Science.gov

Sample records for 12-mer random peptide

  1. Discovery of 12-mer peptides that bind to wood lignin.

    PubMed

    Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi

    2016-01-01

    Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196

  2. Discovery of 12-mer peptides that bind to wood lignin

    PubMed Central

    Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi

    2016-01-01

    Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196

  3. Isolation of ZnO-binding 12-mer peptides and determination of their binding epitopes by NMR spectroscopy.

    PubMed

    Rothenstein, Dirk; Claasen, Birgit; Omiecienski, Beatrice; Lammel, Patricia; Bill, Joachim

    2012-08-01

    Inorganic-binding peptides are in the focus of research fields such as materials science, nanotechnology, and biotechnology. Applications concern surface functionalization by the specific coupling to inorganic target substrates, the binding of soluble molecules for sensing applications, or biomineralization approaches for the controlled formation of inorganic materials. The specific molecular recognition of inorganic surfaces by peptides is of major importance for such applications. Zinc oxide (ZnO) is an important semiconductor material which is applied in various devices. In this study the molecular fundamentals for a ZnO-binding epitope was determined. 12-mer peptides, which specifically bind to the zinc- or/and the oxygen-terminated sides of single-crystalline ZnO (0001) and (000-1) substrates, were selected from a random peptide library using the phage display technique. For two ZnO-binding peptides the mandatory amino acid residues, which are of crucial importance for the specific binding were determined with a label-free nuclear magnetic resonance (NMR) approach. NMR spectroscopy allows the identification of pH dependent interaction sites on the atomic level of 12-mer peptides and ZnO nanoparticles. Here, ionic and polar interaction forces were determined. For the oxygen-terminated side the consensus peptide-binding sequence (HSXXH) was predicted in silico and confirmed by the NMR approach. PMID:22720657

  4. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  5. Peptide based diagnostics: are random-sequence peptides more useful than tiling proteome sequences?

    PubMed

    Navalkar, Krupa Arun; Johnston, Stephan Albert; Stafford, Phillip

    2015-02-01

    Diagnostics using peptide ligands have been available for decades. However, their adoption in diagnostics has been limited, not because of poor sensitivity but in many cases due to diminished specificity. Numerous reports suggest that protein-based rather than peptide-based disease detection is more specific. We examined two different approaches to peptide-based diagnostics using Coccidioides (aka Valley Fever) as the disease model. Although the pathogen was discovered more than a century ago, a highly sensitive diagnostic remains unavailable. We present a case study where two different approaches to diagnosing Valley Fever were used: first, overlapping Valley Fever epitopes representing immunodominant Coccidioides antigens were tiled using a microarray format of presynthesized peptides. Second, a set of random sequence peptides identified using a 10,000 peptide immunosignaturing microarray was compared for sensitivity and specificity. The scientific hypothesis tested was that actual epitope peptides from Coccidioides would provide sufficient sensitivity and specificity as a diagnostic. Results demonstrated that random sequence peptides exhibited higher accuracy when classifying different stages of Valley Fever infection vs. epitope peptides. The epitope peptide array did provide better performance than the existing immunodiffusion array, but when directly compared to the random sequence peptides, reported lower overall accuracy. This study suggests that there are competing aspects of antibody recognition that involve conservation of pathogen sequence and aspects of mimotope recognition and amino acid substitutions. These factors may prove critical when developing the next generation of high-performance immunodiagnostics.

  6. Identification of non-random sequence properties in groups of signature peptides obtained in random sequence peptide microarray experiments.

    PubMed

    Kuznetsov, Igor B

    2016-05-01

    Immunosignaturing is an emerging experimental technique that uses random sequence peptide microarrays to detect antibodies produced by the immune system in response to a particular disease. Two important questions regarding immunosignaturing are "Do microarray peptides that exhibit a strong affinity to a given type of antibodies share common sequence properties?" and "If so, what are those properties?" In this work, three statistical tests designed to detect non-random patterns in the amino acid makeup of a group of microarray peptides are presented. One test detects patterns of significantly biased amino acid usage, whereas the other two detect patterns of significant bias in the biochemical properties. These tests do not require a large number of peptides per group. The tests were applied to analyze 19 groups of peptides identified in immunosignaturing experiments as being specific for antibodies produced in response to various types of cancer and other diseases. The positional distribution of the biochemical properties of the amino acids in these 19 peptide groups was also studied. Remarkably, despite the random nature of the sequence libraries used to design the microarrays, a unique group-specific non-random pattern was identified in the majority of the peptide groups studied. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 318-329, 2016. PMID:27037995

  7. Screening and Antiviral Analysis of Phages That Display Peptides with an Affinity to Subunit C of Porcine Aminopeptidase

    PubMed Central

    Guo, Donghua; Zhu, Qinghe; Feng, Li

    2013-01-01

    The purified C subunit of the recombinant porcine aminopeptidase N (rpAPN-C) protein was used as an immobilized target to screen potential ligands against rpAPN-C from a 12-mer phage display random peptide library. After five rounds of biopanning, five phage clones showed specific binding affinities to rpAPN-C. In 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assays, the phage clone PM1, which contained the HDAISWTHYHPW peptide sequence, had a protective effect against TGEV infection in swine testis cells. Therefore, the HDAISWTHYHPW peptide sequence has a potential use as a small molecular therapeutic agent against TGEV infection. PMID:24111863

  8. Improvement of an enzyme-linked immunosorbent assay for equine herpesvirus type 4 by using a synthetic-peptide 24-mer repeat sequence of glycoprotein G as an antigen.

    PubMed

    Bannai, Hiroshi; Nemoto, Manabu; Tsujimura, Koji; Yamanaka, Takashi; Maeda, Ken; Kondo, Takashi

    2016-02-01

    To increase the sensitivity of an enzyme-linked immunosorbent assay (ELISA) for equine herpesvirus type 4 (EHV-4) that uses a 12-mer peptide of glycoprotein G (gG4-12-mer: MKNNPIYSEGSL) [4], we used a longer peptide consisting of a 24-mer repeat sequence (gG4-24-mer: MKNNPIYSEGSLMLNVQHDDSIHT) as an antigen. Sera of horses experimentally infected with EHV-4 reacted much more strongly to the gG4-24-mer peptide than to the gG4-12-mer peptide. We used peptide ELISAs to test paired sera from horses naturally infected with EHV-4 (n=40). gG4-24-mer ELISA detected 37 positive samples (92.5%), whereas gG4-12-mer ELISA detected only 28 (70.0%). gG4-24-mer ELISA was much more sensitive than gG4-12-mer ELISA.

  9. Improvement of an enzyme-linked immunosorbent assay for equine herpesvirus type 4 by using a synthetic-peptide 24-mer repeat sequence of glycoprotein G as an antigen

    PubMed Central

    BANNAI, Hiroshi; NEMOTO, Manabu; TSUJIMURA, Koji; YAMANAKA, Takashi; MAEDA, Ken; KONDO, Takashi

    2015-01-01

    To increase the sensitivity of an enzyme-linked immunosorbent assay (ELISA) for equine herpesvirus type 4 (EHV-4) that uses a 12-mer peptide of glycoprotein G (gG4-12-mer: MKNNPIYSEGSL) [4], we used a longer peptide consisting of a 24-mer repeat sequence (gG4-24-mer: MKNNPIYSEGSLMLNVQHDDSIHT) as an antigen. Sera of horses experimentally infected with EHV-4 reacted much more strongly to the gG4-24-mer peptide than to the gG4-12-mer peptide. We used peptide ELISAs to test paired sera from horses naturally infected with EHV-4 (n=40). gG4-24-mer ELISA detected 37 positive samples (92.5%), whereas gG4-12-mer ELISA detected only 28 (70.0%). gG4-24-mer ELISA was much more sensitive than gG4-12-mer ELISA. PMID:26424485

  10. Use of superparamagnetic beads for the isolation of a peptide with specificity to cymbidium mosaic virus.

    PubMed

    Ooi, Diana Jia Miin; Dzulkurnain, Adriya; Othman, Rofina Yasmin; Lim, Saw Hoon; Harikrishna, Jennifer Ann

    2006-09-01

    A modified method for the rapid isolation of specific ligands to whole virus particles is described. Biopanning against cymbidium mosaic virus was carried out with a commercial 12-mer random peptide display library. A solution phase panning method was devised using streptavidin-coated superparamagnetic beads. The solution based panning method was more efficient than conventional immobilized target panning when using whole viral particles of cymbidium mosaic virus as a target. Enzyme-linked immunosorbent assay of cymbidium mosaic virus-binding peptides isolated from the library identified seven peptides with affinity for cymbidium mosaic virus and one peptide which was specific to cymbidium mosaic virus and had no significant binding to odontoglossum ringspot virus. This method should have broad application for the screening of whole viral particles towards the rapid development of diagnostic reagents without the requirement for cloning and expression of single antigens.

  11. Human IgA-binding peptides selected from random peptide libraries: affinity maturation and application in IgA purification.

    PubMed

    Hatanaka, Takaaki; Ohzono, Shinji; Park, Mirae; Sakamoto, Kotaro; Tsukamoto, Shogo; Sugita, Ryohei; Ishitobi, Hiroyuki; Mori, Toshiyuki; Ito, Osamu; Sorajo, Koichi; Sugimura, Kazuhisa; Ham, Sihyun; Ito, Yuji

    2012-12-14

    Phage display system is a powerful tool to design specific ligands for target molecules. Here, we used disulfide-constrained random peptide libraries constructed with the T7 phage display system to isolate peptides specific to human IgA. The binding clones (A1-A4) isolated by biopanning exhibited clear specificity to human IgA, but the synthetic peptide derived from the A2 clone exhibited a low specificity/affinity (K(d) = 1.3 μm). Therefore, we tried to improve the peptide using a partial randomized phage display library and mutational studies on the synthetic peptides. The designed Opt-1 peptide exhibited a 39-fold higher affinity (K(d) = 33 nm) than the A2 peptide. An Opt-1 peptide-conjugated column was used to purify IgA from human plasma. However, the recovered IgA fraction was contaminated with other proteins, indicating nonspecific binding. To design a peptide with increased binding specificity, we examined the structural features of Opt-1 and the Opt-1-IgA complex using all-atom molecular dynamics simulations with explicit water. The simulation results revealed that the Opt-1 peptide displayed partial helicity in the N-terminal region and possessed a hydrophobic cluster that played a significant role in tight binding with IgA-Fc. However, these hydrophobic residues of Opt-1 may contribute to nonspecific binding with other proteins. To increase binding specificity, we introduced several mutations in the hydrophobic residues of Opt-1. The resultant Opt-3 peptide exhibited high specificity and high binding affinity for IgA, leading to successful isolation of IgA without contamination.

  12. Isolation of peptides from phage-displayed random peptide libraries that interact with the talin-binding domain of vinculin.

    PubMed Central

    Adey, N B; Kay, B K

    1997-01-01

    Peptides isolated from combinatorial libraries typically interact with, and thus help to characterize, biologically relevant binding domains of target proteins. To characterize the binding domains of the focal adhesion protein vinculin, vinculin-binding peptides were isolated from two phage-displayed random peptide libraries. Altogether, five non-similar vinculin-binding peptides were identified. Despite the lack of obvious sequence similarity between the peptides, binding and competition studies indicated that all five interact with the talin-binding domain of vinculin and do not disrupt the binding of alpha-actinin or paxillin to vinculin. The identified peptides and talin bind to vinculin in a comparable manner; both bind to immobilized vinculin, but neither binds to soluble vinculin unless the C-terminus of vinculin has been deleted. An analysis of amino acid variants of one of the peptides has revealed three non-contiguous motifs that also occur in the region of talin previously demonstrated to bind vinculin. Amino acid substitutions within a 127-residue segment of talin capable of binding vinculin confirmed the importance of two of the motifs and suggest that residues critical for binding are within a 16-residue region. This study demonstrates that the vinculin-binding peptides interact with vinculin in a biologically relevant manner and represent an excellent tool for further study of the biochemistry of vinculin. PMID:9182713

  13. ATP selection in a random peptide library consisting of prebiotic amino acids.

    PubMed

    Kang, Shou-Kai; Chen, Bai-Xue; Tian, Tian; Jia, Xi-Shuai; Chu, Xin-Yi; Liu, Rong; Dong, Peng-Fei; Yang, Qing-Yong; Zhang, Hong-Yu

    2015-10-23

    Based upon many theoretical findings on protein evolution, we proposed a ligand-selection model for the origin of proteins, in which the most ancient proteins originated from ATP selection in a pool of random peptides. To test this ligand-selection model, we constructed a random peptide library consisting of 15 types of prebiotic amino acids and then used cDNA display to perform six rounds of in vitro selection with ATP. By means of next-generation sequencing, the most prevalent sequence was defined. Biochemical and biophysical characterization of the selected peptide showed that it was stable and foldable and had ATP-hydrolysis activity as well.

  14. Characterization of Seven New Polystyrene Plates Binding Peptides from a Phage-Displayed Random 12-Peptide Library.

    PubMed

    Hu, Yun-Fei; Gao, Xiao-Chen; Xu, Tian-Qi; Dun, Zhao; Yu, Xing-Long

    2016-01-01

    A random 12-peptide library was screened against Erysipelothrix rhusiopthiae and porcine circovirus 2 recombinant Cap protein and the selected peptides were used for detecting the corresponding pathogens quickly and effectively. To our surprise, seven peptides, P1 (WHWNAP WWNGVY), P2 (FHWTWQFPYTST), P3 (GAMHLPWHMGTL), P4 (HWNIWWQHHPSP), P5 (HFFKWHTRTNDQ), P6 (HFFRWHPSAHLG) and P7 (HFAYWWNGVRGP) with the characteristics of polystyrene plate (PS) binding target-unrelated peptides (TUPs), were selected from the library. It has been found that P2 and P4 shared common motif of plastic binding peptide, moreover, P2, P3, P5 and P7 have been isolated repeatedly in other research groups using different targets. Then, the seven peptide phage clones were identified as the PS binding TUP phages by phage-ELISA and elution titration, particularly, P1 and P2 showed strong PS binding affinity which can not be inhibited by usual blocking buffers. In addition, all of the phages were not propagation-related TUP, but P3 showed the similar propagation rate with M13KE (vector phage). We also found that the seven PS-TUPs are rich in W, H, F, P and G, particularly, both W and H are contained in all PS-TUPs. It deduced that they may play a potential role in peptide binding to plastic. Although it is difficult to eliminate the TUP phages in phage display completely, these PS-TUPs can be used to exclude the false positive peptides rapidly and effectively and help us to obtain truly interesting peptides more accurately. PMID:26980286

  15. Identification of high-affinity VEGFR3-binding peptides through a phage-displayed random peptide library

    PubMed Central

    Wu, Yan; Li, Cai-Yun

    2015-01-01

    Objective Vascular endothelial growth factor (VEGF) interaction with its receptor, VEGFR-3/Flt-4, regulates lymphangiogenesis. VEGFR-3/Flt-4 expression in cancer cells has been correlated with clinical stage, lymph node metastasis, and lymphatic invasion. The objective of this study is to identify a VEGFR-3/Flt-4-interacting peptide that could be used to inhibit VEGFR-3 for ovarian cancer therapy. Methods The extracellular fragment of recombinant human VEGFR-3/Flt-4 (rhVEGFR-3/Flt-4) fused with coat protein pIII was screened against a phage-displayed random peptide library. Using affinity enrichment and enzyme-linked immunosorbent assay (ELISA) screening, positive clones of phages were amplified. Three phage clones were selected after four rounds of biopanning, and the specific binding of the peptides to rhVEGFR-3 was detected by ELISA and compared with that of VEGF-D. Immunohistochemistry and immunofluorescence analyses of ovarian cancer tissue sections was undertaken to demonstrate the specificity of the peptides. Results After four rounds of biopanning, ELISA confirmed the specificity of the enriched bound phage clones for rhVEGFR-3. Sequencing and translation identified three different peptides. Non-competitive ELISA revealed that peptides I, II, and III had binding affinities for VEGFR-3 with Kaff (affinity constant) of 16.4±8.6 µg/mL (n=3), 9.2±2.1 µg/mL (n=3), and 174.8±31.1 µg/mL (n=3), respectively. In ovarian carcinoma tissue sections, peptide III (WHWLPNLRHYAS), which had the greatest binding affinity, also co-localized with VEGFR-3 in endothelial cells lining lymphatic vessels; its labeling of ovarian tumors in vivo was also confirmed. Conclusion These finding showed that peptide III has high specificity and activity and, therefore, may represent a potential therapeutic approach to target VEGF-VEGFR-3 signaling for the treatment or diagnosis of ovarian cancer. PMID:26197772

  16. Short communication: Measuring the angiotensin-converting enzyme inhibitory activity of an 8-amino acid (8mer) fragment of the C12 antihypertensive peptide.

    PubMed

    Paul, Moushumi; Phillips, John G; Renye, John A

    2016-05-01

    An 8-AA (8mer) fragment (PFPEVFGK) of a known antihypertensive peptide derived from bovine αS1-casein (C12 antihypertensive peptide) was synthesized by microwave-assisted solid-phase peptide synthesis and purified by reverse phase HPLC. Its ability to inhibit angiotensin-converting enzyme (ACE) was assessed and compared with that of the parent 12mer peptide (FFVAPFPEVFGK) to determine the effect of truncating the sequence on overall hypotensive activity. The activity of the truncated 8mer peptide was found to be almost 1.5 times less active than that of the 12mer, with ACE-inhibiting IC50 (half-maximal inhibitory concentration) values of 108 and 69μM, for the 8mer and 12mer, respectively. Although the 8mer peptide is less active than the original 12mer peptide, its overall activity is comparable to activities reported for other small proteins that elicit physiological responses within humans. These results suggest that microbial degradation of the 12mer peptide would not result in a complete loss of antihypertensive activity if used to supplement fermented foods and that the stable 8mer peptide could have potential as a blood pressure-lowering agent for use in functional foods.

  17. Identification of calmodulin isoform-specific binding peptides from a phage-displayed random 22-mer peptide library.

    PubMed

    Choi, Ji Young; Lee, Sang Hyoung; Park, Chan Young; Heo, Won Do; Kim, Jong Cheol; Kim, Min Chul; Chung, Woo Sik; Moon, Byeong Cheol; Cheong, Yong Hwa; Kim, Cha Young; Yoo, Jae Hyuk; Koo, Ja Choon; Ok, Hyun Mi; Chi, Seung-Wook; Ryu, Seong-Eon; Lee, Sang Yeol; Lim, Chae Oh; Cho, Moo Je

    2002-06-14

    Plants express numerous calmodulin (CaM) isoforms that exhibit differential activation or inhibition of CaM-dependent enzymes in vitro; however, their specificities toward target enzyme/protein binding are uncertain. A random peptide library displaying a 22-mer peptide on a bacteriophage surface was constructed to screen peptides that specifically bind to plant CaM isoforms (soybean calmodulin (ScaM)-1 and SCaM-4 were used in this study) in a Ca2+-dependent manner. The deduced amino acid sequence analyses of the respective 80 phage clones that were independently isolated via affinity panning revealed that SCaM isoforms require distinct amino acid sequences for optimal binding. SCaM-1-binding peptides conform to a 1-5-10 ((FILVW)XXX(FILV) XXXX(FILVW)) motif (where X denotes any amino acid), whereas SCaM-4-binding peptide sequences conform to a 1-8-14 ((FILVW)XXXXXX(FAILVW)XXXXX(FILVW)) motif. These motifs are classified based on the positions of conserved hydrophobic residues. To examine their binding properties further, two representative peptides from each of the SCaM isoform-binding sequences were synthesized and analyzed via gel mobility shift assays, Trp fluorescent spectra analyses, and phosphodiesterase competitive inhibition experiments. The results of these studies suggest that SCaM isoforms possess different binding sequences for optimal target interaction, which therefore may provide a molecular basis for CaM isoform-specific function in plants. Furthermore, the isolated peptide sequences may serve not only as useful CaM-binding sequence references but also as potential reagents for studying CaM isoform-specific function in vivo.

  18. Determination of B-Cell Epitopes in Patients with Celiac Disease: Peptide Microarrays

    PubMed Central

    Choung, Rok Seon; Marietta, Eric V.; Van Dyke, Carol T.; Brantner, Tricia L.; Rajasekaran, John; Pasricha, Pankaj J.; Wang, Tianhao; Bei, Kang; Krishna, Karthik; Krishnamurthy, Hari K.; Snyder, Melissa R.; Jayaraman, Vasanth; Murray, Joseph A.

    2016-01-01

    Background Most antibodies recognize conformational or discontinuous epitopes that have a specific 3-dimensional shape; however, determination of discontinuous B-cell epitopes is a major challenge in bioscience. Moreover, the current methods for identifying peptide epitopes often involve laborious, high-cost peptide screening programs. Here, we present a novel microarray method for identifying discontinuous B-cell epitopes in celiac disease (CD) by using a silicon-based peptide array and computational methods. Methods Using a novel silicon-based microarray platform with a multi-pillar chip, overlapping 12-mer peptide sequences of all native and deamidated gliadins, which are known to trigger CD, were synthesized in situ and used to identify peptide epitopes. Results Using a computational algorithm that considered disease specificity of peptide sequences, 2 distinct epitope sets were identified. Further, by combining the most discriminative 3-mer gliadin sequences with randomly interpolated3- or 6-mer peptide sequences, novel discontinuous epitopes were identified and further optimized to maximize disease discrimination. The final discontinuous epitope sets were tested in a confirmatory cohort of CD patients and controls, yielding 99% sensitivity and 100% specificity. Conclusions These novel sets of epitopes derived from gliadin have a high degree of accuracy in differentiating CD from controls, compared with standard serologic tests. The method of ultra-high-density peptide microarray described here would be broadly useful to develop high-fidelity diagnostic tests and explore pathogenesis. PMID:26824466

  19. Epitope Identification from Fixed-complexity Random-sequence Peptide Microarrays

    PubMed Central

    Richer, Josh; Johnston, Stephen Albert; Stafford, Phillip

    2015-01-01

    Antibodies play an important role in modern science and medicine. They are essential in many biological assays and have emerged as an important class of therapeutics. Unfortunately, current methods for mapping antibody epitopes require costly synthesis or enrichment steps, and no low-cost universal platform exists. In order to address this, we tested a random-sequence peptide microarray consisting of over 330,000 unique peptide sequences sampling 83% of all possible tetramers and 27% of pentamers. It is a single, unbiased platform that can be used in many different types of tests, it does not rely on informatic selection of peptides for a particular proteome, and it does not require iterative rounds of selection. In order to optimize the platform, we developed an algorithm that considers the significance of k-length peptide subsequences (k-mers) within selected peptides that come from the microarray. We tested eight monoclonal antibodies and seven infectious disease cohorts. The method correctly identified five of the eight monoclonal epitopes and identified both reported and unreported epitope candidates in the infectious disease cohorts. This algorithm could greatly enhance the utility of random-sequence peptide microarrays by enabling rapid epitope mapping and antigen identification. PMID:25368412

  20. Construction and Analysis of High-Complexity Ribosome Display Random Peptide Libraries

    PubMed Central

    Yang, Li-Min; Wang, Jing-Lin; Kang, Lin; Gao, Shan; Liu, Yan-hua; Hu, Ting-Mao

    2008-01-01

    Random peptide libraries displayed on the ribosome are becoming a new tool for the in vitro selection of biologically relevant macromolecules, including epitopes, antagonists, enzymes, and cell-surface receptors. Ribosome display is a cell-free system of coupling individual nascent proteins (phenotypes) to their corresponding mRNA (genotypes) by the formation of stable protein-ribosome-mRNA complexes and permitting the selection of a functional nascent protein by iterative cycles of panning and reverse transcription-polymerase chain reaction (RT-PCR) amplification in vitro. The complexity of the random peptide library is critical for the success of a panning experiment; greater the diversity of sequences within the library, the more likely it is that the library comprises sequences that can bind a given target with specific affinity. Here, we have used the cell-free system Escherichia coli S30 lysate to construct high-complexity random peptide libraries (>1014 independent members) by introducing strategies that are different from the methods described by Mattheakis et al. and Lamla et al. The key step in our method is to produce nanomole (nmol) amounts of DNA elements that are necessary for in vitro transcription/translation by using PCR but not plasmid DNA. Library design strategies and protocols that facilitate rapid identification are also presented. PMID:18493302

  1. Panning of a phage display library against a synthetic capsule for peptide ligands that bind to the native capsule of Bacillus anthracis.

