrocardiogram (ECG) to the current United States athlete preparticipation physical evaluation (PPE) as a screening tool has dominated the PPE discussion over the past decade despite the lack of demonstrable outcomes data supporting the routine use of the diagnostic study for reduction of sudden cardiac death (SCD). A good screening test should influence a disease or health outcome that has a significant impact on public health and the population screened must have a high prevalence of the disease to justify the screening intervention. While SCD is publicly remarkable and like any death, tragic, the prevalence of SCD in young athletes is very low and the potential for false positive results is high. While ECG screening appears to have made an impact on SCD in Italian athletes, the strategy has made no impact on Israeli athletes, and the overall impact of ECG screening on American athletes is unclear. Until outcomes studies show substantial SCD reduction benefit, the addition of routine ECG PPE screening in young athletes should not be instituted. PMID:25669141

  6. Epileptic seizure onset detection based on EEG and ECG data fusion.

    PubMed

    Qaraqe, Marwa; Ismail, Muhammad; Serpedin, Erchin; Zulfi, Haneef

    2016-05-01

    This paper presents a novel method for seizure onset detection using fused information extracted from multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG). In existing seizure detectors, the analysis of the nonlinear and nonstationary ECG signal is limited to the time-domain or frequency-domain. In this work, heart rate variability (HRV) extracted from ECG is analyzed using a Matching-Pursuit (MP) and Wigner-Ville Distribution (WVD) algorithm in order to effectively extract meaningful HRV features representative of seizure and nonseizure states. The EEG analysis relies on a common spatial pattern (CSP) based feature enhancement stage that enables better discrimination between seizure and nonseizure features. The EEG-based detector uses logical operators to pool SVM seizure onset detections made independently across different EEG spectral bands. Two fusion systems are adopted. In the first system, EEG-based and ECG-based decisions are directly fused to obtain a final decision. The second fusion system adopts an override option that allows for the EEG-based decision to override the fusion-based decision in the event that the detector observes a string of EEG-based seizure decisions. The proposed detectors exhibit an improved performance, with respect to sensitivity and detection latency, compared with the state-of-the-art detectors. Experimental results demonstrate that the second detector achieves a sensitivity of 100%, detection latency of 2.6s, and a specificity of 99.91% for the MAJ fusion case. PMID:27057745

  7. Compression of the electrocardiogram (ECG) using an adaptive orthonomal wavelet basis architecture

    NASA Astrophysics Data System (ADS)

    Anandkumar, Janavikulam; Szu, Harold H.

    1995-04-01

    This paper deals with the compression of electrocardiogram (ECG) signals using a large library of orthonormal bases functions that are translated and dilated versions of Daubechies wavelets. The wavelet transform has been implemented using quadrature mirror filters (QMF) employed in a sub-band coding scheme. Interesting transients and notable frequencies of the ECG are captured by appropriately scaled waveforms chosen in a parallel fashion from this collection of wavelets. Since there is a choice of orthonormal bases functions for the efficient transcription of the ECG, it is then possible to choose the best one by various criterion. We have imposed very stringent threshold conditions on the wavelet expansion coefficients, such as in maintaining a very large percentage of the energy of the current signal segment, and this has resulted in reconstructed waveforms with negligible distortion relative to the source signal. Even without the use of any specialized quantizers and encoders, the compression ratio numbers look encouraging, with preliminary results indicating compression ratios ranging from 40:1 to 15:1 at percentage rms distortions ranging from about 22% to 2.3%, respectively. Irrespective of the ECG lead chosen, or the signal deviations that may occur due to either noise or arrhythmias, only one wavelet family that correlates best with that particular portion of the signal, is chosen. The main reason for the compression is because the chosen mother wavelet and its variations match the shape of the ECG and are able to efficiently transcribe the source with few wavelet coefficients. The adaptive template matching architecture that carries out a parallel search of the transform domain is described, and preliminary simulation results are discussed. The adaptivity of the architecture comes from the fine tuning of the wavelet selection process that is based on localized constraints, such as shape of the signal and its energy.

