Science.gov

Sample records for 12-lead electrocardiograms ecgs

  1. The Normal Electrocardiogram: Resting 12-Lead and Electrocardiogram Monitoring in the Hospital.

    PubMed

    Harris, Patricia R E

    2016-09-01

    The electrocardiogram (ECG) is a well-established diagnostic tool extensively used in clinical settings. Knowledge of cardiac rhythm and mastery of cardiac waveform interpretation are fundamental for intensive care nurses. Recognition of the normal findings for the 12-lead ECG and understanding the significance of changes from baseline in continuous cardiac monitoring are essential steps toward ensuring safe patient care. This article highlights historical developments in electrocardiography, describes the normal resting 12-lead ECG, and discusses the need for continuous cardiac monitoring. In addition, future directions for the ECG are explored briefly.

  2. Accurate Interpretation of the 12-Lead ECG Electrode Placement: A Systematic Review

    ERIC Educational Resources Information Center

    Khunti, Kirti

    2014-01-01

    Background: Coronary heart disease (CHD) patients require monitoring through ECGs; the 12-lead electrocardiogram (ECG) is considered to be the non-invasive gold standard. Examples of incorrect treatment because of inaccurate or poor ECG monitoring techniques have been reported in the literature. The findings that only 50% of nurses and less than…

  3. 12-lead electrocardiogram features of arrhythmic risk: A focus on early repolarization

    PubMed Central

    Rizzo, Caterina; Monitillo, Francesco; Iacoviello, Massimo

    2016-01-01

    The 12-lead electrocardiogram (ECG) is still the most used tool in cardiology clinical practice. Considering its easy accessibility, low cost and the information that it provides, it remains the starting point for diagnosis and prognosis. More specifically, its ability to detect prognostic markers for sudden cardiac death due to arrhythmias by identifying specific patterns that express electrical disturbances of the heart muscle, which may predispose to malignant arrhythmias, is universally recognized. Alterations in the ventricular repolarization process, identifiable on a 12-lead ECG, play a role in the genesis of ventricular arrhythmias in different cardiac diseases. The aim of this paper is to focus the attention on a new marker of arrhythmic risk, the early repolarization pattern in order to highlight the prognostic role of the 12-lead ECG. PMID:27621772

  4. Electrocardiographic systems with reduced numbers of leads-synthesis of the 12-lead ECG.

    PubMed

    Tomašić, Ivan; Trobec, Roman

    2014-01-01

    Systems with reduced numbers of leads that can synthesize the 12-lead electrocardiogram (ECG) with an insignificant or a small loss of diagnostic information have been proposed. The advantage over standard 12-lead ECG systems is the smaller number of measurement sites (i.e., electrodes) and, consequently, fewer wires. In this paper, we review all the important systems with reduced numbers of leads together with the methodology for synthesizing the leads. The fundamental theoretical background necessary to understand the most important concepts related to the synthesis is included. The presented theoretical and experimental justifications for the synthesis show that it is not necessary to measure a large number of leads directly, because the standard 12-lead ECG and arbitrary additional leads can be synthesized. Various approaches to evaluating the synthesized 12-lead ECG are defined and explained, and a number of systems that synthesize 12-lead ECG are presented as they were introduced in the literature. We cover the developments and improvements from the 1940s to the present day. The systems are classified on the basis of the synthesis method used, the approach to the evaluation of the synthesized ECG (depending on the measurement sites used), and on the number and types of leads employed. Based on a detailed assessment of state-of-the-art systems, open problems and challenges are highlighted, while further developments of electrocardiographic systems are envisaged.

  5. Vectorcardiographic diagnostic & prognostic information derived from the 12-lead electrocardiogram: Historical review and clinical perspective.

    PubMed

    Man, Sumche; Maan, Arie C; Schalij, Martin J; Swenne, Cees A

    2015-01-01

    In the course of time, electrocardiography has assumed several modalities with varying electrode numbers, electrode positions and lead systems. 12-lead electrocardiography and 3-lead vectorcardiography have become particularly popular. These modalities developed in parallel through the mid-twentieth century. In the same time interval, the physical concepts underlying electrocardiography were defined and worked out. In particular, the vector concept (heart vector, lead vector, volume conductor) appeared to be essential to understanding the manifestations of electrical heart activity, both in the 12-lead electrocardiogram (ECG) and in the 3-lead vectorcardiogram (VCG). Not universally appreciated in the clinic, the vectorcardiogram, and with it the vector concept, went out of use. A revival of vectorcardiography started in the 90's, when VCGs were mathematically synthesized from standard 12-lead ECGs. This facilitated combined electrocardiography and vectorcardiography without the need for a special recording system. This paper gives an overview of these historical developments, elaborates on the vector concept and seeks to define where VCG analysis/interpretation can add diagnostic/prognostic value to conventional 12-lead ECG analysis.

  6. Self-organized neural network for the quality control of 12-lead ECG signals.

    PubMed

    Chen, Yun; Yang, Hui

    2012-09-01

    Telemedicine is very important for the timely delivery of health care to cardiovascular patients, especially those who live in the rural areas of developing countries. However, there are a number of uncertainty factors inherent to the mobile-phone-based recording of electrocardiogram (ECG) signals such as personnel with minimal training and other extraneous noises. PhysioNet organized a challenge in 2011 to develop efficient algorithms that can assess the ECG signal quality in telemedicine settings. This paper presents our efforts in this challenge to integrate multiscale recurrence analysis with a self-organizing map for controlling the ECG signal quality. As opposed to directly evaluating the 12-lead ECG, we utilize an information-preserving transform, i.e. Dower transform, to derive the 3-lead vectorcardiogram (VCG) from the 12-lead ECG in the first place. Secondly, we delineate the nonlinear and nonstationary characteristics underlying the 3-lead VCG signals into multiple time-frequency scales. Furthermore, a self-organizing map is trained, in both supervised and unsupervised ways, to identify the correlations between signal quality and multiscale recurrence features. The efficacy and robustness of this approach are validated using real-world ECG recordings available from PhysioNet. The average performance was demonstrated to be 95.25% for the training dataset and 90.0% for the independent test dataset with unknown labels.

  7. The 24-lead ECG display for enhanced recognition of STEMI-equivalent patterns in the 12-lead ECG.

    PubMed

    Pahlm, Ulrika; Pahlm, Olle; Wagner, Galen S

    2014-01-01

    In a patient with chest pain and suspected acute coronary syndrome, the electrocardiogram (ECG) is the only readily available diagnostic tool. It is important to maximize its usefulness to detect acute myocardial ischemia that may evolve to myocardial infarction unless the patient is treated expediently with reperfusion therapy. Since diagnostic guidelines have usually included only ST-elevation myocardial infarction (STEMI) as the entity that should be diagnosed and treated urgently, a patient with coronary occlusion represented on ECG as ST depression is likely not to be considered a candidate for receiving immediate coronary angiography and coronary intervention. ECG criteria for STEMI detection require that ST elevation meet predetermined millivolt thresholds and appear in at least two spatially contiguous ECG leads. The typical ECG reader recognizes only three contiguous pairs: aVL and I; II and aVF; aVF and III. However, viewing the "orderly sequenced" 12-lead ECG display, two more contiguous pairs become obvious in the frontal plane: +I and -aVR; -aVR and +II. The 24-lead ECG is a display of the standard 12-lead ECG as both the classical positive leads and their negative (inverted) counterparts. Leads +V1, +V2, +V3, +V4, +V5, and +V6 and their inverted counterparts are used to generate a "clock-face display" for the transverse plane. Similarly, +aVL, +I, -aVR, +II, +aVF, +III in the frontal plane and their inverted counterparts are used to generate a clock-face display for the frontal plane. Optimum results, 78% sensitivity and 93% specificity, were obtained using the following 19 ECG leads: frontal plane: +aVR, -III, +aVL, +I, -aVR, +II, +aVF, +III, -aVL; transverse plane: +V1, +V2, +V3, +V4, +V5, +V6, -V1, -V2, -V3.

  8. The 12-lead electrocardiogram and risk of sudden death: current utility and future prospects.

    PubMed

    Narayanan, Kumar; Chugh, Sumeet S

    2015-10-01

    More than 100 years after it was first invented, the 12-lead electrocardiogram (ECG) continues to occupy an important place in the diagnostic armamentarium of the practicing clinician. With the recognition of relatively rare but important clinical entities such as Wolff-Parkinson-White and the long QT syndrome, this clinical tool was firmly established as a test for assessing risk of sudden cardiac death (SCD). However, over the past two decades the role of the ECG in risk prediction for common forms of SCD, for example in patients with coronary artery disease, has been the focus of considerable investigation. Especially in light of the limitations of current risk stratification approaches, there is a renewed focus on this broadly available and relatively inexpensive test. Various abnormalities of depolarization and repolarization on the ECG have been linked to SCD risk; however, more focused work is needed before they can be deployed in the clinical arena. The present review summarizes the current knowledge on various ECG risk markers for prediction of SCD and discusses some future directions in this field.

  9. Automated J wave detection from digital 12-lead electrocardiogram.

    PubMed

    Wang, Yi Grace; Wu, Hau-Tieng; Daubechies, Ingrid; Li, Yabing; Estes, E Harvey; Soliman, Elsayed Z

    2015-01-01

    In this report we provide a method for automated detection of J wave, defined as a notch or slur in the descending slope of the terminal positive wave of the QRS complex, using signal processing and functional data analysis techniques. Two different sets of ECG tracings were selected from the EPICARE ECG core laboratory, Wake Forest School of Medicine, Winston Salem, NC. The first set was a training set comprised of 100 ECGs of which 50 ECGs had J-wave and the other 50 did not. The second set was a test set (n=116 ECGs) in which the J-wave status (present/absent) was only known by the ECG Center staff. All ECGs were recorded using GE MAC 1200 (GE Marquette, Milwaukee, Wisconsin) at 10mm/mV calibration, speed of 25mm/s and 500HZ sampling rate. All ECGs were initially inspected visually for technical errors and inadequate quality, and then automatically processed with the GE Marquette 12-SL program 2001 version (GE Marquette, Milwaukee, WI). We excluded ECG tracings with major abnormalities or rhythm disorder. Confirmation of the presence or absence of a J wave was done visually by the ECG Center staff and verified once again by three of the coauthors. There was no disagreement in the identification of the J wave state. The signal processing and functional data analysis techniques applied to the ECGs were conducted at Duke University and the University of Toronto. In the training set, the automated detection had sensitivity of 100% and specificity of 94%. For the test set, sensitivity was 89% and specificity was 86%. In conclusion, test results of the automated method we developed show a good J wave detection accuracy, suggesting possible utility of this approach for defining and detection of other complex ECG waveforms.

  10. [Singularity spectra analysis of the ST segments of 12-lead electrocardiogram].

    PubMed

    Wang, Jun; Ning, Xinbao; Xu, Yinlin; Ma, Qianli; Chen, Ying; Li, Dehua

    2007-12-01

    By analysing the f(a) singularity spectra of the ST segments of the synchronous 12-lead ECG, we have found that the singularity spectrum is close to monofractality and its area is only half the area of the synchronous 12-lead ECG f(alpha) singularity spectrum. The ST segments of the synchronous 12-lead ECG signal also has f(alpha) singularity spectra distribution and it also has a reasonable varying scope. We have also found that the lead number of the ST segment f (alpha) singularity spectra for adults having coronary heart disease overstep the reasonable scope tends to increase over that of the ECG f(alpha) singularity spectra. These findings show that using the ST segments f(alpha) singularity spectra distribution of the synchronous 12-lead ECG is more effective than using the synchronous 12-lead ECG on the clinical analysis.

  11. 1.5 Tesla MRI-Conditional 12-lead ECG for MR Imaging and Intra-MR Intervention

    PubMed Central

    Tse, Zion Tsz Ho; Dumoulin, Charles L.; Clifford, Gari D.; Schweitzer, Jeff; Qin, Lei; Oster, Julien; Jerosch-Herold, Michael; Kwong, Raymond Y.; Michaud, Gregory; Stevenson, William G.; Schmidt, Ehud J.

    2013-01-01

    Propose High-fidelity 12-lead Electrocardiogram (ECG) is important for physiological monitoring of patients during MR-guided intervention and cardiac MR imaging. Issues in obtaining non-corrupted ECGs inside MRI include a superimposed Magneto-Hydro-Dynamic (MHD) voltage, gradient-switching induced-voltages, and radiofrequency (RF) heating. These problems increase with magnetic field. We intended to develop and clinically validate a 1.5T MRI-conditional 12-lead ECG system. Methods The system was constructed, including transmission-lines to reduce radio-frequency induction, and switching-circuits to remove induced voltages. Adaptive filters, trained by 12-lead measurements outside MRI and in two orientations inside MRI, were used to remove MHD. The system was tested on ten (one exercising) volunteers and four arrhythmia patients. Results Switching circuits removed most imaging-induced voltages (residual noise <3% of the R-wave). MHD removal provided intra-MRI ECGs that varied by <3.8% from those outside the MRI, preserving the true ST segment. In premature-ventricular-contraction (PVC) patients, clean ECGs separated PVC and sinus-rhythm beats. Measured heating was <1.5 C0. The system reliably acquired multiphase (SSFP) wall-motion-cine and phase-contrast-cine scans, including in subjects where 4-lead gating failed. The system required a minimum TR of 4ms to allow robust ECG processing. Conclusion High-fidelity intra-MRI 12-lead ECG is possible. PMID:23580148

  12. Highly Reliable Key Generation from Electrocardiogram (ECG).

    PubMed

    Karimian, Nima; Guo, Zimu; Tehranipoor, Mark; Forte, Domenic

    2016-09-08

    Traditional passwords are inadequate as cryptographic keys, as they are easy to forge and are vulnerable to guessing. Human biometrics have been proposed as a promising alternative due to their intrinsic nature. Electrocardiogram (ECG) is an emerging biometric that is extremely difficult to forge and circumvent, but has not yet been heavily investigated for cryptographic key generation. ECG has challenges with respect to immunity to noise, abnormalities, etc. In this paper, we propose a novel key generation approach that extracts keys from real valued ECG features with high reliability and entropy in mind. Our technique, called interval optimized mapping bit allocation (IOMBA), is applied to normal and abnormal ECG signals under multiple session conditions. We also investigate IOMBA in the context of different feature extraction methods, such as wavelet, discrete cosine transform, etc. to find the best method for feature extraction. Experiments of IOMBA show that 217-bit, 38-bit, and 100-bit keys with 99.9%, 97.4%, and 95% average reliability and high entropy can be extracted from normal, abnormal, and multiple session ECG signals, respectively. By allowing more errors or lowering entropy, key lengths can be further increased by tunable parameters of IOMBA which can be useful in other applications. While IOMBA is demonstrated on ECG, it should be useful for other biometrics as well.

  13. Detection of myocardial ischemia by vessel-specific leads derived from the 12-lead electrocardiogram and its subsets.

    PubMed

    Horácek, B Milan; Mirmoghisi, Maryam; Warren, James W; Wagner, Galen S; Wang, John J

    2008-01-01

    Currently used electrocardiographic criteria for identifying patients with ST-elevation myocardial infarction (STEMI) perform with high specificity but low sensitivity. Our aim was to enhance ischemia-detection ability of conventional STEMI criteria based on 12-lead electrocardiogram (ECG) by adding new criteria using 3 vessel-specific leads (VSLs) derived from 12-lead ECG. Study data consisted of 12-lead ECGs acquired during 99 ischemic episodes caused by balloon inflation in, respectively, left anterior descending coronary artery (LAD; n = 35), right coronary artery (RCA; n = 47), and left circumflex coronary artery (LCx; n = 17). ST deviation was measured at J point in 12 standard leads, and for 3 VSLs, its value was derived from 12-lead ECG by using 8 independent predictor leads or just a pair of precordial leads combined with a pair of limb leads. Mean values of sensitivity (SE) and specificity (SP) of ischemia detection achieved with conventional STEMI vs VSL criteria were then obtained from bootstrap trials. We found that the detection of ischemic state by conventional criteria achieved the mean SE/SP of 60%/96% in the total set of ischemic episodes, 74%/97% in the LAD subgroup, 60%/94% in the RCA subgroup, and 36%/100% in the LCx subgroup. In comparison, the mean SE/SP values of VSLs derived from 8 independent leads of 12-lead ECG were, at 125-microV threshold, 76%(*)/96% in the total set, 91%(*)/97% in the LAD subgroup, 70%/94% in the RCA subgroup, and 71%(*)/100% in the LCx subgroup (with asterisk denoting a statistically significant increase). The mean SE/SP of VSLs derived from some of the 4-predictor lead sets (namely, those including lead V(3)) matched or exceeded values achieved by VSLs derived from 8 predictors; for instance, with predictor leads I, II, V(3), V(6) derived VSLs attained at 125-microV threshold the mean SE/SP of 80%(*)/95% in the total set, 91%(*)/97% in the LAD subgroup, 74%/92% in the RCA subgroup, and 71%(*)/100% in the LCx

  14. High Resolution 12-lead Electrocardiograms of On-Duty Professional Firefighters: A Pilot Feasibility Study

    PubMed Central

    Carey, Mary G.; Thevenin, Bernard J.-M.

    2010-01-01

    Background Cardiovascular deaths among on-duty firefighters are high; double that of police officers and quadruple that of first responders. The aim of this pilot study was to establish the feasibility of obtaining high resolutions ECGs of on-duty firefighters useful for detecting ECG predictors for cardiac events. Methods Twenty-eight professional firefighters (age, 46 ± 6 years) wore a 12-lead ECG Holter for 24 hours (16 hours while on-duty and 8 hours post-duty). All activities including fire and medical calls were monitored. Results On average the recordings were 92% analyzable. All were in sinus with a heart rate of 80 ±11bpm (35–188 range). The average rr50 over the 24-hour Holter study was 6.2 ±6% (range: 1–23%) and rms-SD was 81 ± 55 (range: 24–209). Using the QRS/Tsimple formula, the average spatial QRS-T angle was 104 ±17 degrees (range 78–132 degrees). Nonsustained ventricular tachycardia occurred irrespectively of activity or time of day in three (11%) firefighters, which was significantly higher than in comparable normal populations (p<0.05). Conclusions This preliminary work demonstrates that it is feasible to obtain high resolution ECGs during firefighting activities and further points to the high prevalence of arrhythmias among firefighters. The strategy of continuous field monitoring of firefighters could provide new insight into the association between their specific professional lifestyle and high cardiac risks. PMID:21206348

  15. Wireless Self-Acquistion of 12-Lead ECG via Android Smart Phone

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.

    2012-01-01

    Researchers at NASA s Johnson Space Center and at Orbital Research, Inc. (a NASA SBIR grant recipient) have recently developed a dry-electrode harness that allows for self-acquisition of resting 12-lead ECGs by minimally trained laypersons. When used in conjunction with commercial wireless (e.g., Bluetooth(TM) or 802.11-enabled) 12-lead ECG devices and custom smart phone-based software, the collected 12-lead ECG data can also immediately be forwarded from any geographic location within cellular range to the user s physician(s) of choice. The system can also be used to immediately forward to central receiving stations 12-lead ECG data collected during space flight or during activities in any remote terrestrial location supported by an internet or cellular phone infrastructure. The main novel aspects of the system are first, the dry-electrode 12-lead ECG harness itself, and second, an accompanying Android(TM) smart phone-based wireless 12-lead ECG capability. The ECG harness nominally employs dry electrodes manufactured by Orbital Research, Inc, recently cleared through the Food and Drug Administration (FDA). However, other dry electrodes that are not yet FDA cleared, for example those recently developed by Nanosonic, Inc as part of another NASA SBIR grant, can also be used. The various advantageous features of the harness include: 1) laypersons can be quickly instructed on its correct use, remotely if necessary; 2) all tangled "leadwire spaghetti" is eliminated, as is the common clinical problem of "leadwire reversal"; 3) all adhesives and disposables are also eliminated, the harness being fully reusable; if multiple individuals intend to use use the same harness, then standard antimicrobial wipes can be employed to sterilize the dry electrodes (and harness surface if needed) between users; 5) padded cushions at the lateral sides of the torso function to press the left arm (LA) and right arm (RA) dry electrodes mounted on the cushions against sideward or downward

  16. Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian

    2006-01-01

    method is the presence versus the absence of reduced-amplitude zones (RAZs). In terms that must be simplified for the sake of brevity, an RAZ comprises several cycles of a high-frequency QRS signal during which the amplitude of the high-frequency oscillation in a portion of the signal is abnormally low (see figure). A given signal sample exhibiting an interval of reduced amplitude may or may not be classified as an RAZ, depending on quantitative criteria regarding peaks and troughs within the reduced-amplitude portion of the high-frequency QRS signal. This analysis is performed in all 12 leads in real time.

  17. New Padded Harness for Self-Acquisition of Resting 12-Lead ECGs

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Rood, A. T.

    2011-01-01

    We have developed a dry-electrode harness that permits easy, rapid, and unsupervised self-acquisition of resting 12-lead ECGs without the use of any disposables. Various other advantageous features of the harness include: 1) padded or inflatable cushions at the lateral sides of the torso that function to press the left arm (LA) and right arm (RA) dry electrodes mounted on cushions against sideward (as shown in the Figure below) or downward-rested arms of the subject; 2) sufficient distal placement of the arm electrodes with good abutment and without the need for adhesives, straps, bands, bracelets, or gloves on the arms; 3) padding over the sternum to avoid "tenting" in the V1 through V3 (and V3R, when present) electrode positions; 4) easy-to-don, one-piece design with an adjustable single point of connection and an adjustable shoulder strap; and 5) Lund or "modified Lund" placement of the dry electrodes, the results of which more effectively reproduce results from "standard" 12-lead ECG placements than do results from Mason-Likar lead placements.

  18. The clinical application of a PACS-dependent 12-lead ECG and image information system in E-medicine and telemedicine.

    PubMed

    Hsieh, Jui-Chien; Lo, Hsiu-Chiung

    2010-08-01

    This study presents a software technology to transform paper-based 12-lead electrocardiography (ECG) examination into (1) 12-lead ECG electronic diagnoses (e-diagnoses) and (2) mobile diagnoses (m-diagnoses) in emergency telemedicine. While Digital Imaging and Communications in Medicine (DICOM)-based images are commonly used in hospitals, the development of computerized 12-lead ECG is impeded by heterogeneous data formats of clinically used 12-lead ECG instrumentations, such as Standard Communications Protocol (SCP) ECG and Extensible Markup Language (XML) ECG. Additionally, there is no data link between clinically used 12-lead ECG instrumentations and mobile devices. To realize computerized 12-lead ECG examination procedures and ECG telemedicine, this study develops a DICOM-based 12-lead ECG information system capable of providing clinicians with medical images and waveform-based ECG diagnoses via Picture Archiving and Communication System (PACS). First, a waveform-based DICOM-ECG converter transforming clinically used SCP-ECG and XML-ECG to DICOM is applied to PACS for image- and waveform-based DICOM file manipulation. Second, a mobile Structured Query Language database communicating with PACS is installed in physicians' mobile phones so that they can retrieve images and waveform-based ECG ubiquitously. Clinical evaluations of this system indicated the following. First, this developed PACS-dependent 12-lead ECG information system improves 12-lead ECG management and interoperability. Second, this system enables the remote physicians to perform ubiquitous 12-lead ECG and image diagnoses, which enhances the efficiency of emergency telemedicine. These findings prove the effectiveness and usefulness of the PACS-dependent 12-lead ECG information system, which can be easily adopted in telemedicine.

  19. Robust electrocardiogram (ECG) beat classification using discrete wavelet transform.

    PubMed

    Minhas, Fayyaz-ul-Amir Afsar; Arif, Muhammad

    2008-05-01

    This paper presents a robust technique for the classification of six types of heartbeats through an electrocardiogram (ECG). Features extracted from the QRS complex of the ECG using a wavelet transform along with the instantaneous RR-interval are used for beat classification. The wavelet transform utilized for feature extraction in this paper can also be employed for QRS delineation, leading to reduction in overall system complexity as no separate feature extraction stage would be required in the practical implementation of the system. Only 11 features are used for beat classification with the classification accuracy of approximately 99.5% through a KNN classifier. Another main advantage of this method is its robustness to noise, which is illustrated in this paper through experimental results. Furthermore, principal component analysis (PCA) has been used for feature reduction, which reduces the number of features from 11 to 6 while retaining the high beat classification accuracy. Due to reduction in computational complexity (using six features, the time required is approximately 4 ms per beat), a simple classifier and noise robustness (at 10 dB signal-to-noise ratio, accuracy is 95%), this method offers substantial advantages over previous techniques for implementation in a practical ECG analyzer.

  20. Construction and Use of Resting 12-Lead High Fidelity ECG "SuperScores" in Screening for Heart Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Arenare, B.; Greco, E. C.; DePalma, J. L.; Starc, V.; Nunez, T.; Medina, R.; Jugo, D.; Rahman, M.A.; Delgado, R.

    2007-01-01

    We investigated the accuracy of several conventional and advanced resting ECG parameters for identifying obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. Multiple conventional and advanced ECG parameters were studied for their individual and combined retrospective accuracies in detecting underlying disease, the advanced parameters falling within the following categories: 1) Signal averaged ECG, including 12-lead high frequency QRS (150-250 Hz) plus multiple filtered and unfiltered parameters from the derived Frank leads; 2) 12-lead P, QRS and T-wave morphology via singular value decomposition (SVD) plus signal averaging; 3) Multichannel (12-lead, derived Frank lead, SVD lead) beat-to-beat QT interval variability; 4) Spatial ventricular gradient (and gradient component) variability; and 5) Heart rate variability. Several multiparameter ECG SuperScores were derivable, using stepwise and then generalized additive logistic modeling, that each had 100% retrospective accuracy in detecting underlying CM or CAD. The performance of these same SuperScores was then prospectively evaluated using a test set of another 120 individuals (40 new individuals in each of the CM, CAD and control groups, respectively). All 12-lead ECG SuperScores retrospectively generated for CM continued to perform well in prospectively identifying CM (i.e., areas under the ROC curve greater than 0.95), with one such score (containing just 4 components) maintaining 100% prospective accuracy. SuperScores retrospectively generated for CAD performed somewhat less accurately, with prospective areas under the ROC curve typically in the 0.90-0.95 range. We conclude that resting 12-lead

  1. On the improved correlative prediction scheme for aliased electrocardiogram (ECG) data compression.

    PubMed

    Gao, Xin

    2012-01-01

    An improved scheme for aliased electrocardiogram (ECG) data compression has been constructed, where the predictor exploits the correlative characteristics of adjacent QRS waveforms. The twin-R correlation prediction and lifting wavelet transform (LWT) for periodical ECG waves exhibits feasibility and high efficiency to achieve lower distortion rates with realizable compression ratio (CR); grey predictions via GM(1, 1) model have been adopted to evaluate the parametric performance for ECG data compression. Simulation results illuminate the validity of our approach.

  2. Accuracy of advanced versus strictly conventional 12-lead ECG for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction

    PubMed Central

    2010-01-01

    Background Resting conventional 12-lead ECG has low sensitivity for detection of coronary artery disease (CAD) and left ventricular hypertrophy (LVH) and low positive predictive value (PPV) for prediction of left ventricular systolic dysfunction (LVSD). We hypothesized that a ~5-min resting 12-lead advanced ECG test ("A-ECG") that combined results from both the advanced and conventional ECG could more accurately screen for these conditions than strictly conventional ECG. Methods Results from nearly every conventional and advanced resting ECG parameter known from the literature to have diagnostic or predictive value were first retrospectively evaluated in 418 healthy controls and 290 patients with imaging-proven CAD, LVH and/or LVSD. Each ECG parameter was examined for potential inclusion within multi-parameter A-ECG scores derived from multivariate regression models that were designed to optimally screen for disease in general or LVSD in particular. The performance of the best retrospectively-validated A-ECG scores was then compared against that of optimized pooled criteria from the strictly conventional ECG in a test set of 315 additional individuals. Results Compared to optimized pooled criteria from the strictly conventional ECG, a 7-parameter A-ECG score validated in the training set increased the sensitivity of resting ECG for identifying disease in the test set from 78% (72-84%) to 92% (88-96%) (P < 0.0001) while also increasing specificity from 85% (77-91%) to 94% (88-98%) (P < 0.05). In diseased patients, another 5-parameter A-ECG score increased the PPV of ECG for LVSD from 53% (41-65%) to 92% (78-98%) (P < 0.0001) without compromising related negative predictive value. Conclusion Resting 12-lead A-ECG scoring is more accurate than strictly conventional ECG in screening for CAD, LVH and LVSD. PMID:20565702

  3. Implementation and verification of an enhanced algorithm for the automatic computation of RR-interval series derived from 24 h 12-lead ECGs.

    PubMed

    Hagmair, Stefan; Braunisch, Matthias C; Bachler, Martin; Schmaderer, Christoph; Hasenau, Anna-Lena; Bauer, Axel; Rizas, Kostantinos D; Wassertheurer, Siegfried; Mayer, Christopher C

    2017-01-01

    An important tool in early diagnosis of cardiac dysfunctions is the analysis of electrocardiograms (ECGs) obtained from ambulatory long-term recordings. Heart rate variability (HRV) analysis became a significant tool for assessing the cardiac health. The usefulness of HRV assessment for the prediction of cardiovascular events in end-stage renal disease patients was previously reported. The aim of this work is to verify an enhanced algorithm to obtain an RR-interval time series in a fully automated manner. The multi-lead corrected R-peaks of each ECG lead are used for RR-series computation and the algorithm is verified by a comparison with manually reviewed reference RR-time series. Twenty-four hour 12-lead ECG recordings of 339 end-stage renal disease patients from the ISAR (rISk strAtification in end-stage Renal disease) study were used. Seven universal indicators were calculated to allow for a generalization of the comparison results. The median score of the indicator of synchronization, i.e. intraclass correlation coefficient, was 96.4% and the median of the root mean square error of the difference time series was 7.5 ms. The negligible error and high synchronization rate indicate high similarity and verified the agreement between the fully automated RR-interval series calculated with the AIT Multi-Lead ECGsolver and the reference time series. As a future perspective, HRV parameters calculated on this RR-time series can be evaluated in longitudinal studies to ensure clinical benefit.

  4. T-wave loop area from a pre-implant 12-lead ECG is associated with appropriate ICD shocks

    PubMed Central

    Hnatkova, Katerina; Friede, Tim; Malik, Marek; Zabel, Markus

    2017-01-01

    Aims In implantable cardioverter-defibrillator (ICD) patients, predictors of ICD shocks and mortality are needed to improve patient selection. Electrocardiographic (ECG) markers are simple to obtain and have been demonstrated to predict mortality. We aimed to assess the association of T-wave loop area and circularity with ICD shocks. Methods The study investigated patients with ICDs implanted between 1998 and 2010 for whom digital 12-lead ECGs (Schiller CS200 ECG-Network) of sufficient quality were obtained within 1 month prior to the implantation. T-wave loop area and circularity were calculated. Follow-up data of appropriate shocks were obtained during ICD clinic visits that included reviews of device stored electrograms. Results A total of 605 patients (82% males) were included; 68% had ischemic cardiomyopathy and 72% were treated for primary prevention. Over 3.8±1.4 years of follow-up, 114 patients (19%) experienced appropriate shock(s). Those with smaller T-wave loop area received fewer shocks (TLA, hazard ratio, HR, per increase of 1 technical unit, 0.71; [95% confidence interval, 0.53–0.94]; P = 0.02) and those with larger T-wave loop circularity (TLC) representing rounder T wave loop received more shocks (HR per 1% TLC increase 2.96; [0.85–10.36]; P = 0.09). When the quartile containing the largest TLA and TLC values, respectively, were compared to the remaining cases, TLA remained significantly associated with fewer and TLC with more frequent shocks also after multivariate adjustment for clinical variables (HR, 0.59 [0.35–0.99], P = 0.044; and 1.64 [1.08–2.49], P = 0.021, respectively). Conclusions The size and shape of the T-wave loop calculated from pre-implantation 12-lead ECGs are associated with appropriate ICD shocks. PMID:28291831

  5. Real-Time Online Monitoring of Electrocardiogram (ECG) using Very Low Cost for Developing Countries

    NASA Astrophysics Data System (ADS)

    Singh, Gavendra; Gupta, Varun; Sekharmantri, Anil Kumar; Gupta, Akash; Kumar, Pankaj

    2010-11-01

    An electrocardiogram or ECG (also known as EKG—abbreviated from the German word Elektro-Kardiographie), is an electrical recording of the heart and is used in the investigation of heart disease. `An electrocardiogram (ECG) is a graphic tracing of the electric current generated by the heart muscle during a heartbeat'. The electrocardiogram (ECG)/(EKG) is a surface measurement of the electrical potential generated by electrical activity in cardiac tissue. It has been used extensively in medicine sine its inventions in the early 1900' sand has been proven to be invaluable in various diagnostics applications such as the detection of irregular heartbeat patterns (i.e. fibrillation & arrhythmia), hearts murmurs (other abnormal sounds), tissue/structural damage (such as valve malfunction) and coronary artery blockage. In this paper we made a circuit network by using this circuit we can acquire an ECG signal of the heart electrical activity. This is one of the cheapest circuit to acquire ECG signal. It's whole cost around Rs.250/- only. Instrumentation amplifier AD620AN, notch filter, various resistances, capacitors, wires etc. are used to made this circuit.

  6. Simple electrocardiogram (ECG) signal analyzer for homecare system among the elderly.

    PubMed

    Lin, Liuh-Chii; Yeh, Yun-Chi; Ho, Kuei-Jung

    2015-09-10

    This study presents a simple electrocardiogram (ECG) signal analyzer for homecare system among the elderly. It can transmit ECG signals of patient around his/her house through Bluetooth to computers in house. ECG signals are analyzed by the computer. If abnormal case of heartbeat is found, the emergency call is automatically dialed. Meanwhile, the determined heartbeat case of ECG signals will be forwarded to patient's MD through internet. Therefore, the patient can do whatever he/she wants around his/her house with our proposed simple cardiac arrhythmias signal analyzer. The proposed consists of five major processing stages: (i) preprocessing stage for enlarging ECG signals' amplitude and eliminating noises; (ii) ECG signal transmitter/receiver stage, ECG signals are transmitted through Bluetooth to the signal receiver in patient's house; (iii) QRS extraction stage for detecting QRS waveform using the Difference Operation Method (DOM) method; (iv) qualitative features stage for qualitative feature selection on ECG signals; and (v) classification stage for determining patient's heartbeat cases using the Principal Component Analysis (PCA) method. In the experiment, the total classification accuracy (TCA) was approximately 93.19% in average.

  7. Simple electrocardiogram (ECG) signal analyzer for homecare system among the elderly.

    PubMed

    Lin, Liuh-Chii; Yeh, Yun-Chi; Ho, Kuei-Jung

    2015-01-01

    This study presents a simple electrocardiogram (ECG) signal analyzer for homecare system among the elderly. It can transmit ECG signals of patient around his/her house through Bluetooth to computers in house. ECG signals are analyzed by the computer. If abnormal case of heartbeat is found, the emergency call is automatically dialed. Meanwhile, the determined heartbeat case of ECG signals will be forwarded to patient's MD through internet. Therefore, the patient can do whatever he/she wants around his/her house with our proposed simple cardiac arrhythmias signal analyzer. The proposed consists of five major processing stages: (i) preprocessing stage for enlarging ECG signals' amplitude and eliminating noises; (ii) ECG signal transmitter/receiver stage, ECG signals are transmitted through Bluetooth to the signal receiver in patient's house; (iii) QRS extraction stage for detecting QRS waveform using the Difference Operation Method (DOM) method; (iv) qualitative features stage for qualitative feature selection on ECG signals; and (v) classification stage for determining patient's heartbeat cases using the Principal Component Analysis (PCA) method. In the experiment, the total classification accuracy (TCA) was approximately 93.19% in average.

  8. An Investigation on the Effect of Extremely Low Frequency Pulsed Electromagnetic Fields on Human Electrocardiograms (ECGs)

    PubMed Central

    Fang, Qiang; Mahmoud, Seedahmed S.; Yan, Jiayong; Li, Hui

    2016-01-01

    For this investigation, we studied the effects of extremely low frequency pulse electromagnetic fields (ELF-PEMF) on the human cardiac signal. Electrocardiograms (ECGs) of 22 healthy volunteers before and after a short duration of ELF-PEMF exposure were recorded. The experiment was conducted under single-blind conditions. The root mean square (RMS) value of the recorded data was considered as comparison criteria. We also measured and analysed four important ECG time intervals before and after ELF-PEMF exposure. Results revealed that the RMS value of the ECG recordings from 18 participants (81.8% of the total participants) increased with a mean value of 3.72%. The increase in ECG voltage levels was then verified by a second experimental protocol with a control exposure. In addition to this, we used hyperbolic T-distributions (HTD) in the analysis of ECG signals to verify the change in the RR interval. It was found that there were small shifts in the frequency-domain signal before and after EMF exposure. This shift has an influence on all frequency components of the ECG signals, as all spectrums were shifted. It is shown from this investigation that a short time exposure to ELF-PEMF can affect the properties of ECG signals. Further study is needed to consolidate this finding and discover more on the biological effects of ELF-PEMF on human physiological processes. PMID:27886102

  9. Effect of a real-time tele-transmission system of 12-lead electrocardiogram on the first-aid for athletes with ST-elevation myocardial infarction.

    PubMed

    Zhang, Huan; Song, Donghan; An, Lina

    2016-05-01

    To study the effect of a real-time tele-transmission system of 12-lead electrocardiogram on door-to-balloon time in athletes with ST-elevation myocardial infarction. A total of 60 athletes with chest pain diagnosed as ST-elevation myocardial infarction (STEMI) from our hospital were randomly divided into group A (n=35) and group B (n=25), the patients in group A transmitted the real-time tele-transmission system of 12-lead electrocardiogram to the chest pain center before arriving in hospital, however, the patients in group B not. The median door-to-balloon time was significant shorter in-group A than group B (38min vs 94 min, p<0.01) and the ratio of door-to-balloon time below 90 min was remarkable higher in-group A (94.2% vs 60%, p<0.01). The rate of catheter laboratory occupied was 5.7% in-group A and 40% in group B respectively (p=0.001). There was no statistically difference in mortality between the two groups (5.7% vs 4%, p>0.05). The median length of stay was significant reduced in-group A (5 days vs 7 days, p<0.01). Real-time tele-transmission system of 12 lead electrocardiogram is beneficial to the pre-hospital diagnosis of STEMI.

  10. Toward Improving Electrocardiogram (ECG) Biometric Verification using Mobile Sensors: A Two-Stage Classifier Approach.

    PubMed

    Tan, Robin; Perkowski, Marek

    2017-02-20

    Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems.

  11. Toward Improving Electrocardiogram (ECG) Biometric Verification using Mobile Sensors: A Two-Stage Classifier Approach

    PubMed Central

    Tan, Robin; Perkowski, Marek

    2017-01-01

    Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems. PMID:28230745

  12. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG.

    PubMed

    van Dam, Peter M; Gordon, Jeffrey P; Laks, Michael M; Boyle, Noel G

    2015-01-01

    medical image data (pixel size <1.5mm). For the lungs and torso the number of triangles in the mesh was reduced, thus decreasing the accuracy of the reconstructed mesh. A novel software tool has been introduced, which is able to reconstruct accurate cardiac anatomical models from MRI or CT within only a few hours. This new anatomical reconstruction tool might reduce the modeling errors within the cardiac isochrone positioning system and thus enable the clinical application of CIPS to localize the PVC/VT focus to the ventricular myocardium from only the standard 12 lead ECG.

  13. Tissue Doppler Imaging Combined with Advanced 12-Lead ECG Analysis Might Improve Early Diagnosis of Hypertrophic Cardiomyopathy in Childhood

    NASA Technical Reports Server (NTRS)

    Femlund, E.; Schlegel, T.; Liuba, P.

    2011-01-01

    Optimization of early diagnosis of childhood hypertrophic cardiomyopathy (HCM) is essential in lowering the risk of HCM complications. Standard echocardiography (ECHO) has shown to be less sensitive in this regard. In this study, we sought to assess whether spatial QRS-T angle deviation, which has shown to predict HCM in adults with high sensitivity, and myocardial Tissue Doppler Imaging (TDI) could be additional tools in early diagnosis of HCM in childhood. Methods: Children and adolescents with familial HCM (n=10, median age 16, range 5-27 years), and without obvious hypertrophy but with heredity for HCM (n=12, median age 16, range 4-25 years, HCM or sudden death with autopsy-verified HCM in greater than or equal to 1 first-degree relative, HCM-risk) were additionally investigated with TDI and advanced 12-lead ECG analysis using Cardiax(Registered trademark) (IMED Co Ltd, Budapest, Hungary and Houston). Spatial QRS-T angle (SA) was derived from Kors regression-related transformation. Healthy age-matched controls (n=21) were also studied. All participants underwent thorough clinical examination. Results: Spatial QRS-T angle (Figure/ Panel A) and septal E/Ea ratio (Figure/Panel B) were most increased in HCM group as compared to the HCM-risk and control groups (p less than 0.05). Of note, these 2 variables showed a trend toward higher levels in HCM-risk group than in control group (p=0.05 for E/Ea and 0.06 for QRS/T by ANOVA). In a logistic regression model, increased SA and septal E/Ea ratio appeared to significantly predict both the disease (Chi-square in HCM group: 9 and 5, respectively, p less than 0.05 for both) and the risk for HCM (Chi-square in HCM-risk group: 5 and 4 respectively, p less than 0.05 for both), with further increased predictability level when these 2 variables were combined (Chi-square 10 in HCM group, and 7 in HCM-risk group, p less than 0.01 for both). Conclusions: In this small material, Tissue Doppler Imaging and spatial mean QRS-T angle

  14. Screening for Cardiac Magnetic Resonance Scar Features by 12-lead ECG, in Patients with Preserved Ejection Fraction

    PubMed Central

    Mewton, Nathan; Strauss, David G.; Rizzi, Patricia; Verrier, Richard L.; Liu, Chia Ying; Tereshchenko, Larisa G.; Nearing, Bruce; Volpe, Gustavo J.; Marchlinski, Francis E.; Moxley, John; Killian, Tony; Wu, Katherine C.; Spooner, Peter; Lima, João A.C.

    2015-01-01

    Background Increased QRS score and wide spatial QRS-T angle are independent predictors of cardiovascular mortality in the general population. Our main objective was to assess whether a QRS score ≥5 and/or QRS-T angle ≥105° enable screening of patients for myocardial scar features. Methods 77 patients age ≤70 years with QRS score ≥5 AND/OR spatial QRS-T angle ≥105° as well as left ventricular ejection fraction (LVEF) >35% were enrolled in the study. All participants underwent complete clinical examination, signal averaged ECG (SAECG), 30-minute ambulatory ECG recording for T wave alternans (TWA), and late gadolinium enhancement cardiac magnetic resonance (LGE-CMR). Relationship between QRS score, QRS-T angle with scar presence and pattern, as well as gray zone, core, and total scar size by LGE-CMR were assessed. Results Myocardial scar was present in 41 (53%) patients, of whom 19 (46%) exhibited a typical ischemic pattern. QRS score but not QRS-T angle was related to total scar size and gray zone size (R2=0.12, P=0.002; R2=0.17; P ≤0.0001 respectively). Patients with QRS scores ≥6 had significantly greater myocardial scar and gray zone size, increased QRS duration and QRS-T angle, a higher prevalence of late potentials (LP) presence, increased LV end-diastolic volume and decreased LVEF. There was a significant independent and positive association between TWA value and total scar (P=0.001) and gray zone size (P=0.01). Conclusion Patients with preserved LVEF and myocardial scar by CMR also have electrocardiographic features that could be involved in ventricular arrhythmogenesis. PMID:26806840

  15. Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human Emotional State Classification Using Discrete Wavelet Transform (DWT)

    PubMed Central

    Murugappan, Murugappan; Murugappan, Subbulakshmi; Zheng, Bong Siao

    2013-01-01

    [Purpose] Intelligent emotion assessment systems have been highly successful in a variety of applications, such as e-learning, psychology, and psycho-physiology. This study aimed to assess five different human emotions (happiness, disgust, fear, sadness, and neutral) using heart rate variability (HRV) signals derived from an electrocardiogram (ECG). [Subjects] Twenty healthy university students (10 males and 10 females) with a mean age of 23 years participated in this experiment. [Methods] All five emotions were induced by audio-visual stimuli (video clips). ECG signals were acquired using 3 electrodes and were preprocessed using a Butterworth 3rd order filter to remove noise and baseline wander. The Pan-Tompkins algorithm was used to derive the HRV signals from ECG. Discrete wavelet transform (DWT) was used to extract statistical features from the HRV signals using four wavelet functions: Daubechies6 (db6), Daubechies7 (db7), Symmlet8 (sym8), and Coiflet5 (coif5). The k-nearest neighbor (KNN) and linear discriminant analysis (LDA) were used to map the statistical features into corresponding emotions. [Results] KNN provided the maximum average emotion classification rate compared to LDA for five emotions (sadness − 50.28%; happiness − 79.03%; fear − 77.78%; disgust − 88.69%; and neutral − 78.34%). [Conclusion] The results of this study indicate that HRV may be a reliable indicator of changes in the emotional state of subjects and provides an approach to the development of a real-time emotion assessment system with a higher reliability than other systems. PMID:24259846

  16. Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human Emotional State Classification Using Discrete Wavelet Transform (DWT).

    PubMed

    Murugappan, Murugappan; Murugappan, Subbulakshmi; Zheng, Bong Siao

    2013-07-01

    [Purpose] Intelligent emotion assessment systems have been highly successful in a variety of applications, such as e-learning, psychology, and psycho-physiology. This study aimed to assess five different human emotions (happiness, disgust, fear, sadness, and neutral) using heart rate variability (HRV) signals derived from an electrocardiogram (ECG). [Subjects] Twenty healthy university students (10 males and 10 females) with a mean age of 23 years participated in this experiment. [Methods] All five emotions were induced by audio-visual stimuli (video clips). ECG signals were acquired using 3 electrodes and were preprocessed using a Butterworth 3rd order filter to remove noise and baseline wander. The Pan-Tompkins algorithm was used to derive the HRV signals from ECG. Discrete wavelet transform (DWT) was used to extract statistical features from the HRV signals using four wavelet functions: Daubechies6 (db6), Daubechies7 (db7), Symmlet8 (sym8), and Coiflet5 (coif5). The k-nearest neighbor (KNN) and linear discriminant analysis (LDA) were used to map the statistical features into corresponding emotions. [Results] KNN provided the maximum average emotion classification rate compared to LDA for five emotions (sadness - 50.28%; happiness - 79.03%; fear - 77.78%; disgust - 88.69%; and neutral - 78.34%). [Conclusion] The results of this study indicate that HRV may be a reliable indicator of changes in the emotional state of subjects and provides an approach to the development of a real-time emotion assessment system with a higher reliability than other systems.

  17. Technology-Based vs. Traditional Instruction: A Comparison of Two Methods for Teaching the Skill of Performing a 12-Lead ECG.

    ERIC Educational Resources Information Center

    Jeffries, Pamela R.; Woolf, Shirley; Linde, Beverly

    2003-01-01

    Electrocardiogram technique was taught to 32 nursing students using a self-study module, lecture-demonstration, and hands-on learning laboratories and to 45 students using interactive multimedia CD-ROM with self-study module. Pre/postprogram data show satisfaction and score improvement was high for both, with no significant differences. (Contains…

  18. Evaluation of an algorithm based on single-condition decision rules for binary classification of 12-lead ambulatory ECG recording quality.

    PubMed

    Di Marco, Luigi Yuri; Duan, Wenfeng; Bojarnejad, Marjan; Zheng, Dingchang; King, Susan; Murray, Alan; Langley, Philip

    2012-09-01

    A new algorithm for classifying ECG recording quality based on the detection of commonly observed ECG contaminants which often render the ECG unusable for diagnostic purposes was evaluated. Contaminants (baseline drift, flat line, QRS-artefact, spurious spikes, amplitude stepwise changes, noise) were detected on individual leads from joint time-frequency analysis and QRS amplitude. Classification was based on cascaded single-condition decision rules (SCDR) that tested levels of contaminants against classification thresholds. A supervised learning classifier (SLC) was implemented for comparison. The SCDR and SLC algorithms were trained on an annotated database (Set A, PhysioNet Challenge 2011) of 'acceptable' versus 'unacceptable' quality recordings using the 'leave M out' approach with repeated random partitioning and cross-validation. Two training approaches were considered: (i) balanced, in which training records had equal numbers of 'acceptable' and 'unacceptable' recordings, (ii) unbalanced, in which the ratio of 'acceptable' to 'unacceptable' recordings from Set A was preserved. For each training approach, thresholds were calculated, and classification accuracy of the algorithm compared to other rule based algorithms and the SLC using a database for which classifications were unknown (Set B PhysioNet Challenge 2011). The SCDR algorithm achieved the highest accuracy (91.40%) compared to the SLC (90.40%) in spite of its simple logic. It also offers the advantage that it facilitates reporting of meaningful causes of poor signal quality to users.

  19. ECG (image)

    MedlinePlus

    ... electrocardiogram (ECG, EKG) is used extensively in the diagnosis of heart disease, ranging from congenital heart disease in infants to myocardial infarction and myocarditis in adults. Several different types of ...

  20. When Deriving the Spatial QRS-T Angle from the 12-lead ECG, which Transform is More Frank: Regression or Inverse Dower?

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Cortez, Daniel

    2010-01-01

    Our primary objective was to ascertain which commonly used 12-to-Frank-lead transformation yields spatial QRS-T angle values closest to those obtained from simultaneously collected true Frank-lead recordings. Simultaneous 12-lead and Frank XYZ-lead recordings were analyzed for 100 post-myocardial infarction patients and 50 controls. Relative agreement, with true Frank-lead results, of 12-to-Frank-lead transformed results for the spatial QRS-T angle using Kors regression versus inverse Dower was assessed via ANOVA, Lin s concordance and Bland-Altman plots. Spatial QRS-T angles from the true Frank leads were not significantly different than those derived from the Kors regression-related transformation but were significantly smaller than those derived from the inverse Dower-related transformation (P less than 0.001). Independent of method, spatial mean QRS-T angles were also always significantly larger than spatial maximum (peaks) QRS-T angles. Spatial QRS-T angles are best approximated by regression-related transforms. Spatial mean and spatial peaks QRS-T angles should also not be used interchangeably.

  1. ECG Electrocardiogram (For Parents)

    MedlinePlus

    ... MORE ON THIS TOPIC Heart Health Heart and Circulatory System Heart Murmurs and Your Child If Your Child ... Cardiac Catheterization Getting an EKG (Video) Your Heart & Circulatory System Heart Murmurs Cardiac Catheterization EKG (Video) Ventricular Septal ...

  2. REPEATED TREATMENTS WITH DOXORUBICIN CAUSES ELECTROCARDIOGRAM (ECG) CHANGES AND INCREASED VENTRICULAR PREMATURE BEATS IN WISTAR-KYOTO (WKY) RATS

    EPA Science Inventory

    Doxorubicin (DOX) is a widely used anthracycline anti-neoplastic drug used to treat tumors. However it has been implicated in irreversible cardiac toxicity via the generation of a proxidant semiquinone free radical, which often results in cardiomyopathy and changes in the ECG. Ac...

  3. [Design of Electrocardiogram Signal Generator Based on Typical Electrocardiogram Database].

    PubMed

    Wang, Yuting; Wang, Xiaofei; Li, Dongshang; Liu, Guili

    2016-02-01

    Using LabVIEW programming and high-speed multifunction data acquisition card PCI-6251, we designed an electrocardiogram (ECG) signal generator based on Chinese typical ECG database. When the ECG signals are given off by the generator, the generator can also display the ECG information annotations at the same time, including waveform data and diagnostic results. It could be a useful assisting tool of ECG automatic diagnose instruments.

  4. Optimal ECG (Electrocardiogram) Electrode Sites and Criteria for Detection of Asymptomatic Coronary Artery Disease at Rest and with Exercise.

    DTIC Science & Technology

    1985-12-01

    ASYMPTOMATIC CORONARY < ARTERY DISEASE AT REST AND WITH EXERCISE *Ronald H. Selvester, M.D. D T IC Joseph C. Solomon, M.S. ELECTE S JUL03 98 - University of...imalI ECG L Iec trode 1ites and Lri te ria Tor uJetect1iln of Asymptomatic Coronary Artery Disease at Rest and with Exercise 12. PERSONAL AUTHOR(SI...Coronary Artery 16 Disease , Myocardial Infarction,- iyocardial Ischemia, 19 ABSTRACT eCon inue on reterse if necesam and id’n tifN bv bloch nunberI

  5. Real-Time 12-Lead High-Frequency QRS Electrocardiography for Enhanced Detection of Myocardial Ischemia and Coronary Artery Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Kulecz, Walter B.; DePalma, Jude L.; Feiveson, Alan H.; Wilson, John S.; Rahman, M. Atiar; Bungo, Michael W.

    2004-01-01

    Several studies have shown that diminution of the high-frequency (HF; 150-250 Hz) components present within the central portion of the QRS complex of an electrocardiogram (ECG) is a more sensitive indicator for the presence of myocardial ischemia than are changes in the ST segments of the conventional low-frequency ECG. However, until now, no device has been capable of displaying, in real time on a beat-to-beat basis, changes in these HF QRS ECG components in a continuously monitored patient. Although several software programs have been designed to acquire the HF components over the entire QRS interval, such programs have involved laborious off-line calculations and postprocessing, limiting their clinical utility. We describe a personal computer-based ECG software program developed recently at the National Aeronautics and Space Administration (NASA) that acquires, analyzes, and displays HF QRS components in each of the 12 conventional ECG leads in real time. The system also updates these signals and their related derived parameters in real time on a beat-to-beat basis for any chosen monitoring period and simultaneously displays the diagnostic information from the conventional (low-frequency) 12-lead ECG. The real-time NASA HF QRS ECG software is being evaluated currently in multiple clinical settings in North America. We describe its potential usefulness in the diagnosis of myocardial ischemia and coronary artery disease.

  6. Electrocardiogram in pneumonia.

    PubMed

    Stein, Paul D; Matta, Fadi; Ekkah, Maan; Saleh, Tarek; Janjua, Muhammad; Patel, Yash R; Khadra, Helmi

    2012-12-15

    Findings on electrocardiogram may hint that pulmonary embolism (PE) is present when interpreted in the proper context and lead to definitive imaging tests. However, it would be useful to know if electrocardiographic (ECG) abnormalities also occur in patients with pneumonia and whether these are similar to ECG changes with PE. The purpose of this investigation was to determine ECG findings in patients with pneumonia. We retrospectively evaluated 62 adults discharged with a diagnosis of pneumonia who had no previous cardiopulmonary disease and had electrocardiogram obtained during hospitalization. The most prevalent ECG abnormality, other than sinus tachycardia, was minor nonspecific ST-segment or T-wave changes occurring in 13 of 62 (21%). Right atrial enlargement occurred in 4 of 62 (6.5%). QRS abnormalities were observed in 24 of 62 (39%). Right-axis deviation and S(1)S(2)S(3) were the most prevalent QRS abnormalities, which occurred in 6 of 62 (9.7%). Complete right bundle branch block and S(1)Q(3)T(3) pattern occurred in 3 of 62 (4.8%). ECG abnormalities that were not present within 1 month previously or abnormalities that disappeared within 1 month included left-axis deviation, right-axis deviation, right atrial enlargement, right ventricular hypertrophy, S(1)S(2)S(3), S(1)Q(3)T(3), low-voltage QRS complexes, and nonspecific ST-segment or T-wave abnormalities. In conclusion, electrocardiogram in patients with pneumonia often shows QRS abnormalities or nonspecific ST-segment or T-wave changes. ECG findings are similar to ECG abnormalities in PE and electrocardiogram cannot assist in the differential diagnosis.

  7. [Advances of portable electrocardiogram monitor design].

    PubMed

    Ding, Shenping; Wang, Yinghai; Wu, Weirong; Deng, Lingli; Lu, Jidong

    2014-06-01

    Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.

  8. Arrhythmia Identification with Two-Lead Electrocardiograms Using Artificial Neural Networks and Support Vector Machines for a Portable ECG Monitor System

    PubMed Central

    Liu, Shing-Hong; Cheng, Da-Chuan; Lin, Chih-Ming

    2013-01-01

    An automatic configuration that can detect the position of R-waves, classify the normal sinus rhythm (NSR) and other four arrhythmic types from the continuous ECG signals obtained from the MIT-BIH arrhythmia database is proposed. In this configuration, a support vector machine (SVM) was used to detect and mark the ECG heartbeats with raw signals and differential signals of a lead ECG. An algorithm based on the extracted markers segments waveforms of Lead II and V1 of the ECG as the pattern classification features. A self-constructing neural fuzzy inference network (SoNFIN) was used to classify NSR and four arrhythmia types, including premature ventricular contraction (PVC), premature atrium contraction (PAC), left bundle branch block (LBBB), and right bundle branch block (RBBB). In a real scenario, the classification results show the accuracy achieved is 96.4%. This performance is suitable for a portable ECG monitor system for home care purposes. PMID:23303379

  9. High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging

    NASA Technical Reports Server (NTRS)

    Rahman, Atiar

    2006-01-01

    Background: Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). Methods and Results: 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P<0.001). Conclusions: Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.

  10. High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P less than 0.00l). Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.

  11. Electrocardiograms of Adult Outpatients Followed-Up in Basic Health Care Units in the Community of the South Region of São Paulo City

    PubMed Central

    Yamada, Alice T; Baldow, Renata X; Ribeiro, Carla; Ribeiro, Wilma N; Peruzzi, Carolina; Matsuda, Nilce M; Mansur, Alfredo J

    2014-01-01

    Objective: The electrocardiogram (ECG) is an important, available, and inexpensive diagnostic tool to assess cardiac symptoms. Few studies address the prevalence of ECG abnormalities or changes of a normal tracing in ECG in outpatients. Our objective was to evaluate ECGs of adult outpatients to determine whether changes from a normal tracing could disclose the patients’ cardiovascular health status. Methods: We evaluated all elective ECGs obtained in adult outpatients, from January 2009 to January 2010, at a municipal hospital in the city of São Paulo, Brazil. Electrocardiography was performed with a 3-channel, 12-lead machine (Dixtal Cardio-page EP-3, Dixtal Biomedica, São Paulo, Brazil), and results were interpreted by a cardiologist. Results: Electrocardiography was performed in 3567 adult outpatients, 62.5% of whom were women, with a mean age of 51 years (standard deviation [SD] = 16 years). Of the 1918 patients whose ECGs showed abnormalities (mean age = 56 years, SD = 15 years), 1137 were women. Electrocardiographic changes were found in 1184 of the patients. Minor changes were found in 38.3% of patients. A total of 3133 changes were found in 1918 abnormal ECG results. There was a statistical difference related to sex and age, and abnormal ECG results were more frequent in men. There was a high prevalence of abnormal ECG results in the population studied. Conclusions: There were more ECGs obtained from women; however, men and elderly patients more frequently had abnormal ECG results. PMID:24694315

  12. Evaluation of an electrocardiogram on QR code.

    PubMed

    Nakayama, Masaharu; Shimokawa, Hiroaki

    2013-01-01

    An electrocardiogram (ECG) is an indispensable tool to diagnose cardiac diseases, such as ischemic heart disease, myocarditis, arrhythmia, and cardiomyopathy. Since ECG patterns vary depend on patient status, it is also used to monitor patients during treatment and comparison with ECGs with previous results is important for accurate diagnosis. However, the comparison requires connection to ECG data server in a hospital and the availability of data connection among hospitals is limited. To improve the portability and availability of ECG data regardless of server connection, we here introduce conversion of ECG data into 2D barcodes as text data and decode of the QR code for drawing ECG with Google Chart API. Fourteen cardiologists and six general physicians evaluated the system using iPhone and iPad. Overall, they were satisfied with the system in usability and accuracy of decoded ECG compared to the original ECG. This new coding system may be useful in utilizing ECG data irrespective of server connections.

  13. Computational Analysis of ECGs

    NASA Astrophysics Data System (ADS)

    Waters, Kevin

    2013-03-01

    Electrocardiogram is among the most powerful methods at present to diagnose heart conditions. Here we employed Fourier transform to analyze Electrocardiograms. The goal of the project is to find a way to isolate different wave signals in ways that today's technology is not capable of. Our focus was on building on a code that is capable of filtering out P, QRS, T waves and noise from the ECG, so we created frequency filters that omitted selected amount of data. We first deconstructed and then constructed the ECG this way to find an optimal code assembly for each ECG wave (P-wave, QRS-wave, T-wave). By focusing on one patient, we succeeded to disentangle the complicated ECG signal. We plan to extend this method to more patients.

  14. Irregularity test for very short electrocardiogram (ECG) signals as a method for predicting a successful defibrillation in patients with ventricular fibrillation.

    PubMed

    Jagric, Timotej; Marhl, Marko; Stajer, Dusan; Kocjancic, Spela Tadel; Jagric, Tomaz; Podbregar, Matej; Perc, Matjaz

    2007-03-01

    A significant proportion of patients with ventricular fibrillation (VF) can only be defibrillated after a period of chest compressions and ventilation before the defibrillation attempt. In these patients, unsuccessful defibrillations increase the duration of heart arrest and reduce the possibility of a successful resuscitation, which could be avoided if a reliable prediction for the success of defibrillation could be made. A new method is presented for estimating the irregularity in very short electrocardiographic (ECG) recordings that enables the prediction of a successful defibrillation in patients with VF. This method is based on a recently developed determinism test for very short time series. A slight modification shows that the method can be used to determine relative differences in irregularity of the studied signals. In particular, ECG recordings of VF from patients who could be successfully defibrillated are characterized by a higher level of irregularity, indicating a chaotic nature of the dynamics of the heart, which is in agreement with previous studies on long ECG recordings showing that cardiac chaos was prevalent in healthy heart, whereas in severe congestive heart failure, a decrease in the chaotic behavior was observed.

  15. Effective Electrocardiogram Steganography Based on Coefficient Alignment.

    PubMed

    Yang, Ching-Yu; Wang, Wen-Fong

    2016-03-01

    This study presents two types of data hiding methods based on coefficient alignment for electrocardiogram (ECG) signals, namely, lossy and reversible ECG steganographys. The lossy method is divided into high-quality and high-capacity ECG steganography, both of which are capable of hiding confidential patient data in ECG signals. The reversible data hiding method can not only hide secret messages but also completely restore the original ECG signal after bit extraction. Simulations confirmed that the perceived quality generated by the lossy ECG steganography methods was good, while hiding capacity was acceptable. In addition, these methods have a certain degree of robustness, which is rare in conventional ECG stegangraphy schemes. Moreover, the proposed reversible ECG steganography method can not only successfully extract hidden messages but also completely recover the original ECG data.

  16. Development of a portable Linux-based ECG measurement and monitoring system.

    PubMed

    Tan, Tan-Hsu; Chang, Ching-Su; Huang, Yung-Fa; Chen, Yung-Fu; Lee, Cheng

    2011-08-01

    This work presents a portable Linux-based electrocardiogram (ECG) signals measurement and monitoring system. The proposed system consists of an ECG front end and an embedded Linux platform (ELP). The ECG front end digitizes 12-lead ECG signals acquired from electrodes and then delivers them to the ELP via a universal serial bus (USB) interface for storage, signal processing, and graphic display. The proposed system can be installed anywhere (e.g., offices, homes, healthcare centers and ambulances) to allow people to self-monitor their health conditions at any time. The proposed system also enables remote diagnosis via Internet. Additionally, the system has a 7-in. interactive TFT-LCD touch screen that enables users to execute various functions, such as scaling a single-lead or multiple-lead ECG waveforms. The effectiveness of the proposed system was verified by using a commercial 12-lead ECG signal simulator and in vivo experiments. In addition to its portability, the proposed system is license-free as Linux, an open-source code, is utilized during software development. The cost-effectiveness of the system significantly enhances its practical application for personal healthcare.

  17. Synergistic effect of polymorphisms of paraoxonase gene cluster and arsenic exposure on electrocardiogram abnormality

    SciTech Connect

    Liao, Y.-T.; Li, W.-F.; Chen, C.-J.; Prineas, Ronald J.; Chen, Wei J.; Zhang Zhuming; Sun, C.-W.; Wang, S.-L.