    PubMed

    Beer, Michael; Liu, Chun-Qiang

    2012-01-01

    Bacillus anthracis is the causative agent of anthrax with the ability to not only produce a tripartite toxin, but also an enveloping capsule comprised primarily of γ-D-glutamic acid residues. The purpose of this study was to isolate peptide ligands capable of binding to the native capsule of B. anthracis from a commercial phage display peptide library using a synthetic form of the capsule consisting of 12 γ-D-glutamic acid residues. Following four rounds of selection, 80 clones were selected randomly and analysed by DNA sequencing. Four clones, each containing a unique consensus sequence, were identified by sequence alignment analysis. Phage particles were prepared and their derived 12-mer peptides were also chemically synthesized and conjugated to BSA. Both the phage particles and free peptide-BSA conjugates were evaluated by ELISA for binding to encapsulated cells of B. anthracis as well as a B. anthracis capsule extract. All the phage particles tested except one were able to bind to both the encapsulated cells and the capsule extract. However, the peptide-BSA conjugates could only bind to the encapsulated cells. One of the peptide-BSA conjugates, with the sequence DSSRIPMQWHPQ (termed G1), was fluorescently labelled and its binding to the encapsulated cells was further confirmed by confocal microscopy. The results demonstrated that the synthetic capsule was effective in isolating phage-displayed peptides with binding affinity for the native capsule of B. anthracis.

  2. Mimotopes of the Vi Antigen of Salmonella enterica Serovar Typhi Identified from Phage Display Peptide Library

    PubMed Central

    Tang, Swee-Seong; Tan, Wen-Siang; Devi, Shamala; Wang, Lin-Fa; Pang, Tikki; Thong, Kwai-Lin

    2003-01-01

    The capsular polysaccharide Vi antigen (ViCPS) is an essential virulence factor and also a protective antigen of Salmonella enterica serovar Typhi. A random 12-mer phage-displayed peptide library was used to identify mimotopes (epitope analogues) of this antigen by panning against a ViCPS-specific monoclonal antibody (MAb) ATVi. Approximately 75% of the phage clones selected in the fourth round carried the peptide sequence TSHHDSHGLHRV, and the rest of the clones harbored ENHSPVNIAHKL and other related sequences. These two sequences were also obtained in a similar panning process by using pooled sera from patients with a confirmed diagnosis of typhoid fever, suggesting they mimic immunodominant epitopes of ViCPS antigens. Binding of MAb ATVi to the mimotopes was specifically blocked by ViCPS, indicating that they interact with the same binding site (paratope) of the MAb. Data and reagents generated in this study have important implications for the development of peptide-base diagnostic tests and peptide vaccines and may also provide a better understanding of the pathogenesis of typhoid fever. PMID:14607870

  3. FTIR spectroscopy of alanine-based peptides: assignment of the amide I' modes for random coil and helix.

    PubMed

    Martinez, G; Millhauser, G

    1995-01-01

    Fourier transform infrared (FTIR) spectroscopy has been used to explore the thermal unfolding of three helical, alanine-based peptides. Each of the peptides follows the general sequence Ac-(AAAX)nA-NH2 where X is either Lys+ or Arg+ and n = 3 or 4. These particular peptides were chosen because they contain varying amounts of 3(10)- and alpha-helix. The amide I' bands for all three peptides, under helix forming conditions, are between 1632 and 1635 cm-1. These results are incongruous with the assignment for alpha-helices in proteins where amide I' bands are usually found above 1650 cm-1. At elevated temperatures, all the peptides exhibit amide I' bands of 1642 cm-1, which is the accepted value for random coil. Variable temperature spectra for the 4K peptide (n = 4, X = Lys+), which is the most alpha-helical of the three peptides at 1 degree C, reveal an isosbestic point suggesting a cooperative two-state unfolding transition. The other peptides, however, did not reveal an isosbestic point, thereby indicating the presence of an intermediate, perhaps 3(10)-helix, along the thermal unfolding pathway.

  4. Types of pediatric diabetes mellitus defined by anti-islet autoimmunity and random C-peptide at diagnosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to test the hypothesis that anti-islet autoantibody expression and random serum C-peptide obtained at diagnosis define phenotypes of pediatric diabetes with distinct clinical features. We analyzed 607 children aged <19 yr consecutively diagnosed with diabetes after ex...

  5. Multiplexed Random Peptide Library and Phospho-Specific Antibodies Facilitate Human Polo-Like Kinase 1 Inhibitor Screen

    PubMed Central

    Koresawa, Mitsunori; Iida, Masato; Fukasawa, Kazuhiro; Stec, Erica; Cassaday, Jason; Chase, Peter; Rickert, Keith; Hodder, Peter; Takagi, Toshimitsu; Komatani, Hideya

    2010-01-01

    Abstract One of the challenges to develop time-resolved fluorescence resonance energy transfer (TR-FRET) assay for serine/threonine (Ser/Thr) protein kinase is to select an optimal peptide substrate and a specific phosphor Ser/Thr antibody. This report describes a multiplexed random screen-based development of TR-FRET assay for ultra-high-throughput screening (uHTS) of small molecule inhibitors for a potent cancer drug target polo-like kinase 1 (Plk1). A screen of a diverse peptide library in a 384-well plate format identified several highly potent substrates that share the consensus motif for phosphorylation by Plk1. Their potencies were comparable to FKD peptide, a designed peptide substrate derived from well-described Plk1 substrate Cdc25C. A specific anti-phosphor Ser/Thr antibody p(S/T)F antibody that detects the phosphorylation of FKD peptide was screened out of 87 antibodies with time-resolved fluorometry technology in a 96-well plate format. Using FKD peptide and p(S/T)F antibody, we successfully developed a robust TR-FRET assay in 384-well plate format, and further miniaturized this assay to 1,536-well plate format to perform uHTS. We screened about 1.2 million compounds for Plk1 inhibitors using a Plk1 deletion mutant that only has the kinase domain and subsequently screened the same compound library using a full-length active-mutant Plk1. These uHTSs identified a number of hit compounds, and some of them had selectivity to either the deletion mutant or the full-length protein. Our results prove that a combination of random screen for substrate peptide and phospho-specific antibodies is very powerful strategy to develop TR-FRET assays for protein kinases. PMID:20085455

  6. Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung D.; Hall, Carol K.

    2004-11-01

    Assembly of normally soluble proteins into amyloid fibrils is a cause or associated symptom of numerous human disorders, including Alzheimer's and the prion diseases. We report molecular-level simulation of spontaneous fibril formation. Systems containing 12-96 model polyalanine peptides form fibrils at temperatures greater than a critical temperature that decreases with peptide concentration and exceeds the peptide's folding temperature, consistent with experimental findings. Formation of small amorphous aggregates precedes ordered nucleus formation and subsequent rapid fibril growth through addition of -sheets laterally and monomeric peptides at fibril ends. The fibril's structure is similar to that observed experimentally. amyloid | protein aggregation

  7. Anti-heparan Sulfate Peptides That Block Herpes Simplex Virus Infection in Vivo*

    PubMed Central

    Tiwari, Vaibhav; Liu, Jian; Valyi-Nagy, Tibor; Shukla, Deepak

    2011-01-01

    Heparan sulfate (HS) and its highly modified form, 3-O-sulfated heparan sulfate (3-OS HS), contribute strongly to herpes simplex virus type-1 (HSV-1) infection in vitro. Here we report results from a random M13-phage display library screening to isolate 12-mer peptides that bind specifically to HS, 3-OS HS, and block HSV-1 entry. The screening identified representative candidates from two-different groups of anti-HS peptides with high positive charge densities. Group 1, represented by G1 peptide (LRSRTKIIRIRH), belongs to a class with alternating charges (XRXRXKXXRXRX), and group 2, represented by G2 peptide (MPRRRRIRRRQK), shows repetitive charges (XXRRRRXRRRXK). Viral entry and glycoprotein D binding assays together with fluorescent microscopy data indicated that both G1 and G2 were potent in blocking HSV-1 entry into primary cultures of human corneal fibroblasts and CHO-K1 cells transiently expressing different glycoprotein D receptors. Interestingly, G2 peptide isolated against 3-OS HS displayed wider ability to inhibit entry of clinically relevant strains of HSV-1 and some divergent members of herpesvirus family including cytomegalovirus and human herpesvirus-8. To identify functional residues within G1 and G2, we performed point mutations and alanine-scanning mutagenesis. Several arginine and a lysine residues were needed for anti-HSV-1 activity, suggesting the importance of the positively charged residues in virus-cell binding and virus-induced membrane fusion. In vivo administration of G1 or G2 peptide as a prophylactic eye drop completely blocked HSV-1 spread in the mouse cornea as evident by immunohistochemistry. This result also highlights an in vivo significance of HS and 3-OS HS during ocular herpes infection. PMID:21596749

  8. Analysis and Prediction of the Critical Regions of Antimicrobial Peptides Based on Conditional Random Fields

    PubMed Central

    Chang, Kuan Y.; Lin, Tung-pei; Shih, Ling-Yi; Wang, Chien-Kuo

    2015-01-01

    Antimicrobial peptides (AMPs) are potent drug candidates against microbes such as bacteria, fungi, parasites, and viruses. The size of AMPs ranges from less than ten to hundreds of amino acids. Often only a few amino acids or the critical regions of antimicrobial proteins matter the functionality. Accurately predicting the AMP critical regions could benefit the experimental designs. However, no extensive analyses have been done specifically on the AMP critical regions and computational modeling on them is either non-existent or settled to other problems. With a focus on the AMP critical regions, we thus develop a computational model AMPcore by introducing a state-of-the-art machine learning method, conditional random fields. We generate a comprehensive dataset of 798 AMPs cores and a low similarity dataset of 510 representative AMP cores. AMPcore could reach a maximal accuracy of 90% and 0.79 Matthew’s correlation coefficient on the comprehensive dataset and a maximal accuracy of 83% and 0.66 MCC on the low similarity dataset. Our analyses of AMP cores follow what we know about AMPs: High in glycine and lysine, but low in aspartic acid, glutamic acid, and methionine; the abundance of α-helical structures; the dominance of positive net charges; the peculiarity of amphipathicity. Two amphipathic sequence motifs within the AMP cores, an amphipathic α-helix and an amphipathic π-helix, are revealed. In addition, a short sequence motif at the N-terminal boundary of AMP cores is reported for the first time: arginine at the P(-1) coupling with glycine at the P1 of AMP cores occurs the most, which might link to microbial cell adhesion. PMID:25803302

  9. Identification and Characterization of a Peptide Affinity Reagent for Detection of Noroviruses in Clinical Samples

    PubMed Central

    Rogers, Jennifer D.; Ajami, Nadim J.; Fryszczyn, Bartlomiej G.; Estes, Mary K.; Atmar, Robert L.

    2013-01-01

    Norovirus (NoV) is the most common agent of nonbacterial epidemic gastroenteritis and is estimated to cause 21 million cases of the disease in the United States annually. The antigen enzyme-linked immunosorbent assays (ELISAs) currently available for NoV diagnosis detect only certain strains and are approved for use in the United States only in epidemics where NoV is suspected. There is a clear need for simpler, more rapid, and more reliable diagnostic tools for the detection of NoV. In this study, phage display technology was used to screen a library of phage displaying random 12-mer peptides for those that bind to Norwalk virus virus-like particles (NV VLPs). Three phage clones displaying unique peptides were identified, and both the peptide-displaying phages and the peptides were confirmed to bind specifically to NV VLPs. The peptide displayed on phage clone NV-N-R5-1 was determined to bind to the protruding domain of the VP1 capsid protein. This phage also bound to NV VLPs seeded into NoV-negative stool with a limit of detection of 1.56 ng NV VLP. This value was comparable to monoclonal antibody (MAb) 3912, which is currently used in commercially available assays. Furthermore, the NV-N-R5-1 phage exhibited high specificity by detecting NV only in previously characterized NV-positive stool samples in contrast to no detection in NV-negative stool samples. These data demonstrate that the further development of NV-N-R5-1 phage as a diagnostic reagent is possible and might offer several distinct advantages over antibodies, such as decreases in the time and cost of production and ease of isolating phage against other epidemic strains currently circulating as well as those that are emerging. PMID:23554202

  10. Predicting most probable conformations of a given peptide sequence in the random coil state.

    PubMed

    Bayrak, Cigdem Sevim; Erman, Burak

    2012-11-01

    In this work, we present a computational scheme for finding high probability conformations of peptides. The scheme calculates the probability of a given conformation of the given peptide sequence using the probability distribution of torsion states. Dependence of the states of a residue on the states of its first neighbors along the chain is considered. Prior probabilities of torsion states are obtained from a coil library. Posterior probabilities are calculated by the matrix multiplication Rotational Isomeric States Model of polymer theory. The conformation of a peptide with highest probability is determined by using a hidden Markov model Viterbi algorithm. First, the probability distribution of the torsion states of the residues is obtained. Using the highest probability torsion state, one can generate, step by step, states with lower probabilities. To validate the method, the highest probability state of residues in a given sequence is calculated and compared with probabilities obtained from the Coil Databank. Predictions based on the method are 32% better than predictions based on the most probable states of residues. The ensemble of "n" high probability conformations of a given protein is also determined using the Viterbi algorithm with multistep backtracking. PMID:22955874

  11. Topical Administration of a Connexin43-based peptide Augments Healing of Chronic Neuropathic Diabetic Foot Ulcers: A Multicenter, Randomized Trial

    PubMed Central

    Grek, Christina L.; Prasad, G.M.; Viswanathan, Vijay; Armstrong, David G.; Gourdie, Robert G.; Ghatnekar, Gautam S.

    2015-01-01

    Nonhealing neuropathic foot ulcers remain a significant problem in individuals with diabetes. The gap-junctional protein connexin43 (Cx43) has roles in dermal wound healing and targeting Cx43 signaling accelerates wound reepithelialization. In a prospective, randomized, multi-center clinical trial we evaluated the efficacy and safety of a peptide mimetic of the C-terminus of Cx43, ACT1, in accelerating the healing of chronic diabetic foot ulcers (DFUs) when incorporated into standard of care protocols. Adults with DFUs of at least four weeks duration were randomized to receive standard of care with or without topical application of ACT1. Primary outcome was mean percent ulcer reepithelialization and safety variables included incidence of treatment related adverse events and detection of ACT1 immunogenicity. ACT1 treatment was associated with a significantly greater reduction in mean percent ulcer area from baseline to 12 weeks (72.1% vs. 57.1%; p = 0.03). Analysis of incidence and median time-to-complete-ulcer closure revealed that ACT1 treatment was associated with a greater percentage of participants that reached 100% ulcer reepitheliazation and a reduced median time-to-complete-ulcer closure. No adverse events reported were treatment related, and ACT1 was not immunogenic. Treatment protocols that incorporate ACT1 may present a therapeutic strategy that safely augments the reepithelialization of chronic DFUs. PMID:25703647

  12. Correlated matrix-assisted laser desorption/ionization mass spectrometry and fluorescent imaging of photocleavable peptide-coded random bead-arrays

    PubMed Central

    Lim, Mark J; Liu, Ziying; Braunschweiger, Karen I; Awad, Amany; Rothschild, Kenneth J

    2013-01-01

    RATIONALE Rapidly performing global proteomic screens is an important goal in the post-genomic era. Correlated matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and fluorescent imaging of photocleavable peptide-coded random bead-arrays was evaluated as a critical step in a new method for proteomic screening that combines many of the advantages of MS with fluorescence-based microarrays. METHODS Small peptide-coded model bead libraries containing up to 20 different bead species were constructed by attaching peptides to 30–34 µm diameter glass, agarose or TentaGel® beads using photocleavable biotin or a custom-designed photocleavable linker. The peptide-coded bead libraries were randomly arrayed into custom gold-coated micro-well plates with 45 µm diameter wells and subjected to fluorescence and MALDI mass spectrometric imaging (MALDI-MSI). RESULTS Photocleavable mass-tags from individual beads in these libraries were spatially localized as ∼65 µm spots using MALDI-MSI with high sensitivity and mass resolution. Fluorescently tagged beads were identified and correlated with their matching photocleavable mass-tags by comparing the fluorescence and MALDI-MS images of the same bead-array. Post-translational modification of the peptide Kemptide was also detected on individual beads in a photocleavable peptide-coded bead-array by MALDI-MSI alone, after exposure of the beads to protein kinase A (PKA). CONCLUSIONS Correlated MALDI-MS and fluorescent imaging of photocleavable peptide-coded random bead-arrays can provide a basis for performing global proteomic screening. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24285390

  13. Development of a novel efficient method to construct an adenovirus library displaying random peptides on the fiber knob

    PubMed Central

    Yamamoto, Yuki; Goto, Naoko; Miura, Kazuki; Narumi, Kenta; Ohnami, Shumpei; Uchida, Hiroaki; Miura, Yoshiaki; Yamamoto, Masato; Aoki, Kazunori

    2014-01-01

    Redirection of adenovirus vectors by engineering the capsid-coding region has shown limited success because proper targeting ligands are generally unknown. To overcome this limitation, we constructed an adenovirus library displaying random peptides on the fiber knob, and its screening led to successful selections of several particular targeted vectors. In the previous library construction method, the full length of an adenoviral genome was generated by a Cre-lox mediated in vitro recombination between a fiber-modified plasmid library and the enzyme-digested adenoviral DNA/terminal protein complex (DNA-TPC) before transfection to the producer cells. In this system, the procedures were complicated and time-consuming, and approximately 30% of the vectors in the library were defective with no displaying peptide. These may hinder further extensive exploration of cancer-targeting vectors. To resolve these problems, in this study, we developed a novel method with the transfection of a fiber-modified plasmid library and a fiberless adenoviral DNA-TPC in Cre-expressing 293 cells. The use of in-cell Cre recombination and fiberless adenovirus greatly simplified the library-making steps. The fiberless adenovirus was useful in suppressing the expansion of unnecessary adenovirus vectors. In addition, the complexity of the library was more than a 104 level in one well in a 6-well dish, which was 10-fold higher than that of the original method. The results demonstrated that this novel method is useful in producing a high quality live adenovirus library, which could facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:24380399

  14. Development of a novel efficient method to construct an adenovirus library displaying random peptides on the fiber knob.

    PubMed

    Yamamoto, Yuki; Goto, Naoko; Miura, Kazuki; Narumi, Kenta; Ohnami, Shumpei; Uchida, Hiroaki; Miura, Yoshiaki; Yamamoto, Masato; Aoki, Kazunori

    2014-03-01

    Redirection of adenovirus vectors by engineering the capsid-coding region has shown limited success because proper targeting ligands are generally unknown. To overcome this limitation, we constructed an adenovirus library displaying random peptides on the fiber knob, and its screening led to successful selections of several particular targeted vectors. In the previous library construction method, the full length of an adenoviral genome was generated by a Cre-lox mediated in vitro recombination between a fiber-modified plasmid library and the enzyme-digested adenoviral DNA/terminal protein complex (DNA-TPC) before transfection to the producer cells. In this system, the procedures were complicated and time-consuming, and approximately 30% of the vectors in the library were defective with no displaying peptide. These may hinder further extensive exploration of cancer-targeting vectors. To resolve these problems, in this study, we developed a novel method with the transfection of a fiber-modified plasmid library and a fiberless adenoviral DNA-TPC in Cre-expressing 293 cells. The use of in-cell Cre recombination and fiberless adenovirus greatly simplified the library-making steps. The fiberless adenovirus was useful in suppressing the expansion of unnecessary adenovirus vectors. In addition, the complexity of the library was more than a 10(4) level in one well in a 6-well dish, which was 10-fold higher than that of the original method. The results demonstrated that this novel method is useful in producing a high quality live adenovirus library, which could facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:24380399

  15. Density functional theory of equilibrium random copolymers: application to surface adsorption of aggregating peptides

    NASA Astrophysics Data System (ADS)

    Wang, Haiqiang; Forsman, Jan; Woodward, Clifford E.

    2016-06-01

    We generalize a recently developed polymer density functional theory (PDFT) for polydisperse polymer fluids to the case of equilibrium random copolymers. We show that the generalization of the PDFT to these systems allows us to obtain a remarkable simplification compared to the monodispersed polymers. The theory is used to treat a model for protein aggregation into linear filaments in the presence of surfaces. Here we show that, for attractive surfaces, there is evidence of significant enhancement of protein aggregation. This behaviour is a consequence of a surface phase transition, which has been shown to occur with ideal equilibrium polymers in the presence of sufficiently attractive surfaces. For excluding monomers, this transition is suppressed, though an echo of the underlying ideal transition is present in the sudden change in the excess adsorption.

  16. The Effect of a Connexin43-Based Peptide on the Healing of Chronic Venous Leg Ulcers: A Multicenter, Randomized Trial

    PubMed Central

    Ghatnekar, Gautam S; Grek, Christina L; Armstrong, David G; Desai, Sanjay C; Gourdie, Robert G

    2015-01-01

    The gap junction protein, connexin43 (Cx43), has critical roles in the inflammatory, edematous, and fibrotic processes following dermal injury and during wound healing, and is abnormally upregulated at the epidermal wound margins of venous leg ulcers (VLUs). Targeting Cx43 with ACT1, a peptide mimetic of the carboxyl-terminus of Cx43, accelerates fibroblast migration and proliferation, and wound reepithelialization. In a prospective, multicenter clinical trial conducted in India, adults with chronic VLUs were randomized to treatment with an ACT1 gel formulation plus conventional standard-of-care (SOC) protocols, involving maintaining wound moisture and four-layer compression bandage therapy, or SOC protocols alone. The primary end point was mean percent ulcer reepithelialization from baseline to 12 weeks. A significantly greater reduction in mean percent ulcer area from baseline to 12 weeks was associated with the incorporation of ACT1 therapy (79% (SD 50.4)) as compared with compression bandage therapy alone (36% (SD 179.8); P=0.02). Evaluation of secondary efficacy end points indicated a reduced median time to 50 and 100% ulcer reepithelialization for ACT1-treated ulcers. Incorporation of ACT1 in SOC protocols may represent a well-tolerated, highly effective therapeutic strategy that expedites chronic venous ulcer healing by treating the underlying ulcer pathophysiology through Cx43-mediated pathways. PMID:25072595

  17. A Conserved Epitope Mapped with a Monoclonal Antibody against the VP3 Protein of Goose Parvovirus by Using Peptide Screening and Phage Display Approaches

    PubMed Central

    Li, Chenxi; Liu, Hongyu; Li, Jinzhe; Liu, Dafei; Meng, Runze; Zhang, Qingshan; Shaozhou, Wulin; Bai, Xiaofei; Zhang, Tingting; Liu, Ming; Zhang, Yun

    2016-01-01

    Background Waterfowl parvovirus (WPV) infection causes high mortality and morbidity in both geese (Anser anser) and Muscovy ducks (Cairina moschata), resulting in significant losses to the waterfowl industries. The VP3 protein of WPV is a major structural protein that induces neutralizing antibodies in the waterfowl. However, B-cell epitopes on the VP3 protein of WPV have not been characterized. Methods and Results To understand the antigenic determinants of the VP3 protein, we used the monoclonal antibody (mAb) 4A6 to screen a set of eight partially expressed overlapping peptides spanning VP3. Using western blotting and an enzyme-linked immunosorbent assay (ELISA), we localized the VP3 epitope between amino acids (aa) 57 and 112. To identify the essential epitope residues, a phage library displaying 12-mer random peptides was screened with mAb 4A6. Phage clone peptides displayed a consensus sequence of YxRFHxH that mimicked the sequence 82Y/FNRFHCH88, which corresponded to amino acid residues 82 to 88 of VP3 protein of WPVs. mAb 4A6 binding to biotinylated fragments corresponding to amino acid residues 82 to 88 of the VP3 protein verified that the 82FxRFHxH88 was the VP3 epitope and that amino acids 82F is necessary to retain maximal binding to mAb 4A6. Parvovirus-positive goose and duck sera reacted with the epitope peptide by dot blotting assay, revealing the importance of these amino acids of the epitope in antibody-epitope binding reactivity. Conclusions and Significance We identified the motif FxRFHxH as a VP3-specific B-cell epitope that is recognized by the neutralizing mAb 4A6. This finding might be valuable in understanding of the antigenic topology of VP3 of WPV. PMID:27191594

  18. Monomeric Aβ1–40 and Aβ1–42 Peptides in Solution Adopt Very Similar Ramachandran Map Distributions That Closely Resemble Random Coil

    PubMed Central

    2016-01-01

    The pathogenesis of Alzheimer’s disease is characterized by the aggregation and fibrillation of amyloid peptides Aβ1–40 and Aβ1–42 into amyloid plaques. Despite strong potential therapeutic interest, the structural pathways associated with the conversion of monomeric Aβ peptides into oligomeric species remain largely unknown. In particular, the higher aggregation propensity and associated toxicity of Aβ1–42 compared to that of Aβ1–40 are poorly understood. To explore in detail the structural propensity of the monomeric Aβ1–40 and Aβ1–42 peptides in solution, we recorded a large set of nuclear magnetic resonance (NMR) parameters, including chemical shifts, nuclear Overhauser effects (NOEs), and J couplings. Systematic comparisons show that at neutral pH the Aβ1–40 and Aβ1–42 peptides populate almost indistinguishable coil-like conformations. Nuclear Overhauser effect spectra collected at very high resolution remove assignment ambiguities and show no long-range NOE contacts. Six sets of backbone J couplings (3JHNHα, 3JC′C′, 3JC′Hα, 1JHαCα, 2JNCα, and 1JNCα) recorded for Aβ1–40 were used as input for the recently developed MERA Ramachandran map analysis, yielding residue-specific backbone ϕ/ψ torsion angle distributions that closely resemble random coil distributions, the absence of a significantly elevated propensity for β-conformations in the C-terminal region of the peptide, and a small but distinct propensity for αL at K28. Our results suggest that the self-association of Aβ peptides into toxic oligomers is not driven by elevated propensities of the monomeric species to adopt β-strand-like conformations. Instead, the accelerated disappearance of Aβ NMR signals in D2O over H2O, particularly pronounced for Aβ1–42, suggests that intermolecular interactions between the hydrophobic regions of the peptide dominate the aggregation process. PMID:26780756

  19. Monomeric Aβ(1-40) and Aβ(1-42) Peptides in Solution Adopt Very Similar Ramachandran Map Distributions That Closely Resemble Random Coil.