  8. ECG Morphological Variability in Beat Space for Risk Stratification After Acute Coronary Syndrome

    PubMed Central

    Liu, Yun; Syed, Zeeshan; Scirica, Benjamin M.; Morrow, David A.; Guttag, John V.; Stultz, Collin M.

    2014-01-01

    Background Identification of patients who are at high risk of adverse cardiovascular events after an acute coronary syndrome (ACS) remains a major challenge in clinical cardiology. We hypothesized that quantifying variability in electrocardiogram (ECG) morphology may improve risk stratification post‐ACS. Methods and Results We developed a new metric to quantify beat‐to‐beat morphologic changes in the ECG: morphologic variability in beat space (MVB), and compared our metric to published ECG metrics (heart rate variability [HRV], deceleration capacity [DC], T‐wave alternans, heart rate turbulence, and severe autonomic failure). We tested the ability of these metrics to identify patients at high risk of cardiovascular death (CVD) using 1082 patients (1‐year CVD rate, 4.5%) from the MERLIN‐TIMI 36 (Metabolic Efficiency with Ranolazine for Less Ischemia in Non‐ST‐Elevation Acute Coronary Syndrome—Thrombolysis in Myocardial Infarction 36) clinical trial. DC, HRV/low frequency–high frequency, and MVB were all associated with CVD (hazard ratios [HRs] from 2.1 to 2.3 [P<0.05 for all] after adjusting for the TIMI risk score [TRS], left ventricular ejection fraction [LVEF], and B‐type natriuretic peptide [BNP]). In a cohort with low‐to‐moderate TRS (N=864; 1‐year CVD rate, 2.7%), only MVB was significantly associated with CVD (HR, 3.0; P=0.01, after adjusting for LVEF and BNP). Conclusions ECG morphological variability in beat space contains prognostic information complementary to the clinical variables, LVEF and BNP, in patients with low‐to‐moderate TRS. ECG metrics could help to risk stratify patients who might not otherwise be considered at high risk of CVD post‐ACS. PMID:24963105

  9. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings.

    PubMed

    Khandoker, Ahsan H; Palaniswami, Marimuthu; Karmakar, Chandan K

    2009-01-01

    Obstructive sleep apnea syndrome (OSAS) is associated with cardiovascular morbidity as well as excessive daytime sleepiness and poor quality of life. In this study, we apply a machine learning technique [support vector machines (SVMs)] for automated recognition of OSAS types from their nocturnal ECG recordings. A total of 125 sets of nocturnal ECG recordings acquired from normal subjects (OSAS - ) and subjects with OSAS (OSAS +), each of approximately 8 h in duration, were analyzed. Features extracted from successive wavelet coefficient levels after wavelet decomposition of signals due to heart rate variability (HRV) from RR intervals and ECG-derived respiration (EDR) from R waves of QRS amplitudes were used as inputs to the SVMs to recognize OSAS +/- subjects. Using leave-one-out technique, the maximum accuracy of classification for 83 training sets was found to be 100% for SVMs using a subset of selected combination of HRV and EDR features. Independent test results on 42 subjects showed that it correctly recognized 24 out of 26 OSAS + subjects and 15 out of 16 OSAS - subjects (accuracy = 92.85%; Cohen's kappa value of 0.85). For estimating the relative severity of OSAS, the posterior probabilities of SVM outputs were calculated and compared with respective apnea/hypopnea index. These results suggest superior performance of SVMs in OSAS recognition supported by wavelet-based features of ECG. The results demonstrate considerable potential in applying SVMs in an ECG-based screening device that can aid a sleep specialist in the initial assessment of patients with suspected OSAS. PMID:19129022