    2009-09-01

    Arsenic has been linked to increased prevalence of cancer and cardiovascular disease (CVD), but the long-term impact of arsenic exposure remains unclear. Human paraoxonase (PON1) is a high-density lipoprotein-associated antioxidant enzyme which hydrolyzes oxidized lipids and is thought to be protective against atherosclerosis, but evidence remains limited to case-control studies. Only recently have genes encoding enzymes responsible for arsenic metabolism, such as AS3MT and GSTO, been cloned and characterized. This study was designed to evaluate the synergistic interaction of genetic factors and arsenic exposure on electrocardiogram abnormality. A total of 216 residents from three tap water implemented villages of previous arseniasis-hyperendemic regions in Taiwan were prospectively followed for an average of 8 years. For each resident, a 12-lead conventional electrocardiogram (ECG) was recorded and coded by Minnesota Code standard criteria. Eight functional polymorphisms of PON1, PON2, AS3MT, GSTO1, and GSTO2 were examined for genetic susceptibility to ECG abnormality. Among 42 incident cases with ECG deterioration identified among 121 baseline-normal subjects, arsenic exposure was significantly correlated with incidence of ECG abnormality. In addition, polymorphisms in two paraoxonase genes were also found associated with the incidence of ECG abnormality. A haplotype R-C-S constituted by polymorphisms of PON1 Q192R, -108C/T and PON2 C311S was linked to the increased risk. Subjects exposed to high levels of As (cumulative As exposure > 14.7 ppm-year or drinking artesian well water > 21 years) and carrying the R-C-S haplotype had significantly increased risks for ECG abnormality over those with only one risk factor. Results of this study showed a long-term arsenic effect on ECG abnormality and significant gene-gene and gene-environment interactions linked to the incidence of CVD. This finding might have important implications for a novel and potentially useful

  18. Hybrid ECG signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Circuit with high common-mode rejection has ability to filter and amplify accepted analog electrocardiogram (ECG) signals of varying amplitude, shape, and polarity. In addition, low power circuit develops standardized pulses that can be counted and averaged by heart/breath rate processor.

  19. Wavelet and wavelet packet compression of electrocardiograms.

    PubMed

    Hilton, M L

    1997-05-01

    Wavelets and wavelet packets have recently emerged as powerful tools for signal compression. Wavelet and wavelet packet-based compression algorithms based on embedded zerotree wavelet (EZW) coding are developed for electrocardiogram (ECG) signals, and eight different wavelets are evaluated for their ability to compress Holter ECG data. Pilot data from a blind evaluation of compressed ECG's by cardiologists suggest that the clinically useful information present in original ECG signals is preserved by 8:1 compression, and in most cases 16:1 compressed ECG's are clinically useful.

  20. Shannon's Energy Based Algorithm in ECG Signal Processing.

    PubMed

    Beyramienanlou, Hamed; Lotfivand, Nasser

    2017-01-01

    Physikalisch-Technische Bundesanstalt (PTB) database is electrocardiograms (ECGs) set from healthy volunteers and patients with different heart diseases. PTB is provided for research and teaching purposes by National Metrology Institute of Germany. The analysis method of complex QRS in ECG signals for diagnosis of heart disease is extremely important. In this article, a method on Shannon energy (SE) in order to detect QRS complex in 12 leads of ECG signal is provided. At first, this algorithm computes the Shannon energy (SE) and then makes an envelope of Shannon energy (SE) by using the defined threshold. Then, the signal peaks are determined. The efficiency of the algorithm is tested on 70 cases. Of all 12 standard leads, ECG signals include 840 leads of the PTB Diagnostic ECG Database (PTBDB). The algorithm shows that the Shannon energy (SE) sensitivity is equal to 99.924%, the detection error rate (DER) is equal to 0.155%, Positive Predictivity (+P) is equal to 99.922%, and Classification Accuracy (Acc) is equal to 99.846%.

  1. Shannon's Energy Based Algorithm in ECG Signal Processing

    PubMed Central

    2017-01-01

    Physikalisch-Technische Bundesanstalt (PTB) database is electrocardiograms (ECGs) set from healthy volunteers and patients with different heart diseases. PTB is provided for research and teaching purposes by National Metrology Institute of Germany. The analysis method of complex QRS in ECG signals for diagnosis of heart disease is extremely important. In this article, a method on Shannon energy (SE) in order to detect QRS complex in 12 leads of ECG signal is provided. At first, this algorithm computes the Shannon energy (SE) and then makes an envelope of Shannon energy (SE) by using the defined threshold. Then, the signal peaks are determined. The efficiency of the algorithm is tested on 70 cases. Of all 12 standard leads, ECG signals include 840 leads of the PTB Diagnostic ECG Database (PTBDB). The algorithm shows that the Shannon energy (SE) sensitivity is equal to 99.924%, the detection error rate (DER) is equal to 0.155%, Positive Predictivity (+P) is equal to 99.922%, and Classification Accuracy (Acc) is equal to 99.846%. PMID:28197213

  2. Association between obesity and ECG variables in children and adolescents: A cross-sectional study

    PubMed Central

    SUN, GUO-ZHE; LI, YANG; ZHOU, XING-HU; GUO, XIAO-FAN; ZHANG, XIN-GANG; ZHENG, LI-QIANG; LI, YUAN; JIAO, YUN-DI; SUN, YING-XIAN

    2013-01-01

    Obesity exhibits a wide variety of electrocardiogram (ECG) abnormalities in adults, which often lead to cardiovascular events. However, there is currently no evidence of an association between obesity and ECG variables in children and adolescents. The present study aimed to explore the associations between obesity and ECG intervals and axes in children and adolescents. A cross-sectional observational study of 5,556 students aged 5–18 years was performed. Anthropometric data, blood pressure and standard 12-lead ECGs were collected for each participant. ECG variables were measured manually based on the temporal alignment of simultaneous 12 leads using a CV200 ECG Work Station. Overweight and obese groups demonstrated significantly longer PR intervals, wider QRS durations and leftward shifts of frontal P-wave, QRS and T-wave axes, while the obese group also demonstrated significantly higher heart rates, compared with normal weight groups within normotensive or hypertensive subjects (P<0.05). Abdominal obesity was also associated with longer PR intervals, wider QRS duration and a leftward shift of frontal ECG axes compared with normal waist circumference (WC) within normotensive or hypertensive subjects (P<0.05). Gender was a possible factor affecting the ECG variables. Furthermore, the ECG variables, including PR interval, QRS duration and frontal P-wave, QRS and T-wave axes, were significantly linearly correlated with body mass index, WC and waist-to-height ratio adjusted for age, gender, ethnicity and blood pressure. However, there was no significant association between obesity and the corrected QT interval (P>0.05). The results of the current study indicate that in children and adolescents, general and abdominal obesity is associated with longer PR intervals, wider QRS duration and a leftward shift of frontal P-wave, QRS and T-wave axes, independent of age, gender, ethnicity and blood pressure. PMID:24255675

  3. Three-Dimensional Visualization of Myocardial Ischemia Based on the Standard Twelve-Lead Electrocardiogram

    PubMed Central

    Ruixia, Tian; Xun, Chen

    2016-01-01

    A novel method was proposed for transforming the ischemic information in the 12-lead electrocardiogram (ECG) into the pseudo-color pattern displayed on a 3D heart model based on the projection of a ST injury vector in this study. The projection of the ST injury vector at a point on the heart surface was used for identifying the presence of myocardial ischemia by the difference between the projection value and the detection threshold. Supposing that myocardial ischemia was uniform and continuous, the location and range of myocardial ischemia could be accurately calculated and visually displayed in a color-encoding way. The diagnoses of the same patient were highly consistent (kappa coefficient k = 0.9030) between the proposed method used by ordinary people lacking medical knowledge and the standard 12-lead ECG used by experienced cardiologists. In addition, the diagnostic accuracy of the proposed method was further confirmed by the coronary angiography. The results of this study provide a new way to promote the development of the 3D visualization of the standard 12-lead ECG, which has a great help for inexperienced doctors or ordinary family members in their diagnosis of patients with myocardial ischemia. PMID:27433278

  4. Advanced ECG in 2016: is there more than just a tracing?

    PubMed

    Reichlin, Tobias; Abächerli, Roger; Twerenbold, Raphael; Kühne, Michael; Schaer, Beat; Müller, Christian; Sticherling, Christian; Osswald, Stefan

    2016-01-01

    The 12-lead electrocardiogram (ECG) is the most frequently used technology in clinical cardiology. It is critical for evidence-based management of patients with most cardiovascular conditions, including patients with acute myocardial infarction, suspected chronic cardiac ischaemia, cardiac arrhythmias, heart failure and implantable cardiac devices. In contrast to many other techniques in cardiology, the ECG is simple, small, mobile, universally available and cheap, and therefore particularly attractive. Standard ECG interpretation mainly relies on direct visual assessment. The progress in biomedical computing and signal processing, and the available computational power offer fascinating new options for ECG analysis relevant to all fields of cardiology. Several digital ECG markers and advanced ECG technologies have shown promise in preliminary studies. This article reviews promising novel surface ECG technologies in three different fields. (1) For the detection of myocardial ischaemia and infarction, QRS morphology feature analysis, the analysis of high frequency QRS components (HF-QRS) and methods using vectorcardiography as well as ECG imaging are discussed. (2) For the identification and management of patients with cardiac arrhythmias, methods of advanced P-wave analysis are discussed and the concept of ECG imaging for noninvasive localisation of cardiac arrhythmias is presented. (3) For risk stratification of sudden cardiac death and the selection of patients for medical device therapy, several novel markers including an automated QRS-score for scar quantification, the QRS-T angle or the T-wave peak-to-end-interval are discussed. Despite the existing preliminary data, none of the advanced ECG markers and technologies has yet accomplished the transition into clinical practice. Further refinement of these technologies and broader validation in large unselected patient cohorts are the critical next step needed to facilitate translation of advanced ECG technologies

  5. Novel technical solutions for wireless ECG transmission & analysis in the age of the internet cloud.

    PubMed

    Al-Zaiti, Salah S; Shusterman, Vladimir; Carey, Mary G

    2013-01-01

    Current guidelines recommend early reperfusion therapy for ST-elevation myocardial infarction (STEMI) within 90 min of first medical encounter. Telecardiology entails the use of advanced communication technologies to transmit the prehospital 12-lead electrocardiogram (ECG) to offsite cardiologists for early triage to the cath lab; which has been shown to dramatically reduce door-to-balloon time and total mortality. However, hospitals often find adopting ECG transmission technologies very challenging. The current review identifies seven major technical challenges of prehospital ECG transmission, including: paramedics inconvenience and transport delay; signal noise and interpretation errors; equipment malfunction and transmission failure; reliability of mobile phone networks; lack of compliance with the standards of digital ECG formats; poor integration with electronic medical records; and costly hardware and software pre-requisite installation. Current and potential solutions to address each of these technical challenges are discussed in details and include: automated ECG transmission protocols; annotatable waveform-based ECGs; optimal routing solutions; and the use of cloud computing systems rather than vendor-specific processing stations. Nevertheless, strategies to monitor transmission effectiveness and patient outcomes are essential to sustain initial gains of implementing ECG transmission technologies.

  6. The Electrocardiogram of an ER Patient With Chest Pain

    PubMed Central

    Panneerselvam, Arunkumar; Ananthakrishna, Rajiv; Bhat, Prabhavathi; Nanjappa, Manjunath C

    2011-01-01

    The electrocardiogram (ECG) is an essential investigation in the evaluation of chest pain in the emergency room (ER). Correct interpretation of the ECG findings, determines the diagnosis and management strategy. This ECG spot diagnosis will improve the skills of the residents and physicians working in ER.

  7. The prevalence of abnormal ECG in trained sportsmen

    PubMed Central

    Malhotra, V.K.; Singh, Navreet; Bishnoi, R.S.; Chadha, D.S.; Bhardwaj, P.; Madan, H.; Dutta, R.; Ghosh, A.K.; Sengupta, S.; Perumal, P.

    2015-01-01

    Background Competitive sports training causes structural and conductive system changes manifesting by various electrocardiographic alterations. We undertook this study to assess the prevalence of abnormal ECG in trained Indian athletes and correlate it with the nature of sports training, that is endurance or strength training. Methods We evaluated a standard resting, lying 12 lead Electrocardiogram (ECG) in 66 actively training Indian athletes. Standard diagnostic criteria were used to define various morphological ECG abnormalities. Results 33/66 (50%) of the athletes were undertaking endurance training while the other 33 (50%) were involved in a strength-training regimen. Overall 54/66 (81%) sportsmen had significant ECG changes. 68% of these changes were considered as normal training related features, while the remaining 32% were considered abnormal. There were seven common training related ECG changes–Sinus Bradycardia (21%), Sinus Arrhythmia (16%), 1st degree Atrioventricular Heart Block (6%), Type 1 2nd-degree Atrioventicular Heart Block (3%), Incomplete Right bundle branch block (RBBB) (24%), Early Repolarization (42%), Left Ventricular Hypertrophy (LVH) (14%); while three abnormal ECG changes--T-wave inversion (13%), RBBB(4%), Right ventricular hypertrophy (RVH) with strain (29%) were noted. Early repolarization (commonest change), sinus bradycardia, and incomplete RBBB were the commoner features noticed, with a significantly higher presence in the endurance trained athletes. Conclusion A high proportion of athletes undergoing competitive level sports training are likely to have abnormal ECG recordings. Majority of these are benign, and related to the physiological adaptation to the extreme levels of exertion. These changes are commoner during endurance training (running) than strength training (weightlifting). PMID:26663958

  8. [The electrocardiogram in the paediatric age group].

    PubMed

    Sanches, M; Coelho, A; Oliveira, E; Lopes, A

    2014-09-01

    A properly interpreted electrocardiogram (ECG) provides important information and is an inexpensive and easy test to perform. It continues to be the method of choice for the diagnosis of arrhythmias. Although the principles of cardiac electrophysiology are the same, there are anatomical and physiological age-dependent changes which produce specific alterations in the paediatric ECG, and which may be misinterpreted as pathological. The intention of this article is to address in a systematic way the most relevant aspects of the paediatric ECG, to propose a possible reading scheme of the ECG and to review the electrocardiograph tracings most frequently found in the paediatric age group.

  9. A new algorithm to diagnose atrial ectopic origin from multi lead ECG systems--insights from 3D virtual human atria and torso.

    PubMed

    Alday, Erick A Perez; Colman, Michael A; Langley, Philip; Butters, Timothy D; Higham, Jonathan; Workman, Antony J; Hancox, Jules C; Zhang, Henggui

    2015-01-01

    Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms.

  10. A New Algorithm to Diagnose Atrial Ectopic Origin from Multi Lead ECG Systems - Insights from 3D Virtual Human Atria and Torso

    PubMed Central

    Alday, Erick A. Perez; Colman, Michael A.; Langley, Philip; Butters, Timothy D.; Higham, Jonathan; Workman, Antony J.; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms. PMID

  11. Ambulance 12-lead electrocardiography transmission via cell phone technology to cardiologists.

    PubMed

    Hsieh, Jui-Chien; Lin, Bo-Xuan; Wu, Feng-Ren; Chang, Pei-Chann; Tsuei, Yi-Wei; Yang, Chung-Chi

    2010-10-01

    This study demonstrates transmission of 12-lead electrocardiography (ECG) in an ambulance to the cell phone of the attendant emergency medical technician and then to the hospital and to cell phones of off-site cardiologists. The emergency medical technician cell phone receives Extensible Markup Language files generated by a Phillips Extensible Markup Language ECG instrument via Wi-Fi-based wireless network and then sends them to an ECG-processing server at the hospital over the mobile telephone network. After reducing ECG noises and artifacts, the server converts files to Digital Imaging and Communications in Medicine-based ECG reports stored in Picture Archiving and Communication System. These reports are sent to the cell phones of off-site cardiologists. Consequently, on-site Emergency Department physicians and off-site cardiologists can discuss ECG reports via Picture Archiving and Communication System on their computers or cell phones to prepare for the most appropriate treatment while the patient is on the way to the hospital. In conclusion, this 12-lead ECG transmission e-technology expands the functions of a 12-lead ECG instrument and facilitates more efficient prehospital cardiac care.

  12. ECG (Electrocardiogram) Interpretation Training Program - Reference Manual

    DTIC Science & Technology

    1984-05-08

    aboard nuclear submarines. Chest pain is the second or third most common presentation of serious illness aboard ship, being clearly outnumbered only by...the corpsman in his diagnostic task. Chest pain syndromes are the second or third most common presentation of serious illness aboard ship, being...listing of incorrect entries. Numerical estimates (intervals) are "correct" if within 1 millimeter = 1 small block = 0.04 seconds or if within

  13. The asymptomatic teenager with an abnormal electrocardiogram.

    PubMed

    Singh, Harinder R

    2014-02-01

    Use of medications for attention-deficit hyperkinetic disorder and preparticipation sports physical examination has led to an increase in number of electrocardiograms (ECG) performed during adolescence. Interpreting ECGs in children and young adults must take into account the evolutionary changes with age and the benign variants, which are usually not associated with heart disease. It is crucial for primary-care providers to recognize the changes on ECG associated with heart disease and risk of sudden death. In this article, the significance, sensitivity, specificity, and the diagnostic workup of these findings in the asymptomatic teenager are discussed.

  14. Visualizing the electrocardiogram through orbital transform.

    PubMed

    Illanes-Manriquez, Alfredo; Jiménez, Raúl; Dinamarca, Gustavo; Jiménez, Claudia; Lecannelier, Eduardo

    2010-01-01

    The purpose of this work is to present a new electrocardiogram (ECG) visualization technique through a mathematical transform applied to one lead ECG signal. This transform, called orbital transform (OT) in this work, consists of a remapping of the ECG signal to a spatial curve represented by a three dimensional phase portrait. With this spatial curve it is possible to observe the evolution of changes in the QRS complex, which are not always clear to distinguish by a simple visual inspection of the temporal ECG signal. Moreover, using the projection of this curve in one of the 2D planes it is possible to easily calculate variation ranges of several ECG parameters such as maximal and minimal waves amplitudes and maximal and minimal wave slopes.

  15. [A history of the electrocardiogram].

    PubMed

    Johansson, B W

    2001-01-01

    The discoveries by Galvani and Volta of electricity and its effects fascinated the intellectual world, but it was not until 1856 that Köllicker and Müller discovered that the heart muscle could produce electric activity. Muirhead in London recorded the first electrocardiogram (ECG) in man in 1869 or 1870 with a siphon instrument and Waller in 1887 with a capillary electrometer. Einthoven's string galvanometer was a breakthrough. As early as five years after his publication Einthoven introduced "Le Télecardiograme" in 1906 by which a cable connected his instrument to a hospital one and a half kilometres away. The string galvanometer produced precise ECG recordings but it was like the opera primadonnas of the time, voluminous and unpredictable. Rune Elmqvist developed the direct-writing inkjet recorder, first demonstrated at the Congress of Cardiology in Paris, 1950. Ohnell's studies of preexcitation, to which the WPW-syndrome belongs, were important. After the initial focus on arrhythmias, ECG became more and more used in the diagnosis of myocardial ischaemia and coronary heart disease. To refine this diagnosis the hypoxaemia (breathing air with low oxygen content) test, as well as the exercise test and other stress tests were introduced. Vectorcardiography displays the spatial movements of the electrical forces generated by the heart. Long-term ECG registration with a portable tape recorder is important both for the diagnosis of arrhythmias and myocardial ischaemia. Foetal and comparative ECG have provided important clinical and scientific information.

  16. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    DTIC Science & Technology

    2014-11-01

    networks were trained to predict an individual’s electrocardiogram ( ECG ) and arterial blood pressure (ABP) waveform data, which can potentially help...various ESN architectures for prediction tasks, and establishes the benefits of using ESN architecture designs for predicting ECG and ABP waveforms...alarms into true alarms and false alarms. These authors then developed an algorithm that classified alarms based on both electrocardiogram ( ECG ) and

  17. The history, hotspots, and trends of electrocardiogram

    PubMed Central

    Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua

    2015-01-01

    The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern. PMID:26345622

  18. The history, hotspots, and trends of electrocardiogram.

    PubMed

    Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua

    2015-07-01

    The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern.

  19. III Lead ECG Pulse Measurement Sensor

    NASA Astrophysics Data System (ADS)

    Thangaraju, S. K.; Munisamy, K.

    2015-09-01

    Heart rate sensing is very important. Method of measuring heart pulse by using an electrocardiogram (ECG) technique is described. Electrocardiogram is a measurement of the potential difference (the electrical pulse) generated by a cardiac tissue, mainly the heart. This paper also reports the development of a three lead ECG hardware system that would be the basis of developing a more cost efficient, portable and easy to use ECG machine. Einthoven's Three Lead method [1] is used for ECG signal extraction. Using amplifiers such as the instrumentation amplifier AD620BN and the conventional operational amplifier Ua741 that would be used to amplify the ECG signal extracted develop this system. The signal would then be filtered from noise using Butterworth filter techniques to obtain optimum output. Also a right leg guard was implemented as a safety feature to this system. Simulation was carried out for development of the system using P-spice Program.

  20. Exploiting multi-lead electrocardiogram correlations using robust third-order tensor decomposition

    PubMed Central

    Dandapat, Samarendra

    2015-01-01

    In this Letter, a robust third-order tensor decomposition of multi-lead electrocardiogram (MECG) comprising of 12-leads is proposed to reduce the dimension of the storage data. An order-3 tensor structure is employed to represent the MECG data by rearranging the MECG information in three dimensions. The three-dimensions of the formed tensor represent the number of leads, beats and samples of some fixed ECG duration. Dimension reduction of such an arrangement exploits correlations present among the successive beats (intra-beat and inter-beat) and across the leads (inter-lead). The higher-order singular value decomposition is used to decompose the tensor data. In addition, multiscale analysis has been added for effective care of ECG information. It grossly segments the ECG characteristic waves (P-wave, QRS-complex, ST-segment and T-wave etc.) into different sub-bands. In the meantime, it separates high-frequency noise components into lower-order sub-bands which helps in removing noise from the original data. For evaluation purposes, we have used the publicly available PTB diagnostic database. The proposed method outperforms the existing algorithms where compression ratio is under 10 for MECG data. Results show that the original MECG data volume can be reduced by more than 45 times with acceptable diagnostic distortion level. PMID:26609416

  1. Positive computer-generated exercise electrocardiogram.

    PubMed

    MacKenzie, Ross

    2006-01-01

    The use of computerized averaging of the electrocardiogram (ECG) during stress testing has facilitated the removal of motion artifacts and baseline shifts. However, this process can introduce errors, which may not be appreciated by medical directors. Such errors can lead to significant ST depression in the absence of coronary artery disease. Such false-positive tests may lead to anxiety in the applicant, delays in accepting the application and unnecessary additional testing. This case study illustrates a common pitfall associated with using only a computer-generated exercise ECG for risk assessment of a life insurance applicant.

  2. Applicability of initial optimal maternal and fetal electrocardiogram combination vectors to subsequent recordings

    NASA Astrophysics Data System (ADS)

    Yan, Hua-Wen; Huang, Xiao-Lin; Zhao, Ying; Si, Jun-Feng; Liu, Tie-Bing; Liu, Hong-Xing

    2014-11-01

    A series of experiments are conducted to confirm whether the vectors calculated for an early section of a continuous non-invasive fetal electrocardiogram (fECG) recording can be directly applied to subsequent sections in order to reduce the computation required for real-time monitoring. Our results suggest that it is generally feasible to apply the initial optimal maternal and fetal ECG combination vectors to extract the fECG and maternal ECG in subsequent recorded sections.

  3. Extraction of fetal ECG signal by an improved method using extended Kalman smoother framework from single channel abdominal ECG signal.

    PubMed

    Panigrahy, D; Sahu, P K

    2017-02-16

    This paper proposes a five-stage based methodology to extract the fetal electrocardiogram (FECG) from the single channel abdominal ECG using differential evolution (DE) algorithm, extended Kalman smoother (EKS) and adaptive neuro fuzzy inference system (ANFIS) framework. The heart rate of the fetus can easily be detected after estimation of the fetal ECG signal. The abdominal ECG signal contains fetal ECG signal, maternal ECG component, and noise. To estimate the fetal ECG signal from the abdominal ECG signal, removal of the noise and the maternal ECG component presented in it is necessary. The pre-processing stage is used to remove the noise from the abdominal ECG signal. The EKS framework is used to estimate the maternal ECG signal from the abdominal ECG signal. The optimized parameters of the maternal ECG components are required to develop the state and measurement equation of the EKS framework. These optimized maternal ECG parameters are selected by the differential evolution algorithm. The relationship between the maternal ECG signal and the available maternal ECG component in the abdominal ECG signal is nonlinear. To estimate the actual maternal ECG component present in the abdominal ECG signal and also to recognize this nonlinear relationship the ANFIS is used. Inputs to the ANFIS framework are the output of EKS and the pre-processed abdominal ECG signal. The fetal ECG signal is computed by subtracting the output of ANFIS from the pre-processed abdominal ECG signal. Non-invasive fetal ECG database and set A of 2013 physionet/computing in cardiology challenge database (PCDB) are used for validation of the proposed methodology. The proposed methodology shows a sensitivity of 94.21%, accuracy of 90.66%, and positive predictive value of 96.05% from the non-invasive fetal ECG database. The proposed methodology also shows a sensitivity of 91.47%, accuracy of 84.89%, and positive predictive value of 92.18% from the set A of PCDB.

  4. The Moli-sani project: computerized ECG database in a population-based cohort study.

    PubMed

    Iacoviello, Licia; Rago, Livia; Costanzo, Simona; Di Castelnuovo, Augusto; Zito, Francesco; Assanelli, Deodato; Badilini, Fabio; Donati, Maria Benedetta; de Gaetano, Giovanni

    2012-01-01

    Computerized electrocardiogram (ECG) acquisition and interpretation may be extremely useful in handling analysis of data from large cohort studies and exploit research on the use of ECG data as prognostic markers for cardiovascular disease. The Moli-sani project (http://www.moli-sani.org) is a population-based cohort study aiming at evaluating the risk factors linked to chronic-degenerative disease with particular regard to cardiovascular disease and cancer and intermediate metabolic phenotypes such as hypertension, diabetes, dyslipidemia, obesity, and metabolic syndrome. Between March 2005 and April 2010, 24 325 people aged 35 years or older, living in the Molise region (Italy), were randomly recruited. A follow-up based on linkage with hospital discharge records and mortality regional registry and reexamination of the cohort is ongoing and will be repeated at prefixed times. Each subject was administered questionnaires on personal and medical history, food consumption, quality of life (FS36), and psychometry. Plasma serum, cellular pellet, and urinary spots were stored in liquid nitrogen. Subjects were measured blood pressure, weight, height, and waist and hip circumferences, and underwent spirometry to evaluate pulmonary diffusion capacity, gas diffusion, and pulmonary volumes. Standard 12-lead resting ECG was performed by a Cardiette ar2100-view electrocardiograph and tracings stored in digital standard communication protocol format for subsequent analysis. The digital ECG database of the Moli-sani project is currently being used to assess the association between physiologic variables and pathophyiosiologic conditions and parameters derived from the ECG signal. This computerized ECG database represents a unique opportunity to identify and assess prognostic factors associated with cardiovascular and metabolic diseases.

  5. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].

    PubMed

    Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun

    2012-10-01

    To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.

  6. An automatic multi-lead electrocardiogram segmentation algorithm based on abrupt change detection.

    PubMed

    Illanes-Manriquez, Alfredo

    2010-01-01

    Automatic detection of electrocardiogram (ECG) waves provides important information for cardiac disease diagnosis. In this paper a new algorithm is proposed for automatic ECG segmentation based on multi-lead ECG processing. Two auxiliary signals are computed from the first and second derivatives of several ECG leads signals. One auxiliary signal is used for R peak detection and the other for ECG waves delimitation. A statistical hypothesis testing is finally applied to one of the auxiliary signals in order to detect abrupt mean changes. Preliminary experimental results show that the detected mean changes instants coincide with the boundaries of the ECG waves.

  7. Competency in ECG Interpretation Among Medical Students

    PubMed Central

    Kopeć, Grzegorz; Magoń, Wojciech; Hołda, Mateusz; Podolec, Piotr

    2015-01-01

    Background Electrocardiogram (ECG) is commonly used in diagnosis of heart diseases, including many life-threatening disorders. We aimed to assess skills in ECG interpretation among Polish medical students and to analyze the determinants of these skills. Material/Methods Undergraduates from all Polish medical schools were asked to complete a web-based survey containing 18 ECG strips. Questions concerned primary ECG parameters (rate, rhythm, and axis), emergencies, and common ECG abnormalities. Analysis was restricted to students in their clinical years (4th–6th), and students in their preclinical years (1st–3rd) were used as controls. Results We enrolled 536 medical students (females: n=299; 55.8%), aged 19 to 31 (23±1.6) years from all Polish medical schools. Most (72%) were in their clinical years. The overall rate of good response was better in students in years 4th–5th than those in years 1st–3rd (66% vs. 56%; p<0.0001). Competency in ECG interpretation was higher in students who reported ECG self-learning (69% vs. 62%; p<0.0001) but no difference was found between students who attended or did not attend regular ECG classes (66% vs. 66%; p=0.99). On multivariable analysis (p<0.0001), being in clinical years (OR: 2.45 [1.35–4.46] and self-learning (OR: 2.44 [1.46–4.08]) determined competency in ECG interpretation. Conclusions Polish medical students in their clinical years have a good level of competency in interpreting the primary ECG parameters, but their ability to recognize ECG signs of emergencies and common heart abnormalities is low. ECG interpretation skills are determined by self-education but not by attendance at regular ECG classes. Our results indicate qualitative and quantitative deficiencies in teaching ECG interpretation at medical schools. PMID:26541993

  8. Location of Disassociated P Wave in an Electrocardiogram

    DTIC Science & Technology

    1978-12-01

    descending branch of the coronary ostium. Heart failure was induced in another dog by overdose of digitalis . The electrocardiogram (ECGI from each dog... digitalis , was given. This caused a different type of ECG. The ECG’s were digitized and prepared for computer analysis. The computer program to analyze...inserting a helical coil, Cedi- lanid-D, digitalis , was injected into the bloodstream. The weight of the dog determined the dosage. An injection of 0.8 mg

  9. ECG Identification System Using Neural Network with Global and Local Features

    ERIC Educational Resources Information Center

    Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles

    2016-01-01

    This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…

  10. Effects of noise and filtering on SVD-based morphological parameters of the T wave in the ECG.

    PubMed

    Lehtola, L; Karsikas, M; Koskinen, M; Huikuri, H; Seppanen, T

    2008-01-01

    Singular value decomposition (SVD) based electrocardiogram (ECG) morphology analysis is a novel method in the assessment of subtle abnormalities in the T wave morphology of 12-lead ECG. As various types of noise contaminate the ECG signal and create a bias for the morphological analyses, this study was designed to estimate the effects of noise on the SVD method in an experimental setup. Ideal signals were generated by filtering real ECG signals several times with the Savitzky-Golay filter. Random and real noise samples were superimposed on the ideal signals. The noisy signals were filtered with a power line interference filter combined with the Savitzky-Golay or the wavelet filter. Results show that noise increased both the dipolar and non-dipolar components significantly unless filtering was applied. R-TWR (relative T wave residuum) and A-TWR (absolute T wave residuum) were four to eight times higher in noisy signals. The experiments with patient data demonstrated that certain types of noise may even lead to erroneous classification of patients. Filtering brings the median values closer to the correct ones and decreases significantly the variance of the values of parameters.

  11. ECG signal denoising via empirical wavelet transform.

    PubMed

    Singh, Omkar; Sunkaria, Ramesh Kumar

    2016-12-29

    This paper presents new methods for baseline wander correction and powerline interference reduction in electrocardiogram (ECG) signals using empirical wavelet transform (EWT). During data acquisition of ECG signal, various noise sources such as powerline interference, baseline wander and muscle artifacts contaminate the information bearing ECG signal. For better analysis and interpretation, the ECG signal must be free of noise. In the present work, a new approach is used to filter baseline wander and power line interference from the ECG signal. The technique utilized is the empirical wavelet transform, which is a new method used to compute the building modes of a given signal. Its performance as a filter is compared to the standard linear filters and empirical mode decomposition.The results show that EWT delivers a better performance.

  12. Noninvasive quantification of blood potassium concentration from ECG in hemodialysis patients.

    PubMed

    Corsi, Cristiana; Cortesi, Marilisa; Callisesi, Giulia; De Bie, Johan; Napolitano, Carlo; Santoro, Antonio; Mortara, David; Severi, Stefano

    2017-02-15

    Blood potassium concentration ([K(+)]) influences the electrocardiogram (ECG), particularly T-wave morphology. We developed a new method to quantify [K(+)] from T-wave analysis and tested its clinical applicability on data from dialysis patients, in whom [K(+)] varies significantly during the therapy. To elucidate the mechanism linking [K(+)] and T-wave, we also analysed data from long QT syndrome type 2 (LQT2) patients, testing the hypothesis that our method would have underestimated [K(+)] in these patients. Moreover, a computational model was used to explore the physiological processes underlying our estimator at the cellular level. We analysed 12-lead ECGs from 45 haemodialysis and 12 LQT2 patients. T-wave amplitude and downslope were calculated from the first two eigenleads. The T-wave slope-to-amplitude ratio (TS/A) was used as starting point for an ECG-based [K(+)] estimate (KECG). Leave-one-out cross-validation was performed. Agreement between KECG and reference [K(+)] from blood samples was promising (error: -0.09 ± 0.59 mM, absolute error: 0.46 ± 0.39 mM). The analysis on LQT2 patients, also supported by the outcome of computational analysis, reinforces our interpretation that, at the cellular level, delayed-rectifier potassium current is a main contributor of KECG correlation to blood [K(+)]. Following a comprehensive validation, this method could be effectively applied to monitor patients at risk for hyper/hypokalemia.

  13. Deriving the 12-Lead Electrocardiogram From Four Standard Leads Based on the Frank Torso Model

    DTIC Science & Technology

    2007-11-02

    System The University of Aizu, Fukushima Prefecture, Japan Abstract – This paper proposes a lead method and a processing means for monitoring the 12...Performing Organization Name(s) and Address(es) The University of Aizu Graduate School of Information System Fukushima Prefecture, Japan Performing

  14. Electrocardiogram Signal and Linear Time-Frequency Transforms

    NASA Astrophysics Data System (ADS)

    Krishna, B. T.

    2014-12-01

    The diagnostic analysis of non-stationary multi component signals such as electrocardiogram (ECG) involves the use of time-frequency transforms. So, the application of time-frequency transforms to an ECG signal is an important problem of research. In this paper, initially, linear transforms like short time Fourier transform, continuous wavelet transforms, s-transform etc. are revisited. Then the application of these transforms to normal and abnormal ECG signals is illustrated. It has been observed that s-transform provides better time and frequency resolution compared to other linear transforms. The fractional Fourier transform provides rotation to the spectrogram representation.

  15. Cardiac Arrhythmias and Abnormal Electrocardiograms After Acute Stroke.

    PubMed

    Ruthirago, Doungporn; Julayanont, Parunyou; Tantrachoti, Pakpoom; Kim, Jongyeol; Nugent, Kenneth

    2016-01-01

    Cardiac arrhythmias and electrocardiogram (ECG) abnormalities occur frequently but are often underrecognized after strokes. Acute ischemic and hemorrhagic strokes in some particular area of brain can disrupt central autonomic control of the heart, precipitating cardiac arrhythmias, ECG abnormalities, myocardial injury and sometimes sudden death. Identification of high-risk patients after acute stroke is important to arrange appropriate cardiac monitoring and effective management of arrhythmias, and to prevent cardiac morbidity and mortality. More studies are needed to better clarify pathogenesis, localization of areas associated with arrhythmias and practical management of arrhythmias and abnormal ECGs after acute stroke.

  16. Could contrast-enhanced CT detect STEMI prior to electrocardiogram?

    PubMed

    Sabbagh, Chadi; Rahi, Mayda; Baz, Maria; Haddad, Fadi; Helwe, Omar; Aoun, Noel; Ibrahim, Tony; Abdo, Lynn

    2015-01-01

    We present here a case in which contrast-enhanced computed tomography (CT) was the first diagnostic tool to detect myocardial hypoperfusion in a patient with atypical symptoms and normal electrocardiogram (ECG) on admission. An ST-segment elevation was detected thereafter on a second ECG realized several minutes after CT with raised troponin levels. Percutaneous coronary intervention was performed after failure of thrombolysis and confirmed occlusion of the left anterior descending artery. Further studies are needed to evaluate the role of high-resolution contrast-enhanced CT with or without coronary angiography in the workup of suspected myocardial infarction in the setting of a normal ECG.

  17. Electrocardiograms of Menopausal Women With Coronary Heart Disease or at Increased Risk for Its Occurrence

    PubMed Central

    Wenger, Nanette K.; Mischke, Jennifer M.; Schroeder, Rolf; Schroeder, Klaus; Collins, Peter; Grady, Deborah; Kornitzer, Marcel; Mosca, Lori; Barrett-Connor, Elizabeth

    2011-01-01

    Little is known about electrocardiographic (ECG) characteristics of menopausal women with or at increased risk of coronary heart disease (CHD). Data from 10,101 participants in the Raloxifene Use for The Heart (RUTH) trial were used to correlate baseline ECG abnormalities with clinical characteristics. Baseline characteristics that were statistically significantly associated (p ≤ 0.05) with ECG findings in univariate analyses were used to derive multivariate model selection. Of 59% normal electrocardiograms, 50% were from women with CHD and 69% from women at increased risk of CHD. In the women with CHD, 59% reported a previous myocardial infarction (MI); 43% had a normal electrocardiogram, and 49% had a definite ECG Q-wave MI. Women in the increased-risk group had not reported a previous MI, yet 11% had a definite ECG Q-wave MI. Of women reporting hypertension, 35% had ECG evidence of left ventricular hypertrophy, but 58% did not have an abnormal electrocardiogram. Significantly more women with diabetes in the increased-risk and documented CHD cohorts had abnormal electrocardiograms (p < 0.01 for the 2 cohorts). Percent abnormal electrocardiograms increased with increasing age (55 to 64, 65 to 74, and ≥75 years, p < 0.01) in all cohorts. Angina and coronary artery bypass graft surgery, but not percutaneous coronary intervention, predicted an abnormal electrocardiogram. In conclusion, there were high percentages of normal electrocardiograms in the increased-risk and documented CHD groups of RUTH participants, with substantial discrepancy between MI history and ECG MI documentation, and increasing age was the predominant correlate with an abnormal electrocardiogram in all 3 cohorts. PMID:21094358

  18. Use of the Surface Electrocardiogram to Define the Nature of Challenging Arrhythmias.

    PubMed

    Singh, David K; Peter, C Thomas

    2016-03-01

    Despite unprecedented advances in technology, the electrocardiogram (ECG) remains essential to the practice of modern electrophysiology. Since its emergence at the turn of the nineteenth century, the form of the ECG has changed little. What has changed is our ability to understand the complex mechanisms that underlie various arrhythmias. In this article, the authors review several important principles of ECG interpretation by providing illustrative tracings. The authors also highlight several important concepts that be can used in ECG analysis. There are several fundamental principles that should be considered in ECG interpretation.

  19. Electromagnetic interference of wireless local area network on electrocardiogram monitoring system: a case report.

    PubMed

    Chung, Seungmin; Yi, Joohee; Park, Seung Woo

    2013-03-01

    Electromagnetic interference (EMI) can affect various medical devices. Herein, we report the case of EMI from wireless local area network (WLAN) on an electrocardiogram (ECG) monitoring system. A patient who had a prior myocardial infarction participated in the cardiac rehabilitation program in the sports medicine center of our hospital under the wireless ECG monitoring system. After WLAN was installed, wireless ECG monitoring system failed to show a proper ECG signal. ECG signal was distorted when WLAN was turned on, but it was normalized after turning off the WLAN.

  20. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System

    PubMed Central

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-01-01

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user’s ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user’s high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user’s daily smartphone use. PMID:26978364

  1. [Low-power Wireless Micro Ambulatory Electrocardiogram Node].

    PubMed

    Cai, Zhipeng; Luo, Kan; Li, Jianqing

    2016-02-01

    Ambulatory electrocardiogram (ECG) monitoring can effectively reduce the risk and death rate of patients with cardiovascular diseases (CVDs). The Body Sensor Network (BSN) based ECG monitoring is a new and efficien method to protect the CVDs patients. To meet the challenges of miniaturization, low power and high signal quality of the node, we proposed a novel 50 mmX 50 mmX 10 mm, 30 g wireless ECG node, which includes the single-chip an alog front-end AD8232, ultra-low power microprocessor MSP430F1611 and Bluetooth module HM-11. The ECG signal quality is guaranteed by the on-line digital filtering. The difference threshold algorithm results in accuracy of R-wave detection and heart rate. Experiments were carried out to test the node and the results showed that the pro posed node reached the design target, and it has great potential in application of wireless ECG monitoring.

  2. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System.

    PubMed

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-03-11

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user's ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user's high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user's daily smartphone use.

  3. Surface Electrocardiogram Predictors of Sudden Cardiac Arrest

    PubMed Central

    Abdelghani, Samy A.; Rosenthal, Todd M.; Morin, Daniel P.

    2016-01-01

    Background: Heart disease is a major cause of death in industrialized nations, with approximately 50% of these deaths attributable to sudden cardiac arrest. If patients at high risk for sudden cardiac arrest can be identified, their odds of surviving fatal arrhythmias can be significantly improved through prophylactic implantable cardioverter defibrillator placement. This review summarizes the current knowledge pertaining to surface electrocardiogram (ECG) predictors of sudden cardiac arrest. Methods: We conducted a literature review focused on methods of predicting sudden cardiac arrest through noninvasive electrocardiographic testing. Results: Several electrocardiographic-based methods of risk stratification of sudden cardiac arrest have been studied, including QT prolongation, QRS duration, fragmented QRS complexes, early repolarization, Holter monitoring, heart rate variability, heart rate turbulence, signal-averaged ECG, T wave alternans, and T-peak to T-end. These ECG findings have shown variable effectiveness as screening tools. Conclusion: At this time, no individual ECG finding has been found to be able to adequately stratify patients with regard to risk for sudden cardiac arrest. However, one or more of these candidate surface ECG parameters may become useful components of future multifactorial risk stratification calculators. PMID:27660578

  4. Identifying UMLS concepts from ECG Impressions using KnowledgeMap.

    PubMed

    Denny, Joshua C; Spickard, Anderson; Miller, Randolph A; Schildcrout, Jonathan; Darbar, Dawood; Rosenbloom, S Trent; Peterson, Josh F

    2005-01-01

    Electrocardiogram (ECG) impressions represent a wealth of medical information for potential decision support and drug-effect discovery. Much of this information is inaccessible to automated methods in the free-text portion of the ECG report. We studied the application of the KnowledgeMap concept identifier (KMCI) to map Unified Medical Language System (UMLS) concepts from ECG impressions. ECGs were processed by KMCI and the results scored for accuracy by multiple raters. Reviewers also recorded unidentified concepts through the scoring interface. Overall, KMCI correctly identified 1059 out of 1171 concepts for a recall of 0.90. Precision, indicating the proportion of ECG concepts correctly identified, was 0.94. KMCI was particularly effective at identifying ECG rhythms (330/333), perfusion changes (65/66), and noncardiac medical concepts (11/11). In conclusion, KMCI is an effective method for mapping ECG impressions to UMLS concepts.

  5. Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode Decomposition

    PubMed Central

    Chang, Kang-Ming

    2010-01-01

    A novel noise filtering algorithm based on ensemble empirical mode decomposition (EEMD) is proposed to remove artifacts in electrocardiogram (ECG) traces. Three noise patterns with different power—50 Hz, EMG, and base line wander – were embedded into simulated and real ECG signals. Traditional IIR filter, Wiener filter, empirical mode decomposition (EMD) and EEMD were used to compare filtering performance. Mean square error between clean and filtered ECGs was used as filtering performance indexes. Results showed that high noise reduction is the major advantage of the EEMD based filter, especially on arrhythmia ECGs. PMID:22219702

  6. Quality assessment of digital annotated ECG data from clinical trials by the FDA ECG Warehouse.

    PubMed

    Sarapa, Nenad

    2007-09-01

    The FDA mandates that digital electrocardiograms (ECGs) from 'thorough' QTc trials be submitted into the ECG Warehouse in Health Level 7 extended markup language format with annotated onset and offset points of waveforms. The FDA did not disclose the exact Warehouse metrics and minimal acceptable quality standards. The author describes the Warehouse scoring algorithms and metrics used by FDA, points out ways to improve FDA review and suggests Warehouse benefits for pharmaceutical sponsors. The Warehouse ranks individual ECGs according to their score for each quality metric and produces histogram distributions with Warehouse-specific thresholds that identify ECGs of questionable quality. Automatic Warehouse algorithms assess the quality of QT annotation and duration of manual QT measurement by the central ECG laboratory.

  7. Exploring the Relationship Between Eye Movements and Electrocardiogram Interpretation Accuracy

    NASA Astrophysics Data System (ADS)

    Davies, Alan; Brown, Gavin; Vigo, Markel; Harper, Simon; Horseman, Laura; Splendiani, Bruno; Hill, Elspeth; Jay, Caroline

    2016-12-01

    Interpretation of electrocardiograms (ECGs) is a complex task involving visual inspection. This paper aims to improve understanding of how practitioners perceive ECGs, and determine whether visual behaviour can indicate differences in interpretation accuracy. A group of healthcare practitioners (n = 31) who interpret ECGs as part of their clinical role were shown 11 commonly encountered ECGs on a computer screen. The participants’ eye movement data were recorded as they viewed the ECGs and attempted interpretation. The Jensen-Shannon distance was computed for the distance between two Markov chains, constructed from the transition matrices (visual shifts from and to ECG leads) of the correct and incorrect interpretation groups for each ECG. A permutation test was then used to compare this distance against 10,000 randomly shuffled groups made up of the same participants. The results demonstrated a statistically significant (α  0.05) result in 5 of the 11 stimuli demonstrating that the gaze shift between the ECG leads is different between the groups making correct and incorrect interpretations and therefore a factor in interpretation accuracy. The results shed further light on the relationship between visual behaviour and ECG interpretation accuracy, providing information that can be used to improve both human and automated interpretation approaches.

  8. Exploring the Relationship Between Eye Movements and Electrocardiogram Interpretation Accuracy

    PubMed Central

    Davies, Alan; Brown, Gavin; Vigo, Markel; Harper, Simon; Horseman, Laura; Splendiani, Bruno; Hill, Elspeth; Jay, Caroline

    2016-01-01

    Interpretation of electrocardiograms (ECGs) is a complex task involving visual inspection. This paper aims to improve understanding of how practitioners perceive ECGs, and determine whether visual behaviour can indicate differences in interpretation accuracy. A group of healthcare practitioners (n = 31) who interpret ECGs as part of their clinical role were shown 11 commonly encountered ECGs on a computer screen. The participants’ eye movement data were recorded as they viewed the ECGs and attempted interpretation. The Jensen-Shannon distance was computed for the distance between two Markov chains, constructed from the transition matrices (visual shifts from and to ECG leads) of the correct and incorrect interpretation groups for each ECG. A permutation test was then used to compare this distance against 10,000 randomly shuffled groups made up of the same participants. The results demonstrated a statistically significant (α  0.05) result in 5 of the 11 stimuli demonstrating that the gaze shift between the ECG leads is different between the groups making correct and incorrect interpretations and therefore a factor in interpretation accuracy. The results shed further light on the relationship between visual behaviour and ECG interpretation accuracy, providing information that can be used to improve both human and automated interpretation approaches. PMID:27917921

  9. Wavelets for full reconfigurable ECG acquisition system

    NASA Astrophysics Data System (ADS)

    Morales, D. P.; García, A.; Castillo, E.; Meyer-Baese, U.; Palma, A. J.

    2011-06-01

    This paper presents the use of wavelet cores for a full reconfigurable electrocardiogram signal (ECG) acquisition system. The system is compound by two reconfigurable devices, a FPGA and a FPAA. The FPAA is in charge of the ECG signal acquisition, since this device is a versatile and reconfigurable analog front-end for biosignals. The FPGA is in charge of FPAA configuration, digital signal processing and information extraction such as heart beat rate and others. Wavelet analysis has become a powerful tool for ECG signal processing since it perfectly fits ECG signal shape. The use of these cores has been integrated in the LabVIEW FPGA module development tool that makes possible to employ VHDL cores within the usual LabVIEW graphical programming environment, thus freeing the designer from tedious and time consuming design of communication interfaces. This enables rapid test and graphical representation of results.

  10. A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection.

    PubMed

    Liu, Bin; Liu, Jikui; Wang, Guoqing; Huang, Kun; Li, Fan; Zheng, Yang; Luo, Youxi; Zhou, Fengfeng

    2015-06-01

    The electrocardiogram (ECG) is a biophysical electric signal generated by the heart muscle, and is one of the major measurements of how well a heart functions. Automatic ECG analysis algorithms usually extract the geometric or frequency-domain features of the ECG signals and have already significantly facilitated automatic ECG-based cardiac disease diagnosis. We propose a novel ECG feature by fitting a given ECG signal with a 20th order polynomial function, defined as PolyECG-S. The PolyECG-S feature is almost identical to the fitted ECG curve, measured by the Akaike information criterion (AIC), and achieved a 94.4% accuracy in detecting the Myocardial Infarction (MI) on the test dataset. Currently ST segment elongation is one of the major ways to detect MI (ST-elevation myocardial infarction, STEMI). However, many ECG signals have weak or even undetectable ST segments. Since PolyECG-S does not rely on the information of ST waves, it can be used as a complementary MI detection algorithm with the STEMI strategy. Overall, our results suggest that the PolyECG-S feature may satisfactorily reconstruct the fitted ECG curve, and is complementary to the existing ECG features for automatic cardiac function analysis.

  11. The Electrocardiogram in Highly Trained Athletes.

    PubMed

    Prakash, Keerthi; Sharma, Sanjay

    2015-07-01

    Regular intensive exercise is associated with a constellation of several structural and functional adaptations within the heart that permit the generation of a large and sustained increase in cardiac output and/or increase in blood pressure. The magnitude with which these markers of physiological remodeling manifest on the surface electrocardiogram is governed by several factors and some athletes show electrical and structural changes that overlap with those observed in cardiomyopathy and in ion channel diseases, which are recognized causes of sudden cardiac death in young athletes. This article provides a critical appraisal of the athlete's ECG.

  12. Bluetooth telemetry system for a wearable electrocardiogram

    NASA Astrophysics Data System (ADS)

    Green, Ryan B.

    The rise of wireless networks has led to a new market in medicine: remote patient monitoring. Practitioners now desire to monitor the health conditions of their patients after hospital release. With the large number of cardiac related deaths and this new demand in medicine being the motivation, this study developed a BluetoothRTM telemetry system for a wearable Electrocardiogram. This study also developed a compression t-shirt to hold the ECG and telemetry system. This device communicates the ECG signal of a patient to an Android device within the ISM frequency bands (2.4-2.48 GHz) where the data is displayed and stored in real time. This study is a stepping stone toward more portable heart monitoring that can communicate with the doctor in real time from remote locations.

  13. ECG parameters and exposure to carbon ultrafine particles in young healthy subjects.

    PubMed

    Zareba, Wojciech; Couderc, Jean Philippe; Oberdörster, Günter; Chalupa, David; Cox, Christopher; Huang, Li-Shan; Peters, Annette; Utell, Mark J; Frampton, Mark W

    2009-02-01

    The mechanisms underlying the association between air pollution and cardiovascular morbidity and mortality are unknown. This study aimed to determine whether controlled exposure to elemental carbon ultrafine particles (UFP) affects electrocardiogram (ECG) parameters describing heart rate variability; repolarization duration, morphology, and variability; and changes in the ST segment. Two separate controlled studies (12 subjects each) were performed using a crossover design, in which each subject was exposed to filtered air and carbon UFP for 2 hours. The first protocol involved 2 exposures to air and 10 microg/m(3) (approximately 2 x 10(6) particles/cm(3), count median diameter approximately 25 nm, geometric standard deviation approximately 1.6), at rest. The second protocol included 3 exposures to air, 10, and 25 microg/m(3) UFP (approximately 7 x 10(6) particles/cm(3)), with repeated exercise. Each subject underwent a continuous digital 12-lead ECG Holter recording to analyze the above ECG parameters. Repeated measures analysis of variance (ANOVA) was used to compare tested parameters between exposures. The observed responses to UFP exposure were small and generally not significant, although there were trends indicating an increase in parasympathetic tone, which is most likely also responsible for trends toward ST elevation, blunted QTc shortening, and increased variability of T-wave complexity after exposure to UFP. Recovery from exercise showed a blunted response of the parasympathetic system after exposure to UFP in comparison to air exposure. In conclusion, transient exposure to 10-25 microg/m(3) ultrafine carbon particles does not cause marked changes in ECG-derived parameters in young healthy subjects. However, trends are observed indicating that some subjects might be susceptible to air pollution, with a response involving autonomic modulation of the heart and repolarization of the ventricular myocardium.

  14. ELECTROCARDIOGRAMS BY TELEMETRY

    PubMed Central

    Winsor, Travis; Sibley, E. A.; Fisher, E. K.

    1961-01-01

    Radiocardiography makes it possible to transmit an electrocardiogram by air from patient to recording device. The distance of transmission may be a few feet, as in a physician's office; or it may be many miles, as when transmitting electrocardiograms from aircraft, rockets or satellites to the earth. The radiocardiographic method has the advantage of versatility, simplicity, freedom of movement for the patient and high amplitude, and is especially suited for recording electrocardiograms during exercise. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:13785896

  15. Atrial Fibrillation Predictors: Importance of the Electrocardiogram.

    PubMed

    German, David M; Kabir, Muammar M; Dewland, Thomas A; Henrikson, Charles A; Tereshchenko, Larisa G

    2016-01-01

    Atrial fibrillation (AF) is the most common arrhythmia in adults and is associated with significant morbidity and mortality. Substantial interest has developed in the primary prevention of AF, and thus the identification of individuals at risk for developing AF. The electrocardiogram (ECG) provides a wealth of information, which is of value in predicting incident AF. The PR interval and P wave indices (including P wave duration, P wave terminal force, P wave axis, and other measures of P wave morphology) are discussed with regard to their ability to predict and characterize AF risk in the general population. The predictive value of the QT interval, ECG criteria for left ventricular hypertrophy, and findings of atrial and ventricular ectopy are also discussed. Efforts are underway to develop models that predict AF incidence in the general population; however, at present, little information from the ECG is included in these models. The ECG provides a great deal of information on AF risk and has the potential to contribute substantially to AF risk estimation, but more research is needed.

  16. Graphene-Enabled Electrodes for Electrocardiogram Monitoring

    PubMed Central

    Celik, Numan; Manivannan, Nadarajah; Strudwick, Andrew; Balachandran, Wamadeva

    2016-01-01

    The unique parameters of graphene (GN)—notably its considerable electron mobility, high surface area, and electrical conductivity—are bringing extensive attention into the wearable technologies. This work presents a novel graphene-based electrode for acquisition of electrocardiogram (ECG). The proposed electrode was fabricated by coating GN on top of a metallic layer of a Ag/AgCl electrode using a chemical vapour deposition (CVD) technique. To investigate the performance of the fabricated GN-based electrode, two types of electrodes were fabricated with different sizes to conduct the signal qualities and the skin-electrode contact impedance measurements. Performances of the GN-enabled electrodes were compared to the conventional Ag/AgCl electrodes in terms of ECG signal quality, skin–electrode contact impedance, signal-to-noise ratio (SNR), and response time. Experimental results showed the proposed GN-based electrodes produced better ECG signals, higher SNR (improved by 8%), and lower contact impedance (improved by 78%) values than conventional ECG electrodes. PMID:28335284

  17. Electrocardiogram signal denoising based on a new improved wavelet thresholding

    NASA Astrophysics Data System (ADS)

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.

  18. A model-based approach to human identification using ECG

    NASA Astrophysics Data System (ADS)

    Homer, Mark; Irvine, John M.; Wendelken, Suzanne

    2009-05-01

    Biometrics, such as fingerprint, iris scan, and face recognition, offer methods for identifying individuals based on a unique physiological measurement. Recent studies indicate that a person's electrocardiogram (ECG) may also provide a unique biometric signature. Current techniques for identification using ECG rely on empirical methods for extracting features from the ECG signal. This paper presents an alternative approach based on a time-domain model of the ECG trace. Because Auto-Regressive Integrated Moving Average (ARIMA) models form a rich class of descriptors for representing the structure of periodic time series data, they are well-suited to characterizing the ECG signal. We present a method for modeling the ECG, extracting features from the model representation, and identifying individuals using these features.

  19. Electrocardiogram on a chip: overview and first experiences of an electrocardiogram manufacturer of medium size.

    PubMed

    Abächerli, Roger; Braun, Francis; Zhou, Lingchuan; Kraemer, Michel; Felblinger, Jacques; Schmid, Hans-Jakob

    2006-10-01

    The integration of an electrocardiogram (ECG) device into a chip is already well known in the field of implanted devices, such as pacemakers. For noninvasive electrocardiology, this approach has not been used on a broad scale commercially. The extension of electrocardiology to telemetry, home care, and special applications as in magnetic resonance imaging has spawned a new interest in highly miniaturized ECG devices. In our company, we are aiming for using highly integrated devices exactly in these fields. On one hand, the home monitoring market ("eHealth," "pHealth") requires small and lightweight devices ("ECG in an electrode"); on the other hand, the use of an ECG device within a hostile environment as in an magnetic resonance imaging machine with strong electromagnetic fields requires small dimensions of the device. Of these 2 fields, the one of home monitoring is the most promising. There is a large population in need of such monitoring (eg, patients with congestive heart failure), and the cost issue in medical care drives the market in this direction. Projects in both fields will be presented as well as the first experiences as a middle-sized manufacturer in trying to produce an integrated ECG "device."

  20. 3-lead acquisition using single channel ECG device developed on AD8232 analog front end for wireless ECG application

    NASA Astrophysics Data System (ADS)

    Agung, Mochammad Anugrah; Basari

    2017-02-01

    Electrocardiogram (ECG) devices measure electrical activity of the heart muscle to determine heart conditions. ECG signal quality is the key factor in determining the diseases of the heart. This paper presents the design of 3-lead acquistion on single channel wireless ECG device developed on AD8232 chip platform using microcontroller. To make the system different from others, monopole antenna 2.4 GHz is used in order to send and receive ECG signal. The results show that the system still can receive ECG signal up to 15 meters by line of sight (LOS) condition. The shape of ECG signals is precisely similar with the expected signal, although some delays occur between two consecutive pulses. For further step, the system will be applied with on-body antenna in order to investigate body to body communication that will give variation in connectivity from the others.

  1. Development and clinical study of mobile 12-lead electrocardiography based on cloud computing for cardiac emergency.

    PubMed

    Fujita, Hideo; Uchimura, Yuji; Waki, Kayo; Omae, Koji; Takeuchi, Ichiro; Ohe, Kazuhiko

    2013-01-01

    To improve emergency services for accurate diagnosis of cardiac emergency, we developed a low-cost new mobile electrocardiography system "Cloud Cardiology®" based upon cloud computing for prehospital diagnosis. This comprises a compact 12-lead ECG unit equipped with Bluetooth and Android Smartphone with an application for transmission. Cloud server enables us to share ECG simultaneously inside and outside the hospital. We evaluated the clinical effectiveness by conducting a clinical trial with historical comparison to evaluate this system in a rapid response car in the real emergency service settings. We found that this system has an ability to shorten the onset to balloon time of patients with acute myocardial infarction, resulting in better clinical outcome. Here we propose that cloud-computing based simultaneous data sharing could be powerful solution for emergency service for cardiology, along with its significant clinical outcome.

  2. Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study.

    PubMed

    Lowres, Nicole; Neubeck, Lis; Salkeld, Glenn; Krass, Ines; McLachlan, Andrew J; Redfern, Julie; Bennett, Alexandra A; Briffa, Tom; Bauman, Adrian; Martinez, Carlos; Wallenhorst, Christopher; Lau, Jerrett K; Brieger, David B; Sy, Raymond W; Freedman, S Ben

    2014-06-01

    Atrial fibrillation (AF) causes a third of all strokes, but often goes undetected before stroke. Identification of unknown AF in the community and subsequent anti-thrombotic treatment could reduce stroke burden. We investigated community screening for unknown AF using an iPhone electrocardiogram (iECG) in pharmacies, and determined the cost-effectiveness of this strategy.Pharmacists performedpulse palpation and iECG recordings, with cardiologist iECG over-reading. General practitioner review/12-lead ECG was facilitated for suspected new AF. An automated AF algorithm was retrospectively applied to collected iECGs. Cost-effectiveness analysis incorporated costs of iECG screening, and treatment/outcome data from a United Kingdom cohort of 5,555 patients with incidentally detected asymptomatic AF. A total of 1,000 pharmacy customers aged ≥65 years (mean 76 ± 7 years; 44% male) were screened. Newly identified AF was found in 1.5% (95% CI, 0.8-2.5%); mean age 79 ± 6 years; all had CHA2DS2-VASc score ≥2. AF prevalence was 6.7% (67/1,000). The automated iECG algorithm showed 98.5% (CI, 92-100%) sensitivity for AF detection and 91.4% (CI, 89-93%) specificity. The incremental cost-effectiveness ratio of extending iECG screening into the community, based on 55% warfarin prescription adherence, would be $AUD5,988 (€3,142; $USD4,066) per Quality Adjusted Life Year gained and $AUD30,481 (€15,993; $USD20,695) for preventing one stroke. Sensitivity analysis indicated cost-effectiveness improved with increased treatment adherence.Screening with iECG in pharmacies with an automated algorithm is both feasible and cost-effective. The high and largely preventable stroke/thromboembolism risk of those with newly identified AF highlights the likely benefits of community AF screening. Guideline recommendation of community iECG AF screening should be considered.

  3. Real time electrocardiogram QRS detection using combined adaptive threshold

    PubMed Central

    Christov, Ivaylo I

    2004-01-01

    Background QRS and ventricular beat detection is a basic procedure for electrocardiogram (ECG) processing and analysis. Large variety of methods have been proposed and used, featuring high percentages of correct detection. Nevertheless, the problem remains open especially with respect to higher detection accuracy in noisy ECGs Methods A real-time detection method is proposed, based on comparison between absolute values of summed differentiated electrocardiograms of one of more ECG leads and adaptive threshold. The threshold combines three parameters: an adaptive slew-rate value, a second value which rises when high-frequency noise occurs, and a third one intended to avoid missing of low amplitude beats. Two algorithms were developed: Algorithm 1 detects at the current beat and Algorithm 2 has an RR interval analysis component in addition. The algorithms are self-adjusting to the thresholds and weighting constants, regardless of resolution and sampling frequency used. They operate with any number L of ECG leads, self-synchronize to QRS or beat slopes and adapt to beat-to-beat intervals. Results The algorithms were tested by an independent expert, thus excluding possible author's influence, using all 48 full-length ECG records of the MIT-BIH arrhythmia database. The results were: sensitivity Se = 99.69 % and specificity Sp = 99.65 % for Algorithm 1 and Se = 99.74 % and Sp = 99.65 % for Algorithm 2. Conclusion The statistical indices are higher than, or comparable to those, cited in the scientific literature. PMID:15333132

  4. Flexible capacitive electrodes for minimizing motion artifacts in ambulatory electrocardiograms.

    PubMed

    Lee, Jeong Su; Heo, Jeong; Lee, Won Kyu; Lim, Yong Gyu; Kim, Youn Ho; Park, Kwang Suk

    2014-08-12

    This study proposes the use of flexible capacitive electrodes for reducing motion artifacts in a wearable electrocardiogram (ECG) device. The capacitive electrodes have conductive foam on their surface, a shield, an optimal input bias resistor, and guarding feedback. The electrodes are integrated in a chest belt, and the acquired signals are transmitted wirelessly for ambulatory heart rate monitoring. We experimentally validated the electrode performance with subjects standing and walking on a treadmill at speeds of up to 7 km/h. The results confirmed the highly accurate heart rate detection capacity of the developed system and its feasibility for daily-life ECG monitoring.