    PubMed

    Roche, Julien; Shen, Yang; Lee, Jung Ho; Ying, Jinfa; Bax, Ad

    2016-02-01

    The pathogenesis of Alzheimer's disease is characterized by the aggregation and fibrillation of amyloid peptides Aβ(1-40) and Aβ(1-42) into amyloid plaques. Despite strong potential therapeutic interest, the structural pathways associated with the conversion of monomeric Aβ peptides into oligomeric species remain largely unknown. In particular, the higher aggregation propensity and associated toxicity of Aβ(1-42) compared to that of Aβ(1-40) are poorly understood. To explore in detail the structural propensity of the monomeric Aβ(1-40) and Aβ(1-42) peptides in solution, we recorded a large set of nuclear magnetic resonance (NMR) parameters, including chemical shifts, nuclear Overhauser effects (NOEs), and J couplings. Systematic comparisons show that at neutral pH the Aβ(1-40) and Aβ(1-42) peptides populate almost indistinguishable coil-like conformations. Nuclear Overhauser effect spectra collected at very high resolution remove assignment ambiguities and show no long-range NOE contacts. Six sets of backbone J couplings ((3)JHNHα, (3)JC'C', (3)JC'Hα, (1)JHαCα, (2)JNCα, and (1)JNCα) recorded for Aβ(1-40) were used as input for the recently developed MERA Ramachandran map analysis, yielding residue-specific backbone ϕ/ψ torsion angle distributions that closely resemble random coil distributions, the absence of a significantly elevated propensity for β-conformations in the C-terminal region of the peptide, and a small but distinct propensity for αL at K28. Our results suggest that the self-association of Aβ peptides into toxic oligomers is not driven by elevated propensities of the monomeric species to adopt β-strand-like conformations. Instead, the accelerated disappearance of Aβ NMR signals in D2O over H2O, particularly pronounced for Aβ(1-42), suggests that intermolecular interactions between the hydrophobic regions of the peptide dominate the aggregation process.

  20. Probability-Based Pattern Recognition and Statistical Framework for Randomization: Modeling Tandem Mass Spectrum/Peptide Sequence False Match Frequencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating and controlling the frequency of false matches between a peptide tandem mass spectrum and candidate peptide sequences is an issue pervading proteomics research. To solve this problem, we designed an unsupervised pattern recognition algorithm for detecting patterns with various lengths fr...

  1. Screening of random peptide library of hemagglutinin from pandemic 2009 A(H1N1) influenza virus reveals unexpected antigenically important regions.

    PubMed

    Xu, Wanghui; Han, Lu; Lin, Zhanglin

    2011-01-01

    The antigenic structure of the membrane protein hemagglutinin (HA) from the 2009 A(H1N1) influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS) against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify "hot spots" or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins. PMID:21437206

  2. Mendelian Randomization Study of B-Type Natriuretic Peptide and Type 2 Diabetes: Evidence of Causal Association from Population Studies

    PubMed Central

    Pfister, Roman; Sharp, Stephen; Luben, Robert; Welsh, Paul; Barroso, Inês; Salomaa, Veikko; Meirhaeghe, Aline; Khaw, Kay-Tee; Sattar, Naveed; Langenberg, Claudia; Wareham, Nicholas J.

    2011-01-01

    Background Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded. Methods and Findings We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%–36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91–0.97) was similar to that expected (0.96, 0.93–0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74–0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15–0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders. Conclusions Our results provide evidence for a potential causal role of the BNP

  3. Identification of peptides that bind to irradiated pancreatic tumor cells

    SciTech Connect

    Huang Canhui; Liu, Xiang Y.; Rehemtulla, Alnawaz; Lawrence, Theodore S. . E-mail: tsl@med.umich.edu

    2005-08-01

    Purpose: Peptides targeting tumor vascular cells or tumor cells themselves have the potential to be used as vectors for delivering either DNA in gene therapy or antitumor agents in chemotherapy. We wished to determine if peptides identified by phage display could be used to target irradiated pancreatic cancer cells. Methods and Materials: Irradiated Capan-2 cells were incubated with 5 x 10{sup 12} plaque-forming units of a phage display library. Internalized phage were recovered and absorbed against unirradiated cells. After five such cycles of enrichment, the recovered phage were subjected to DNA sequencing analysis and synthetic peptides made. The binding of both phage and synthetic peptides was evaluated by fluorescence staining and flow cytometry in vitro and in vivo. Results: We identified one 12-mer peptide (PA1) that binds to irradiated Capan-2 pancreatic adenocarcinoma cells but not to unirradiated cells. The binding of peptide was significant after 48 h incubation with cells. In vivo experiments with Capan-2 xenografts in nude mice demonstrated that these small peptides are able to penetrate tumor tissue after intravenous injections and bind specifically to irradiated tumor cells. Conclusion: These data suggest that peptides can be identified that target tumors with radiation-induced cell markers and may be clinically useful.

  4. Novel β-lactamase-random peptide fusion libraries for phage display selection of cancer cell-targeting agents suitable for enzyme prodrug therapy

    PubMed Central

    Shukla, Girja S.; Krag, David N.

    2010-01-01

    Novel phage-displayed random linear dodecapeptide (X12) and cysteine-constrained decapeptide (CX10C) libraries constructed in fusion to the amino-terminus of P99 β-lactamase molecules were used for identifying β-lactamase-linked cancer cell-specific ligands. The size and quality of both libraries were comparable to the standards of other reported phage display systems. Using the single-round panning method based on phage DNA recovery, we identified severalβ-lactamase fusion peptides that specifically bind to live human breast cancer MDA-MB-361 cells. The β-lactamase fusion to the peptides helped in conducting the enzyme activity-based clone normalization and cell-binding screening in a very time- and cost-efficient manner. The methods were suitable for 96-well readout as well as microscopic imaging. The success of the biopanning was indicated by the presence of ~40% cancer cell-specific clones among recovered phages. One of the binding clones appeared multiple times. The cancer cell-binding fusion peptides also shared several significant motifs. This opens a new way of preparing and selecting phage display libraries. The cancer cell-specific β-lactamase-linked affinity reagents selected from these libraries can be used for any application that requires a reporter for tracking the ligand molecules. Furthermore, these affinity reagents have also a potential for their direct use in the targeted enzyme prodrug therapy of cancer. PMID:19751096

  5. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer

    NASA Astrophysics Data System (ADS)

    Sanghvi, Archit B.; Miller, Kiley P.-H.; Belcher, Angela M.; Schmidt, Christine E.

    2005-06-01

    The goal in biomaterial surface modification is to retain a material's bulk properties while modifying only its surface to possess desired recognition and specificity. Here we develop a unique strategy for surface functionalization of an electrically conductive polymer, chlorine-doped polypyrrole (PPyCl), which has been widely researched for various electronic and biomedical applications. An M13 bacteriophage library was used to screen 109 different 12-mer peptide inserts against PPyCl. A binding phage (ϕT59) was isolated, and its binding stability and specificity to PPyCl was assessed using fluorescence microscopy and titer count analysis. The relative binding strength and mechanism of the corresponding 12-mer peptide and its variants was studied using atomic force microscopy and fluorescamine assays. Further, the T59 peptide was joined to a cell adhesive sequence and used to promote cell attachment on PPyCl. This strategy can be extended to immobilize a variety of molecules to PPyCl for numerous applications. In addition, phage display can be applied to other polymers to develop bioactive materials without altering their bulk properties.

  6. Design, structure and biological activity of beta-turn peptides of CD2 protein for inhibition of T-cell adhesion.

    PubMed

    Jining, Liu; Makagiansar, Irwan; Yusuf-Makagiansar, Helena; Chow, Vincent T K; Siahaan, Teruna J; Jois, Seetharama D S

    2004-07-01

    The interaction between cell-adhesion molecules CD2 and CD58 is critical for an immune response. Modulation or inhibition of these interactions has been shown to be therapeutically useful. Synthetic 12-mer linear and cyclic peptides, and cyclic hexapeptides based on rat CD2 protein, were designed to modulate CD2-CD58 interaction. The synthetic peptides effectively blocked the interaction between CD2-CD58 proteins as demonstrated by antibody binding, E-rosetting and heterotypic adhesion assays. NMR and molecular modeling studies indicated that the synthetic cyclic peptides exhibit beta-turn structure in solution and closely mimic the beta-turn structure of the surface epitopes of the CD2 protein. Docking studies of CD2 peptides and CD58 protein revealed the possible binding sites of the cyclic peptides on CD58 protein. The designed cyclic peptides with beta-turn structure have the ability to modulate the CD2-CD58 interaction.

  7. A randomized phase II trial of personalized peptide vaccine plus low dose estramustine phosphate (EMP) versus standard dose EMP in patients with castration resistant prostate cancer.

    PubMed

    Noguchi, Masanori; Kakuma, Tatsuyuki; Uemura, Hirotsugu; Nasu, Yasutomo; Kumon, Hiromi; Hirao, Yasuhiko; Moriya, Fukuko; Suekane, Shigetaka; Matsuoka, Kei; Komatsu, Nobukazu; Shichijo, Shigeki; Yamada, Akira; Itoh, Kyogo

    2010-07-01

    Personalized peptide vaccination (PPV) combined with chemotherapy could be a novel approach for many cancer patients. In this randomized study, we evaluated the anti-tumor effect and safety of PPV plus low-dose estramustine phosphate (EMP) as compared to standard-dose EMP for HLA-A2- or -A24-positive patients with castration resistant prostate cancer. Patients were randomized into groups receiving either PPV plus low-dose EMP (280 mg/day) or standard-dose EMP (560 mg/day). After disease progression, patients were switched to the opposite regime. The primary end point was progression-free survival (PFS). We randomly assigned 28 patients to receive PPV plus low-dose EMP and 29 patients to receive standard-dose EMP. Nineteen events in the PPV group and 20 events in the EMP group occurred during the first treatment. Median PFS for the first treatment was 8.5 months in the PPV group and 2.8 months in the EMP group with a hazard ratio (HR) of 0.28 (95% CI, 0.14-0.61; log-rank P = 0.0012), while there was no difference for median PFS for the second treatment. The HR for overall survival was 0.3 (95% CI, 0.1-0.91) in favor of the PPV plus low-dose EMP group (log-rank, P = 0.0328). The PPV plus low-dose EMP was well tolerated without major adverse effects and with increased levels of IgG and cytotoxic-T cell responses to the vaccinated peptides. PPV plus low-dose EMP was associated with an improvement in PSA-based PFS as compared to the standard-dose EMP alone.

  8. Structural constraints for the binding of short peptides to claudin-4 revealed by surface plasmon resonance.

    PubMed

    Ling, Jun; Liao, Hailing; Clark, Robin; Wong, Mandy Sze Man; Lo, David D

    2008-11-01

    Claudin family transmembrane proteins play an important role in tight junction structure and function in epithelial cells. Among the 24 isoforms identified in mice and humans, claudin-4 and -3 serve as the receptor for Clostridium perfringens enterotoxin (Cpe). The second extracellular loop (Ecl2) of claudin-4 is responsible for the binding to the C-terminal 30 amino acids of Cpe (Cpe30). To define the structural constraints for the claudin-4/Cpe30 interaction, a surface plasmon resonance (SPR) method was developed. GST fusions with claudin-4 revealed that Ecl2 with the downstream transmembrane domain of claudin-4 reconstituted the basic structural requirement for optimal binding activity to Cpe30, with affinity in the nanomolar range. Two 12-mer peptides selected by phage display against claudin-4-transfected CHO cells and a 12-mer Cpe mutant peptide also showed significant affinity for claudin-4 with this SPR assay, suggesting that a short peptide can establish stable contact with Ecl2 with nanomolar affinity. Alignment of these short peptides unveiled a common Ecl2 binding motif: . Whereas the short peptides bound native claudin-4 on transfected CHO cells in pull-down assays, only the larger Cpe30 peptide affected trans-epithelial electrical resistance (TER) in peptide-treated Caco-2BBe monolayers. Importantly, Cpe30 retained its binding to claudin-4 when fused to the C terminus of influenza hemagglutinin, demonstrating that its binding activity can be maintained in a different biochemical context. These studies may help in the design of assays for membrane receptor interactions with soluble ligands, and in applying new targeting ligands to delivering attached "cargo" proteins. PMID:18782762

  9. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    PubMed

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding.

  10. Identification of a Conserved Linear B-Cell Epitope of Streptococcus dysgalactiae GapC Protein by Screening Phage-Displayed Random Peptide Library

    PubMed Central

    Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Wang, Xintong; Zhu, Zhanbo; Cui, Yudong

    2015-01-01

    The GapC of Streptococcus dysgalactiae (S. dysgalactiae) is a highly conserved surface protein that can induce protective humoral immune response in animals. However, B-cell epitopes on the S. dysgalactiae GapC have not been well identified. In this study, a monoclonal antibody (mAb5B7) against the GapC1-150 protein was prepared. After passive transfer, mAb5B7 could partially protect mice against S. dysgalactiae infection. Eleven positive phage clones recognized by mAb5B7 were identified by screening phage-displayed random 12-peptide library, most of which matched the consensus motif DTTQGRFD. The motif sequence exactly matches amino acids 48-55 of the S. dysgalactiae GapC protein. In addition, the motif 48DTTQGRFD55 shows high homology among various streptococcus species. Site-directed mutagenic analysis further confirmed that residues D48, T50, Q51, G52 and F54 formed the core motif of 48DTTQGRFD55. This motif was the minimal determinant of the B-cell epitope recognized by the mAb5B7. As expected, epitope-peptide evoked protective immune response against S. dysgalactiae infection in immunized mice. Taken together, this identified conserved B-cell epitope within S. dysgalactiae GapC could provide very valuable insights for vaccine design against S. dysgalactiae infection. PMID:26121648

  11. A biologically active peptide mimetic of N-acetylgalactosamine/galactose

    PubMed Central

    Eggink, Laura L; Hoober, J Kenneth

    2009-01-01

    Background Glycosylated proteins and lipids are important regulatory factors whose functions can be altered by addition or removal of sugars to the glycan structure. The glycans are recognized by sugar-binding lectins that serve as receptors on the surface of many cells and facilitate initiation of an intracellular signal that changes the properties of the cells. We identified a peptide that mimics the ligand of an N-acetylgalactosamine (GalNAc)-specific lectin and asked whether the peptide would express specific biological activity. Findings A 12-mer phage display library was screened with a GalNAc-specific lectin to identify an amino acid sequence that binds to the lectin. Phage particles that were eluted from the lectin with free GalNAc were considered to have been bound to a GalNAc-binding site. Peptides were synthesized with the selected sequence as a quadravalent structure to facilitate receptor crosslinking. Treatment of human peripheral blood mononuclear cells for 24 h with the peptide stimulated secretion of interleukin-8 (IL-8) but not of IL-1β, IL-6, IL-10, or tumor necrosis factor-α (TNF-α). The secretion of IL-21 was stimulated as strongly with the peptide as with interferon-γ. Conclusion The data indicate that the quadravalent peptide has biological activity with a degree of specificity. These effects occurred at concentrations in the nanomolar range, in contrast to free sugars that generally bind to proteins in the micro- to millimolar range. PMID:19284521

  12. Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial

    PubMed Central

    Ballard, Kevin D; Bruno, Richard S; Seip, Richard L; Quann, Erin E; Volk, Brittanie M; Freidenreich, Daniel J; Kawiecki, Diana M; Kupchak, Brian R; Chung, Min-Yu; Kraemer, William J; Volek, Jeff S

    2009-01-01

    Background Whey protein is a potential source of bioactive peptides. Based on findings from in vitro experiments indicating a novel whey derived peptide (NOP-47) increased endothelial nitric oxide synthesis, we tested its effects on vascular function in humans. Methods A randomized, placebo-controlled, crossover study design was used. Healthy men (n = 10) and women (n = 10) (25 ± 5 y, BMI = 24.3 ± 2.3 kg/m2) participated in two vascular testing days each preceded by 2 wk of supplementation with a single dose of 5 g/day of a novel whey-derived peptide (NOP-47) or placebo. There was a 2 wk washout period between trials. After 2 wk of supplementation, vascular function in the forearm and circulating oxidative stress and inflammatory related biomarkers were measured serially for 2 h after ingestion of 5 g of NOP-47 or placebo. Macrovascular and microvascular function were assessed using brachial artery flow mediated dilation (FMD) and venous occlusion strain gauge plethysmography. Results Baseline peak FMD was not different for Placebo (7.7%) and NOP-47 (7.8%). Placebo had no effect on FMD at 30, 60, and 90 min post-ingestion (7.5%, 7.2%, and 7.6%, respectively) whereas NOP-47 significantly improved FMD responses at these respective postprandial time points compared to baseline (8.9%, 9.9%, and 9.0%; P < 0.0001 for time × trial interaction). Baseline reactive hyperemia forearm blood flow was not different for placebo (27.2 ± 7.2%/min) and NOP-47 (27.3 ± 7.6%/min). Hyperemia blood flow measured 120 min post-ingestion (27.2 ± 7.8%/min) was unaffected by placebo whereas NOP-47 significantly increased hyperemia compared to baseline (29.9 ± 7.8%/min; P = 0.008 for time × trial interaction). Plasma myeloperoxidase was increased transiently by both NOP-47 and placebo, but there were no changes in markers inflammation. Plasma total nitrites/nitrates significantly decreased over the 2 hr post-ingestion period and were lower at 120 min after placebo (-25%) compared to

  13. Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone.

    PubMed

    Sawada, Tomohisa; Gellman, Samuel H

    2011-05-18

    Artificial mimicry of α-helices offers a basis for development of protein-protein interaction antagonists. Here we report a new type of unnatural peptidic backbone, containing α-, β-, and γ-amino acid residues in an αγααβα repeat pattern, for this purpose. This unnatural hexad has the same number of backbone atoms as a heptad of α residues. Two-dimensional NMR data clearly establish the formation of an α-helix-like conformation in aqueous solution. The helix formed by our 12-mer α/β/γ-peptide is considerably more stable than the α-helix formed by an analogous 14-mer α-peptide, presumably because of the preorganized β and γ residues employed.

  14. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries and alanine scanning.

    PubMed

    Kokoszka, Malgorzata E; Kay, Brian K

    2015-01-01

    One avenue for inferring the function of a protein is to learn what proteins it may bind to in the cell. Among the various methodologies, one way for doing so is to affinity select peptide ligands from a phage-displayed combinatorial peptide library and then to examine if the proteins that carry such peptide sequences interact with the target protein in the cell. With the protocols described in this chapter, a laboratory with skills in microbiology, molecular biology, and protein biochemistry can readily identify peptides in the library that bind selectively, and with micromolar affinity, to a given target protein on the time scale of 2 months. To illustrate this approach, we use a library of bacteriophage M13 particles, which display 12-mer combinatorial peptides, to affinity select different peptide ligands for two different targets, the SH3 domain of the human Lyn protein tyrosine kinase and a segment of the yeast serine/threonine protein kinase Cbk1. The binding properties of the selected peptide ligands are then dissected by sequence alignment, Kunkel mutagenesis, and alanine scanning. Finally, the peptide ligands can be used to predict cellular interacting proteins and serve as the starting point for drug discovery. PMID:25616333

  15. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials.

    PubMed

    Su, Bin; Sheng, Hui; Zhang, Manna; Bu, Le; Yang, Peng; Li, Liang; Li, Fei; Sheng, Chunjun; Han, Yuqi; Qu, Shen; Wang, Jiying

    2015-02-01

    Traditional anti-diabetic drugs may have negative or positive effects on risk of bone fractures. Yet the relationship between the new class glucagon-like peptide-1 receptor agonists (GLP-1 RA) and risk of bone fractures has not been established. We performed a meta-analysis including randomized controlled trials (RCT) to study the risk of bone fractures associated with liraglutide or exenatide, compared to placebo or other active drugs. We searched MEDLINE, EMBASE, and clinical trial registration websites for published or unpublished RCTs comparing the effects of liraglutide or exenatide with comparators. Only studies with disclosed bone fracture data were included. Separate pooled analysis was performed for liraglutide or exenatide, respectively, by calculating Mantel-Haenszel odds ratio (MH-OR). 16 RCTs were identified including a total of 11,206 patients. Liraglutide treatment was associated with a significant reduced risk of incident bone fractures (MH-OR=0.38, 95% CI 0.17-0.87); however, exenatide treatment was associated with an elevated risk of incident bone fractures (MH-OR=2.09, 95% CI 1.03-4.21). Publication bias and heterogeneity between studies were not observed. Our study demonstrated a divergent risk of bone fractures associated with different GLP-1 RA treatments. The current findings need to be confirmed by future well-designed prospective or RCT studies.

  16. How Large is an [alpha]-Helix? Studies of the Radii of Gyration of Helical Peptides by Small-angle X-ray Scattering and Molecular Dynamics

    SciTech Connect

    Zagrovic, Bojan; Jayachandran, Guha; Millett, Ian S.; Doniach, Sebastian; Pande, Vijay S.

    2010-11-30

    Using synchrotron radiation and the small-angle X-ray scattering technique we have measured the radii of gyration of a series of alanine-based alpha-helix-forming peptides of the composition Ace-(AAKAA)(n)-GY-NH(2), n=2-7, in aqueous solvent at 10(+/-1) degrees C. In contrast to other techniques typically used to study alpha-helices in isolation (such as nuclear magnetic resonance and circular dichroism), small-angle X-ray scattering reports on the global structure of a molecule and, as such, provides complementary information to these other, more sequence-local measuring techniques. The radii of gyration that we measure are, except for the 12-mer, lower than the radii of gyration of ideal alpha-helices or helices with frayed ends of the equivalent sequence-length. For example, the measured radius of gyration of the 37-mer is 14.2(+/-0.6)A, which is to be compared with the radius of gyration of an ideal 37-mer alpha-helix of 17.6A. Attempts are made to analyze the origin of this discrepancy in terms of the analytical Zimm-Bragg-Nagai (ZBN) theory, as well as distributed computing explicit solvent molecular dynamics simulations using two variants of the AMBER force-field. The ZBN theory, which treats helices as cylinders connected by random walk segments, predicts markedly larger radii of gyration than those measured. This is true even when the persistence length of the random walk parts is taken to be extremely short (about one residue). Similarly, the molecular dynamics simulations, at the level of sampling available to us, give inaccurate values of the radii of gyration of the molecules (by overestimating them by around 25% for longer peptides) and/or their helical content. We conclude that even at the short sequences examined here (< or =37 amino acid residues), these alpha-helical peptides behave as fluctuating semi-broken rods rather than straight cylinders with frayed ends.