  10. A machine learning approach to multi-level ECG signal quality classification.

    PubMed

    Li, Qiao; Rajagopalan, Cadathur; Clifford, Gari D

    2014-12-01

    Current electrocardiogram (ECG) signal quality assessment studies have aimed to provide a two-level classification: clean or noisy. However, clinical usage demands more specific noise level classification for varying applications. This work outlines a five-level ECG signal quality classification algorithm. A total of 13 signal quality metrics were derived from segments of ECG waveforms, which were labeled by experts. A support vector machine (SVM) was trained to perform the classification and tested on a simulated dataset and was validated using data from the MIT-BIH arrhythmia database (MITDB). The simulated training and test datasets were created by selecting clean segments of the ECG in the 2011 PhysioNet/Computing in Cardiology Challenge database, and adding three types of real ECG noise at different signal-to-noise ratio (SNR) levels from the MIT-BIH Noise Stress Test Database (NSTDB). The MITDB was re-annotated for five levels of signal quality. Different combinations of the 13 metrics were trained and tested on the simulated datasets and the best combination that produced the highest classification accuracy was selected and validated on the MITDB. Performance was assessed using classification accuracy (Ac), and a single class overlap accuracy (OAc), which assumes that an individual type classified into an adjacent class is acceptable. An Ac of 80.26% and an OAc of 98.60% on the test set were obtained by selecting 10 metrics while 57.26% (Ac) and 94.23% (OAc) were the numbers for the unseen MITDB validation data without retraining. By performing the fivefold cross validation, an Ac of 88.07±0.32% and OAc of 99.34±0.07% were gained on the validation fold of MITDB. PMID:25306242

  11. ECG feature extraction based on the bandwidth properties of variational mode decomposition.

    PubMed

    Mert, Ahmet

    2016-04-01

    It is a difficult process to detect abnormal heart beats, known as arrhythmia, in long-term ECG recording. Thus, computer-aided diagnosis systems have become a supportive tool for helping physicians improve the diagnostic accuracy of heartbeat detection. This paper explores the bandwidth properties of the modes obtained using variational mode decomposition (VMD) to classify arrhythmia electrocardiogram (ECG) beats. VMD is an enhanced version of the empirical mode decomposition (EMD) algorithm for analyzing non-linear and non-stationary signals. It decomposes the signal into a set of band-limited oscillations called modes. ECG signals from the MIT-BIH arrhythmia database are decomposed using VMD, and the amplitude modulation bandwidth B AM, the frequency modulation bandwidth B FM and the total bandwidth B of the modes are used as feature vectors to detect heartbeats such as normal (N), premature ventricular contraction (V), left bundle branch block (L), right bundle branch block (R), paced beat (P) and atrial premature beat (A). Bandwidth estimations based on the instantaneous frequency (IF) and amplitude (IA) spectra of the modes indicate that the proposed VMD-based features have sufficient class discrimination capability regarding ECG beats. Moreover, the extracted features using the bandwidths (B AM, B FM and B) of four modes are used to evaluate the diagnostic accuracy rates of several classifiers such as the k-nearest neighbor classifier (k-NN), the decision tree (DT), the artificial neural network (ANN), the bagged decision tree (BDT), the AdaBoost decision tree (ABDT) and random sub-spaced k-NN (RSNN) for N, R, L, V, P, and A beats. The performance of the proposed VMD-based feature extraction with a BDT classifier has accuracy rates of 99.06%, 99.00%, 99.40%, 99.51%, 98.72%, 98.71%, and 99.02% for overall, N-, R-, L-, V-, P-, and A-type ECG beats, respectively. PMID:26987295

  12. [Development of an embedded mobile terminal for real-time remote monitoring of out-of-hospital cardiac patients].

    PubMed

    Xu, Zhi-min; Fang, Zu-Xiang; Lai, Da-Kun; Song, Hai-Lang

    2007-05-01

    A kind of real-time remote monitoring embedded terminal which is combined with mobile communication technology and GPS localization technology, has been developed. The results of preliminary experiments show that the terminal can transmit ECG signals and localization information in real time and continuously, supply a real-time monitoring of out-of-hospital cardiac patients and trace the patients. PMID:17672363

  13. Pseudoaneurysm of the thoracic aorta sustained during exposure to a tornado diagnosed with ECG-synchronized CT aortography.