  5. High Resolution ECG for Evaluation of Heart Function During Exposure to Subacute Hypobaric Hypoxia

    NASA Technical Reports Server (NTRS)

    Zupet, Petra; Finderle, Zarko; Schlegel, Todd T.; Princi, Tanja; Starc, Vito

    2010-01-01

    High altitude climbing presents a wide spectrum of health risks, including exposure to hypobaric hypoxia. Risks are also typically exacerbated by the difficulty in appropriately monitoring for early signs of organ dysfunction in remote areas. We investigated whether high resolution advanced ECG analysis might be helpful as a non-invasive and easy-to-use tool (e.g., instead of Doppler echocardiography) for evaluating early signs of heart overload in hypobaric hypoxia. Nine non-acclimatized healthy trained alpine rescuers (age 43.7 plus or minus 7.3 years) climbed in four days to the altitude of 4,200 m on Mount Ararat. Five-minute high-resolution 12-lead electrocardiograms (ECGs) were recorded (Cardiosoft) in each subject at rest in the supine position on different days but at the same time of day at four different altitudes: 400 m (reference altitude), 1,700 m, 3,200 m and 4,200 m. Changes in conventional and advanced resting ECG parameters, including in beat-to-beat QT and RR variability, waveform complexity, signal-averaged, high-frequency and spatial/spatiotemporal ECG was estimated by calculation of the regression coefficients in independent linear regression models. A p-value of less than 0.05 was adopted as statistically significant. As expected, the RR interval and its variability both decreased with increasing altitude, with trends k = -96 ms/1000 m with p = 0.000 and k = -9 ms/1000 m with p = 0.001, respectively. Significant changes were found in P-wave amplitude, which nearly doubled from the lowest to the highest altitude (k = 41.6 microvolt/1000 m with p = 0.000), and nearly significant changes in P-wave duration (k = 2.9 ms/1000 m with p = 0.059). Changes were less significant or non-significant in other studied parameters including those of waveform complexity, signal-averaged, high-frequency and spatial/spatiotemporal ECG. High resolution ECG analysis, particularly of the P wave, shows promise as a tool for monitoring early changes in heart function

  6. The Cardiac Safety Research Consortium ECG database.

    PubMed

    Kligfield, Paul; Green, Cynthia L

    2012-01-01

    The Cardiac Safety Research Consortium (CSRC) ECG database was initiated to foster research using anonymized, XML-formatted, digitized ECGs with corresponding descriptive variables from placebo- and positive-control arms of thorough QT studies submitted to the US Food and Drug Administration (FDA) by pharmaceutical sponsors. The database can be expanded to other data that are submitted directly to CSRC from other sources, and currently includes digitized ECGs from patients with genotyped varieties of congenital long-QT syndrome; this congenital long-QT database is also linked to ambulatory electrocardiograms stored in the Telemetric and Holter ECG Warehouse (THEW). Thorough QT data sets are available from CSRC for unblinded development of algorithms for analysis of repolarization and for blinded comparative testing of algorithms developed for the identification of moxifloxacin, as used as a positive control in thorough QT studies. Policies and procedures for access to these data sets are available from CSRC, which has developed tools for statistical analysis of blinded new algorithm performance. A recently approved CSRC project will create a data set for blinded analysis of automated ECG interval measurements, whose initial focus will include comparison of four of the major manufacturers of automated electrocardiographs in the United States. CSRC welcomes application for use of the ECG database for clinical investigation.

  7. Robust human identification using ecg: eigenpulse revisited

    NASA Astrophysics Data System (ADS)

    Jang, Daniel; Wendelken, Suzanne; Irvine, John M.

    2010-04-01

    Biometrics, such as fingerprint, iris scan, and face recognition, offer methods for identifying individuals based on a unique physiological measurement. Recent studies indicate that a person's electrocardiogram (ECG) may also provide a unique biometric signature. Several methods for processing ECG data have appeared in the literature and most approaches rest on an initial detection and segmentation of the heartbeats. Various sources of noise, such as sensor noise, poor sensor placement, or muscle movements, can degrade the ECG signal and introduce errors into the heartbeat segmentation. This paper presents a screening technique for assessing the quality of each segmented heartbeat. Using this technique, a higher quality signal can be extracted to support the identification task. We demonstrate the benefits of this quality screening using a principal component technique known as eigenpulse. The analysis demonstrated the improvement in performance attributable to the quality screening.

  8. A novel biometric authentication approach using ECG and EMG signals.

    PubMed

    Belgacem, Noureddine; Fournier, Régis; Nait-Ali, Amine; Bereksi-Reguig, Fethi

    2015-05-01

    Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject's being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication.

  9. ECG Sensor Card with Evolving RBP Algorithms for Human Verification

    PubMed Central

    Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi

    2015-01-01

    It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack—the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals. PMID:26307995

  10. ECG Sensor Card with Evolving RBP Algorithms for Human Verification.

    PubMed

    Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi

    2015-08-21

    It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack-the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals.

  11. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  12. ECG Monitoring in Cardiac Rehabilitation: Is It Needed?

    ERIC Educational Resources Information Center

    Greenland, Philip; Pomilla, Paul V.

    1989-01-01

    Discusses the controversial use of continuous electrocardiogram (ECG) monitoring as a safety measure in cardiac rehabilitation exercise programs. Little evidence substantiates its value for all patients during exercise. In the absence of empirical evidence documenting the worth of this expensive procedure, it is recommended for use with high-risk…

  13. Cardiac Electrophysiology: Normal and Ischemic Ionic Currents and the ECG

    ERIC Educational Resources Information Center

    Klabunde, Richard E.

    2017-01-01

    Basic cardiac electrophysiology is foundational to understanding normal cardiac function in terms of rate and rhythm and initiation of cardiac muscle contraction. The primary clinical tool for assessing cardiac electrical events is the electrocardiogram (ECG), which provides global and regional information on rate, rhythm, and electrical…

  14. Embedding and retrieving private metadata in electrocardiograms.

    PubMed

    Kozat, Suleyman S; Vlachos, Michail; Lucchese, Claudio; Van Herle, Helga; Yu, Philip S

    2009-08-01

    Due to the recent explosion of 'identity theft' cases, the safeguarding of private data has been the focus of many scientific efforts. Medical data contain a number of sensitive attributes, whose access the rightful owner would ideally like to disclose only to authorized personnel. One way of providing limited access to sensitive data is through means of encryption. In this work we follow a different path, by proposing the fusion of the sensitive metadata within the medical data. Our work is focused on medical time-series signals and in particular on Electrocardiograms (ECG). We present techniques that allow the embedding and retrieval of sensitive numerical data, such as the patient's social security number or birth date, within the medical signal. The proposed technique not only allows the effective hiding of the sensitive metadata within the signal itself, but it additionally provides a way of authenticating the data ownership or providing assurances about the origin of the data. Our methodology builds upon watermarking notions, and presents the following desirable characteristics: (a) it does not distort important ECG characteristics, which are essential for proper medical diagnosis, (b) it allows not only the embedding but also the efficient retrieval of the embedded data, (c) it provides resilience and fault tolerance by employing multistage watermarks (both robust and fragile). Our experiments on real ECG data indicate the viability of the proposed scheme.

  15. A Novel Automatic Detection System for ECG Arrhythmias Using Maximum Margin Clustering with Immune Evolutionary Algorithm

    PubMed Central

    Zhu, Bohui; Ding, Yongsheng; Hao, Kuangrong

    2013-01-01

    This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias. PMID:23690875

  16. A novel similarity comparison approach for dynamic ECG series.

    PubMed

    Yin, Hong; Zhu, Xiaoqian; Ma, Shaodong; Yang, Shuqiang; Chen, Liqian

    2015-01-01

    The heart sound signal is a reflection of heart and vascular system motion. Long-term continuous electrocardiogram (ECG) contains important information which can be helpful to prevent heart failure. A single piece of a long-term ECG recording usually consists of more than one hundred thousand data points in length, making it difficult to derive hidden features that may be reflected through dynamic ECG monitoring, which is also very time-consuming to analyze. In this paper, a Dynamic Time Warping based on MapReduce (MRDTW) is proposed to make prognoses of possible lesions in patients. Through comparison of a real-time ECG of a patient with the reference sets of normal and problematic cardiac waveforms, the experimental results reveal that our approach not only retains high accuracy, but also greatly improves the efficiency of the similarity measure in dynamic ECG series.

  17. ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Kaur, Inderbir; Rajni, Rajni; Marwaha, Anupma

    2016-12-01

    Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.

  18. A method of ECG template extraction for biometrics applications.

    PubMed

    Zhou, Xiang; Lu, Yang; Chen, Meng; Bao, Shu-Di; Miao, Fen

    2014-01-01

    ECG has attracted widespread attention as one of the most important non-invasive physiological signals in healthcare-system related biometrics for its characteristics like ease-of-monitoring, individual uniqueness as well as important clinical value. This study proposes a method of dynamic threshold setting to extract the most stable ECG waveform as the template for the consequent ECG identification process. With the proposed method, the accuracy of ECG biometrics using the dynamic time wraping for difference measures has been significantly improved. Analysis results with the self-built electrocardiogram database show that the deployment of the proposed method was able to reduce the half total error rate of the ECG biometric system from 3.35% to 1.45%. Its average running time on the platform of android mobile terminal was around 0.06 seconds, and thus demonstrates acceptable real-time performance.

  19. Improvements in ECG accuracy for diagnosis of left ventricular hypertrophy in obesity

    PubMed Central

    Rider, Oliver J; Ntusi, Ntobeko; Bull, Sacha C; Nethononda, Richard; Ferreira, Vanessa; Holloway, Cameron J; Holdsworth, David; Mahmod, Masliza; Rayner, Jennifer J; Banerjee, Rajarshi; Myerson, Saul; Watkins, Hugh; Neubauer, Stefan

    2016-01-01

    Objectives The electrocardiogram (ECG) is the most commonly used tool to screen for left ventricular hypertrophy (LVH), and yet current diagnostic criteria are insensitive in modern increasingly overweight society. We propose a simple adjustment to improve diagnostic accuracy in different body weights and improve the sensitivity of this universally available technique. Methods Overall, 1295 participants were included—821 with a wide range of body mass index (BMI 17.1–53.3 kg/m2) initially underwent cardiac magnetic resonance evaluation of anatomical left ventricular (LV) axis, LV mass and 12-lead surface ECG in order to generate an adjustment factor applied to the Sokolow–Lyon criteria. This factor was then validated in a second cohort (n=520, BMI 15.9–63.2 kg/m2). Results When matched for LV mass, the combination of leftward anatomical axis deviation and increased BMI resulted in a reduction of the Sokolow–Lyon index, by 4 mm in overweight and 8 mm in obesity. After adjusting for this in the initial cohort, the sensitivity of the Sokolow–Lyon index increased (overweight: 12.8% to 30.8%, obese: 3.1% to 27.2%) approaching that seen in normal weight (37.8%). Similar results were achieved in the validation cohort (specificity increased in overweight: 8.3% to 39.1%, obese: 9.4% to 25.0%) again approaching normal weight (39.0%). Importantly, specificity remained excellent (>93.1%). Conclusions Adjusting the Sokolow–Lyon index for BMI (overweight +4 mm, obesity +8 mm) improves the diagnostic accuracy for detecting LVH. As the ECG, worldwide, remains the most widely used screening tool for LVH, implementing these findings should translate into significant clinical benefit. PMID:27486142

  20. High Resolution ECG for Evaluation of QT Interval Variability during Exposure to Acute Hypoxia

    NASA Technical Reports Server (NTRS)

    Zupet, P.; Finderle, Z.; Schlegel, Todd T.; Starc, V.

    2010-01-01

    Ventricular repolarization instability as quantified by the index of QT interval variability (QTVI) is one of the best predictors for risk of malignant ventricular arrhythmias and sudden cardiac death. Because it is difficult to appropriately monitor early signs of organ dysfunction at high altitude, we investigated whether high resolution advanced ECG (HR-ECG) analysis might be helpful as a non-invasive and easy-to-use tool for evaluating the risk of cardiac arrhythmias during exposure to acute hypoxia. 19 non-acclimatized healthy trained alpinists (age 37, 8 plus or minus 4,7 years) participated in the study. Five-minute high-resolution 12-lead electrocardiograms (ECGs) were recorded (Cardiosoft) in each subject at rest in the supine position breathing room air and then after breathing 12.5% oxygen for 30 min. For beat-to-beat RR and QT variability, the program of Starc was utilized to derive standard time domain measures such as root mean square of the successive interval difference (rMSSD) of RRV and QTV, the corrected QT interval (QTc) and the QTVI in lead II. Changes were evaluated with paired-samples t-test with p-values less than 0.05 considered statistically significant. As expected, the RR interval and its variability both decreased with increasing altitude, with p = 0.000 and p = 0.005, respectively. Significant increases were found in both the rMSSDQT and the QTVI in lead II, with p = 0.002 and p = 0.003, respectively. There was no change in QTc interval length (p = non significant). QT variability parameters may be useful for evaluating changes in ventricular repolarization caused by hypoxia. These changes might be driven by increases in sympathetic nervous system activity at ventricular level.

  1. Noninvasive quantification of blood potassium concentration from ECG in hemodialysis patients

    PubMed Central

    Corsi, Cristiana; Cortesi, Marilisa; Callisesi, Giulia; De Bie, Johan; Napolitano, Carlo; Santoro, Antonio; Mortara, David; Severi, Stefano

    2017-01-01

    Blood potassium concentration ([K+]) influences the electrocardiogram (ECG), particularly T-wave morphology. We developed a new method to quantify [K+] from T-wave analysis and tested its clinical applicability on data from dialysis patients, in whom [K+] varies significantly during the therapy. To elucidate the mechanism linking [K+] and T-wave, we also analysed data from long QT syndrome type 2 (LQT2) patients, testing the hypothesis that our method would have underestimated [K+] in these patients. Moreover, a computational model was used to explore the physiological processes underlying our estimator at the cellular level. We analysed 12-lead ECGs from 45 haemodialysis and 12 LQT2 patients. T-wave amplitude and downslope were calculated from the first two eigenleads. The T-wave slope-to-amplitude ratio (TS/A) was used as starting point for an ECG-based [K+] estimate (KECG). Leave-one-out cross-validation was performed. Agreement between KECG and reference [K+] from blood samples was promising (error: −0.09 ± 0.59 mM, absolute error: 0.46 ± 0.39 mM). The analysis on LQT2 patients, also supported by the outcome of computational analysis, reinforces our interpretation that, at the cellular level, delayed-rectifier potassium current is a main contributor of KECG correlation to blood [K+]. Following a comprehensive validation, this method could be effectively applied to monitor patients at risk for hyper/hypokalemia. PMID:28198403

  2. Electrocardiogram Signal Denoising Using Extreme-Point Symmetric Mode Decomposition and Nonlocal Means

    PubMed Central

    Tian, Xiaoying; Li, Yongshuai; Zhou, Huan; Li, Xiang; Chen, Lisha; Zhang, Xuming

    2016-01-01

    Electrocardiogram (ECG) signals contain a great deal of essential information which can be utilized by physicians for the diagnosis of heart diseases. Unfortunately, ECG signals are inevitably corrupted by noise which will severely affect the accuracy of cardiovascular disease diagnosis. Existing ECG signal denoising methods based on wavelet shrinkage, empirical mode decomposition and nonlocal means (NLM) cannot provide sufficient noise reduction or well-detailed preservation, especially with high noise corruption. To address this problem, we have proposed a hybrid ECG signal denoising scheme by combining extreme-point symmetric mode decomposition (ESMD) with NLM. In the proposed method, the noisy ECG signals will first be decomposed into several intrinsic mode functions (IMFs) and adaptive global mean using ESMD. Then, the first several IMFs will be filtered by the NLM method according to the frequency of IMFs while the QRS complex detected from these IMFs as the dominant feature of the ECG signal and the remaining IMFs will be left unprocessed. The denoised IMFs and unprocessed IMFs are combined to produce the final denoised ECG signals. Experiments on both simulated ECG signals and real ECG signals from the MIT-BIH database demonstrate that the proposed method can suppress noise in ECG signals effectively while preserving the details very well, and it outperforms several state-of-the-art ECG signal denoising methods in terms of signal-to-noise ratio (SNR), root mean squared error (RMSE), percent root mean square difference (PRD) and mean opinion score (MOS) error index. PMID:27681729

  3. Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study

    PubMed Central

    Langley, Philip

    2017-01-01

    Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to

  4. A nonlinear Bayesian filtering framework for ECG denoising.

    PubMed

    Sameni, Reza; Shamsollahi, Mohammad B; Jutten, Christian; Clifford, Gari D

    2007-12-01

    In this paper, a nonlinear Bayesian filtering framework is proposed for the filtering of single channel noisy electrocardiogram (ECG) recordings. The necessary dynamic models of the ECG are based on a modified nonlinear dynamic model, previously suggested for the generation of a highly realistic synthetic ECG. A modified version of this model is used in several Bayesian filters, including the Extended Kalman Filter, Extended Kalman Smoother, and Unscented Kalman Filter. An automatic parameter selection method is also introduced, to facilitate the adaptation of the model parameters to a vast variety of ECGs. This approach is evaluated on several normal ECGs, by artificially adding white and colored Gaussian noises to visually inspected clean ECG recordings, and studying the SNR and morphology of the filter outputs. The results of the study demonstrate superior results compared with conventional ECG denoising approaches such as bandpass filtering, adaptive filtering, and wavelet denoising, over a wide range of ECG SNRs. The method is also successfully evaluated on real nonstationary muscle artifact. This method may therefore serve as an effective framework for the model-based filtering of noisy ECG recordings.

  5. Method for non-invasively recording electrocardiograms in conscious mice

    PubMed Central

    Chu, Victor; Otero, Jose M; Lopez, Orlando; Morgan, James P; Amende, Ivo; Hampton, Thomas G

    2001-01-01

    Background The rapid increase in the development of mouse models is resulting in a growing demand for non-invasive physiological monitoring of large quantities of mice. Accordingly, we developed a new system for recording electrocardiograms (ECGs) in conscious mice without anesthesia or implants, and created Internet-accessible software for analyzing murine ECG signals. The system includes paw-sized conductive electrodes embedded in a platform configured to record ECGs when 3 single electrodes contact 3 paws. Results With this technique we demonstrated significantly reduced heart rate variability in neonates compared to adult mice. We also demonstrated that female mice exhibit significant ECG differences in comparison to age-matched males, both at baseline and in response to β-adrenergic stimulation. Conclusions The technology we developed enables non-invasive screening of large numbers of mice for ECG changes resulting from genetic, pharmacological, or pathophysiological alterations. Data we obtained non-invasively are not only consistent with what have been reported using invasive and expensive methods, but also demonstrate new findings regarding gender-dependent and age-dependent variations in ECGs in mice. PMID:11476671

  6. Classification of hydration status using electrocardiogram and machine learning

    NASA Astrophysics Data System (ADS)

    Kaveh, Anthony; Chung, Wayne

    2013-10-01

    The electrocardiogram (ECG) has been used extensively in clinical practice for decades to non-invasively characterize the health of heart tissue; however, these techniques are limited to time domain features. We propose a machine classification system using support vector machines (SVM) that uses temporal and spectral information to classify health state beyond cardiac arrhythmias. Our method uses single lead ECG to classify volume depletion (or dehydration) without the lengthy and costly blood analysis tests traditionally used for detecting dehydration status. Our method builds on established clinical ECG criteria for identifying electrolyte imbalances and lends to automated, computationally efficient implementation. The method was tested on the MIT-BIH PhysioNet database to validate this purely computational method for expedient disease-state classification. The results show high sensitivity, supporting use as a cost- and time-effective screening tool.

  7. Centennial of the string galvanometer and the electrocardiogram.

    PubMed

    Fisch, C

    2000-11-15

    This article is a review of the history of the string galvanometer and of the electrocardiogram (ECG) on the occasion of the centennial of the instrument. Einthoven most likely developed the string galvanometer prior to 1901, the date of the first publication. The galvanometer made electrocardiography practical creating a new branch of medicine and even a new industry. In 1791 Galvani, in 1842 Mateucci and in 1855 Kolliker and Muller recorded, using the nerve muscle preparation, contraction of injured muscle, contraction of muscle when laid across a beating heart, and occasionally two contractions. In 1872 Lippmann introduced the capillary manometer. Using the capillary manometer Waller recorded for the first time from body surface voltage changes generated by the heart. Einthoven and Lewis dominated the early years of electrocardiography. The former made his contributions by 1913 while Lewis continued the studies of arrhythmias until 1920. The period following 1920 was influenced largely by Wilson. None did as much to advance ECG knowledge as did Wilson. The interest shifted to the theory of the ECG, abnormalities of wave form and of ECG leads. A major contribution of the ECG is in evaluation of ischemic heart disease and cardiac arrhythmias. Issues facing electrocardiography in the year 2000 include a shortage of experienced electrocardiographers, the advent of new noninvasive procedures and, paradoxically, wide acceptance of the ECG by the medical profession. The role of the computer in analysis of the clinical ECG is limited. The technique, while reasonably reliable for analysis of the normal tracing and some ECG waveforms, has serious limitations when applied to arrhythmias. The early hopes for "stand-alone" programs are yet to be realized.

  8. [Synchronous playing and acquiring of heart sounds and electrocardiogram based on labVIEW].

    PubMed

    Dan, Chunmei; He, Wei; Zhou, Jing; Que, Xiaosheng

    2008-12-01

    In this paper is described a comprehensive system, which can acquire heart sounds and electrocardiogram (ECG) in parallel, synchronize the display; and play of heart sound and make auscultation and check phonocardiogram to tie in. The hardware system with C8051F340 as the core acquires the heart sound and ECG synchronously, and then sends them to indicators, respectively. Heart sounds are displayed and played simultaneously by controlling the moment of writing to indicator and sound output device. In clinical testing, heart sounds can be successfully located with ECG and real-time played.

  9. Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings.

    PubMed

    Niknazar, Mohammad; Rivet, Bertrand; Jutten, Christian

    2013-05-01

    In this paper, we present an extended nonlinear Bayesian filtering framework for extracting electrocardiograms (ECGs) from a single channel as encountered in the fetal ECG extraction from abdominal sensor. The recorded signals are modeled as the summation of several ECGs. Each of them is described by a nonlinear dynamic model, previously presented for the generation of a highly realistic synthetic ECG. Consequently, each ECG has a corresponding term in this model and can thus be efficiently discriminated even if the waves overlap in time. The parameter sensitivity analysis for different values of noise level, amplitude, and heart rate ratios between fetal and maternal ECGs shows its effectiveness for a large set of values of these parameters. This framework is also validated on the extractions of fetal ECG from actual abdominal recordings, as well as of actual twin magnetocardiograms.

  10. Wavelet-based ECG compression by bit-field preserving and running length encoding.

    PubMed

    Chan, Hsiao-Lung; Siao, You-Chen; Chen, Szi-Wen; Yu, Shih-Fan

    2008-04-01

    Efficient electrocardiogram (ECG) compression can reduce the payload of real-time ECG transmission as well as reduce the amount of data storage in long-term ECG recording. In this paper an ECG compression/decompression architecture based on the bit-field preserving (BFP) and running length encoding (RLE)/decoding schemes incorporated with the discrete wavelet transform (DWT) is proposed. Compared to complex and repetitive manipulations in the set partitioning in hierarchical tree (SPIHT) coding and the vector quantization (VQ), the proposed algorithm has advantages of simple manipulations and a feedforward structure that would be suitable to implement on very-large-scale integrated circuits and general microcontrollers.

  11. A Low Power Linear Phase Digital FIR Filter for Wearable ECG Devices.

    PubMed

    Lian, Yong; Yu, Jianghong

    2005-01-01

    In this paper we present a low power linear phase digital FIR filter which is a part of an ECG-on-Chip. The ECG-on-Chip can be embedded into clothing to acquire the electrocardiogram (ECG) signal and send a warning message to a mobile phone or PDA if an abnormal ECG is detected. The proposed new filter structure significantly reduces the arithmetic operations for each sample which in turn lowers the power consumption. The filter is developed based on the interpolated finite impulse filter technique and is very attractive for a low cost and low power VLSI implementation.

  12. A Practical and Cheap Circuit for ECG Sensing and Heart Frequency Alarm

    NASA Astrophysics Data System (ADS)

    Aviña-Cervantes, J. G.; González-García, A. E.; Alvarado-Méndez, E.; Trejo-Durán, M.; Torres-Cisneros, M.; Sánchez-Yáñez, R.; Ayala-Ramírez, V.

    2006-09-01

    A practical electronic circuit for ECG sensing, using high gain instrumentation amplifiers, a PIC microcontroller and two electrodes is presented. It allows to identify and to amplify a well-delimited ECG signal for a further wave analysis, and using a zero crossing detector a heart frequency detector is also implemented. By the moment, the conventional electrocardiogram (ECG) configurations making use of separate electrical connections to the arms and legs (bipolar limb lead 1) is exploited. This device is a practical and cheap way to monitoring ECG signal and some heart anomalies (e.g., arrhythmias, tachycardia) that can be used in a network to communicate anytime with a far health supervisor.

  13. "Virtual" Experiment for Understanding the Electrocardiogram and the Mean Electrical Axis.

    ERIC Educational Resources Information Center

    Anderson, Jamie; DiCarlo, Stephen E.

    2000-01-01

    Describes a virtual experiment designed to introduce students to the theory and application of the electrocardiogram (ECG) and the mean electrical axis (MEA). Students are asked to reduce and analyze data, calculate and plot the MEA, and answer questions in the inquiry-based, experimental activity. (Author/WRM)

  14. Total Variation Electrocardiogram Filtering

    DTIC Science & Technology

    2011-03-01

    hand, the TV smoothing is still a low pass filter, which effectively filters out high-frequency noise. Results We compared the performance of the TV...resulting signal to make the ECG samples positive and to amplify the high-frequency components. Finally, in the last stage, it uses a low -pass filter to...collected during the study on glycemic control in young adults performed at the USDA Beltsville Human Nutrition Center. The study has been approved by

  15. Sequential Total Variation Denoising for the Extraction of Fetal ECG from Single-Channel Maternal Abdominal ECG

    PubMed Central

    Lee, Kwang Jin; Lee, Boreom

    2016-01-01

    Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR. PMID:27376296

  16. [The primary research and development of software oversampling mapping system for electrocardiogram].

    PubMed

    Zhou, Yu; Ren, Jie

    2011-04-01

    We put forward a new concept of software oversampling mapping system for electrocardiogram (ECG) to assist the research of the ECG inverse problem to improve the generality of mapping system and the quality of mapping signals. We then developed a conceptual system based on the traditional ECG detecting circuit, Labview and DAQ card produced by National Instruments, and at the same time combined the newly-developed oversampling method into the system. The results indicated that the system could map ECG signals accurately and the quality of the signals was good. The improvement of hardware and enhancement of software made the system suitable for mapping in different situations. So the primary development of the software for oversampling mapping system was successful and further research and development can make the system a powerful tool for researching ECG inverse problem.

  17. Set-Based Discriminative Measure for Electrocardiogram Beat Classification

    PubMed Central

    Li, Wei; Li, Jianqing; Qin, Qin

    2017-01-01

    Computer aided diagnosis systems can help to reduce the high mortality rate among cardiac patients. Automatical classification of electrocardiogram (ECG) beats plays an important role in such systems, but this issue is challenging because of the complexities of ECG signals. In literature, feature designing has been broadly-studied. However, such methodology is inevitably limited by the heuristics of hand-crafting process and the challenge of signals themselves. To address it, we treat the problem of ECG beat classification from the metric and measurement perspective. We propose a novel approach, named “Set-Based Discriminative Measure”, which first learns a discriminative metric space to ensure that intra-class distances are smaller than inter-class distances for ECG features in a global way, and then measures a new set-based dissimilarity in such learned space to cope with the local variation of samples. Experimental results have demonstrated the advantage of this approach in terms of effectiveness, robustness, and flexibility based on ECG beats from the MIT-BIH Arrhythmia Database. PMID:28125072

  18. Primary prevention of sudden cardiac death of the young athlete: the controversy about the screening electrocardiogram and its innovative artificial intelligence solution.

    PubMed

    Chang, Anthony C

    2012-03-01

    The preparticipation screening for athlete participation in sports typically entails a comprehensive medical and family history and a complete physical examination. A 12-lead electrocardiogram (ECG) can increase the likelihood of detecting cardiac diagnoses such as hypertrophic cardiomyopathy, but this diagnostic test as part of the screening process has engendered considerable controversy. The pro position is supported by argument that international screening protocols support its use, positive diagnosis has multiple benefits, history and physical examination are inadequate, primary prevention is essential, and the cost effectiveness is justified. Although the aforementioned myriad of justifications for routine ECG screening of young athletes can be persuasive, several valid contentions oppose supporting such a policy, namely, that the sudden death incidence is very (too) low, the ECG screening will be too costly, the false-positive rate is too high, resources will be allocated away from other diseases, and manpower is insufficient for its execution. Clinicians, including pediatric cardiologists, have an understandable proclivity for avoiding this prodigious national endeavor. The controversy, however, should not be focused on whether an inexpensive, noninvasive test such as an ECG should be mandated but should instead be directed at just how these tests for young athletes can be performed in the clinical imbroglio of these disease states (with variable genetic penetrance and phenotypic expression) with concomitant fiscal accountability and logistical expediency in this era of economic restraint. This monumental endeavor in any city or region requires two crucial elements well known to business scholars: implementation and execution. The eventual solution for the screening ECG dilemma requires a truly innovative and systematic approach that will liberate us from inadequate conventional solutions. Artificial intelligence, specifically the process termed "machine

  19. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery

    PubMed Central

    Sivaraks, Haemwaan

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods. PMID:25688284

  20. Robust and accurate anomaly detection in ECG artifacts using time series motif discovery.

    PubMed

    Sivaraks, Haemwaan; Ratanamahatana, Chotirat Ann

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods.

  1. ECG Beats Classification Using Mixture of Features

    PubMed Central

    Ari, Samit

    2014-01-01

    Classification of electrocardiogram (ECG) signals plays an important role in clinical diagnosis of heart disease. This paper proposes the design of an efficient system for classification of the normal beat (N), ventricular ectopic beat (V), supraventricular ectopic beat (S), fusion beat (F), and unknown beat (Q) using a mixture of features. In this paper, two different feature extraction methods are proposed for classification of ECG beats: (i) S-transform based features along with temporal features and (ii) mixture of ST and WT based features along with temporal features. The extracted feature set is independently classified using multilayer perceptron neural network (MLPNN). The performances are evaluated on several normal and abnormal ECG signals from 44 recordings of the MIT-BIH arrhythmia database. In this work, the performances of three feature extraction techniques with MLP-NN classifier are compared using five classes of ECG beat recommended by AAMI (Association for the Advancement of Medical Instrumentation) standards. The average sensitivity performances of the proposed feature extraction technique for N, S, F, V, and Q are 95.70%, 78.05%, 49.60%, 89.68%, and 33.89%, respectively. The experimental results demonstrate that the proposed feature extraction techniques show better performances compared to other existing features extraction techniques. PMID:27350985

  2. Wavelet transform and Huffman coding based electrocardiogram compression algorithm: Application to telecardiology

    NASA Astrophysics Data System (ADS)

    Chouakri, S. A.; Djaafri, O.; Taleb-Ahmed, A.

    2013-08-01

    We present in this work an algorithm for electrocardiogram (ECG) signal compression aimed to its transmission via telecommunication channel. Basically, the proposed ECG compression algorithm is articulated on the use of wavelet transform, leading to low/high frequency components separation, high order statistics based thresholding, using level adjusted kurtosis value, to denoise the ECG signal, and next a linear predictive coding filter is applied to the wavelet coefficients producing a lower variance signal. This latter one will be coded using the Huffman encoding yielding an optimal coding length in terms of average value of bits per sample. At the receiver end point, with the assumption of an ideal communication channel, the inverse processes are carried out namely the Huffman decoding, inverse linear predictive coding filter and inverse discrete wavelet transform leading to the estimated version of the ECG signal. The proposed ECG compression algorithm is tested upon a set of ECG records extracted from the MIT-BIH Arrhythmia Data Base including different cardiac anomalies as well as the normal ECG signal. The obtained results are evaluated in terms of compression ratio and mean square error which are, respectively, around 1:8 and 7%. Besides the numerical evaluation, the visual perception demonstrates the high quality of ECG signal restitution where the different ECG waves are recovered correctly.

  3. Noninvasive fetal ECG estimation using adaptive comb filter.

    PubMed

    Wei, Zheng; Xueyun, Wei; Jian jian, Zhong; Hongxing, Liu

    2013-10-01

    This paper describes a robust and simple algorithm for fetal electrocardiogram (FECG) estimation from abdominal signal using adaptive comb filter (ACF). The ACF can adjust itself to the temporal variations in fundamental frequency, which makes it qualified for the estimation of quasi-periodic component from physiologic signal, such as ECG. The validity and performance of the described method are confirmed through experiments on real fetal ECG data. A comparison with the well-known independent component analysis (ICA) method has also been presented.

  4. Biosignal PI, an Affordable Open-Source ECG and Respiration Measurement System

    PubMed Central

    Abtahi, Farhad; Snäll, Jonatan; Aslamy, Benjamin; Abtahi, Shirin; Seoane, Fernando; Lindecrantz, Kaj

    2015-01-01

    Bioimedical pilot projects e.g., telemedicine, homecare, animal and human trials usually involve several physiological measurements. Technical development of these projects is time consuming and in particular costly. A versatile but affordable biosignal measurement platform can help to reduce time and risk while keeping the focus on the important goal and making an efficient use of resources. In this work, an affordable and open source platform for development of physiological signals is proposed. As a first step an 8–12 leads electrocardiogram (ECG) and respiration monitoring system is developed. Chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 for patient safety. The result shows the potential of this platform as a base for prototyping compact, affordable, and medically safe measurement systems. Further work involves both hardware and software development to develop modules. These modules may require development of front-ends for other biosignals or just collect data wirelessly from different devices e.g., blood pressure, weight, bioimpedance spectrum, blood glucose, e.g., through Bluetooth. All design and development documents, files and source codes will be available for non-commercial use through project website, BiosignalPI.org. PMID:25545268

  5. Diagnostic Role of ECG Recording Simultaneously With EEG Testing.

    PubMed

    Kendirli, Mustafa Tansel; Aparci, Mustafa; Kendirli, Nurten; Tekeli, Hakan; Karaoglan, Mustafa; Senol, Mehmet Guney; Togrol, Erdem

    2015-07-01

    Arrhythmia is not uncommon in the etiology of syncope which mimics epilepsy. Data about the epilepsy induced vagal tonus abnormalities have being increasingly reported. So we aimed to evaluate what a neurologist may gain by a simultaneous electrocardiogram (ECG) and electroencephalogram (EEG) recording in the patients who underwent EEG testing due to prediagnosis of epilepsy. We retrospectively evaluated and detected ECG abnormalities in 68 (18%) of 376 patients who underwent EEG testing. A minimum of 20 of minutes artifact-free recording were required for each patient. Standard 1-channel ECG was simultaneously recorded in conjunction with the EEG. In all, 28% of females and 14% of males had ECG abnormalities. Females (mean age 49 years, range 18-88 years) were older compared with the male group (mean age 28 years, range 16-83 years). Atrial fibrillation was more frequent in female group whereas bradycardia and respiratory sinus arrhythmia was higher in male group. One case had been detected a critical asystole indicating sick sinus syndrome in the female group and treated with a pacemaker implantation in the following period. Simultaneous ECG recording in conjunction with EEG testing is a clinical prerequisite to detect and to clarify the coexisting ECG and EEG abnormalities and their clinical relevance. Potentially rare lethal causes of syncope that mimic seizure or those that could cause resistance to antiepileptic therapy could effectively be distinguished by detecting ECG abnormalities coinciding with the signs and abnormalities during EEG recording.

  6. Electrocardiogram voltage attenuation and shortening of the duration of P-waves, QRS complexes, and QT intervals.

    PubMed

    Madias, John E

    2013-01-01

    Multiple pathologies in concert may lead to attenuation of the electrocardiogram (ECG) voltage. A case of a patient illustrating the above is presented, who showed marked attenuation of the ECG voltage. Automated values of the amplitude of the ECG QRS complexes, P-waves, and T-waves (in mm), duration of the QRS complexes, P-waves, and QT intervals (in ms), in 2 ECGs were compared. The patient was a 64-year-old woman who developed in the setting of a fatal illness, pleural and pericardial effusions, pneumomediastinum, pneumoperitoneum, subcutaneous emphysema in the neck and chest, peripheral edema with weight gain of 43.4 lbs, marked hypoalbuminemia, abnormal liver tests, and renal failure. All the above pathologies led to a marked attenuation of the ECG voltage, and shortening of the mean P-wave, QRS complexes, and QTc interval durations. The postulated mechanism of the observed ECG phenomena is discussed.

  7. Noise and baseline wandering suppression of ECG signals by morphological filter.

    PubMed

    Taouli, S A; Bereksi-Reguig, F

    2010-02-01

    Electrocardiogram (ECG) signals describe the electrical activity of the heart, and are universally by physicists in the diagnosis of cardiac pathologies. However, during the acquisition of ECGs they are often contaminated with different sources of noise, making interpretation difficult. Different techniques have been used to filter the ECG signal, in order to optimize the signal to noise ratio (S/N). In this paper, an approach based on morphological filtering is developed in order to filter the ECG. Morphological filtering is concerned with the detection of the ECG morphology, therefore allowing the suppression of noises and particularly baseline wandering. The implemented filter is evaluated using signals taken from the MIT-BIH ECG universal database. The results show that the performance of this filter is good compared with other filtering techniques.

  8. Five-Year Experience with Screening Electrocardiograms in National Collegiate Athletic Association Division I Athletes

    PubMed Central

    Fuller, Colin; Scott, Carol; Hug-English, Cheryl; Yang, Wei

    2016-01-01

    Objective: (1) Compare rates of abnormal screening electrocardiograms (ECGs) using updated criteria compared with older criteria. (2) Compare rates of abnormal ECGs by ethnicity. (3) Evaluate ability of ECG criteria to detect the predicted number of athletes with previously undetected cardiovascular abnormalities. Design: Prospective and retrospective review of ECGs. During the prospective portion of the study, the 2005 European Society of Cardiology criteria were used from 2008 to July 2011 and the 2011 Stanford criteria were used from August 2011 to 2013. Retrospectively, all ECGs were reevaluated using the 2011 Stanford criteria, 2013 Seattle criteria, and 2014 Sharma Refined criteria. Setting: Division I National Collegiate Athletic Association University. Participants: 874 incoming athletes over a 5-year period. Interventions: ECG screening program. Main Outcome Measures: Number of abnormal ECGs and number of athletes with newly discovered cardiac abnormalities. Results: Abnormal ECG rates were the 2005 European criteria 10.7%, 2011 Stanford criteria 6.6%, 2013 Seattle criteria 2.8%, and 2014 Sharma Refined criteria 2.8%. In black athletes, the Stanford criteria resulted in more abnormal ECGs compared with Seattle or Sharma Refined. Three athletes were found to have a previously undetected cardiac abnormality (2 with hypertrophic cardiomyopathy and 1 with preexcitation). Conclusions: More recent ECG screening criteria substantially reduce the abnormal ECG rate and thus the number of athletes requiring additional testing. ECG screening criteria identified the predicted number (1/300) of young athletes with serious underlying cardiovascular disease. These criteria prompt not only additional cardiovascular testing but also a more thorough cardiovascular history. PMID:26886802

  9. Some regularity on how to locate electrodes for higher fECG SNRs

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-Min; Huang, Xiao-Lin; Guan, Qun; Liu, Tie-Bing; Li, Ping; Zhao, Ying; Liu, Hong-Xing

    2015-03-01

    The electrocardiogram (ECG) recorded from the abdominal surface of a pregnant woman is a composite of maternal ECG, fetal ECG (fECG) and other noises, while only the fECG component is always needed by us. With different locations of electrode pairs on the maternal abdominal surface to measure fECGs, the signal-to-noise ratios (SNRs) of the recorded abdominal ECGs are also correspondingly different. Some regularity on how to locate electrodes to obtain higher fECG SNRs is needed practically. In this paper, 343 groups of abdominal ECG records were acquired from 78 pregnant women with different electrode pairs locating, and an appropriate extended research database is formed. Then the regularity on fECG SNRs corresponding to different electrode pairs locating was studied. Based on statistical analysis, it is shown that the fECG SNRs are significantly higher in certain locations than others. Reasonable explanation is also provided to the statistical result using the theories of the fetal cardiac electrical axis and the signal phase delay. Project supported by the National Natural Science Foundation of China (Grant No. 61271079) and the Supporting Plan Project of Jiangsu Province, China (Grant No. BE2010720).

  10. The Evidence Against Cardiac Screening Using Electrocardiogram in Athletes.

    PubMed

    Asplund, Chad A; O'Connor, Francis G

    2016-01-01

    Sudden cardiac death (SCD) in young athletes is publicly remarkable and tragic because of the loss of a seemingly healthy young person. Because many of the potential etiologies may be identified with a preparticipation electrocardiogram (ECG), the possible use of an ECG as a screening tool has received much attention. A good screening test should be cost-effective and should influence a disease or health outcome that has a significant impact on public health. The reality is that the prevalence of SCD is low and no outcome-based data exist to determine whether early detection saves lives. Further, there is insufficient screening infrastructure, and the risk of screening and follow-up may be higher than that of the actual disease. Until outcomes data demonstrate a benefit with regard to SCD, universal screening cannot be recommended.

  11. [Development of a portable dynamic state ECG based on DSP].

    PubMed

    Song, Li; Meng, Qing-jian; Zhang, Guang-yu; Cao, Wei-fang

    2009-11-01

    The Portable dynamic state electrocardiogram collecting system is introduced by using TMS302VC5402, TLC320AD50C, liquid crystal display model, and so on. This dissertation describes the work principle of the system and uses the united algorithm based on wavelet to identify and locate the ECG characteristic waves. This system has as follows of advantages: big memory, low noise,high common mode rejection ratio, the low power consume,the long record time etc.

  12. New micro waveforms firstly recorded on electrocardiogram in human.

    PubMed

    Liu, Renguang; Chang, Qinghua; Chen, Juan

    2015-10-01

    In our study, not only the P-QRS-T waves but also the micro-wavelets before QRS complex (in P wave and PR segment) and after QRS complex (ST segment and upstroke of T wave) were first to be identified on surface electrocardiogram in human by the "new electrocardiogram" machine (model PHS-A10) according to conventional 12-lead electrocardiogram connection methods. By comparison to the conventional electrocardiogram in 100 cases of healthy individuals and several patients with arrhythmias, we have found that the wavelets before P wave theoretically reflected electrical activity of sinus node and the micro-wavelets before QRS complex may be related to atrioventricular conduction system (atrioventricular node, His bundle and bundle branch) potentials. Noninvasive atrioventricular node and His bundle potential tracing will contribute to differentiation of the origin of wide QRS and the location of the atrioventricular block. We also have found that the wavelets after QRS complex may be associated with phase 2 and 3 repolarization of ventricular action potential, which will further reveal ventricular repolarization changes.

  13. Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.

    PubMed

    Gupta, Rajarshi

    2016-05-01

    Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.

  14. Electrocardiogram analysis of the normal unanesthetized green peafowl (Pavo muticus).

    PubMed

    Hassanpour, H; Hojjati, P; Zarei, H

    2011-01-01

    The aim of this study was to describe normal electrocardiogram (ECG) patterns and values in unanesthetized green peafowl (Pavo muticus). The standard bipolar and augmented unipolar limb leads ECGs were recorded in the birds. The waveforms were analyzed in all leads at 50 mm/sec and at 10 mm = 1 mV to determine P, PR (segment and interval), QRS, ST, QT durations, P, net QRS complex and T amplitudes. The polarity of each waveform was tabulated in all leads. The mean electrical axis (MEA) for the frontal plane was calculated using leads II and III. The mean heart rates were calculated from lead II that was 257.5 ± 5.33 beats/min. The P wave was dominantly positive in all leads. The dominant pattern of waveforms of the QRS complexes were QS in leads II, III, and aVF. In leads I, aVR and aVL, the R pattern was dominant. The T wave was almost positive in leads I, II, and aVF. The average value of the heart MEA was -96.75 ± 3.31°. Description of normal ECG parameters will facilitate a better realizing of ECG changes of unhealthy green peafowls.

  15. Cardiovascular Screening in Young Athletes: Evidence for the Electrocardiogram.

    PubMed

    Asif, Irfan M; Drezner, Jonathan A

    2016-01-01

    : The objective of this study is to review the evidence for cardiovascular screening inclusive of an electrocardiogram (ECG) in young athletes. Sudden cardiac death (SCD) in athletes is the leading cause of death during exercise and occurs at a rate that is substantially higher than initially recognized. There is widespread agreement that cardiovascular screening should be performed prior to athletic competition. The primary purpose of preparticipation cardiovascular screening is to identify athletes with conditions that predispose them to SCD. Unfortunately, the traditional model in the United States of a medical history and a physical examination has limited sensitivity to detect cardiovascular disease and provides false reassurance to athletes, parents, and team officials. The addition of an ECG enhances the ability to identify disease, and modern athlete-specific ECG interpretation standards used by experienced physicians provide low false-positive rates, improving the cost-effectiveness while preserving sensitivity. The evidence is clear that if athletes are screened, ECG-inclusive strategies are most likely to meet the primary aim of preparticipation cardiovascular screening. These advanced protocols have the potential to improve health and safety during sport events and should be considered the best practice in high-risk athletes when the sports cardiology infrastructure and oversight are readily available.

  16. Electrocardiogram signal denoising based on empirical mode decomposition technique: an overview

    NASA Astrophysics Data System (ADS)

    Han, G.; Lin, B.; Xu, Z.

    2017-03-01

    Electrocardiogram (ECG) signal is nonlinear and non-stationary weak signal which reflects whether the heart is functioning normally or abnormally. ECG signal is susceptible to various kinds of noises such as high/low frequency noises, powerline interference and baseline wander. Hence, the removal of noises from ECG signal becomes a vital link in the ECG signal processing and plays a significant role in the detection and diagnosis of heart diseases. The review will describe the recent developments of ECG signal denoising based on Empirical Mode Decomposition (EMD) technique including high frequency noise removal, powerline interference separation, baseline wander correction, the combining of EMD and Other Methods, EEMD technique. EMD technique is a quite potential and prospective but not perfect method in the application of processing nonlinear and non-stationary signal like ECG signal. The EMD combined with other algorithms is a good solution to improve the performance of noise cancellation. The pros and cons of EMD technique in ECG signal denoising are discussed in detail. Finally, the future work and challenges in ECG signal denoising based on EMD technique are clarified.

  17. A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram.

    PubMed

    Wu, Chung Kit; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei

    2016-05-09

    Globally, 1.2 million people die and 50 million people are injured annually due to traffic accidents. These traffic accidents cost $500 billion dollars. Drunk drivers are found in 40% of the traffic crashes. Existing drunk driving detection (DDD) systems do not provide accurate detection and pre-warning concurrently. Electrocardiogram (ECG) is a proven biosignal that accurately and simultaneously reflects human's biological status. In this letter, a classifier for DDD based on ECG is investigated in an attempt to reduce traffic accidents caused by drunk drivers. At this point, it appears that there is no known research or literature found on ECG classifier for DDD. To identify drunk syndromes, the ECG signals from drunk drivers are studied and analyzed. As such, a precise ECG-based DDD (ECG-DDD) using a weighted kernel is developed. From the measurements, 10 key features of ECG signals were identified. To incorporate the important features, the feature vectors are weighted in the customization of kernel functions. Four commonly adopted kernel functions are studied. Results reveal that weighted feature vectors improve the accuracy by 11% compared to the computation using the prime kernel. Evaluation shows that ECG-DDD improved the accuracy by 8% to 18% compared to prevailing methods.

  18. Development and significance of a fetal electrocardiogram recorded by signal-averaged high-amplification electrocardiography.

    PubMed

    Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru

    2009-03-01

    Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.

  19. A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram

    PubMed Central

    Wu, Chung Kit; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei

    2016-01-01

    Globally, 1.2 million people die and 50 million people are injured annually due to traffic accidents. These traffic accidents cost $500 billion dollars. Drunk drivers are found in 40% of the traffic crashes. Existing drunk driving detection (DDD) systems do not provide accurate detection and pre-warning concurrently. Electrocardiogram (ECG) is a proven biosignal that accurately and simultaneously reflects human’s biological status. In this letter, a classifier for DDD based on ECG is investigated in an attempt to reduce traffic accidents caused by drunk drivers. At this point, it appears that there is no known research or literature found on ECG classifier for DDD. To identify drunk syndromes, the ECG signals from drunk drivers are studied and analyzed. As such, a precise ECG-based DDD (ECG-DDD) using a weighted kernel is developed. From the measurements, 10 key features of ECG signals were identified. To incorporate the important features, the feature vectors are weighted in the customization of kernel functions. Four commonly adopted kernel functions are studied. Results reveal that weighted feature vectors improve the accuracy by 11% compared to the computation using the prime kernel. Evaluation shows that ECG-DDD improved the accuracy by 8% to 18% compared to prevailing methods. PMID:27171090

  20. Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features

    PubMed Central

    Abbaspour, Hamidreza; Razavi, Seyyed Mohammad; Mehrshad, Nasser

    2015-01-01

    Over the years, the feasibility of using Electrocardiogram (ECG) signal for human identification issue has been investigated, and some methods have been suggested. In this research, a new effective intelligent feature selection method from ECG signals has been proposed. This method is developed in such a way that it is able to select important features that are necessary for identification using analysis of the ECG signals. For this purpose, after ECG signal preprocessing, its characterizing features were extracted and then compressed using the cosine transform. The more effective features in the identification, among the characterizing features, are selected using a combination of the genetic algorithm and artificial neural networks. The proposed method was tested on three public ECG databases, namely, MIT-BIH Arrhythmias Database, MITBIH Normal Sinus Rhythm Database and The European ST-T Database, in order to evaluate the proposed subject identification method on normal ECG signals as well as ECG signals with arrhythmias. Identification rates of 99.89% and 99.84% and 99.99% are obtained for these databases respectively. The proposed algorithm exhibits remarkable identification accuracies not only with normal ECG signals, but also in the presence of various arrhythmias. Simulation results showed that the proposed method despite the low number of selected features has a high performance in identification task. PMID:25709939

  1. Sequential Markov chain Monte Carlo filter with simultaneous model selection for electrocardiogram signal modeling.

    PubMed

    Edla, Shwetha; Kovvali, Narayan; Papandreou-Suppappola, Antonia

    2012-01-01

    Constructing statistical models of electrocardiogram (ECG) signals, whose parameters can be used for automated disease classification, is of great importance in precluding manual annotation and providing prompt diagnosis of cardiac diseases. ECG signals consist of several segments with different morphologies (namely the P wave, QRS complex and the T wave) in a single heart beat, which can vary across individuals and diseases. Also, existing statistical ECG models exhibit a reliance upon obtaining a priori information from the ECG data by using preprocessing algorithms to initialize the filter parameters, or to define the user-specified model parameters. In this paper, we propose an ECG modeling technique using the sequential Markov chain Monte Carlo (SMCMC) filter that can perform simultaneous model selection, by adaptively choosing from different representations depending upon the nature of the data. Our results demonstrate the ability of the algorithm to track various types of ECG morphologies, including intermittently occurring ECG beats. In addition, we use the estimated model parameters as the feature set to classify between ECG signals with normal sinus rhythm and four different types of arrhythmia.

  2. Wavelet-based low-delay ECG compression algorithm for continuous ECG transmission.

    PubMed

    Kim, Byung S; Yoo, Sun K; Lee, Moon H

    2006-01-01

    The delay performance of compression algorithms is particularly important when time-critical data transmission is required. In this paper, we propose a wavelet-based electrocardiogram (ECG) compression algorithm with a low delay property for instantaneous, continuous ECG transmission suitable for telecardiology applications over a wireless network. The proposed algorithm reduces the frame size as much as possible to achieve a low delay, while maintaining reconstructed signal quality. To attain both low delay and high quality, it employs waveform partitioning, adaptive frame size adjustment, wavelet compression, flexible bit allocation, and header compression. The performances of the proposed algorithm in terms of reconstructed signal quality, processing delay, and error resilience were evaluated using the Massachusetts Institute of Technology University and Beth Israel Hospital (MIT-BIH) and Creighton University Ventricular Tachyarrhythmia (CU) databases and a code division multiple access-based simulation model with mobile channel noise.

  3. Steganography in arrhythmic electrocardiogram signal.

    PubMed

    Edward Jero, S; Ramu, Palaniappan; Ramakrishnan, S

    2015-08-01

    Security and privacy of patient data is a vital requirement during exchange/storage of medical information over communication network. Steganography method hides patient data into a cover signal to prevent unauthenticated accesses during data transfer. This study evaluates the performance of ECG steganography to ensure secured transmission of patient data where an abnormal ECG signal is used as cover signal. The novelty of this work is to hide patient data into two dimensional matrix of an abnormal ECG signal using Discrete Wavelet Transform and Singular Value Decomposition based steganography method. A 2D ECG is constructed according to Tompkins QRS detection algorithm. The missed R peaks are computed using RR interval during 2D conversion. The abnormal ECG signals are obtained from the MIT-BIH arrhythmia database. Metrics such as Peak Signal to Noise Ratio, Percentage Residual Difference, Kullback-Leibler distance and Bit Error Rate are used to evaluate the performance of the proposed approach.

  4. Pruning-Based Sparse Recovery for Electrocardiogram Reconstruction from Compressed Measurements

    PubMed Central

    Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2017-01-01

    Due to the necessity of the low-power implementation of newly-developed electrocardiogram (ECG) sensors, exact ECG data reconstruction from the compressed measurements has received much attention in recent years. Our interest lies in improving the compression ratio (CR), as well as the ECG reconstruction performance of the sparse signal recovery. To this end, we propose a sparse signal reconstruction method by pruning-based tree search, which attempts to choose the globally-optimal solution by minimizing the cost function. In order to achieve low complexity for the real-time implementation, we employ a novel pruning strategy to avoid exhaustive tree search. Through the restricted isometry property (RIP)-based analysis, we show that the exact recovery condition of our approach is more relaxed than any of the existing methods. Through the simulations, we demonstrate that the proposed approach outperforms the existing sparse recovery methods for ECG reconstruction. PMID:28067856

  5. Developing a real time electrocardiogram system using virtual bio-instrumentation.

    PubMed

    Elmansouri, Khalifa; Latif, Rachid; Nassiri, Boujamaa; Maoulainine, Fadel Mrabih Rabou

    2014-04-01

    Today bio-manufacturers propose various electrocardiogram (ECG) instruments that have addressed a wide variety of clinical issues. However, the discovery of new applications in ECG devices that provide doctors with the right information at the right time and in the right way will help them to provide a highest quality care possible. In this paper, we focus on the development of an accurate and robust virtual bio-instrument. The important goals of the described project is to provide online new diagnostic informations, an accurate analysis algorithm applied to the acquired signals, data capture from commercial monitors, fast real time ECG acquisition, real time data display and recording of real ECG signals which results in the improvement of data availability. The virtual bio-instrument is validated and tested on the level of robustness, diagnostic accuracy, diagnostic impact and Human - System Interface (HSI) functioning with collaboration of the cardiologists.

  6. High dose droperidol and QT prolongation: analysis of continuous 12-lead recordings

    PubMed Central

    Calver, Leonie; Isbister, Geoffrey K

    2014-01-01

    Aims To investigate the QT interval after high dose droperidol using continuous 12-lead Holter recordings. Methods This was a prospective study of patients given droperidol with a continuous Holter recording. Patients were recruited from the DORM II study which included patients with aggression presenting to the emergency department. Patients initially received 10 mg droperidol as part of a standardized sedation protocol. An additional 10 mg dose was given after 15 min if required and further doses at the clinical toxicologist's discretion. Continuous 12-lead Holter recordings were obtained for 2–24 h utilizing high resolution digital recordings with automated QT interval measurement. Electrocardiograms were extracted hourly from Holter recordings. The QT interval was plotted against heart rate (HR) on the QT nomogram to determine if it was abnormal. QTcF (Fridericia's HR correction) was calculated and >500 ms was defined as abnormal. Results Forty-six patients had Holter recordings after 10–40 mg droperidol and 316 QT–HR pairs were included. There were 32 abnormal QT measurements in four patients, three given 10 mg and one 20 mg. In three of the four patients QTcF >500 ms but only in one taking methadone was the timing of QTcF >500 ms consistent with droperidol dosing. Of the three other patients, one took amphetamines, one still had QT prolongation 24 h after droperidol and one took a lamotrigine overdose. No patient given >30 mg had a prolonged QT. There were no arrhythmias. Conclusion QT prolongation was observed with high dose droperidol. However, there was little evidence supporting droperidol being the cause and QT prolongation was more likely due to pre-existing conditions or other drugs. PMID:24168079

  7. Variability in surface ECG morphology: signal or noise?

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.

    1988-01-01

    Using data collected from canine models of acute myocardial ischemia, we investigated two issues of major relevance to electrocardiographic signal averaging: ECG epoch alignment, and the spectral characteristics of the beat-to-beat variability in ECG morphology. With initial digitization rates of 1 kHz, an iterative a posteriori matched filtering alignment scheme, and linear interpolation, we demonstrated that there is sufficient information in the body surface ECG to merit alignment to a precision of 0.1 msecs. Applying this technique to align QRS complexes and atrial pacing artifacts independently, we demonstrated that the conduction delay from atrial stimulus to ventricular activation may be so variable as to preclude using atrial pacing as an alignment mechanism, and that this variability in conduction time be modulated at the frequency of respiration and at a much lower frequency (0.02-0.03Hz). Using a multidimensional spectral technique, we investigated the beat-to-beat variability in ECG morphology, demonstrating that the frequency spectrum of ECG morphological variation reveals a readily discernable modulation at the frequency of respiration. In addition, this technique detects a subtle beat-to-beat alternation in surface ECG morphology which accompanies transient coronary artery occlusion. We conclude that physiologically important information may be stored in the variability in the surface electrocardiogram, and that this information is lost by conventional averaging techniques.

  8. Live ECG readings using Google Glass in emergency situations.

    PubMed

    Schaer, Roger; Salamin, Fanny; Jimenez Del Toro, Oscar Alfonso; Atzori, Manfredo; Muller, Henning; Widmer, Antoine

    2015-01-01

    Most sudden cardiac problems require rapid treatment to preserve life. In this regard, electrocardiograms (ECG) shown on vital parameter monitoring systems help medical staff to detect problems. In some situations, such monitoring systems may display information in a less than convenient way for medical staff. For example, vital parameters are displayed on large screens outside the field of view of a surgeon during cardiac surgery. This may lead to losing time and to mistakes when problems occur during cardiac operations. In this paper we present a novel approach to display vital parameters such as the second derivative of the ECG rhythm and heart rate close to the field of view of a surgeon using Google Glass. As a preliminary assessment, we run an experimental study to verify the possibility for medical staff to identify abnormal ECG rhythms from Google Glass. This study compares 6 ECG rhythms readings from a 13.3 inch laptop screen and from the prism of Google Glass. Seven medical residents in internal medicine participated in the study. The preliminary results show that there is no difference between identifying these 6 ECG rhythms from the laptop screen versus Google Glass. Both allow close to perfect identification of the 6 common ECG rhythms. This shows the potential of connected glasses such as Google Glass to be useful in selected medical applications.

  9. A new mobile phone-based ECG monitoring system.

    PubMed

    Iwamoto, Junichi; Yonezawa, Yoshiharu; Ogawa, Hiromichi Maki Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Allen W; Caldwell, W Morton

    2007-01-01

    We have developed a system for monitoring a patient's electrocardiogram (ECG) and movement during daily activities. The complete system is mounted on chest electrodes and continuously samples the ECG and three axis accelerations. When the patient feels a heart discomfort, he or she pushes the data transmission switch on the recording system and the system sends the recorded ECG waveforms and three axis accelerations of the two prior minutes, and for two minutes after the switch is pressed. The data goes directly to a hospital server computer via a 2.4 GHz low power mobile phone. These data are stored on a server computer and downloaded to the physician's Java mobile phone. The physician can display the data on the phone's liquid crystal display.

  10. Chaos control applied to cardiac rhythms represented by ECG signals

    NASA Astrophysics Data System (ADS)

    Borem Ferreira, Bianca; Amorim Savi, Marcelo; Souza de Paula, Aline

    2014-10-01

    The control of irregular or chaotic heartbeats is a key issue in cardiology. In this regard, chaos control techniques represent a good alternative since they suggest treatments different from those traditionally used. This paper deals with the application of the extended time-delayed feedback control method to stabilize pathological chaotic heart rhythms. Electrocardiogram (ECG) signals are employed to represent the cardiovascular behavior. A mathematical model is employed to generate ECG signals using three modified Van der Pol oscillators connected with time delay couplings. This model provides results that qualitatively capture the general behavior of the heart. Controlled ECG signals show the ability of the strategy either to control or to suppress the chaotic heart dynamics generating less-critical behaviors.

  11. ECG Holter monitor with alert system and mobile application

    NASA Astrophysics Data System (ADS)

    Teron, Abigail C.; Rivera, Pedro A.; Goenaga, Miguel A.

    2016-05-01

    This paper proposes a new approach on the Holter monitor by creating a portable Electrocardiogram (ECG) Holter monitor that will alert the user by detecting abnormal heart beats using a digital signal processing software. The alarm will be triggered when the patient experiences arrhythmias such as bradycardia and tachycardia. The equipment is simple, comfortable and small in size that fit in the hand. It can be used at any time and any moment by placing three leads to the person's chest which is connected to an electronic circuit. The ECG data will be transmitted via Bluetooth to the memory of a selected mobile phone using an application that will store the collected data for up to 24 hrs. The arrhythmia is identified by comparing the reference signals with the user's signal. The diagnostic results demonstrate that the ECG Holter monitor alerts the user when an arrhythmia is detected thru the Holter monitor and mobile application.

  12. Convolutional Neural Networks for patient-specific ECG classification.

    PubMed

    Kiranyaz, Serkan; Ince, Turker; Hamila, Ridha; Gabbouj, Moncef

    2015-01-01

    We propose a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system using an adaptive implementation of 1D Convolutional Neural Networks (CNNs) that can fuse feature extraction and classification into a unified learner. In this way, a dedicated CNN will be trained for each patient by using relatively small common and patient-specific training data and thus it can also be used to classify long ECG records such as Holter registers in a fast and accurate manner. Alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. The experimental results demonstrate that the proposed system achieves a superior classification performance for the detection of ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB).

  13. Non-contact ECG sensing employing gradiometer electrodes.

    PubMed

    Peng, GuoChen; Bocko, Mark F

    2013-01-01

    Noncontact, capacitive electrocardiogram (ECG) measurements are complicated by motion artifacts from the relative movement between the ECG electrodes and the subject. To compensate for such motion we propose to employ first and second order gradiometer electrode designs. A MATLAB-based simulation tool to enable assessment of different electrode configurations and placements on human subjects has been developed to guide the refinement of electrode designs. Experimental measurements of the sensitivity, motion artifact cancellation, and common mode rejection for various prototype designs were conducted with human subjects. Second order gradiometer electrode designs appear to give the best performance as measured by signal to noise plus distortion ratio. Finally, both gradiometer designs were compared with standard ECG recording methods and showed less than 1% beat detection mismatch employing an open source beat detection algorithm.

  14. ECG Interpretation Using the CRISP Method: A Guide for Nurses.

    PubMed

    Atwood, Denise; Wadlund, Diana L

    2015-10-01

    Nurses often struggle with identifying electrocardiogram (ECG) rhythms, but rapidly interpreting these rhythms is an essential skill that every nurse should master, especially in the perioperative setting. The CRISP (Cardiac Rhythm Identification for Simple People) method is an algorithm designed to help nurses rapidly interpret ECGs. Key aspects of assisting patients with suspected cardiac issues include the nursing assessment, correct three-lead ECG placement, and calculation of the heart rate. Then the perioperative nurse can use the steps of the CRISP method to identify nursing actions related to specific arrhythmias, including determining whether QRS complexes are present, P waves are present, and QRS complexes are wide or narrow or whether there are more P waves than QRS complexes.

  15. Extended Kalman smoother with differential evolution technique for denoising of ECG signal.

    PubMed

    Panigrahy, D; Sahu, P K

    2016-09-01

    Electrocardiogram (ECG) signal gives a lot of information on the physiology of heart. In reality, noise from various sources interfere with the ECG signal. To get the correct information on physiology of the heart, noise cancellation of the ECG signal is required. In this paper, the effectiveness of extended Kalman smoother (EKS) with the differential evolution (DE) technique for noise cancellation of the ECG signal is investigated. DE is used as an automatic parameter selection method for the selection of ten optimized components of the ECG signal, and those are used to create the ECG signal according to the real ECG signal. These parameters are used by the EKS for the development of the state equation and also for initialization of the parameters of EKS. EKS framework is used for denoising the ECG signal from the single channel. The effectiveness of proposed noise cancellation technique has been evaluated by adding white, colored Gaussian noise and real muscle artifact noise at different SNR to some visually clean ECG signals from the MIT-BIH arrhythmia database. The proposed noise cancellation technique of ECG signal shows better signal to noise ratio (SNR) improvement, lesser mean square error (MSE) and percent of distortion (PRD) compared to other well-known methods.