  17. The Synthetic Plasmodium falciparum Circumsporozoite Peptide PfCS102 as a Malaria Vaccine Candidate: A Randomized Controlled Phase I Trial

    PubMed Central

    Audran, Régine; Lurati-Ruiz, Floriana; Genton, Blaise; Blythman, Hildur E.; Ofori-Anyinam, Opokua; Reymond, Christophe; Corradin, Giampietro; Spertini, François

    2009-01-01

    Background Fully efficient vaccines against malaria pre-erythrocytic stage are still lacking. The objective of this dose/adjuvant-finding study was to evaluate the safety, reactogenicity and immunogenicity of a vaccine candidate based on a peptide spanning the C-terminal region of Plasmodium falciparum circumsporozoite protein (PfCS102) in malaria naive adults. Methodology and Principal Findings Thirty-six healthy malaria-naive adults were randomly distributed into three dose blocks (10, 30 and 100 µg) and vaccinated with PfCS102 in combination with either Montanide ISA 720 or GSK proprietary Adjuvant System AS02A at days 0, 60, and 180. Primary end-point (safety and reactogenicity) was based on the frequency of adverse events (AE) and of abnormal biological safety tests; secondary-end point (immunogenicity) on P. falciparum specific cell-mediated immunity and antibody response before and after immunization. The two adjuvant formulations were well tolerated and their safety profile was good. Most AEs were local and, when systemic, involved mainly fatigue and headache. Half the volunteers in AS02A groups experienced severe AEs (mainly erythema). After the third injection, 34 of 35 volunteers developed anti-PfCS102 and anti-sporozoite antibodies, and 28 of 35 demonstrated T-cell proliferative responses and IFN-γ production. Five of 22 HLA-A2 and HLA-A3 volunteers displayed PfCS102 specific IFN-γ secreting CD8+ T cell responses. Responses were only marginally boosted after the 3rd vaccination and remained stable for 6 months. For both adjuvants, the dose of 10 µg was less immunogenic in comparison to 30 and 100 µg that induced similar responses. AS02A formulations with 30 µg or 100 µg PfCS102 induced about 10-folds higher antibody and IFN-γ responses than Montanide formulations. Conclusions/Significance PfCS102 peptide was safe and highly immunogenic, allowing the design of more advanced trials to test its potential for protection. Two or three immunizations

  18. Selection of novel peptide mimics of the GD2 ganglioside from a constrained phage-displayed peptide library.

    PubMed

    Horwacik, Irena; Czaplicki, Dominik; Talarek, Katarzyna; Kowalczyk, Aleksandra; Bolesta, Elzbieta; Kozbor, Danuta; Rokita, Hanna

    2007-05-01

    Aberrant glycosylation is a universal feature of cancer cells. There are quantitative and qualitative changes in expression of gangliosides observed in tumors of a neuroectodermal origin such as neuroblastoma, melanoma and astrocytoma. The presence of large amounts of GD2 ganglioside on neuroblastoma cells, as compared to normal cells, opens the possibilities to use the tumor-associated carbohydrate antigen in diagnosis and immunotherapeutic approaches. In the quest for immunogens potentially capable of eliciting anti-GD2 ganglioside immune responses, we performed affinity purification of phage-displayed peptides from the LX-8 library (12-mer containing disulphide bridge). The library was screened with the biotinylated anti-GD2 ganglioside 14G2a mAb monoclonal antibody. Our goal was to isolate and characterize peptide mimics of GD2 ganglioside. Numerous individual phage clones that bound 14G2a mAb were identified with the application of immunoblotting technique in the phage pools yielded from the pannings. The phage-borne peptides were tested for their anti-GD2 ganglioside antibody binding ability using ELISA. Among these clones five different phage-displayed peptide sequences were identified. Moreover, we showed that the secondary structure of the peptides, stabilized by the disulfide bridging between cysteine residues at positions 2 and 11, was crucial for the binding of the peptides to 14G2a mAb. In a separate set of experiments, we observed a competition of the peptides, expressed on phages as well as in their synthetic form, with the nominal antigen GD2 ganglioside expressed on IMR-32 neuroblastoma cells for binding to 14G2a mAb. Based on the obtained results we concluded that all of these 5 peptides were mimics of the GD2 ganglioside. PMID:17390090

  19. Identification, design and synthesis of tubulin-derived peptides as novel hyaluronan mimetic ligands for the receptor for hyaluronan-mediated motility (RHAMM/HMMR).

    PubMed

    Esguerra, Kenneth Virgel N; Tolg, Cornelia; Akentieva, Natalia; Price, Matthew; Cho, Choi-Fong; Lewis, John D; McCarthy, James B; Turley, Eva A; Luyt, Leonard G

    2015-12-01

    Fragments of the extracellular matrix component hyaluronan (HA) promote tissue inflammation, fibrosis and tumor progression. HA fragments act through HA receptors including CD44, LYVE1, TLR2, 4 and the receptor for hyaluronan mediated motility (RHAMM/HMMR). RHAMM is a multifunctional protein with both intracellular and extracellular roles in cell motility and proliferation. Extracellular RHAMM binds directly to HA fragments while intracellular RHAMM binds directly to ERK1 and tubulin. Both HA and regions of tubulin (s-tubulin) are anionic and bind to basic amino acid-rich regions in partner proteins, such as in HA and tubulin binding regions of RHAMM. We used this as a rationale for developing bioinformatics and SPR (surface plasmon resonance) based screening to identify high affinity anionic RHAMM peptide ligands. A library of 12-mer peptides was prepared based on the carboxyl terminal tail sequence of s-tubulin isoforms and assayed for their ability to bind to the HA/tubulin binding region of recombinant RHAMM using SPR. This approach resulted in the isolation of three 12-mer peptides with nanomolar affinity for RHAMM. These peptides bound selectively to RHAMM but not to CD44 or TLR2,4 and blocked RHAMM:HA interactions. Furthermore, fluorescein-peptide uptake by PC3MLN4 prostate cancer cells was blocked by RHAMM mAb but not by CD44 mAb. These peptides also reduced the ability of prostate cancer cells to degrade collagen type I. The selectivity of these novel HA peptide mimics for RHAMM suggest their potential for development as HA mimetic imaging and therapeutic agents for HA-promoted disease.

  20. Effects of Green Tea Extract on Insulin Resistance and Glucagon-Like Peptide 1 in Patients with Type 2 Diabetes and Lipid Abnormalities: A Randomized, Double-Blinded, and Placebo-Controlled Trial

    PubMed Central

    Liu, Chia-Yu; Huang, Chien-Jung; Huang, Lin-Huang; Chen, I-Ju; Chiu, Jung-Peng; Hsu, Chung-Hua

    2014-01-01

    The aim of this study is to investigate the effect of green tea extract on patients with type 2 diabetes mellitus and lipid abnormalities on glycemic and lipid profiles, and hormone peptides by a double-blinded, randomized and placebo-controlled clinical trial. This trial enrolled 92 subjects with type 2 diabetes mellitus and lipid abnormalities randomized into 2 arms, each arm comprising 46 participants. Of the participants, 39 in therapeutic arm took 500 mg green tea extract, three times a day, while 38 in control arm took cellulose with the same dose and frequency to complete the 16-week study. Anthropometrics measurements, glycemic and lipid profiles, safety parameters, and obesity-related hormone peptides were analyzed at screening and after 16-week course. Within-group comparisons showed that green tea extract caused a significant decrease in triglyceride and homeostasis model assessment of insulin resistance index after 16 weeks. Green tea extract also increased significantly high density lipoprotein cholesterol. The HOMA-IR index decreased from 5.4±3.9 to 3.5±2.0 in therapeutic arm only. Adiponectin, apolipoprotein A1, and apolipoprotein B100 increased significantly in both arms, but only glucagon-like peptide 1 increased in the therapeutic arm. However, only decreasing trend in triglyceride was found in between-group comparison. Our study suggested that green tea extract significantly improved insulin resistance and increased glucagon-like peptide 1 only in within-group comparison. The potential effects of green tea extract on insulin resistance and glucagon-like peptide 1 warrant further investigation. Trial Registration ClinicalTrials.gov NCT01360567 PMID:24614112

  1. Glucagon-like peptide-1 receptor agonists versus insulin glargine for type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Li, Wei-Xin; Gou, Jian-Feng; Tian, Jin-Hui; Yan, Xiang; Yang, Lin

    2010-01-01

    Background: Glucagon-like peptide-1 (GLP-1) receptor agonists are a new class of hypoglycemic drugs, including exenatide, liraglutide, albiglutide, lixisenatide, and taspoglutide. Insulin glargine is a standard agent used to supplement basal insulin in type 2 diabetes mellitus (T2DM). Objective: The aim of this study was to review the efficacy and safety profiles of GLP-1 receptor agonists versus insulin glargine in type 2 diabetic patients who have not achieved treatment goals with oral hypoglycemic agents. Methods: The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, and the database of ongoing trials were searched from inception through April 2010. Additional data were sought from relevant Web sites, the American Diabetes Association, reference lists of included trials and related (systematic) reviews, and industry. Randomized controlled trials (RCTs) were selected if they were ≥3 months in duration, compared GLP-1 receptor agonists with insulin glargine in patients with T2DM, and included ≥1 of the following outcomes: mortality, complications of T2DM, glycemie control, weight, lipids, blood pressure, adverse effects, and health-related quality of life. Quasirandomized controlled trials were excluded. The quality of the eligible studies was assessed on the basis of the following aspects: randomization procedure, allocation concealment, blinding, incomplete outcome data (intent-to-treat [ITT] analysis), selective outcome reporting, and publication bias. Results: A total of 410 citations were retrieved; 5 multicenter RCTs that met the inclusion criteria were identified. They were all open-label designs with an insulin glargine arm, predefined outcomes reported, and ITT analysis. One trial had an unclear randomization procedure and allocation concealment. Publication bias was not able to be determined. No data wete found with regard to mortality or diabetes-associated complications, and few data were found on quality of life. The results of

  2. Peptide nanotubes.

    PubMed

    Hamley, Ian W

    2014-07-01

    The self-assembly of different classes of peptide, including cyclic peptides, amyloid peptides and surfactant-like peptides into nanotube structures is reviewed. The modes of self-assembly are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.

  3. Peptide Ligands That Bind Selectively to Spores of Bacillus subtilis and Closely Related Species

    PubMed Central

    Knurr, Jordan; Benedek, Orsolya; Heslop, Jennifer; Vinson, Robert B.; Boydston, Jeremy A.; McAndrew, Joanne; Kearney, John F.; Turnbough, Charles L.

    2003-01-01

    As part of an effort to develop detectors for selected species of bacterial spores, we screened phage display peptide libraries for 7- and 12-mer peptides that bind tightly to spores of Bacillus subtilis. All of the peptides isolated contained the sequence Asn-His-Phe-Leu at the amino terminus and exhibited clear preferences for other amino acids, especially Pro, at positions 5 to 7. We demonstrated that the sequence Asn-His-Phe-Leu-Pro (but not Asn-His-Phe-Leu) was sufficient for tight spore binding. We observed equal 7-mer peptide binding to spores of B. subtilis and its most closely related species, Bacillus amyloliquefaciens, and slightly weaker binding to spores of the closely related species Bacillus globigii. These three species comprise one branch on the Bacillus phylogenetic tree. We did not detect peptide binding to spores of several Bacillus species located on adjacent and nearby branches of the phylogenetic tree nor to vegetative cells of B. subtilis. The sequence Asn-His-Phe-Leu-Pro was used to identify B. subtilis proteins that may employ this peptide for docking to the outer surface of the forespore during spore coat assembly and/or maturation. One such protein, SpsC, appears to be involved in the synthesis of polysaccharide on the spore coat. SpsC contains the Asn-His-Phe-Leu-Pro sequence at positions 6 to 10, and the first five residues of SpsC apparently must be removed to allow spore binding. Finally, we discuss the use of peptide ligands for bacterial detection and the use of short peptide sequences for targeting proteins during spore formation. PMID:14602648

  4. T cell epitopes of the major fraction of rye grass Lolium perenne (Lol p I) defined using overlapping peptides in vitro and in vivo. I. Isoallergen clone1A.

    PubMed

    Bungy Poor Fard, G A; Latchman, Y; Rodda, S; Geysen, M; Roitt, I; Brostoff, J

    1993-10-01

    One hundred and fifteen overlapping synthetic peptides spanning the entire sequence of the iso-allergen clone1A of Lol p I from rye grass Lolium perenne were synthesized by the multi-pin technique. The peptides were overlapping 12mers, offset by two residues and overlapping by 10 residues. Sets of six adjacent overlapping peptides (except pool-1, 15, 20) were pooled and were used in vitro and in vivo to map the T cell epitopes on Lol p I. Six atopics who were skin test and RAST positive to rye grass showed T cell responses to L. perenne extract (LPE) and its major fraction (Lol p I). Five out of six showed T cell responses in vitro to peptide pool-17, while five non-atopics did not respond to any of the peptide pools. By testing the individual peptides of pool-17, we have located the T cell epitope on Lol p I. Interestingly, when we tested pool-17 and its single peptides in vivo by intradermal skin testing we found in one patient a typical DTH after 24-48 h to pool-17 and its peptides (peptides 3 and 4) which exactly matched the in vitro responses. By defining the T cell epitopes in this way a greater understanding of the allergic response to pollen will be obtained, and a more effective and less dangerous vaccine may be possible for treating patients with hay fever.

  5. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  6. Enhancement of intracellular concentration and biological activity of PNA after conjugation with a cell-penetrating synthetic model peptide.

    PubMed

    Oehlke, Johannes; Wallukat, Gerd; Wolf, Yvonne; Ehrlich, Angelika; Wiesner, Burkhard; Berger, Hartmut; Bienert, Michael

    2004-07-01

    In order to evaluate the ability of the cell-penetrating alpha-helical amphipathic model peptide KLALKLALKALKAALKLA-NH(2) (MAP) to deliver peptide nucleic acids (PNAs) into mammalian cells, MAP was covalently linked to the 12-mer PNA 5'-GGAGCAGGAAAG-3' directed against the mRNA of the nociceptin/orphanin FQ receptor. The cellular uptake of both the naked PNA and its MAP-conjugate was studied by means of capillary electrophoresis combined with laser-induced fluorescence detection, confocal laser scanning microscopy and fluorescence-activated cell sorting. Incubation with the fluorescein-labelled PNA-peptide conjugate led to three- and eightfold higher intracellular concentrations in neonatal rat cardiomyocytes and CHO cells, respectively, than found after exposure of the cells to the naked PNA. Correspondingly, pretreatment of spontaneously-beating neonatal rat cardiomyocytes with the PNA-peptide conjugate and the naked PNA slowed down the positive chronotropic effect elicited by the neuropeptide nociceptin by 10- and twofold, respectively. The main reasons for the higher bioavailability of the PNA-peptide conjugate were found to be a more rapid cellular uptake in combination with a lowered re-export and resistance against influences of serum.

  7. Manipulation of unfolding-induced protein aggregation by peptides selected for aggregate-binding ability through phage display library screening.

    PubMed

    Kundu, Bishwajit; Shukla, Anshuman; Guptasarma, Purnananda

    2002-03-01

    A phage-displayed library of peptides (12-mer) was screened for the ability to bind to thermally aggregated bovine carbonic anhydrase (BCA), with a view toward examining whether peptides possessing this ability might bind to partially structured intermediates on the protein's unfolding pathway and, therefore, constitute useful tools for manipulation of the kinetic partitioning of molecules between the unfolded and aggregated states. Two peptides [N-HPSTMGLRTMHP-C and N-TPSAWKTALVKA-C] were identified and tested. While neither showed thermal aggregation autonomously, both peptides individually elicited remarkable increases in the levels of thermal aggregation of BCA. A possible explanation is that both peptides bind to surfaces on molten BCA that are not directly involved in aggregation. Such binding could slow down interconversions between folded and unfolded states and stabilize aggregation-prone intermediate(s) to make them more prone to aggregation, while failing to achieve any steric prevention of aggregation. The approach has the potential of yielding useful aggregation-aiding/inhibiting agents, and may provide clues to whether amorphous aggregates are "immobilized" forms of folding intermediates. PMID:11866450

  8. Randomized Phase II Study of Docetaxel plus Personalized Peptide Vaccination versus Docetaxel plus Placebo for Patients with Previously Treated Advanced Wild Type EGFR Non-Small-Cell Lung Cancer.

    PubMed

    Takayama, Koichi; Sugawara, Shunichi; Saijo, Yasuo; Maemondo, Makoto; Sato, Atsushi; Takamori, Shinzo; Harada, Taishi; Sasada, Tetsuro; Kakuma, Tatsuyuki; Kishimoto, Junji; Yamada, Akira; Noguchi, Masanori; Itoh, Kyogo; Nakanishi, Yoichi

    2016-01-01

    Objectives. To evaluate the efficacy and safety of personalized peptide vaccination (PPV) combined with chemotherapy for patients with previously treated advanced non-small-cell lung cancer (NSCLC). Patients and Methods. Previously treated PS0-1 patients with IIIB/IV EGFR (epidermal growth factor receptor) wild genotype NSCLC were randomly assigned to docetaxel (60 mg/m(2) on Day 1) plus PPV based on preexisting host immunity or docetaxel plus placebo. Docetaxel administration was repeated every 3 weeks until disease progression. Personalized peptides or placebo was injected subcutaneously weekly in the first 8 weeks and biweekly in subsequent 16 weeks. The primary efficacy endpoint was progression-free survival (PFS). Results. PPV related toxicity was grade 2 or less skin reaction. The median PFS for placebo arm and PPV arm was 52 days and 59 days, respectively. There was no significant difference between two arms by log-rank test (p = 0.42). Interestingly, PFS and overall survival (OS) in humoral immunological responder were significantly longer than those in nonresponder. Conclusion. PPV did not improve the survival in combination with docetaxel for previously treated advanced NSCLC. However, PPV may be efficacious for the humoral immunological responders and a further clinical investigation is needed. PMID:27274999

  9. Peptide mimotopes of malondialdehyde epitopes for clinical applications in cardiovascular disease.

    PubMed

    Amir, Shahzada; Hartvigsen, Karsten; Gonen, Ayelet; Leibundgut, Gregor; Que, Xuchu; Jensen-Jarolim, Erika; Wagner, Oswald; Tsimikas, Sotirios; Witztum, Joseph L; Binder, Christoph J

    2012-07-01

    Autoantibodies specific for malondialdehyde-modified LDL (MDA-LDL) represent potential biomarkers to predict cardiovascular risk. However, MDA-LDL is a high variability antigen with limited reproducibility. To identify peptide mimotopes of MDA-LDL, phage display libraries were screened with the MDA-LDL-specific IgM monoclonal Ab LRO4, and the specificity and antigenic properties of MDA mimotopes were assessed in vitro and in vivo. We identified one 12-mer linear (P1) and one 7-mer cyclic (P2) peptide carrying a consensus sequence, which bound specifically to murine and human anti-MDA monoclonal Abs. Furthermore, MDA mimotopes were found to mimic MDA epitopes on the surface of apoptotic cells. Immunization of mice with P2 resulted in the induction of MDA-LDL-specific Abs, which strongly immunostained human atherosclerotic lesions. We detected IgG and IgM autoAbs to both MDA mimotopes in sera of healthy subjects and patients with myocardial infarction and stable angina pectoris undergoing percutaneous coronary intervention, and the titers of autoAbs correlated significantly with respective Ab titers against MDA-LDL. In conclusion, we identified specific peptides that are immunological mimotopes of MDA. These mimotopes can serve as standardized and reproducible antigens that will be useful for diagnostic and therapeutic applications in cardiovascular disease. PMID:22508944

  10. In vitro evaluation of the L-peptide modified magnetic lipid nanoparticles as targeted magnetic resonance imaging contrast agent for the nasopharyngeal cancer.

    PubMed

    Chen, Yung-Chu; Min, Chia-Na; Wu, Han-Chung; Lin, Chin-Tarng; Hsieh, Wen-Yuan

    2013-11-01

    The purpose of this study was to analyze the encapsulation of superparamagnetic iron oxide nanoparticles (SPION) by the lipid nanoparticle conjugated with the 12-mer peptides (RLLDTNRPLLPY, L-peptide), and the delivery of this complex into living cells. The lipid nanoparticles employed in this work were highly hydrophilic, stable, and contained poly(ethylene-glycol) for conjugation to the bioactive L-peptide. The particle sizes of two different magnetic lipid nanoparticles, L-peptide modified (LML) and non-L-peptide modified (ML), were both around 170 nm with a narrow range of size disparity. The transversal relaxivity, r2, for both LML and ML nanoparticles were found to be significantly higher than the longitudinal relaxivity r1 (r2/r1 > 20). The in vitro tumor cell targeting efficacy of the LML nanoparticles were evaluated and compared to the ML nanoparticles, upon observing cellular uptake of magnetic lipid nanoparticles by the nasopharyngeal carcinoma cells, which express cell surface specific protein for the L-peptide binding revealed. In the Prussian blue staining experiment, cells incubated with LML nanoparticles indicated much higher intracellular iron density than cells incubated with only the ML and SPION nanoparticles. In addition, the MTT assay showed the negligible cell cytotoxicity for LML, ML and SPION nanoparticles. The MR imaging studies demonstrate the better T2-weighted images for the LML-nanoparticle-loaded nasopharyngeal carcinoma cells than the ML- and SPION-loaded cells.

  11. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides.

    PubMed

    Tran, Thanh Thuy; Nguyen, Phuong H; Derreumaux, Philippe

    2016-05-28

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16-22 and Aβ37-42 of the full length Aβ1-42 Alzheimer's peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16-22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16-22 and the dimer and trimer of Aβ37-42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16-22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37-42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases. PMID:27250331

  12. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides

    NASA Astrophysics Data System (ADS)

    Tran, Thanh Thuy; Nguyen, Phuong H.; Derreumaux, Philippe

    2016-05-01

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16-22 and Aβ37-42 of the full length Aβ1-42 Alzheimer's peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16-22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16-22 and the dimer and trimer of Aβ37-42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16-22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37-42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  13. Discovery and application of peptides that bind to proteins and solid state inorganic materials

    NASA Astrophysics Data System (ADS)

    Stearns, Linda A.

    protein, peptides with low-nanomolar affinity were isolated from a combinatorial library of one trillion distinct 12-mer peptide sequences by using UV light to covalently crosslink the peptides to a photoreactive arm that was displayed on the protein surface. The best peptide isolated from this screen exhibited a binding affinity constant (Kd) of 3 nM, which is equivalent to some of the best peptides isolated after many rounds of traditional bead-based selection. The approach itself is general and could be applied to many different types of problems in molecular biology.

  14. A peptide mimic blocks the cross-reaction of anti-DNA antibodies with glomerular antigens.

    PubMed

    Xia, Y; Eryilmaz, E; Der, E; Pawar, R D; Guo, X; Cowburn, D; Putterman, C

    2016-03-01

    Anti-DNA antibodies play a pivotal role in the pathogenesis of lupus nephritis by cross-reacting with renal antigens. Previously, we demonstrated that the binding affinity of anti-DNA antibodies to self-antigens is isotype-dependent. Furthermore, significant variability in renal pathogenicity was seen among a panel of anti-DNA isotypes [derived from a single murine immunoglobulin (Ig)G3 monoclonal antibody, PL9-11] that share identical variable regions. In this study, we sought to select peptide mimics that effectively inhibit the binding of all murine and human anti-DNA IgG isotypes to glomerular antigens. The PL9-11 panel of IgG anti-DNA antibodies (IgG1, IgG2a, IgG2b and IgG3) was used for screening a 12-mer phage display library. Binding affinity was determined by surface plasmon resonance. Enzyme-linked immunosorbent assay (ELISA), flow cytometry and glomerular binding assays were used for the assessment of peptide inhibition of antibody binding to nuclear and kidney antigens. We identified a 12 amino acid peptide (ALWPPNLHAWVP, or 'ALW') which binds to all PL9-11 IgG isotypes. Preincubation with the ALW peptide reduced the binding of the PL9-11 anti-DNA antibodies to DNA, laminin, mesangial cells and isolated glomeruli significantly. Furthermore, we confirmed the specificity of the amino acid sequence in the binding of ALW to anti-DNA antibodies by alanine scanning. Finally, ALW inhibited the binding of murine and human lupus sera to dsDNA and glomeruli significantly. In conclusion, by inhibiting the binding of polyclonal anti-DNA antibodies to autoantigens in vivo, the ALW peptide (or its derivatives) may potentially be a useful approach to block anti-DNA antibody binding to renal tissue.