    PubMed

    Chakraborty, Amit; von Herrmann, Paul F; Embertson, Ryan E; Landwehr, Kevin P; Winkler, Michael A

    2016-01-01

    A case of a tornado victim with a delayed presentation of injury to the aortic isthmus is discussed. Tornado forces resemble the forces of high energy explosions, and the injuries that can occur as a result of these forces can be bizarre. The patient presented with the unique computed tomography (CT) findings of isolated pseudoaneurysm of the thoracic aorta in the absence of other traumatic injury to the thorax. Equivocal results of the initial CT aortogram (CTA) were confirmed with ECG-synchronized CTA (ECG-CTA), demonstrating the superiority of ECG-CTA as compared to standard CTA. PMID:27317209

  14. High resolution ambulatory electrocardiographic monitoring using wrist-mounted electric potential sensors

    NASA Astrophysics Data System (ADS)

    Harland, C. J.; Clark, T. D.; Prance, R. J.

    2003-07-01

    In this paper we describe the application of an electric potential sensor to the ambulatory monitoring of the human electrocardiogram (ECG). We show that a high resolution ECG can be acquired using two of these sensors mounted wristwatch style, one on each wrist. These sensors, which do not require a real current conducting path in order to operate, are used non-invasively without making electrical contact to the subject. Furthermore, their sensitivity and low noise floor have made it possible to detect a peak which corresponds, in timing, to the His bundle depolarization - a feature not normally seen in conventional surface ECGs. We predict that these new devices will rapidly find application in the areas of clinical medicine and ambulatory monitoring.

  15. Motion artifact reduction in electrocardiogram using adaptive filtering based on half cell potential monitoring.

    PubMed

    Ko, Byung-hoon; Lee, Takhyung; Choi, Changmok; Kim, Youn-ho; Park, Gunguk; Kang, KyoungHo; Bae, Sang Kon; Shin, Kunsoo

    2012-01-01

    The electrocardiogram (ECG) is the main measurement parameter for effectively diagnosing chronic disease and guiding cardio-fitness therapy. ECGs contaminated by noise or artifacts disrupt the normal functioning of the automatic analysis algorithm. The objective of this study is to evaluate a method of measuring the HCP variation in motion artifacts through direct monitoring. The proposed wearable sensing device has two channels. One channel is used to measure the ECG through a differential amplifier. The other is for monitoring motion artifacts using the modified electrode and the same differential amplifier. Noise reduction was performed using adaptive filtering, based on a reference signal highly correlated with it. Direct measurement of HCP variations can eliminate the need for additional sensors. PMID:23366209

  16. Low-power signal processing devices for portable ECG detection.

    PubMed

    Lee, Shuenn-Yuh; Cheng, Chih-Jen; Wang, Cheng-Pin; Kao, Wei-Chun

    2008-01-01

    An analog front end for diagnosing and monitoring the behavior of the heart is presented. This sensing front end has two low-power processing devices, including a 5(th)-order Butterworth operational transconductance-C (OTA-C) filter and an 8-bit successive approximation analog-to-digital converter (SAADC). The components fabricated in a 0.18-microm CMOS technology feature with power consumptions of 453 nW (filter) and 940 nW (ADC) at a supply voltage of 1 V, respectively. The system specifications in terms of output noise and linearity associated with the two integrated circuits are described in this paper. PMID:19163002

  17. A Wearable Cardiac Monitor for Long-Term Data Acquisition and Analysis

    PubMed Central

    Winokur, Eric S.; Delano, Maggie K.; Sodini, Charles G.