  16. Capacitive ECG system with direct access to standard leads and body surface potential mapping.

    PubMed

    Oehler, Martin; Schilling, Meinhard; Esperer, Hans Dieter

    2009-12-01

    Capacitive electrodes provide the same access to the human electrocardiogram (ECG) as galvanic electrodes, but without the need of direct electrical skin contact and even through layers of clothing. Thus, potential artifacts as a result of poor electrode contact to the skin are avoided and preparation time is significantly reduced. Our system integrates such capacitive electrodes in a 15 sensor array, which is combined with a Tablet PC. This integrated lightweight ECG system (cECG) is easy to place on the chest wall and allows for simultaneous recordings of 14 ECG channels, even if the patient is slightly dressed, e.g., with a t-shirt. In this paper, we present preliminary results on the performance of the cECG regarding the capability of recording body surface potential maps (BSPMs) and obtaining reconstructed standard ECG leads including Einthoven, Goldberger and, with some limitations, Wilson leads. All signals were measured having the subject lie in a supine position and wear a cotton shirt. Signal quality and diagnostic ECG information of the extracted leads are compared with standard ECG measurements. The results show a very close correlation between both types of ECG measurements. It is concluded that the cECG lends itself to rapid screening in clinically unstable patients.

  17. Unusual QRS morphology on ECG: a rare condition and an interesting response to pacing.

    PubMed

    Gula, Lorne J; Eckart, Robert E; Klein, George J; Peralta, Adelqui

    2005-08-01

    We present the interesting case of a young man with borderline wide QRS complexes noted on electrocardiogram (ECG). The diagnosis of an unusual form of preexcitation was reached using observations from intracardiac tracings at electrophysiology study. Atrial pacing consistently resulted in further widening of the first conducted QRS complex, and the physiology underlying this unusual finding is explored.

  18. A Bayesian-optimized spline representation of the electrocardiogram.

    PubMed

    Guilak, F G; McNames, J

    2013-11-01

    We introduce an implementation of a novel spline framework for parametrically representing electrocardiogram (ECG) waveforms. This implementation enables a flexible means to study ECG structure in large databases. Our algorithm allows researchers to identify key points in the waveform and optimally locate them in long-term recordings with minimal manual effort, thereby permitting analysis of trends in the points themselves or in metrics derived from their locations. In the work described here we estimate the location of a number of commonly-used characteristic points of the ECG signal, defined as the onsets, peaks, and offsets of the P, QRS, T, and R' waves. The algorithm applies Bayesian optimization to a linear spline representation of the ECG waveform. The location of the knots-which are the endpoints of the piecewise linear segments used in the spline representation of the signal-serve as the estimate of the waveform's characteristic points. We obtained prior information of knot times, amplitudes, and curvature from a large manually-annotated training dataset and used the priors to optimize a Bayesian figure of merit based on estimated knot locations. In cases where morphologies vary or are subject to noise, the algorithm relies more heavily on the estimated priors for its estimate of knot locations. We compared optimized knot locations from our algorithm to two sets of manual annotations on a prospective test data set comprising 200 beats from 20 subjects not in the training set. Mean errors of characteristic point locations were less than four milliseconds, and standard deviations of errors compared favorably against reference values. This framework can easily be adapted to include additional points of interest in the ECG signal or for other biomedical detection problems on quasi-periodic signals.

  19. Performance of human body communication-based wearable ECG with capacitive coupling electrodes.

    PubMed

    Sakuma, Jun; Anzai, Daisuke; Wang, Jianqing

    2016-09-01

    Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors' proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals.

  20. Use of concept maps to promote electrocardiogram diagnosis learning in undergraduate medical students.

    PubMed

    Dong, Ruimin; Yang, Xiaoyan; Xing, Bangrong; Zou, Zihao; Zheng, Zhenda; Xie, Xujing; Zhu, Jieming; Chen, Lin; Zhou, Hanjian

    2015-01-01

    Concept mapping is an effective method in teaching and learning, however this strategy has not been evaluated among electrocardiogram (ECG) diagnosis learning. This study explored the use of concept maps to assist ECG study, and sought to analyze whether this method could improve undergraduate students' ECG interpretation skills. There were 126 undergraduate medical students who were randomly selected and assigned to two groups, group A (n = 63) and group B (n = 63). Group A was taught to use concept maps to learn ECG diagnosis, while group B was taught by traditional methods. After the course, all of the students were assessed by having an ECG diagnostic test. Quantitative data which comprised test score and ECG features completion index was compared by using the unpaired Student's t-test between the two groups. Further, a feedback questionnaire on concept maps used was also completed by group A, comments were evaluated by a five-point Likert scale. The test scores of ECGs interpretation was 7.36 ± 1.23 in Group A and 6.12 ± 1.39 in Group B. A significant advantage (P = 0.018) of concept maps was observed in ECG interpretation accuracy. No difference in the average ECG features completion index was observed between Group A (66.75 ± 15.35%) and Group B (62.93 ± 13.17%). According qualitative analysis, majority of students accepted concept maps as a helpful tool. Difficult to learn at the beginning and time consuming are the two problems in using this method, nevertheless most of the students indicated to continue using it. Concept maps could be a useful pedagogical tool in enhancing undergraduate medical students' ECG interpretation skills. Furthermore, students indicated a positive attitude to it, and perceived it as a resource for learning.

  1. Use of concept maps to promote electrocardiogram diagnosis learning in undergraduate medical students

    PubMed Central

    Dong, Ruimin; Yang, Xiaoyan; Xing, Bangrong; Zou, Zihao; Zheng, Zhenda; Xie, Xujing; Zhu, Jieming; Chen, Lin; Zhou, Hanjian

    2015-01-01

    Concept mapping is an effective method in teaching and learning, however this strategy has not been evaluated among electrocardiogram (ECG) diagnosis learning. This study explored the use of concept maps to assist ECG study, and sought to analyze whether this method could improve undergraduate students’ ECG interpretation skills. There were 126 undergraduate medical students who were randomly selected and assigned to two groups, group A (n = 63) and group B (n = 63). Group A was taught to use concept maps to learn ECG diagnosis, while group B was taught by traditional methods. After the course, all of the students were assessed by having an ECG diagnostic test. Quantitative data which comprised test score and ECG features completion index was compared by using the unpaired Student’s t-test between the two groups. Further, a feedback questionnaire on concept maps used was also completed by group A, comments were evaluated by a five-point Likert scale. The test scores of ECGs interpretation was 7.36 ± 1.23 in Group A and 6.12 ± 1.39 in Group B. A significant advantage (P = 0.018) of concept maps was observed in ECG interpretation accuracy. No difference in the average ECG features completion index was observed between Group A (66.75 ± 15.35%) and Group B (62.93 ± 13.17%). According qualitative analysis, majority of students accepted concept maps as a helpful tool. Difficult to learn at the beginning and time consuming are the two problems in using this method, nevertheless most of the students indicated to continue using it. Concept maps could be a useful pedagogical tool in enhancing undergraduate medical students’ ECG interpretation skills. Furthermore, students indicated a positive attitude to it, and perceived it as a resource for learning. PMID:26221331

  2. Physician Accuracy in Interpreting Potential ST‐Segment Elevation Myocardial Infarction Electrocardiograms

    PubMed Central

    McCabe, James M.; Armstrong, Ehrin J.; Ku, Ivy; Kulkarni, Ameya; Hoffmayer, Kurt S.; Bhave, Prashant D.; Waldo, Stephen W.; Hsue, Priscilla; Stein, John C.; Marcus, Gregory M.; Kinlay, Scott; Ganz, Peter

    2013-01-01

    Background With adoption of telemedicine, physicians are increasingly asked to diagnose ST‐segment elevation myocardial infarctions (STEMIs) based on electrocardiograms (ECGs) with minimal associated clinical information. We sought to determine physicians' diagnostic agreement and accuracy when interpreting potential STEMI ECGs. Methods and Results A cross‐sectional survey was performed consisting of 36 deidentified ECGs that had previously resulted in putative STEMI diagnoses. Emergency physicians, cardiologists, and interventional cardiologists participated in the survey. For each ECG, physicians were asked, “based on the ECG above, is there a blocked coronary artery present causing a STEMI?” The reference standard for ascertaining the STEMI diagnosis was subsequent emergent coronary arteriography. Responses were analyzed with generalized estimating equations to account for nested and repeated measures. One hundred twenty‐four physicians interpreted a total of 4392 ECGs. Among all physicians, interreader agreement (kappa) for ECG interpretation was 0.33, reflecting poor agreement. The sensitivity to identify “true” STEMIs was 65% (95% CI: 63 to 67) and the specificity was 79% (95% CI: 77 to 81). There was a 6% increase in the odds of accurate ECG interpretation for every 5 years of experience since medical school graduation (OR 1.06, 95% CI: 1.02 to 1.10, P=0.01). After adjusting for experience, there was no significant difference in the odds of accurate interpretation by specialty—Emergency Medicine (reference), General Cardiology (AOR 0.97, 95% CI: 0.79 to 1.2, P=0.80), or Interventional Cardiology physicians (AOR 1.24, 95% CI: 0.93 to 1.7, P=0.15). Conclusions There is significant physician disagreement in interpreting ECGs with features concerning for STEMI. Such ECGs lack the necessary sensitivity and specificity to act as a suitable “stand‐alone” diagnostic test. PMID:24096575

  3. Hypoglycemia-Associated Electroencephalogram and Electrocardiogram Changes Appear Simultaneously

    PubMed Central

    Larsen, Anine; Højlund, Kurt; Kjær Poulsen, Mikael; Madsen, Rasmus Elsborg; Juhl, Claus B.

    2013-01-01

    Background Tight glycemic control in type 1 diabetes mellitus (T1DM) may be accomplished only if severe hypoglycemia can be prevented. Biosensor alarms based on the body’s reactions to hypoglycemia have been suggested. In the present study, we analyzed three lead electrocardiogram (ECG) and single-channel electroencephalogram (EEG) in T1DM patients during hypoglycemia. Methods Electrocardiogram and EEG recordings during insulin-induced hypoglycemia in nine patients were used to assess the presence of ECG changes by heart rate, and estimates of QT interval (QTc) and time from top of T wave to end of T wave corrected for heartbeat interval and EEG changes by extraction of the power of the signal in the delta, theta, and alpha bands. These six features were assessed continuously to determine the time between changes and severe hypoglycemia. Results QT interval changes and EEG theta power changes were detected in six and eight out of nine subjects, respectively. Rate of false positive calculations was one out of nine subjects for QTc and none for EEG theta power. Detection time medians (i.e., time from significant changes to termination of experiments) was 13 and 8 min for the EEG theta power and QTc feature, respectively, with no significant difference (p = .25). Conclusions Severe hypoglycemia is preceded by changes in both ECG and EEG features in most cases. Electroencephalogram theta power may be superior with respect to timing, sensitivity, and specificity of severe hypoglycemia detection. A multiparameter algorithm that combines data from different biosensors might be considered. PMID:23439164

  4. Mobile Messaging Services-Based Personal Electrocardiogram Monitoring System

    PubMed Central

    Tahat, Ashraf A.

    2009-01-01

    A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services. PMID:19707531

  5. ECG De-noising: A comparison between EEMD-BLMS and DWT-NN algorithms.

    PubMed

    Kærgaard, Kevin; Jensen, Søren Hjøllund; Puthusserypady, Sadasivan

    2015-08-01

    Electrocardiogram (ECG) is a widely used non-invasive method to study the rhythmic activity of the heart and thereby to detect the abnormalities. However, these signals are often obscured by artifacts from various sources and minimization of these artifacts are of paramount important. This paper proposes two adaptive techniques, namely the EEMD-BLMS (Ensemble Empirical Mode Decomposition in conjunction with the Block Least Mean Square algorithm) and DWT-NN (Discrete Wavelet Transform followed by Neural Network) methods in minimizing the artifacts from recorded ECG signals, and compares their performance. These methods were first compared on two types of simulated noise corrupted ECG signals: Type-I (desired ECG+noise frequencies outside the ECG frequency band) and Type-II (ECG+noise frequencies both inside and outside the ECG frequency band). Subsequently, they were tested on real ECG recordings. Results clearly show that both the methods works equally well when used on Type-I signals. However, on Type-II signals the DWT-NN performed better. In the case of real ECG data, though both methods performed similar, the DWT-NN method was a slightly better in terms of minimizing the high frequency artifacts.

  6. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    PubMed Central

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-01-01

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596

  7. Towards the clinical use of concentric electrodes in ECG recordings: influence of ring dimensions and electrode position

    NASA Astrophysics Data System (ADS)

    Prats-Boluda, G.; Ye-Lin, Y.; Bueno-Barrachina, JM; Rodriguez de Sanabria, R.; Garcia-Casado, J.

    2016-02-01

    To overcome the limited spatial resolution of standard 12-lead ECG recordings, concentric ring electrodes (CRE) have been proposed to provide valuable data for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. Although theoretical studies indicate that the dimensions of the CRE regulate the depth of the electric dipoles sensed by these electrodes, this has not been experimentally confirmed. The aim of this work was to analyze the influence of CRE dimensions and position of a wireless multi-CRE sensor node on the cardiac signal recorded. For this, four wireless multichannel ECG recording nodes based on flexible multi-ring electrodes were placed at positions CMV1 (position comparable to V1), CMV2, CMV4R and CMV5; each node providing three bipolar concentric ECG signals (BC-ECG). Standard 12-lead ECG and 12 BC-ECG signals were recorded in 29 volunteers. The results revealed that a ring with an outer diameter of 33.5 mm achieves a balance between the ease-of-use and spatial resolution of smaller electrodes and improved detectability and higher amplitudes of signals from larger ring electrodes. Although a standard 12-lead ECG outperforms BC-ECC recordings in detectability of cardiac waves, if the relative amplitude of the wave is also considered, BC-ECG at CMV1 proved superior at picking up atrial activity. In fact, in most of the BC-ECG signals picked up at CMV1, P1 and P2 atrial activity waves were more clearly identified than in simultaneous 12-Lead ECG signals. Likewise, BC-ECG signals revealed higher spatial resolution in detecting anomalous electrical activity in local regions, such as impaired intraventricular driving, or atrioventricular blocks. Finally, the wireless multi-CRE sensor node provides enhanced comfort and handling to both patient and clinician over wired systems.

  8. A mobile phone-based ECG monitoring system.

    PubMed

    Iwamoto, Junichi; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Allen W; Caldwell, W Morton

    2006-01-01

    We have developed a telemedicine system for monitoring a patient's electrocardiogram during daily activities. The recording system consists of three ECG chest electrodes, a variable gain instrumentation amplifier, a low power 8-bit single-chip microcomputer, a 256 KB EEPROM and a 2.4 GHz low transmitting power mobile phone (PHS). The complete system is mounted on a single, lightweight, chest electrode array. When a heart discomfort is felt, the patient pushes the data transmission switch on the recording system. The system sends the recorded ECG waveforms of the two prior minutes and ECG waveforms of the two minutes after the switch is pressed, directly in the hospital server computer via the PHS. The server computer sends the data to the physician on call. The data is displayed on the doctor's Java mobile phone LCD (Liquid Crystal Display), so he or she can monitor the ECG regardless of their location. The developed ECG monitoring system is not only applicable to at-home patients, but should also be useful for monitoring hospital patients.

  9. Fast multi-scale feature fusion for ECG heartbeat classification

    NASA Astrophysics Data System (ADS)

    Ai, Danni; Yang, Jian; Wang, Zeyu; Fan, Jingfan; Ai, Changbin; Wang, Yongtian

    2015-12-01

    Electrocardiogram (ECG) is conducted to monitor the electrical activity of the heart by presenting small amplitude and duration signals; as a result, hidden information present in ECG data is difficult to determine. However, this concealed information can be used to detect abnormalities. In our study, a fast feature-fusion method of ECG heartbeat classification based on multi-linear subspace learning is proposed. The method consists of four stages. First, baseline and high frequencies are removed to segment heartbeat. Second, as an extension of wavelets, wavelet-packet decomposition is conducted to extract features. With wavelet-packet decomposition, good time and frequency resolutions can be provided simultaneously. Third, decomposed confidences are arranged as a two-way tensor, in which feature fusion is directly implemented with generalized N dimensional ICA (GND-ICA). In this method, co-relationship among different data information is considered, and disadvantages of dimensionality are prevented; this method can also be used to reduce computing compared with linear subspace-learning methods (PCA). Finally, support vector machine (SVM) is considered as a classifier in heartbeat classification. In this study, ECG records are obtained from the MIT-BIT arrhythmia database. Four main heartbeat classes are used to examine the proposed algorithm. Based on the results of five measurements, sensitivity, positive predictivity, accuracy, average accuracy, and t-test, our conclusion is that a GND-ICA-based strategy can be used to provide enhanced ECG heartbeat classification. Furthermore, large redundant features are eliminated, and classification time is reduced.

  10. Exploiting prior knowledge in compressed sensing wireless ECG systems.

    PubMed

    Polanía, Luisa F; Carrillo, Rafael E; Blanco-Velasco, Manuel; Barner, Kenneth E

    2015-03-01

    Recent results in telecardiology show that compressed sensing (CS) is a promising tool to lower energy consumption in wireless body area networks for electrocardiogram (ECG) monitoring. However, the performance of current CS-based algorithms, in terms of compression rate and reconstruction quality of the ECG, still falls short of the performance attained by state-of-the-art wavelet-based algorithms. In this paper, we propose to exploit the structure of the wavelet representation of the ECG signal to boost the performance of CS-based methods for compression and reconstruction of ECG signals. More precisely, we incorporate prior information about the wavelet dependencies across scales into the reconstruction algorithms and exploit the high fraction of common support of the wavelet coefficients of consecutive ECG segments. Experimental results utilizing the MIT-BIH Arrhythmia Database show that significant performance gains, in terms of compression rate and reconstruction quality, can be obtained by the proposed algorithms compared to current CS-based methods.

  11. A system for intelligent home care ECG upload and priorisation.

    PubMed

    D'Angelo, Lorenzo T; Tarita, Eugeniu; Zywietz, Tosja K; Lueth, Tim C

    2010-01-01

    In this contribution, a system for internet based, automated home care ECG upload and priorisation is presented for the first time. It unifies the advantages of existing telemonitoring ECG systems adding functionalities such as automated priorisation and usability for home care. Chronic cardiac diseases are a big group in the geriatric field. Most of them can be easily diagnosed with help of an electrocardiogram. A frequent or long-term ECG analysis allows early diagnosis of e.g. a cardiac infarction. Nevertheless, patients often aren't willing to visit a doctor for prophylactic purposes. Possible solutions of this problem are home care devices, which are used to investigate patients at home without the presence of a doctor on site. As the diffusion of such systems leads to a huge amount of data which has to be managed and evaluated, the presented approach focuses on an easy to use software for ECG upload from home, a web based management application and an algorithm for ECG preanalysis and priorisation.

  12. The intracoronary electrocardiogram in percutaneous coronary intervention.

    PubMed

    Yong, Andy S C; Lowe, Harry C; Ng, Martin K C; Kritharides, Leonard

    2009-02-01

    The technique of obtaining an epicardial electrocardiogram trace by connecting the guidewire during coronary angioplasty to an electrocardiogram lead has been used since 1985. The intracoronary electrocardiogram appears to be more sensitive than the surface electrocardiogram in detecting transient ischemia, particularly in the territory of the left anterior descending and left circumflex coronary arteries. Importantly, recent studies have shown the intracoronary electrocardiogram to be particularly useful in demonstrating pre- and postconditioning during interventional procedures, predicting periprocedural myocardial damage, and in the determination of regional viability in the catheterization laboratory. Barriers to the use of the intracoronary electrocardiogram in the clinical setting include the lack of standardized methods for acquiring and analyzing the intracoronary electrocardiogram, and the lack of commercially available continuous intracoronary monitoring systems to permit analysis while performing coronary interventions. Facilitating these relatively simple technical developments may permit optimal integration of the intracoronary electrocardiogram into the catheterization laboratory.

  13. Assessment of chaotic parameters in nonstationary electrocardiograms by use of empirical mode decomposition.

    PubMed

    Salisbury, John I; Sun, Ying

    2004-10-01

    This study addressed the issue of assessing chaotic parameters from nonstationary electrocardiogram (ECG) signals. The empirical mode decomposition (EMD) was proposed as a method to extract intrinsic mode functions (IMFs) from ECG signals. Chaos analysis methods were then applied to the stationary IMFs without violating the underlying assumption of stationarity. Eight ECG data sets representing normal and various abnormal rhythms were obtained from the American Heart Associate Ventricular Arrhythmia database. The chaotic parameters including Lyapunov exponent, entropy, and correlation dimension were computed. The results consistently showed that the 10th IMF (IMF-10) was stationary and preserved sufficient nonlinearity of the ECG signals. Each IMF-10 from the data sets (n = 8) gave a positive dominate Lyapunov exponent (0.29-0.64, p < 0.0001), a positive entropy (0.039-0.061, p < 0.0001), and a noninteger correlation dimension (1.1-1.9). These were evidences of a chaotic dynamic system. We therefore concluded that the original ECG signals must also have chaotic properties. The chaotic parameters did not show significant differences among the eight data sets representing normal sinus rhythm and various abnormalities. This study has demonstrated an effective way to characterize nonlinearities in nonstationary ECG signals by combining the empirical mode decomposition and the chaos analysis methods.

  14. Non-Q-wave myocardial infarction: comprehensive analysis of electrocardiogram, pathophysiology, and therapeutics.

    PubMed

    Velasco, Manuel; Rojas, Edward

    2013-01-01

    Since the invention of electrocardiogram (ECG or EKG), its significance in the diagnosis of acute ischemic disease, chronic ischemic disease, and its contribution to cardiology has been no less than remarkable. The pathophysiology of acute coronary syndromes in most cases correlates with the clinical outcomes, biochemical findings (cardiac biomarkers), and electrocardiographic patterns. Electric activity in the myocardium is registered in the ECG describing positive deflections when the depolarization potential orientates positive charges to the recording electrode (approaches to it) and negative deflections when the depolarization potential orientates negative charges to the recording electrode and gets away from it. The abnormal Q-wave is the cornerstone of the myocardial infarction diagnosis after several days of the ischemic event. Findings in the ECG suggestive of ischemia and necrosis are ST elevation/depression and deep Q-waves, respectively, and the presence of a deep abnormal Q-wave in the ECG is evidence of necrotic areas and an inert myocardium, which is not capable to depolarize. Non-Q-wave myocardial infarction has been defined as acute myocardial infarction without a new-onset deep Q-wave on the ECG after day(s) of evolution, and because of the anatomopathological concept of infarction is usually related to necrosis, it results paradoxical to consider this widely known clinical and biochemical entity as a myocardial infarction when there is no evidence of necrosis in the ECG.

  15. [The study of autowave mechanisms of electrocardiogram variability during high frequency arrhythmias: mathematical modeling data].

    PubMed

    Medvinskiĭ, A B; Rusakov, A V; Moskalenko, A V; Fedorov, M V; Panfilov, A V

    2003-01-01

    High-frequency cardiac arrhythmias are very dangerous, as they quite often lead to sudden death. These high-frequency arrhythmias are frequently produced by rotating autowaves. In the given work, the dynamics of a rotating three-dimensional excitation scroll wave and the influence of this dynamics on the variability of model electrocardiograms (ECGs) were simulated with the use of the Aliev--Panfilov model for both homogeneous and heterogeneous excitable media. Model ECGs were obtained by summing up local membrane potentials, while ECG variability was estimated numerically through the normalized variability analysis. In the homogeneous medium, the stability of the scroll wave to its filament perturbations was shown to be dependent both on the excitability of the medium and tension of the filament, while in the heterogeneous medium, the scroll was shown to be unstable. It was shown that the scroll wave dynamics affects essentially the variability of the model ECGs, and the ECG variability increases as the excitation threshold value grows. It was found that, at some parameters of the excitable medium, the variability of ECGs in the homogeneous medium is higher than in the heterogeneous medium.

  16. Evaluation of agreement between temporal series obtained from electrocardiogram and pulse wave.

    NASA Astrophysics Data System (ADS)

    Leikan, GM; Rossi, E.; Sanz, MCuadra; Delisle Rodríguez, D.; Mántaras, MC; Nicolet, J.; Zapata, D.; Lapyckyj, I.; Siri, L. Nicola; Perrone, MS

    2016-04-01

    Heart rate variability allows to study the cardiovascular autonomic nervous system modulation. Usually, this signal is obtained from the electrocardiogram (ECG). A simpler method for recording the pulse wave (PW) is by means of finger photoplethysmography (PPG), which also provides information about the duration of the cardiac cycle. In this study, the correlation and agreement between the time series of the intervals between heartbeats obtained from the ECG with those obtained from the PPG, were studied. Signals analyzed were obtained from young, healthy and resting subjects. For statistical analysis, the Pearson correlation coefficient and the Bland and Altman limits of agreement were used. Results show that the time series constructed from the PW would not replace the ones obtained from ECG.

  17. Smart Helmet: Wearable Multichannel ECG and EEG

    PubMed Central

    Chanwimalueang, Theerasak; Goverdovsky, Valentin; Looney, David; Sharp, David; Mandic, Danilo P.

    2016-01-01

    Modern wearable technologies have enabled continuous recording of vital signs, however, for activities such as cycling, motor-racing, or military engagement, a helmet with embedded sensors would provide maximum convenience and the opportunity to monitor simultaneously both the vital signs and the electroencephalogram (EEG). To this end, we investigate the feasibility of recording the electrocardiogram (ECG), respiration, and EEG from face-lead locations, by embedding multiple electrodes within a standard helmet. The electrode positions are at the lower jaw, mastoids, and forehead, while for validation purposes a respiration belt around the thorax and a reference ECG from the chest serve as ground truth to assess the performance. The within-helmet EEG is verified by exposing the subjects to periodic visual and auditory stimuli and screening the recordings for the steady-state evoked potentials in response to these stimuli. Cycling and walking are chosen as real-world activities to illustrate how to deal with the so-induced irregular motion artifacts, which contaminate the recordings. We also propose a multivariate R-peak detection algorithm suitable for such noisy environments. Recordings in real-world scenarios support a proof of concept of the feasibility of recording vital signs and EEG from the proposed smart helmet. PMID:27957405

  18. Carbon nanotube-based self-adhesive polymer electrodes for wireless long-term recording of electrocardiogram signals.

    PubMed

    Liu, Benyan; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2016-10-05

    In this study, the concept of polymer electrodes integrated with a wireless electrocardiogram (ECG) system was described. Polymer electrodes for long-term ECG measurements were fabricated by loading high content of carbon nanotubes (CNTs) in polydimethylsiloxane. Silver nanoparticles (Ag NPs) were added to increase the flexibility of the polymer and the conductivity of the electrode. An ECG electrode patch was fabricated by integrating the electrodes with an adhesive polydimethylsiloxane (aPDMS) layer. Holes in the electrode filled with aPDMS can enable robust contact between the electrode and skin, reducing motion artifacts. A wireless ECG measurement system was developed and adapted to the polymer electrodes. The polymer electrodes combined with the measurement system were successfully applied in wireless, long-term recording of ECG signals. An eleven-day continuous test showed that the ECG signal did not degrade over time. The results of attach/detach tests demonstrated that the ECG signal was affected by motion artifacts after six attach/detach cycles. The electrodes produced are flexible and exhibit good ECG performance, and therefore can be used in wearable medical monitoring systems. The approach proposed in this study holds significant promise for commercial application in medical fields.

  19. Two causes in one patient for extremely low voltage on the electrocardiogram

    PubMed Central

    Sherwood, Melody Joy; Grayburn, Paul A.

    2017-01-01

    An 80-year-old woman is described with two different causes (pericardial effusion and cardiac amyloidosis) for low QRS voltage on the electrocardiogram. Total 12-lead QRS voltage (from the peak of the R wave to the nadir of either the Q or the S wave, whichever is deeper) was only 34 mm (10 mm standard in all leads), the lowest we have encountered among 331 previously reported patients with 10 different cardiac conditions.

  20. Surface electrocardiogram reconstruction from intracardiac electrograms using a dynamic time delay artificial neural network

    PubMed Central

    Porée, Fabienne; Kachenoura, Amar; Carrault, Guy; Dal Molin, Renzo; Mabo, Philippe; Hernandez, Alfredo I.

    2013-01-01

    The study proposes a method to facilitate the remote follow-up of patients suffering from cardiac pathologies and treated with an implantable device, by synthesizing a 12-lead surface ECG from the intracardiac electrograms (EGM) recorded by the device. Two methods (direct and indirect), based on dynamic Time Delay artificial Neural Networks (TDNN) are proposed and compared with classical linear approaches. The direct method aims to estimate 12 different transfer functions between the EGM and each surface ECG signal. The indirect method is based on a preliminary orthogonalization phase of the available EGM and ECG signals, and the application of the TDNN between these orthogonalized signals, using only three transfer functions. These methods are evaluated on a dataset issued from 15 patients. Correlation coefficients calculated between the synthesized and the real ECG show that the proposed TDNN methods represent an efficient way to synthesize 12-lead ECG, from two or four EGM and perform better than the linear ones. We also evaluate the results as a function of the EGM configuration. Results are also supported by the comparison of extracted features and a qualitative analysis performed by a cardiologist. PMID:23086502

  1. Adaptive sensing of ECG signals using R-R interval prediction.

    PubMed

    Nakaya, Shogo; Nakamura, Yuichi

    2013-01-01

    There is growing demand for systems consisting of tiny sensor nodes powered with small batteries that acquire electrocardiogram (ECG) data and wirelessly transmit the data to remote base stations or mobile phones continuously over a long period. Conserving electric power in the wireless sensor nodes (WSNs) is essential in such systems. Adaptive sensing is promising for this purpose since it can reduce the energy consumed not only for data transmission but also for sensing. However, the basic method of adaptive sensing, referred to here as "plain adaptive sensing," is not suitable for ECG signals because it sometimes capture the R waves defectively. We introduce an improved adaptive sensing method for ECG signals by incorporating R-R interval prediction. Our method improves the characteristics of ECG compression and drastically reduces the total energy consumption of the WSNs.

  2. A Human ECG Identification System Based on Ensemble Empirical Mode Decomposition

    PubMed Central

    Zhao, Zhidong; Yang, Lei; Chen, Diandian; Luo, Yi

    2013-01-01

    In this paper, a human electrocardiogram (ECG) identification system based on ensemble empirical mode decomposition (EEMD) is designed. A robust preprocessing method comprising noise elimination, heartbeat normalization and quality measurement is proposed to eliminate the effects of noise and heart rate variability. The system is independent of the heart rate. The ECG signal is decomposed into a number of intrinsic mode functions (IMFs) and Welch spectral analysis is used to extract the significant heartbeat signal features. Principal component analysis is used reduce the dimensionality of the feature space, and the K-nearest neighbors (K-NN) method is applied as the classifier tool. The proposed human ECG identification system was tested on standard MIT-BIH ECG databases: the ST change database, the long-term ST database, and the PTB database. The system achieved an identification accuracy of 95% for 90 subjects, demonstrating the effectiveness of the proposed method in terms of accuracy and robustness. PMID:23698274

  3. A Primary Study of Indirect ECG Monitor Embedded in a Bed for Home Health Care

    NASA Astrophysics Data System (ADS)

    Ueno, Akinori; Shiogai, Yuuki; Ishiyama, Yoji

    A system for monitoring electrocardiogram (ECG) through clothes inserted between the measuring electrodes and the body surface of a subject when lying on a mattress has been proposed. The principle of the system is based on capacitive coupling involving the electrode, the clothes, and the skin. Validation of the system revealed the following: (1) In spite of the gain attenuation in the pass band of the system, distortion of the detected signal was subtle even when clothes thicker than 1mm were inserted, (2) The system was able to yield a stable ECG from a subject particularly during sound sleep, (3) The system succeeded in detecting ECG after changing the posture into any of supine, right lateral, or left lateral positions by adopting a newly devised electrode configuration. Therefore, the proposed system appears promising for application to bedding as a non-invasive and awareness-free system for ECG monitoring during sleep.

  4. QRS complex detection in ECG signal for wearable devices.

    PubMed

    Arefin, M Riadh; Tavakolian, Kouhyar; Fazel-Rezai, Reza

    2015-01-01

    This paper presents QRS complex detection algorithm based on dual slope technique, which is suitable for wearable electrocardiogram (ECG) applications. For cardiac patients of different arrhythmias, ECG signals are needed to be monitored over an extensive period of time. Thus, the wearable heart monitoring system needs computationally efficient QRS detection technique with good accuracy. In this paper, a method of QRS detection based on two slopes on both sides of an R peak is presented which is computationally efficient. Based on the slopes, first, a variable measuring steepness is developed, then by introducing an adjustable R-R interval based window and adaptive thresholding techniques, depending on the number of peaks detected in such window, R peaks are detected. The algorithm was evaluated against MIT/BIH arrhythmia database and achieved 99.16% detection rate with sensitivity of 0.9935 and positive predictivity of 0.9981. The method was compared with two widely used R peaks detection algorithms.

  5. Using ordinal partition transition networks to analyze ECG data

    NASA Astrophysics Data System (ADS)

    Kulp, Christopher W.; Chobot, Jeremy M.; Freitas, Helena R.; Sprechini, Gene D.

    2016-07-01

    Electrocardiogram (ECG) data from patients with a variety of heart conditions are studied using ordinal pattern partition networks. The ordinal pattern partition networks are formed from the ECG time series by symbolizing the data into ordinal patterns. The ordinal patterns form the nodes of the network and edges are defined through the time ordering of the ordinal patterns in the symbolized time series. A network measure, called the mean degree, is computed from each time series-generated network. In addition, the entropy and number of non-occurring ordinal patterns (NFP) is computed for each series. The distribution of mean degrees, entropies, and NFPs for each heart condition studied is compared. A statistically significant difference between healthy patients and several groups of unhealthy patients with varying heart conditions is found for the distributions of the mean degrees, unlike for any of the distributions of the entropies or NFPs.

  6. Using ordinal partition transition networks to analyze ECG data.

    PubMed

    Kulp, Christopher W; Chobot, Jeremy M; Freitas, Helena R; Sprechini, Gene D

    2016-07-01

    Electrocardiogram (ECG) data from patients with a variety of heart conditions are studied using ordinal pattern partition networks. The ordinal pattern partition networks are formed from the ECG time series by symbolizing the data into ordinal patterns. The ordinal patterns form the nodes of the network and edges are defined through the time ordering of the ordinal patterns in the symbolized time series. A network measure, called the mean degree, is computed from each time series-generated network. In addition, the entropy and number of non-occurring ordinal patterns (NFP) is computed for each series. The distribution of mean degrees, entropies, and NFPs for each heart condition studied is compared. A statistically significant difference between healthy patients and several groups of unhealthy patients with varying heart conditions is found for the distributions of the mean degrees, unlike for any of the distributions of the entropies or NFPs.

  7. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram.

    PubMed

    Charlton, Peter H; Bonnici, Timothy; Tarassenko, Lionel; Clifton, David A; Beale, Richard; Watkinson, Peter J

    2016-04-01

    Over 100 algorithms have been proposed to estimate respiratory rate (RR) from the electrocardiogram (ECG) and photoplethysmogram (PPG). As they have never been compared systematically it is unclear which algorithm performs the best. Our primary aim was to determine how closely algorithms agreed with a gold standard RR measure when operating under ideal conditions. Secondary aims were: (i) to compare algorithm performance with IP, the clinical standard for continuous respiratory rate measurement in spontaneously breathing patients; (ii) to compare algorithm performance when using ECG and PPG; and (iii) to provide a toolbox of algorithms and data to allow future researchers to conduct reproducible comparisons of algorithms. Algorithms were divided into three stages: extraction of respiratory signals, estimation of RR, and fusion of estimates. Several interchangeable techniques were implemented for each stage. Algorithms were assembled using all possible combinations of techniques, many of which were novel. After verification on simulated data, algorithms were tested on data from healthy participants. RRs derived from ECG, PPG and IP were compared to reference RRs obtained using a nasal-oral pressure sensor using the limits of agreement (LOA) technique. 314 algorithms were assessed. Of these, 270 could operate on either ECG or PPG, and 44 on only ECG. The best algorithm had 95% LOAs of  -4.7 to 4.7 bpm and a bias of 0.0 bpm when using the ECG, and  -5.1 to 7.2 bpm and 1.0 bpm when using PPG. IP had 95% LOAs of  -5.6 to 5.2 bpm and a bias of  -0.2 bpm. Four algorithms operating on ECG performed better than IP. All high-performing algorithms consisted of novel combinations of time domain RR estimation and modulation fusion techniques. Algorithms performed better when using ECG than PPG. The toolbox of algorithms and data used in this study are publicly available.

  8. Wearable ECG Based on Impulse-Radio-Type Human Body Communication.

    PubMed

    Wang, Jianqing; Fujiwara, Takuya; Kato, Taku; Anzai, Daisuke

    2016-09-01

    Human body communication (HBC) provides a promising physical layer for wireless body area networks (BANs) in healthcare and medical applications, because of its low propagation loss and high security characteristics. In this study, we have developed a wearable electrocardiogram (ECG) which employs impulse radio (IR)-type HBC technology for transmitting vital signals on the human body in a wearable BAN scenario. The HBC-based wearable ECG has two excellent features. First, the wideband performance of the IR scheme contributed to very low radiation power so that the transceiver is easy to satisfy the extremely weak radio laws, which does not need a license. This feature can provide big convenience in the use and spread of the wearable ECG. Second, the realization of common use of sensing and transmitting electrodes based on time sharing and capacitive coupling largely simplified the HBC-based ECG structure and contributed to its miniaturization. To verify the validity of the HBC-based ECG, we evaluated its communication performance and ECG acquisition performance. The measured bit error rate, smaller than 10 (-3) at 1.25 Mb/s, showed a good physical layer communication performance, and the acquired ECG waveform and various heart-rate variability parameters in time and frequency domains exhibited good agreement with a commercially available radio-frequency ECG and a Holter ECG. These results sufficiently showed the validity and feasibility of the HBC-based ECG for healthcare applications. This should be the first time to have realized a real-time ECG transmission by using the HBC technology.

  9. MicroECG: An Integrated Platform for the Cardiac Arrythmia Detection and Characterization

    NASA Astrophysics Data System (ADS)

    Nascimento, Bruno; Batista, Arnaldo; Alves, Luis Brandão; Ortigueira, Manuel; Rato, Raul

    A software tool for the analysis of the High-Resolution Electrocardiogram (HR-ECG) for Arrhythmia detection is introduced. New algorithms based on Wavelet analysis are presented and compared with the classic Simson protocol over the P and QRS segments of the Electrocardiogram (EEG). A novel procedure based on a two step wavelet analysis and synthesis is performed in order to obtain a frequency description of the P, T or QRS segments. This frequency "signature" is useful for the detection of otherwise asymptomatic Arrhythmia patients. The tool has been developed in Matlab, and deployed for a standalone C application.

  10. Principal component analysis of atrial fibrillation: Inclusion of posterior ECG leads does not improve correlation with left atrial activity

    PubMed Central

    Raine, Daniel; Langley, Philip; Shepherd, Ewen; Lord, Stephen; Murray, Stephen; Murray, Alan; Bourke, John P.

    2015-01-01

    Background Lead V1 is routinely analysed due to its large amplitude AF waveform. V1 correlates strongly with right atrial activity but only moderately with left atrial activity. Posterior lead V9 correlates strongest with left atrial activity. Aims (1) To establish whether surface dominant AF frequency (DAF) calculated using principal component analysis (PCA) of a modified 12-lead ECG (including posterior leads) has a stronger correlation with left atrial activity compared to the standard ECG. (2) To assess the contribution of individual ECG leads to the AF principal component in both ECG configurations. Methods Patients were assigned to modified or standard ECG groups. In the modified ECG, posterior leads V8 and V9 replaced V4 and V6. AF waveform was extracted from one-minute surface ECG recordings using PCA. Surface DAF was correlated with intracardiac DAF from the high right atrium (HRA), coronary sinus (CS) and pulmonary veins (PVs). Results 96 patients were studied. Surface DAF from the modified ECG did not have a stronger correlation with left atrial activity compared to the standard ECG. Both ECG configurations correlated strongly with HRA, CS and right PVs but only moderately with left PVs. V1 contributed most to the AF principal component in both ECG configurations. PMID:25619612

  11. ECG-based heartbeat classification for arrhythmia detection: A survey.

    PubMed

    Luz, Eduardo José da S; Schwartz, William Robson; Cámara-Chávez, Guillermo; Menotti, David

    2016-04-01

    An electrocardiogram (ECG) measures the electric activity of the heart and has been widely used for detecting heart diseases due to its simplicity and non-invasive nature. By analyzing the electrical signal of each heartbeat, i.e., the combination of action impulse waveforms produced by different specialized cardiac tissues found in the heart, it is possible to detect some of its abnormalities. In the last decades, several works were developed to produce automatic ECG-based heartbeat classification methods. In this work, we survey the current state-of-the-art methods of ECG-based automated abnormalities heartbeat classification by presenting the ECG signal preprocessing, the heartbeat segmentation techniques, the feature description methods and the learning algorithms used. In addition, we describe some of the databases used for evaluation of methods indicated by a well-known standard developed by the Association for the Advancement of Medical Instrumentation (AAMI) and described in ANSI/AAMI EC57:1998/(R)2008 (ANSI/AAMI, 2008). Finally, we discuss limitations and drawbacks of the methods in the literature presenting concluding remarks and future challenges, and also we propose an evaluation process workflow to guide authors in future works.

  12. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  13. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  14. New real-time heartbeat detection method using the angle of a single-lead electrocardiogram.

    PubMed

    Song, Mi-Hye; Cho, Sung-Pil; Kim, Wonky; Lee, Kyoung-Joung

    2015-04-01

    This study presents a new real-time heartbeat detection algorithm using the geometric angle between two consecutive samples of single-lead electrocardiogram (ECG) signals. The angle was adopted as a new index representing the slope of ECG signal. The method consists of three steps: elimination of high-frequency noise, calculation of the angle of ECG signal, and detection of R-waves using a simple adaptive thresholding technique. The MIT-BIH arrhythmia database, QT database, European ST-T database, T-wave alternans database and synthesized ECG signals were used to evaluate the performance of the proposed algorithm and compare with the results of other methods suggested in literature. The proposed method shows a high detection rate-99.95% of the sensitivity, 99.95% of the positive predictivity, and 0.10% of the fail detection rate on the four databases. The result shows that the proposed method can yield better or comparable performance than other literature despite the relatively simple process. The proposed algorithm needs only a single-lead ECG, and involves a simple and quick calculation. Moreover, it does not require post-processing to enhance the detection. Thus, it can be effectively applied to various real-time healthcare and medical devices.

  15. Effects of Erythropoietin on Electrocardiogram Changes in Carbon Monoxide Poisoning: an Experimental Study in Rats

    PubMed Central

    Asgharian Rezaee, Mitra; Moallem, Seyed Adel; Imenshahidi, Mohsen; Farzadnia, Mahdi; Mohammadpour, Amir Hooshang

    2012-01-01

    The aim of this study was to define the electrocardiogram (ECG) changes following the moderate to severe CO intoxication in rats, and also evaluating the effect of erythropoietin (EPO) on observed cardiac disturbances. The growing literature on erythropoietin effect on cardiac ischemia led us to question its effect on cardiotoxicity due to the carbon monoxide poisoning. Wistar rats were exposed to three different concentrations of CO (250 PPM, 1000 PPM or 3000 PPM). EPO was administrated (5000 IU/Kg, intraperitoneal injection) at the end of CO exposure and then the animals were re-oxygenated with ambient air. Subsequently ECG recording, heart rate and carboxyhemoglobin values were evaluated. ECG changes following the CO intoxication included ST segment elevation and depression, T wave inversion and first-degree AV block. Ischemic ECG changes reduced significantly in EPO-treated animals. In the present study, for the first time, EPO was investigated for the management of cardiac complications due to the CO poisoning. Our results showed that EPO could inhibit ischemic changes of ECG after the CO poisoning. PMID:24250553

  16. Efficacy of Subcutaneous Electrocardiogram Leads for Synchronous Timing During Chronic Counterpulsation Therapy.

    PubMed

    Carnahan, Stephen R; Koenig, Steven C; Sobieski, Michael A; Schumer, Erin M; Monreal, Gretel; Wang, Yu; Choi, Young; Meuris, Brek J; Tompkins, Landon H; Wu, Zhongjun J; Slaughter, Mark S; Giridharan, Guruprasad A

    Counterpulsation devices (CPDs) require an accurate, reliable electrocardiogram (ECG) waveform for triggering inflation and deflation. Surface electrodes are for short-term use, and transvenous/epicardial leads require invasive implant procedure. A subcutaneous ECG lead configuration was developed as an alternative approach for long-term use with timing mechanical circulatory support (MCS) devices. In this study, efficacy testing was completed by simultaneously recording ECG waveforms from clinical-grade epicardial (control) and subcutaneous (test) leads in chronic ischemic heart failure calves implanted with CPD for up to 30 days. Sensitivity and specificity of CPD triggering by R-wave detection was quantified for each lead configuration. The subcutaneous leads provided 98.9% positive predictive value and 98.9% sensitivity compared to the epicardial ECG leads. Lead migration (n = 1) and fracture (n = 1) were observed in only 2 of 40 implanted leads, without adversely impacting triggering efficacy due to lead redundancy. These findings demonstrate the efficacy of subcutaneous ECG leads for long-term CPD timing and potential use as an alternative method for MCS device timing.

  17. The programmable ECG simulator.

    PubMed

    Caner, Candan; Engin, Mehmet; Engin, Erkan Zeki

    2008-08-01

    This paper reports the design and development of Digital Signal Controller (DSPIC)-based ECG simulator intended to use in testing, calibration and maintenance of electrocardiographic equipment, and to support biomedical engineering students' education. It generates all 12 healthy ECG derivation signals having a profile that varies with heart rate, amplitude, and different noise contamination in a manner which reflects true in vivo conditions. The heart rate can be set at the range of 30 to 120 beats/minute in four steps. The noise and power line interference effects can be set at the range of 0 to 20 dB in three steps. Since standard commercially available electronic components were used to construct the prototype simulator, the proposed design was also relatively inexpensive to produce.

  18. Electrocardiogram

    MedlinePlus

    ... simple, painless test that detects and records your heart’s electrical activity. An EKG can show how fast your heart ... by wires to a machine that records your heart’s electrical activity on graph paper or on a computer. After ...

  19. Electrocardiogram

    MedlinePlus

    ... 12. Read More Anorexia Aortic dissection Aortic insufficiency Aortic stenosis Arrhythmias Atrial fibrillation or flutter Atrial septal defect (ASD) Cardiac tamponade Chest pain Coarctation of the aorta Coronary artery spasm Delirium tremens Digitalis toxicity Dilated ...

  20. Synthetic ECG Generation and Bayesian Filtering Using a Gaussian Wave-Based Dynamical Model

    PubMed Central

    Sayadi, Omid; Shamsollahi, Mohammad B.; Clifford, Gari D.

    2011-01-01

    In this paper, we describe a Gaussian wave-based state space to model the temporal dynamics of electrocardiogram (ECG) signals. It is shown that this model may be effectively used for generating synthetic ECGs as well as separate characteristic waves (CWs) such as the atrial and ventricular complexes. The model uses separate state variables for each CW, i.e. P, QRS and T, and hence is capable of generating individual synthetic CWs as well as realistic ECG signals. The model is therefore useful for generating arrhythmias. Simulations of sinus bradycardia, sinus tachycardia, ventricular flutter, atrial fibrillation, and ventricular tachycardia are presented. In addition, discrete versions of the equations are presented for a model-based Bayesian framework for denoising. This framework, together with an extended Kalman filter (EKF) and extended Kalman smoother (EKS), were used for denoising the ECG for both normal rhythms and arrhythmias. For evaluating the denoising performance the signal-to-noise ratio (SNR) improvement of the filter outputs and clinical parameter stability were studied. The results demonstrate superiority over a wide range of input SNRs, achieving a maximum 12.7 dB improvement. Results indicate that preventing clinically relevant distortion of the ECG is sensitive to the number of model parameters. Models are presented which do not exhibit such distortions. The approach presented in this paper may therefore serve as an effective framework for synthetic ECG generation and model-based filtering of noisy ECG recordings. PMID:20720288

  1. A low-power portable ECG sensor interface with dry electrodes

    NASA Astrophysics Data System (ADS)

    Xiaofei, Pu; Lei, Wan; Hui, Zhang; Yajie, Qin; Zhiliang, Hong

    2013-05-01

    This paper describes a low-power portable sensor interface dedicated to sensing and processing electrocardiogram (ECG) signals. Dry electrodes were employed in this ECG sensor, which eliminates the need of conductive gel and avoids complicated and mandatory skin preparation before electrode attachment. This ECG sensor system consists of two ICs, an analog front-end (AFE) and a successive approximation register analog-to-digital converter (SAR ADC) containing a relaxation oscillator. This proposed design was fabricated in a 0.18 μm 1P6M standard CMOS process. The AFE for extracting the biopotential signals is essential in this ECG sensor. In measurements, the AFE obtains a mid-band gain of 45 dB, a bandwidth from 0.6 to 160 Hz, and a total input referred noise of 2.8 μV rms while consuming 1 μW from the 1.8 V supply. The noise efficiency factor (NEF) of our design is 3.4. After conditioning, the amplified ECG signal is digitized by a 12-bit SAR ADC with 61.8 dB SNDR and 220 fJ/conversion-step. Finally, a complete ECG sensor interface with three dry copper electrodes is demonstrated in real-word setting, showing successful recordings of a capture ECG waveform.

  2. A comprehensive survey of wearable and wireless ECG monitoring systems for older adults.

    PubMed

    Baig, Mirza Mansoor; Gholamhosseini, Hamid; Connolly, Martin J

    2013-05-01

    Wearable health monitoring is an emerging technology for continuous monitoring of vital signs including the electrocardiogram (ECG). This signal is widely adopted to diagnose and assess major health risks and chronic cardiac diseases. This paper focuses on reviewing wearable ECG monitoring systems in the form of wireless, mobile and remote technologies related to older adults. Furthermore, the efficiency, user acceptability, strategies and recommendations on improving current ECG monitoring systems with an overview of the design and modelling are presented. In this paper, over 120 ECG monitoring systems were reviewed and classified into smart wearable, wireless, mobile ECG monitoring systems with related signal processing algorithms. The results of the review suggest that most research in wearable ECG monitoring systems focus on the older adults and this technology has been adopted in aged care facilitates. Moreover, it is shown that how mobile telemedicine systems have evolved and how advances in wearable wireless textile-based systems could ensure better quality of healthcare delivery. The main drawbacks of deployed ECG monitoring systems including imposed limitations on patients, short battery life, lack of user acceptability and medical professional's feedback, and lack of security and privacy of essential data have been also discussed.

  3. Synthetic ECG generation and Bayesian filtering using a Gaussian wave-based dynamical model.

    PubMed

    Sayadi, Omid; Shamsollahi, Mohammad B; Clifford, Gari D

    2010-10-01

    In this paper, we describe a Gaussian wave-based state space to model the temporal dynamics of electrocardiogram (ECG) signals. It is shown that this model may be effectively used for generating synthetic ECGs as well as separate characteristic waves (CWs) such as the atrial and ventricular complexes. The model uses separate state variables for each CW, i.e. P, QRS and T, and hence is capable of generating individual synthetic CWs as well as realistic ECG signals. The model is therefore useful for generating arrhythmias. Simulations of sinus bradycardia, sinus tachycardia, ventricular flutter, atrial fibrillation and ventricular tachycardia are presented. In addition, discrete versions of the equations are presented for a model-based Bayesian framework for denoising. This framework, together with an extended Kalman filter and extended Kalman smoother, was used for denoising the ECG for both normal rhythms and arrhythmias. For evaluating the denoising performance, the signal-to-noise ratio (SNR) improvement of the filter outputs and clinical parameter stability were studied. The results demonstrate superiority over a wide range of input SNRs, achieving a maximum 12.7 dB improvement. Results indicate that preventing clinically relevant distortion of the ECG is sensitive to the number of model parameters. Models are presented which do not exhibit such distortions. The approach presented in this paper may therefore serve as an effective framework for synthetic ECG generation and model-based filtering of noisy ECG recordings.

  4. A three-lead, programmable, and microcontroller-based electrocardiogram generator with frequency domain characteristics of heart rate variability

    NASA Astrophysics Data System (ADS)

    Wei, Ying-Chieh; Wei, Ying-Yu; Chang, Kai-Hsiung; Young, Ming-Shing

    2012-04-01

    The objective of this study is to design and develop a programmable electrocardiogram (ECG) generator with frequency domain characteristics of heart rate variability (HRV) which can be used to test the efficiency of ECG algorithms and to calibrate and maintain ECG equipment. We simplified and modified the three coupled ordinary differential equations in McSharry's model to a single differential equation to obtain the ECG signal. This system not only allows the signal amplitude, heart rate, QRS-complex slopes, and P- and T-wave position parameters to be adjusted, but can also be used to adjust the very low frequency, low frequency, and high frequency components of HRV frequency domain characteristics. The system can be tuned to function with HRV or not. When the HRV function is on, the average heart rate can be set to a value ranging from 20 to 122 beats per minute (BPM) with an adjustable variation of 1 BPM. When the HRV function is off, the heart rate can be set to a value ranging from 20 to 139 BPM with an adjustable variation of 1 BPM. The amplitude of the ECG signal can be set from 0.0 to 330 mV at a resolution of 0.005 mV. These parameters can be adjusted either via input through a keyboard or through a graphical user interface (GUI) control panel that was developed using LABVIEW. The GUI control panel depicts a preview of the ECG signal such that the user can adjust the parameters to establish a desired ECG morphology. A complete set of parameters can be stored in the flash memory of the system via a USB 2.0 interface. Our system can generate three different types of synthetic ECG signals for testing the efficiency of an ECG algorithm or calibrating and maintaining ECG equipment.

  5. A three-lead, programmable, and microcontroller-based electrocardiogram generator with frequency domain characteristics of heart rate variability.

    PubMed

    Wei, Ying-Chieh; Wei, Ying-Yu; Chang, Kai-Hsiung; Young, Ming-Shing

    2012-04-01

    The objective of this study is to design and develop a programmable electrocardiogram (ECG) generator with frequency domain characteristics of heart rate variability (HRV) which can be used to test the efficiency of ECG algorithms and to calibrate and maintain ECG equipment. We simplified and modified the three coupled ordinary differential equations in McSharry's model to a single differential equation to obtain the ECG signal. This system not only allows the signal amplitude, heart rate, QRS-complex slopes, and P- and T-wave position parameters to be adjusted, but can also be used to adjust the very low frequency, low frequency, and high frequency components of HRV frequency domain characteristics. The system can be tuned to function with HRV or not. When the HRV function is on, the average heart rate can be set to a value ranging from 20 to 122 beats per minute (BPM) with an adjustable variation of 1 BPM. When the HRV function is off, the heart rate can be set to a value ranging from 20 to 139 BPM with an adjustable variation of 1 BPM. The amplitude of the ECG signal can be set from 0.0 to 330 mV at a resolution of 0.005 mV. These parameters can be adjusted either via input through a keyboard or through a graphical user interface (GUI) control panel that was developed using LABVIEW. The GUI control panel depicts a preview of the ECG signal such that the user can adjust the parameters to establish a desired ECG morphology. A complete set of parameters can be stored in the flash memory of the system via a USB 2.0 interface. Our system can generate three different types of synthetic ECG signals for testing the efficiency of an ECG algorithm or calibrating and maintaining ECG equipment.

  6. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors

    PubMed Central

    Choi, Minho; Jeong, Jae Jin; Kim, Seung Hun; Kim, Sang Woo

    2016-01-01

    Non-intrusive electrocardiogram (ECG) monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs) to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements. PMID:27196910

  7. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    PubMed

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods.

  8. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  9. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A low noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free ranging subject is described. The electrode comprises a pocket shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member, remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  10. [Fetal electrocardiogram extraction based on independent component analysis and quantum particle swarm optimizer algorithm].

    PubMed

    Du, Yanqin; Huang, Hua

    2011-10-01

    Fetal electrocardiogram (FECG) is an objective index of the activities of fetal cardiac electrophysiology. The acquired FECG is interfered by maternal electrocardiogram (MECG). How to extract the fetus ECG quickly and effectively has become an important research topic. During the non-invasive FECG extraction algorithms, independent component analysis(ICA) algorithm is considered as the best method, but the existing algorithms of obtaining the decomposition of the convergence properties of the matrix do not work effectively. Quantum particle swarm optimization (QPSO) is an intelligent optimization algorithm converging in the global. In order to extract the FECG signal effectively and quickly, we propose a method combining ICA and QPSO. The results show that this approach can extract the useful signal more clearly and accurately than other non-invasive methods.

  11. Digitalis toxicity: ECG vignette.

    PubMed

    Vyas, Aniruddha; Bachani, Neeta; Thakur, Hrishikesh; Lokhandwala, Yash

    2016-09-01

    "Digitalis toxicity, often candidly indexed as poisoning, has plagued the medical profession for over 200 years. The situation qualifies as a professional disgrace on the basis of three items: the situation persists, physicians are often slow to recognize it and, over the decades, writers have been harsh in their denunciation of fellow physicians when toxicity has occurred…." These are the opening remarks of an essay published in 1983 on the 2nd centenary of William Withering's 'magic potion from foxglove's extract for dropsy.' Even today, after many decades, these words appear relevant! We present and discuss an interesting ECG of digitalis toxicity.

  12. Right Ventricular Compression Mimicking Brugada-Like Electrocardiogram in a Patient with Recurrent Pectus Excavatum

    PubMed Central

    Ahn, Jinhee; Shim, Jaemin; Lee, Sung Ho; Kim, Young-Hoon

    2017-01-01

    Pectus excavatum (PE), the most common skeletal anomaly of chest wall, sometimes requires a surgical correction but recurrent PE is not uncommon. PE usually has a benign course; however, this chest deformity may be associated with symptomatic tachyarrhythmias due to mechanical compression. We report a case of a patient with recurrent PE after surgical correction presenting with palpitation and electrocardiogram (ECG) showing ST-segment elevation on the right precordial leads, which could be mistaken for a Brugada syndrome (BrS). PMID:28321340

  13. Detection of Cardiac Abnormalities from Multilead ECG using Multiscale Phase Alternation Features.

    PubMed

    Tripathy, R K; Dandapat, S

    2016-06-01

    The cardiac activities such as the depolarization and the relaxation of atria and ventricles are observed in electrocardiogram (ECG). The changes in the morphological features of ECG are the symptoms of particular heart pathology. It is a cumbersome task for medical experts to visually identify any subtle changes in the morphological features during 24 hours of ECG recording. Therefore, the automated analysis of ECG signal is a need for accurate detection of cardiac abnormalities. In this paper, a novel method for automated detection of cardiac abnormalities from multilead ECG is proposed. The method uses multiscale phase alternation (PA) features of multilead ECG and two classifiers, k-nearest neighbor (KNN) and fuzzy KNN for classification of bundle branch block (BBB), myocardial infarction (MI), heart muscle defect (HMD) and healthy control (HC). The dual tree complex wavelet transform (DTCWT) is used to decompose the ECG signal of each lead into complex wavelet coefficients at different scales. The phase of the complex wavelet coefficients is computed and the PA values at each wavelet scale are used as features for detection and classification of cardiac abnormalities. A publicly available multilead ECG database (PTB database) is used for testing of the proposed method. The experimental results show that, the proposed multiscale PA features and the fuzzy KNN classifier have better performance for detection of cardiac abnormalities with sensitivity values of 78.12 %, 80.90 % and 94.31 % for BBB, HMD and MI classes. The sensitivity value of proposed method for MI class is compared with the state-of-art techniques from multilead ECG.

  14. Reconstruction of fetal vector electrocardiogram from maternal abdominal signals under fetus body rotations.

    PubMed

    Nabeshima, Yuji; Kimura, Yoshitaka; Ito, Takuro; Ohwada, Kazunari; Karashima, Akihiro; Katayama, Norihiro; Nakao, Mitsuyuki

    2013-01-01

    Fetal electrocardiogram (fECG) and its vector form (fVECG) could provide significant clinical information concerning physiological conditions of a fetus. So far various independent component analysis (ICA)-based methods for extracting fECG from maternal abdominal signals have been proposed. Because full extraction of component waves such as P, Q, R, S, and T, is difficult to be realized under noisy and nonstationary situations, the fVECG is further hard to be reconstructed, where different projections of the fetal heart vector are required. In order to reconstruct fVECG, we proposed a novel method for synthesizing different projections of the heart vector, making good use of the fetus movement. This method consists of ICA, estimation of rotation angles of fetus, and synthesis of projections of the heart vector. Through applications to the synthetic and actual data, our method is shown to precisely estimate rotation angle of the fetus and to successfully reconstruct the fVECG.

  15. Audit of primary care electrocardiograms sent as emergency to a telehealth service - the Telehealth Network of Minas Gerais, Brazil.

    PubMed

    Marcolino, Milena S; Carvalho, Bárbara C; Lucena, Aline M; França, Ana Luiza N; Pessoa, Cristiane G; Neves, Daniel S; Alkmim, Maria Beatriz M

    2015-01-01

    The Telehealth Network of Minas Gerais (TNMG) is a public telehealth service in Brazil that has performed electrocardiogram (ECG) analysis since 2005. From February to March 2014, 28% of ECGs were classified as "emergency" by the primary care tele-health sites. This quasi-experimental study aimed to investigate the reasons behind the high number of emergency ECGs being sent in, the implementation of corrective actions, and an assessment of the impact of these actions. In the 1st phase, primary care units that sent >70% of ECGs as emergency from February to March 2014 were selected. The 2nd phase consisted of the intervention. In the 3rd phase, the proportion of ECGs sent as an emergency during the 1st and 2nd months post intervention were assessed. Of the 63 cities selected during the 1st phase, 50% of the practitioners did not know the proper definition of emergency. After the intervention, 67% of the cities had a significant reduction in the proportion of ECGs sent as an emergency during the 1st month, and 17% had a significant reduction during the 2nd month.

  16. The new FAA national automated ECG network: some aviation medical examiner experiences.

    PubMed

    Beers, K N; Mohler, S R

    1991-01-01

    The Federal Aviation Administration (FAA) has required, since August 1, 1987, that aviation medical examiners (AMEs) transmit by telephone all electrocardiograms (ECGs) necessary for airman "Class I" medical certification. This relatively new airman certification requirement is centralized at the Civil Aeromedical Institute (CAMI) in Oklahoma City. In calendar year 1989, the FAA received 69,000 electronically transmitted electrocardiograms. CAMI uses Marquette Electronics software to interpret the ECG signals that are received from multi-channel equipment. The single-channel transmitted ECGs are hand screened at present. The FAA "automated" screening program is unique among governmental airman medical certification programs throughout the world. This paper presents, for potential future users, the authors' experiences with the new airman automated electrocardiographic certification requirement, and covers positive and negative features involved in the implementation and operation of the program. We conclude that while the new FAA automated ECG screening program has satisfactorily replaced the former "physician-intensive" manual screening process, the new system increases the AME's equipment and operation costs. These are passed on to the airman who is seeking certification.

  17. Brugada ECG patterns in athletes.

    PubMed

    Chung, Eugene H

    2015-01-01

    Brugada syndrome is responsible for up to 4% of all sudden cardiac deaths worldwide and up to 20% of sudden cardiac deaths in patients with structurally normal hearts. Heterogeneity of repolarization and depolarization, particularly over the right ventricle and the outflow tract, is responsible for the arrhythmogenic substrate. The coved Type I ECG pattern is considered diagnostic of the syndrome but its prevalence is very low. Distinguishing between a saddle back Type 2 Brugada pattern and one of many "Brugada-like" patterns presents challenges especially in athletes. A number of criteria have been proposed to assess Brugada ECG patterns. Proper precordial ECG lead placement is paramount. This paper reviews Brugada syndrome, Brugada ECG patterns, and recently proposed criteria. Recommendations for evaluating a Brugada ECG pattern are provided.

  18. Real-time ECG transmission via Internet for nonclinical applications.

    PubMed

    Hernández, A I; Mora, F; Villegas, G; Passariello, G; Carrault, G

    2001-09-01

    Telemedicine is producing a great impact in the monitoring of patients located in remote nonclinical environments such as homes, elder communities, gymnasiums, schools, remote military bases, ships, and the like. A number of applications, ranging from data collection, to chronic patient surveillance, and even to the control of therapeutic procedures, are being implemented in many parts of the world. As part of this growing trend, this paper discusses the problems in electrocardiogram (ECG) real-time data acquisition, transmission, and visualization over the Internet. ECG signals are transmitted in real time from a patient in a remote nonclinical environment to the specialist in a hospital or clinic using the current capabilities and availability of the Internet. A prototype system is composed of a portable data acquisition and preprocessing module connected to the computer in the remote site via its RS-232 port, a Java-based client-server platform, and software modules to handle communication protocols between data acquisition module and the patient's personal computer, and to handle client-server communication. The purpose of the system is the provision of extended monitoring for patients under drug therapy after infarction, data collection in some particular cases, remote consultation, and low-cost ECG monitoring for the elderly.