  15. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  16. Synthetic peptides.

    PubMed

    Francis, M J

    1996-01-01

    Efforts to produce more stable and defined vaccines have concentrated on studying, in detail, the immune response to many infectious diseases in order to identify the antigenic sites on the pathogens that are involved in stimulating protective immumty. Armed with this knowledge, it is possible to mimic such sites by producing short chains of amino acids (peptides) and to use these as the basis for novel vaccines. The earliest documented work on peptide immunization is actually for a plant virus, tobacco mosaic virus. In 1963, Anderer (1) demonstrated that rabbit antibodies to an isolated hexapeptide fragment from the virus-coat protein coupled to bovine serum albumm would neutralize the infectious vn-us in culture. Two years later, he used a synthetically produced copy of the same peptide to confirm this observation. This was pioneering work, and it was over 10 years before the next example of a peptide that elicited antivirus antibody appeared following work by Sela and his colleagues (2) on a virus, MS2 bacteriophage, which infects bacteria. The emergence of more accessible techniques for sequencing proteins in 1977, coupled with the ability to synthesize readily peptides already developed in 1963, heralded a decade of intensive research into experimental peptide vaccines. The first demonstration that peptides could elicit protective immunity in vivo, in addition to neutralizing activity in vitro, was obtained using a peptide from the VP1 coat protein of foot-and-mouth disease virus (FMDV) in 1982, with the guinea pig as a laboratory animal model (3, 4). PMID:21359696

  17. Novel T-cell epitopes of ovalbumin in BALB/c mouse: Potential for peptide-immunotherapy

    SciTech Connect

    Yang, Marie; Mine, Yoshinori

    2009-01-09

    The identification of food allergen T-cell epitopes provides a platform for the development of novel immunotherapies. Despite extensive knowledge of the physicochemical properties of hen ovalbumin (OVA), a major egg allergen, the complete T-cell epitope map of OVA has surprisingly not been defined in the commonly used BALB/c mouse model. In this study, spleen cells obtained from OVA-sensitized mice were incubated in the presence of 12-mer overlapping synthetic peptides, constructed using the SPOTS synthesis method. Proliferative activity was assessed by 72-h in vitro assays with use of the tetrazolium salt WST-1 and led to identification of four mitogenic sequences, i.e., A39R50, S147R158, K263E274, and A329E340. ELISA analyses of interferon (IFN)-{gamma} and interleukin (IL)-4 productions in cell culture supernatants upon stimulation with increasing concentrations of peptides confirmed their immunogenicity. Knowledge of the complete T-cell epitope map of OVA opens the way to a number of experimental investigations, including the exploration of peptide-based immunotherapy.

  18. Antimicrobial peptides.

    PubMed

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  19. Antimicrobial Peptides

    PubMed Central

    Bahar, Ali Adem; Ren, Dacheng

    2013-01-01

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics). PMID:24287494

  20. Antimicrobial peptides.

    PubMed

    Bahar, Ali Adem; Ren, Dacheng

    2013-11-28

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill "superbugs" emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics).

  1. Identification of peptidic inhibitors of the alternative complement pathway based on Staphylococcus aureus SCIN proteins.

    PubMed

    Summers, Brady J; Garcia, Brandon L; Woehl, Jordan L; Ramyar, Kasra X; Yao, Xiaolan; Geisbrecht, Brian V

    2015-10-01

    The complement system plays a central role in a number of human inflammatory diseases, and there is a significant need for development of complement-directed therapies. The discovery of an arsenal of anti-complement proteins secreted by the pathogen Staphylococcus aureus brought with it the potential for harnessing the powerful inhibitory properties of these molecules. One such family of inhibitors, the SCINs, interact with a functional "hot-spot" on the surface of C3b. SCINs not only stabilize an inactive form of the alternative pathway (AP) C3 convertase (C3bBb), but also overlap the C3b binding site of complement factors B and H. Here we determined that a conserved Arg residue in SCINs is critical for function of full-length SCIN proteins. Despite this, we also found SCIN-specific differences in the contributions of other residues found at the C3b contact site, which suggested that a more diverse repertoire of residues might be able to recognize this region of C3b. To investigate this possibility, we conducted a phage display screen aimed at identifying SCIN-competitive 12-mer peptides. In total, seven unique sequences were identified and all exhibited direct C3b binding. A subset of these specifically inhibited the AP in assays of complement function. The mechanism of AP inhibition by these peptides was probed through surface plasmon resonance approaches, which revealed that six of the seven peptides disrupted C3bBb formation by interfering with factor B/C3b binding. To our knowledge this study has identified the first small molecules that retain inhibitory properties of larger staphylococcal immune evasion proteins.

  2. Peptide mimics of peptidoglycan are vaccine candidates and protect mice from infection with Staphylococcus aureus.

    PubMed

    Chen, Yiguo; Liu, Beiyi; Yang, Daqing; Li, Xueli; Wen, Liyan; Zhu, Ping; Fu, Ning

    2011-07-01

    Staphylococcus aureus drug resistance to antibiotics is a serious situation that has drawn greater attention to immunotherapy and prophylaxis. Peptidoglycan (PGN) is a common and conserved component of the cell wall of Gram-positive bacteria such as S. aureus. However, PGN, as a thymus-independent antigen, cannot be considered a vaccine candidate because of its very weak immunogenicity. In this study we have attempted to enhance the immunogenicity of PGN by identifying a PGN peptide mimic sequence that would act as a thymus-dependent antigen. Several peptide sequences were obtained from a phage display peptide library using a mAb against S. aureus PGN, and a 12-mer linear single peptide (Sp-31) and a four-branch multiple antigen peptide (MAP) (MAP-P31) were synthesized. Both Sp-31 and MAP-P31 were shown to bind directly to anti-PGN mAb and a polyclonal antibody against S. aureus. These peptides could also inhibit the binding of PGN to a mAb against PGN. Furthermore, MAP-P31 was able to provoke an effective secondary antibody response in mice to PGN and to cell-wall fragments isolated from S. aureus, Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa by sonication. In addition, the MAP-P31 antiserum showed a potent bactericidal or bacteriostatic activity against S. aureus in the presence and absence of complement in vitro. Importantly, immunization with MAP-P31 significantly prolonged the survival and enhanced bacterial clearance in BALB/c mice challenged with live S. aureus. In addition, the serum IgG-type antibodies against PGN persisted in mice, demonstrating that MAP-P31, as a peptide mimicking epitopes on PGN, provokes an effective secondary or memory antibody response, which can only be induced by a thymus-dependent antigen and which protects against infection with S. aureus. These results suggest that MAP-31 may be a novel vaccine candidate against S. aureus. PMID:21436375

  3. New approach for development of sensitive and environmentally friendly immunoassay for mycotoxin fumonisin B(1) based on using peptide-MBP fusion protein as substitute for coating antigen.

    PubMed

    Xu, Yang; Chen, Bo; He, Qing-hua; Qiu, Yu-Lou; Liu, Xing; He, Zhen-yun; Xiong, Zheng-ping

    2014-08-19

    Here, on the basis of mimotope of small analytes, we demonstrated a new approach for development of sensitive and environmentally friendly immunoassay for toxic small analytes based on the peptide-MBP fusion protein. In this work, using mycotoxin fumonisin B1 (FB1) as a model hapten, phage displayed peptide (mimotope) that binds to the anti-FB1 antibody were selected by biopanning from a 12-mer peptide library. The DNA coding for the sequence of peptide was cloned into Escherichia coli ER2738 as a fusion protein with a maltose binding protein (MBP). The prepared peptide-MBP fusion protein are "clonable" homogeneous and FB1-free products and can be used as a coating antigen in the immunoassay. The half inhibition concentration of the quantitative immunoassay setup with fusion protein (F1-MBP and F15-MBP) was 2.15 ± 0.13 ng/mL and 1.26 ± 0.08 ng/mL, respectively. The fusion protein (F1-MBP) was also used to develop a qualitative Elispot assay with a cutoff level of 2.5 ng/mL, which was 10-fold more sensitive than that measured for chemically synthesized FB1-BSA conjugates based Elispot immunoassay. The peptide-MBP fusion protein not only can be prepared reproducibly as homogeneous and FB1-free products in a large-scale but also can contribute to the development of a highly sensitive immunoassay for analyzing FB1. Furthermore, the novel concept might provide potential applications to a general method for the immunoassay of various toxic small molecules.

  4. C-Peptide Test

    MedlinePlus

    ... C-peptide is a useful marker of insulin production. The following are some purposes of C-peptide ... it nearly impossible to directly evaluate endogenous insulin production. In these cases, C-peptide measurement is a ...

  5. Inorganic binding peptides designed by phage display techniques for biotechnology applications

    NASA Astrophysics Data System (ADS)

    Liao, Chih-Wei

    separation of francolite particles from dolomitic particles within Florida phosphate ore. A phage clone with a 12-mer francolite binding peptide of WSITTYHDRAIV was able to concentrate the content of francolite from 25% to 42% in a bench-top flotation process of mixed minerals. The first system demonstrates an advanced technology application of the biopanning approach for the development of novel biosensors, while the second system demonstrates application of the biotechnology approach to a commodity industry.

  6. Dietary peptides improve wound healing following surgery.

    PubMed

    Roberts, P R; Black, K W; Santamauro, J T; Zaloga, G P

    1998-03-01

    To determine if peptide-based enteral diets improve wound healing when compared to amino acid-based diets, a prospective randomized study was conducted using 38 male Sprague-Dawley rats. Following placement of a standardized abdominal wound, 20 animals were randomized to an isonitrogenous peptide-based (PEP) versus amino acid-based diet (AA) for 10 d. In addition, 18 animals were randomized to an amino acid-based diet supplemented with the peptide carnosine (CARN) or its constituent amino acids (Control). Diets were administered through small bowel feeding tubes. Wound bursting pressure was significantly higher in the PEP animals compared to the AA animals (179+/-9 versus 138+/-12 mmHg; P=0.02). In addition, wound bursting pressure was significantly greater in the CARN animals compared to the Control animals (143+/-10 versus 116+/-8 mmHg; P=0.005). Peptide-based enteral diets improve wound healing when compared to nonpeptide generating amino acid-based diets. We also conclude that the dietary peptide carnosine represents a dietary peptide that improves wound healing when administered as part of a complete enteral formula. This effect on wound healing may be clinically relevant because carnosine is not found in most enteral formulas.

  7. A novel Chk1-binding peptide that enhances genotoxic sensitivity through the cellular redistribution of nuclear Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2016-01-01

    Since checkpoint kinase 1 (Chk1) is an essential factor for cell viability following DNA damage, the inhibition of Chk1 has been a major focus of pharmaceutical development to enhance the sensitivity of tumor cells to chemo- and radiotherapy that damage DNA. However, due to the off-target effects of conventional Chk1-targeting strategies and the toxicity of Chk1 inhibitors, alternative strategies are required to target Chk1. To facilitate such efforts, in this study, we identified a specific Chk1-binding 12-mer peptide from the screening of a phage display library and characterized the peptide in terms of cellular cytotoxicity, and in terms of its effect on Chk1 activity and sensitivity to genotoxic agents. This peptide, named N-terminal Chk1-binding peptide (Chk1-NP), bound the kinase domain of Chk1. Simulation of the binding revealed that the very N-terminus of the Chk1 kinase domain is the potential peptide binding site. Of note, the polyarginine-mediated internalization of Chk1-NP redistributed nuclear Chk1 with a prominent decrease in the nucleus in the absence of DNA damage. Treatment with Chk1-NP peptide alone decreased the viability of p53-defective HeLa cells, but not that of p53-functional NCI-H460 cells under normal conditions. The treatment of HeLa or NCI-H460 cells with the peptide significantly enhanced radiation sensitivity following ionizing radiation (IR) with a greater enhancement observed in HeLa cells. Moreover, the IR-induced destabilization of Chk1 was aggravated by treatment with Chk1-NP. Therefore, the decreased nuclear localization and protein levels of Chk1 seem to be responsible for the enhanced cancer cell killing following combined treatment with IR and Chk1-NP. The approach using the specific Chk1-binding peptide may facilitate the mechanistic understanding and potential modulation of Chk1 activities and may provide a novel rationale for the development of specific Chk1-targeting agents.

  8. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  9. Peptide nucleic acid (PNA) is capable of enhancing hammerhead ribozyme activity with long but not with short RNA substrates.

    PubMed Central

    Jankowsky, E; Strunk, G; Schwenzer, B

    1997-01-01

    Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial compounds have facilitating potential. Effects of 12mer PNA- (peptide nucleic acid), RNA- and DNA-facilitators of identical sequence were measured with three substrates containing either 942, 452 or 39 nucleotides. The PNA facilitator enhances the ribozyme activity with both, the 942mer and the 452mer substrate to a slightly smaller extent than RNA and DNA facilitators. This effect was observed up to PNA facilitator:substrate ratios of 200:1. The enhancement becomes smaller as the PNA facilitator:substrate ratio exceeds 200:1. With the 39mer substrate, the PNA facilitator decreases the ribozyme activity by more than 100-fold, even at PNA facilitator:substrate ratios of 1:1. Although with long substrates the effect of the PNA facilitator is slightly smaller than the effect of identical RNA or DNA facilitators, PNA may be a more practical choice for potential applications in vivo because PNA is much more resistant to degradation by cellular enzymes. PMID:9207013

  10. Combined Statistical Analyses of Peptide Intensities and Peptide Occurrences Improves Identification of Significant Peptides from MS-based Proteomics Data

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; McCue, Lee Ann; Waters, Katrina M.; Matzke, Melissa M.; Jacobs, Jon M.; Metz, Thomas O.; Varnum, Susan M.; Pounds, Joel G.

    2010-11-01

    Liquid chromatography-mass spectrometry-based (LC-MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in peptide intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing abundance values in LC-MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error, or non-random mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values and the experimental groups. We pair the G-test results evaluating independence of missing data (IMD) with a standard analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use two simulated and two real LC-MS datasets to demonstrate the robustness and sensitivity of the ANOVA-IMD approach for assigning confidence to peptides with significant differential abundance among experimental groups.

  11. Simulation of Peptides at Aqueous Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, M.; Chipot, C.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Behavior of peptides at water-membrane interfaces is of great interest in studies on cellular transport and signaling, membrane fusion, and the action of toxins and antibiotics. Many peptides, which exist in water only as random coils, can form sequence-dependent, ordered structures at aqueous interfaces, incorporate into membranes and self-assembly into functional units, such as simple ion channels. Multi -nanosecond molecular dynamics simulations have been carried out to study the mechanism and energetics of interfacial folding of both non-polar and amphiphilic peptides, their insertion into membranes and association into higher-order structures. The simulations indicate that peptides fold non-sequentially, often through a series of amphiphilic intermediates. They further incorporate into the membrane in a preferred direction as folded monomers, and only then aggregate into dimers and, possibly, further into "dimers of dimers".

  12. Advancement and applications of peptide phage display technology in biomedical science.

    PubMed

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-01

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  13. Brain natriutetic peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/007509.htm Brain natriuretic peptide test To use the sharing features on this page, please enable JavaScript. Brain natriuretic peptide (BNP) test is a blood test that measures ...

  14. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  15. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested. PMID:27145593

  16. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  17. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  18. Artificial neural network study on organ-targeting peptides.

    PubMed

    Jung, Eunkyoung; Kim, Junhyoung; Choi, Seung-Hoon; Kim, Minkyoung; Rhee, Hokyoung; Shin, Jae-Min; Choi, Kihang; Kang, Sang-Kee; Lee, Nam Kyung; Choi, Yun-Jaie; Jung, Dong Hyun

    2010-01-01

    We report a new approach to studying organ targeting of peptides on the basis of peptide sequence information. The positive control data sets consist of organ-targeting peptide sequences identified by the peroral phage-display technique for four organs, and the negative control data are prepared from random sequences. The capacity of our models to make appropriate predictions is validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC) curve (the ROC score). VHSE descriptor produces statistically significant training models and the models with simple neural network architectures show slightly greater predictive power than those with complex ones. The training and test set statistics indicate that our models could discriminate between organ-targeting and random sequences. We anticipate that our models will be applicable to the selection of organ-targeting peptides for generating peptide drugs or peptidomimetics.

  19. Computational peptide vaccinology.

    PubMed

    Söllner, Johannes

    2015-01-01

    Immunoinformatics focuses on modeling immune responses for better understanding of the immune system and in many cases for proposing agents able to modify the immune system. The most classical of these agents are vaccines derived from living organisms such as smallpox or polio. More modern vaccines comprise recombinant proteins, protein domains, and in some cases peptides. Generating a vaccine from peptides however requires technologies and concepts very different from classical vaccinology. Immunoinformatics therefore provides the computational tools to propose peptides suitable for formulation into vaccines. This chapter introduces the essential biological concepts affecting design and efficacy of peptide vaccines and discusses current methods and workflows applied to design successful peptide vaccines using computers.

  20. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.

  1. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. PMID:26374891

  2. Identification of Chondrocyte-Binding Peptides by Phage Display

    PubMed Central

    Cheung, Crystal S.F.; Lui, Julian C.; Baron, Jeffrey

    2016-01-01

    As an initial step toward targeting cartilage tissue for potential therapeutic applications, we sought cartilage-binding peptides using phage display, a powerful technology for selection of peptides that bind to molecules of interest. A library of phage displaying random 12-amino acid peptides was iteratively incubated with cultured chondrocytes to select phage that bind cartilage. The resulting phage clones demonstrated increased affinity to chondrocytes by ELISA, when compared to a wild-type, insertless phage. Furthermore, the selected phage showed little preferential binding to other cell types, including primary skin fibroblast, myocyte and hepatocyte cultures, suggesting a tissue-specific interaction. Immunohistochemical staining revealed that the selected phage bound chondrocytes themselves and the surrounding extracellular matrix. FITC-tagged peptides were synthesized based on the sequence of cartilage-binding phage clones. These peptides, but not a random peptide, bound cultured chondrocytes, and extracelluar matrix. In conclusion, using phage display, we identified peptide sequences that specifically target chondrocytes. We anticipate that such peptides may be coupled to therapeutic molecules to provide targeted treatment for cartilage disorders. PMID:23440926

  3. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  4. Insulin C-peptide test

    MedlinePlus

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  5. Bacteriocin Inducer Peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  6. Introduction to peptide synthesis.

    PubMed

    Stawikowski, Maciej; Fields, Gregg B

    2012-08-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar substitute aspartame to clinically used hormones such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  7. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    SciTech Connect

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P.R.O.

    2011-09-16

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  8. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  9. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  10. [Biologically Active Peptides Isolated from Dill Anethum graveolens L].

    PubMed

    Kulikova, O G; Maltsev, D I; Ilyina, A P; Burdina, A V; Yamskova, V P; Yamskov, I A

    2015-01-01

    Peptide mixtures with molecular weights of 1000-2000 Da and in vivo membrano-trophic activity against mouse hepatocyte culture at very low concentrations were isolated from dill Anethum graveolens L. leaves. It has been found that plant peptides in aqueous solution formed larger nanosized particles of approximately 90 nm with a secondary structure mainly composed of β-structures and random coil structures. We demonstrated that peptides isolated from A. graveolens in vitro at an ultra-low dosage affected the size of the area of pigmented cells of amphibian liver, which are analogous to Kupffer cells of the mammalian liver, using roller organotypic newt liver culture models. PMID:26204780

  11. Engineering cyclic peptide toxins.

    PubMed

    Clark, Richard J; Craik, David J

    2012-01-01

    Peptide-based toxins have attracted much attention in recent years for their exciting potential applications in drug design and development. This interest has arisen because toxins are highly potent and selectively target a range of physiologically important receptors. However, peptides suffer from a number of disadvantages, including poor in vivo stability and poor bioavailability. A number of naturally occurring cyclic peptides have been discovered in plants, animals, and bacteria that have exceptional stability and potentially ameliorate these disadvantages. The lessons learned from studies of the structures, stabilities, and biological activities of these cyclic peptides can be applied to the reengineering of toxins that are not naturally cyclic but are amenable to cyclization. In this chapter, we describe solid-phase chemical synthetic methods for the reengineering of peptide toxins to improve their suitability as therapeutic, diagnostic, or imaging agents. The focus is on small disulfide-rich peptides from the venoms of cone snails and scorpions, but the technology is potentially widely applicable to a number of other peptide-based toxins. PMID:22230565

  12. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules

    PubMed Central

    Berkers, Celia R.; de Jong, Annemieke; Schuurman, Karianne G.; Linnemann, Carsten; Meiring, Hugo D.; Janssen, Lennert; Neefjes, Jacques J.; Schumacher, Ton N. M.; Rodenko, Boris

    2015-01-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I–restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags. PMID:26401003

  13. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules.

    PubMed

    Berkers, Celia R; de Jong, Annemieke; Schuurman, Karianne G; Linnemann, Carsten; Meiring, Hugo D; Janssen, Lennert; Neefjes, Jacques J; Schumacher, Ton N M; Rodenko, Boris; Ovaa, Huib

    2015-11-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I-restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags.

  14. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  15. Uncovering the design rules for peptide synthesis of metal nanoparticles.

    PubMed

    Tan, Yen Nee; Lee, Jim Yang; Wang, Daniel I C

    2010-04-28

    Peptides are multifunctional reagents (reducing and capping agents) that can be used for the synthesis of biocompatible metal nanoparticles under relatively mild conditions. However, the progress in peptide synthesis of metal nanoparticles has been slow due to the lack of peptide design rules. It is difficult to establish sequence-reactivity relationships from peptides isolated from biological sources (e.g., biomineralizing organisms) or selected by combinatorial display libraries because of their widely varying compositions and structures. The abundance of random and inactive amino acid sequences in the peptides also increases the difficulty in knowledge extraction. In this study, a "bottom-up" approach was used to formulate a set of rudimentary rules for the size- and shape-controlled peptide synthesis of gold nanoparticles from the properties of the 20 natural alpha-amino acids for AuCl(4)(-) reduction and binding to Au(0). It was discovered that the reduction capability of a peptide depends on the presence of certain reducing amino acid residues, whose activity may be regulated by neighboring residues with different Au(0) binding strengths. Another finding is the effect of peptide net charge on the nucleation and growth of the Au nanoparticles. On the basis of these understandings, several multifunctional peptides were designed to synthesize gold nanoparticles in different morphologies (nanospheres and nanoplates) and with sizes tunable by the strategic placement of selected amino acid residues in the peptide sequence. The methodology presented here and the findings are useful for establishing the scientific basis for the rational design of peptides for the synthesis of metal nanostructures. PMID:20355728

  16. Tumor-Penetrating Peptides

    PubMed Central

    Teesalu, Tambet; Sugahara, Kazuki N.; Ruoslahti, Erkki

    2013-01-01

    Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC), contains the integrin-binding RGD motif. RGD mediates tumor-homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR) motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies, and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is present in the

  17. Introduction to peptide synthesis.

    PubMed

    Fields, Gregg B

    2002-05-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar-substitute aspartame to clinically used hormones, such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins, including their purification. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  18. Introduction to peptide synthesis.

    PubMed

    Fields, Gregg B

    2002-02-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar-substitute aspartame to clinically used hormones, such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins, including their purification. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  19. Fractional randomness

    NASA Astrophysics Data System (ADS)

    Tapiero, Charles S.; Vallois, Pierre

    2016-11-01

    The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.

  20. Insights on the structural characteristics of Vim-TBS (58-81) peptide for future applications as a cell penetrating peptide.