    2015-01-01

    A low-power wearable ECG monitoring system has been developed entirely from discrete electronic components and a custom PCB. This device removes all loose wires from the system and minimizes the footprint on the user. The monitor consists of five electrodes, which allow a cardiologist to choose from a variety of possible projections. Clinical tests to compare our wearable monitor with a commercial clinical ECG recorder are conducted on ten healthy adults under different ambulatory conditions, with nine of the datasets used for analysis. Data from both monitors were synchronized and annotated with PhysioNet's waveform viewer WAVE (physionet.org) [1]. All gold standard annotations are compared to the results of the WQRS detection algorithm [2] provided by PhysioNet. QRS sensitivity and QRS positive predictability are extracted from both monitors to validate the wearable monitor. PMID:22968205

  18. Electroencephalographic monitoring of complex mental tasks

    NASA Technical Reports Server (NTRS)

    Guisado, Raul; Montgomery, Richard; Montgomery, Leslie; Hickey, Chris

    1992-01-01

    Outlined here is the development of neurophysiological procedures to monitor operators during the performance of cognitive tasks. Our approach included the use of electroencepalographic (EEG) and rheoencephalographic (REG) techniques to determine changes in cortical function associated with cognition in the operator's state. A two channel tetrapolar REG, a single channel forearm impedance plethysmograph, a Lead I electrocardiogram (ECG) and a 21 channel EEG were used to measure subject responses to various visual-motor cognitive tasks. Testing, analytical, and display procedures for EEG and REG monitoring were developed that extend the state of the art and provide a valuable tool for the study of cerebral circulatory and neural activity during cognition.

  19. Revolutionary optical sensor for physiological monitoring in the battlefield

    NASA Astrophysics Data System (ADS)

    Kingsley, Stuart A.; Sriram, Sriram; Pollick, Andrea; Marsh, John

    2004-09-01

    SRICO has developed a revolutionary approach to physiological status monitoring using state-of-the-art optical chip technology. The company"s patent pending Photrode is a photonic electrode that uses unique optical voltage sensing technology to measure and monitor electrophysiological parameters. The optical-based monitoring system enables dry-contact measurements of EEG and ECG signals that require no surface preparation or conductive gel and non-contact measurements of ECG signals through the clothing. The Photrode applies high performance optical integrated circuit technology, that has been successfully implemented in military & commercial aerospace, missile, and communications applications for sensing and signal transmission. SRICO"s award winning Photrode represents a new paradigm for the measurement of biopotentials in a reliable, convenient, and non-intrusive manner. Photrode technology has significant applications on the battlefield for rapid triage to determine the brain dead from those with viable brain function. An ECG may be obtained over the clothing without any direct skin contact. Such applications would enable the combat medic to receive timely medical information and to make important decisions regarding identification, location, triage priority and treatment of casualties. Other applications for the Photrode include anesthesia awareness monitoring, sleep medicine, mobile medical monitoring for space flight, emergency patient care, functional magnetic resonance imaging, various biopotential signal acquisition (EMG, EOG), and routine neuro and cardio diagnostics.

  20. Real-time classification of ECGs on a PDA.

    PubMed

    Rodríguez, Jimena; Goñi, Alfredo; Illarramendi, Arantza

    2005-03-01

    The new advances in sensor technology, personal digital assistants (PDAs), and wireless communications favor the development of a new type of monitoring system that can provide patients with assistance anywhere and at any time. Of particular interest are the monitoring systems designed for people that suffer from heart arrhythmias, due to the increasing number of people with cardiovascular diseases. PDAs can play a very important role in these kinds of systems because they are portable devices that can execute more and more complex tasks. The main questions answered in this paper are whether PDAs can perform a complete electrocardiogram beat and rhythm classifier, if the classifier has a good accuracy, and if they can do it in real time. In order to answer these questions, in this paper, we show the steps that we have followed to build the algorithm that classifies beats and rhythms, and the obtained results, which show a competitive accuracy. Moreover, we also show the feasibility of incorporating the built algorithm into the PDA. PMID:15787004