  19. ECG Wave-Maven: a self-assessment program for students and clinicians.

    PubMed Central

    Nathanson, L. A.; Safran, C.; McClennen, S.; Goldberger, A. L.

    2001-01-01

    Proficiency in the interpretation of electrocardiograms (ECGs) is an essential skill for medical students, house officers, and attending physicians. However, resources to develop and upgrade the necessary high level of "ECG literacy" are limited. A small number of centers have attempted to address this challenge by developing "ECG of the week" internet sites. These resources are difficult to maintain and update, and many of them quickly become stagnant. We present "ECG Wave-Maven," an innovative web-based tutorial that overcomes these obstacles via a direct link to the hospital's extensive and increasing clinical ECG repository. By interfacing our educational tool to live data, we can greatly decrease the time and effort required from the time a practitioner notes an interesting case to its inclusion in the program. Users can opt to encounter the test cases sequentially or randomly, or by reviewing a list of questions or diagnoses, making this not just a quiz, but a basic educational reference. This tool may be useful in meeting the challenge of reducing serious medical errors related to ECG misinterpretation. PMID:11825236

  20. Genetic algorithm for the optimization of features and neural networks in ECG signals classification

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu

    2017-01-01

    Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.

  1. Genetic algorithm for the optimization of features and neural networks in ECG signals classification

    PubMed Central

    Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu

    2017-01-01

    Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias. PMID:28139677

  2. ECG-based PICC tip verification system: an evaluation 5 years on.

    PubMed

    Oliver, Gemma; Jones, Matt

    2016-10-27

    In 2011, the vascular access team at East Kent Hospitals University NHS Foundation Trust safely and successfully incorporated the use of electrocardiogram (ECG) guidance technology for verification of peripherally inserted central catheters (PICC) tip placement into their practice. This study, 5 years on, compared the strengths and limitations of using this ECG method with the previous gold-standard of post-procedural chest X-ray. The study was undertaken using an embedded case study approach, and the cost, accuracy and efficiency of both systems were evaluated and compared. Using ECG to confirm PICC tip position was found to be cheaper, quicker and more accurate than post-procedural chest X-ray.

  3. High-calcium exposure to frog heart: a simple model representing hypercalcemia-induced ECG abnormalities.

    PubMed

    Kazama, Itsuro

    2017-01-20

    By simply adding a high concentration of calcium solution to the surface of the bullfrog heart, we reproduced electrocardiogram (ECG) abnormalities representing those observed in hypercalcemia, such as Osborn waves and shortening of the QT interval. The rise in extracellular calcium concentration may have activated the outward potassium currents during phase 3 of the action potential, and thus decreased its duration. In addition to the known decrease in the duration of phase 2, such changes in phase 3 were also likely to contribute to the shortening of the QT interval. The dual recordings of the action potential in cardiomyocytes and the ECG waves enabled us to demonstrate the mechanisms of ECG abnormalities induced by hypercalcemia.

  4. A hierarchical method for removal of baseline drift from biomedical signals: application in ECG analysis.

    PubMed

    Luo, Yurong; Hargraves, Rosalyn H; Belle, Ashwin; Bai, Ou; Qi, Xuguang; Ward, Kevin R; Pfaffenberger, Michael Paul; Najarian, Kayvan

    2013-01-01

    Noise can compromise the extraction of some fundamental and important features from biomedical signals and hence prohibit accurate analysis of these signals. Baseline wander in electrocardiogram (ECG) signals is one such example, which can be caused by factors such as respiration, variations in electrode impedance, and excessive body movements. Unless baseline wander is effectively removed, the accuracy of any feature extracted from the ECG, such as timing and duration of the ST-segment, is compromised. This paper approaches this filtering task from a novel standpoint by assuming that the ECG baseline wander comes from an independent and unknown source. The technique utilizes a hierarchical method including a blind source separation (BSS) step, in particular independent component analysis, to eliminate the effect of the baseline wander. We examine the specifics of the components causing the baseline wander and the factors that affect the separation process. Experimental results reveal the superiority of the proposed algorithm in removing the baseline wander.

  5. Powerline interference reduction in ECG signals using empirical wavelet transform and adaptive filtering.

    PubMed

    Singh, Omkar; Sunkaria, Ramesh Kumar

    2015-01-01

    Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods.

  6. Wavelet-Based Watermarking and Compression for ECG Signals with Verification Evaluation

    PubMed Central

    Tseng, Kuo-Kun; He, Xialong; Kung, Woon-Man; Chen, Shuo-Tsung; Liao, Minghong; Huang, Huang-Nan

    2014-01-01

    In the current open society and with the growth of human rights, people are more and more concerned about the privacy of their information and other important data. This study makes use of electrocardiography (ECG) data in order to protect individual information. An ECG signal can not only be used to analyze disease, but also to provide crucial biometric information for identification and authentication. In this study, we propose a new idea of integrating electrocardiogram watermarking and compression approach, which has never been researched before. ECG watermarking can ensure the confidentiality and reliability of a user's data while reducing the amount of data. In the evaluation, we apply the embedding capacity, bit error rate (BER), signal-to-noise ratio (SNR), compression ratio (CR), and compressed-signal to noise ratio (CNR) methods to assess the proposed algorithm. After comprehensive evaluation the final results show that our algorithm is robust and feasible. PMID:24566636

  7. An ultra-high input impedance ECG amplifier for long-term monitoring of athletes

    PubMed Central

    Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Ruffo, Mariano; Romano, Maria; Calvo, Rafael A; Jin, Craig; van Schaik, André

    2010-01-01

    We present a new, low-power electrocardiogram (ECG) recording system with an ultra-high input impedance that enables the use of long-lasting, dry electrodes. The system incorporates a low-power Bluetooth module for wireless connectivity and is designed to be suitable for long-term monitoring during daily activities. The new system using dry electrodes was compared with a clinically approved ECG reference system using gelled Ag/AgCl electrodes and performance was found to be equivalent. In addition, the system was used to monitor an athlete during several physical tasks, and a good quality ECG was obtained in all cases, including when the athlete was totally submerged in fresh water. PMID:22915916

  8. High-calcium exposure to frog heart: a simple model representing hypercalcemia-induced ECG abnormalities

    PubMed Central

    KAZAMA, Itsuro

    2016-01-01

    By simply adding a high concentration of calcium solution to the surface of the bullfrog heart, we reproduced electrocardiogram (ECG) abnormalities representing those observed in hypercalcemia, such as Osborn waves and shortening of the QT interval. The rise in extracellular calcium concentration may have activated the outward potassium currents during phase 3 of the action potential, and thus decreased its duration. In addition to the known decrease in the duration of phase 2, such changes in phase 3 were also likely to contribute to the shortening of the QT interval. The dual recordings of the action potential in cardiomyocytes and the ECG waves enabled us to demonstrate the mechanisms of ECG abnormalities induced by hypercalcemia. PMID:27773880

  9. Accuracy of remote electrocardiogram interpretation with the use of Google Glass technology.

    PubMed

    Jeroudi, Omar M; Christakopoulos, George; Christopoulos, George; Kotsia, Anna; Kypreos, Megan A; Rangan, Bavana V; Banerjee, Subhash; Brilakis, Emmanouil S

    2015-02-01

    We sought to investigate the accuracy of remote electrocardiogram (ECG) interpretation using Google Glass (Google, Mountain View, California). Google Glass is an optical head mounted display device with growing applications in medicine. We compared interpretation of 10 ECGs with 21 clinically important findings by faculty and fellow cardiologists by (1) viewing the electrocardiographic image at the Google Glass screen; (2) viewing a photograph of the ECG taken using Google Glass and interpreted on a mobile device; (3) viewing the original paper ECG; and (4) viewing a photograph of the ECG taken with a high-resolution camera and interpreted on a mobile device. One point was given for identification of each correct finding. Subjective rating of the user experience was also recorded. Twelve physicians (4 faculty and 8 fellow cardiologists) participated. The average electrocardiographic interpretation score (maximum 21 points) as viewed through the Google Glass, Google Glass photograph on a mobile device, on paper, and high-resolution photograph on a mobile device was 13.5 ± 1.8, 16.1 ± 2.6, 18.3 ± 1.7, and 18.6 ± 1.5, respectively (p = 0.0005 between Google Glass and mobile device, p = 0.0005 between Google Glass and paper, and p = 0.002 between mobile device and paper). Of the 12 physicians, 9 (75%) were dissatisfied with ECGs viewing on the prism display of Google Glass. In conclusion, further improvements are needed before Google Glass can be reliably used for remote electrocardiographic analysis.

  10. The design of heart sounds and electrocardiogram monitor system based Atmega 128L

    NASA Astrophysics Data System (ADS)

    Cao, Miao; An, Zhiyong; Zhang, Ying

    2006-11-01

    This paper introduces a realtime system which can acquire,process,store and display heart sounds and electrocardiogram(ECG) of the human body at the same time.It is composed of superior microprocessor--Atmega128L,large capacity Flash and the new type LCD.All hardwares adopt low power design and surface mounting package. The specialities of the system are low power, compact, and high intelligence. In consideration of transplant and solidity of the system, at the same time, it ensures that some complicated arithmetic can be realized.The system software applies mold construction and programs in C language. A model for automatic arithmetic is established for the feature extraction of ECG, realtime cardiotach ambulatory analysis is realized. The system is capable of recording ECG and heart sounds information in succession for 48 hours and it stores the no compression data synchronously. More than ten types of familiar heart diseases can be diagnosed in time by it automatically. The testing data achieved from this system is dependable, the diagnosing result is accurate and the waveform is no distortion. It solved a problem within the same kind of products effectively, that is, the dynamic ECG and heart sounds signal are acquired separately. The system do not affect the daily living and working of human being when it is used, so it is suited for clinical and family monitoring.

  11. Heart rate variability and electrocardiogram waveform as predictors of morbidity during hypothermia and rewarming in rats.

    PubMed

    Matthew, C B; Bastille, A M; Gonzalez, R R; Sils, I V

    2002-09-01

    This study examined electrocardiogram (ECG) waveform, heart rate (HR), mean blood pressure (BP), and HR variability as potential autonomic signatures of hypothermia and rewarming. Adult male Sprague-Dawley rats had telemetry transmitters surgically implanted, and 2 weeks were allowed for recovery prior to induction of hypothermia. Rats were lightly anesthetized (sodium pentobarbital, 35 mg/kg i.p.) and placed in a coil of copper tubing through which temperature-controlled water was circulated. Animals were cooled to a core temperature (Tc) of 20 degrees C, maintained there for 30 min, and then rewarmed. Data (Tc, BP, HR from ECG, and 10-s strips of ECG waveforms) were collected every 5 min throughout hypothermia and rewarming. Both HR and BP declined after initial increases with the drop in HR starting at a higher Tc than the drop in BP (29.6 +/- 2.4 degrees C vs. 27.1 +/- 3.3 degrees C, p < 0.05). Animals that were not successfully rewarmed exhibited a significant (p < 0.05) increase in the normalized standard deviation of interbeat intervals (IBI) throughout cooling compared with animals that were successfully rewarmed. The T wave of the ECG increased in amplitude and area with decreasing Tc. T-wave amplitude and IBI variability show potential as predictors of survival in hypothermic victims.

  12. CardioGuard: A Brassiere-Based Reliable ECG Monitoring Sensor System for Supporting Daily Smartphone Healthcare Applications

    PubMed Central

    Kwon, Sungjun; Kim, Jeehoon; Kang, Seungwoo; Lee, Youngki; Baek, Hyunjae

    2014-01-01

    Abstract We propose CardioGuard, a brassiere-based reliable electrocardiogram (ECG) monitoring sensor system, for supporting daily smartphone healthcare applications. It is designed to satisfy two key requirements for user-unobtrusive daily ECG monitoring: reliability of ECG sensing and usability of the sensor. The system is validated through extensive evaluations. The evaluation results showed that the CardioGuard sensor reliably measure the ECG during 12 representative daily activities including diverse movement levels; 89.53% of QRS peaks were detected on average. The questionnaire-based user study with 15 participants showed that the CardioGuard sensor was comfortable and unobtrusive. Additionally, the signal-to-noise ratio test and the washing durability test were conducted to show the high-quality sensing of the proposed sensor and its physical durability in practical use, respectively. PMID:25405527

  13. Fetal ECG Extraction from Abdominal Signals: A Review on Suppression of Fundamental Power Line Interference Component and Its Harmonics

    PubMed Central

    Ţarălungă, Dragoş-Daniel; Ungureanu, Georgeta-Mihaela; Gussi, Ilinca; Strungaru, Rodica; Wolf, Werner

    2014-01-01

    Interference of power line (PLI) (fundamental frequency and its harmonics) is usually present in biopotential measurements. Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG), electroencephalograms (EEG), and electrocardiograms (ECG). When analyzing the fetal ECG (fECG) recorded on the maternal abdomen, the PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing the extraction of any useful information regarding the fetal health state. Many signal processing methods for cancelling the PLI from biopotentials are available in the literature. In this review study, six different principles are analyzed and discussed, and their performance is evaluated on simulated data (three different scenarios), based on five quantitative performance indices. PMID:24660020

  14. Multiscale permutation entropy analysis of electrocardiogram

    NASA Astrophysics Data System (ADS)

    Liu, Tiebing; Yao, Wenpo; Wu, Min; Shi, Zhaorong; Wang, Jun; Ning, Xinbao

    2017-04-01

    To make a comprehensive nonlinear analysis to ECG, multiscale permutation entropy (MPE) was applied to ECG characteristics extraction to make a comprehensive nonlinear analysis of ECG. Three kinds of ECG from PhysioNet database, congestive heart failure (CHF) patients, healthy young and elderly subjects, are applied in this paper. We set embedding dimension to 4 and adjust scale factor from 2 to 100 with a step size of 2, and compare MPE with multiscale entropy (MSE). As increase of scale factor, MPE complexity of the three ECG signals are showing first-decrease and last-increase trends. When scale factor is between 10 and 32, complexities of the three ECG had biggest difference, entropy of the elderly is 0.146 less than the CHF patients and 0.025 larger than the healthy young in average, in line with normal physiological characteristics. Test results showed that MPE can effectively apply in ECG nonlinear analysis, and can effectively distinguish different ECG signals.

  15. The Electrocardiogram as an Example of Electrostatics

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    Develops a simplified electrostatic model of the heart with conduction within the torso neglected to relate electrocardiogram patterns to the charge distribution within the myocardium. Suggests its application to explanation of Coulomb's law in general physics. (CC)

  16. A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator.

    PubMed

    Martinek, Radek; Kelnar, Michal; Koudelka, Petr; Vanus, Jan; Bilik, Petr; Janku, Petr; Nazeran, Homer; Zidek, Jan

    2016-02-01

    This paper describes the design, construction, and testing of a multi-channel fetal electrocardiogram (fECG) signal generator based on LabVIEW. Special attention is paid to the fetal heart development in relation to the fetus' anatomy, physiology, and pathology. The non-invasive signal generator enables many parameters to be set, including fetal heart rate (FHR), maternal heart rate (MHR), gestational age (GA), fECG interferences (biological and technical artifacts), as well as other fECG signal characteristics. Furthermore, based on the change in the FHR and in the T wave-to-QRS complex ratio (T/QRS), the generator enables manifestations of hypoxic states (hypoxemia, hypoxia, and asphyxia) to be monitored while complying with clinical recommendations for classifications in cardiotocography (CTG) and fECG ST segment analysis (STAN). The generator can also produce synthetic signals with defined properties for 6 input leads (4 abdominal and 2 thoracic). Such signals are well suited to the testing of new and existing methods of fECG processing and are effective in suppressing maternal ECG while non-invasively monitoring abdominal fECG. They may also contribute to the development of a new diagnostic method, which may be referred to as non-invasive trans-abdominal CTG +  STAN. The functional prototype is based on virtual instrumentation using the LabVIEW developmental environment and its associated data acquisition measurement cards (DAQmx). The generator also makes it possible to create synthetic signals and measure actual fetal and maternal ECGs by means of bioelectrodes.

  17. Noninvasive Fetal ECG analysis

    PubMed Central

    Clifford, Gari D.; Silva, Ikaro; Behar, Joachim; Moody, George B.

    2014-01-01

    Despite the important advances achieved in the field of adult electrocardiography signal processing, the analysis of the non-invasive fetal electrocardiogram (NI-FECG) remains a challenge. Currently no gold standard database exists which provides labelled FECG QRS complexes (and other morphological parameters), and publications rely either on proprietary databases or a very limited set of data recorded from few (or more often, just one) individuals. The PhysioNet/Computing in Cardiology Challenge 2013 enables to tackle some of these limitations by releasing a set of NI-FECG data publicly to the scientific community in order to evaluate signal processing techniques for NI-FECG extraction. The Challenge aim was to encourage development of accurate algorithms for locating QRS complexes and estimating the QT interval in noninvasive FECG signals. Using carefully reviewed reference QRS annotations and QT intervals as a gold standard, based on simultaneous direct FECG when possible, the Challenge was designed to measure and compare the performance of participants’ algorithms objectively. Multiple challenge events were designed to test basic FHR estimation accuracy, as well as accuracy in measurement of inter-beat (RR) and QT intervals needed as a basis for derivation of other FECG features. This editorial reviews the background issues, the design of the Challenge, the key achievements, and the follow-up research generated as a result of the Challenge, published in the concurrent special issue of Physiological Measurement. PMID:25071093

  18. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals.

    PubMed

    Elhaj, Fatin A; Salim, Naomie; Harris, Arief R; Swee, Tan Tian; Ahmed, Taqwa

    2016-04-01

    Arrhythmia is a cardiac condition caused by abnormal electrical activity of the heart, and an electrocardiogram (ECG) is the non-invasive method used to detect arrhythmias or heart abnormalities. Due to the presence of noise, the non-stationary nature of the ECG signal (i.e. the changing morphology of the ECG signal with respect to time) and the irregularity of the heartbeat, physicians face difficulties in the diagnosis of arrhythmias. The computer-aided analysis of ECG results assists physicians to detect cardiovascular diseases. The development of many existing arrhythmia systems has depended on the findings from linear experiments on ECG data which achieve high performance on noise-free data. However, nonlinear experiments characterize the ECG signal more effectively sense, extract hidden information in the ECG signal, and achieve good performance under noisy conditions. This paper investigates the representation ability of linear and nonlinear features and proposes a combination of such features in order to improve the classification of ECG data. In this study, five types of beat classes of arrhythmia as recommended by the Association for Advancement of Medical Instrumentation are analyzed: non-ectopic beats (N), supra-ventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F) and unclassifiable and paced beats (U). The characterization ability of nonlinear features such as high order statistics and cumulants and nonlinear feature reduction methods such as independent component analysis are combined with linear features, namely, the principal component analysis of discrete wavelet transform coefficients. The features are tested for their ability to differentiate different classes of data using different classifiers, namely, the support vector machine and neural network methods with tenfold cross-validation. Our proposed method is able to classify the N, S, V, F and U arrhythmia classes with high accuracy (98.91%) using a combined support

  19. Object-oriented analysis and design of an ECG storage and retrieval system integrated with an HIS.

    PubMed

    Wang, C; Ohe, K; Sakurai, T; Nagase, T; Kaihara, S

    1996-03-01

    For a hospital information system, object-oriented methodology plays an increasingly important role, especially for the management of digitized data, e.g., the electrocardiogram, electroencephalogram, electromyogram, spirogram, X-ray, CT and histopathological images, which are not yet computerized in most hospitals. As a first step in an object-oriented approach to hospital information management and storing medical data in an object-oriented database, we connected electrocardiographs to a hospital network and established the integration of ECG storage and retrieval systems with a hospital information system. In this paper, the object-oriented analysis and design of the ECG storage and retrieval systems is reported.

  20. The highly-cited Electrocardiogram-related articles in science citation index expanded: characteristics and hotspots.

    PubMed

    Yang, Xianglin; Gu, Jiaojiao; Yan, Hong; Xu, Zhi; Ren, Bing; Yang, Yaming; Yang, Xiaodong; Chen, Qi; Tan, Shaohua

    2014-01-01

    We used bibliometric analysis methodology in the expanded Science Citation Index to identify highly-cited electrocardiogram (ECG)-related articles with total citations (TC2012) exceeding 100 from the publication year to 2012. Web of Science search tools were used to identify the highly-cited articles. The aspects analyzed for highly cited publications included effect of time on citation analysis, journals and Web of Science categories, number of authors per publication, originating institutions and countries, total citation and total citation per year life cycles of articles (C2012) and research hotspots. Results showed that a total of 467 electrocardiogram-related publications were regarded as the highly-cited publications. TC2012 ranged from 101 to 2879, with 215 as the average number of citations. No highly-cited publications have emerged yet during the first two years of the present 2010 Decade. All 11 countries and institutions originating highly-cited ECG-related publications were developed countries, USA in 9 of them. Four subject categories were identified as hotspots by total citations TC2012 and C2012: atrial fibrillation, long QT syndrome, angina and myocardial infarction, and risk factor analysis and health evaluation.

  1. Visual three-dimensional representation of beat-to-beat electrocardiogram traces during hemodiafiltration.

    PubMed

    Rodriguez-Fernandez, Rodrigo; Infante, Oscar; Perez-Grovas, Héctor; Hernandez, Erika; Ruiz-Palacios, Patricia; Franco, Martha; Lerma, Claudia

    2012-06-01

    This study evaluated the usefulness of the three-dimensional representation of electrocardiogram traces (3DECG) to reveal acute and gradual changes during a full session of hemodiafiltration (HDF) in end-stage renal disease (ESRD) patients. Fifteen ESRD patients were included (six men, nine women, age 46 ± 19 years old). Serum electrolytes, blood pressure, heart rate, and blood urea nitrogen (BUN) were measured before and after HDF. Continuous electrocardiograms (ECGs) obtained by Holter monitoring during HDF were used to produce the 3DECG. Several major disturbances were identified by 3DECG images: increase in QRS amplitude (47%), decrease in T-wave amplitude (33%), increase in heart rate (33%), and occurrence of arrhythmia (53%). Different arrhythmia types were often concurrent and included isolated supraventricular premature beats (N = 5), atrial fibrillation or atrial bigeminy (N = 2), and isolated premature ventricular beats (N = 6). Patients with decrease in T-wave amplitude had higher potassium and BUN (both before HDF and total removal) than those without decrease in T-wave amplitude (P < 0.05). Concurrent acute and gradual ECG changes during HDF are identified by the 3DECG, which could be useful as a preventive and prognostic method.

  2. Piezoelectric extraction of ECG signal.

    PubMed

    Ahmad, Mahmoud Al

    2016-11-17

    The monitoring and early detection of abnormalities or variations in the cardiac cycle functionality are very critical practices and have significant impact on the prevention of heart diseases and their associated complications. Currently, in the field of biomedical engineering, there is a growing need for devices capable of measuring and monitoring a wide range of cardiac cycle parameters continuously, effectively and on a real-time basis using easily accessible and reusable probes. In this paper, the revolutionary generation and extraction of the corresponding ECG signal using a piezoelectric transducer as alternative for the ECG will be discussed. The piezoelectric transducer pick up the vibrations from the heart beats and convert them into electrical output signals. To this end, piezoelectric and signal processing techniques were employed to extract the ECG corresponding signal from the piezoelectric output voltage signal. The measured electrode based and the extracted piezoelectric based ECG traces are well corroborated. Their peaks amplitudes and locations are well aligned with each other.

  3. Piezoelectric extraction of ECG signal

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al

    2016-11-01

    The monitoring and early detection of abnormalities or variations in the cardiac cycle functionality are very critical practices and have significant impact on the prevention of heart diseases and their associated complications. Currently, in the field of biomedical engineering, there is a growing need for devices capable of measuring and monitoring a wide range of cardiac cycle parameters continuously, effectively and on a real-time basis using easily accessible and reusable probes. In this paper, the revolutionary generation and extraction of the corresponding ECG signal using a piezoelectric transducer as alternative for the ECG will be discussed. The piezoelectric transducer pick up the vibrations from the heart beats and convert them into electrical output signals. To this end, piezoelectric and signal processing techniques were employed to extract the ECG corresponding signal from the piezoelectric output voltage signal. The measured electrode based and the extracted piezoelectric based ECG traces are well corroborated. Their peaks amplitudes and locations are well aligned with each other.

  4. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P < 0.001) from a linear combination of 5 independent variables: QRS elevation in the frontal plane (p<0.001), a new repolarization parameter QTcorr (p<0.001), mean high frequency QRS amplitude (p=0.009), the variability parameter % VLF of RRV (p=0.021) and the P-wave width (p=0.10). Here, QTcorr represents the correlation between the calculated QT and the measured QT signal. Conclusions: In apparently healthy subjects with normal conventional ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  5. Deployment of an Advanced Electrocardiographic Analysis (A-ECG) to Detect Cardiovascular Risk in Career Firefighters

    NASA Technical Reports Server (NTRS)

    Dolezal, B. A.; Storer, T. W.; Abrazado, M.; Watne, R.; Schlegel, T. T.; Batalin, M.; Kaiser, W.; Smith, D. L.; Cooper, C. B.

    2011-01-01

    INTRODUCTION: Sudden cardiac death is the leading cause of line of duty death among firefighters, accounting for approximately 45% of fatalities annually. Firefighters perform strenuous muscular work while wearing heavy, encapsulating personal protective equipment in high ambient temperatures, under chaotic and emotionally stressful conditions. These factors can precipitate sudden cardiac events like myocardial infarction, serious dysrhythmias, or cerebrovascular accidents in firefighters with underlying cardiovascular disease. PURPOSE: The purpose of this study was to deploy and then evaluate the contribution of resting advanced ECG (A-ECG) in addition to other screening tools (family history, lipid profiles, and cardiopulmonary exercise tests, XT) in assessment of an individual fs cardiac risk profile. METHODS: Forty-four career firefighters were recruited to perform comprehensive baseline assessments including tests of aerobic performance, fasting lipids and glucose. Five-min resting 12-lead A-ECGs were obtained in a subset of firefighters (n=21) and transmitted over a secure networked system to a NASA physician collaborator. Using myocardial perfusion and other imaging as the gold standard, A-ECG scoring has been proven useful in accurately identifying a number of cardiac pathologies including coronary artery disease (CAD), left ventricular hypertrophy, hypertrophic cardiomyopathy, and non-ischemic and ischemic cardiomyopathy. RESULTS: Subjects f mean (SD) age was 43 (8) years, weight 91 (13) kg, and BMI 28 (3) kg/m2. Fifty-one percent of subjects had .3 cardiovascular risk factors. One subject had ST depression on XT ECG, at least one positive A-ECG score for CAD, and documented CAD based on cardiology referral. While all other subjects, including those with fewer risk factors, higher aerobic fitness, and normal exercise ECGs, were classified as healthy by A-ECG, there was no trend for association between risk factors and any of 20 A-ECG parameters in the

  6. Microcontroller-based underwater acoustic ECG telemetry system.

    PubMed

    Istepanian, R S; Woodward, B

    1997-06-01

    This paper presents a microcontroller-based underwater acoustic telemetry system for digital transmission of the electrocardiogram (ECG). The system is designed for the real time, through-water transmission of data representing any parameter, and it was used initially for transmitting in multiplexed format the heart rate, breathing rate and depth of a diver using self-contained underwater breathing apparatus (SCUBA). Here, it is used to monitor cardiovascular reflexes during diving and swimming. The programmable capability of the system provides an effective solution to the problem of transmitting data in the presence of multipath interference. An important feature of the paper is a comparative performance analysis of two encoding methods, Pulse Code Modulation (PCM) and Pulse Position Modulation (PPM).

  7. Intracoronary electrocardiogram during alcohol septal ablation for hypertrophic obstructive cardiomyopathy predicts myocardial injury size.

    PubMed

    Meng, Jing; Qu, Xiaolong; Huang, Haiyun; Zhang, Shanwen; Zhao, Weibo; He, Guoxiang; Song, Zhiyuan; Hu, Houyuan

    2016-01-01

    Alcohol septal ablation (ASA) has been used widely to treat patients with hypertrophic obstructive cardiomyopathy (HOCM). During the routine ASA procedure, it is difficult to detect the septal injury in real-time. The aim of the present study is to assess myocardial injury during ASA by recording intracoronary electrocardiogram (IC-ECG). From 2012 to 2015, 31 HOCM patients were treated with ASA, and IC-ECG was recorded in 21 patients successfully before and after ethanol injection. The elevation of ST-segment on IC-ECG after ethanol injection was expressed as its ratio to the level before injection or the absolute increasing value. Blood samples were collected before and after ASA for measuring changes in cardiac biomarkers. The ratio value of ST-segment elevation was positively correlated with both the amount of ethanol injected (r = 0.645, P = 0.001) and the myocardial injury size (creatine kinase-MB area under the curve (AUC) of CK-MB) (r = 0.466, P = 0.017). The absolute increment of ST-segment was also positively associated with both the amount of ethanol (r = 0.665, P = 0.001) and AUC of CK-MB (0.685, P = 0.001). However, there was no statistical correlation between the reduction of left ventricular outflow tract gradient and ST-segment elevation. Additionally no severe ASA procedure-related complications were observed in our patients. In conclusion, myocardial injury induced by ethanol injection can be assessed immediately by ST-segment elevation on IC-ECG. This study is the first to show that IC-ECG is a useful method for predicting myocardial injury during ASA in real-time.

  8. Comparison of three artificial models of the MHD effect on the electrocardiogram

    PubMed Central

    Oster, Julien; Llinares, Raul; Payne, Stephen; Tse, Zion Tsz Ho; Schmidt, Ehud Jeruham; Clifford, Gari D.

    2013-01-01

    The Electrocardiogram (ECG) is often acquired during Magnetic Resonance Imaging (MRI) for both image acquisition synchronisation with heart activity and patient monitoring to alert for life-threatening events. Accurate ECG analysis is mandatory for cutting-edge applications, such as MRI guided interventions. Nevertheless, the majority of the clinical analysis of ECG acquired inside MRI is made difficult by the superposition of a voltage called the MagnetoHydroDynamic (MHD) effect. MHD is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolatisation period. In this study, a new MHD model is proposed which is an extension of several existing models and incorporates MRI-based blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models is made with our new model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a good agreement between our proposed model and the estimated MHD for most leads, although there are clearly some descrepencies with the observed signal which are likely to be due to remaining deficiencies in the model. However, the results demonstrate that our new model provides a closer approximation to observed MHD effects and a better depiction of the complexity of the MHD effect compared to the previously published models. The source code will be made freely available under and open source license to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect. PMID:24761753

  9. Mass exponent spectrum analysis of human ECG signals and its application to complexity detection

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Du, Sidan; Ning, Xinbao; Bian, Chunhua

    2008-06-01

    The complexity of electrocardiogram (ECG) signal may reflect the physiological function and healthy status of the heart. In this paper, we introduced two novel intermediate parameters of multifractality, the mass exponent spectrum curvature and area, to characterize the nonlinear complexity of ECG signal. These indicators express the nonlinear superposition of the discrepancies of singularity strengths from all the adjacent points of the spectrum curve and thus overall subsets of original fractal structure. The evaluation of binomial multifractal sets validated these two variables were entirely effective in exploring the complexity of this time series. We then studied the ECG mass exponent spectra taken from the cohorts of healthy, ischemia and myocardial infarction (MI) sufferer based on a large sets of 12 leads’ recordings, and took the statistical averages among each crowd. Experimental results suggest the two values from healthy ECG are apparently larger than those from the heart diseased. While the values from ECG of MI sufferer are much smaller than those from the other two groups. As for the ischemia sufferer, they are almost of moderate magnitude. Afterward, we compared these new indicators with the nonlinear parameters of singularity spectrum. The classification indexes and results of total separating ratios (TSR, defined in the paper) both indicated that our method could achieve a better effect. These conclusions may be of some values in early diagnoses and clinical applications.

  10. A stacked contractive denoising auto-encoder for ECG signal denoising.

    PubMed

    Xiong, Peng; Wang, Hongrui; Liu, Ming; Lin, Feng; Hou, Zengguang; Liu, Xiuling

    2016-12-01

    As a primary diagnostic tool for cardiac diseases, electrocardiogram (ECG) signals are often contaminated by various kinds of noise, such as baseline wander, electrode contact noise and motion artifacts. In this paper, we propose a contractive denoising technique to improve the performance of current denoising auto-encoders (DAEs) for ECG signal denoising. Based on the Frobenius norm of the Jacobean matrix for the learned features with respect to the input, we develop a stacked contractive denoising auto-encoder (CDAE) to build a deep neural network (DNN) for noise reduction, which can significantly improve the expression of ECG signals through multi-level feature extraction. The proposed method is evaluated on ECG signals from the bench-marker MIT-BIH Arrhythmia Database, and the noises come from the MIT-BIH noise stress test database. The experimental results show that the new CDAE algorithm performs better than the conventional ECG denoising method, specifically with more than 2.40 dB improvement in the signal-to-noise ratio (SNR) and nearly 0.075 to 0.350 improvements in the root mean square error (RMSE).

  11. A Telesurveillance System With Automatic Electrocardiogram Interpretation Based on Support Vector Machine and Rule-Based Processing

    PubMed Central

    Lin, Ching-Miao; Lai, Feipei; Ho, Yi-Lwun; Hung, Chi-Sheng

    2015-01-01

    Background Telehealth care is a global trend affecting clinical practice around the world. To mitigate the workload of health professionals and provide ubiquitous health care, a comprehensive surveillance system with value-added services based on information technologies must be established. Objective We conducted this study to describe our proposed telesurveillance system designed for monitoring and classifying electrocardiogram (ECG) signals and to evaluate the performance of ECG classification. Methods We established a telesurveillance system with an automatic ECG interpretation mechanism. The system included: (1) automatic ECG signal transmission via telecommunication, (2) ECG signal processing, including noise elimination, peak estimation, and feature extraction, (3) automatic ECG interpretation based on the support vector machine (SVM) classifier and rule-based processing, and (4) display of ECG signals and their analyzed results. We analyzed 213,420 ECG signals that were diagnosed by cardiologists as the gold standard to verify the classification performance. Results In the clinical ECG database from the Telehealth Center of the National Taiwan University Hospital (NTUH), the experimental results showed that the ECG classifier yielded a specificity value of 96.66% for normal rhythm detection, a sensitivity value of 98.50% for disease recognition, and an accuracy value of 81.17% for noise detection. For the detection performance of specific diseases, the recognition model mainly generated sensitivity values of 92.70% for atrial fibrillation, 89.10% for pacemaker rhythm, 88.60% for atrial premature contraction, 72.98% for T-wave inversion, 62.21% for atrial flutter, and 62.57% for first-degree atrioventricular block. Conclusions Through connected telehealth care devices, the telesurveillance system, and the automatic ECG interpretation system, this mechanism was intentionally designed for continuous decision-making support and is reliable enough to reduce the

  12. Acquisition of Visual Perceptual Skills from Worked Examples: Learning to Interpret Electrocardiograms (ECGs)

    ERIC Educational Resources Information Center

    van den Berge, Kees; van Gog, Tamara; Mamede, Silvia; Schmidt, Henk G.; van Saase, Jan L. C. M.; Rikers, Remy M. J. P.

    2013-01-01

    Research has shown that for acquiring problem-solving skills, instruction consisting of studying worked examples is more effective and efficient for novice learners than instruction consisting of problem-solving. This study investigated whether worked examples would also be a useful instructional format for the acquisition of visual perceptual…

  13. The future of remote ECG monitoring systems

    PubMed Central

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-01-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  14. Predictable and reliable ECG monitoring over IEEE 802.11 WLANs within a hospital.

    PubMed

    Park, Juyoung; Kang, Kyungtae

    2014-09-01

    Telecardiology provides mobility for patients who require constant electrocardiogram (ECG) monitoring. However, its safety is dependent on the predictability and robustness of data delivery, which must overcome errors in the wireless channel through which the ECG data are transmitted. We report here a framework that can be used to gauge the applicability of IEEE 802.11 wireless local area network (WLAN) technology to ECG monitoring systems in terms of delay constraints and transmission reliability. For this purpose, a medical-grade WLAN architecture achieved predictable delay through the combination of a medium access control mechanism based on the point coordination function provided by IEEE 802.11 and an error control scheme based on Reed-Solomon coding and block interleaving. The size of the jitter buffer needed was determined by this architecture to avoid service dropout caused by buffer underrun, through analysis of variations in transmission delay. Finally, we assessed this architecture in terms of service latency and reliability by modeling the transmission of uncompressed two-lead electrocardiogram data from the MIT-BIH Arrhythmia Database and highlight the applicability of this wireless technology to telecardiology.

  15. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    NASA Astrophysics Data System (ADS)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  16. Electrocardiogram transmission - The state of the art.

    NASA Technical Reports Server (NTRS)

    Firstenberg, A.; Huston, S. W.; Olsen, D. E.; Hahn, P. M.

    1971-01-01

    A comparative analysis of available clinical EKG telemetry systems was conducted. Although present day electrocardiogram diagnosis requires a high degree of measurement accuracy, there exists wide variations in the performance characteristics of the various telemeters marketed today necessitating careful consideration of specifications prior to procurement. The authors have endeavored to provide the physicians with a clear understanding, in terms of the effects on the electrocardiogram, of the factors he must evaluate in order to ensure high fidelity EKG reproduction. A tabulation of comparative parameter values for each unit obtained from manufacturers' specifications and substantiated by standardized performance tests conducted in our laboratory is presented.

  17. Human Age Recognition by Electrocardiogram Signal Based on Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Dasgupta, Hirak

    2016-12-01

    The objective of this work is to make a neural network function approximation model to detect human age from the electrocardiogram (ECG) signal. The input vectors of the neural network are the Katz fractal dimension of the ECG signal, frequencies in the QRS complex, male or female (represented by numeric constant) and the average of successive R-R peak distance of a particular ECG signal. The QRS complex has been detected by short time Fourier transform algorithm. The successive R peak has been detected by, first cutting the signal into periods by auto-correlation method and then finding the absolute of the highest point in each period. The neural network used in this problem consists of two layers, with Sigmoid neuron in the input and linear neuron in the output layer. The result shows the mean of errors as -0.49, 1.03, 0.79 years and the standard deviation of errors as 1.81, 1.77, 2.70 years during training, cross validation and testing with unknown data sets, respectively.

  18. Sparse electrocardiogram signals recovery based on solving a row echelon-like form of system.

    PubMed

    Cai, Pingmei; Wang, Guinan; Yu, Shiwei; Zhang, Hongjuan; Ding, Shuxue; Wu, Zikai

    2016-02-01

    The study of biology and medicine in a noise environment is an evolving direction in biological data analysis. Among these studies, analysis of electrocardiogram (ECG) signals in a noise environment is a challenging direction in personalized medicine. Due to its periodic characteristic, ECG signal can be roughly regarded as sparse biomedical signals. This study proposes a two-stage recovery algorithm for sparse biomedical signals in time domain. In the first stage, the concentration subspaces are found in advance. Then by exploiting these subspaces, the mixing matrix is estimated accurately. In the second stage, based on the number of active sources at each time point, the time points are divided into different layers. Next, by constructing some transformation matrices, these time points form a row echelon-like system. After that, the sources at each layer can be solved out explicitly by corresponding matrix operations. It is noting that all these operations are conducted under a weak sparse condition that the number of active sources is less than the number of observations. Experimental results show that the proposed method has a better performance for sparse ECG signal recovery problem.

  19. Electrocardiogram alterations following one-week consumption of Crocus sativus L. (Saffron)

    PubMed Central

    Joukar, Siyavash

    2012-01-01

    Considering the global popularity and also the various biological and medicinal properties of saffron, this study was conducted to assess the influence of its aqueous extracts administration on blood pressure, pressure-rate product (PRP) and electrocardiogram (ECG) indices of rat. Animals were divided to control (CTL), SAF50, SAF100, and SAF200 groups that orally received tap water, aqueous extracts of saffron 50, 100 and 200 mg/kg/day respectively for seven days. On day 8, data were recorded. Different doses of saffron had no significant effect on blood pressure and also PRP. Higher dose (200 mg/kg) of saffron significantly increased the PR interval, P duration, QT interval (p<0.01), QRS interval, QTcn (normalized corrected QT) (p<0.001), and JT interval (p<0.05) of ECG compared to the CTL group. In addition, the two other doses only significantly prolonged the QT, QTcn and JT intervals of ECG versus the CTL group. The SAF200 group also showed a notable increase in RR interval which only was significant versus to the SAF50. There was no significant difference among ST height and T amplitude ranges of different groups. The results suggest that high dose of saffron definitely slows the electrical conduction velocity in both atrium and ventricle. PMID:27418921

  20. A Novel Method for Fast Change-Point Detection on Simulated Time Series and Electrocardiogram Data

    PubMed Central

    Qi, Jin-Peng; Zhang, Qing; Zhu, Ying; Qi, Jie

    2014-01-01

    Although Kolmogorov-Smirnov (KS) statistic is a widely used method, some weaknesses exist in investigating abrupt Change Point (CP) problems, e.g. it is time-consuming and invalid sometimes. To detect abrupt change from time series fast, a novel method is proposed based on Haar Wavelet (HW) and KS statistic (HWKS). First, the two Binary Search Trees (BSTs), termed TcA and TcD, are constructed by multi-level HW from a diagnosed time series; the framework of HWKS method is implemented by introducing a modified KS statistic and two search rules based on the two BSTs; and then fast CP detection is implemented by two HWKS-based algorithms. Second, the performance of HWKS is evaluated by simulated time series dataset. The simulations show that HWKS is faster, more sensitive and efficient than KS, HW, and T methods. Last, HWKS is applied to analyze the electrocardiogram (ECG) time series, the experiment results show that the proposed method can find abrupt change from ECG segment with maximal data fluctuation more quickly and efficiently, and it is very helpful to inspect and diagnose the different state of health from a patient's ECG signal. PMID:24690633

  1. Utility of Normal Findings on Electrocardiogram and Echocardiogram in Subjects ≥65 Years.

    PubMed

    Venkatesh, Sanjay; O'Neal, Wesley T; Broughton, Stephen T; Shah, Amit J; Soliman, Elsayed Z

    2017-03-15

    The lack of abnormalities found on noninvasive cardiac testing possibly improves cardiovascular disease (CVD) risk stratification efforts and conveys reduced risk despite the presence of traditional risk factors. This analysis included 3,805 (95% white and 61% women) participants from the Cardiovascular Health Study (CHS) without baseline CVD. The combination of a normal electrocardiogram (ECG) and echocardiogram was assessed for the development of CVD. A normal ECG was defined as the absence of major or minor Minnesota code abnormalities. A normal echocardiogram was defined as the absence of contractile dysfunction, wall motion abnormalities, or abnormal left ventricular mass. Cox regression was used to compute the 10-year risk of developing coronary heart disease, stroke, and heart failure events. There were 1,555 participants (41%) with normal findings on both measures. After accounting for traditional CVD risk factors, a protective benefit was observed for all outcomes among participants who had normal ECG and echocardiographic findings (coronary heart disease: hazard ratio [HR] 0.56, 95% confidence interval [CI] 0.46, 0.69; stroke: HR 0.57, 95% CI 0.43, 0.76; heart failure: HR 0.36, 95% CI 0.29, 0.41). The addition of this normal profile resulted in significant net reclassification improvement of the Framingham risk score for heart failure (net reclassification improvement 4.3%, 95% CI 1.0, 8.0). In conclusion, normal findings on routine noninvasive cardiac assessment identify subjects in whom CVD risk is low.

  2. A Mobile Device System for Early Warning of ECG Anomalies

    PubMed Central

    Szczepański, Adam; Saeed, Khalid

    2014-01-01

    With the rapid increase in computational power of mobile devices the amount of ambient intelligence-based smart environment systems has increased greatly in recent years. A proposition of such a solution is described in this paper, namely real time monitoring of an electrocardiogram (ECG) signal during everyday activities for identification of life threatening situations. The paper, being both research and review, describes previous work of the authors, current state of the art in the context of the authors' work and the proposed aforementioned system. Although parts of the solution were described in earlier publications of the authors, the whole concept is presented completely for the first time along with the prototype implementation on mobile device—a Windows 8 tablet with Modern UI. The system has three main purposes. The first goal is the detection of sudden rapid cardiac malfunctions and informing the people in the patient's surroundings, family and friends and the nearest emergency station about the deteriorating health of the monitored person. The second goal is a monitoring of ECG signals under non-clinical conditions to detect anomalies that are typically not found during diagnostic tests. The third goal is to register and analyze repeatable, long-term disturbances in the regular signal and finding their patterns. PMID:24955946

  3. An Effective Technique for Enhancing an Intrauterine Catheter Fetal Electrocardiogram

    NASA Astrophysics Data System (ADS)

    Horner, Steven L.; Holls, William M.

    2003-12-01

    Physician can obtain fetal heart rate, electrophysiological information, and uterine contraction activity for determining fetal status from an intrauterine catheters electrocardiogram with the maternal electrocardiogram canceled. In addition, the intrauterine catheter would allow physicians to acquire fetal status with one non-invasive to the fetus biosensor as compared to invasive to the fetus scalp electrode and intrauterine pressure catheter used currently. A real-time maternal electrocardiogram cancellation technique of the intrauterine catheters electrocardiogram will be discussed along with an analysis for the methods effectiveness with synthesized and clinical data. The positive results from an original detailed subjective and objective analysis of synthesized and clinical data clearly indicate that the maternal electrocardiogram cancellation method was found to be effective. The resulting intrauterine catheters electrocardiogram from effectively canceling the maternal electrocardiogram could be used for determining fetal heart rate, fetal electrocardiogram electrophysiological information, and uterine contraction activity.

  4. Contourograph display system for monitoring electrocardiograms

    NASA Technical Reports Server (NTRS)

    Golden, D. P., Jr.; Maudlin, D. G.; Wolthuis, R. A.

    1970-01-01

    Electrocardiogram is displayed as a contourogram on the cathode ray tube of a variable-persistence oscilloscope. Each cycle is stacked below its predecessors giving a three dimensional effect. A major change in the signal is apparent as a change in the contourogram pattern.

  5. Direct reading of electrocardiograms and respiration rates

    NASA Technical Reports Server (NTRS)

    Wise, J. P.

    1969-01-01

    Technique for reading heart and respiration rates is more accurate and direct than the previous method. Index of a plastic calibrated card is aligned with a point on the electrocardiogram. Complexes are counted as indicated on the card and heart or respiration rate is read directly from the appropriate scale.

  6. Subcutaneous electrocardiogram monitors and their field of view.

    PubMed

    Arzbaecher, Robert; Hampton, David R; Burke, Martin C; Garrett, Michael C

    2010-01-01

    Continuous electrocardiogram (ECG) monitoring of cardiac patients on a long-term, even permanent, basis has become possible. Postsurgical cases, those with significant risk factors, or patients with chronic conditions are candidates for these procedures to assess evolving risk factors and detect life-threatening events. A small sensing device can be implanted subcutaneously to assess the ECG, transmitting status and alerts to local caregivers or a remote monitoring service. We and others have shown that a differential electrode pair with only 2- to 3-cm spacing can produce QRS amplitudes greater than 1 mV, sufficient to accurately identify asystole, tachyarrhythmias, and ST-segment changes. Medtronic's REVEAL and St Jude Medical's CONFIRM are implantable look recorders (ILRs) with a single pair of subcutaneous electrodes mounted on the surface of the case (6 × 2 × 0.7 cm). They store representative rhythm strips when the heart rate exceeds preset limits or when the patient presses a button on the accompanying actuator. These records may be transferred for physician review during a subsequent office visit. Transoma's SLEUTH is a similar ILR, except that one of the electrodes is at the end of a 6-cm lead tunneled under the skin and the wider separation may result in a larger ECG amplitude. Instead of storing the records, SLEUTH transmits them through the skin to a home base unit, which sends them via telephone to a monitoring service. Angel Medical's ALERT system also has a tunneled lead, but one that is introduced pervenously into the right ventricle hoping to detect ST changes in addition to rhythm abnormalities. Advanced multivector ILR devices with integrated event alerting are rapidly approaching commercialization. AJ Medical Devices' CARDIOALARM (4 × 4 × 0.6 cm) has 4 electrodes at the corners of the square package, arranged as 2 orthogonal recording pairs that can produce a robust signal that is relatively immune to signal fluctuations caused by changes in

  7. Deployment of an Advanced Electrocardiographic Analysis (A-ECG) to Detect Cardiovascular Risk in Career Firefighters

    NASA Technical Reports Server (NTRS)

    Dolezal, B. A.; Storer, T. W.; Abrazado, M.; Watne, R.; Schlegel, T. T.; Batalin, M.; Kaiser, W.; Smith, D. L.; Cooper, C. B.

    2011-01-01

    INTRODUCTION Sudden cardiac death is the leading cause of line of duty death among firefighters, accounting for approximately 45% of fatalities annually. Firefighters perform strenuous muscular work while wearing heavy, encapsulating personal protective equipment in high ambient temperatures, under chaotic and emotionally stressful conditions. These factors can precipitate sudden cardiac events like myocardial infarction, serious dysrhythmias, or cerebrovascular accidents in firefighters with underlying cardiovascular disease. Screening for cardiovascular risk factors is recommended but not always followed in this population. PHASER is a project charged with identifying and prioritizing risk factors in emergency responders. We have deployed an advanced ECG (A-ECG) system developed at NASA for improved sensitivity and specificity in the detection of cardiac risk. METHODS Forty-four professional firefighters were recruited to perform comprehensive baseline assessments including tests of aerobic performance and laboratory tests for fasting lipid profiles and glucose. Heart rate and conventional 12-lead ECG were obtained at rest and during incremental treadmill exercise testing (XT). In addition, a 5-min resting 12-lead A-ECG was obtained in a subset of firefighters (n=18) and transmitted over a secure networked system to a physician collaborator at NASA for advanced-ECG analysis. This A-ECG system has been proven, using myocardial perfusion and other imaging, to accurately identify a number of cardiac pathologies including coronary artery disease (CAD), left ventricular hypertrophy, hypertrophic cardiomyopathy, non-ischemic cardiomyopathy, and ischemic cardiomyopathy. RESULTS Subjects mean (SD) age was 43 (8) years, weight 91 (13) kg, and BMI of 28 (3) kg/square meter. Maximum oxygen uptake (VO2max) was 39 (9) ml/kg/min. This compares with the 45th %ile in healthy reference values and a recommended standard of 42 ml/kg/min for firefighters. The metabolic threshold (VO

  8. Position difference regularity of corresponding R-wave peaks for maternal ECG components from different abdominal points

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-Min; Guan, Qun; Tang, Li-Ming; Liu, Tie-Bing; Liu, Hong-Xing; Huang, Xiao-Lin; Si, Jun-Feng

    2014-01-01

    We collected 343 groups of abdominal electrocardiogram (ECG) data from 78 pregnant women and deleted the channels unable for experts to determine R-wave peaks from them; then, based on these filtered data, the statistics of position difference of corresponding R-wave peaks for different maternal ECG components from different points were studied. The resultant statistics showed the regularity that the position difference of corresponding maternal R-wave peaks between different abdominal points does not exceed the range of 30 ms. The regularity was also proved using the fECG data from MIT—BIH PhysioBank. Additionally, the paper applied the obtained regularity, the range of position differences of the corresponding maternal R-wave peaks, to accomplish the automatic detection of maternal R-wave peaks in the recorded all initial 343 groups of abdominal signals, including the ones with the largest fetal ECG components, and all 55 groups of ECG data from MIT—BIH PhysioBank, achieving the successful separation of the maternal ECGs.

  9. A Novel ECG Data Compression Method Using Adaptive Fourier Decomposition With Security Guarantee in e-Health Applications.

    PubMed

    Ma, JiaLi; Zhang, TanTan; Dong, MingChui

    2015-05-01

    This paper presents a novel electrocardiogram (ECG) compression method for e-health applications by adapting an adaptive Fourier decomposition (AFD) algorithm hybridized with a symbol substitution (SS) technique. The compression consists of two stages: first stage AFD executes efficient lossy compression with high fidelity; second stage SS performs lossless compression enhancement and built-in data encryption, which is pivotal for e-health. Validated with 48 ECG records from MIT-BIH arrhythmia benchmark database, the proposed method achieves averaged compression ratio (CR) of 17.6-44.5 and percentage root mean square difference (PRD) of 0.8-2.0% with a highly linear and robust PRD-CR relationship, pushing forward the compression performance to an unexploited region. As such, this paper provides an attractive candidate of ECG compression method for pervasive e-health applications.

  10. A novel approach for removing ECG interferences from surface EMG signals using a combined ANFIS and wavelet.

    PubMed

    Abbaspour, Sara; Fallah, Ali; Lindén, Maria; Gholamhosseini, Hamid

    2016-02-01

    In recent years, the removal of electrocardiogram (ECG) interferences from electromyogram (EMG) signals has been given large consideration. Where the quality of EMG signal is of interest, it is important to remove ECG interferences from EMG signals. In this paper, an efficient method based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and wavelet transform is proposed to effectively eliminate ECG interferences from surface EMG signals. The proposed approach is compared with other common methods such as high-pass filter, artificial neural network, adaptive noise canceller, wavelet transform, subtraction method and ANFIS. It is found that the performance of the proposed ANFIS-wavelet method is superior to the other methods with the signal to noise ratio and relative error of 14.97dB and 0.02 respectively and a significantly higher correlation coefficient (p<0.05).

  11. Non-contact ECG monitoring

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexey S.; Erlikh, Vadim V.; Kodkin, Vladimir L.; Keller, Andrei V.; Epishev, Vitaly V.

    2016-03-01

    The research is dedicated to non-contact methods of electrocardiography. The authors describe the routine of experimental procedure and suggest the approach to solving the problems which arise at indirect signal recording. The paper presents the results of experiments conducted by the authors, covers the flow charts of ECG recorders and reviews the drawbacks of filtering methods used in foreign equivalents.

  12. Piezoelectric extraction of ECG signal

    PubMed Central

    Ahmad, Mahmoud Al

    2016-01-01

    The monitoring and early detection of abnormalities or variations in the cardiac cycle functionality are very critical practices and have significant impact on the prevention of heart diseases and their associated complications. Currently, in the field of biomedical engineering, there is a growing need for devices capable of measuring and monitoring a wide range of cardiac cycle parameters continuously, effectively and on a real-time basis using easily accessible and reusable probes. In this paper, the revolutionary generation and extraction of the corresponding ECG signal using a piezoelectric transducer as alternative for the ECG will be discussed. The piezoelectric transducer pick up the vibrations from the heart beats and convert them into electrical output signals. To this end, piezoelectric and signal processing techniques were employed to extract the ECG corresponding signal from the piezoelectric output voltage signal. The measured electrode based and the extracted piezoelectric based ECG traces are well corroborated. Their peaks amplitudes and locations are well aligned with each other. PMID:27853180

  13. Improving the quality of the ECG signal by filtering in wavelet transform domain

    NASA Astrophysics Data System (ADS)

    DzierŻak, RóŻa; Surtel, Wojciech; Dzida, Grzegorz; Maciejewski, Marcin

    2016-09-01

    The article concerns the research methods of noise reduction occurring in the ECG signals. The method is based on the use of filtration in wavelet transform domain. The study was conducted on two types of signal - received during the rest of the patient and obtained during physical activity. For each of the signals 3 types of filtration were used. The study was designed to determine the effectiveness of various wavelets for de-noising signals obtained in both cases. The results confirm the suitability of the method for improving the quality of the electrocardiogram in case of both types of signals.

  14. VLSI implementation of a new LMS-based algorithm for noise removal in ECG signal

    NASA Astrophysics Data System (ADS)

    Satheeskumaran, S.; Sabrigiriraj, M.

    2016-06-01

    Least mean square (LMS)-based adaptive filters are widely deployed for removing artefacts in electrocardiogram (ECG) due to less number of computations. But they posses high mean square error (MSE) under noisy environment. The transform domain variable step-size LMS algorithm reduces the MSE at the cost of computational complexity. In this paper, a variable step-size delayed LMS adaptive filter is used to remove the artefacts from the ECG signal for improved feature extraction. The dedicated digital Signal processors provide fast processing, but they are not flexible. By using field programmable gate arrays, the pipelined architectures can be used to enhance the system performance. The pipelined architecture can enhance the operation efficiency of the adaptive filter and save the power consumption. This technique provides high signal-to-noise ratio and low MSE with reduced computational complexity; hence, it is a useful method for monitoring patients with heart-related problem.

  15. Semia: semi-automatic interactive graphic editing tool to annotate ambulatory ECG records.

    PubMed

    Dorn, Roman; Jager, Franc

    2004-09-01

    We designed and developed a special purpose interactive graphic editing tool semi-automatic (Semia) to annotate transient ischaemic ST segment episodes and other non-ischaemic ST segment events in 24h ambulatory electrocardiogram (ECG) records. The tool allows representation and viewing of the data, interaction with the data globally and locally at different resolutions, examining data at any point, manual adjustment of heart-beat fiducial points, and manual and automatic editing of annotations. Efficient and fast display of ambulatory ECG signal waveforms, display of diagnostic and morphology feature-vector time-series, dynamic interface controls, and automated procedures to help annotate, made the tool efficient, user friendly and usable. Human expert annotators used the Semia tool to successfully annotate the Long-Term ST database (LTST DB), a result of a multinational effort. The tool supported paperless editing of annotations at dislocated geographical sites. We present design, characteristic "look and feel", functionality, and development of Semia annotating tool.

  16. Improving ECG Classification Accuracy Using an Ensemble of Neural Network Modules

    PubMed Central

    Javadi, Mehrdad; Ebrahimpour, Reza; Sajedin, Atena; Faridi, Soheil; Zakernejad, Shokoufeh

    2011-01-01

    This paper illustrates the use of a combined neural network model based on Stacked Generalization method for classification of electrocardiogram (ECG) beats. In conventional Stacked Generalization method, the combiner learns to map the base classifiers' outputs to the target data. We claim adding the input pattern to the base classifiers' outputs helps the combiner to obtain knowledge about the input space and as the result, performs better on the same task. Experimental results support our claim that the additional knowledge according to the input space, improves the performance of the proposed method which is called Modified Stacked Generalization. In particular, for classification of 14966 ECG beats that were not previously seen during training phase, the Modified Stacked Generalization method reduced the error rate for 12.41% in comparison with the best of ten popular classifier fusion methods including Max, Min, Average, Product, Majority Voting, Borda Count, Decision Templates, Weighted Averaging based on Particle Swarm Optimization and Stacked Generalization. PMID:22046232

  17. A level-crossing based QRS-detection algorithm for wearable ECG sensors.

    PubMed

    Ravanshad, Nassim; Rezaee-Dehsorkh, Hamidreza; Lotfi, Reza; Lian, Yong

    2014-01-01

    In this paper, an asynchronous analog-to-information conversion system is introduced for measuring the RR intervals of the electrocardiogram (ECG) signals. The system contains a modified level-crossing analog-to-digital converter and a novel algorithm for detecting the R-peaks from the level-crossing sampled data in a compressed volume of data. Simulated with MIT-BIH Arrhythmia Database, the proposed system delivers an average detection accuracy of 98.3%, a sensitivity of 98.89%, and a positive prediction of 99.4%. Synthesized in 0.13 μm CMOS technology with a 1.2 V supply voltage, the overall system consumes 622 nW with core area of 0.136 mm (2), which make it suitable for wearable wireless ECG sensors in body-sensor networks.

  18. A real-time ECG data compression algorithm for a digital holter system.

    PubMed

    Lee, Sangjoon; Lee, Myoungho

    2008-01-01

    This paper describes a real time ECG compression algorithm for a digital holter system. Proposed algorithm consists of five main procedures. First procedure is to differentiate signals, second is to choose a period of the differentiated signals and store them in memory, third is to perform the DCT(Discrete Cosine Transform) on the stored data, fourth is to apply a window filter, and fifth procedure is to apply Huffman Coding compression method on the data. This developed algorithm has been tested by applying 12 ECGs(electrocardiograms) from the MIT-BIH database and the PRD(Percent RMS Difference) and the CR(Compression Ratio) are calculated. It is found that the algorithm achieved a high level of compression performance with 1.82 of PRD and 8.82:1 of CR in average.

  19. Preliminary results from BCG and ECG measurements in the heart failure clinic.

    PubMed

    Giovangrandi, Laurent; Inan, Omer T; Banerjee, Dipanjan; Kovacs, Gregory T A

    2012-01-01

    We report on the preliminary deployment of a bathroom scale-based ballistocardiogram (BCG) system for the in-hospital monitoring of patients with heart failure. These early trials provided valuable insights into the challenges and opportunities for such monitoring. In particular, the need for robust algorithms and adapted BCG metric is suggested. The system was designed to be robust and user-friendly, with dual ballistocardiogram (BCG) and electrocardiogram (ECG) capabilities. The BCG was measured from a modified bathroom scale, while the ECG (used as timing reference) was measured using dry handlebar electrodes. The signal conditioning and digitization circuits were USB-powered, and data acquisition performed using a netbook. Four patients with a NYHA class III at admission were measured daily for the duration of their treatment at Stanford hospital. A measure of BCG quality, in essence a quantitative implementation of the BCG classes originally defined in the 1950s, is proposed as a practical parameter.

  20. Clinical applications of T-wave alternans assessed during exercise stress testing and ambulatory ECG monitoring.

    PubMed

    Verrier, Richard L; Malik, Marek

    2013-01-01

    Analytical methods to measure T-wave alternans (TWA), a beat-to-beat fluctuation in the morphology of the ST-segment and T wave in the electrocardiogram (ECG), have been developed to address the unmet challenge of identifying individuals at increased risk for sudden cardiac death. Conventional noninvasive markers including left ventricular ejection fraction have significant limitations as many individuals who die suddenly have relatively preserved ventricular mechanical function. TWA is an attractive marker as it is closely linked to ECG heterogeneity and abnormalities in calcium handling, key factors in arrhythmogenesis. The objectives of this review are to summarize the clinical evidence supporting use of TWA in risk stratification and to discuss its current and potential applications in guiding device and medical therapy.

  1. Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst

    PubMed Central

    2013-01-01

    Background Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. However, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals. Methods Emotional ECG data was obtained from sixty participants by inducing the six basic emotional states (happiness, sadness, fear, disgust, surprise and neutral) using audio-visual stimuli. The non-linear feature ‘Hurst’ was computed using Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS) methods. New Hurst features were proposed by combining the existing RRS and FVS methods with Higher Order Statistics (HOS). The features were then classified using four classifiers – Bayesian Classifier, Regression Tree, K- nearest neighbor and Fuzzy K-nearest neighbor. Seventy percent of the features were used for training and thirty percent for testing the algorithm. Results Analysis of Variance (ANOVA) conveyed that Hurst and the proposed features were statistically significant (p < 0.001). Hurst computed using RRS and FVS methods showed similar classification accuracy. The features obtained by combining FVS and HOS performed better with a maximum accuracy of 92.87% and 76.45% for classifying the six emotional states using random and subject independent validation respectively. Conclusions The results indicate that the combination of non-linear analysis and HOS tend to capture the finer emotional changes that can be seen in healthy ECG data. This work can be further fine tuned to develop a real time system. PMID:23680041

  2. Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants.

    PubMed

    Charlton, Peter H; Bonnici, Timothy; Tarassenko, Lionel; Alastruey, Jordi; Clifton, David; Beale, Richard; Watkinson, Peter

    2017-03-15

    Breathing rate (BR) can be estimated by extracting respiratory signals from the electrocardiogram (ECG) or photoplethysmogram (PPG). The extracted respiratory signals may be influenced by several technical and physiological factors. In this study, our aim was to determine how technical and physiological factors influence the quality of respiratory signals. Using a variety of techniques 15 respiratory signals were extracted from the ECG, and 11 from PPG signals collected from 57 healthy subjects. The quality of each respiratory signal was assessed by calculating its correlation with a reference oral-nasal pressure respiratory signal using Pearson's correlation coefficient. Relevant results informing device design and clinical application were obtained. The results informing device design were: (i) seven out of 11 respiratory signals were of higher quality when extracted from finger PPG compared to ear PPG; (ii) laboratory equipment did not provide higher quality of respiratory signals than a clinical monitor; (iii) the ECG provided higher quality respiratory signals than the PPG; (iv) during downsampling of the ECG and PPG significant reductions in quality were first observed at sampling frequencies of < 250 Hz and < 16 Hz respectively. The results informing clinical application were: (i) frequency modulation-based respiratory signals were generally of lower quality in elderly subjects compared to young subjects; (ii) the qualities of 23 out of 26 respiratory signals were reduced at elevated BRs; (iii) there were no differences associated with gender. Recommendations based on the results are provided regarding device designs for BR estimation, and clinical applications. The dataset and code used in this study are publicly available.