    PubMed

    Saini, Avneet; Jaswal, Radhika R; Negi, Riteshwari; Nandel, Fateh S

    2013-10-01

    The plasma membrane presents a remarkable barrier for the delivery of peptide and nucleic acid based drugs to the inside of cells. This restraint in the path of their development as therapeutic agents can be offset by their conjugation to cell penetrating peptides (CPPs) that can lead to an improved pharmacological profile. In this context, conformational behavior of Vimentin Tubulin Binding Site (TBS) peptide, Vim-TBS (58-81), was investigated for its acknowledged cell penetrating properties along with Trans-activating Tat (48-60) peptide and a pro-apoptogenic peptide of p21/WAFI protein (p10). Also, the fusion peptides Vim- TBS (58-81)-p10 & Tat (48-60)-p10 were studied using molecular mechanics (MM) and molecular dynamics (MD) based strategies. MM results revealed formation of stable α-helix like secondary structures in Vim-TBS (58-81), Tat (48-60) and p10 peptides. In water, three peptides adopted either a helical structure or a random conformation; the stability of either of the two states being governed by the formation of polar contacts with the solvent. The fusion peptides formed helical structures after MD simulations but the structure obtained for the fusion peptide, Vim-TBS-p10 is relatively better characterized in terms of its amphipathic nature with a hydrophilic face formed by the positively charged residues facilitating a better interaction of this fusion peptide with the membrane as compared to that of Tat-p10 peptide. This is the first report on the conformational characteristics of the Vim-TBS (58-81) peptide and the fusion peptide, Vim-TBS (58-81)-p10. The results presented here are significant for their potential role in guiding and facilitating the future efforts of designing peptide based cell penetrating drugs.

  1. Stimuli-responsive self-assembling peptides made from antibacterial peptides

    NASA Astrophysics Data System (ADS)

    Liu, Yanfei; Yang, Yanlian; Wang, Chen; Zhao, Xiaojun

    2013-06-01

    How to use bioactive peptide sequences as fundamental building blocks to make hydrogel materials which are stimuli-responsive? In this article, we provide a novel designed peptide comprising two antibacterial peptide sequences (KIGAKI)3-NH2 and a central tetrapeptide linker. Results show that balancing the forces of the electrostatic repulsion of the charged lysine residues against the hydrophobic collapse of the isoleucine and alanine residues and backbone β-sheet hydrogen bonding allows the structural transition and formation of individually dispersed nanofibers. Circular Dichroism (CD) and rheology analysis demonstrated that the designed peptide can undergo an abrupt structural transition from a random coil to a stable unimolecular β-hairpin conformation and subsequently form an elastic hydrogel when exposed to external stimuli such as pH, ionic strength and heat. The assembly kinetics of the obtained antibacterial sequence comprising peptide (ASCP) was studied by time-lapse Atomic Force Microscopy (AFM) and Thioflavin T (ThT) binding assay. In addition, the inherent antibacterial activity of the peptide hydrogel was confirmed by the antibacterial assay against Escherichia coli. This example described epitomizes the use of bioactive peptide sequences in the design of finite self-assembled structures with potential inherent activity. These hydrogel materials may find applications in drug delivery, tissue engineering and regenerative medicine.How to use bioactive peptide sequences as fundamental building blocks to make hydrogel materials which are stimuli-responsive? In this article, we provide a novel designed peptide comprising two antibacterial peptide sequences (KIGAKI)3-NH2 and a central tetrapeptide linker. Results show that balancing the forces of the electrostatic repulsion of the charged lysine residues against the hydrophobic collapse of the isoleucine and alanine residues and backbone β-sheet hydrogen bonding allows the structural transition and

  2. Combinatorial Library of Improved Peptide Aptamers, CLIPs to Inhibit RAGE Signal Transduction in Mammalian Cells

    PubMed Central

    Reverdatto, Sergey; Rai, Vivek; Xue, Jing; Burz, David S.; Schmidt, Ann Marie; Shekhtman, Alexander

    2013-01-01

    Peptide aptamers are small proteins containing a randomized peptide sequence embedded into a stable protein scaffold, such as Thioredoxin. We developed a robust method for building a Combinatorial Library of Improved Peptide aptamers (CLIPs) of high complexity, containing ≥3×1010 independent clones, to be used as a molecular tool in the study of biological pathways. The Thioredoxin scaffold was modified to increase solubility and eliminate aggregation of the peptide aptamers. The CLIPs was used in a yeast two-hybrid screen to identify peptide aptamers that bind to various domains of the Receptor for Advanced Glycation End products (RAGE). NMR spectroscopy was used to identify interaction surfaces between the peptide aptamers and RAGE domains. Cellular functional assays revealed that in addition to directly interfering with known binding sites, peptide aptamer binding distal to ligand sites also inhibits RAGE ligand-induced signal transduction. This finding underscores the potential of using CLIPs to select allosteric inhibitors of biological targets. PMID:23785412

  3. Modeling peptide mass fingerprinting data using the atomic composition of peptides.

    PubMed

    Gay, S; Binz, P A; Hochstrasser, D F; Appel, R D

    1999-12-01

    The peptide mass fingerprinting technique is commonly used for identifying proteins analyzed by mass spectrometry (MS) after enzymatic digestion. Our goal is to build a theoretical model that predicts the mass spectra of such digestion products in order to improve the identification and characterization of proteins using this technique. We present here the first step towards a full MS model. We have modeled MS spectra using the atomic composition of peptides and evaluated the influence that this composition may have on the MS signals. Peptides deduced from the SWISS-PROT protein sequence database were used for the calculation. To validate the model, the variability of the peptide mass distribution in SWISS-PROT was compared to two theoretical, randomly generated databases. Functions have been built that describe the behavior of the isotopic distribution according to the mass of peptides. The variability of these functions was analyzed. In particular, the influence of sulfur was studied. This work, while representing only a first step in the construction of an MS model, yields immediate practical results, as the new isotopic distribution model significantly improves peak detection in MS spectra used by protein identification algorithms.

  4. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    NASA Astrophysics Data System (ADS)

    Rexeisen, Emilie Lynn

    umbilical vein endothelial cells and alpha5beta1 integrins immobilized on an AFM tip preferred binding to a fibronectin mimetic peptide that contained both hydrophilic and hydrophobic residues in the linker and a medium length spacer. Most cells require a three-dimensional scaffold in order to thrive. To incorporate the fibronectin mimetic peptide into a three-dimensional structure, a single hydrocarbon tail was attached to form a peptideamphiphile. Single-tailed peptide-amphiphiles have been shown to form nanofibers in solution and gel after screening of the electrostatic charges in the headgroup. These gels show promise as scaffolds for tissue engineering. A fibronectin mimetic peptide-amphiphile containing a linker with alternating hydrophobic and hydrophilic residues was designed to form nanofibers in solution. The critical micelle concentration of the peptide-amphiphile was determined to be 38 muM, and all subsequent experiments were performed above this concentration. Circular dichroism (CD) spectroscopy indicated that the peptide headgroup of the peptide-amphiphile forms an alpha+beta secondary structure; whereas, the free peptide forms a random secondary structure. Cryogenic-transmission electron microscopy (cryo-TEM) and small angle neutron scattering showed that the peptide-amphiphile self-assembled into nanofibers. The cryo-TEM images showed single nanofibers with a diameter of 10 nm and lengths on the order of microns. Images of higher peptideamphiphile concentrations showed evidence of bundling between individual nanofibers, which could give rise to gelation behavior at higher concentrations. The peptide-amphiphile formed a gel at concentrations above 6 mM. A 10 mM sample was analyzed with oscillating plate rheometry and was found to have an elastic modulus within the range of living tissue, showing potential as a possible scaffold for tissue engineering.

  5. Antimicrobial Peptides from Plants.

    PubMed

    Tam, James P; Wang, Shujing; Wong, Ka H; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  6. Electron transfer in peptides.

    PubMed

    Shah, Afzal; Adhikari, Bimalendu; Martic, Sanela; Munir, Azeema; Shahzad, Suniya; Ahmad, Khurshid; Kraatz, Heinz-Bernhard

    2015-02-21

    In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.

  7. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  8. Biopanning of endotoxin-specific phage displayed peptides.

    PubMed

    Thomas, Celestine J; Sharma, Shilpi; Kumar, Gyanendra; Visweswariah, Sandhya S; Surolia, Avadhesha

    2003-07-18

    Systemic bacterial infections frequently lead to a plethora of symptoms termed "endotoxic shock" or "sepsis." Characterized by hypotension, coagulation abnormalities, and multiple organ failure, treatment of sepsis still remains mostly supportive. Of the various experimental therapeutic interventional strategies, neutralization of endotoxin by peptides or proteins is becoming popular recently. Hence, design of endotoxin binding peptides is gaining currency as their structural complexity and mode of recognition of endotoxin precludes mounting of resistance against them by the susceptible bacteria by genetic recombination, mutation, etc. Earlier work from our laboratory had shown that the amphiphilic cationic peptides are good ligands for endotoxin binding. In this study, we report the results of studies with the 12 selected lipid A binding phage displayed peptides by biopanning of a repertoire of a random pentadecapeptide library displayed on the filamentous M-13 phage. A comparison of the sequences revealed no consensus sequence between the 12 selected peptides suggesting that the lipid A binding motif is not sequence specific which is in accord with the sequence variation seen with the naturally occurring anti-microbial and/or endotoxin binding peptides. Thus, the flexibility of the peptides coupled with their plasticity in recognizing the lipid A moiety, explains their tight binding to endotoxin. At a structural level, asymmetric distribution of the charged polar residues on one face of the helix and non-polar residues on the opposite face appears to correlate with their activity.

  9. Time-Frequency Analysis of Peptide Microarray Data: Application to Brain Cancer Immunosignatures

    PubMed Central

    O’Donnell, Brian; Maurer, Alexander; Papandreou-Suppappola, Antonia; Stafford, Phillip

    2015-01-01

    One of the gravest dangers facing cancer patients is an extended symptom-free lull between tumor initiation and the first diagnosis. Detection of tumors is critical for effective intervention. Using the body’s immune system to detect and amplify tumor-specific signals may enable detection of cancer using an inexpensive immunoassay. Immunosignatures are one such assay: they provide a map of antibody interactions with random-sequence peptides. They enable detection of disease-specific patterns using classic train/test methods. However, to date, very little effort has gone into extracting information from the sequence of peptides that interact with disease-specific antibodies. Because it is difficult to represent all possible antigen peptides in a microarray format, we chose to synthesize only 330,000 peptides on a single immunosignature microarray. The 330,000 random-sequence peptides on the microarray represent 83% of all tetramers and 27% of all pentamers, creating an unbiased but substantial gap in the coverage of total sequence space. We therefore chose to examine many relatively short motifs from these random-sequence peptides. Time-variant analysis of recurrent subsequences provided a means to dissect amino acid sequences from the peptides while simultaneously retaining the antibody–peptide binding intensities. We first used a simple experiment in which monoclonal antibodies with known linear epitopes were exposed to these random-sequence peptides, and their binding intensities were used to create our algorithm. We then demonstrated the performance of the proposed algorithm by examining immunosignatures from patients with Glioblastoma multiformae (GBM), an aggressive form of brain cancer. Eight different frameshift targets were identified from the random-sequence peptides using this technique. If immune-reactive antigens can be identified using a relatively simple immune assay, it might enable a diagnostic test with sufficient sensitivity to detect tumors

  10. Is random access memory random?

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Most software is contructed on the assumption that the programs and data are stored in random access memory (RAM). Physical limitations on the relative speeds of processor and memory elements lead to a variety of memory organizations that match processor addressing rate with memory service rate. These include interleaved and cached memory. A very high fraction of a processor's address requests can be satified from the cache without reference to the main memory. The cache requests information from main memory in blocks that can be transferred at the full memory speed. Programmers who organize algorithms for locality can realize the highest performance from these computers.

  11. Signal peptide of cellulase.

    PubMed

    Yan, Shaomin; Wu, Guang

    2014-06-01

    Cellulase is an enzyme playing a crucial role in biotechnology industries ranging from textile to biofuel because of tremendous amount of cellulose produced in plant. In order to improve cellulase productivity, huge resource has been spent in search for good cellulases from microorganism in remote areas and in creation of ideal cellulase by engineering. However, not much attention is given to the secretion of cellulases from cell into extracellular space, where a cellulase plays its enzymatic role. In this minireview, the signal peptides, which lead secreted proteins to specific secretion systems and scatter in literature, are reviewed. The patterns of signal peptides are checked against 4,101 cellulases documented in UniProtKB, the largest protein database in the world, to determine how these cellulases are secreted. Simultaneous review on both literature and cellulases from the database not only provides updated knowledge on signal peptides but also indicates the gap in our research.

  12. Synthetic antibiofilm peptides.

    PubMed

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  13. Catalytic Activities Of [GADV]-Peptides

    NASA Astrophysics Data System (ADS)

    Oba, Takae; Fukushima, Jun; Maruyama, Masako; Iwamoto, Ryoko; Ikehara, Kenji

    2005-10-01

    We have previously postulated a novel hypothesis for the origin of life, assuming that life on the earth originated from “[GADV]-protein world”, not from the “RNA world” (see Ikehara's review, 2002). The [GADV]-protein world is constituted from peptides and proteins with random sequences of four amino acids (glycine [G], alanine [A], aspartic acid [D] and valine [V]), which accumulated by pseudo-replication of the [GADV]-proteins. To obtain evidence for the hypothesis, we produced [GADV]-peptides by repeated heat-drying of the amino acids for 30 cycles ([GADV]-P30) and examined whether the peptides have some catalytic activities or not. From the results, it was found that the [GADV]-P30 can hydrolyze several kinds of chemical bonds in molecules, such as umbelliferyl-β-D-galactoside, glycine-p-nitroanilide and bovine serum albumin. This suggests that [GADV]-P30 could play an important role in the accumulation of [GADV]-proteins through pseudo-replication, leading to the emergence of life. We further show that [GADV]-octapaptides with random sequences, but containing no cyclic compounds as diketepiperazines, have catalytic activity, hydrolyzing peptide bonds in a natural protein, bovine serum albumin. The catalytic activity of the octapeptides was much higher than the [GADV]-P30 produced through repeated heat-drying treatments. These results also support the [GADV]-protein-world hypothesis of the origin of life (see Ikehara's review, 2002). Possible steps for the emergence of life on the primitive earth are presented.

  14. Biomimetic peptide nanosensors.

    PubMed

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  15. Invertebrate FMRFamide related peptides.

    PubMed

    Krajniak, Kevin G

    2013-06-01

    In 1977 the neuropeptide FMRFamide was isolated from the clam, Macrocallista nimbosa. Since then several hundred FMRFamide-related peptides (FaRPs) have been isolated from invertebrate animals. Precursors to the FaRPs likely arose in the cnidarians. With the transition to a bilateral body plan FaRPs became a fixture in the invertebrate phyla. They have come to play a critical role as neurotransmitters, neuromodulators, and neurohormones. FaRPs regulate a variety of body functions including, feeding, digestion, circulation, reproduction, movement. The evolution of the molecular form and function of these omnipresent peptides will be considered.

  16. Dicyclopropylmethyl peptide backbone protectant.

    PubMed

    Carpino, Louis A; Nasr, Khaled; Abdel-Maksoud, Adel Ali; El-Faham, Ayman; Ionescu, Dumitru; Henklein, Peter; Wenschuh, Holger; Beyermann, Michael; Krause, Eberhard; Bienert, Michael

    2009-08-20

    The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106-126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit.

  17. Antihypertensive peptides from food proteins.

    PubMed

    Aluko, Rotimi E

    2015-01-01

    Bioactive peptides are encrypted within the primary structure of food proteins where they remain inactive until released by enzymatic hydrolysis. Once released from the parent protein, certain peptides have the ability to modulate the renin-angiotensin system (RAS) because they decrease activities of renin or angiotensin-converting enzyme (ACE), the two main enzymes that regulate mammalian blood pressure. These antihypertensive peptides can also enhance the endothelial nitric oxide synthase (eNOS) pathway to increase nitric oxide (NO) levels within vascular walls and promote vasodilation. The peptides can block the interactions between angiotensin II (vasoconstrictor) and angiotensin receptors, which can contribute to reduced blood pressure. This review focuses on the methods that are involved in antihypertensive peptide production from food sources, including fractionation protocols that are used to enrich bioactive peptide content and enhance peptide activity. It also discusses mechanisms that are believed to be involved in the antihypertensive activity of these peptides.

  18. Brain Peptides and Psychopharmacology

    ERIC Educational Resources Information Center

    Arehart-Treichel, Joan

    1976-01-01

    Proteins isolated from the brain and used as drugs can improve and apparently even transfer mental states and behavior. Much of the pioneering work and recent research with humans and animals is reviewed and crucial questions that are being posed about the psychologically active peptides are related. (BT)

  19. Peptide and peptide library cyclization via bromomethylbenzene derivatives.

    PubMed

    Hacker, David E; Almohaini, Mohammed; Anbazhagan, Aruna; Ma, Zhong; Hartman, Matthew C T

    2015-01-01

    Cyclization confers several advantages to peptides, cumulatively serving to make them more drug-like. In this protocol, cyclic peptides are generated via bis-alkylation of cysteine-containing peptides using α,α'-dibromo-m-xylene. The reactions are robust and high yielding. Multiple reaction platforms for the application of this versatile strategy are described herein: the cyclization of solid-phase-synthesized peptides, both in solution and on resin, as well as the cyclization of in vitro translated mRNA-peptide fusion libraries on oligo(dT) resin.

  20. Peptides and Ageing.

    PubMed

    Khavinson, Vladimir Kh

    2002-01-01

    A technology has been developed for manufacturing of biologically active complex peptide preparations from extracts of different tissues. In particular, the pineal preparation (Epithalamin) augments the in vitro outgrowth of explants from the pineal gland but not from other tissues, the latter being stimulated by peptide preparations from respective tissues. Epithalamin increases melatonin production by the pineal gland of rats, improves immunological parameters in rats and mice, produces anticarcinogenic effects in different experimental models, stimulates antioxidant defenses, and restores the reproductive function in old rats. These effects are combined in the ability of Epithalamin to increase the lifespan in rats, mice, and fruit flies. Many of these effects are reproduced in clinical trials, which have demonstrated the geroprotector activity of Epithalamin in humans. Among the effects of the thymic preparation Thymalin, those related to its ability to stimulate immunity are the most prominent. This ability is associated with anticarcinogenic and geroprotector activities. Clinical trials of the peptide preparations obtained from other organs including the prostate, the cerebral cortex, and the eye retina, have demonstrated beneficial effects reflected by the improvement of the conditions of respective organs. Based on the data about the amino acid compositions of the peptide preparations, novel principles of the design of biologically active short peptides possessing tissue-specific activities has been developed. Dipeptides specific for the thymus and tetrapeptides specific for the heart, liver, brain cortex, and pineal glands stimulate the in vitro outgrowth of explants of respective organs. Interestingly, for eye retina and the pineal gland, a common tetrapeptide Ala-Glu-Asp-Gly (Epitalon) has been designed, probably reflecting the common embryonal origin of these two organs. Epitalon reproduces the effects of Epithalamin including those related to its

  1. Peptide vectors for gene delivery: from single peptides to multifunctional peptide nanocarriers.

    PubMed

    Raad, Markus de; Teunissen, Erik A; Mastrobattista, Enrico

    2014-07-01

    The therapeutic use of nucleic acids relies on the availability of sophisticated delivery systems for targeted and intracellular delivery of these molecules. Such a gene delivery should possess essential characteristics to overcome several extracellular and intracellular barriers. Peptides offer an attractive platform for nonviral gene delivery, as several functional peptide classes exist capable of overcoming these barriers. However, none of these functional peptide classes contain all the essential characteristics required to overcome all of the barriers associated with successful gene delivery. Combining functional peptides into multifunctional peptide vectors will be pivotal for improving peptide-based gene delivery systems. By using combinatorial strategies and high-throughput screening, the identification of multifunctional peptide vectors will accelerate the optimization of peptide-based gene delivery systems.

  2. Antagonistic peptide technology for functional dissection of CLE peptides revisited.

    PubMed

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B; Butenko, Melinka A; Simon, Rüdiger; Hardtke, Christian S; De Smet, Ive

    2015-08-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants.

  3. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  4. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    PubMed

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  5. Antimicrobial peptides: premises and promises.

    PubMed

    Reddy, K V R; Yedery, R D; Aranha, C

    2004-12-01

    Antimicrobial peptides (AMPs) are an important component of the natural defences of most living organisms against invading pathogens. These are relatively small (< 10kDa), cationic and amphipathic peptides of variable length, sequence and structure. During the past two decades several AMPs have been isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. Most of these peptides are obtained from different sources like macrophages, neutrophils, epithelial cells, haemocytes, fat body, reproductive tract, etc. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including Gram-positive and Gram-negative bacteria, protozoa, yeast, fungi and viruses. A few peptides have also been found to be cytotoxic to sperm and tumour cells. AMPs are classified based on the three dimensional structural studies carried out with the help of NMR. The peptides are broadly classified into five major groups namely (a) peptides that form alpha-helical structures, (b) peptides rich in cysteine residues, (c) peptides that form beta-sheet, (d) peptides rich in regular amino acids namely histatin, arginine and proline and (e) peptides composed of rare and modified amino acids. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. AMPs have been found to be excellent candidates for developing novel antimicrobial agents and a few of these peptides show antimicrobial activity against pathogens causing sexually transmitted infection (STI), including HIV/HSV. Peptides, namely magainin and nisin have been shown to demonstrate contraceptive properties in vitro and in vivo. A few peptides have already entered clinical trials for the treatment of impetigo, diabetic foot ulcers and gastric helicobacter infections. In this review, we discuss the source, structures and mode of action with special reference to therapeutic considerations of various AMPs

  6. A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization

    PubMed Central

    Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.

    2011-01-01

    Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human

  7. Selection of ceramic fluorapatite-binding peptides from a phage display combinatorial peptide library: optimum affinity tags for fluorapatite chromatography.

    PubMed

    Islam, Tuhidul; Bibi, Noor Shad; Vennapusa, Rami Reddy; Fernandez-Lahore, Marcelo

    2013-08-01

    Peptide affinity tags have become efficient tools for the purification of recombinant proteins from biological mixtures. The most commonly used ligands in this type of affinity chromatography are immobilized metal ions, proteins, antibodies, and complementary peptides. However, the major bottlenecks of this technique are still related to the ligands, including their low stability, difficulties in immobilization, and leakage into the final products. A model approach is presented here to overcome these bottlenecks by utilizing macroporous ceramic fluorapatite (CFA) as the stationary phase in chromatography and the CFA-specific short peptides as tags. The CFA chromatographic materials act as both the support matrix and the ligand. Peptides that bind with affinity to CFA were identified from a randomized phage display heptapeptide library. A total of five rounds of phage selection were performed. A common N-terminal sequence was found in two selected peptides: F4-2 (KPRSMLH) and F5-4 (KPRSVSG). The peptide F5-4, displayed by more than 40% of the phages analyzed in the fifth round of selection, was subjected to further studies. Selectivity of the peptide for the chemical composition and morphology of CFA was assured by the adsorption studies. The dissociation constant, obtained from the F5-4/CFA adsorption isotherm, was in the micromolar range, and the maximum capacity was 39.4 nmol/mg. The chromatographic behavior of the peptides was characterized on a CFA stationary phase with different buffers. Preferential affinity and specific retention properties suggest the possible application of the phage-derived peptides as a tag in CFA affinity chromatography for enhancing the selective recovery of proteins.

  8. Antibody Production with Synthetic Peptides.

    PubMed

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column. PMID:27515072

  9. Molecular Dynamics of Peptide Folding at Aqueous Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Even though most monomeric peptides are disordered in water they can adopt sequence-dependent, ordered structures, such as a-helices, at aqueous interfaces. This property is relevant to cellular signaling, membrane fusion, and the action of toxins and antibiotics. The mechanism of folding nonpolar peptides at the water-hexane interface was studied in the example of an 11-mer, of poly-L-leucine. Initially placed as a random coil on the water side of the interface, the peptide folded into an a-helix in 36 ns. Simultaneously, the peptide translocated into the hexane side of the interface. Folding was not sequential and involved a 3/10-helix as an intermediate. The folded peptide was either parallel to the interface or had its C-terminus exposed to water. An 11-mer, LQQLLQQLLQL, composed of leucine (L) and glutamine (G), was taken as a model amphiphilic peptide. It rapidly adopted an amphiphilic, disordered structure at the interface. Further folding proceeded through a series of amphiphilic intermediates.