  3. Circulation detection using the electrocardiogram and the thoracic impedance acquired by defibrillation pads

    PubMed Central

    Alonso, Erik; Aramendi, Elisabete; Daya, Mohamud; Irusta, Unai; Chicote, Beatriz; Russell, James K.; Tereshchenko, Larisa G.

    2016-01-01

    Aim To develop and evaluate a method to detect circulation in the presence of organized rhythms (ORs) during resuscitation using signals acquired by defibrillation pads. Methods Segments containing electrocardiogram (ECG) and thoracic impedance (TI) signals free of artifacts were used. The ECG corresponded to ORs classified as pulseless electrical acitivity (PEA) or pulse-generating rhythm (PR). A first dataset containing 1091 segments was split into training and test sets to develop and validate the circulation detector. The method processed ECG and TI to obtain the impedance circulation component (ICC). Morphological features were extracted from ECG and ICC, and combined into a classifier to discriminate between PEA and PR. The performance of the method was evaluated in terms of sensitivity (PR) and specificity (PEA). A second dataset (86 segments from different patients) was used to assess two application of the method: confirmation of arrest by recognizing absence of circulation during ORs and detection of return of spontaneous circulation (ROSC) during resuscitation. In both cases, time to confirmation of arrest/ROSC was determined. Results The method showed a sensitivity/specificity of 92.1%/90.3% and 92.2%/91.9% for training and test sets respectively. The method confirmed cardiac arrest with a specificity of 93.3% with a median delay of 0 s after the first OR annotation. ROSC was detected with a sensitivity of 94.4% with a median delay of 57 s from ROSC onset. Conclusion The method showed good performance, and can be reliably used to distinguish perfusing from non-perfusing ORs. PMID:26705970

  4. Electrocardiogram pattern of some exotic breeds of trained dogs: A variation study

    PubMed Central

    Mukherjee, Joydip; Das, Pradip Kumar; Ghosh, Prabal Ranjan; Banerjee, Dipak; Sharma, Tripti; Basak, Debananda; Sanyal, Sagar

    2015-01-01

    Aim: The present study has been conducted to evaluate the variation in electrocardiogram (ECG) parameters among different trained breeds of dogs (viz. Labrador, German Shepherd, and Golden Retriever) used for security reasons. Materials and Methods: The ECG was recorded by single channel ECG at a paper speed of 25 mm/s and calibration of 10 mm=1 mV. The recordings were taken from all the standard bipolar limb leads (Lead-I, II, and III) and unipolar augmented limb leads (Lead-aVR, aVL, and aVF). Results: Heart rate was found to be highest in Labrador and lowest in German Shepherd. P-wave duration was maximum in Golden Retriever breed and lowest in Labrador. Maximum amplitude of P-wave was found in Labrador followed by German Shepherd and Golden Retriever. There was significantly (p<0.05) higher values of PR interval in German Shepherd compared to other breeds. The variation in QRS duration, ST segment duration, T-wave duration, and T-wave amplitude was found to be non-significant among breeds. Inverted T-waves were most common in Golden Retriever and German Shepherd, whereas positive T-waves were found in Labrador. There was significant (p<0.05) variation in mean electrical axis of QRS complex among different breeds and it ranges from +60° to +80°. Conclusion: The present study provides the reference values for different ECG parameters to monitor the cardiac health status among Labrador, German Shepherd, and Golden Retriever breeds. PMID:27047036

  5. Effects of 900 MHz electromagnetic field emitted by cellular phones on electrocardiograms of guinea pigs.

    PubMed

    Meral, I; Tekintangac, Y; Demir, H

    2014-02-01

    This study was carried out to determine the effects of electromagnetic field (EMF) emitted by cellular phones (CPs) on electrocardiograms (ECGs) of guinea pigs. A total of 30 healthy guinea pigs weighing 500-800 g were used. After 1 week of adaptation period, animals were randomly divided into two groups: control group (n = 10) and EMF-exposed group (n = 20). Control guinea pigs were housed in a separate room without exposing them to EMFs of CPs. Animals in second group were exposed to 890-915 MHz EMF (217 Hz of pulse rate, 2 W of maximum peak power and 0.95 wt kg(-1) of specific absorption rate) for 12 h day(-1) (11 h 45 min stand-by and 15 min speaking mode) for 30 days. ECGs of guinea pigs in both the groups were recorded by a direct writing electrocardiograph at the beginning and 10th, 20th and 30th days of the experiment. All ECGs were standardized at 1 mV = 10 mm and with a chart speed of 50 mm sec(-1). Leads I, II, III, lead augmented vector right (aVR), lead augmented vector left (aVL) and lead augmented vector foot (aVF) were recorded. The durations and amplitudes of waves on the trace were measured in lead II. The data were expressed as mean with SEM. It was found that 12 h day(-1) EMF exposure for 30 days did not have any significant effects on ECG findings of guinea pigs. However, this issue needed to be further investigated in a variety of perspectives, such as longer duration of exposure to be able to elucidate the effects of mobile phone-induced EMFs on cardiovascular functions.

  6. Automatic Real-Time Embedded QRS Complex Detection for a Novel Patch-Type Electrocardiogram Recorder.

    PubMed

    Saadi, Dorthe B; Tanev, George; Flintrup, Morten; Osmanagic, Armin; Egstrup, Kenneth; Hoppe, Karsten; Jennum, Poul; Jeppesen, Jørgen L; Iversen, Helle K; Sorensen, Helge B D

    2015-01-01

    Cardiovascular diseases are projected to remain the single leading cause of death globally. Timely diagnosis and treatment of these diseases are crucial to prevent death and dangerous complications. One of the important tools in early diagnosis of arrhythmias is analysis of electrocardiograms (ECGs) obtained from ambulatory long-term recordings. The design of novel patch-type ECG recorders has increased the accessibility of these long-term recordings. In many applications, it is furthermore an advantage for these devices that the recorded ECGs can be analyzed automatically in real time. The purpose of this study was therefore to design a novel algorithm for automatic heart beat detection, and embed the algorithm in the CE marked ePatch heart monitor. The algorithm is based on a novel cascade of computationally efficient filters, optimized adaptive thresholding, and a refined search back mechanism. The design and optimization of the algorithm was performed on two different databases: The MIT-BIH arrhythmia database ([Formula: see text]%, [Formula: see text]) and a private ePatch training database ([Formula: see text]%, [Formula: see text]%). The offline validation was conducted on the European ST-T database ([Formula: see text]%, [Formula: see text]%). Finally, a double-blinded validation of the embedded algorithm was conducted on a private ePatch validation database ([Formula: see text]%, [Formula: see text]%). The algorithm was thus validated with high clinical performance on more than 300 ECG records from 189 different subjects with a high number of different abnormal beat morphologies. This demonstrates the strengths of the algorithm, and the potential for this embedded algorithm to improve the possibilities of early diagnosis and treatment of cardiovascular diseases.

  7. Electrocardiogram, heart movement and heart rate in the awake gecko (Hemidactylus mabouia).

    PubMed

    Germer, Carina M; Tomaz, Juliana M; Carvalho, Ana F; Bassani, Rosana A; Bassani, José W M

    2015-01-01

    The electrocardiogram (ECG) is the simplest and most effective non-invasive method to assess the electrical activity of the heart and to obtain information on the heart rate (HR) and rhythm. Because information on the HR of very small reptiles (body mass <10 g) is still scarce in the literature, in the present work we describe a procedure for recording the ECG in non-anesthetized geckos (Hemidactylus mabouia, Moreau de Jonnès, 1818) under different conditions, namely manual restraint (MR), spontaneous tonic immobility (TI), and in the non-restrained condition (NR). In the gecko ECG, the P, QRS and T waves were clearly distinguishable. The HR was 2.83 ± 0.02 Hz under MR, which was significantly greater (p < 0.001) than the HR under the TI (1.65 ± 0.09 Hz) and NR (1.60 ± 0.10 Hz) conditions. Spontaneously beating isolated gecko hearts contracted at 0.84 ± 0.03 Hz. The in vitro beating rate was affected in a concentration-dependent fashion by adrenoceptor stimulation with noradrenaline, as well as by the muscarinic cholinergic agonist carbachol, which produced significant positive and negative chronotropic effects, respectively (p < 0.001). To our knowledge, this is the first report on the ECG morphology and HR values in geckos, particularly under TI. The methodology and instrumentation developed here are useful for non-invasive in vivo physiological and pharmacological studies in small reptiles without the need of physical restraint or anesthesia.

  8. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  9. Effects of a canine Elizabethan collar on ambulatory electrocardiogram recorded by a Holter recording system and spontaneous activities measured continuously by an accelerometer in Beagle dogs.

    PubMed

    Yamada, M; Tokuriki, M

    2000-05-01

    Ambulatory electrocardiogram (ECG) has been recorded in dogs wearing a jacket to protect a Holter recording system, but the jacket was often damaged by dogs. We compared ECG recorded by a Holter recording system and spontaneous activity measured by an accelerometer in Beagle dogs with or without an Elizabethan collar. There were few significant differences in mean values (per hr) of the heart rate and the amount of spontaneous activity between dogs with or without the Elizabethan collar. Mean values (per 23 hr) of them had no significant difference between them. We concluded that the Elizabethan collar did not have any effect on ambulatory ECG and canine movements and was effective to protect the recording apparatus.

  10. Subband higher-order statistics and cross-correlation for heartbeat type recognition based on two-lead electrocardiogram.

    PubMed

    Yu, Sung-Nien; Liu, Fan-Tsen

    2014-01-01

    Regular electrocardiogram beat classification system usually based on single lead ECG signal. This study designated to add a second lead of ECG signal to the system and apply higher-order statistics and inter-lead cross-correlation features to study the influence of the second lead to the recognition rates and noise-tolerance of the classifier. Discrete wavelet transformation is employed to decompose the ECG signals into different subband components and higher order statistics is recruited to characterize the ECG signals as an attempt to elevate the accuracy and noise-resistibility of heartbeat discrimination. A feed-forward back-propagation neural network (FFBNN) is employed as classifier. When compared with the system that uses only one lead, the second lead raises the recognition rate from 97.74% to 98.25%. We also study the ability of the two-lead system in resisting different levels of white Gaussian noise. More than 97.8% accuracy can be retained with the two-lead system even when the SNR decreases to 10 dB.

  11. Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation

    NASA Astrophysics Data System (ADS)

    Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates

    2014-06-01

    The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.

  12. Semisupervised ECG Ventricular Beat Classification With Novelty Detection Based on Switching Kalman Filters.

    PubMed

    Oster, Julien; Behar, Joachim; Sayadi, Omid; Nemati, Shamim; Johnson, Alistair E W; Clifford, Gari D

    2015-09-01

    Automatic processing and accurate diagnosis of pathological electrocardiogram (ECG) signals remains a challenge. As long-term ECG recordings continue to increase in prevalence, driven partly by the ease of remote monitoring technology usage, the need to automate ECG analysis continues to grow. In previous studies, a model-based ECG filtering approach to ECG data from healthy subjects has been applied to facilitate accurate online filtering and analysis of physiological signals. We propose an extension of this approach, which models not only normal and ventricular heartbeats, but also morphologies not previously encountered. A switching Kalman filter approach is introduced to enable the automatic selection of the most likely mode (beat type), while simultaneously filtering the signal using appropriate prior knowledge. Novelty detection is also made possible by incorporating a third mode for the detection of unknown (not previously observed) morphologies, and denoted as X-factor. This new approach is compared to state-of-the-art techniques for the ventricular heartbeat classification in the MIT-BIH arrhythmia and Incart databases. F1 scores of 98.3% and 99.5% were found on each database, respectively, which are superior to other published algorithms' results reported on the same databases. Only 3% of all the beats were discarded as X-factor, and the majority of these beats contained high levels of noise. The proposed technique demonstrates accurate beat classification in the presence of previously unseen (and unlearned) morphologies and noise, and provides an automated method for morphological analysis of arbitrary (unknown) ECG leads.

  13. Consistent quality control in ECG compression by means of direct metrics.

    PubMed

    Hernando-Ramiro, Carlos; Blanco-Velasco, Manuel; Lovisolo, Lisandro; Cruz-Roldán, Fernando

    2015-09-01

    The aim of electrocardiogram (ECG) compression is to reduce the amount of data as much as possible while preserving the significant information for diagnosis. Objective metrics that are derived directly from the signal are suitable for controlling the quality of the compressed ECGs in practical applications. Many approaches have employed figures of merit based on the percentage root mean square difference (PRD) for this purpose. The benefits and drawbacks of the PRD measures, along with other metrics for quality assessment in ECG compression, are analysed in this work. We propose the use of the root mean square error (RMSE) for quality control because it provides a clearer and more stable idea about how much the retrieved ECG waveform, which is the reference signal for establishing diagnosis, separates from the original. For this reason, the RMSE is applied here as the target metric in a thresholding algorithm that relies on the retained energy. A state of the art compressor based on this approach, and its PRD-based counterpart, are implemented to test the actual capabilities of the proposed technique. Both compression schemes are employed in several experiments with the whole MIT-BIH Arrhythmia Database to assess both global and local signal distortion. The results show that, using the RMSE for quality control, the distortion of the reconstructed signal is better controlled without reducing the compression ratio.

  14. Switching Kalman filter based methods for apnea bradycardia detection from ECG signals.

    PubMed

    Montazeri Ghahjaverestan, Nasim; Shamsollahi, Mohammad B; Ge, Di; Hernández, Alfredo I

    2015-09-01

    Apnea bradycardia (AB) is an outcome of apnea occurrence in preterm infants and is an observable phenomenon in cardiovascular signals. Early detection of apnea in infants under monitoring is a critical challenge for the early intervention of nurses. In this paper, we introduce two switching Kalman filter (SKF) based methods for AB detection using electrocardiogram (ECG) signal.The first SKF model uses McSharry's ECG dynamical model integrated in two Kalman filter (KF) models trained for normal and AB intervals. Whereas the second SKF model is established by using only the RR sequence extracted from ECG and two AR models to be fitted in normal and AB intervals. In both SKF approaches, a discrete state variable called a switch is considered that chooses one of the models (corresponding to normal and AB) during the inference phase. According to the probability of each model indicated by this switch, the model with larger probability determines the observation label at each time instant.It is shown that the method based on ECG dynamical model can be effectively used for AB detection. The detection performance is evaluated by comparing statistical metrics and the amount of time taken to detect AB compared with the annotated onset. The results demonstrate the superiority of this method, with sensitivity and specificity 94.74[Formula: see text] and 94.17[Formula: see text], respectively. The presented approaches may therefore serve as an effective algorithm for monitoring neonates suffering from AB.

  15. Cancelling ECG Artifacts in EEG Using a Modified Independent Component Analysis Approach

    NASA Astrophysics Data System (ADS)

    Devuyst, Stéphanie; Dutoit, Thierry; Stenuit, Patricia; Kerkhofs, Myriam; Stanus, Etienne

    2008-12-01

    We introduce a new automatic method to eliminate electrocardiogram (ECG) noise in an electroencephalogram (EEG) or electrooculogram (EOG). It is based on a modification of the independent component analysis (ICA) algorithm which gives promising results while using only a single-channel electroencephalogram (or electrooculogram) and the ECG. To check the effectiveness of our approach, we compared it with other methods, that is, ensemble average subtraction (EAS) and adaptive filtering (AF). Tests were carried out on simulated data obtained by addition of a filtered ECG on a visually clean original EEG and on real data made up of 10 excerpts of polysomnographic (PSG) sleep recordings containing ECG artifacts and other typical artifacts (e.g., movement, sweat, respiration, etc.). We found that our modified ICA algorithm had the most promising performance on simulated data since it presented the minimal root mean-squared error. Furthermore, using real data, we noted that this algorithm was the most robust to various waveforms of cardiac interference and to the presence of other artifacts, with a correction rate of 91.0%, against 83.5% for EAS and 83.1% for AF.

  16. FPGA-core defibrillator using wavelet-fuzzy ECG arrhythmia classification.

    PubMed

    Nambakhsh, Mohammad; Tavakoli, Vahid; Sahba, Nima

    2008-01-01

    An electrocardiogram (ECG) feature extraction and classification system has been developed and evaluated using Quartus II 7.1 belong to Altera Ltd. In wavelet domain QRS complexes were detected and each complex was used to locate the peaks of the individual waves. Then, fuzzy classifier block used these features to classify ECG beats. Three types of arrhythmias and abnormalities were detected using the procedure. The completed algorithm was embedded into Field Programmable Gate Array (FPGA). The completed prototype was tested through software-generated signals, in which test scenarios covering several kinds of ECG signals on MIT-BIH Database. For the purpose of feeding signals into the FPGA, a software was designed to read signal files and import them to the LPT port of computer that was connected to FPGA. From the results, it was achieved that the proposed prototype could do real time monitoring of ECG signal for arrhythmia detection. We also implemented algorithm in a sequential structure device like AVR microcontroller with 16 MHZ clock for the same purpose. External clock of FPGA is 50 MHZ and by utilizing of Phase Lock Loop (PLL) component inside device, it was possible to increase the clock up to 1.2 GHZ in internal blocks. Final results compare speed and cost of resource usage in both devices. It shows that in cost of more resource usage, FPGA provides higher speed of computation; because FPGA makes the algorithm able to compute most parts in parallel manner.

  17. Stability of computer ECG amplitude measurements in the presence of noise. The CSE Working Party.

    PubMed

    Zywietz, C; Willems, J L; Arnaud, P; van Bemmel, J H; Degani, R; Macfarlane, P W

    1990-02-01

    An important feature of an ECG analysis program is its ability to provide reliable measurements under various operating conditions, e.g., on noise-free and noisy ECGs. Therefore, within the European cooperative project "Common Standards For Quantitative Electrocardiography" (CSE), the accuracy and stability of ECG measurements obtained by several computer programs has been compared. To investigate the stability of measurements two sets of 10 ECGs with and without seven different high- and low-frequency types of noise--altogether 160 electrocardiograms and 160 vectorcardiograms--have been analyzed by eight electrocardiographic and five vectorcardiographic computer programs. The stability of measurement was tested with respect to results obtained for the noise-free recordings. In a previous paper, the influence of noise on wave boundary recognition has been reported. In the present paper, the effect of noise on amplitude measurements and on problems of waveform definitions within the QRS complex are described. The results indicate that programs analyzing an averaged beat exhibit less variability than programs which measure every complex or a selected beat. Comparability and stability of measurements could be improved if a standardized procedure for amplitude references were to be introduced. In addition, the stability of QRS waveform labelling could be improved if waveforms' minimum amplitude and duration were to be validated against the noise level which itself should be determined by a standardized procedure.

  18. A mobile phone-based ecg and heart sound monitoring system - biomed 2011.

    PubMed

    Iwamoto, Junichi; Ogawa, Hidekuni; Maki, Hiromichi; Yonezawa, Yoshiharu; Hahn, Allen W; Caldwell, W Morton

    2011-01-01

    We have developed a telemedicine system to monitor a patient’s electrocardiogram (ECG) and heart sounds (PCG) during daily activity. The complete system, consisting of an ECG recorder, an accelerometer and a 2.4 GHz low power mobile phone, is mounted on three chest sensing electrodes. The accelerometer records the PCG produced by closing of the mitral and aortic valves (S1 and S2). The sampled ECG and PCG are stored in the system for two minutes and continuously updated. When a patient feels heart discomfort such as angina or an arrhythmia, he/she pushes the data transmission switch on the system. The ECG and PCG for the next two minutes are stored in the system, and then the system then sends the four minutes of stored data directly to a hospital server computer via the 1.9 GHz low power mobile phone. These data are stored on the server and then downloaded to the physician’s Java configured mobile phone. The physician can then check the patient’s cardiac condition, regardless of patient or physician locations, and then take appropriate actions.

  19. The earliest published electrocardiogram showing ventricular preexcitation.

    PubMed

    Von Knorre, Georg H

    2005-03-01

    When in 1930, Wolff, Parkinson, and White published what is today known as the WPW, or preexcitation syndrome, they, and subsequently others, found few comparable cases in the preceding literature. Among these the report of Cohn and Fraser, published in 1913, was the earliest. However, another even earlier documentation in a 1909 article by Hoffmann escaped notice till now. The ECG of a patient with paroxysmal tachycardia reveals a short PR interval and a delta-wave-induced widening of the QRS complex, even though the reproduced tachycardia was not preexcitation related. The interpretation of this poorly reproduced ECG can be confirmed by another and more detailed description of the patient in an electrocardiography textbook published in 1914 by the same author. Thus, the earliest publication of an ECG showing ventricular preexcitation now can be dated back to 1909. Moreover, the Hoffmann monograph contains two additional examples of the WPW syndrome not noticed until now. All three cases published by Hoffmann had their first ECG recordings in 1912 or earlier.

  20. Reliability of Left Ventricular Hypertrophy by ECG Criteria in Children with Syncope: Do the Criteria Need to be Revised?

    PubMed

    Banerjee, Maalika M; Ramesh Iyer, V; Nandi, Deipanjan; Vetter, Victoria L; Banerjee, Anirban

    2016-04-01

    In the outpatient setting, children who present with syncope routinely undergo electrocardiograms (ECG). Because of concerns for hypertrophic cardiomyopathy, children with syncope meeting ECG criteria for left ventricular hypertrophy (LVH) will frequently undergo an echocardiogram. Our objectives were to determine whether Davignon criteria for ECG waves overestimate LVH in children presenting with syncope, and to study the usefulness of echocardiography in these children. We hypothesize that the Davignon criteria presently used for interpretation of ECGs overestimate LVH, resulting in unnecessary echocardiography in this clinical setting. The clinical database of The Children's Hospital of Philadelphia was evaluated from 2002 to 2012 to identify children between 9 and 16 years of age, who presented with non-exercise-induced, isolated syncope. From this group of patients, only those with clear-cut evidence of LVH (by Davignon criteria), who also underwent an echocardiogram, were selected. A total of 136 children with syncope were identified as having LVH by Davignon ECG criteria. None of these patients manifested any evidence of hypertrophic cardiomyopathy, with normal ventricular septum (average Z-score -0.68 ± 0.84), LV posterior wall (average Z-score -0.66 ± 1.18) and LV mass (average Z-score 0.52 ± 1.29). No significant correlation was found between summed RV6 plus SV1 and LV mass. Correlations between additional ECG parameters and measures of LVH by echocardiography were similarly poor. In children presenting with syncope and LVH by ECG, there was no evidence of true LVH by echocardiography. We propose that the Davignon ECG criteria for interpreting LVH in children overestimate the degree of hypertrophy in these children and the yield of echocardiography is extremely low.

  1. Ebstein Anomaly With QRS Fragmentation on Electrocardiogram

    PubMed Central

    Acharya, Prakash; Ang, Jonathan Ross; Gitler, Bernard

    2017-01-01

    Ebstein anomaly is a rare congenital disorder that involves the tricuspid valve and the right ventricle. It is associated with interatrial communication, which allows for paradoxical embolization causing unilateral blindness. Abnormal conduction through the atrialized right ventricle leads to QRS fragmentation on electrocardiogram. Its presence suggests a more severe abnormality and a higher risk of arrhythmia. The QRS fragmentation disappears after corrective surgery with resection of the atrialized right ventricle. PMID:28203575

  2. Ebstein Anomaly With QRS Fragmentation on Electrocardiogram.

    PubMed

    Acharya, Prakash; Ang, Jonathan Ross; Gitler, Bernard

    2017-01-01

    Ebstein anomaly is a rare congenital disorder that involves the tricuspid valve and the right ventricle. It is associated with interatrial communication, which allows for paradoxical embolization causing unilateral blindness. Abnormal conduction through the atrialized right ventricle leads to QRS fragmentation on electrocardiogram. Its presence suggests a more severe abnormality and a higher risk of arrhythmia. The QRS fragmentation disappears after corrective surgery with resection of the atrialized right ventricle.

  3. Research on electrocardiogram baseline wandering correction based on wavelet transform, QRS barycenter fitting, and regional method.

    PubMed

    Song, Jinzhong; Yan, Hong; Li, Yanjun; Mu, Kaiyu

    2010-09-01

    Baseline wandering in electrocardiogram (ECG) is one of the biggest interferences in visualization and computerized detection of waveforms (especially ST-segment) based on threshold decision. A new method based on wavelet transform, QRS barycenter fitting and regional method was proposed in this paper. Firstly, wavelet transform as a coarse correction was used to remove the baseline wandering, whose frequency bands were non-overlapping with that of ST-segment. Secondly, QRS barycenter fitting was applied as a detailed correction. The third, the regional method was used to transfer baseline to zero. Finally, the method in this paper was proved to perform better than filtering and function fitting methods in baseline wandering correction after the long-term ST database (LTST) verification. In addition, the proposed method is simple and easy to carry out, and in current use.

  4. Energy and Quality Evaluation for Compressive Sensing of Fetal Electrocardiogram Signals

    PubMed Central

    Da Poian, Giulia; Brandalise, Denis; Bernardini, Riccardo; Rinaldo, Roberto

    2016-01-01

    This manuscript addresses the problem of non-invasive fetal Electrocardiogram (ECG) signal acquisition with low power/low complexity sensors. A sensor architecture using the Compressive Sensing (CS) paradigm is compared to a standard compression scheme using wavelets in terms of energy consumption vs. reconstruction quality, and, more importantly, vs. performance of fetal heart beat detection in the reconstructed signals. We show in this paper that a CS scheme based on reconstruction with an over-complete dictionary has similar reconstruction quality to one based on wavelet compression. We also consider, as a more important figure of merit, the accuracy of fetal beat detection after reconstruction as a function of the sensor power consumption. Experimental results with an actual implementation in a commercial device show that CS allows significant reduction of energy consumption in the sensor node, and that the detection performance is comparable to that obtained from original signals for compression ratios up to about 75%. PMID:28025510

  5. Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2s of ECG signals.

    PubMed

    Sudarshan, Vidya K; Acharya, U Rajendra; Oh, Shu Lih; Adam, Muhammad; Tan, Jen Hong; Chua, Chua Kuang; Chua, Kok Poo; Tan, Ru San

    2017-04-01

    Identification of alarming features in the electrocardiogram (ECG) signal is extremely significant for the prediction of congestive heart failure (CHF). ECG signal analysis carried out using computer-aided techniques can speed up the diagnosis process and aid in the proper management of CHF patients. Therefore, in this work, dual tree complex wavelets transform (DTCWT)-based methodology is proposed for an automated identification of ECG signals exhibiting CHF from normal. In the experiment, we have performed a DTCWT on ECG segments of 2s duration up to six levels to obtain the coefficients. From these DTCWT coefficients, statistical features are extracted and ranked using Bhattacharyya, entropy, minimum redundancy maximum relevance (mRMR), receiver-operating characteristics (ROC), Wilcoxon, t-test and reliefF methods. Ranked features are subjected to k-nearest neighbor (KNN) and decision tree (DT) classifiers for automated differentiation of CHF and normal ECG signals. We have achieved 99.86% accuracy, 99.78% sensitivity and 99.94% specificity in the identification of CHF affected ECG signals using 45 features. The proposed method is able to detect CHF patients accurately using only 2s of ECG signal length and hence providing sufficient time for the clinicians to further investigate on the severity of CHF and treatments.

  6. Dataset of manually measured QT intervals in the electrocardiogram

    PubMed Central

    Christov, Ivaylo; Dotsinsky, Ivan; Simova, Iana; Prokopova, Rada; Trendafilova, Elina; Naydenov, Stefan

    2006-01-01

    Background The QT interval and the QT dispersion are currently a subject of considerable interest. Cardiac repolarization delay is known to favor the development of arrhythmias. The QT dispersion, defined as the difference between the longest and the shortest QT intervals or as the standard deviation of the QT duration in the 12-lead ECG is assumed to be reliable predictor of cardiovascular mortality. The seventh annual PhysioNet/Computers in Cardiology Challenge, 2006 addresses a question of high clinical interest: Can the QT interval be measured by fully automated methods with accuracy acceptable for clinical evaluations? Method The PTB Diagnostic ECG Database was given to 4 cardiologists and 1 biomedical engineer for manual marking of QRS onsets and T-wave ends in 458 recordings. Each recording consisted of one selected beat in lead II, chosen visually to have minimum baseline shift, noise, and artifact. In cases where no T wave could be observed or its amplitude was very small, the referees were instructed to mark a 'group-T-wave end' taking into consideration leads with better manifested T wave. A modified Delphi approach was used, which included up to three rounds of measurements to obtain results closer to the median. Results A total amount of 2*5*548 Q-onsets and T-wave ends were manually marked during round 1. To obtain closer to the median results, 8.58 % of Q-onsets and 3.21 % of the T-wave ends had to be reviewed during round 2, and 1.50 % Q-onsets and 1.17 % T-wave ends in round 3. The mean and standard deviation of the differences between the values of the referees and the median after round 3 were 2.43 ± 0.96 ms for the Q-onset, and 7.43 ± 3.44 ms for the T-wave end. Conclusion A fully accessible, on the Internet, dataset of manually measured Q-onsets and T-wave ends was created and presented in additional file: 1 (Table 4) with this article. Thus, an available standard can be used for the development of automated methods for the detection of Q

  7. Cost-effectiveness of pre-participation screening of athletes with ECG in Europe and Algeria.

    PubMed

    Assanelli, Deodato; Levaggi, Rosella; Carré, François; Sharma, Sanjay; Deligiannis, Asterios; Mellwig, Klaus Peter; Tahmi, Mohamed; Vinetti, Giovanni; Aliverti, Paola

    2015-03-01

    The aim of this study is to evaluate the cost-effectiveness of ECG in combination with family and personal history and physical examination in order to detect cardiovascular diseases that might cause sudden death in athletes. The study was conducted on a cohort of 6,634, mainly young professional and recreational athletes, 1,071 from Algeria and 5,563 from Europe (France, Germany and Greece). Each athlete underwent medical history, physical examination, and resting 12-lead ECG. 293 athletes (4.4 %), 149 in Europe (2.7 %) and 144 in Algeria (13.4 %) required further tests, and 56 were diagnosed with cardiovascular disease and thus disqualified. The cost-effectiveness ratio (CER) was calculated as the ratio between the cost of screening and the number of statistical life-years saved by the intervention. The estimated reduced risk of death deriving from treatment or disqualification resulted in the saving of 79.1 statistical life-years in Europe and 136.3 in Algeria. CER of screening was 4,071 purchasing-power-parity-adjusted US dollars ($PPP) in Europe and 582 $PPP in Algeria. The results of this study strongly support the utilisation of 12-lead ECG in the pre-participation screening of young athletes, especially in countries where secondary preventive care is not highly developed.

  8. Compression of ECG signals using variable-length classifıed vector sets and wavelet transforms

    NASA Astrophysics Data System (ADS)

    Gurkan, Hakan

    2012-12-01

    In this article, an improved and more efficient algorithm for the compression of the electrocardiogram (ECG) signals is presented, which combines the processes of modeling ECG signal by variable-length classified signature and envelope vector sets (VL-CSEVS), and residual error coding via wavelet transform. In particular, we form the VL-CSEVS derived from the ECG signals, which exploits the relationship between energy variation and clinical information. The VL-CSEVS are unique patterns generated from many of thousands of ECG segments of two different lengths obtained by the energy based segmentation method, then they are presented to both the transmitter and the receiver used in our proposed compression system. The proposed algorithm is tested on the MIT-BIH Arrhythmia Database and MIT-BIH Compression Test Database and its performance is evaluated by using some evaluation metrics such as the percentage root-mean-square difference (PRD), modified PRD (MPRD), maximum error, and clinical evaluation. Our experimental results imply that our proposed algorithm achieves high compression ratios with low level reconstruction error while preserving the diagnostic information in the reconstructed ECG signal, which has been supported by the clinical tests that we have carried out.

  9. Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.

    PubMed

    Wang, Liang-Hung; Chen, Tsung-Yen; Lin, Kuang-Hao; Fang, Qiang; Lee, Shuenn-Yuh

    2015-01-01

    This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals.

  10. Adaptive Fourier decomposition based ECG denoising.

    PubMed

    Wang, Ze; Wan, Feng; Wong, Chi Man; Zhang, Liming

    2016-10-01

    A novel ECG denoising method is proposed based on the adaptive Fourier decomposition (AFD). The AFD decomposes a signal according to its energy distribution, thereby making this algorithm suitable for separating pure ECG signal and noise with overlapping frequency ranges but different energy distributions. A stop criterion for the iterative decomposition process in the AFD is calculated on the basis of the estimated signal-to-noise ratio (SNR) of the noisy signal. The proposed AFD-based method is validated by the synthetic ECG signal using an ECG model and also real ECG signals from the MIT-BIH Arrhythmia Database both with additive Gaussian white noise. Simulation results of the proposed method show better performance on the denoising and the QRS detection in comparing with major ECG denoising schemes based on the wavelet transform, the Stockwell transform, the empirical mode decomposition, and the ensemble empirical mode decomposition.

  11. PROPOSED SIMPLE METHOD FOR ELECTROCARDIOGRAM RECORDING IN FREE-RANGING ASIAN ELEPHANTS (ELEPHAS MAXIMUS).

    PubMed

    Chai, Norin; Pouchelon, Jean Louis; Bouvard, Jonathan; Sillero, Leonor Camacho; Huynh, Minh; Segalini, Vincent; Point, Lisa; Croce, Veronica; Rigaux, Goulven; Highwood, Jack; Chetboul, Valérie

    2016-03-01

    Electrocardiography represents a relevant diagnostic tool for detecting cardiac disease in animals. Elephants can present various congenital and acquired cardiovascular diseases. However, few electrophysiologic studies have been reported in captive elephants, mainly due to challenging technical difficulties in obtaining good-quality electrocardiogram (ECG) tracings, and no data are currently available for free-ranging Asian elephants (Elephas maximus). The purpose of this pilot prospective study was to evaluate the feasibility of using a simple method for recording ECG tracings in wild, apparently healthy, unsedated Asian elephants (n = 7) in the standing position. Successful six-lead recordings (I, II, III, aVR, aVL, and aVF) were obtained, with the aVL lead providing the best-quality tracings in most animals. Variables measured in the aVL lead included heart rate, amplitudes and duration of the P waves, QRS complexes, T and U waves, and duration of the PR, QT, and QU intervals. A negative deflection following positive P waves, representative of an atrial repolarization wave (Ta wave), was observed for five out of the seven elephants.

  12. ECG Denoising Using Marginalized Particle Extended Kalman Filter with an Automatic Particle Weighting Strategy.

    PubMed

    Hesar, Hamed; Mohebbi, Maryam

    2016-06-20

    In this paper a model-based Bayesian filtering framework called the "marginalized particle-extended Kalman filter (MP-EKF) algorithm" is proposed for electrocardiogram (ECG) denoising. This algorithm does not have the extended Kalman filter (EKF) shortcoming in handling non-Gaussian nonstationary situations because of its nonlinear framework. In addition, it has less computational complexity compared with particle filter. This filter improves ECG denoising performance by implementing marginalized particle filter framework while reducing its computational complexity using EKF framework. An automatic particle weighting strategy is also proposed here that controls the reliance of our framework to the acquired measurements. We evaluated the proposed filter on several normal ECGs selected from MIT-BIH normal sinus rhythm database. To do so, artificial white Gaussian and colored noises as well as nonstationary real muscle artifact (MA) noise over a range of low SNRs from 10 to -5 dB were added to these normal ECG segments. The benchmark methods were the EKF and extended Kalman smoother (EKS) algorithms which are the first model-based Bayesian algorithms introduced in the field of ECG denoising. From SNR viewpoint, the experiments showed that in the presence of Gaussian white noise, the proposed framework outperforms the EKF and EKS algorithms in lower input SNRs where the measurements and state model are not reliable. Owing to its nonlinear framework and particle weighting strategy, the proposed algorithm attained better results at all input SNRs in non-Gaussian non-stationary situations (such as presence of pink noise, brown noise, and real muscle artifacts). In addition, the impact of the proposed filtering method on the distortion of diagnostic features of the ECG was investigated and compared with EKF/EKS methods using an ECG diagnostic distortion measure called the "Multi-Scale Entropy Based Weighted Distortion Measure" or MSEWPRD. The results revealed that our

  13. Electrocardiogram Performance in the Diagnosis of Left Ventricular Hypertrophy in Hypertensive Patients With Left Bundle Branch Block

    PubMed Central

    Burgos, Paula Freitas Martins; Luna Filho, Bráulio; Costa, Francisco de Assis; Bombig, Maria Teresa Nogueira; de Souza, Dilma; Bianco, Henrique Tria; Oliveira Filho, Japy Angelini; Izar, Maria Cristina de Oliveira; Fonseca, Francisco Antonio Helfenstein; Póvoa, Rui

    2017-01-01

    Background Left ventricular hypertrophy (LVH) is an important risk factor for cardiovascular events, and its detection usually begins with an electrocardiogram (ECG). Objective To evaluate the impact of complete left bundle branch block (CLBBB) in hypertensive patients in the diagnostic performance of LVH by ECG. Methods A total of 2,240 hypertensive patients were studied. All of them were submitted to an ECG and an echocardiogram (ECHO). We evaluated the most frequently used electrocardiographic criteria for LVH diagnosis: Cornell voltage, Cornell voltage product, Sokolow-Lyon voltage, Sokolow-Lyon product, RaVL, RaVL+SV3, RV6/RV5 ratio, strain pattern, left atrial enlargement, and QT interval. LVH identification pattern was the left ventricular mass index (LVMI) obtained by ECHO in all participants. Results Mean age was 11.3 years ± 58.7 years, 684 (30.5%) were male and 1,556 (69.5%) were female. In patients without CLBBB, ECG sensitivity to the presence of LVH varied between 7.6 and 40.9%, and specificity varied between 70.2% and 99.2%. In participants with CLBBB, sensitivity to LVH varied between 11.9 and 95.2%, and specificity between 6.6 and 96.6%. Among the criteria with the best performance for LVH with CLBBB, Sokolow-Lyon, for a voltage of ≥ 3,0mV, stood out with a sensitivity of 22.2% (CI 95% 15.8 - 30.8) and specificity of 88.3% (CI 95% 77.8 - 94.2). Conclusion In hypertensive patients with CLBBB, the most often used criteria for the detection of LVH with ECG showed significant decrease in performance with regards to sensitivity and specificity. In this scenario, Sokolow-Lyon criteria with voltage ≥3,0mV presented the best performance. PMID:27992034

  14. A machine learning approach to multi-level ECG signal quality classification.

    PubMed

    Li, Qiao; Rajagopalan, Cadathur; Clifford, Gari D

    2014-12-01

    Current electrocardiogram (ECG) signal quality assessment studies have aimed to provide a two-level classification: clean or noisy. However, clinical usage demands more specific noise level classification for varying applications. This work outlines a five-level ECG signal quality classification algorithm. A total of 13 signal quality metrics were derived from segments of ECG waveforms, which were labeled by experts. A support vector machine (SVM) was trained to perform the classification and tested on a simulated dataset and was validated using data from the MIT-BIH arrhythmia database (MITDB). The simulated training and test datasets were created by selecting clean segments of the ECG in the 2011 PhysioNet/Computing in Cardiology Challenge database, and adding three types of real ECG noise at different signal-to-noise ratio (SNR) levels from the MIT-BIH Noise Stress Test Database (NSTDB). The MITDB was re-annotated for five levels of signal quality. Different combinations of the 13 metrics were trained and tested on the simulated datasets and the best combination that produced the highest classification accuracy was selected and validated on the MITDB. Performance was assessed using classification accuracy (Ac), and a single class overlap accuracy (OAc), which assumes that an individual type classified into an adjacent class is acceptable. An Ac of 80.26% and an OAc of 98.60% on the test set were obtained by selecting 10 metrics while 57.26% (Ac) and 94.23% (OAc) were the numbers for the unseen MITDB validation data without retraining. By performing the fivefold cross validation, an Ac of 88.07±0.32% and OAc of 99.34±0.07% were gained on the validation fold of MITDB.

  15. Comparison of three artificial models of the magnetohydrodynamic effect on the electrocardiogram.

    PubMed

    Oster, Julien; Llinares, Raul; Payne, Stephen; Tse, Zion Tsz Ho; Schmidt, Ehud Jeruham; Clifford, Gari D

    2015-01-01

    The electrocardiogram (ECG) is often acquired during magnetic resonance imaging (MRI), but its analysis is restricted by the presence of a strong artefact, called magnetohydrodynamic (MHD) effect. MHD effect is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolarisation period. In this study, a new MHD model is proposed by using MRI-based 4D blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models, based, respectively, on an analytical solution and on a numerical method-based solution of the fluids dynamics problem, is made with the proposed model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a moderate agreement between the proposed model and the estimated MHD model for most leads, with an average correlation factor of 0.47. However, the results demonstrate that the proposed model provides a closer approximation to the observed MHD effects and a better depiction of the complexity of the MHD effect compared with the previously published models, with an improved correlation (+5%), coefficient of determination (+22%) and fraction of energy (+1%) compared with the best previous model. The source code will be made freely available under an open source licence to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect.

  16. A new technique for simultaneous monitoring of electrocardiogram and walking cadence

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Forman, D. E.; Pilgrim, D. M.; Rigney, D. R.; Wei, J. Y.; Goldberger, A. L. (Principal Investigator)

    1992-01-01

    A new technique for simultaneously recording continuous electrocardiographic (ECG) data and walking step rate (cadence) is described. The ECG and gait signals are recorded on 2 channels of an ambulatory Holter monitor. Footfall is detected using ultrathin, force-sensitive foot switches and is frequency modulated. The footfall signal provides an indication of the subject's activity (walking or standing), as well as the instantaneous walking rate. Twenty-three young and elderly subjects were studied to demonstrate the use of this ECG and gait recorder. High-quality gait signals were obtained in all subjects, and the effects of walking on the electrocardiogram were assessed. Initial investigation revealed the following findings: (1) Although walking rates were similar in young and elderly subjects, the elderly had both decreased heart rate (HR) variability (p < 0.005) and increased cadence variability (p < 0.0001). (2) Overall, there was an inverse relation between HR and cadence variability (r = -0.73). Three elderly subjects with no known cardiac disease had HR and cadence variability similar to those of the young, whereas elderly subjects with history of congestive heart failure were among those with the lowest HR variability and the highest cadence variability. (3) Low-frequency (approximately equal to 0.1 Hz) HR oscillations (frequently observed during standing) persisted during walking in all young subjects. (4) In some subjects, both step rate and HR oscillated at the same low frequency (approximately equal to 0.1 Hz) previously identified with autonomic control of the baroreflex.(ABSTRACT TRUNCATED AT 250 WORDS).

  17. A comparative study of two techniques (electrocardiogram- and landmark-guided) for correct depth of the central venous catheter placement in paediatric patients undergoing elective cardiovascular surgery

    PubMed Central

    Barnwal, Neeraj Kumar; Dave, Sona T; Dias, Raylene

    2016-01-01

    Background and Aims: The complications of central venous catheterisation can be minimized by ensuring catheter tip placement just above the superior vena cava-right atrium junction. We aimed to compare two methods, using an electrocardiogram (ECG) or landmark as guides, for assessing correct depth of central venous catheter (CVC) placement. Methods: In a prospective randomised study of sixty patients of <12 years of age, thirty patients each were allotted randomly to two groups (ECG and landmark). After induction, central venous catheterisation was performed by either of the two techniques and position of CVC tip was compared in post-operative chest X-ray with respect to carina. Unpaired t-test was used for quantitative data and Chi-square test was used for qualitative data. Results: In ECG group, positions of CVC tip were above carina in 12, at carina in 9 and below carina in 9 patients. In landmark group, the positions of CVC tips were above carina in 10, at carina in 4 and below carina in 16 patients. Mean distance of CVC tip in ECG group was 0.34 ± 0.23 cm and 0.66 ± 0.35 cm in landmark group (P = 0.0001). Complications occurred in one patient in ECG group and in nine patients in landmark group (P = 0.0056). Conclusion: Overall, landmark-guided technique was comparable with ECG technique. ECG-guided technique was more precise for CVC tip placement closer to carina. The incidence of complications was more in the landmark group. PMID:27512162

  18. Therapeutic efficacy of intensified walk training under the electrocardiogram telemetry in stroke induced lower limb dysfunction patients with heart failure

    PubMed Central

    Shen, Dantong; Huang, Huai; Yuan, Hui; Ye, Shuilin; Li, Min; Gu, Jing; Wang, Zhiwei

    2015-01-01

    Objectives: This study aimed to explore the therapeutic efficacy of intensified walk training under the electrocardiogram (ECG) telemetry in stroke induced lower limb dysfunction patients with heart failure. Material and Methods: A total of 40 patients with stroke induced lower limb dysfunction and heart failure were randomized into control group and walk training group (n=20 per group). Besides comprehensive rehabilitation, patients in walk training group received intensified walk training under the ECG telemetry and patients in control group received traditional training. After 5-week treatment, the FMA score of lower limbs, ADL score, 6-min walking distance and left ventricular ejection fraction (EF) by heart ultrasonography were determined. Results: There were no marked differences in the demographics between two groups at baseline, and no severe complications were observed during training in the walk training group. In control group, 6 patients developed lung edema which required further therapy. After 5-week training, the FMA score of lower limbs, ADL score and 6-min walk distance were improved to different extents, but the improvement was more obvious in walk training group (P<0.05). The left ventricular EF remained unchanged in both groups. Conclusions: In patients with stroke induced lower limb dysfunction and heart failure, routine rehabilitation in combination with additional walk training under the ECG telemetry is helpful to increase the training efficiency and training intensity and improve the low limb function and walk distance when the safety is assured. PMID:26629190

  19. An Energy efficient application specific integrated circuit for electrocardiogram feature detection and its potential for ambulatory cardiovascular disease detection

    PubMed Central

    Bhaumik, Basabi

    2016-01-01

    A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm2. The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system. PMID:27284458

  20. An Energy efficient application specific integrated circuit for electrocardiogram feature detection and its potential for ambulatory cardiovascular disease detection.

    PubMed

    Jain, Sanjeev Kumar; Bhaumik, Basabi

    2016-03-01

    A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm(2). The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system.

  1. [A wireless ECG monitor based on ARM].

    PubMed

    Fan, Ai-Hua; Bian, Chun-Hua; Ning, Xin-Bao; He, Ai-Jun; Zhuang, Jian-Jun; Wu, Xu-Hui

    2008-11-01

    This paper presents a novel monitor which uses ARM controller AT91SAM7S64 as its main processor, LCM (Liquid Crystal Display Module) for displaying ECG waves, SD (Secure Digital memory) card for data storage and RF module PTR8000 for radio data transmission. This portable monitor boasts alarm function for abnormality and can provide dynamic ECG monitoring for patients.

  2. A novel algorithm for Bluetooth ECG.

    PubMed

    Pandya, Utpal T; Desai, Uday B

    2012-11-01

    In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.

  3. Heritability of ECG Biomarkers in the Netherlands Twin Registry Measured from Holter ECGs

    PubMed Central

    Hodkinson, Emily C.; Neijts, Melanie; Sadrieh, Arash; Imtiaz, Mohammad S.; Baumert, Mathias; Subbiah, Rajesh N.; Hayward, Christopher S.; Boomsma, Dorret; Willemsen, Gonneke; Vandenberg, Jamie I.; Hill, Adam P.; De Geus, Eco

    2016-01-01

    Introduction: The resting ECG is the most commonly used tool to assess cardiac electrophysiology. Previous studies have estimated heritability of ECG parameters based on these snapshots of the cardiac electrical activity. In this study we set out to determine whether analysis of heart rate specific data from Holter ECGs allows more complete assessment of the heritability of ECG parameters. Methods and Results: Holter ECGs were recorded from 221 twin pairs and analyzed using a multi-parameter beat binning approach. Heart rate dependent estimates of heritability for QRS duration, QT interval, Tpeak–Tend and Theight were calculated using structural equation modeling. QRS duration is largely determined by environmental factors whereas repolarization is primarily genetically determined. Heritability estimates of both QT interval and Theight were significantly higher when measured from Holter compared to resting ECGs and the heritability estimate of each was heart rate dependent. Analysis of the genetic contribution to correlation between repolarization parameters demonstrated that covariance of individual ECG parameters at different heart rates overlap but at each specific heart rate there was relatively little overlap in the genetic determinants of the different repolarization parameters. Conclusions: Here we present the first study of heritability of repolarization parameters measured from Holter ECGs. Our data demonstrate that higher heritability can be estimated from the Holter than the resting ECG and reveals rate dependence in the genetic—environmental determinants of the ECG that has not previously been tractable. Future applications include deeper dissection of the ECG of participants with inherited cardiac electrical disease. PMID:27199769

  4. How can computerized interpretation algorithms adapt to gender/age differences in ECG measurements?

    PubMed

    Xue, Joel; Farrell, Robert M

    2014-01-01

    It is well known that there are gender differences in 12 lead ECG measurements, some of which can be statistically significant. It is also an accepted practice that we should consider those differences when we interpret ECGs, by either a human overreader or a computerized algorithm. There are some major gender differences in 12 lead ECG measurements based on automatic algorithms, including global measurements such as heart rate, QRS duration, QT interval, and lead-by-lead measurements like QRS amplitude, ST level, etc. The interpretation criteria used in the automatic algorithms can be adapted to the gender differences in the measurements. The analysis of a group of 1339 patients with acute inferior MI showed that for patients under age 60, women had lower ST elevations at the J point in lead II than men (57±91μV vs. 86±117μV, p<0.02). This trend was reversed for patients over age 60 (lead aVF: 102±126μV vs. 84±117μV, p<0.04; lead III: 130±146μV vs. 103±131μV, p<0.007). Therefore, the ST elevation thresholds were set based on available gender and age information, which resulted in 25% relative sensitivity improvement for women under age 60, while maintaining a high specificity of 98%. Similar analyses were done for prolonged QT interval and LVH cases. The paper uses several design examples to demonstrate (1) how to design a gender-specific algorithm, and (2) how to design a robust ECG interpretation algorithm which relies less on absolute threshold-based criteria and is instead more reliant on overall morphology features, which are especially important when gender information is unavailable for automatic analysis.

  5. An efficient coding algorithm for the compression of ECG signals using the wavelet transform.

    PubMed

    Rajoub, Bashar A

    2002-04-01

    A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.

  6. A New Strategy for ECG Baseline Wander Elimination Using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Shahbakhti, Mohammad; Bagheri, Hamed; Shekarchi, Babak; Mohammadi, Somayeh; Naji, Mohsen

    2016-06-01

    Electrocardiogram (ECG) signals might be affected by various artifacts and noises that have biological and external sources. Baseline wander (BW) is a low-frequency artifact that may be caused by breathing, body movements and loose sensor contact. In this paper, a novel method based on empirical mode decomposition (EMD) for removal of baseline noise from ECG is presented. When compared to other EMD-based methods, the novelty of this research is to reach the optimized number of decomposed levels for ECG BW de-noising using mean power frequency (MPF), while the reduction of processing time is considered. To evaluate the performance of the proposed method, a fifth-order Butterworth high pass filtering (BHPF) with cut-off frequency at 0.5Hz and wavelet approach are applied. Three performance indices, signal-to-noise ratio (SNR), mean square error (MSE) and correlation coefficient (CC), between pure and filtered signals have been utilized for qualification of presented techniques. Results suggest that the EMD-based method outperforms the other filtering method.

  7. Mobile cloud-computing-based healthcare service by noncontact ECG monitoring.

    PubMed

    Fong, Ee-May; Chung, Wan-Young

    2013-12-02

    Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service.

  8. Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions

    PubMed Central

    Thap, Tharoeun; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    We proposed new electrodes that are applicable for electrocardiogram (ECG) monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL), a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS) electrode and a pencil lead powder type (PLP) electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes. PMID:27092502

  9. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    PubMed Central

    Peter, Steffen; Pratap Reddy, Bhanu; Momtaz, Farshad; Givargis, Tony

    2016-01-01

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system. PMID:27110785

  10. Mobile Cloud-Computing-Based Healthcare Service by Noncontact ECG Monitoring

    PubMed Central

    Fong, Ee-May; Chung, Wan-Young

    2013-01-01

    Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service. PMID:24316562

  11. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks.

    PubMed

    Peter, Steffen; Reddy, Bhanu Pratap; Momtaz, Farshad; Givargis, Tony

    2016-04-22

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  12. ECG Response of Koalas to Tourists Proximity: A Preliminary Study

    PubMed Central

    Ropert-Coudert, Yan; Brooks, Lisa; Yamamoto, Maki; Kato, Akiko

    2009-01-01

    Koalas operate on a tight energy budget and, thus, may not always display behavioral avoidance reaction when placed in a stressful condition. We investigated the physiological response of captive koalas Phascolarctos cinereus in a conservation centre to the presence of tourists walking through their habitat. We compared, using animal-attached data-recorders, the electrocardiogram activity of female koalas in contact with tourists and in a human-free area. One of the koalas in the tourist zone presented elevated heart rate values and variability throughout the recording period. The remaining female in the exhibit area showed a higher field resting heart rates during the daytime than that in the isolated area. In the evening, heart rate profiles changed drastically and both the koalas in the exhibit and in the tourist-free zones displayed similar field resting heart rates, which were lower than those during the day. In parallel, the autonomic nervous systems of these two individuals evolved from sympathetic-dominant during the day to parasympathetic-dominant in the evening. Our results report ECG of free-living koalas for the first time. Although they are preliminary due to the difficulty of having sufficient samples of animals of the same sex and age, our results stress out the importance of studies investigating the physiological reaction of animals to tourists. PMID:19823679

  13. The electrocardiogram of the Beagle dog: reference values and effect of sex, genetic strain, body position and heart rate.

    PubMed

    Hanton, G; Rabemampianina, Y

    2006-04-01

    The aim of the study was to establish a database for electrocardiographic parameters of Beagle dogs used for toxicological studies and to evaluate the influence of supplier, sex, heart rate (HR) and body position for electrocardiogram (ECG) recording on ECG parameters. Peripheral ECG leads were recorded from 934 female and 946 male dogs from Marshall Farms and 27 females and 30 males from Harlan, either standing on a table or restrained in a hammock. HR, RR, PQ and QT intervals, P and QRS duration and P-wave amplitude were measured. There were no major differences between sexes for ECG parameters. The axis of the heart was shifted to the left when the animals were restrained in a hammock compared to when they were standing on a table. The PQ interval was higher (about 9%) in Harlan than in Marshall dogs. HR was negatively correlated with QT (coefficient of linear correlation: r=-0.61 to -0.74), which emphasizes the need for a formula correcting QT interval for HR when interpreting changes in QT interval. HR was also negatively correlated with PQ intervals (r=-0.26 to -0.11), whereas a positive correlation was found between HR and the amplitude of the P wave (r=0.21-0.34). The level of the respiratory sinus arrhythmia (SA) was quantified by calculating the ratio of maximum to minimum RR interval measured over a 10 s period. This ratio was negatively correlated with HR (r =-0.49 to -0.33). Therefore, at high HRs, SA was less marked than at low HRs, but it did not completely disappear. Analysis of beat-to-beat variation indicated that QT and PQ intervals and the amplitude of P wave fluctuated over time and the degree of this variability was positively correlated with the level of SA. In conclusion, we have established reference values for the duration and/or amplitude of some ECG parameters both in terms of means and variability over the recording period, and we have evaluated the influence of body position, genetic strain and HR on the ECG parameters. These data can

  14. A Novel Technique for Fetal ECG Extraction Using Single-Channel Abdominal Recording

    PubMed Central

    Zhang, Nannan; Zhang, Jinyong; Li, Hui; Mumini, Omisore Olatunji; Samuel, Oluwarotimi Williams; Ivanov, Kamen; Wang, Lei

    2017-01-01

    Non-invasive fetal electrocardiograms (FECGs) are an alternative method to standard means of fetal monitoring which permit long-term continual monitoring. However, in abdominal recording, the FECG amplitude is weak in the temporal domain and overlaps with the maternal electrocardiogram (MECG) in the spectral domain. Research in the area of non-invasive separations of FECG from abdominal electrocardiograms (AECGs) is in its infancy and several studies are currently focusing on this area. An adaptive noise canceller (ANC) is commonly used for cancelling interference in cases where the reference signal only correlates with an interference signal, and not with a signal of interest. However, results from some existing studies suggest that propagation of electrocardiogram (ECG) signals from the maternal heart to the abdomen is nonlinear, hence the adaptive filter approach may fail if the thoracic and abdominal MECG lack strict waveform similarity. In this study, singular value decomposition (SVD) and smooth window (SW) techniques are combined to build a reference signal in an ANC. This is to avoid the limitation that thoracic MECGs recorded separately must be similar to abdominal MECGs in waveform. Validation of the proposed method with r01 and r07 signals from a public dataset, and a self-recorded private dataset showed that the proposed method achieved F1 scores of 99.61%, 99.28% and 98.58%, respectively for the detection of fetal QRS. Compared with four other single-channel methods, the proposed method also achieved higher accuracy values of 99.22%, 98.57% and 97.21%, respectively. The findings from this study suggest that the proposed method could potentially aid accurate extraction of FECG from MECG recordings in both clinical and commercial applications. PMID:28245585

  15. Electrocardiogram classification using delay differential equations

    NASA Astrophysics Data System (ADS)

    Lainscsek, Claudia; Sejnowski, Terrence J.

    2013-06-01

    Time series analysis with nonlinear delay differential equations (DDEs) reveals nonlinear as well as spectral properties of the underlying dynamical system. Here, global DDE models were used to analyze 5 min data segments of electrocardiographic (ECG) recordings in order to capture distinguishing features for different heart conditions such as normal heart beat, congestive heart failure, and atrial fibrillation. The number of terms and delays in the model as well as the order of nonlinearity of the model have to be selected that are the most discriminative. The DDE model form that best separates the three classes of data was chosen by exhaustive search up to third order polynomials. Such an approach can provide deep insight into the nature of the data since linear terms of a DDE correspond to the main time-scales in the signal and the nonlinear terms in the DDE are related to nonlinear couplings between the harmonic signal parts. The DDEs were able to detect atrial fibrillation with an accuracy of 72%, congestive heart failure with an accuracy of 88%, and normal heart beat with an accuracy of 97% from 5 min of ECG, a much shorter time interval than required to achieve comparable performance with other methods.

  16. [Syncope: electrocardiogram and autonomic function tests].

    PubMed

    Uribe, William; Baranchuk, Adrián; Botero, Federico

    2016-12-23

    Syncope represents one of the most frequent reasons for consultation in the emergency department. A proper identification will allow a precise etiologic approach and the optimization of delivery of health resources.
Once knowing the classification of syncope; it is the clinical interrogatory what enables to discriminate which of these patients present with a neurogenic mediated syncope or a cardiac mediated syncope. The use of diagnostic methods such as the tilt test, will clarify what type of neurally mediated syncope predominates in the patient.
The electrocardiogram is the cornerstone in the identification of those patients who had a true episode of self-limited or aborted sudden death as the first manifestation of their syncope, a fact which provides prognostic and therapeutic information that will impact the morbidity and mortality.

  17. Defibrillator-embedded rapid recovery electrocardiogram amplifier.

    PubMed

    Neycheva, T; Krasteva, V

    2003-01-01

    One of the most important performances of the defibrillator-embedded amplifier-monitor-recorder tract, connected to defibrillator electrodes, is its rapid recovery after the application of the shock pulse. Practically near-immediate restoration of the signal trace is mandatory for studies of post-shock effects on the myocardium. Automatic analysis of the electrocardiogram signal in public-access defibrillation, aiming for about 100% correct recognition of shockable and non-shockable rhythms, now requires fast amplifier settling, as the decision time should not exceed 10-20 s. Two circuits of post-shock amplifier transient suppressors were developed with non-linear feedback, resulting in second-order high-pass filtering, with gradual return to normally accepted first-order response. Simulation and testing in real conditions resulted in recovery periods in the range of 1-2 s for an amplifier tract of 1-30 Hz bandwidth, depending on the pulse waveform and electrode type.

  18. Coping with anger-provoking situations, psychosocial working conditions, and ECG-detected signs of coronary heart disease.

    PubMed

    Härenstam, A; Theorell, T; Kaijser, L

    2000-01-01

    This study explored the association among coping, psychosocial work factors, and signs of coronary heart disease (CHD) among prison staff (777 men, 345 women). Electrocardiogram (ECG) recordings at rest, health examinations, and a questionnaire were used. A high level of covert coping in men and a low level of open coping in women showed the strongest association with signs of CHD. Among several traditional biological and lifestyle risk factors, only age and systolic blood pressure in men and none in the case of women were significantly associated with CHD signs in the final multivariate regression analyses. A coping style of repressed emotions and actions in anger-provoking situations, independent of traditional risk factors, seems to be associated with a prevalence of ECG signs in male and female prison staff.

  19. Algorithms based on CWT and classifiers to control cardiac alterations and stress using an ECG and a SCR.

    PubMed

    Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2013-05-10

    This paper presents the results of using a commercial pulsimeter as an electrocardiogram (ECG) for wireless detection of cardiac alterations and stress levels for home control. For these purposes, signal processing techniques (Continuous Wavelet Transform (CWT) and J48) have been used, respectively. The designed algorithm analyses the ECG signal and is able to detect the heart rate (99.42%), arrhythmia (93.48%) and extrasystoles (99.29%). The detection of stress level is complemented with Skin Conductance Response (SCR), whose success is 94.02%. The heart rate variability does not show added value to the stress detection in this case. With this pulsimeter, it is possible to prevent and detect anomalies for a non-intrusive way associated to a telemedicine system. It is also possible to use it during physical activity due to the fact the CWT minimizes the motion artifacts.

  20. PLI cancellation in ECG signal based on adaptive filter by using Wiener-Hopf equation for providing initial condition.

    PubMed

    Manosueb, Anchalee; Koseeyaporn, Jeerasuda; Wardkein, Paramote

    2014-01-01

    This paper presents a technique for finding the optimal initial weight for adaptive filter by using difference equation. The obtained analytical response of the system identifies the appropriate weights for the system and shows that the MSE depends on the initial weight. The proposed technique is applied to eliminate the known frequency power line interference (PLI) signal in the electrocardiogram (ECG) signal. The PLI signal is considered as a combination of cosine and sine signals. The adaptive filter, therefore, attempts to adjust the amplitude of cosine and sine signals to synthesize a reference signal very similar to the contaminated PLI signal. To compare the potential of the proposed technique to other techniques, the system is simulated by using the Matlab program and the TMS320C6713 digital board. The simulation results demonstrate that the proposed technique enables the system to eliminate the PLI signal with the fastest time and gains the superior results of the recovered ECG signal.

  1. Algorithms Based on CWT and Classifiers to Control Cardiac Alterations and Stress Using an ECG and a SCR

    PubMed Central

    Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2013-01-01

    This paper presents the results of using a commercial pulsimeter as an electrocardiogram (ECG) for wireless detection of cardiac alterations and stress levels for home control. For these purposes, signal processing techniques (Continuous Wavelet Transform (CWT) and J48) have been used, respectively. The designed algorithm analyses the ECG signal and is able to detect the heart rate (99.42%), arrhythmia (93.48%) and extrasystoles (99.29%). The detection of stress level is complemented with Skin Conductance Response (SCR), whose success is 94.02%. The heart rate variability does not show added value to the stress detection in this case. With this pulsimeter, it is possible to prevent and detect anomalies for a non-intrusive way associated to a telemedicine system. It is also possible to use it during physical activity due to the fact the CWT minimizes the motion artifacts. PMID:23666135

  2. A wireless sensor network compatible wearable u-healthcare monitoring system using integrated ECG, accelerometer and SpO2.

    PubMed

    Chung, Wan-Young; Lee, Young-Dong; Jung, Sang-Joong

    2008-01-01

    This paper presents the design and development of a wearable ubiquitous healthcare monitoring system using integrated electrocardiogram (ECG), accelerometer and oxygen saturation (SpO(2)) sensors. In this design, non-intrusive healthcare system was designed based on wireless sensor network (WSN) for wide area coverage with minimum battery power to support RF transmission. We have developed various devices such as wearable ubiquitous sensor network (USN) node, wearable chest sensor belt and wrist pulse oximeter for this system. Low power ECG, accelerometer and SpO(2) sensors board was integrated to the wearable USN node for user's health monitoring. The wearable ubiquitous healthcare monitoring system allows physiological data to be transmitted in wireless sensor network using IEEE 802.15.4 from on-body wearable sensor devices to a base-station which is connected to a server PC. Physiological data can be displayed and stored in the server PC continuously.

  3. Improving ECG Services at a Children's Hospital: Implementation of a Digital ECG System

    PubMed Central

    Osei, Frank A.; Gates, Gregory J.; Choi, Steven J.; Hsu, Daphne T.; Pass, Robert H.; Ceresnak, Scott R.

    2015-01-01

    Background. The use of digital ECG software and services is becoming common. We hypothesized that the introduction of a completely digital ECG system would increase the volume of ECGs interpreted at our children's hospital. Methods. As part of a hospital wide quality improvement initiative, a digital ECG service (MUSE, GE) was implemented at the Children's Hospital at Montefiore in June 2012. The total volume of ECGs performed in the first 6 months of the digital ECG era was compared to 18 months of the predigital era. Predigital and postdigital data were compared via t-tests. Results. The mean ECGs interpreted per month were 53 ± 16 in the predigital era and 216 ± 37 in the postdigital era (p < 0.001), a fourfold increase in ECG volume after introduction of the digital system. There was no significant change in inpatient or outpatient service volume during that time. The mean billing time decreased from 21 ± 27 days in the postdigital era to 12 ± 5 days in the postdigital era (p < 0.001). Conclusion. Implementation of a digital ECG system increased the volume of ECGs officially interpreted and reported. PMID:26451150

  4. Electrocardiogram-derived respiration in screening of sleep-disordered breathing.

    PubMed

    Babaeizadeh, Saeed; Zhou, Sophia H; Pittman, Stephen D; White, David P

    2011-01-01

    Methods for assessment of sleep-disordered breathing (SDB), including sleep apnea, range from a simple questionnaire to complex multichannel polysomnography. Inexpensive and efficient electrocardiogram (ECG)-based solutions could potentially fill the gap and provide a new SDB screening tool. In addition to the heart rate variability (HRV)-based SDB screening method that we reported a year ago, we have developed a novel method based on ECG-derived respiration (EDR). This method derives the respiratory waveform by (a) measuring peak-to-trough QRS amplitude in a single-channel ECG, (b) removing outlier introduced by noise and artifacts, (c) interpolating the derived values, and (d) filtering values within the respiration rates of 5 and 25 cycles per minute. Each 30 seconds of the respiratory waveform is then classified as normal, SDB, or indeterminate epoch. The previously reported HRV-based method, applied at the same time, is based on power spectrum of heart rate over a sliding 6-minute time window to classify the middle 30-second epoch. We then combined the EDR- and HRV-based techniques to optimize the classification of each epoch. The combined method further improved the accuracy of SDB screening in an independent test database with annotated SDB epochs. The development database was from PhysioNet (n = 25 polysomnograms). The test database was from Sleep Health Centers in Boston (n = 1907 polysomnogram) where the SDB epochs (n = 1,538,222 epochs) were scored using American Academy of Sleep Medicine criteria. The first test was to classify every epoch in the evaluation data set. The combined EDR and HRV method classified 78% of the epochs as either normal or SDB and 22% as indeterminate, with a total accuracy of 88% for scored epochs (not indeterminate). The second test was to evaluate the SDB status for each patient. The algorithm correctly classified 71% of patients with either moderate-to-severe SDB or mild-to-no SDB. We believe that the ECG-based methods

  5. Pseudo-real-time low-pass filter in ECG, self-adjustable to the frequency spectra of the waves.

    PubMed

    Christov, Ivaylo; Neycheva, Tatyana; Schmid, Ramun; Stoyanov, Todor; Abächerli, Roger

    2017-02-04

    The electrocardiogram (ECG) acquisition is often accompanied by high-frequency electromyographic (EMG) noise. The noise is difficult to be filtered, due to considerable overlapping of its frequency spectrum to the frequency spectrum of the ECG. Today, filters must conform to the new guidelines (2007) for low-pass filtering in ECG with cutoffs of 150 Hz for adolescents and adults, and to 250 Hz for children. We are suggesting a pseudo-real-time low-pass filter, self-adjustable to the frequency spectra of the ECG waves. The filter is based on the approximation procedure of Savitzky-Golay with dynamic change in the cutoff frequency. The filter is implemented pseudo-real-time (real-time with a certain delay). An additional option is the automatic on/off triggering, depending on the presence/absence of EMG noise. The analysis of the proposed filter shows that the low-frequency components of the ECG (low-power P- and T-waves, PQ-, ST- and TP-segments) are filtered with a cutoff of 14 Hz, the high-power P- and T-waves are filtered with a cutoff frequency in the range of 20-30 Hz, and the high-frequency QRS complexes are filtered with cutoff frequency of higher than 100 Hz. The suggested dynamic filter satisfies the conflicting requirements for a strong suppression of EMG noise and at the same time a maximal preservation of the ECG high-frequency components.

  6. A robust physiology-based source separation method for QRS detection in low amplitude fetal ECG recordings.

    PubMed

    Vullings, R; Peters, C H L; Hermans, M J M; Wijn, P F F; Oei, S G; Bergmans, J W M

    2010-07-01

    The use of the non-invasively obtained fetal electrocardiogram (ECG) in fetal monitoring is complicated by the low signal-to-noise ratio (SNR) of ECG signals. Even after removal of the predominant interference (i.e. the maternal ECG), the SNR is generally too low for medical diagnostics, and hence additional signal processing is still required. To this end, several methods for exploiting the spatial correlation of multi-channel fetal ECG recordings from the maternal abdomen have been proposed in the literature, of which principal component analysis (PCA) and independent component analysis (ICA) are the most prominent. Both PCA and ICA, however, suffer from the drawback that they are blind source separation (BSS) techniques and as such suboptimum in that they do not consider a priori knowledge on the abdominal electrode configuration and fetal heart activity. In this paper we propose a source separation technique that is based on the physiology of the fetal heart and on the knowledge of the electrode configuration. This technique operates by calculating the spatial fetal vectorcardiogram (VCG) and approximating the VCG for several overlayed heartbeats by an ellipse. By subsequently projecting the VCG onto the long axis of this ellipse, a source signal of the fetal ECG can be obtained. To evaluate the developed technique, its performance is compared to that of both PCA and ICA and to that of augmented versions of these techniques (aPCA and aICA; PCA and ICA applied on preprocessed signals) in generating a fetal ECG source signal with enhanced SNR that can be used to detect fetal QRS complexes. The evaluation shows that the developed source separation technique performs slightly better than aPCA and aICA and outperforms PCA and ICA and has the main advantage that, with respect to aPCA/PCA and aICA/ICA, it performs more robustly. This advantage renders it favorable for employment in automated, real-time fetal monitoring applications.

  7. ECG derived respiration: comparison of time-domain approaches and application to altered breathing patterns of patients with schizophrenia.

    PubMed

    Schmidt, Marcus; Schumann, Andy; Müller, Jonas; Bär, Karl-Jürgen; Rose, Georg

    2017-04-01

    In life-threatening diseases and in several clinical interventions, monitoring of vital parameters is essential to guarantee the safety of patients. Besides monitoring the electrocardiogram (ECG), it is helpful to assess respiratory activity. If the respiration signal itself is not recorded, it can be extracted from the ECG (i.e. ECG derived respiration, EDR). In the present paper, we compared six EDR approaches, namely RS-decline quantified by central moments, respiratory sinus arrhythmia (RSA), R-wave amplitude, QRS area, RS-distance and maximum RS-slope. In order to evaluate the performance of each approach, we applied each method to a database of ECGs and reference respiration signals of 41 healthy subjects. All considered methods revealed relatively small absolute mean errors of the breathing rate (BR) at rest (0.75-1.3 Bpm). The method based on higher order central moments revealed a minimum mean absolute error of 0.75 Bpm (4.40%) and a maximum correlation and concordance with the reference BR (r p  =  0.97, r c  =  0.97). Using this technique, we analyzed changes of respiration in patients suffering from acute schizophrenia. An increased respiration rate of about 4 Bpm was found. Additionally, alteration of respiratory ratio and reduced respiratory sinus arrhythmia was demonstrated. We conclude that a precise dynamic monitoring of breathing and the investigation of changes in breathing patterns is possible without recording respiration per se.

  8. Architecture design of the multi-functional wavelet-based ECG microprocessor for realtime detection of abnormal cardiac events.

    PubMed

    Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee

    2012-01-01

    Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved.

  9. Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation

    PubMed Central

    Liu, Chi Chi; Li, Li; Lam, Yun Wah; Siu, Chung Wah; Cheng, Shuk Han

    2016-01-01

    The adult zebrafish has been used to model the electrocardiogram (ECG) for human cardiovascular studies. Nonetheless huge variations are observed among studies probably because of the lack of a reliable and reproducible recording method. In our study, an adult zebrafish surface ECG recording technique was improved using a multi-electrode method and by pre-opening the pericardial sac. A convenient ECG data analysis method without wavelet transform was also established. Intraperitoneal injection of KCl in zebrafish induced an arrhythmia similar to that of humans, and the arrhythmia was partially rescued by calcium gluconate. Amputation and cryoinjury of the zebrafish heart induced ST segment depression and affected QRS duration after injury. Only cryoinjury decelerated the heart rate. Different changes were also observed in the QT interval during heart regeneration in these two injury models. We also characterized the electrocardiophysiology of breakdance zebrafish mutant with a prolonged QT interval, that has not been well described in previous studies. Our study provided a reliable and reproducible means to record zebrafish ECG and analyse data. The detailed characterization of the cardiac electrophysiology of zebrafish and its mutant revealed that the potential of the zebrafish in modeling the human cardiovascular system exceeds expectations. PMID:27125643

  10. [A USB-Based Digital ECG Sensor].

    PubMed

    Shi Bol; Kong, Xiangyong; Ma, Xiaozhi; Zhang, Genxuan

    2016-01-01

    Based on the ECG-specific BMD 101 integrated circun chip, this study designed a digital ECG sensor. In practical application, users just need to connect the ECG sensor 'o upper computer (such as PC or mobile phone) through USB interface, to realize the functions including display, alarm, saving, transfer etc. After tests, They demonstrate that the sensor can be applied to the detection of arrhythmia, such as bigeminy coupled rhythm, proiosystole etc. Besides, the sensor has various advantages in monitoring an managing the heart health of people out of hospital, including low cost, small volume, usableness, simplicity of operation etc.

  11. ECG findings after myocardial infarction in children after Kawasaki disease

    SciTech Connect

    Nakanishi, T.; Takao, A.; Kondoh, C.; Nakazawa, M.; Hiroe, M.; Matsumoto, Y.

    1988-10-01

    Standard 12-lead ECGs were evaluated in 17 children with myocardial infarction and 78 children without myocardial infarction after Kawasaki disease; sensitivity and specificity of the ECG infarction criteria were determined. The presence or absence of myocardial infarction was determined from either clinical examination results (coronary angiography, ventriculography, and thallium-201 myocardial imaging) or autopsy findings. Of seven patients with inferior infarction, abnormally deep Q waves in lead II, III, or aVF were observed in six, but the duration was greater than 0.04 second in only one (14%). The sensitivity and specificity of inferior infarction criteria based on Q wave amplitude were 86% and 97%, respectively. Of eight patients with anterior infarction, seven (88%) had abnormally deep and wide (greater than or equal to 0.04 second) Q waves in anterior chest leads. The sensitivity and specificity of the infarction criteria based on the amplitude and duration of the Q wave were 75% and 99%, respectively. Of seven patients with lateral infarction, Q waves were observed in lead I, aVL, or both in four patients, and in all of these patients Q waves were wider than 0.04 second. In two patients with both inferior and anterior infarction, Q waves were observed only in leads II, III, and aVF; in only one patient were the Q waves wider than 0.04 second. Thus deep Q waves in lead II, III, or aVF that are not wider than 0.04 second may indicate inferior infarction in children. Q waves in lead I, aVL, and chest leads associated with anterolateral infarction are in most instances deep and wide.

  12. To decide medical therapy according to ECG criteria in patients with supraventricular tachycardia in emergency department: adenosine or diltiazem

    PubMed Central

    Dogan, Halil; Ozucelik, Dogac Niyazi; Aciksari, Kurtulus; Caglar, Ilker Murat; Okutan, Nursel; Yazicioglu, Mustafa; Avyaci, Baris Murat; Simsek, Cem; Ozasir, Derya; Giray, Tufan Akin; Ayan, Cem; Celikmen, Feridun; Okuturlar, Yıldız; Sarikaya, Sezgin

    2015-01-01

    The aim of this study is to investigate the effect of ECG criteria which are used for the distinction between AVNRT and AVRT for the choice of treatment in patients with Supraventricular Tachycardia (SVT). The 77 patients with narrow QRS complex SVT which was treated with Adenosine or Diltiazem in the Emergency Department were evaluated retrospectively. All 12-lead ECG during tachycardia were blindly reviewed according to ECG criteria (Pseudo-r` in V1, Pseudo-S-wave in the inferior leads, Visible P-wave, aVL notch) by a cardiologist and an emergency physician. In this study, while 59.6% of the patients returned to normal sinus rhythm (NSR) after the first dose 6 mg, 64.91% of them after the first dose 12 mg and 71.92% of them after the second dose of 12 mg adenosine, 95% of the patients returned to NSR after the 0.25 mg/kg diltiazem. The most visible ECG findings were visible P waves and the least visible ECG findings were Pseudo-S waves in the inferior leads. It was statistically significant between converted by adenosine to NSR and converted by diltiazem to NSR to the presence of visible P-wave and the aVL lead notch in their ECG findings. Conclusion: The rate of return to NSR through diltiazem was found higher than that of adenosine in narrow complex SVT patients. Also, diltiazem may be the first medication to be preferred in the presence of retrograt P wave and aVL notch in the ECG of the patients with narrow QRS complex stable SVT. PMID:26309644

  13. Biomedical Implementation of Liquid Metal Ink as Drawable ECG Electrode and Skin Circuit

    PubMed Central

    Yu, Yang; Zhang, Jie; Liu, Jing

    2013-01-01

    Background Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Methods Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. Results With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as −0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. Conclusions The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit

  14. The ability of a computer program based on the Marquette Matrix-12 short measurement matrix to replicate coding by the Minnesota ECG coding laboratory.

    PubMed

    Nkomo, V T; Kottke, T E; Brekke, M J; Brekke, L N; Hammill, S C

    2000-10-01

    The study was undertaken to determine whether a computer program that uses "short measurement matrix" data from the Marquette Matrix-12 system can replicate Minnesota electrocardiogram (ECG) coding laboratory interpretations. An agreement was found between coding of median complex ECGs at the Minnesota ECG coding laboratory and coding based on Marquette Matrix-12 short measurement matrix. The comparison was based on 763 ECGs plus chest pain history and serum enzyme values for a stratified random sample of 141 patients hospitalized in 1990 or 1991 for an event coded as HICDA 410.x (acute myocardial infarction), 411 (other acute and subacute forms of ischemic heart disease), 413 (angina pectoris), or 796.9 (other ill defined and unknown causes of morbidity and mortality). The population was reconstructed from the stratified random sample to enable population-based inferences. Exact agreement between Matrix-12 and Minnesota coding laboratory interpretation on 4 ECG patterns (evolving diagnostic, diagnostic, equivocal, or other ECG pattern) was 74.5% (Kappa = 0.63 +/- 0.05) for the stratified random sample and 78.8% (Kappa = 0.66 +/- 0.05) for the reconstructed population. For coding myocardial infarction based on the ECG, serum enzyme levels, and ischemic chest pain, agreement was 91.5% (Kappa = 0.85 +/- 0.04) for the stratified random sample and 90% (Kappa = 0.83 +/- 0.04) for the reconstructed population. Although ECG interpretation by a computer program based on the short measurement matrix of the Matrix 12 system results in better agreement than prior attempts to replicate the Minnesota coding laboratory, interpretation remains unacceptably discordant.

  15. Role of coronary angiography for out-of-hospital cardiac arrest survivors according to postreturn of spontaneous circulation on an electrocardiogram

    PubMed Central

    Lee, Tae Rim; Hwang, Sung Yeon; Cha, Won Chul; Shin, Tae Gun; Sim, Min Seob; Jo, Ik Joon; Song, Keun Jeong; Rhee, Joong Eui; Jeong, Yeon Kwon

    2017-01-01

    Abstract Survivors of out-of-hospital cardiac arrest (OHCA) have high mortality and morbidity. An acute coronary event is the most common cause of sudden cardiac death. For this reason, coronary angiography is an important diagnostic and treatment strategy for patients with postcardiac arrest. This study aimed to identify the correlation between postreturn of spontaneous circulation (ROSC) on an electrocardiogram (ECG) and results of coronary angiography of OHCA survivors. We collected data from our OHCA registry from January 2010 to November 2014. We categorized OHCA survivors into 2 groups according to post-ROSC ECG results. Emergent coronary artery angiography (CAG) (CAG performed within 12 hours after cardiac arrest) was performed in patients who showed ST segment elevation or new onset of left bundle branch block (LBBB) in post-ROSC ECG. For other patients, the decision for performing CAG was made according to agreement between the emergency physician and the cardiologist. During the study period, 472 OHCA victims visited our emergency department and underwent cardiopulmonary resuscitation. Among 198 OHCA survivors, 82 patients underwent coronary artery intervention. Thirty-one (70.4%) patients in the ST segment elevation or LBBB group and 10 (24.4%) patients in the nonspecific ECG group had coronary artery lesions (P < .01). Seven (18.4%) patients in the nonspecific ECG group showed coronary spasm. OHCA survivors without ST segment elevation or new onset LBBB still have significant coronary lesions in CAG. If there is no other obvious arrest cause in patients without significant changes in post ROSC ECG, CAG should be considered to rule out the possibility of coronary artery problems, including coronary spasm. PMID:28207539

  16. Superior success rate of intracavitary electrocardiogram guidance for peripherally inserted central catheter placement in patients with cancer: A randomized open-label controlled multicenter study

    PubMed Central

    Meng, Aifeng; Feng, Yuling; Wu, Xiancui; Yang, Yiqun; Chen, Ping; Qiu, Zhenzhu; Qi, Jing; Chen, Chuanying; Wei, Jia; Qin, Minyi; Kong, Weiwei; Chen, Xiangyu; Xu, Wei

    2017-01-01

    Background Intracavitary electrocardiogram (IC ECG) guidance emerges as a new technique for peripherally inserted central catheters (PICCs) placement and demonstrates many potential advantages in recent observational studies. Aims To determine whether IC ECG-guided PICCs provide more accurate positioning of catheter tips compared to conventional anatomical landmarks in patients with cancer undergoing chemotherapy. Methods In this multicenter, open-label, randomized controlled study (ClinicalTrials.gov number, NCT02409589), a total of 1,007 adult patients were assigned to receive either IC ECG guidance (n = 500) or anatomical landmark guidance (n = 507) for PICC positioning. The confirmative catheter tip positioning x-ray data were centrally interpreted by independent radiologists. All reported analyses in the overall population were performed on an intention-to-treat basis. Analyses of pre-specified subgroups and a selected large subpopulation were conducted to explore consistency and accuracy. Results In the IC ECG-guided group, the first-attempt success rate was 89.2% (95% confidence interval [CI], 86.5% to 91.9%), which was significantly higher than 77.4% (95% CI, 73.7% to 81.0%) in the anatomical landmark group (P < 0.0001). This trend of superiority of IC ECG guidance was consistently noted in almost all prespecified patient subgroups and two selected large subpopulations, even when using optimal target rates for measurement. In contrast, the superiority nearly disappeared when PICCs were used via the left instead of right arms (interaction P-value = 0.021). No catheter-related adverse events were reported during the PICC intra-procedures in either group. Conclusions Our findings indicated that the IC ECG-guided method had a more favorable positioning accuracy versus traditional anatomical landmarks for PICC placement in adult patients with cancer undergoing chemotherapy. Furthermore, there were no significant safety concerns reported for catheterization using

  17. Smartphone home monitoring of ECG

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Landa, Joseph; Nakajima, Hiroshi; Hata, Yutaka

    2012-06-01

    A system of ambulatory, halter, electrocardiography (ECG) monitoring system has already been commercially available for recording and transmitting heartbeats data by the Internet. However, it enjoys the confidence with a reservation and thus a limited market penetration, our system was targeting at aging global villagers having an increasingly biomedical wellness (BMW) homecare needs, not hospital related BMI (biomedical illness). It was designed within SWaP-C (Size, Weight, and Power, Cost) using 3 innovative modules: (i) Smart Electrode (lowpower mixed signal embedded with modern compressive sensing and nanotechnology to improve the electrodes' contact impedance); (ii) Learnable Database (in terms of adaptive wavelets transform QRST feature extraction, Sequential Query Relational database allowing home care monitoring retrievable Aided Target Recognition); (iii) Smartphone (touch screen interface, powerful computation capability, caretaker reporting with GPI, ID, and patient panic button for programmable emergence procedure). It can provide a supplementary home screening system for the post or the pre-diagnosis care at home with a build-in database searchable with the time, the place, and the degree of urgency happened, using in-situ screening.

  18. Biotelemetry for Monitoring Electrocardiograms during Athletic Events and Stress Tests

    ERIC Educational Resources Information Center

    Mitchell, B. W.; Thomasson, G. O.

    1975-01-01

    This article discusses a study attempting to determine if a biotelemetry system developed for use on chickens could be suitable for monitoring electrocardiograms of humans during exercise. Techniques for its use are reviewed. (JS)

  19. Month-to-month and year-to-year reproducibility of high frequency QRS ECG signals

    NASA Technical Reports Server (NTRS)

    Batdorf, Niles J.; Feiveson, Alan H.; Schlegel, Todd T.

    2004-01-01

    High frequency electrocardiography analyzing the entire QRS complex in the frequency range of 150 to 250 Hz may prove useful in the detection of coronary artery disease, yet the long-term stability of these waveforms has not been fully characterized. Therefore, we prospectively investigated the reproducibility of the root mean squared voltage, kurtosis, and the presence versus absence of reduced amplitude zones in signal averaged 12-lead high frequency QRS recordings acquired in the supine position one month apart in 16 subjects and one year apart in 27 subjects. Reproducibility of root mean squared voltage and kurtosis was excellent over these time intervals in the limb leads, and acceptable in the precordial leads using both the V-lead and CR-lead derivations. The relative error of root mean squared voltage was 12% month-to-month and 16% year-to-year in the serial recordings when averaged over all 12 leads. Reduced amplitude zones were also reproducible up to a rate of 87% and 81%, respectively, for the month-to-month and year-to-year recordings. We conclude that 12-lead high frequency QRS electrocardiograms are sufficiently reproducible for clinical use.

  20. Month-to-Month and Year-to-Year Reproducibility of High Frequency QRS ECG signals

    NASA Technical Reports Server (NTRS)

    Batdorf, Niles; Feiveson, Alan H.; Schlegel, Todd T.

    2006-01-01

    High frequency (HF) electrocardiography analyzing the entire QRS complex in the frequency range of 150 to 250 Hz may prove useful in the detection of coronary artery disease, yet the long-term stability of these waveforms has not been fully characterized. We therefore prospectively investigated the reproducibility of the root mean squared (RMS) voltage, kurtosis, and the presence versus absence of reduced amplitude zones (RAzs) in signal averaged 12-lead HF QRS recordings acquired in the supine position one month apart in 16 subjects and one year apart in 27 subjects. Reproducibility of RMS voltage and kurtosis was excellent over these time intervals in the limb leads, and acceptable in the precordial leads using both the V-lead and CR-lead derivations. The relative error of RMS voltage was 12% month-to-month and 16% year-to-year in the serial recordings when averaged over all 12 leads. RAzs were also reproducible at a rate of up to 87% and 8 1 %, respectively, for the month-to-month and year-to-year recordings. We conclude that 12-lead HF QRS electrocardiograms are sufficiently reproducible for clinical use.

  1. A Combined Linkage and Exome Sequencing Analysis for Electrocardiogram Parameters in the Erasmus Rucphen Family Study

    PubMed Central

    Silva, Claudia T.; Zorkoltseva, Irina V.; Amin, Najaf; Demirkan, Ayşe; van Leeuwen, Elisabeth M.; Kors, Jan A.; van den Berg, Marten; Stricker, Bruno H.; Uitterlinden, André G.; Kirichenko, Anatoly V.; Witteman, Jacqueline C. M.; Willemsen, Rob; Oostra, Ben A.; Axenovich, Tatiana I.; van Duijn, Cornelia M.; Isaacs, Aaron

    2016-01-01

    Electrocardiogram (ECG) measurements play a key role in the diagnosis and prediction of cardiac arrhythmias and sudden cardiac death. ECG parameters, such as the PR, QRS, and QT intervals, are known to be heritable and genome-wide association studies of these phenotypes have been successful in identifying common variants; however, a large proportion of the genetic variability of these traits remains to be elucidated. The aim of this study was to discover loci potentially harboring rare variants utilizing variance component linkage analysis in 1547 individuals from a large family-based study, the Erasmus Rucphen Family Study (ERF). Linked regions were further explored using exome sequencing. Five suggestive linkage peaks were identified: two for QT interval (1q24, LOD = 2.63; 2q34, LOD = 2.05), one for QRS interval (1p35, LOD = 2.52) and two for PR interval (9p22, LOD = 2.20; 14q11, LOD = 2.29). Fine-mapping using exome sequence data identified a C > G missense variant (c.713C > G, p.Ser238Cys) in the FCRL2 gene associated with QT (rs74608430; P = 2.8 × 10-4, minor allele frequency = 0.019). Heritability analysis demonstrated that the SNP explained 2.42% of the trait’s genetic variability in ERF (P = 0.02). Pathway analysis suggested that the gene is involved in cytosolic Ca2+ levels (P = 3.3 × 10-3) and AMPK stimulated fatty acid oxidation in muscle (P = 4.1 × 10-3). Look-ups in bioinformatics resources showed that expression of FCRL2 is associated with ARHGAP24 and SETBP1 expression. This finding was not replicated in the Rotterdam study. Combining the bioinformatics information with the association and linkage analyses, FCRL2 emerges as a strong candidate gene for QT interval. PMID:27877193

  2. The Effects of Cocaine on Heart Rate and Electrocardiogram in Zebrafish (Danio rerio)

    PubMed Central

    Mersereau, Erik J.; Poitra, Shelby L.; Espinoza, Ana; Crossley, Dane A.; Darland, Tristan

    2015-01-01

    Zebrafish (Danio rerio) have been used as a model organism to explore the genetic basis for responsiveness to addictive drugs like cocaine. However, very little is known about how the physiological response to cocaine is mediated in zebrafish. In the present study electrocardiograms (ECG) were recorded from adult zebrafish treated with cocaine. Treatment with cocaine resulted in a bell-shaped dose response curve with a maximal change in heart rate seen using 5mg/L cocaine. Higher doses resulted in a higher percentage of fish showing bradycardia. The cocaine-induced tachycardia was blocked by co-treatment with propranolol, a ß-adrenergic antagonist, but potentiated by co-treatment with phentolamine, a α-adrenergic antagonist. Co-treatment with atropine, a classic cholinergic antagonist, had no effect on cocaine-induced tachycardia. Cocaine treatment of adult fish changed the ECG of treated fish, inducing a dose-dependent increase in QT interval after adjusting for heart rate (QTc), while not affecting the PR or QRS intervals. The acute effects of cocaine on heart rate were examined in 5-day old embryos to see if zebrafish might serve as a suitable model organism to study possible links of embryonic physiological response to subsequent adult behavioral response to the drug. Cocaine treatment of 5-day old zebrafish embryos also resulted in a bell-shaped dose response curve, with maximal tachycardia achieved with 10mg/L. The response in embryonic fish was thus comparable to that in adults and raises the possibility that the effects of embryonic exposure to cocaine on the developing cardiovascular system can be effectively modeled in zebrafish. PMID:25847362

  3. Acute effects of intravenous dronedarone on electrocardiograms, hemodynamics and cardiac functions in anesthetized dogs.

    PubMed

    Saengklub, Nakkawee; Limprasutr, Vudhiporn; Sawangkoon, Suwanakiet; Buranakarl, Chollada; Hamlin, Robert L; Kijtawornrat, Anusak

    2016-02-01

    Dronedarone is a class III antiarrhythmic that has been used for management of atrial fibrillation in humans, but limited information was found in dogs. The objective of this study was to determine the acute effects of escalating concentrations of dronedarone on electrocardiograms (ECG), hemodynamics and cardiac mechanics in healthy dogs. A total of 7 beagle dogs were anesthetized with isoflurane and instrumented to obtain lead II ECG, pressures at ascending aorta, right atrium, pulmonary artery and left ventricle, and left ventricular pressure-volume relationship. Five dogs were given vehicle and followed by escalating doses of dronedarone (0.5, 1.0 and 2.5 mg/kg, 15 min for each dose), and two dogs were used as a vehicle-treated control. All parameters were measured at 15 min after the end of each dose. The results showed that all parameters in vehicle-treated dogs were unaltered. Dronedarone at 2.5 mg/kg significantly lengthened PQ interval (P<0.01), reduced cardiac output (P<0.01) and increased systemic vascular resistance (P<0.01). Dronedarone produced negative inotropy assessed by significantly lowered end-systolic pressure-volume relationship, preload recruitable stroke work, contractility index and dP/dtmax. It also impaired diastolic function by significantly increased end-diastolic pressure-volume relationship, tau and dP/dtmin. These results suggested that acute effects of dronedarone produced negative dromotropy, inotropy and lusitropy in anesthetized dogs. Care should be taken when given dronedarone to dogs, especially when the patients have impaired cardiac function.

  4. Efficient thresholding-based ECG compressors for high quality applications using cosine modulated filter banks.

    PubMed

    Hernando-Ramiro, Carlos; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando; Pedroviejo-Benito, Fatimá

    2011-01-01

    The aim of electrocardiogram (ECG) compression is to achieve as much compression as possible while the significant information is preserved in the reconstructed signal. Lossy thresholding-based compressors have shown good performance needing low computational resources. In this work, two compression schemes that include nearly perfect reconstruction cosine modulated filter banks for the signal decomposition are proposed. They are evaluated for highly reliable applications, where the reconstructed signal must be very similar to the original. The whole MIT-BIH Arrhythmia Database and suitable metrics are used in the assessment, to obtain representative results. Results show that the proposed compressors yield better performance than discrete wavelet transform-based techniques, when high quality requirements are imposed.

  5. Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation.

    PubMed

    Fernández, Miguel A; Zemzemi, Nejib

    2010-07-01

    This work considers the approximation of the cardiac bidomain equations, either isolated or coupled with the torso, via first order semi-implicit time-marching schemes involving a fully decoupled computation of the unknown fields (ionic state, transmembrane potential, extracellular and torso potentials). For the isolated bidomain system, we show that the Gauss-Seidel and Jacobi like splittings do not compromise energy stability; they simply alter the energy norm. Within the framework of the numerical simulation of electrocardiograms (ECG), these bidomain splittings are combined with an explicit Robin-Robin treatment of the heart-torso coupling conditions. We show that the resulting schemes allow a fully decoupled (energy) stable computation of the heart and torso fields, under an additional hyperbolic-CFL like condition. The accuracy and convergence rate of the considered schemes are investigated numerically with a series of numerical experiments.

  6. Embroidered Electrode with Silver/Titanium Coating for Long-Term ECG Monitoring

    PubMed Central

    Weder, Markus; Hegemann, Dirk; Amberg, Martin; Hess, Markus; Boesel, Luciano F.; Abächerli, Roger; Meyer, Veronika R.; Rossi, René M.

    2015-01-01

    For the long-time monitoring of electrocardiograms, electrodes must be skin-friendly and non-irritating, but in addition they must deliver leads without artifacts even if the skin is dry and the body is moving. Today's adhesive conducting gel electrodes are not suitable for such applications. We have developed an embroidered textile electrode from polyethylene terephthalate yarn which is plasma-coated with silver for electrical conductivity and with an ultra-thin titanium layer on top for passivation. Two of these electrodes are embedded into a breast belt. They are moisturized with a very low amount of water vapor from an integrated reservoir. The combination of silver, titanium and water vapor results in an excellent electrode chemistry. With this belt the long-time monitoring of electrocardiography (ECG) is possible at rest as well as when the patient is moving. PMID:25599424

  7. Compressed sensing of ECG signal for wireless system with new fast iterative method.

    PubMed

    Tawfic, Israa; Kayhan, Sema

    2015-12-01

    Recent experiments in wireless body area network (WBAN) show that compressive sensing (CS) is a promising tool to compress the Electrocardiogram signal ECG signal. The performance of CS is based on algorithms use to reconstruct exactly or approximately the original signal. In this paper, we present two methods work with absence and presence of noise, these methods are Least Support Orthogonal Matching Pursuit (LS-OMP) and Least Support Denoising-Orthogonal Matching Pursuit (LSD-OMP). The algorithms achieve correct support recovery without requiring sparsity knowledge. We derive an improved restricted isometry property (RIP) based conditions over the best known results. The basic procedures are done by observational and analytical of a different Electrocardiogram signal downloaded them from PhysioBankATM. Experimental results show that significant performance in term of reconstruction quality and compression rate can be obtained by these two new proposed algorithms, and help the specialist gathering the necessary information from the patient in less time if we use Magnetic Resonance Imaging (MRI) application, or reconstructed the patient data after sending it through the network.

  8. Alterations of Blood Pressure and ECG following Two-Week Consumption of Berberis integerrima Fruit Extract

    PubMed Central

    Mahdavi, Naser

    2014-01-01

    In light of the popularity and also the various nutritional and medicinal properties of Berberis integerrima, this study was conducted to assess the influence of its aqueous extract on hemodynamic and electrocardiogram (ECG) indices of rat. Animals were divided to control (CTL), B50, B100, and B200 groups that orally received tap water, aqueous extracts of B. integerrima fruit 50, 100, and 200 mg/kg/day, respectively, for two weeks and on day 15, data were recorded. Different doses of barberry fruit extract had no significant effect on blood pressure, heart rate, RR interval, P duration, and Q wave amplitude of electrocardiogram. Extract administration was associated with an incremental trend in PR interval that was not statistically significant. Higher doses (100 and 200 mg/kg) of extract significantly increased the QRS interval (P < 0.01 versus CTL and B50 groups) but decreased the QTc interval (P < 0.01 versus CTL group and P < 0.001 versus B50 group), the JT interval, and TpTe interval (P < 0.001 versus CTL and B50 groups). The results suggest that high doses of barberry extract definitely prolong the depolarization phase and shorten the repolarization phase of ventricular muscle and hence induce alteration in heart electrical conductivity. PMID:27351000

  9. 'Action potential-like' ST elevation following pseudo-Wellens' electrocardiogram.

    PubMed

    Oksuz, Fatih; Sensoy, Baris; Sen, Fatih; Celik, Ethem; Ozeke, Ozcan; Maden, Orhan

    2015-01-01

    Coronary artery vasospasm is an important cause of chest pain syndromes that can lead to myocardial infarction, ventricular arrhythmias, and sudden death. In 1959, Prinzmetal et al described a syndrome of nonexertional chest pain with ST-segment elevation on electrocardiography. Persistent angina is challenging, and repeated coronary angioplasty may be required in this syndrome. Calcium antagonists are extremely effective in treating and preventing coronary spasm, and may provide long-lasting relief for the patient. Whereas the Wellens' syndrome is characterized by symmetrically inverted T-waves with preserved R waves in the precordial leads suggestive of impending myocardial infarction due to a critical proximal left anterior descending stenosis, the pseudo-Wellens' syndrome caused by coronary artery spasm has also rarely been reported in literature. We present a pseudo-Wellens syndrome as a cause of vasospastic angina, and a diffuse ST segment elavation on electrocardiogram resembling the Greek letter lambda, called also 'action potential-like' ECG in a patient with vasospastic-type Printzmetal angina.

  10. [Application of fuzzy reasoning to myocardial ischemia judgment based on electrocardiogram ST-T complex].

    PubMed

    Song, Jinzhong; Yan, Hong; Liu, Guizhi; Kuang, Hong

    2012-02-01

    Electrocardiogram (ECG) is a convenient, economic, and non-invasive detecting tool in myocardial ischemia (MI). Its clinical appearance is mainly exhibited by ST-T complex change. MI events are usually instantaneous and asymptomatic in some cases, which cannot be forecasted to have a precautionary measure in time by doctors. The automatic detection of MI by computer and a cued warning of danger in real time play an important role in diagnosing heart disease. With the help of the medical staff, some quantitative approbatory indicators, such as ST-segment deviation, the amplitude of T-wave peak and the rate of ST and heart rate (HR), were combined to judge MI using fuzzy reasoning. After MIT-BIH database and the long-term ST database (LTST) verification, sensitivity and positive predictive values reached 75% and 78% respectively, and specificity and negative predictive values were 85% and 87% respectively. In addition, the proposed method was close to human way of thinking and understanding, and easy to apply in clinical detection and engineering fields.

  11. Corrected Integral Shape Averaging Applied to Obstructive Sleep Apnea Detection from the Electrocardiogram

    NASA Astrophysics Data System (ADS)

    Boudaoud, S.; Rix, H.; Meste, O.; Heneghan, C.; O'Brien, C.

    2007-12-01

    We present a technique called corrected integral shape averaging (CISA) for quantifying shape and shape differences in a set of signals. CISA can be used to account for signal differences which are purely due to affine time warping (jitter and dilation/compression), and hence provide access to intrinsic shape fluctuations. CISA can also be used to define a distance between shapes which has useful mathematical properties; a mean shape signal for a set of signals can be defined, which minimizes the sum of squared shape distances of the set from the mean. The CISA procedure also allows joint estimation of the affine time parameters. Numerical simulations are presented to support the algorithm for obtaining the CISA mean and parameters. Since CISA provides a well-defined shape distance, it can be used in shape clustering applications based on distance measures such as[InlineEquation not available: see fulltext.]-means. We present an application in which CISA shape clustering is applied to P-waves extracted from the electrocardiogram of subjects suffering from sleep apnea. The resulting shape clustering distinguishes ECG segments recorded during apnea from those recorded during normal breathing with a sensitivity of[InlineEquation not available: see fulltext.] and specificity of[InlineEquation not available: see fulltext.].

  12. Compressive sensing of electrocardiogram signals by promoting sparsity on the second-order difference and by using dictionary learning.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2014-04-01

    A new algorithm for the reconstruction of electrocardiogram (ECG) signals and a dictionary learning algorithm for the enhancement of its reconstruction performance for a class of signals are proposed. The signal reconstruction algorithm is based on minimizing the lp pseudo-norm of the second-order difference, called as the lp(2d) pseudo-norm, of the signal. The optimization involved is carried out using a sequential conjugate-gradient algorithm. The dictionary learning algorithm uses an iterative procedure wherein a signal reconstruction and a dictionary update steps are repeated until a convergence criterion is satisfied. The signal reconstruction step is implemented by using the proposed signal reconstruction algorithm and the dictionary update step is implemented by using the linear least-squares method. Extensive simulation results demonstrate that the proposed algorithm yields improved reconstruction performance for temporally correlated ECG signals relative to the state-of-the-art lp(1d)-regularized least-squares and Bayesian learning based algorithms. Also for a known class of signals, the reconstruction performance of the proposed algorithm can be improved by applying it in conjunction with a dictionary obtained using the proposed dictionary learning algorithm.

  13. Short-term effects of oral dronedarone administration on cardiac function, blood pressure and electrocardiogram in conscious telemetry dogs

    PubMed Central

    SAENGKLUB, Nakkawee; YOUNGBLOOD, Brad; DEL RIO, Carlos; SAWANGKOON, Suwanakiet; HAMLIN, Robert L.; KIJTAWORNRAT, Anusak

    2016-01-01

    Dronedarone is a multichannel blocking antiarrhythmic drug that has been used for management of atrial fibrillation in humans, but the data in veterinary medicine are inadequate. The objective of this study was to determine the short-term effects of oral dronedarone on cardiac inotropy and lusitropy, blood pressure and electrocardiogram (ECG) in healthy dogs. A total of 6 beagle dogs were instrumented with telemetry units and sono-micrometry crystals to obtain left ventricular pressure-volume relationship, mean blood pressure (MBP) and ECG. Dogs were given orally dronedarone (20 mg/kg, twice per day) for 7 days. All parameters were obtained hourly at 4–8 hr after the first dose and at 12-, 96- (day 4) and 168-hr (day 7) after dosing. The results showed that dronedarone had no effect on inotropy and lusitropy, while it significantly lengthened PQ interval (P<0.001) and lowered MBP (P<0.05). Dronedarone also tended to reduce cardiac output (P=0.237) and heart rate (P=0.057). These results suggested that short-term effects of oral dronedarone administration at a dose of 20 mg/kg, twice per day, produced negative dromotropy with minimal effect on cardiac function in conscious dogs. PMID:26922916

  14. Evaluation of a New Shirt-Based Electrocardiogram Device for Cardiac Screening in Soccer Players: Comparative Study With Treadmill Ergospirometry

    PubMed Central

    Fabregat-Andres, Oscar; Munoz-Macho, Adolfo; Adell-Beltran, Guillermo; Ibanez-Catala, Xavier; Macia, Agustin; Facila, Lorenzo

    2014-01-01

    Background Prevention of cardiac events during competitive sports is fundamental. New technologies with remote monitoring systems integrated into clothing could facilitate the screening of heart disease. Our aim was to evaluate the feasibility of Nuubo system during a field stress test performed by soccer players, comparing results with treadmill ergospirometry as test reference. Methods Nineteen male professional soccer players (19.2 ± 1.6 years) were studied. Wireless electrocardiographic monitoring during a Yo-Yo intermittent recovery test level 1 in soccer field and subsequent analysis of arrhythmias were firstly performed. Subsequently, in a period no longer than 4 weeks, each player underwent cardiopulmonary exercise testing in hospital. Results During Yo-Yo test, electrocardiogram (ECG) signal was interpretable in 16 players (84.2%). In the other three players, ECG artifacts did not allow a proper analysis. Estimation of maximum oxygen consumption was comparable between two exercise tests (VO2 max 53.3 ± 2.4 vs. 53.7 ± 3.0 mL/kg/min for Yo-Yo test and ergometry respectively; intra-class correlation coefficient 0.84 (0.63 - 0.93), P < 0.001). No arrhythmias were detected in any player during both tests. Conclusions The use of Nuubo’s technology allows an accurate single-lead electrocardiographic recording and estimation of reliable performance variables during exercise testing in field, and provides a new perspective to cardiac remote monitoring in collective sports. PMID:28348705

  15. Accuracy of the Electrocardiogram in Localizing the Accessory Pathway in Patients with Wolff-Parkinson-White Pattern

    PubMed Central

    Teixeira, Carlos Manuel; Pereira, Telmo António; Lebreiro, Ana Margarida; Carvalho, Sérgio Alexandre

    2016-01-01

    Background There are currently several electrocardiographic algorithms to locate the accessory pathway (AP) in patients with Wolff-Parkinson-White (WPW) syndrome. Objective To compare the ability of electrocardiographic algorithms in identifying the location of the AP in patients with WPW pattern referred for ablation. Methods Observational, cross-sectional, retrospective study with 111 patients with WPW syndrome referred for AP ablation. The electrocardiogram (ECG) obtained prior to the ablation was analyzed by an experienced observer who consecutively applied seven algorithms to identify non-invasively the AP. We then compared the location estimated with this assessment with that obtained in the electrophysiological study and calculated the agreement rates. Results Among the APs, 59 (53.15%) were distributed around the mitral annulus and the remaining 52 (46.85%) were located around the tricuspid annulus. The overall absolute accuracy of the algorithms evaluated varied between 27% and 47%, increasing to between 40% and 76% when we included adjacent locations. The absolute agreement rate by AP location was 2.00-52.20% for septal APs (n = 51), increasing to 5.90-90.20% when considering adjacent locations; 7.70-69.20% for right APs (n = 13), increasing to 42.90-100% when considering adjacent locations; and 21.70-54.50% for left APs (n = 47), increasing to 50-87% when considering adjacent locations. Conclusion The agreement rates observed for the analyzed scores indicated a low discriminative ability of the ECG in locating the AP in patients with WPW. PMID:27627222

  16. [A squeeze approach for electrocardiogram ST-segment detection based on R-wave and T-wave].

    PubMed

    Song, Jinzhong; Yan, Hong; Li, Li; Yang, Xianglin

    2011-10-01

    ST-segment is the main clinical appearance in myocardial ischemia detection based on electrocardiogram (ECG) signals. However, it is highly sensitive to interferences (baseline wandering, postural changes, electrode interference, etc.), which cause the feature points of ECG ST-segment to be difficult to detect accurately. Currently, the common detection methods of ST-segment are: R+x and J+x, but they are affected badly by T-wave morphological variability and J point location. For these reasons, firstly we proposed a convenient and accurate approach for T-wave onset in this paper. It did not need to locate T-wave peak and was robust to baseline wandering and T-wave morphology. Secondly, we proposed a squeeze approach for ST-segment detection based on R-wave peak and T-wave onset. After the Long-Term ST database (LTST) verification, the proposed method has shown a good timeliness and robustness, and the accuracy of ST-segment detection has reached above 92%.

  17. Demonstration of a fully differential VGA chip with small THD for ECG acquisition system

    NASA Astrophysics Data System (ADS)

    Gongli, Xiao; Yuliang, Qin; Weilin, Xu; Baolin, Wei; Jihai, Duan; Xueming, Wei

    2015-10-01

    We present both a theoretical and experimental demonstration of a fully differential variable gain amplifier (VGA) with small total harmonic distortion (THD) for an electrocardiogram (ECG) acquisition system. Capacitive feedback technology is adopted to reduce the nonlinearity of VGA. The fully differential VGA has been fabricated in SMIC 0.18-μm CMOS process, and it only occupies 0.11 mm2. The measurements are in good agreement with simulation results. Experimental results show that the gain of VGA changes from 6.17 to 43.75 dB with a gain step of 3 dB. The high-pass corner frequency and low-pass corner frequency are around 0.22 Hz and 7.9 kHz, respectively. For each gain configuration, a maximal THD of 0.13% is obtained. The fully differential VGA has a low THD and its key performance parameters are well satisfied with the demands of ECG acquisition system application in the UWB wireless body area network. Project supported by the National Natural Science Foundation of China (Nos. 61264001, 61465004, 61161003, 61166004), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2013GXNSFAA019338), the Science and Technology Research Key Project of Guangxi Department of Education (No. 2013ZD026), and the Innovation Project of GUET Graduate Education (No. GDYCSZ201457).

  18. Detection of segments with fetal QRS complex from abdominal maternal ECG recordings using support vector machine

    NASA Astrophysics Data System (ADS)

    Delgado, Juan A.; Altuve, Miguel; Nabhan Homsi, Masun

    2015-12-01

    This paper introduces a robust method based on the Support Vector Machine (SVM) algorithm to detect the presence of Fetal QRS (fQRS) complexes in electrocardiogram (ECG) recordings provided by the PhysioNet/CinC challenge 2013. ECG signals are first segmented into contiguous frames of 250 ms duration and then labeled in six classes. Fetal segments are tagged according to the position of fQRS complex within each one. Next, segment features extraction and dimensionality reduction are obtained by applying principal component analysis on Haar-wavelet transform. After that, two sub-datasets are generated to separate representative segments from atypical ones. Imbalanced class problem is dealt by applying sampling without replacement on each sub-dataset. Finally, two SVMs are trained and cross-validated using the two balanced sub-datasets separately. Experimental results show that the proposed approach achieves high performance rates in fetal heartbeats detection that reach up to 90.95% of accuracy, 92.16% of sensitivity, 88.51% of specificity, 94.13% of positive predictive value and 84.96% of negative predictive value. A comparative study is also carried out to show the performance of other two machine learning algorithms for fQRS complex estimation, which are K-nearest neighborhood and Bayesian network.

  19. Low-power wireless ECG acquisition and classification system for body sensor networks.

    PubMed

    Lee, Shuenn-Yuh; Hong, Jia-Hua; Hsieh, Cheng-Han; Liang, Ming-Chun; Chang Chien, Shih-Yu; Lin, Kuang-Hao

    2015-01-01

    A low-power biosignal acquisition and classification system for body sensor networks is proposed. The proposed system consists of three main parts: 1) a high-pass sigma delta modulator-based biosignal processor (BSP) for signal acquisition and digitization, 2) a low-power, super-regenerative on-off keying transceiver for short-range wireless transmission, and 3) a digital signal processor (DSP) for electrocardiogram (ECG) classification. The BSP and transmitter circuits, which are the body-end circuits, can be operated for over 80 days using two 605 mAH zinc-air batteries as the power supply; the power consumption is 586.5 μW. As for the radio frequency receiver and DSP, which are the receiving-end circuits that can be integrated in smartphones or personal computers, power consumption is less than 1 mW. With a wavelet transform-based digital signal processing circuit and a diagnosis control by cardiologists, the accuracy of beat detection and ECG classification are close to 99.44% and 97.25%, respectively. All chips are fabricated in TSMC 0.18-μm standard CMOS process.

  20. ECG compression using non-recursive wavelet transform with quality control

    NASA Astrophysics Data System (ADS)

    Liu, Je-Hung; Hung, King-Chu; Wu, Tsung-Ching

    2016-09-01

    While wavelet-based electrocardiogram (ECG) data compression using scalar quantisation (SQ) yields excellent compression performance, a wavelet's SQ scheme, however, must select a set of multilevel quantisers for each quantisation process. As a result of the properties of multiple-to-one mapping, however, this scheme is not conducive for reconstruction error control. In order to address this problem, this paper presents a single-variable control SQ scheme able to guarantee the reconstruction quality of wavelet-based ECG data compression. Based on the reversible round-off non-recursive discrete periodised wavelet transform (RRO-NRDPWT), the SQ scheme is derived with a three-stage design process that first uses genetic algorithm (GA) for high compression ratio (CR), followed by a quadratic curve fitting for linear distortion control, and the third uses a fuzzy decision-making for minimising data dependency effect and selecting the optimal SQ. The two databases, Physikalisch-Technische Bundesanstalt (PTB) and Massachusetts Institute of Technology (MIT) arrhythmia, are used to evaluate quality control performance. Experimental results show that the design method guarantees a high compression performance SQ scheme with statistically linear distortion. This property can be independent of training data and can facilitate rapid error control.

  1. ECG compression using Slantlet and lifting wavelet transform with and without normalisation

    NASA Astrophysics Data System (ADS)

    Aggarwal, Vibha; Singh Patterh, Manjeet

    2013-05-01

    This article analyses the performance of: (i) linear transform: Slantlet transform (SLT), (ii) nonlinear transform: lifting wavelet transform (LWT) and (iii) nonlinear transform (LWT) with normalisation for electrocardiogram (ECG) compression. First, an ECG signal is transformed using linear transform and nonlinear transform. The transformed coefficients (TC) are then thresholded using bisection algorithm in order to match the predefined user-specified percentage root mean square difference (UPRD) within the tolerance. Then, the binary look up table is made to store the position map for zero and nonzero coefficients (NZCs). The NZCs are quantised by Max-Lloyd quantiser followed by Arithmetic coding. The look up table is encoded by Huffman coding. The results show that the LWT gives the best result as compared to SLT evaluated in this article. This transform is then considered to evaluate the effect of normalisation before thresholding. In case of normalisation, the TC is normalised by dividing the TC by ? (where ? is number of samples) to reduce the range of TC. The normalised coefficients (NC) are then thresholded. After that the procedure is same as in case of coefficients without normalisation. The results show that the compression ratio (CR) in case of LWT with normalisation is improved as compared to that without normalisation.

  2. A high bandwidth fully implantable mouse telemetry system for chronic ECG measurement.

    PubMed

    Russell, David M; McCormick, Daniel; Taberner, Andrew J; Malpas, Simon C; Budgett, David M

    2011-01-01

    We report on the development of a novel system that enables the wireless transmission of high-bandwidth physiological data from a freely moving mouse. The system employs inductive power transfer (IPT) to continuously power a battery-less transmitter using an array of overlapping planar coils placed under the animal. This arrangement provides a minimum of 20 mW at all locations and orientations across the mouse cage by selecting a coil which will sufficiently power the transmitter. Coil selection is performed by feedback control across the 2.4 GHz wireless link. A device was constructed utilizing this novel IPT system and was used to capture high-fidelity electrocardiogram (ECG) signal sampled at 2 kHz in mice. Various attributes of the ECG signal such as QT, QRS, and PR intervals could be obtained with a high degree of accuracy. This system potentially provides lifetime continuous high bandwidth measurement of physiological signals from a fully implanted telemeter in a freely moving mouse.

  3. High-frequency Electrocardiogram Analysis in the Ability to Predict Reversible Perfusion Defects during Adenosine Myocardial Perfusion Imaging

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.; Carlsson, Marcus; Pettersson, Jonas; Nilsson, Klas; Pahlm, Olle

    2007-01-01

    Background: A previous study has shown that analysis of high-frequency QRS components (HF-QRS) is highly sensitive and reasonably specific for detecting reversible perfusion defects on myocardial perfusion imaging (MPI) scans during adenosine. The purpose of the present study was to try to reproduce those findings. Methods: 12-lead high-resolution electrocardiogram recordings were obtained from 100 patients before (baseline) and during adenosine Tc-99m-tetrofosmin MPI tests. HF-QRS were analyzed regarding morphology and changes in root mean square (RMS) voltages from before the adenosine infusion to peak infusion. Results: The best area under the curve (AUC) was found in supine patients (AUC=0.736) in a combination of morphology and RMS changes. None of the measurements, however, were statistically better than tossing a coin (AUC=0.5). Conclusion: Analysis of HF-QRS was not significantly better than tossing a coin for determining reversible perfusion defects on MPI scans.

  4. A Mixed Approach Of Automated ECG Analysis

    NASA Astrophysics Data System (ADS)

    De, A. K.; Das, J.; Majumder, D. Dutta

    1982-11-01

    ECG is one of the non-invasive and risk-free technique for collecting data about the functional state of the heart. However, all these data-processing techniques can be classified into two basically different approaches -- the first and second generation ECG computer program. Not the opposition, but simbiosis of these two approaches will lead to systems with the highest accuracy. In our paper we are going to describe a mixed approach which will show higher accuracy with lesser amount of computational work. Key Words : Primary features, Patients' parameter matrix, Screening, Logical comparison technique, Multivariate statistical analysis, Mixed approach.

  5. Prevalence of Chagas Disease in a U.S. Population of Latin American Immigrants with Conduction Abnormalities on Electrocardiogram.

    PubMed

    Traina, Mahmoud I; Hernandez, Salvador; Sanchez, Daniel R; Dufani, Jalal; Salih, Mohsin; Abuhamidah, Adieb M; Olmedo, Wilman; Bradfield, Jason S; Forsyth, Colin J; Meymandi, Sheba K

    2017-01-01

    Chagas disease (CD) affects over six million people and is a leading cause of cardiomyopathy in Latin America. Given recent migration trends, there is a large population at risk in the United States (US). Early stage cardiac involvement from CD usually presents with conduction abnormalities on electrocardiogram (ECG) including right bundle branch block (RBBB), left anterior or posterior fascicular block (LAFB or LPFB, respectively), and rarely, left bundle branch block (LBBB). Identification of disease at this stage may lead to early treatment and potentially delay the progression to impaired systolic function. All ECGs performed in a Los Angeles County hospital and clinic system were screened for the presence of RBBB, LAFB, LPFB, or LBBB. Patients were contacted and enrolled in the study if they had previously resided in Latin America for at least 12 months and had no history of cardiac disease. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA) tests were utilized to screen for Trypanosoma cruzi seropositivity. A total of 327 consecutive patients were screened for CD from January 2007 to December 2010. The mean age was 46.3 years and the mean length of stay in the US was 21.2 years. Conduction abnormalities were as follows: RBBB 40.4%, LAFB 40.1%, LPFB 2.8%, LBBB 5.5%, RBBB and LAFB 8.6%, and RBBB and LPFB 2.8%. Seventeen patients were positive by both ELISA and IFA (5.2%). The highest prevalence rate was among those with RBBB and LAFB (17.9%). There is a significant prevalence of CD in Latin American immigrants residing in Los Angeles with conduction abnormalities on ECG. Clinicians should consider evaluating all Latin American immigrant patients with unexplained conduction disease for CD.

  6. Prevalence of Chagas Disease in a U.S. Population of Latin American Immigrants with Conduction Abnormalities on Electrocardiogram

    PubMed Central

    Hernandez, Salvador; Sanchez, Daniel R.; Dufani, Jalal; Salih, Mohsin; Abuhamidah, Adieb M.; Olmedo, Wilman; Bradfield, Jason S.; Forsyth, Colin J.; Meymandi, Sheba K.

    2017-01-01

    Chagas disease (CD) affects over six million people and is a leading cause of cardiomyopathy in Latin America. Given recent migration trends, there is a large population at risk in the United States (US). Early stage cardiac involvement from CD usually presents with conduction abnormalities on electrocardiogram (ECG) including right bundle branch block (RBBB), left anterior or posterior fascicular block (LAFB or LPFB, respectively), and rarely, left bundle branch block (LBBB). Identification of disease at this stage may lead to early treatment and potentially delay the progression to impaired systolic function. All ECGs performed in a Los Angeles County hospital and clinic system were screened for the presence of RBBB, LAFB, LPFB, or LBBB. Patients were contacted and enrolled in the study if they had previously resided in Latin America for at least 12 months and had no history of cardiac disease. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA) tests were utilized to screen for Trypanosoma cruzi seropositivity. A total of 327 consecutive patients were screened for CD from January 2007 to December 2010. The mean age was 46.3 years and the mean length of stay in the US was 21.2 years. Conduction abnormalities were as follows: RBBB 40.4%, LAFB 40.1%, LPFB 2.8%, LBBB 5.5%, RBBB and LAFB 8.6%, and RBBB and LPFB 2.8%. Seventeen patients were positive by both ELISA and IFA (5.2%). The highest prevalence rate was among those with RBBB and LAFB (17.9%). There is a significant prevalence of CD in Latin American immigrants residing in Los Angeles with conduction abnormalities on ECG. Clinicians should consider evaluating all Latin American immigrant patients with unexplained conduction disease for CD. PMID:28056014

  7. Developing a DICOM Middleware to Implement ECG Conversion and Viewing.

    PubMed

    Ling-Ling, Wang; Ni-Ni, Rao; Li-Xin, Pu; Gang, Wang

    2005-01-01

    Nowadays, medical environment is integrated and complicated, involving large amounts of various medical data, such as images, waveforms and other digital data. For the interoperability of images and waveforms in imaging context, the images and waveforms usually need to be interchanged and stored using one standard. DICOM is the best choice, which is an international standard for the communication and storage of medical information. In this paper, we developed a DICOM middleware with capability of converting SCP-ECG, the European standard for resting ECGs, into DICOM ECGs. Then an ECG viewing component is implemented, which can parse and display SCP-ECG records and DICOM ECGs. The research results show that our work can realize seamless workflows in multi-vendor environment, contribute to the harmonization of ECG standards, and facilitate digital ECG applications.

  8. ECG changes in factory workers exposed to 27.2  MHz radiofrequency radiation.

    PubMed

    Chen, Qingsong; Xu, Guoyong; Lang, Li; Yang, Aichu; Li, Shilin; Yang, Liwen; Li, Chaolin; Huang, Hanlin; Li, Tao

    2013-05-01

    To research the effect of 27.2 MHz radiofrequency radiation on electrocardiograms (ECG), 225 female workers operating radiofrequency machines at a shoe factory were chosen as the exposure group and 100 female workers without exposure from the same factory were selected as the control group. The 6 min electric field strength that the female workers were exposed to was 64.0 ± 25.2 V/m (mean ± SD), which exceeded 61 V/m, the International Commission on Non-Ionizing Radiation Protection reference root mean square levels for occupational exposure. A statistical difference was observed between the exposed group and the control group in terms of the rate of sinus bradycardia (χ(2)  = 11.48, P = 0.003). When several known risk factors for cardiovascular disease were considered, including smoking, age, alcohol ingestion habit, and so on, the exposure duration was not an effective factor for ECG changes, sinus arrhythmia, or sinus bradycardia according to α = 0.05, while P = 0.052 for sinus arrhythmia was very close to 0.05. We did not find any statistical difference in heart rate, duration of the QRS wave (ventricular depolarization), or corrected QT intervals (between the start of the Q wave and end of the T wave) between the exposed and control groups. Occupational exposure to radiofrequency radiation was not found to be a cause of ECG changes after consideration of the confounding factors.

  9. Noninvasive ECG as a tool for predicting termination of paroxysmal atrial fibrillation.

    PubMed

    Chiarugi, Franco; Varanini, Maurizio; Cantini, Federico; Conforti, Fabrizio; Vrouchos, Giorgos

    2007-08-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia and entails an increased risk of thromboembolic events. Prediction of the termination of an AF episode, based on noninvasive techniques, can benefit patients, doctors and health systems. The method described in this paper is based on two-lead surface electrocardiograms (ECGs): 1-min ECG recordings of AF episodes including N-type (not terminating within an hour after the end of the record), S-type (terminating 1 min after the end of the record) and T-type (terminating immediately after the end of the record). These records are organised into three learning sets (N, S and T) and two test sets (A and B). Starting from these ECGs, the atrial and ventricular activities were separated using beat classification and class averaged beat subtraction, followed by the evaluation of seven parameters representing atrial or ventricular activity. Stepwise discriminant analysis selected the set including dominant atrial frequency (DAF, index of atrial activity) and average HR (HRmean, index of ventricular activity) as optimal for discrimination between N/T-type episodes. The linear classifier, estimated on the 20 cases of the N and T learning sets, provided a performance of 90% on the 30 cases of a test set for the N/T-type discrimination. The same classifier led to correct classification in 89% of the 46 cases for N/S-type discrimination. The method has shown good results and seems to be suitable for clinical application, although a larger dataset would be very useful for improvement and validation of the algorithms and the development of an earlier predictor of paroxysmal AF spontaneous termination time.

  10. [Implementation of ECG Monitoring System Based on Internet of Things].

    PubMed

    Lu, Liangliang; Chen, Minya

    2015-11-01

    In order to expand the capabilities of hospital's traditional ECG device and enhance medical staff's work efficiency, an ECG monitoring system based on internet of things is introduced. The system can monitor ECG signals in real time and analyze data using ECG sensor, PDA, Web servers, which embeds C language, Android systems, .NET, wireless network and other technologies. After experiments, it can be showed that the system has high reliability and stability and can bring the convenience to medical staffs.

  11. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  12. [Research of DICOM-ECG implementation based on DCMTK].

    PubMed

    Wang, Xiang; Wu, Jian; Ma, Yaquanz; Peng, Cheng

    2013-11-01

    Parsed the ECG descriptions in DICOM 3.0 standard and accomplished a DICOM-ECG file which conforms to the DICOM standard by a toolkit DCMTK. The DICOM-ECG file can communicate with systems which support DICOM standard directly.

  13. Multichannel ECG and Noise Modeling: Application to Maternal and Fetal ECG Signals

    NASA Astrophysics Data System (ADS)

    Sameni, Reza; Clifford, Gari D.; Jutten, Christian; Shamsollahi, Mohammad B.

    2007-12-01

    A three-dimensional dynamic model of the electrical activity of the heart is presented. The model is based on the single dipole model of the heart and is later related to the body surface potentials through a linear model which accounts for the temporal movements and rotations of the cardiac dipole, together with a realistic ECG noise model. The proposed model is also generalized to maternal and fetal ECG mixtures recorded from the abdomen of pregnant women in single and multiple pregnancies. The applicability of the model for the evaluation of signal processing algorithms is illustrated using independent component analysis. Considering the difficulties and limitations of recording long-term ECG data, especially from pregnant women, the model described in this paper may serve as an effective means of simulation and analysis of a wide range of ECGs, including adults and fetuses.

  14. QRS voltage of the electrocardiogram and Frank vectorcardiogram in relation to ventricular volume.

    PubMed Central

    Talbot, S; Kilpatrick, D; Jonathan, A; Raphael, M J

    1977-01-01

    Left ventricular volumes were estimated in 59 patients, who were investigated by single plane ventriculography and coronary arteriography. The relation of the left ventricular end-diastolic volumes to the QRS voltage of the 12-lead electrocardiograms and Frank vectorcardiograms was examined. It was found that the maximum spatial QRS voltage and the R wave voltage of leads V5 and V6 in patients without left ventricular hypertrophy were inversely correlated with end-diastolic volume. This inverse relation of QRS voltage and left ventricular volume may explain loss of QRS voltage with dilatation of the heart. In patients with left ventricular hypertropy QRS voltage is usually positively correlated with the degree of hypertrophy, but there is no significant correlation in the presence of cardiac dilatation. If the results of this study are extrapolated to patients with left ventricular hypertrophy and cardiac dilatation, then the inverse correlation of volume and QRS voltage may reduce the diagnostic sensitivity of unipolar chest lead and vectorcardiographic criteria of left ventricular hypertrophy. PMID:143949

  15. Unsupervised learning applied in MER and ECG signals through Gaussians mixtures with the Expectation-Maximization algorithm and Variational Bayesian Inference.