  10. NMR and computational data of two novel antimicrobial peptides.

    PubMed

    Falcigno, Lucia; Palmieri, Gianna; Balestrieri, Marco; Proroga, Yolande T R; Facchiano, Angelo; Riccio, Alessia; Capuano, Federico; Marrone, Raffaele; Campanile, Giuseppe; Anastasio, Aniello

    2016-09-01

    Here we report details on the design and conformational analysis of two novel peptides showing antimicrobial properties, as reported in the research article, "New antimicrobial peptides against foodborne pathogens: from in silico design to experimental evidence" G. Palmieri, M. Balestrieri, Y.T.R. Proroga, L. Falcigno, A. Facchiano, A. Riccio, F. Capuano, R. Marrone, G. Campanile, A. Anastasio (2016) [1]. NMR data, such as chemical shifts in two different solvents as well as aCH protons deviations from random coil values and NOE patterns, are shown together with the statistics of structural calculations. Strategy and particulars of molecular design are presented. PMID:27508217

  11. Peptide mass fingerprinting.

    PubMed

    Thiede, Bernd; Höhenwarter, Wolfgang; Krah, Alexander; Mattow, Jens; Schmid, Monika; Schmidt, Frank; Jungblut, Peter R

    2005-03-01

    Peptide mass fingerprinting by MALDI-MS and sequencing by tandem mass spectrometry have evolved into the major methods for identification of proteins following separation by two-dimensional gel electrophoresis, SDS-PAGE or liquid chromatography. One main technological goal of proteome analyses beside high sensitivity and automation was the comprehensive analysis of proteins. Therefore, the protein species level with the essential information on co- and post-translational modifications must be achieved. The power of peptide mass fingerprinting for protein identification was described here, as exemplified by the identification of protein species with high molecular masses (spectrin alpha and beta), low molecular masses (elongation factor EF-TU fragments), splice variants (alpha A crystallin), aggregates with disulfide bridges (alkylhydroperoxide reductase), and phosphorylated proteins (heat shock protein 27). Helpful tools for these analyses were the use of the minimal protein identifier concept and the software program MS-Screener to remove mass peaks assignable to contaminants and neighbor spots.

  12. Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis

    PubMed Central

    Metz, Imke; Beißbarth, Tim; Ellenberger, David; Pache, Florence; Stork, Lidia; Ringelstein, Marius; Aktas, Orhan; Jarius, Sven; Wildemann, Brigitte; Dihazi, Hassan; Friede, Tim; Ruprecht, Klemens; Paul, Friedemann

    2016-01-01

    Objective: To assess in an observational study whether serum peptide antibody reactivities may distinguish aquaporin-4 (AQP4) antibody (Ab)–positive and -negative neuromyelitis optica spectrum disorders (NMOSD) and relapsing-remitting multiple sclerosis (RRMS). Methods: We screened 8,700 peptides that included human and viral antigens of potential relevance for inflammatory demyelinating diseases and random peptides with pooled sera from different patient groups and healthy controls to set up a customized microarray with 700 peptides. With this microarray, we tested sera from 66 patients with AQP4-Ab-positive (n = 16) and AQP4-Ab-negative (n = 19) NMOSD, RRMS (n = 11), and healthy controls (n = 20). Results: Differential peptide reactivities distinguished NMOSD subgroups from RRMS in 80% of patients. However, the 2 NMOSD subgroups were not well-discriminated, although those patients are clearly separated by their antibody reactivities against AQP4 in cell-based assays. Elevated reactivities to myelin and Epstein-Barr virus peptides were present in RRMS and to AQP4 and AQP1 peptides in AQP4-Ab-positive NMOSD. Conclusions: While AQP4-Ab-positive and -negative NMOSD subgroups are not well-discriminated by peptide antibody reactivities, our findings suggest that peptide antibody reactivities may have the potential to distinguish between both NMOSD subgroups and MS. Future studies should thus concentrate on evaluating peptide antibody reactivities for the differentiation of AQP4-Ab-negative NMOSD and MS. PMID:26894206

  13. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  14. Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine.

    PubMed

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  15. How to Do Random Allocation (Randomization)

    PubMed Central

    Shin, Wonshik

    2014-01-01

    Purpose To explain the concept and procedure of random allocation as used in a randomized controlled study. Methods We explain the general concept of random allocation and demonstrate how to perform the procedure easily and how to report it in a paper. PMID:24605197

  16. Macrocyclization of Unprotected Peptide Isocyanates.

    PubMed

    Vinogradov, Alexander A; Choo, Zi-Ning; Totaro, Kyle A; Pentelute, Bradley L

    2016-03-18

    A chemistry for the facile two-component macrocyclization of unprotected peptide isocyanates is described. Starting from peptides containing two glutamic acid γ-hydrazide residues, isocyanates can be readily accessed and cyclized with hydrazides of dicarboxylic acids. The choice of a nucleophilic linker allows for the facile modulation of biochemical properties of a macrocyclic peptide. Four cyclic NYAD-1 analogues were synthesized using the described method and displayed a range of biological activities. PMID:26948900

  17. Macrocyclization of Unprotected Peptide Isocyanates.

    PubMed

    Vinogradov, Alexander A; Choo, Zi-Ning; Totaro, Kyle A; Pentelute, Bradley L

    2016-03-18

    A chemistry for the facile two-component macrocyclization of unprotected peptide isocyanates is described. Starting from peptides containing two glutamic acid γ-hydrazide residues, isocyanates can be readily accessed and cyclized with hydrazides of dicarboxylic acids. The choice of a nucleophilic linker allows for the facile modulation of biochemical properties of a macrocyclic peptide. Four cyclic NYAD-1 analogues were synthesized using the described method and displayed a range of biological activities.

  18. Peptide Aptamers: Development and Applications

    PubMed Central

    Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander

    2015-01-01

    Peptide aptamers are small combinatorial proteins that are selected to bind to specific sites on their target molecules. Peptide aptamers consist of short, 5-20 amino acid residues long sequences, typically embedded as a loop within a stable protein scaffold. Various peptide aptamer scaffolds and in vitro and in vivo selection techniques are reviewed with emphasis on specific biomedical, bioimaging, and bioanalytical applications. PMID:25866267

  19. Improving Peptide Applications Using Nanotechnology.

    PubMed

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  20. Improving Peptide Applications Using Nanotechnology.

    PubMed

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  1. Peptides that influence membrane topology

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  2. Fragmentation pathways of protonated peptides.

    PubMed

    Paizs, Béla; Suhai, Sándor

    2005-01-01

    The fragmentation pathways of protonated peptides are reviewed in the present paper paying special attention to classification of the known fragmentation channels into a simple hierarchy defined according to the chemistry involved. It is shown that the 'mobile proton' model of peptide fragmentation can be used to understand the MS/MS spectra of protonated peptides only in a qualitative manner rationalizing differences observed for low-energy collision induced dissociation of peptide ions having or lacking a mobile proton. To overcome this limitation, a deeper understanding of the dissociation chemistry of protonated peptides is needed. To this end use of the 'pathways in competition' (PIC) model that involves a detailed energetic and kinetic characterization of the major peptide fragmentation pathways (PFPs) is proposed. The known PFPs are described in detail including all the pre-dissociation, dissociation, and post-dissociation events. It is our hope that studies to further extend PIC will lead to semi-quantative understanding of the MS/MS spectra of protonated peptides which could be used to develop refined bioinformatics algorithms for MS/MS based proteomics. Experimental and computational data on the fragmentation of protonated peptides are reevaluated from the point of view of the PIC model considering the mechanism, energetics, and kinetics of the major PFPs. Evidence proving semi-quantitative predictability of some of the ion intensity relationships (IIRs) of the MS/MS spectra of protonated peptides is presented. PMID:15389847

  3. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  4. Peptides and Food Intake

    PubMed Central

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  5. Peptides and food intake.

    PubMed

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  6. Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials.

    PubMed

    Kim, Seong-Oh; Jackman, Joshua A; Mochizuki, Masahito; Yoon, Bo Kyeong; Hayashi, Tomohiro; Cho, Nam-Joon

    2016-06-01

    The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs.

  7. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides

    NASA Astrophysics Data System (ADS)

    Chaudhary, Kumardeep; Kumar, Ritesh; Singh, Sandeep; Tuknait, Abhishek; Gautam, Ankur; Mathur, Deepika; Anand, Priya; Varshney, Grish C.; Raghava, Gajendra P. S.

    2016-03-01

    Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed that certain residues (e.g., L, K, F, W) and motifs (e.g., “FKK”, “LKL”, “KKLL”, “KWK”, “VLK”, “CYCR”, “CRR”, “RFC”, “RRR”, “LKKL”) are more abundant in hemolytic peptides. Therefore, we developed models for discriminating hemolytic and non-hemolytic peptides using various machine learning techniques and achieved more than 95% accuracy. We also developed models for discriminating peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. In order to serve the scientific community, we developed a web server, mobile app and JAVA-based standalone software (http://crdd.osdd.net/raghava/hemopi/).

  8. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides.

    PubMed

    Chaudhary, Kumardeep; Kumar, Ritesh; Singh, Sandeep; Tuknait, Abhishek; Gautam, Ankur; Mathur, Deepika; Anand, Priya; Varshney, Grish C; Raghava, Gajendra P S

    2016-01-01

    Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed that certain residues (e.g., L, K, F, W) and motifs (e.g., "FKK", "LKL", "KKLL", "KWK", "VLK", "CYCR", "CRR", "RFC", "RRR", "LKKL") are more abundant in hemolytic peptides. Therefore, we developed models for discriminating hemolytic and non-hemolytic peptides using various machine learning techniques and achieved more than 95% accuracy. We also developed models for discriminating peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. In order to serve the scientific community, we developed a web server, mobile app and JAVA-based standalone software (http://crdd.osdd.net/raghava/hemopi/). PMID:26953092

  9. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides

    PubMed Central

    Chaudhary, Kumardeep; Kumar, Ritesh; Singh, Sandeep; Tuknait, Abhishek; Gautam, Ankur; Mathur, Deepika; Anand, Priya; Varshney, Grish C.; Raghava, Gajendra P. S.

    2016-01-01

    Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed that certain residues (e.g., L, K, F, W) and motifs (e.g., “FKK”, “LKL”, “KKLL”, “KWK”, “VLK”, “CYCR”, “CRR”, “RFC”, “RRR”, “LKKL”) are more abundant in hemolytic peptides. Therefore, we developed models for discriminating hemolytic and non-hemolytic peptides using various machine learning techniques and achieved more than 95% accuracy. We also developed models for discriminating peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. In order to serve the scientific community, we developed a web server, mobile app and JAVA-based standalone software (http://crdd.osdd.net/raghava/hemopi/). PMID:26953092

  10. Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials.

    PubMed

    Kim, Seong-Oh; Jackman, Joshua A; Mochizuki, Masahito; Yoon, Bo Kyeong; Hayashi, Tomohiro; Cho, Nam-Joon

    2016-06-01

    The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs. PMID:27174015

  11. Phytosulfokine peptide signalling.

    PubMed

    Sauter, Margret

    2015-08-01

    Phytosulfokine (PSK) belongs to the group of plant peptide growth factors. It is a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, suggestive of universal functions. Processing of the preproprotein involves sulfonylation by a tyrosylprotein sulfotransferase in the trans-golgi and proteolytic cleavage in the apoplast. The secreted peptide is perceived at the cell surface by a membrane-bound receptor kinase of the leucine-rich repeat family. The PSK receptor PSKR1 from Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signal outputs. Receptor activity is regulated by calmodulin. While PSK may be an autocrine growth factor, it also acts non-cell autonomously by promoting growth of cells that are receptor-deficient. In planta, PSK has multiple functions. It promotes cell growth, acts in the quiescent centre cells of the root apical meristem, contributes to funicular pollen tube guidance, and differentially alters immune responses depending on the pathogen. It has been suggested that PSK integrates growth and defence signals to balance the competing metabolic costs of these responses. This review summarizes our current understanding of PSK synthesis, signalling, and activity.

  12. Recognition of Bacterial Signal Peptides by Mammalian Formyl Peptide Receptors

    PubMed Central

    Bufe, Bernd; Schumann, Timo; Kappl, Reinhard; Bogeski, Ivan; Kummerow, Carsten; Podgórska, Marta; Smola, Sigrun; Hoth, Markus; Zufall, Frank

    2015-01-01

    Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system. PMID:25605714

  13. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides

    NASA Astrophysics Data System (ADS)

    Samarajeewa, Dinushi R.; Dieckmann, Gregg R.; Nielsen, Steven O.; Musselman, Inga H.

    2012-07-01

    The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)5(Lysine)2, where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino

  14. Clinical uses of gut peptides.

    PubMed Central

    Geoghegan, J; Pappas, T N

    1997-01-01

    OBJECTIVE: The authors review clinical applications of gut-derived peptides as diagnostic and therapeutic agents. SUMMARY BACKGROUND DATA: An increasing number of gut peptides have been evaluated for clinical use. Earlier uses as diagnostic agents have been complemented more recently by increasing application of gut peptides as therapeutic agents. METHOD: The authors conducted a literature review. RESULTS: Current experience with clinical use of gut peptides is described. Initial clinical applications focused on using secretomotor effects of gut peptides in diagnostic tests, many of which have now fallen into disuse. More recently, attention has been directed toward harnessing these secretomotor effects for therapeutic use in a variety of disorders, and also using the trophic effects of gut peptides to modulate gut mucosal growth in benign and malignant disease. Gut peptides have been evaluated in a variety of other clinical situations including use as adjuncts to imaging techniques, and modification of behaviors such as feeding and panic disorder. CONCLUSIONS: Gut peptides have been used successfully in an increasing variety of clinical conditions. Further refinements in analogue and antagonist design are likely to lead to even more selective agents that may have important clinical applications. Further studies are needed to identity and evaluate these new agents. PMID:9065291

  15. Thermolysin: a peptide forming enzyme.

    PubMed

    Reddy, A V

    1991-02-01

    Thermolysin, a thermostable endopeptidase, is recognised as a potential peptide bond forming enzyme. The importance of structural properties and its stereospecific nature towards peptide bond formation is described. Thermolysin's use in the keystep of the preparation of an artificial sweetener 'aspartame' is highlighted.

  16. Urinary Peptides in Rett Syndrome.

    ERIC Educational Resources Information Center

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  17. Peptide and non-peptide HIV fusion inhibitors.

    PubMed

    Jiang, Shibo; Zhao, Qian; Debnath, Asim K

    2002-01-01

    Fusion of the HIV envelope with the target cell membrane is a critical step of HIV entry into the target cell. The HIV envelope glycoprotein gp41 plays an important role in the fusion of viral and target cell membranes and serves as an attractive target for development of HIV fusion inhibitors. The extracellular domain of gp41 contains three important functional regions, i.e. fusion peptide (FP), N- and C-terminal heptad repeats (NHR and CHR, respectively). The FP region is composed of hydrophobic, glycine-rich residues that are essential for the initial penetration of the target cell membrane. NHR and CHR regions consist of hydrophobic residues, which have the tendency to form alpha-helical coiled coils. During the process of fusion of HIV or HIV-infected cells with uninfected cells, FP inserts into the target cell membrane and subsequently the NHR and CHR regions change conformations and associate with each other to form a fusion-active gp41 core. Peptides derived from NHR and CHR regions, designated N- and C-peptides, respectively, have potent inhibitory activity against HIV fusion by binding to the CHR and NHR regions, respectively, to prevent the formation of the fusion-active gp41 core. C-peptide may also bind to FP, thereby blocking its insertion into the target cell membrane. One of the C-peptides, T-20, which is in the phase III clinical trials, has potent in vivo activity against HIV infection and is expected to become the first peptide HIV fusion inhibitory drug in the near future. However, this peptide HIV fusion inhibitor lacks oral availability and is sensitive to the proteolytic digestion. Therefore, it is essential to develop small molecular non-peptide HIV fusion inhibitors having a mechanism of action similar to the C-peptides. One of the approaches in identifying the inhibitors is to use an immunological assay to screen chemical libraries for the compounds that potentially block the interaction between the NHR and CHR regions to form a fusion

  18. Peptide Receptor Radionuclide Therapy in the Treatment of Neuroendocrine Tumors.

    PubMed

    Kwekkeboom, Dik J; Krenning, Eric P

    2016-02-01

    Peptide receptor radionuclide therapy (PRRT) is a promising new treatment modality for inoperable or metastasized gastroenteropancreatic neuroendocrine tumors patients. Most studies report objective response rates in 15% to 35% of patients. Progression-free (PFS) and overall survival (OS) compare favorably with that for somatostatin analogues, chemotherapy, or newer, "targeted" therapies. Prospective, randomized data regarding the potential PFS and OS benefit of PRRT compared with standard therapies is anticipated.

  19. Biofunctionalization of polycaprolactone scaffolds with RGD peptides for the better cells integration

    NASA Astrophysics Data System (ADS)

    Matveeva, V. G.; Seifalian, A. M.; Antonova, L. V.; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2016-08-01

    Here we tested in vitro electrospun polycaprolactone (PCL) scaffolds carbodiimide linkage with RGD peptides and their unconjugated counterparts. The scaffolds possessed highly porous structure and were formed by randomly distributed fibers. Orange II staining and ninhydrin test confirmed successful amination of the PCL. For the assessment of cell adhesion, we colonized scaffolds with primary human fibroblasts and counted the number of alive and dead cells. After 6 days of incubation, the number of fibroblasts on the scaffolds modified by RGD peptides significantly exceeded the number on unmodified scaffolds; however, the distribution of the cells on functionalized scaffolds was uneven, possibly due to uneven distribution of RGD peptides. The percentage of dead cells on the scaffolds with RGD peptides was significantly lower compared to their unmodified counterparts. Therefore, conjugation of PCL scaffolds with RGD peptides improves their integration with cells. This can be used in regenerative medicine.

  20. Screening and characterization of anti-SEB peptides using a bacterial display library and microfluidic magnetic sorting

    PubMed Central

    Kogot, Joshua M; Pennington, Joseph M; Sarkes, Deborah A; Kingery, David A; Pellegrino, Paul M; Stratis-Cullum, Dimitra N

    2014-01-01

    Bacterial peptide display libraries enable the rapid and efficient selection of peptides that have high affinity and selectivity toward their targets. Using a 15-mer random library on the outer surface of Escherichia coli (E.coli), high-affinity peptides were selected against a staphylococcal enterotoxin B (SEB) protein after four rounds of biopanning. On-cell screening analysis of affinity and specificity were measured by flow cytometry and directly compared to the synthetic peptide, off-cell, using peptide-ELISA. DNA sequencing of the positive clones after four rounds of microfluidic magnetic sorting (MMS) revealed a common consensus sequence of (S/T)CH(Y/F)W for the SEB-binding peptides R338, R418, and R445. The consensus sequence in these bacterial display peptides has similar amino acid characteristics with SEB peptide sequences isolated from phage display. The Kd measured by peptide-ELISA off-cell was 2.4 nM for R418 and 3.0 nM for R445. The bacterial peptide display methodology using the semiautomated MMS resulted in the discovery of selective peptides with affinity for a food safety and defense threat. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Journal of Molecular Recognition published by John Wiley & Sons, Ltd. PMID:25319622

  1. Peptides and peptidomimetics as immunomodulators

    PubMed Central

    Gokhale, Ameya S; Satyanarayanajois, Seetharama

    2014-01-01

    Peptides and peptidomimetics can function as immunomodulating agents by either blocking the immune response or stimulating the immune response to generate tolerance. Knowledge of B- or T-cell epitopes along with conformational constraints is important in the design of peptide-based immunomodulating agents. Work on the conformational aspects of peptides, synthesis and modified amino acid side chains have contributed to the development of a new generation of therapeutic agents for autoimmune diseases and cancer. The design of peptides/peptidomimetics for immunomodulation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus and HIV infection is reviewed. In cancer therapy, peptide epitopes are used in such a way that the body is trained to recognize and fight the cancer cells locally as well as systemically. PMID:25186605

  2. Random broadcast on random geometric graphs

    SciTech Connect

    Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias

    2009-01-01

    In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.

  3. Antibacterial peptides isolated from insects.

    PubMed

    Otvos, L

    2000-10-01

    Insects are amazingly resistant to bacterial infections. To combat pathogens, insects rely on cellular and humoral mechanisms, innate immunity being dominant in the latter category. Upon detection of bacteria, a complex genetic cascade is activated, which ultimately results in the synthesis of a battery of antibacterial peptides and their release into the haemolymph. The peptides are usually basic in character and are composed of 20-40 amino acid residues, although some smaller proteins are also included in the antimicrobial repertoire. While the proline-rich peptides and the glycine-rich peptides are predominantly active against Gram-negative strains, the defensins selectively kill Gram-positive bacteria and the cecropins are active against both types. The insect antibacterial peptides are very potent: their IC50 (50% of the bacterial growth inhibition) hovers in the submicromolar or low micromolar range. The majority of the peptides act through disintegrating the bacterial membrane or interfering with membrane assembly, with the exception of drosocin, apidaecin and pyrrhocoricin which appear to deactivate a bacterial protein in a stereospecific manner. In accordance with their biological function, the membrane-active peptides form ordered structures, e.g. alpha-helices or beta-pleated sheets and often cast permeable ion-pores. Their cytotoxic properties were exploited in in vivo studies targeting tumour progression. Although the native peptides degrade quickly in biological fluids other than insect haemolymph, structural modifications render the peptides resistant against proteases without sacrificing biological activity. Indeed, a pyrrhocoricin analogue shows lack of toxicity in vitro and in vivo and protects mice against experimental Escherichia coli infection. Careful selection of lead molecules based on the insect antibacterial peptides may extend their utility and produce viable alternatives to the conventional antimicrobial compounds for mammalian therapy.

  4. Quantumness, Randomness and Computability

    NASA Astrophysics Data System (ADS)

    Solis, Aldo; Hirsch, Jorge G.

    2015-06-01

    Randomness plays a central role in the quantum mechanical description of our interactions. We review the relationship between the violation of Bell inequalities, non signaling and randomness. We discuss the challenge in defining a random string, and show that algorithmic information theory provides a necessary condition for randomness using Borel normality. We close with a view on incomputablity and its implications in physics.

  5. Highly Angiogenic Peptide Nanofibers

    PubMed Central

    Kumar, Vivek A.; Taylor, Nichole L.; Shi, Siyu; Wang, Benjamin K.; Jalan, Abhishek A.; Kang, Marci K.; Wickremasinghe, Navindee C.; Hartgerink, Jeffrey D.

    2015-01-01

    Major limitations of current tissue regeneration approaches using artificial scaffolds are fibrous encapsulation, lack of host cellular infiltration, unwanted immune responses, surface degradation preceding biointegration, and artificial degradation byproducts. Specifically, for scaffolds larger than 200 500 μm, implants must be accompanied by host angiogenesis in order to provide adequate nutrient/waste exchange in the newly forming tissue. In the current work, we design a peptide-based self-assembling nanofibrous hydrogel containing cell-mediated degradation and proangiogenic moieties that specifically address these challenges. This hydrogel can be easily delivered by syringe, is rapidly infiltrated by cells of hematopoietic and mesenchymal origin, and rapidly forms an extremely robust mature vascular network. scaffolds show no signs of fibrous encapsulation and after 3 weeks are resorbed into the native tissue. These supramolecular assemblies may prove a vital paradigm for tissue regeneration and specifically for ischemic tissue disease. PMID:25584521

  6. Amyloid peptide channels.

    PubMed

    Kagan, B L; Azimov, R; Azimova, R

    2004-11-01

    At least 16 distinct clinical syndromes including Alzheimer's disease (AD), Parkinson's disease (PD), rheumatoid arthritis, type II diabetes mellitus (DM), and spongiform encephelopathies (prion diseases), are characterized by the deposition of amorphous, Congo red-staining deposits known as amyloid. These "misfolded" proteins adopt beta-sheet structures and aggregate spontaneously into similar extended fibrils despite their widely divergent primary sequences. Many, if not all, of these peptides are capable of forming ion-permeable channels in vitro and possibly in vivo. Common channel properties include irreversible, spontaneous insertion into membranes, relatively large, heterogeneous single-channel conductances, inhibition of channel formation by Congo red, and blockade of inserted channels by Zn2+. Physiologic effects of amyloid, including Ca2+ dysregulation, membrane depolarization, mitochondrial dysfunction, inhibition of long-term potentiation (LTP), and cytotoxicity, suggest that channel formation in plasma and intracellular membranes may play a key role in the pathophysiology of the amyloidoses. PMID:15702375

  7. Peptide-formation on cysteine-containing peptide scaffolds

    NASA Technical Reports Server (NTRS)

    Chu, B. C.; Orgel, L. E.

    1999-01-01

    Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25-65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.