    PubMed

    Vargas Cardona, Hernán Darío; Orozco, Álvaro Ángel; Álvarez, Mauricio A

    2013-01-01

    Automatic identification of biosignals is one of the more studied fields in biomedical engineering. In this paper, we present an approach for the unsupervised recognition of biomedical signals: Microelectrode Recordings (MER) and Electrocardiography signals (ECG). The unsupervised learning is based in classic and bayesian estimation theory. We employ gaussian mixtures models with two estimation methods. The first is derived from the frequentist estimation theory, known as Expectation-Maximization (EM) algorithm. The second is obtained from bayesian probabilistic estimation and it is called variational inference. In this framework, both methods are used for parameters estimation of Gaussian mixtures. The mixtures models are used for unsupervised pattern classification, through the responsibility matrix. The algorithms are applied in two real databases acquired in Parkinson's disease surgeries and electrocardiograms. The results show an accuracy over 85% in MER and 90% in ECG for identification of two classes. These results are statistically equal or even better than parametric (Naive Bayes) and nonparametric classifiers (K-nearest neighbor).

  16. The Development of a Portable ECG Monitor Based on DSP

    NASA Astrophysics Data System (ADS)

    Nan, CHI Jian; Tao, YAN Yan; Meng Chen, LIU; Li, YANG

    With the advent of global information, researches of Smart Home system are in the ascendant, the ECG real-time detection, and wireless transmission of ECG become more useful. In order to achieve the purpose we developed a portable ECG monitor which achieves the purpose of cardiac disease remote monitoring, and will be used in the physical and psychological disease surveillance in smart home system, we developed this portable ECG Monitor, based on the analysis of existing ECG Monitor, using TMS320F2812 as the core controller, which complete the signal collection, storage, processing, waveform display and transmission.

  17. Sparse Matrix for ECG Identification with Two-Lead Features

    PubMed Central

    Tseng, Kuo-Kun; Luo, Jiao; Wang, Wenmin; Haiting, Dong

    2015-01-01

    Electrocardiograph (ECG) human identification has the potential to improve biometric security. However, improvements in ECG identification and feature extraction are required. Previous work has focused on single lead ECG signals. Our work proposes a new algorithm for human identification by mapping two-lead ECG signals onto a two-dimensional matrix then employing a sparse matrix method to process the matrix. And that is the first application of sparse matrix techniques for ECG identification. Moreover, the results of our experiments demonstrate the benefits of our approach over existing methods. PMID:25961074

  18. Fast clustering algorithm for large ECG data sets based on CS theory in combination with PCA and K-NN methods.

    PubMed

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2014-01-01

    Long-term recording of Electrocardiogram (ECG) signals plays an important role in health care systems for diagnostic and treatment purposes of heart diseases. Clustering and classification of collecting data are essential parts for detecting concealed information of P-QRS-T waves in the long-term ECG recording. Currently used algorithms do have their share of drawbacks: 1) clustering and classification cannot be done in real time; 2) they suffer from huge energy consumption and load of sampling. These drawbacks motivated us in developing novel optimized clustering algorithm which could easily scan large ECG datasets for establishing low power long-term ECG recording. In this paper, we present an advanced K-means clustering algorithm based on Compressed Sensing (CS) theory as a random sampling procedure. Then, two dimensionality reduction methods: Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) followed by sorting the data using the K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers are applied to the proposed algorithm. We show our algorithm based on PCA features in combination with K-NN classifier shows better performance than other methods. The proposed algorithm outperforms existing algorithms by increasing 11% classification accuracy. In addition, the proposed algorithm illustrates classification accuracy for K-NN and PNN classifiers, and a Receiver Operating Characteristics (ROC) area of 99.98%, 99.83%, and 99.75% respectively.

  19. Microalbumin excretion in patients with positive exercise electrocardiogram tests.

    PubMed

    Horton, R C; Gosling, P; Reeves, C N; Payne, M; Nagle, R E

    1994-10-01

    Thirty-three subjects underwent exercise electrocardiogram testing, 20 had a history of myocardial infarction and 13 were age-matched volunteers. Exercise electrocardiograms were positive in 15 subjects, negative in 12 and anomalous in six. Urinary microalbumin excretion was measured at rest, 30 and 60 min after exercise. Urinary microalbumin excretion was expressed as the albumin-creatinine ratio in mg.mmol-1. In the positive exercise electrocardiogram group median albumin-creatinine ratio increased from 1.0 mg.mmol-1 (95% CI 0.94-1.49) at rest to 2.0 mg.mmol-1 (95% CI 1.51-3.94) 30 min after exercise, whilst in the negative electrocardiogram group median resting and 30 min post exercise albumin-creatinine ratio values of 0.85 (95% CI 0.53-1.32) and 1.80 (95% CI 0.63-2.32) mg.mmol-1 respectively were not significantly different. These results suggest that exercise-induced myocardial ischaemia is associated with increased urinary microalbumin excretion.

  20. Automatic Real-Time Embedded QRS Complex Detection for a Novel Patch-Type Electrocardiogram Recorder

    PubMed Central

    Tanev, George; Flintrup, Morten; Osmanagic, Armin; Egstrup, Kenneth; Hoppe, Karsten; Jennum, Poul; Jeppesen, Jørgen L.; Iversen, Helle K.; Sorensen, Helge B. D.

    2015-01-01

    Cardiovascular diseases are projected to remain the single leading cause of death globally. Timely diagnosis and treatment of these diseases are crucial to prevent death and dangerous complications. One of the important tools in early diagnosis of arrhythmias is analysis of electrocardiograms (ECGs) obtained from ambulatory long-term recordings. The design of novel patch-type ECG recorders has increased the accessibility of these long-term recordings. In many applications, it is furthermore an advantage for these devices that the recorded ECGs can be analyzed automatically in real time. The purpose of this study was therefore to design a novel algorithm for automatic heart beat detection, and embed the algorithm in the CE marked ePatch heart monitor. The algorithm is based on a novel cascade of computationally efficient filters, optimized adaptive thresholding, and a refined search back mechanism. The design and optimization of the algorithm was performed on two different databases: The MIT-BIH arrhythmia database (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Se=99.90$ \\end{document}%, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$P^{+}=99.87$ \\end{document}) and a private ePatch training database (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Se=99.88$ \\end{document}%, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage

  1. Hyperkalemia Induced Brugada Phenocopy: A Rare ECG Manifestation

    PubMed Central

    Akbar, Ghulam; Mirrani, Ghazi

    2017-01-01

    Brugada syndrome (BrS) is an inherited disorder of cardiac ion channels characterized by peculiar ECG findings predisposing individuals to ventricular arrhythmias, syncope, and sudden cardiac death (SCD). Various electrolyte disturbances and ion channels blocking drugs could also provoke BrS ECG findings without genetic BrS. Clinical differentiation and recognition are essential for guiding the legitimate action. Hyperkalemia is well known to cause a wide variety of ECG manifestations. Severe hyperkalemia can even cause life threatening ventricular arrhythmias and cardiac conduction abnormalities. Most common ECG findings include peaked tall T waves with short PR interval and wide QRS complex. Since it is very commonly encountered disorder, physicians need to be aware of even its rare ECG manifestations, which include ST segment elevation and Brugada pattern ECG (BrP). We are adding a case to the limited literature about hyperkalemia induced reversible Brugada pattern ECG changes. PMID:28326201

  2. Single frequency RF powered ECG telemetry system

    NASA Technical Reports Server (NTRS)

    Ko, W. H.; Hynecek, J.; Homa, J.

    1979-01-01

    It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.

  3. Hardware Prototyping of Neural Network based Fetal Electrocardiogram Extraction

    NASA Astrophysics Data System (ADS)

    Hasan, M. A.; Reaz, M. B. I.

    2012-01-01

    The aim of this paper is to model the algorithm for Fetal ECG (FECG) extraction from composite abdominal ECG (AECG) using VHDL (Very High Speed Integrated Circuit Hardware Description Language) for FPGA (Field Programmable Gate Array) implementation. Artificial Neural Network that provides efficient and effective ways of separating FECG signal from composite AECG signal has been designed. The proposed method gives an accuracy of 93.7% for R-peak detection in FHR monitoring. The designed VHDL model is synthesized and fitted into Altera's Stratix II EP2S15F484C3 using the Quartus II version 8.0 Web Edition for FPGA implementation.

  4. ECG-derived spatial QRS-T angle is associated with ICD implantation, mortality and heart failure admissions in patients with LV systolic dysfunction

    PubMed Central

    Dugo, Clementina; Cave, Andrew; Zhou, Lifeng; Ayar, Zina; Christiansen, Jonathan; Scott, Tony; Dawson, Liane; Gavin, Andrew

    2017-01-01

    Background Increased spatial QRS-T angle has been shown to predict appropriate implantable cardioverter defibrilIator (ICD) therapy in patients with left ventricular systolic dysfunction (LVSD). We performed a retrospective cohort study in patients with left ventricular ejection fraction (LVEF) 31–40% to assess the relationship between the spatial QRS-T angle and other advanced ECG (A-ECG) as well as echocardiographic metadata, with all-cause mortality or ICD implantation for secondary prevention. Methods 534 patients ≤75 years of age with LVEF 31–40% were identified through an echocardiography reporting database. Digital 12-lead ECGs were retrospectively matched to 295 of these patients, for whom echocardiographic and A-ECG metadata were then generated. Data mining was applied to discover novel ECG and echocardiographic markers of risk. Machine learning was used to develop a model to predict possible outcomes. Results 49 patients (17%) had events, defined as either mortality (n = 16) or ICD implantation for secondary prevention (n = 33). 72 parameters (58 A-ECG, 14 echocardiographic) were univariately different (p<0.05) in those with vs. without events. After adjustment for multiplicity, 24 A-ECG parameters and 3 echocardiographic parameters remained different (p<2x10-3). These included the posterior-to-leftward QRS loop ratio from the derived vectorcardiographic horizontal plane (previously associated with pulmonary artery pressure, p = 2x10-6); spatial mean QRS-T angle (134 vs. 112°, p = 1.6x10-4); various repolarisation vectors; and a previously described 5-parameter A-ECG score for LVSD (p = 4x10-6) that also correlated with echocardiographic global longitudinal strain (R2 = - 0.51, P < 0.0001). A spatial QRS-T angle >110° had an adjusted HR of 3.4 (95% CI 1.6 to 7.4) for secondary ICD implantation or all-cause death and adjusted HR of 4.1 (95% CI 1.2 to 13.9) for future heart failure admission. There was a loss of complexity between A-ECG and

  5. Physics-driven Spatiotemporal Regularization for High-dimensional Predictive Modeling: A Novel Approach to Solve the Inverse ECG Problem

    NASA Astrophysics Data System (ADS)

    Yao, Bing; Yang, Hui

    2016-12-01

    This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.

  6. Physics-driven Spatiotemporal Regularization for High-dimensional Predictive Modeling: A Novel Approach to Solve the Inverse ECG Problem

    PubMed Central

    Yao, Bing; Yang, Hui

    2016-01-01

    This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods. PMID:27966576

  7. Physics-driven Spatiotemporal Regularization for High-dimensional Predictive Modeling: A Novel Approach to Solve the Inverse ECG Problem.

    PubMed

    Yao, Bing; Yang, Hui

    2016-12-14

    This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.

  8. Normal Electrocardiogram of Bama Miniature Pigs (Sus scrofa domestica)

    PubMed Central

    Zhang, Shi-Bin; Guo, Ke-Nan; Xie, Fei; Liu, Yu; Shang, Hai-Tao; Wei, Hong

    2016-01-01

    This study determined the normal ECG patterns and values for Bama miniature pigs. Standard limb-lead ECG were recorded from 120 clinically healthy, unanesthetized piglets (age, 2 to 4 mo). The values for the ECG parameters (mean ± 1 SD) were: heart rate, 125.56 ± 18.80 bpm; P amplitude, 0.11 ± 0.03 mV; QRS amplitude, 0.63 ± 0.31 mV; P duration, 43.99 ± 5.98 ms; QRS complex, 55.27 ± 7.02 ms; RR interval, 487.55 ± 77.32 ms; PR interval, 90.72 ± 11.94 ms; QT interval, 244.72 ± 25.27 ms; and mean electrical axis, 22.2 ± 80.3°. The P waves were predominantly positive in leads I and II and in the augmented unipolar limb aVF lead; by comparison, the QRS patterns were less uniform. The T waves were slightly positive in leads II, III, and aVF. The determination and publication of the normal ECG patterns and values of Bama minipigs facilitates understanding of the electrocardiographic changes that arise under experimental conditions. PMID:27025805

  9. Resuscitation great. Willem Einthoven: the development of the human electrocardiogram.

    PubMed

    Cajavilca, Christian; Varon, Joseph

    2008-03-01

    The electrocardiogram is one of the most commonly used diagnostic tools in healthcare. This ingenious device was developed and created in the early 1900s by Willem Einthoven, MD, PhD after studying the mechanisms of electromagnetism and Waller's capillary electrometer. Einthoven dedicated most of his research and clinical activities to improve the early versions of the electrical current recording medical devices. Einthoven's most notable invention was the string galvanometer which we now know as the electrocardiogram. Although the idea of using the string galvanometer as a diagnostic tool faced opposition by scientists and physicians of his time, he remained convinced of the potential of his machine to improve patient care. Einthoven's string galvanometer subsequently became the standard diagnostic tool for recognition and differentiation of heart conditions through the interpretation of cardiac waves, and has become standard practice in the field of resuscitation. In 1924, Einthoven received the Nobel Prize in Medicine for his development of the string galvanometer.

  10. Electrocardiograms of Nine Species of Nonhuman Primates Sedated with Ketamine

    DTIC Science & Technology

    1979-06-11

    Premature ventricular contrac- chin monkey (Cebus aPellat. Zentralbl Vcieri directed slightly mnore to the right tions were infrequent; this may be...also tended esthetic agents oin left ventricular function in kes, 2 teP anQTitrasd- to have similar mean values, dogs. Am J Phiol40 232:1-44-1,148. 1977...210-220, 15065. were shorter than was that reported Electrocardiogram and vectorcardiogram of 24. Guonder .JC: Left anterior fascicular by Malhotra et a

  11. Compressed domain ECG biometric with two-lead features

    NASA Astrophysics Data System (ADS)

    Lee, Wan-Jou; Chang, Wen-Whei

    2016-07-01

    This study presents a new method to combine ECG biometrics with data compression within a common JPEG2000 framework. We target the two-lead ECG configuration that is routinely used in long-term heart monitoring. Incorporation of compressed-domain biometric techniques enables faster person identification as it by-passes the full decompression. Experiments on public ECG databases demonstrate the validity of the proposed method for biometric identification with high accuracies on both healthy and diseased subjects.

  12. Measurements on wireless transmission of ECG signals

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Lax, I.

    2016-12-01

    The scope of this research is to design an electronic prototype, an operative system as a proof of concept, to transmit and receive biological parameters, in particular electrocardiogram signals, through dedicated wireless circuits. The apparatus features microelectronics chips that were developed for more general biomedical applications, here adapted to deal with cardiac signals. The paper mainly focuses on the electronic aspects, as in this study we do not face medical or clinical aspects of the system. The transmitter circuit uses a commercial instrumentation amplifier and the receiver has been equipped with wide-band amplifiers along with made-in-the-lab band-pass filters centered at the carrier. We have been able to mount the entire system prototype into a preliminary data acquisition chain that reads out the electrocardiogram signal. The prototype allows acquiring the waveform, converting it to a digital pattern and open the transmission through a series of high-frequency packets exploiting the Ultra Wide Band protocol. The sensor value is embedded in the transmission through the rate of the digital packets. In fact, these are sent wireless at a specific packet-frequency that depends on the sensor amplitude and are detected into a receiver circuit that recovers the information.

  13. Denoising of ECG signal during spaceflight using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Wang, Li

    2009-12-01

    The Singular Value Decomposition (SVD) method is introduced to denoise the ECG signal during spaceflight. The theory base of SVD method is given briefly. The denoising process of the strategy is presented combining a segment of real ECG signal. We improve the algorithm of calculating Singular Value Ratio (SVR) spectrum, and propose a constructive approach of analysis characteristic patterns. We reproduce the ECG signal very well and compress the noise effectively. The SVD method is proved to be suitable for denoising the ECG signal.

  14. ST/HR hysteresis: exercise and recovery phase ST depression/heart rate analysis of the exercise ECG.

    PubMed

    Lehtinen, R

    1999-01-01

    ST segment depression/heart rate (ST/HR) hysteresis is a recently introduced novel computer method for integrating the exercise and recovery phase ST/HR analysis for improved detection of coronary artery disease (CAD). It is a continuous diagnostic variable that extracts the prevailing direction and average magnitude of the hysteresis in ST depression against HR during the first 3 consecutive minutes of postexercise recovery. This article reviews the development and evaluation of this new method in a clinical population of 347 patients referred for a routine bicycle exercise electrocardiographic (ECG) test at Tampere University Hospital, Finland. Of these patients, 127 had angiographically proven CAD, whereas 13 had no CAD according to angiography, 18 had no perfusion defect according to Tc-99m-sestamibi myocardial imaging and single photon emission computed tomography, and 189 were clinically normal with respect to cardiac diseases. For each patient, the values for ST/HR hysteresis, ST/HR index, end-exercise ST depression, and recovery ST depression were determined for each lead of the Mason-Likar modification of the standard 12-lead exercise ECG and maximum value from the lead system (aVL, aVR, and V1 excluded). The area under the receiver operating characteristics curve (ie, the discriminative capacity) of the ST/HR hysteresis was 89%, which was significantly larger than that of the end-exercise ST depression (76%, P < .0001), recovery ST depression (84%, P = .0063) or ST/HR index (83%, P = .0023), indicating the best diagnostic performance of the ST/HR hysteresis in detection of CAD regardless of the partition value selection. Furthermore, the superior diagnostic performance of the method was relatively insensitive to the ST segment measurement point or to the ECG lead selection. These results suggest that the ST/HR hysteresis improves the clinical utility of the exercise ECG test in detection of CAD.

  15. R-Peak Detection using Daubechies Wavelet and ECG Signal Classification using Radial Basis Function Neural Network

    NASA Astrophysics Data System (ADS)

    Rai, H. M.; Trivedi, A.; Chatterjee, K.; Shukla, S.

    2014-01-01

    This paper employed the Daubechies wavelet transform (WT) for R-peak detection and radial basis function neural network (RBFNN) to classify the electrocardiogram (ECG) signals. Five types of ECG beats: normal beat, paced beat, left bundle branch block (LBBB) beat, right bundle branch block (RBBB) beat and premature ventricular contraction (PVC) were classified. 500 QRS complexes were arbitrarily extracted from 26 records in Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database, which are available on Physionet website. Each and every QRS complex was represented by 21 points from p1 to p21 and these QRS complexes of each record were categorized according to types of beats. The system performance was computed using four types of parameter evaluation metrics: sensitivity, positive predictivity, specificity and classification error rate. The experimental result shows that the average values of sensitivity, positive predictivity, specificity and classification error rate are 99.8%, 99.60%, 99.90% and 0.12%, respectively with RBFNN classifier. The overall accuracy achieved for back propagation neural network (BPNN), multilayered perceptron (MLP), support vector machine (SVM) and RBFNN classifiers are 97.2%, 98.8%, 99% and 99.6%, respectively. The accuracy levels and processing time of RBFNN is higher than or comparable with BPNN, MLP and SVM classifiers.

  16. The evolution of ambulatory ECG monitoring.

    PubMed

    Kennedy, Harold L

    2013-01-01

    Ambulatory Holter electrocardiographic (ECG) monitoring has undergone continuous technological evolution since its invention and development in the 1950s era. With commercial introduction in 1963, there has been an evolution of Holter recorders from 1 channel to 12 channel recorders with increasingly smaller storage media, and there has evolved Holter analysis systems employing increasingly technologically advanced electronics providing a myriad of data displays. This evolution of smaller physical instruments with increasing technological capacity has characterized the development of electronics over the past 50 years. Currently the technology has been focused upon the conventional continuous 24 to 48 hour ambulatory ECG examination, and conventional extended ambulatory monitoring strategies for infrequent to rare arrhythmic events. However, the emergence of the Internet, Wi-Fi, cellular networks, and broad-band transmission has positioned these modalities at the doorway of the digital world. This has led to an adoption of more cost-effective strategies to these conventional methods of performing the examination. As a result, the emergence of the mobile smartphone coupled with this digital capacity is leading to the recent development of Holter smartphone applications. The potential of point-of-care applications utilizing the Holter smartphone and a vast array of new non-invasive sensors is evident in the not too distant future. The Holter smartphone is anticipated to contribute significantly in the future to the field of global health.

  17. [Dynamics of ECG voltage in changing gravity].

    PubMed

    Saltykova, M M; At'kov, O Iu; Capderou, A; Morgun, V V; Gusakov, V A; Kheĭmets, G I; Konovalov, G A; Kondratiuk, L L; Kataev, Iu V; Voronin, L I; Kaspranskiĭ, R R; Vaida, P

    2006-01-01

    Comparative analysis of the QRS voltage response to gravity variations was made using the data about 26 normal human subjects collected in parabolic flights (CNERS-AIRBUS A300 Zero-G, n=23; IL-76MD, n=3) and during the tilt test (head-up tilt at 70 degrees for a min and head-down tilt at-15 degrees for 5 min, n=14). Both the parabolic flights and provocative tilt tests affected R-amplitude in the Z lead. During the hypergravity episodes it was observed in 95% of cases with the mean gain of 16% and maximal--56%. On transition to the horizontal position, the Rz-amplitude showed a rise in each subject (16% on the average). In microgravity, the Rz-amplitude reduced in 95% of the observations. The voltage decline averaged 18% and reached 49% at the maximum. The head-down tilt was conducive to Rz reduction in 78% of observations averaging 2%. Analysis of the ECG records under changing gravity when blood redistribution developed within few seconds not enough for serious metabolic shifts still revealed QRS deviations associated exclusively with the physical factors, i.e., alteration in tissue conduction and distance to electrodes. Our findings can stand in good stead in evaluation of the dynamics of predictive ECG parameters during long-term experiments leading to changes as in tissue conduction, so metabolism.

  18. The Electrocardiogram and Ischemic Heart Disease in Aircraft Pilots

    PubMed Central

    Manning, G. W.

    1965-01-01

    A review of the Royal Canadian Air Force electrocardiographic (ECG) program for selection of aircrew and detection of coronary disease in trained aircrew is presented. Twenty reported cases of death due to coronary disease in pilots while at the controls of an aircraft are reviewed. The use of routine electrocardiography in the selection of aircrew has proved to be of considerable value, particularly in view of the high cost of training. The ECG continues to be our most sensitive means of detecting asymptomatic coronary disease in aircrew personnel. It is apparent that from both the military and commercial standpoint the incidence of aircraft accidents due to coronary disease is extremely small. This is due in large part to the careful medical supervision of flying personnel including the routine use of electrocardiography in the assessment of flying fitness of aircrew. PMID:14323657

  19. A multichannel nonlinear adaptive noise canceller based on generalized FLANN for fetal ECG extraction

    NASA Astrophysics Data System (ADS)

    Ma, Yaping; Xiao, Yegui; Wei, Guo; Sun, Jinwei

    2016-01-01

    In this paper, a multichannel nonlinear adaptive noise canceller (ANC) based on the generalized functional link artificial neural network (FLANN, GFLANN) is proposed for fetal electrocardiogram (FECG) extraction. A FIR filter and a GFLANN are equipped in parallel in each reference channel to respectively approximate the linearity and nonlinearity between the maternal ECG (MECG) and the composite abdominal ECG (AECG). A fast scheme is also introduced to reduce the computational cost of the FLANN and the GFLANN. Two (2) sets of ECG time sequences, one synthetic and one real, are utilized to demonstrate the improved effectiveness of the proposed nonlinear ANC. The real dataset is derived from the Physionet non-invasive FECG database (PNIFECGDB) including 55 multichannel recordings taken from a pregnant woman. It contains two subdatasets that consist of 14 and 8 recordings, respectively, with each recording being 90 s long. Simulation results based on these two datasets reveal, on the whole, that the proposed ANC does enjoy higher capability to deal with nonlinearity between MECG and AECG as compared with previous ANCs in terms of fetal QRS (FQRS)-related statistics and morphology of the extracted FECG waveforms. In particular, for the second real subdataset, the F1-measure results produced by the PCA-based template subtraction (TSpca) technique and six (6) single-reference channel ANCs using LMS- and RLS-based FIR filters, Volterra filter, FLANN, GFLANN, and adaptive echo state neural network (ESN a ) are 92.47%, 93.70%, 94.07%, 94.22%, 94.90%, 94.90%, and 95.46%, respectively. The same F1-measure statistical results from five (5) multi-reference channel ANCs (LMS- and RLS-based FIR filters, Volterra filter, FLANN, and GFLANN) for the second real subdataset turn out to be 94.08%, 94.29%, 94.68%, 94.91%, and 94.96%, respectively. These results indicate that the ESN a and GFLANN perform best, with the ESN a being slightly better than the GFLANN but about four times more

  20. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    PubMed

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies.

  1. High amplitude of R waves in electrocardiograms, and overload related to heaviness of work in the population of maritime workers.

    PubMed

    Waśkiewicz, J

    1998-01-01

    In the compass of 20 years 4705 electrocardiograms of maritime industry workers were subjected to evaluation. The population examined consisted of: 780 seamen and deep sea fishermen, 307 merchant marine officers over 40 years of age and 260 officers under 40, 1326 harbour workers who perform light and moderately heavy physical work, 363 harbour workers employed not directly at cargo loading, and 1023 hard working stevedores. The study group was sampled at random. 526 cases of left ventricle hypertrophy were revealed, including: LVH /p/ type--348, LVH /e/--82, LVH /m/--66, and LVH /s/--30 cases. Arterial hypertension according WHO standards was diagnosed in 334 people. 38 people with arterial hypertension showed LVH with ST-T disorders. The highest proportion of LVH /p/ and ecg with traits of vagotony were found in the stevedores performing heavy and very heavy work. In the group of seamen and deep sea fishermen LVH /p/ hypertrophy was manifest in 2.3%, all LVH cases totally in 5.9%, and traits of vagotony in 10.0% of subjects. All the LVH cases with ST-T changes in the study material were associated with the arterial hypertension and few cases with other pathology. Features of LVH /p/ in the groups examined as well as in the individual evaluation were connected with a high level of physical activity.

  2. Usefulness of the pediatric electrocardiogram in detecting left ventricular hypertrophy: Results from the Prospective Pediatric Pulmonary and Cardiovascular Complications of Vertically Transmitted HIV Infection (P2C2 HIV) Multicenter study

    PubMed Central

    Rivenes, Shannon M.; Colan, Steven D.; Easley, Kirk A.; Kaplan, Samuel; Jenkins, Kathy J.; Khan, Mohammed N.; Lai, Wyman W.; Lipshultz, Steven E.; Moodie, Douglas S.; Starc, Thomas J.; Sopko, George; Zhang, Weihong; Bricker, J. Timothy

    2015-01-01

    Background A shortcoming of the pediatric electrocardiogram (ECG) appears to be its inability to accurately detect left ventricular hypertrophy (LVH). This study prospectively assesses the usefulness of the pediatric ECG as a screening modality for LVH. Methods Concomitant echocardiograms and ECGs from a large cohort of children who were exposed to the human immunodeficiency virus (HIV; uninfected) and children who were infected with HIV were compared. By use of the values of Davignon et al, qualitative determination of LVH and quantitative criteria for LVH (RV6, SV1, RV6+SV1, QV6, and QIII >98% for age, R/SV1 <98% for age, and [−]TV6) were compared to body surface area adjusted for left ventricular (LV) mass z score. Results were then stratified according to weight and weight-for-height z scores. New age-adjusted predicted values were then constructed from children of a mixed race who were HIV-uninfected, ≤6 years old, and similarly assessed. Results The sensitivity rate was <20% for detecting increased LV mass, irrespective of HIV status; the specificity rate was 88% to 92%. The sensitivity rate of the individual criteria ranged from 0 to 35%; the specificity rate was 76% to 99%. Test sensitivities remained low when stratified by weight and weight-for-height z scores. Areas under the receiver operator characteristic curves were between 0.59 and 0.70, also suggesting poor accuracy of the ECG criteria. By use of new age-adjusted predicted values, the sensitivity rate decreased to <17%, and the specificity rate increased to 94% to 100%. Conclusion The ECG is a poor screening tool for identifying LVH in children. Sensitivity is not improved with revision of current criteria. PMID:12679770

  3. ECG/PPG integer signal processing for a ubiquitous health monitoring system.

    PubMed

    Shin, Woosik; Cha, Yong Dae; Yoon, Gilwon

    2010-10-01

    A compact ubiquitous-health monitor operated by single 8-bit microcontroller was made. An integer signal processing algorithm for this microcontroller was developed and digital filtering of ECG (electrocardiogram) and PPG (photoplethysmogram) was performed. Rounding-off errors due to integer operation was solved by increasing the number of effective integer digits during CPU operation; digital filter coefficients and data expressed in decimal points were multiplied by a certain number and converted into integers. After filter operation, the actual values were retrieved by dividing with the same number and selecting available highest bits. Our results showed comparable accuracies to those computed by a commercial software. Compared with a floating-point calculation by the same microcontroller, the computation speed became faster by 1.45 ∼ 2.0 times depending on various digital filtering cases. Our algorithm was successfully tested for remote health monitoring with multiple users. If our algorithm were not used, our health monitor should have used additional microcontrollers or DSP chip. The proposed algorithm reduced the size and cost of our health monitor substantially.

  4. Chameleons: Electrocardiogram Imitators of ST-Segment Elevation Myocardial Infarction.

    PubMed

    Nable, Jose V; Lawner, Benjamin J

    2015-08-01

    The imperative for timely reperfusion therapy for patients presenting with ST-segment elevation myocardial infarction (STEMI) underscores the need for clinicians to have an understanding of how to distinguish patterns of STEMI from its imitators. These imitating diagnoses may confound an evaluation, potentially delaying necessary therapy. Although numerous diagnoses may mimic STEMI, several morphologic clues may allow the physician to determine if the pattern is concerning for either STEMI or a mimicking diagnosis. Furthermore, obtaining a satisfactory history, comparing previous electrocardiograms, and assessing serial tests may provide valuable clues.

  5. Electrocardiogram Derived QRS Duration >120 ms is Associated With Elevated Plasma Homocysteine Levels in a Rural Australian Cross-Sectional Population.

    PubMed

    Leng, Yvonne Lee Yin; Zhou, Yuling; Ke, Honghong; Jelinek, Herbert; McCabe, Joel; Assareh, Hassan; McLachlan, Craig S

    2015-07-01

    Homocysteine levels in the low to moderate range for cardiovascular risk have been previously associated with left ventricular cardiac hypertrophy (LVH). Electrocardiogram (ECG) derived QRS duration has also been used as an epidemiological screening marker for cardiac hypertrophy risk. QRS duration cut offs have not been previously modeled to assess homocysteine levels in community populations. Our aims are to determine if QRS duration is associated with an elevated homocysteine level in a cross-sectional Australian aging rural population.A retrospective study design utilizing a rural health diabetic screening clinic database containing observational data from the period January 9, 2002 till September 25, 2012. One hundred seventy-eight individuals (>21 years of age) from the database were included in the study. Inclusion criteria included being nondiabetic and having both a QRS duration measure and a matching homocysteine level within the same subject. All participants were from the Albury-Wodonga area, with a mean age of >64 years for both sexes.Mean population homocysteine plasma levels were 10.4 μmol/L (SD = 3.6). The mean QRS duration was 101.8 ms (SD = 17.4). Groups were stratified on the basis of QRS duration (≤120 ms [n = 157] and >120 ms [n = 21]). QRS duration subgroup (≤120 ms vs >120 ms) mean differences across homocysteine levels were 10.1 μmol/L (SD = 3.3) and 12.2 μmol/L (SD = 4.7), respectively (P = 0.016). Other ECG parameters (PQ interval, QTc interval, and QT dispersion) measurements were not significantly associated with differences in plasma homocysteine (P = not significant).We conclude that in community populations homocysteine may be moderately elevated when QRS durations are >120 ms. Small additional increases in homocysteine levels may suggest a risk factor for ECG diagnosis of LVH.

  6. ECG manifestations in acute organophosphorus poisoning.

    PubMed

    Paul, Uttam Kumar; Bhattacharyya, Anup Kumar

    2012-02-01

    A cross-sectional study was conducted to evaluate the electrocardiographic changes in 107 patients of acute organophosphorus poisoning admitted at casuality ward of MGM Medical College, Kisanganj from June 2007 to June 2010. Electrocardiographic changes were recorded before the administration of atropine. Prolonged Q-Tc interval was the commonest ECG abnormality, found in 67 patients (62.6%), followed by sinus tachycardia in 36 patients (33.6%). Sinus bradycardia was found in 33 patients (30.8%). Elevation of ST segment was seen in 27 patients (25.2%). T wave inversion was seen in 21 patients (19.6%). First-degree heart block (P-R interval >0.20 seconds) occurred in 9 cases (8.4%). Atrial fibrillation was seen in 5 patients (4.6%). Ventricular tachycardia was seen in 6 cases (5.6%) and ventricular premature complexes in 3 patients (2.8%). Of these 6 cases of ventricular tachycardia 1 responded to intravenous lignocaine, and the other 5 developed ventricular fibrillation leading to death despite other resuscitative measures. All the electrocardiographical abnormalities returned to normal before the patients were discharged. Seventeen patients died. The cause of death was ventricular fibrillation in 5 patients and non-cardiogenic pulmonary oedema in others. In conclusion it can be said that ECG should be carefully recorded and analysed in all patients of acute organophosphorus poisoning, and depending upon these changes and other clinical and biochemical parameters, the patients should immediately be shifted to well equipped ICU for better care which will reduce the mortality rate caused by these highly lethal poisons.

  7. Electrocardiographic ST segment elevation: a comparison of AMI and non-AMI ECG syndromes.

    PubMed

    Brady, William J; Perron, Andrew D; Ullman, Edward A; Syverud, Scott A; Holstege, Christopher; Riviello, Ralph; Ghammaghami, Chris

    2002-11-01

    Chest pain (CP) patients presenting to the ED may manifest electrocardiographic ST segment elevation (STE). AMI (acute myocardial infarction) is a less frequent cause of such abnormality and one of many patterns responsible for ST segment elevation in ED CP patients. We performed a retrospective comparative review of the electrocardiographic features of various STE syndromes, focusing on differences between AMI and non-AMI syndromes. The electrocardiograms (ECGs) of consecutive ED adult CP patients (with 3 serial troponin I determinations) were interpreted by 3 attending emergency physicians. These ECGs with STE represented the study population used for analysis. Various electrocardiographic features such as STE, ST segment depression (STD), STE morphology, anatomic distribution of STE, and the number of leads with STE were recorded; derived values such as total STE, total ST segment deviation, and average STE per lead were calculated. Interobserver reliability concerning STE morphology was determined. AMI was diagnosed by abnormal serum troponin I values (>0.1 mg/dL) followed by a rise and fall of the serum marker; STE diagnoses of non-AMI causes were determined by medical record review. Five hundred ninety-nine CP patients were entered in the study with 212 (35%) individuals showing STE, 55 (26%) with electrocardiographic AMI and 157 (74%) with non-AMI electrocardiographic syndromes. Anatomic location within the AMI group included 32 inferior and inferior variants, 18 anterior and anterior variants, and 5 lateral; non-AMI anatomic locations included 56 inferior and inferior variants, 98 anterior and anterior variants, and 3 lateral; anterior STE occurred significantly more often in non-AMI syndromes. Total STE was 15.3 mm in AMI patients and 7.4 mm in non-AMI patients (P =.0004). The number of leads with STE was not significantly different between the two groups, 3.4 mm in AMI and 4.1 in non-AMI syndromes. ST segment elevation per lead was not significantly

  8. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring

    PubMed Central

    Lou, Cunguang; Li, Ruikai; Li, Zhaopeng; Liang, Tie; Wei, Zihui; Run, Mingtao; Yan, Xiaobing; Liu, Xiuling

    2016-01-01

    This paper describes the development of a graphene-based dry flexible electrocardiography (ECG) electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET) substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM), and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR) ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults. PMID:27809270

  9. Statistical performance evaluation of ECG transmission using wireless networks.

    PubMed

    Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad

    2013-07-01

    This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.

  10. Using the BBC Microcomputer to Teach the Electrocardiogram to Biology Students.

    ERIC Educational Resources Information Center

    Dewhurst, D. G.; And Others

    1990-01-01

    Described are two methods which use microcomputers to illustrate the use of the electrocardiogram and the function of the heart. Included are a simulation and a method of collecting live electrocardiograms. Hardware, software, and the use of these systems are discussed. (CW)

  11. Parametric modelling of cardiac system multiple measurement signals: an open-source computer framework for performance evaluation of ECG, PCG and ABP event detectors.

    PubMed

    Homaeinezhad, M R; Sabetian, P; Feizollahi, A; Ghaffari, A; Rahmani, R

    2012-02-01

    The major focus of this study is to present a performance accuracy assessment framework based on mathematical modelling of cardiac system multiple measurement signals. Three mathematical algebraic subroutines with simple structural functions for synthetic generation of the synchronously triggered electrocardiogram (ECG), phonocardiogram (PCG) and arterial blood pressure (ABP) signals are described. In the case of ECG signals, normal and abnormal PQRST cycles in complicated conditions such as fascicular ventricular tachycardia, rate dependent conduction block and acute Q-wave infarctions of inferior and anterolateral walls can be simulated. Also, continuous ABP waveform with corresponding individual events such as systolic, diastolic and dicrotic pressures with normal or abnormal morphologies can be generated by another part of the model. In addition, the mathematical synthetic PCG framework is able to generate the S4-S1-S2-S3 cycles in normal and in cardiac disorder conditions such as stenosis, insufficiency, regurgitation and gallop. In the PCG model, the amplitude and frequency content (5-700 Hz) of each sound and variation patterns can be specified. The three proposed models were implemented to generate artificial signals with varies abnormality types and signal-to-noise ratios (SNR), for quantitative detection-delineation performance assessment of several ECG, PCG and ABP individual event detectors designed based on the Hilbert transform, discrete wavelet transform, geometric features such as area curve length (ACLM), the multiple higher order moments (MHOM) metric, and the principal components analysed geometric index (PCAGI). For each method the detection-delineation operating characteristics were obtained automatically in terms of sensitivity, positive predictivity and delineation (segmentation) error rms and checked by the cardiologist. The Matlab m-file script of the synthetic ECG, ABP and PCG signal generators are available in the Appendix.

  12. Electrocardiogram abnormalities among men with stress-related psychiatric disorders: implications for coronary heart disease and clinical research.

    PubMed

    Boscarino, J A; Chang, J

    1999-01-01

    Research suggests psychological distress could result in arterial endothelial injury and coronary heart disease (CHD). Studies also show Posttraumatic Stress Disorder (PTSD) victims have higher circulating catecholamines and other sympathoadrenal-neuroendocrine bioactive agents implicated in arterial damage. Here we analyzed resting 12-lead electrocardiographic (ECG) results among a national sample of 4,462 nonhospitalized male veterans (mean age = 38) about 20 years after military service by current posttraumatic stress (n = 54), general anxiety (n = 186), and depression (n = 157) disorders. ECGs were interpreted by board-certified cardiologists and summarized using the Minnesota Code Manual of Electrocardiographic Findings. Psychiatric disorders were diagnosed based on the Diagnostic Interview Schedule, Version III. Controlling for age, place of service, illicit drug use, medication use, race, body mass index, alcohol use, cigarette smoking, and education, PTSD (odds ratio [OR] = 2.23, 95% confidence interval [CI] = 1.17-4.26, p < 0.05), anxiety (OR = 1.51, 95% CI = 1.03-2.22, p < 0.05), and depression (OR = 1.71, 95% CI = 1.13-2.58, p < 0.01) were associated with having a positive ECG finding. Specific results indicate PTSD was associated with atrioventricular (AV) conduction defects (OR = 2.81, 95% CI = 1.03-7.66, p < 0.05) and infarctions (OR = 4.44, 95% CI = 1.20-16.43, p < 0.05), while depression was associated with arrhythmias (OR = 1.98, 95% CI = 1.22-3.23, p < 0.01). The PTSD associations for AV conduction defects and infarctions held, even after controlling for current anxiety and depression. These findings suggest psychological distress may result in CHD, because we controlled for obvious biases and confounders, the men studied had current PTSD due to combat exposures 20 years ago, combat exposure was associated with anxiety and depression among these men, and the men were disease free a military induction. These findings suggest the need for clinical

  13. A Differential ECG Amplifier with Single-Ended Output

    NASA Technical Reports Server (NTRS)

    Katchis, L.

    1972-01-01

    Three-stage amplifier is used for ECG measurements which require conversion of differential input to single-ended output. Circuit may be useful in biological telemetry for amplification of signals from specimen-implanted sensors.

  14. Human ECG signal parameters estimation during controlled physical activity

    NASA Astrophysics Data System (ADS)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  15. The ISCE ECG genome pilot challenge: a 2004 progress report.

    PubMed

    Kligfield, Paul; Badilini, Fabio; Brown, Barry; Helfenbein, Erich; Kohls, Mark

    2004-01-01

    The International Society for Computerized Electrocardiography (ISCE) "genome project" began in 2000 as an open-ended discussion of ECG database needs and opportunities. Cooperation within ISCE led to a "pilot challenge" of the database concept, which called for establishment of methodology for transmission, storage, and integrated re-analysis of digitized waveforms of three different ECG manufacturers. The present report documents the early implementation of that goal.

  16. Chest conduction properties and ECG equalization.

    PubMed

    Delle Cave, G; Fabricatore, G; Nolfe, G; Petrosino, M; Pizzuti, G P

    2000-01-01

    In common practice of detecting and recording biomedical signals, it is often implicitly assumed that the propagation, through the whole circuit human body-electrodes recording devices, is frequency and voltage independent. As a consequence, clinicians are not aware that recorded signals do not correspond faithfully to the original electrical activity of organs under investigation. We have studied the transmission of electrical signals in human body at various voltages and frequencies to understand if and to which extent the most diffused stimulating and recording techniques used in medicine are affected by global body conduction properties. Our results show that, in order to obtain a more faithful detection of electrical activity produced or evoked by human organs (e.g. EGG, electromyography, etc.), it is convenient to 'equalize'' recorded signals. To this purpose, two equalization techniques are proposed, based, respectively, on a simple hardware filtering during acquisition, or FFT post-processing of the acquired signals. As an application, we have studied the transmission of electrical signal in human chest and have compared equalized high frequency ECG signals with raw (original) recordings.

  17. Unveiling the Biometric Potential of Finger-Based ECG Signals

    PubMed Central

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications. PMID:21837235

  18. In Vivo Hemodynamic Performance Evaluation of Novel Electrocardiogram-Synchronized Pulsatile and Nonpulsatile Extracorporeal Life Support Systems in an Adult Swine Model.

    PubMed

    Wang, Shigang; Izer, Jenelle M; Clark, Joseph B; Patel, Sunil; Pauliks, Linda; Kunselman, Allen R; Leach, Donald; Cooper, Timothy K; Wilson, Ronald P; Ündar, Akif

    2015-07-01

    The primary objective of this study was to evaluate a novel electrocardiogram (ECG)-synchronized pulsatile extracorporeal life support (ECLS) system for adult partial mechanical circulatory support for adequate quality of pulsatility and enhanced hemodynamic energy generation in an in vivo animal model. The secondary aim was to assess end-organ protection during nonpulsatile versus synchronized pulsatile flow mode. Ten adult swine were randomly divided into a nonpulsatile group (NP, n = 5) and pulsatile group (P, n = 5), and placed on ECLS for 24 h using an i-cor system consisting of an i-cor diagonal pump, an iLA membrane ventilator, an 18 Fr femoral arterial cannula and a 23/25 Fr femoral venous cannula. Trials were conducted at a flow rate of 2.5 L/min using nonpulsatile or pulsatile mode (with assist ratio 1:1). Real-time pressure and flow data were recorded using a custom-based data acquisition system. To the best of our knowledge, the oxygenator and circuit pressure drops were the lowest for any available system in both groups. The ECG-synchronized i-cor ECLS system was able to trigger pulsatile flow in the porcine model. After 24-h ECLS, energy equivalent pressure, surplus hemodynamic energy, and total hemodynamic energy at preoxygenator and prearterial cannula sites were significantly higher in the P group than those in the NP group (P < 0.05). Urine output was higher in P versus NP (3379 ± 443 mL vs. NP, 2598 ± 1012 mL), and the P group seemed to require less inotropic support, but both did not reach statistical significances (P > 0.05). The novel i-cor system performed well in the nonpulsatile and ECG-synchronized pulsatile mode in an adult animal ECLS model. The iLA membrane oxygenator had an extremely lower transmembrane pressure gradient and excellent gas exchange capability. Our findings suggest that ECG-triggered pulsatile ECLS provides superior end-organ protection with improved renal function and systemic vascular

  19. ECG risk markers for atrial fibrillation and sudden cardiac death in minimally symptomatic obstructive sleep apnoea: the MOSAIC randomised trial

    PubMed Central

    Schlatzer, Christian; Bratton, Daniel J; Craig, Sonja E; Kohler, Malcolm; Stradling, John R

    2016-01-01

    Objective Obstructive sleep apnoea (OSA), atrial fibrillation (AF) and sudden cardiac death (SCD) may occur concomitantly, and are of considerable epidemiological interest, potentially leading to morbidity and mortality. Effective treatment of OSA with continuous positive airway pressure (CPAP) could prevent progression and/or recurrence of AF and factors leading to SCD. Recently, a randomised controlled trial showed a statistically and clinically significant prolongation of measures of cardiac repolarisation after CPAP withdrawal in symptomatic patients with moderate to severe OSA. Whether or not CPAP therapy improves ECG risk markers of AF and SCD in patients with minimally symptomatic OSA as well, is unknown. Methods 3 centres taking part in the MOSAIC (Multicentre Obstructive Sleep Apnoea Interventional Cardiovascular) trial randomisd 303 patients with minimally symptomatic OSA to receive either CPAP or standard care for 6 months. Treatment effects of CPAP on P-wave duration, P-wave dispersion, QT interval, QT dispersion, Tpeak-to-Tend (TpTe) and TpTe/QT ratio were analysed. Results Participants were primarily men (83%). Mean age was 57.8 (7.2) and mean ODI (Oxygen Desaturation Index) at baseline was 13.1/h (12.3). Full 12-lead ECG data was available in 250 patients. Mean (SD) baseline intervals of P-wave duration, P-wave dispersion, QTc interval, QT dispersion, TpTe and TpTe/QT ratio in ms were 87.4 (8.3), 42.3 (11.9), 397.8 (22.7), 43.1 (16.7), 73.5 (13.7) and 0.19 (0.0), respectively. No treatment effect of CPAP on risk markers for AF and SCD was found. Conclusions There seems to be no effect of CPAP on ECG measures of arrhythmia risk in patients with minimally symptomatic OSA. Trial registration number ISRCTN34164388; Post-results. PMID:26983946

  20. Optimal ECG Electrode Sites and Criteria for Detection of Asymptomatic Coronary Artery Disease - Update 1990. Multilead ECG Changes at Rest, with Exercise, and with Coronary Angioplasty

    DTIC Science & Technology

    1992-02-01

    AD-A248 613 OPTIMAL ECG ELECTRODE SITES AND CRITERIA CORONARY ARTERY DISEASE -UPDATE 1990 MULILEAD ECG CHANGES AT REST, WITH A EXERCISE, AND WITH...5. FUNDING NUMBERS Optimal ECG Electrode Sites and Criteria for Detection of Asymptomatic C - F33615-87-D-0609/0023 Coronary Artery Disease --Update...improve the detection of asymptomatic coronary disease . Three ECG recording systems with signal processing of 30 simultaneous leads (30SL) have been

  1. Multi-Country Evaluation of Safety of Dihydroartemisinin/Piperaquine Post-Licensure in African Public Hospitals with Electrocardiograms.

    PubMed

    Kabanywanyi, Abdunoor M; Baiden, Rita; Ali, Ali M; Mahende, Muhidin K; Ogutu, Bernhards R; Oduro, Abraham; Tinto, Halidou; Gyapong, Margaret; Sie, Ali; Sevene, Esperanca; Macete, Eusebio; Owusu-Agyei, Seth; Adjei, Alex; Compaoré, Guillaume; Valea, Innocent; Osei, Isaac; Yawson, Abena; Adjuik, Martin; Akparibo, Raymond; Kakolwa, Mwaka A; Abdulla, Salim; Binka, Fred

    2016-01-01

    The antimalarial drug piperaquine is associated with delayed ventricular depolarization, causing prolonged QT interval (time taken for ventricular de-polarisation and re-polarisation). There is a lack of safety data regarding dihydroartemisinin/piperaquine (DHA/PPQ) for the treatment of uncomplicated malaria, which has limited its use. We created a platform where electrocardiograms (ECG) were performed in public hospitals for the safety assessment of DHA/PPQ, at baseline before the use of dihydroartemisinin/piperaquine (Eurartesim®), and on day 3 (before and after administration of the final dose) and day 7 post-administration. Laboratory analyses included haematology and clinical chemistry. The main objective of the ECG assessment in this study was to evaluate the effect of administration of DHA/PPQ on QTc intervals and the association of QTc intervals with changes in blood biochemistry, full and differential blood count over time after the DHA/PPQ administration. A total of 1315 patients gave consent and were enrolled of which 1147 (87%) had complete information for analyses. Of the enrolled patients 488 (42%), 323 (28%), 213 (19%) and 123 (11%) were from Ghana, Burkina Faso, Tanzania and Mozambique, respectively. Median (lower-upper quartile) age was 8 (5-14) years and a quarter of the patients were children under five years of age (n = 287). Changes in blood biochemistry, full and differential blood count were temporal which remained within clinical thresholds and did not require any intervention. The mean QTcF values were significantly higher than on day 1 when measured on day 3 before and after administration of the treatment as well as on day 7, four days after completion of treatment (12, 22 and 4 higher, p < 0.001). In all age groups the values of QT, QTcF and QTcB were highest on day 3 after drug intake. The mean extreme QTcF prolongation from baseline was lowest on day 3 before drug intake (33 ms, SD = 19) and highest on day 3 after the last dose (60 ms

  2. Multi-Country Evaluation of Safety of Dihydroartemisinin/Piperaquine Post-Licensure in African Public Hospitals with Electrocardiograms

    PubMed Central

    Baiden, Rita; Ali, Ali M.; Mahende, Muhidin K.; Ogutu, Bernhards R.; Oduro, Abraham; Tinto, Halidou; Gyapong, Margaret; Sie, Ali; Sevene, Esperanca; Macete, Eusebio; Owusu-Agyei, Seth; Adjei, Alex; Compaoré, Guillaume; Valea, Innocent; Osei, Isaac; Yawson, Abena; Adjuik, Martin; Akparibo, Raymond; Kakolwa, Mwaka A.; Abdulla, Salim; Binka, Fred

    2016-01-01

    The antimalarial drug piperaquine is associated with delayed ventricular depolarization, causing prolonged QT interval (time taken for ventricular de-polarisation and re-polarisation). There is a lack of safety data regarding dihydroartemisinin/piperaquine (DHA/PPQ) for the treatment of uncomplicated malaria, which has limited its use. We created a platform where electrocardiograms (ECG) were performed in public hospitals for the safety assessment of DHA/PPQ, at baseline before the use of dihydroartemisinin/piperaquine (Eurartesim®), and on day 3 (before and after administration of the final dose) and day 7 post-administration. Laboratory analyses included haematology and clinical chemistry. The main objective of the ECG assessment in this study was to evaluate the effect of administration of DHA/PPQ on QTc intervals and the association of QTc intervals with changes in blood biochemistry, full and differential blood count over time after the DHA/PPQ administration. A total of 1315 patients gave consent and were enrolled of which 1147 (87%) had complete information for analyses. Of the enrolled patients 488 (42%), 323 (28%), 213 (19%) and 123 (11%) were from Ghana, Burkina Faso, Tanzania and Mozambique, respectively. Median (lower—upper quartile) age was 8 (5–14) years and a quarter of the patients were children under five years of age (n = 287). Changes in blood biochemistry, full and differential blood count were temporal which remained within clinical thresholds and did not require any intervention. The mean QTcF values were significantly higher than on day 1 when measured on day 3 before and after administration of the treatment as well as on day 7, four days after completion of treatment (12, 22 and 4 higher, p < 0.001). In all age groups the values of QT, QTcF and QTcB were highest on day 3 after drug intake. The mean extreme QTcF prolongation from baseline was lowest on day 3 before drug intake (33 ms, SD = 19) and highest on day 3 after the last dose

  3. Standard-compliant real-time transmission of ECGs: harmonization of ISO/IEEE 11073-PHD and SCP-ECG.

    PubMed

    Trigo, Jesús D; Chiarugi, Franco; Alesanco, Alvaro; Martínez-Espronceda, Miguel; Chronaki, Catherine E; Escayola, Javier; Martínez, Ignacio; García, José

    2009-01-01

    Ambient assisted living and integrated care in an aging society is based on the vision of the lifelong Electronic Health Record calling for HealthCare Information Systems and medical device interoperability. For medical devices this aim can be achieved by the consistent implementation of harmonized international interoperability standards. The ISO/IEEE 11073 (x73) family of standards is a reference standard for medical device interoperability. In its Personal Health Device (PHD) version several devices have been included, but an ECG device specialization is not yet available. On the other hand, the SCP-ECG standard for short-term diagnostic ECGs (EN1064) has been recently approved as an international standard ISO/IEEE 11073-91064:2009. In this paper, the relationships between a proposed x73-PHD model for an ECG device and the fields of the SCP-ECG standard are investigated. A proof-of-concept implementation of the proposed x73-PHD ECG model is also presented, identifying open issues to be addressed by standards development for the wider interoperability adoption of x73-PHD standards.

  4. A new method for obtaining electrocardiograms in unrestrained crocodilian reptiles.

    PubMed

    Phelps, R L; Gatten, R E; Mosberg, A T

    1992-02-01

    A new procedure is described for acquiring measurements of electrocardiographic parameters in unrestrained crocodilians. These measurements are difficult to obtain in freely moving animals; hence, electrocardiographic activity under natural conditions has not been previously quantified. In this investigation, twelve American alligators were equipped with subcutaneous electrodes. The lead wires were sutured to each animal's skin and the extracutaneous wires coiled and held in place against the animals' dorsal surfaces with waterproof elastic bandages. The electrodes were connected to an ECG analyzer only at the time of measurement. The presence of the leads and harness did not appear to interfere with the movements of the animals either in the animal room or during testing. This method allows for more precise measurements of cardiac activity under conditions which closely resemble those of crocodilians in their natural state.

  5. Validation of heart rate derived from a physiological status monitor-embedded compression shirt against criterion ECG.

    PubMed

    Dolezal, B A; Boland, D M; Carney, J; Abrazado, M; Smith, D L; Cooper, C B

    2014-01-01

    Firefighters are subject to extreme environments and high physical demands when performing duty-related tasks. Recently, physiological status monitors (PSM) have been embedded into a compression shirt to enable firefighters to measure, visualize, log, and transmit vital metrics such as heart rate (HR) to aid in cardiovascular risk identification and mitigation, thereby attempting to improve the health, fitness, and safety of this population. The purpose of this study was to validate HR recorded by the PSM-embedded compression shirt against a criterion standard laboratory ECG-derived HR when worn concurrently with structural firefighting personal protective equipment (PPE) during four simulated firefighting activities. Ten healthy, college-age men (mean ± SD: age: 21 ± 1 yr; body mass: 91 ± 10 kg; body mass index: 26.9 ± 3.1 kg/m(2)) completed four tasks that are routinely performed during firefighting operations: outdoor fast-paced walking (FW), treadmill walking (TW), searching/crawling (SC), and ascending/descending stairs (AD). They wore the PSM-embedded compression shirt under structural firefighting PPE. HR was recorded concurrently by the PSM-embedded compression shirt and a portable metabolic measurement system accompanied with a standard 12-lead electrocardiograph that was used to provide criterion measures of HR. For all four tasks combined there was very high correlation of PSM and ECG HR (r > 0.99; SEE 0.84 /min) with a mean difference (bias) of -0.02 /min and limits of agreement of -0.07 to 0.02 /min. For individual tasks, the correlations were also high (r-values = 0.99; SEE 0.81-0.89). The mean bias (limits of agreement) was: FW 0.03 (-0.09 to 0.14); TW 0.04 (-0.05 to 0.12); SC -0.01 (-0.12 to 0.10); AD -0.13 (-0.21 to -0.04) /min. These findings demonstrate that the PSM-embedded compression shirt provides a valid measure of HR during simulated firefighting activities when compared with a standard 12-lead ECG.

  6. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    NASA Astrophysics Data System (ADS)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  7. An adaptive Kalman filter for ECG signal enhancement.

    PubMed

    Vullings, Rik; de Vries, Bert; Bergmans, Jan W M

    2011-04-01

    The ongoing trend of ECG monitoring techniques to become more ambulatory and less obtrusive generally comes at the expense of decreased signal quality. To enhance this quality, consecutive ECG complexes can be averaged triggered on the heartbeat, exploiting the quasi-periodicity of the ECG. However, this averaging constitutes a tradeoff between improvement of the SNR and loss of clinically relevant physiological signal dynamics. Using a bayesian framework, in this paper, a sequential averaging filter is developed that, in essence, adaptively varies the number of complexes included in the averaging based on the characteristics of the ECG signal. The filter has the form of an adaptive Kalman filter. The adaptive estimation of the process and measurement noise covariances is performed by maximizing the bayesian evidence function of the sequential ECG estimation and by exploiting the spatial correlation between several simultaneously recorded ECG signals, respectively. The noise covariance estimates thus obtained render the filter capable of ascribing more weight to newly arriving data when these data contain morphological variability, and of reducing this weight in cases of no morphological variability. The filter is evaluated by applying it to a variety of ECG signals. To gauge the relevance of the adaptive noise-covariance estimation, the performance of the filter is compared to that of a Kalman filter with fixed, (a posteriori) optimized noise covariance. This comparison demonstrates that, without using a priori knowledge on signal characteristics, the filter with adaptive noise estimation performs similar to the filter with optimized fixed noise covariance, favoring the adaptive filter in cases where no a priori information is available or where signal characteristics are expected to fluctuate.

  8. ECG-gated, mechanical and electromechanical wave imaging of cardiovascular tissues in vivo.

    PubMed

    Pernot, Mathieu; Fujikura, Kana; Fung-Kee-Fung, Simon D; Konofagou, Elisa E

    2007-07-01

    In simplistic terms, the motion of the heart can be summarized as an active contraction and passive relaxation of the myocardium. However, the local motion of cardiovascular tissues over the course of an entire cardiac cycle results from various transient events such as the valves closing/opening, sudden changes in blood pressure and electrical conduction of the myocardium. The transient motion generated by most of these events occurs within a very short time (on the order of 1 ms) and cannot be imaged correctly with conventional imaging systems, due to their limited temporal resolution. In this paper, we propose a method for imaging this rapid transient motion of tissues in cardiovascular applications. Our method is based on imaging tissues with ultrasound at high frame rates (up to 8000 fps) by synchronizing the two-dimensional (2D) image acquisition on the electrocardiogram (ECG) signals. In vivo feasibility is demonstrated in anesthetized mice. The propagation of several transient mechanical waves was imaged in different regions of the myocardium and the wave phase velocities were found to be between 0.44 m/s and 5 m/s. These waves may be generated by either a purely mechanical effects or through electromechanical coupling in the myocardium depending on the phase of the cardiac cycle, in which they occur. The abdominal aorta was also imaged using the same technique and the propagation of a mechanical pulse wave was imaged. The pulse wave velocity was measured and the Young's modulus of the vessel wall was derived based on the Moens-Korteweg equation. This method could potentially be used for mapping the stiffness of the myocardium and the artery walls and may lead to the early diagnosis of cardiovascular diseases.

  9. Dry Electrodes for ECG and Pulse Transit Time for Blood Pressure: A Wearable Sensor and Smartphone Communication Approach

    NASA Astrophysics Data System (ADS)

    Shyamkumar, Prashanth

    Cardiovascular Diseases (CVDs) have been a major cause for deaths in both men and women in United States. Cerebrovascular Diseases like Strokes are known to have origins in CVDs as well. Moreover, nearly 18 Million Americans have a history of myocardial infarction and are currently undergoing cardiac rehabilitation. Consequently, CVDs are the highest costing disease groups and cost more than all types of cancer combined. However, significant cost reduction is possible through the effective use of the vast advances in embedded and pervasive electronic devices for healthcare. These devices can automate and move a significant portion of disease management to the patient's home through cyber connectivity, a concept known as point-of-care (POC) diagnostics and healthcare services. POC can minimize hospital visits and potentially avoid admission altogether with prognostic tools that give advanced notice of any abnormalities or chronic illnesses so that the treatment can be planned in advance. The POC concept requires continuous remote health monitoring. Therefore, the various sensors needed for comprehensive monitoring need to be worn daily and throughout the day. Moreover, true "roaming" capability is necessary so that it does not restrict the user's travel or his/her quotidian activities. Two biomedical signals namely, Electrocardiogram (ECG) and Blood Pressure are important diagnostic tests in assessing the cardiac health of a person. To that end, the research presented in this thesis: First , describes the development of a remote monitoring solution based on Bluetooth(TM), smartphones and cyber infrastructure for cardiac care called e-nanoflex. Second, Sensors for ECG that are compatible with everyday life style namely, (a) dry, gel-less vertically aligned gold nanowire electrodes, (b) dry textile-based conductive sensor electrodes to address the need for this technology to monitor cardiovascular diseases in women are tested with e-nanoflex and discussed. Third, non

  10. Event synchronous adaptive filter based atrial activity estimation in single-lead atrial fibrillation electrocardiograms.

    PubMed

    Lee, Jeon; Song, Mi-hye; Shin, Dong-gu; Lee, Kyoung-joung

    2012-08-01

    In this paper, an event synchronous adaptive filter (ESAF) is proposed to estimate atrial activity (AA) from a single-lead AF ECG in real time. The proposed ESAF is a kind of adaptive filter designed to have the reference fed with the impulse train synchronized with the R peak in a raw atrial fibrillation (AF) ECG and to input the timely delayed AF ECG into the primary input. To assess the performance, for ten simulated AF ECGs, the cross-correlation coefficient (ρ) and the normalized mean square error (NMSE) between estimated AAs and ten original simulated AAs were calculated and, for ten real AF ECGs, the ventricular residue (VR) in QRS interval and similarity (S) in non-QRS interval were computed. As a result, these four parameters were revealed as ρ = 0.938 ± 0.016 and NMSE = 0.243 ± 0.051 for simulated AF ECGs and VR = 1.190 ± 0.476 and S = 0.967 ± 0.041 for real AF ECGs. These results were found to be better than those of the averaged beat subtraction (ABS) method, which had been previously considered the only way to estimate AA automatically in real time. In conclusion, even with single-lead AF ECGs, the proposed method estimated AAs accurately and calculated the atrial fibrillatory frequencies, the most valuable index in AF maintenance and therapy evaluation, with a remarkably low computational cost.

  11. A controlled study of a new ECG electrode system.

    PubMed

    Sheffield, L T; Roitman, D I; Kansal, S

    1978-07-01

    A newly marketed resting ECG electrode system was compared with conventional metal suction and plate electrodes, electrode cream and patient cable. Two experienced technicians were given special training in the use of the new electrode, electrolyte and patient cable system and alternated daily in using new and conventional equipment. Nearly equal numbers of perfect-scoring ECGs were recorded with each system, attesting to the impartiality of the technicians. A total of 1,062 ECGs were evaluated, 554 with the new system and 508 with the conventional one. ECG tracings were evaluated by electrocardiographers unaware of which system was used for each. A quantitative scoring system was used to measure the technical quality of each tracing in terms of baseline drift, powerline artifact and myographic plus miscellaneous artifacts. The new system received mean scores of 2.33, 3.08, and 2.72, respectively, while the conventional electrodes received scores of 2.56, 3.03 and 2.79. We concluded that the two types of electrodes produced ECGs of essentially equal quality.

  12. Acute “Pseudoischemic” ECG Abnormalities after Right Pneumonectomy