  8. Interaction of self-assembling beta-sheet peptides with phospholipid monolayers: the role of aggregation state, polarity, charge and applied field.

    PubMed

    Protopapa, Elisabeth; Maude, Steven; Aggeli, Amalia; Nelson, Andrew

    2009-03-01

    Studies of beta-sheet peptide/phospholipid interactions are important for an understanding of the folding of beta-sheet-rich membrane proteins and the action of antimicrobial and toxic peptides. Further, self-assembling peptides have numerous applications in medicine and therefore an insight is required into the relation between peptide molecular structure and biomembrane activity. We previously developed one of the simplest known model peptide systems which, above a critical concentration (c*) in solution, undergoes nucleated one-dimensional self-assembly from a monomeric random coil into a hierarchy of well defined beta-sheet structures. Here we examine the effects of peptide aggregation, polarity, charge, and applied field on peptide interactions with dioleoyl phosphatidylcholine (DOPC) monolayers using electrochemical techniques. The interactions of six systematically altered 11 residue beta-sheet tape-forming peptides were investigated. The following findings with respect to 11 residue beta-sheet peptide-DOPC interaction arose from the study: (i) The solution monomer peptide species is the monolayer active moeity. (ii) Amphiphilic peptides are more monolayer active than polar peptides in the absence of applied electric field. (iii) Positive charge on amphiphilic peptides facilitates monolayer interaction in the absence of applied electric field. (iv) Negative applied electric field facilitates monolayer interaction with positively charged amphiphilic and polar peptides. (v) Neutral amphiphilic peptides permeabilize DOPC layers to ions to the greatest extent. (vi) The beta-sheet tape forming peptides are shown to be significantly less monolayer disruptive than antimicrobial peptides. These conclusions will greatly contribute to the rational design of new peptide-based biomaterials and biosensors.

  9. Potential of phage-displayed peptide library technology to identify functional targeting peptides

    PubMed Central

    Krumpe, Lauren RH; Mori, Toshiyuki

    2010-01-01

    Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo. PMID:20150977

  10. Epimerization in peptide thioester condensation.

    PubMed

    Teruya, Kenta; Tanaka, Takeyuki; Kawakami, Toru; Akaji, Kenichi; Aimoto, Saburo

    2012-11-01

    Peptide segment couplings are now widely utilized in protein chemical synthesis. One of the key structures for the strategy is the peptide thioester. Peptide thioester condensation, in which a C-terminal peptide thioester is selectively activated by silver ions then condensed with an amino component, is a powerful tool. But the amino acid adjacent to the thioester is at risk of epimerization. During the preparation of peptide thioesters by the Boc solid-phase method, no substantial epimerization of the C-terminal amino acid was detected. Epimerization was, however, observed during a thioester-thiol exchange reaction and segment condensation in DMSO in the presence of a base. In contrast, thioester-thiol exchange reactions in aqueous solutions gave no epimerization. The epimerization during segment condensation was significantly suppressed with a less polar solvent that is applicable to segments in thioester peptide condensation. These results were applied to a longer peptide thioester condensation. The epimer content of the coupling product of 89 residues was reduced from 27% to 6% in a condensation between segments of 45 and 44 residues for the thioester and the amino component, respectively.

  11. The good taste of peptides.

    PubMed

    Temussi, Piero A

    2012-02-01

    The taste of peptides is seldom one of the most relevant issues when one considers the many important biological functions of this class of molecules. However, peptides generally do have a taste, covering essentially the entire range of established taste modalities: sweet, bitter, umami, sour and salty. The last two modalities cannot be attributed to peptides as such because they are due to the presence of charged terminals and/or charged side chains, thus reflecting only the zwitterionic nature of these compounds and/or the nature of some side chains but not the electronic and/or conformational features of a specific peptide. The other three tastes, that is, sweet, umami and bitter, are represented by different families of peptides. This review describes the main peptides with a sweet, umami or bitter taste and their relationship with food acceptance or rejection. Particular emphasis will be given to the sweet taste modality, owing to the practical and scientific relevance of aspartame, the well-known sweetener, and to the theoretical importance of sweet proteins, the most potent peptide sweet molecules.

  12. Directed random walk with random restarts: The Sisyphus random walk

    NASA Astrophysics Data System (ADS)

    Montero, Miquel; Villarroel, Javier

    2016-09-01

    In this paper we consider a particular version of the random walk with restarts: random reset events which suddenly bring the system to the starting value. We analyze its relevant statistical properties, like the transition probability, and show how an equilibrium state appears. Formulas for the first-passage time, high-water marks, and other extreme statistics are also derived; we consider counting problems naturally associated with the system. Finally we indicate feasible generalizations useful for interpreting different physical effects.

  13. Peptide sequences identified by phage display are immunodominant functional motifs of Pet and Pic serine proteases secreted by Escherichia coli and Shigella flexneri.

    PubMed

    Ulises, Hernández-Chiñas; Tatiana, Gazarian; Karlen, Gazarian; Guillermo, Mendoza-Hernández; Juan, Xicohtencatl-Cortes; Carlos, Eslava

    2009-12-01

    Plasmid-encoded toxin (Pet) and protein involved in colonization (Pic), are serine protease autotransporters of Enterobacteriaceae (SPATEs) secreted by enteroaggregative Escherichia coli (EAEC), which display the GDSGSG sequence or the serine motif. Our research was directed to localize functional sites in both proteins using the phage display method. From a 12mer linear and a 7mer cysteine-constrained (C7C) libraries displayed on the M13 phage pIII protein we selected different mimotopes using IgG purified from sera of children naturally infected with EAEC producing Pet and Pic proteins, and anti-Pet and anti-Pic IgG purified from rabbits immunized with each one of these proteins. Children IgG selected a homologous group of sequences forming the consensus sequence, motif, PQPxK, and the motifs PGxI/LN and CxPDDSSxC were selected by the rabbit anti-Pet and anti-Pic IgGs, respectively. Analysis of the amino terminal region of a panel of SPATEs showed the presence in all of them of sequences matching the PGxI/LN or CxPDDSSxC motifs, and in a three-dimensional model (Modeller 9v2) designed for Pet, both these motifs were found in the globular portion of the protein, close to the protease active site GDSGSG. Antibodies induced in mice by mimotopes carrying the three aforementioned motifs were reactive with Pet, Pic, and with synthetic peptides carrying the immunogenic mimotope sequences TYPGYINHSKA and LLPQPPKLLLP, thus confirming that the peptide moiety of the selected phages induced the antibodies specific for the toxins. The antibodies induced in mice to the PGxI/LN and CxPDDSSxC mimotopes inhibited fodrin proteolysis and macrophage chemotaxis biological activities of Pet. Our results showed that we were able to generate, by a phage display procedure, mimotopes with sequence motifs PGxI/LN and CxPDDSSxC, and to identify them as functional motifs of the Pet, Pic and other SPATEs involved in their biological activities.

  14. Configurational subdiffusion of peptides: A network study

    SciTech Connect

    Neusius, Thomas; Diadone, Isabella; Sokolov, Igor; Smith, Jeremy C

    2011-01-01

    Molecular dynamics (MD) simulation of linear peptides reveals configurational subdiffusion at equilibrium extending from 10-12 to 10-8 s. Rouse chain and continuous-time random walk models of the subdiffusion are critically discussed. Network approaches to analyzing MD simulations are shown to reproduce the time dependence of the subdiffusive mean squared displacement, which is found to arise from the fractal-like geometry of the accessible volume in the configuration space. Convergence properties of the simulation pertaining to the subdiffusive dynamics are characterized and the effect on the subdiffusive properties of representing the solvent explicitly or implicitly is compared. Non-Markovianity and other factors limiting the range of applicability of the network models are examined.

  15. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics

    PubMed Central

    Woo, Sun Young; Lee, Hwankyu

    2016-01-01

    Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect. PMID:26926570

  16. Targeting the Eph System with Peptides and Peptide Conjugates.

    PubMed

    Riedl, Stefan J; Pasquale, Elena B

    2015-01-01

    Eph receptor tyrosine kinases and ephrin ligands constitute an important cell communication system that controls development, tissue homeostasis and many pathological processes. Various Eph receptors/ephrins are present in essentially all cell types and their expression is often dysregulated by injury and disease. Thus, the 14 Eph receptors are attracting increasing attention as a major class of potential drug targets. In particular, agents that bind to the extracellular ephrin-binding pocket of these receptors show promise for medical applications. This pocket comprises a broad and shallow groove surrounded by several flexible loops, which makes peptides particularly suitable to target it with high affinity and selectivity. Accordingly, a number of peptides that bind to Eph receptors with micromolar affinity have been identified using phage display and other approaches. These peptides are generally antagonists that inhibit ephrin binding and Eph receptor/ ephrin signaling, but some are agonists mimicking ephrin-induced Eph receptor activation. Importantly, some of the peptides are exquisitely selective for single Eph receptors. Most identified peptides are linear, but recently the considerable advantages of cyclic scaffolds have been recognized, particularly in light of potential optimization towards drug leads. To date, peptide improvements have yielded derivatives with low nanomolar Eph receptor binding affinity, high resistance to plasma proteases and/or long in vivo half-life, exemplifying the merits of peptides for Eph receptor targeting. Besides their modulation of Eph receptor/ephrin function, peptides can also serve to deliver conjugated imaging and therapeutic agents or various types of nanoparticles to tumors and other diseased tissues presenting target Eph receptors.

  17. Selection dynamic of Escherichia coli host in M13 combinatorial peptide phage display libraries.

    PubMed

    Zanconato, Stefano; Minervini, Giovanni; Poli, Irene; De Lucrezia, Davide

    2011-01-01

    Phage display relies on an iterative cycle of selection and amplification of random combinatorial libraries to enrich the initial population of those peptides that satisfy a priori chosen criteria. The effectiveness of any phage display protocol depends directly on library amino acid sequence diversity and the strength of the selection procedure. In this study we monitored the dynamics of the selective pressure exerted by the host organism on a random peptide library in the absence of any additional selection pressure. The results indicate that sequence censorship exerted by Escherichia coli dramatically reduces library diversity and can significantly impair phage display effectiveness. PMID:21512219

  18. Accurate Peptide Fragment Mass Analysis: Multiplexed Peptide Identification and Quantification

    PubMed Central

    Weisbrod, Chad R.; Eng, Jimmy K.; Hoopmann, Michael R.; Baker, Tahmina; Bruce, James E.

    2012-01-01

    FT All Reaction Monitoring (FT-ARM) is a novel approach for the identification and quantification of peptides that relies upon the selectivity of high mass accuracy data and the specificity of peptide fragmentation patterns. An FT-ARM experiment involves continuous, data-independent, high mass accuracy MS/MS acquisition spanning a defined m/z range. Custom software was developed to search peptides against the multiplexed fragmentation spectra by comparing theoretical or empirical fragment ions against every fragmentation spectrum across the entire acquisition. A dot product score is calculated against each spectrum in order to generate a score chromatogram used for both identification and quantification. Chromatographic elution profile characteristics are not used to cluster precursor peptide signals to their respective fragment ions. FT-ARM identifications are demonstrated to be complementary to conventional data-dependent shotgun analysis, especially in cases where the data-dependent method fails due to fragmenting multiple overlapping precursors. The sensitivity, robustness and specificity of FT-ARM quantification are shown to be analogous to selected reaction monitoring-based peptide quantification with the added benefit of minimal assay development. Thus, FT-ARM is demonstrated to be a novel and complementary data acquisition, identification, and quantification method for the large scale analysis of peptides. PMID:22288382

  19. Self-assembly of peptide-porphyrin complexes leads to pH-dependent excitonic coupling.

    PubMed

    Kuciauskas, Darius; Caputo, Gregory A

    2009-10-29

    Using absorbance, fluorescence, resonance light scattering, and circular dichroism spectroscopy, we studied the self-assembly of the anionic meso-tetra(4-sulfonatophenyl)porphine (TPPS(4)(2-/4-)) and a cationic 22-residue polypeptide. We found that three TPPS(4)(2-/4-) molecules bind to the peptide, which contains nine lysine residues in the primary sequence. In acidic solutions, when the peptide is in the random-coil conformation, TPPS(4)(2-) bound to the peptide forms excitonically coupled J-aggregates. In pH 7.6 solutions, when the peptide secondary structure is partially alpha-helical, the porphyrin-to-peptide binding constants are approximately the same as in acidic solutions (approximately 3 x 10(6) M(-1)), but excitonic interactions between the porphyrins are insignificant. The binding of TPPS(4)(2-/4-) to lysine-containing peptides is cooperative and can be described by the Hill model. Our results show that porphyrin binding can be used to change the secondary structure of peptide-based biomaterials. In addition, binding to peptides could be used to optimize porphyrin intermolecular electronic interactions (exciton coupling), which is relevant for the design of light-harvesting antennas for artificial photosynthesis.

  20. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    PubMed Central

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106

  1. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  2. Moonlighting Peptides with Emerging Function

    PubMed Central

    Rodríguez Plaza, Jonathan G.; Villalón Rojas, Amanda; Herrera, Sur; Garza-Ramos, Georgina; Torres Larios, Alfredo; Amero, Carlos; Zarraga Granados, Gabriela; Gutiérrez Aguilar, Manuel; Lara Ortiz, María Teresa; Polanco Gonzalez, Carlos; Uribe Carvajal, Salvador; Coria, Roberto; Peña Díaz, Antonio; Bredesen, Dale E.; Castro-Obregon, Susana; del Rio, Gabriel

    2012-01-01

    Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated. PMID:22808104

  3. Apidaecins: antibacterial peptides from honeybees.

    PubMed Central

    Casteels, P; Ampe, C; Jacobs, F; Vaeck, M; Tempst, P

    1989-01-01

    Although insects lack the basic entities of the vertebrate immune system, such as lymphocytes and immunoglobulins, they have developed alternative defence mechanisms against infections. Different types of peptide factors, exhibiting bactericidal activity, have been detected in some insect species. These humoral factors are induced upon infection. The present report describes the discovery of the apidaecins, isolated from lymph fluid of the honeybee (Apis mellifera). The apidaecins represent a new family of inducible peptide antibiotics with the following basic structure: GNNRP(V/I)YIPQPRPPHPR(L/I). These heat-stable, non-helical peptides are active against a wide range of plant-associated bacteria and some human pathogens, through a bacteriostatic rather than a lytic process. Chemically synthesized apidaecins display the same bactericidal activity as their natural counterparts. While only active antibacterial peptides are detectable in adult honeybee lymph, bee larvae contain considerable amounts of inactive precursor molecules. PMID:2676519

  4. Marine Peptides: Bioactivities and Applications

    PubMed Central

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho

    2015-01-01

    Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844

  5. Food-derived immunomodulatory peptides.

    PubMed

    Santiago-López, Lourdes; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda; Mata-Haro, Verónica; González-Córdova, Aarón F

    2016-08-01

    Food proteins contain specific amino acid sequences within their structures that may positively impact bodily functions and have multiple immunomodulatory effects. The functional properties of these specific sequences, also referred to as bioactive peptides, are revealed only after the degradation of native proteins during digestion processes. Currently, milk proteins have been the most explored source of bioactive peptides, which presents an interesting opportunity for the dairy industry. However, plant- and animal-derived proteins have also been shown to be important sources of bioactive peptides. This review summarizes the in vitro and in vivo evidence of the role of various food proteins as sources of immunomodulatory peptides and discusses the possible pathways involving these properties. © 2016 Society of Chemical Industry.

  6. Peptide models for membrane channels.

    PubMed Central

    Marsh, D

    1996-01-01

    Peptides may be synthesized with sequences corresponding to putative transmembrane domains and/or pore-lining regions that are deduced from the primary structures of ion channel proteins. These can then be incorporated into lipid bilayer membranes for structural and functional studies. In addition to the ability to invoke ion channel activity, critical issues are the secondary structures adopted and the mode of assembly of these short transmembrane peptides in the reconstituted systems. The present review concentrates on results obtained with peptides from ligand-gated and voltage-gated ion channels, as well as proton-conducting channels. These are considered within the context of current molecular models and the limited data available on the structure of native ion channels and natural channel-forming peptides. PMID:8615800

  7. Biomedical Applications of Organometal-Peptide Conjugates

    NASA Astrophysics Data System (ADS)

    Metzler-Nolte, Nils

    Peptides are well suited as targeting vectors for the directed delivery of metal-based drugs or probes for biomedical investigations. This chapter describes synthetic strategies for the preparation of conjugates of medically interesting peptides with covalently bound metal complexes. Peptides that were used include neuropeptides (enkephalin, neuropeptide Y, neurotensin), uptake peptides (TAT and poly-Arg), and intracellular localization sequences. To these peptides, a whole variety of transition metal complexes has been attached in recent years by solid-phase peptide synthesis (SPPS) techniques. The metal complex can be attached to the peptide on the resin as part of the SPPS scheme. Alternatively, the metal complex may be attached to the peptide as a postsynthetic modification. Advantages as well as disadvantages for either strategy are discussed. Biomedical applications include radiopharmaceutical applications, anticancer and antibacterial activity, metal-peptide conjugates as targeted CO-releasing molecules, and metal-peptide conjugates in biosensor applications.

  8. Design of Responsive Peptide-based Hydrogels as Therapeutics

    NASA Astrophysics Data System (ADS)

    Schneider, Joel

    2008-03-01

    Hydrogels composed of self-assembled peptides have been designed to allow minimally invasive delivery of cells in-vivo. These peptides undergo sol-gel phase transitions in response to biological media enabling the three-dimensional encapsulation of cells. Peptides are designed such that when dissolved in aqueous solution, exist in an ensemble of random coil conformations rendering them fully soluble. The addition of an exogenous stimulus results in peptide folding into beta-hairpin conformation. This folded structure undergoes rapid self-assembly into a highly crosslinked hydrogel network whose nanostructure is defined and controllable. This mechanism, which links intramolecular peptide folding to self-assembly, allows temporally resolved material formation. In general, peptides can be designed to fold and assemble affording hydrogel in response to changes in pH or ionic strength, the addition of heat or even light. In addition to these stimuli, DMEM cell culture media is able to initiate folding and consequent self-assembly. DMEM-induced gels are cytocompatible towards NIH 3T3 murine fibroblasts, mesenchymal stem cells, hepatocytes, osteoblasts and chondrocytes. As an added bonus, many of these hydrogels possess broad spectrum antibacterial activity suggesting that adventitious bacterial infections that may occur during surgical manipulations and after implantation can be greatly reduced. Lastly, when hydrogelation is triggered in the presence of cells, gels become impregnated and can serve as a delivery vehicle. A unique characteristic of these gels is that when an appropriate shear stress is applied, the gel will shear-thin, becoming an injectable low viscosity gel. However, after the application of shear has stopped, the material quickly self-heals producing a gel with mechanical rigidity nearly identical to the original hydrogel. This attribute allows cell-impregnated gels to be delivered to target tissues via syringe where they quickly recover complementing

  9. Biodegradable Peptide-Silica Nanodonuts.

    PubMed

    Maggini, Laura; Travaglini, Leana; Cabrera, Ingrid; Castro-Hartmann, Pablo; De Cola, Luisa

    2016-03-01

    We report hybrid organosilica toroidal particles containing a short peptide sequence as the organic component of the hybrid systems. Once internalised in cancer cells, the presence of the peptide allows for interaction with peptidase enzymes, which attack the nanocarrier effectively triggering its structural breakdown. Moreover, these biodegradable nanovectors are characterised by high cellular uptake and exocytosis, showing great potential as biodegradable drug carriers. To demonstrate this feature, doxorubicin was employed and its delivery in HeLa cells investigated.

  10. Biodegradable Peptide-Silica Nanodonuts.

    PubMed

    Maggini, Laura; Travaglini, Leana; Cabrera, Ingrid; Castro-Hartmann, Pablo; De Cola, Luisa

    2016-03-01

    We report hybrid organosilica toroidal particles containing a short peptide sequence as the organic component of the hybrid systems. Once internalised in cancer cells, the presence of the peptide allows for interaction with peptidase enzymes, which attack the nanocarrier effectively triggering its structural breakdown. Moreover, these biodegradable nanovectors are characterised by high cellular uptake and exocytosis, showing great potential as biodegradable drug carriers. To demonstrate this feature, doxorubicin was employed and its delivery in HeLa cells investigated. PMID:26880470

  11. Kinins and peptide receptors.

    PubMed

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  12. Peptides and proteins

    SciTech Connect

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  13. Collagen-like antimicrobial peptides.

    PubMed

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  14. Latarcins: versatile spider venom peptides.

    PubMed

    Dubovskii, Peter V; Vassilevski, Alexander A; Kozlov, Sergey A; Feofanov, Alexey V; Grishin, Eugene V; Efremov, Roman G

    2015-12-01

    Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.

  15. Randomization in robot tasks

    NASA Technical Reports Server (NTRS)

    Erdmann, Michael

    1992-01-01

    This paper investigates the role of randomization in the solution of robot manipulation tasks. One example of randomization is shown by the strategy of shaking a bin holding a part in order to orient the part in a desired stable state with some high probability. Randomization can be useful for mobile robot navigation and as a means of guiding the design process.

  16. Random Item IRT Models

    ERIC Educational Resources Information Center

    De Boeck, Paul

    2008-01-01

    It is common practice in IRT to consider items as fixed and persons as random. Both, continuous and categorical person parameters are most often random variables, whereas for items only continuous parameters are used and they are commonly of the fixed type, although exceptions occur. It is shown in the present article that random item parameters…

  17. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    PubMed

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  18. Intracellular Delivery of Proteins via Fusion Peptides in Intact Plants

    PubMed Central

    Ng, Kiaw Kiaw; Motoda, Yoko; Watanabe, Satoru; Sofiman Othman, Ahmad; Kigawa, Takanori; Kodama, Yutaka; Numata, Keiji

    2016-01-01

    In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology. PMID:27100681

  19. CAMP: a useful resource for research on antimicrobial peptides

    PubMed Central

    Thomas, Shaini; Karnik, Shreyas; Barai, Ram Shankar; Jayaraman, V. K.; Idicula-Thomas, Susan

    2010-01-01

    Antimicrobial peptides (AMPs) are gaining popularity as better substitute to antibiotics. These peptides are shown to be active against several bacteria, fungi, viruses, protozoa and cancerous cells. Understanding the role of primary structure of AMPs in their specificity and activity is essential for their rational design as drugs. Collection of Anti-Microbial Peptides (CAMP) is a free online database that has been developed for advancement of the present understanding on antimicrobial peptides. It is manually curated and currently holds 3782 antimicrobial sequences. These sequences are divided into experimentally validated (patents and non-patents: 2766) and predicted (1016) datasets based on their reference literature. Information like source organism, activity (MIC values), reference literature, target and non-target organisms of AMPs are captured in the database. The experimentally validated dataset has been further used to develop prediction tools for AMPs based on the machine learning algorithms like Random Forests (RF), Support Vector Machines (SVM) and Discriminant Analysis (DA). The prediction models gave accuracies of 93.2% (RF), 91.5% (SVM) and 87.5% (DA) on the test datasets. The prediction and sequence analysis tools, including BLAST, are integrated in the database. CAMP will be a useful database for study of sequence-activity and -specificity relationships in AMPs. CAMP is freely available at http://www.bicnirrh.res.in/antimicrobial. PMID:19923233

  20. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    PubMed

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development.

  1. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    PubMed

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. PMID:27491034

  2. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    PubMed Central

    Mäde, Veronika; Els-Heindl, Sylvia

    2014-01-01

    Summary The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS) offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies. PMID:24991269

  3. Quantum random number generation

    DOE PAGES

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  4. Exploration of the Medicinal Peptide Space.

    PubMed

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs.

  5. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    PubMed Central

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  6. Perspectives and Peptides of the Next Generation

    NASA Astrophysics Data System (ADS)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  7. Spontaneous construction of nanoperiodic architecture by two-dimensional self-assembly of an amphiphilic peptide-polyethylene glycol conjugate at the solid/water interface.

    PubMed

    Tanaka, Masayoshi; Abiko, Souhei; Koshikawa, Naokiyo; Katsuta, Masato; Kinoshita, Takatoshi

    2014-03-01

    An amphiphilic peptide derivative, conjugated to polyethylene glycol (PEG) via the C-terminus, spontaneously assembled into nanodot and nanofiber arrays aligned with nanometer periodicity at the solid/water interface. The obtained planar structure was precisely controlled by the β-sheet conformation of the peptide on the surface, while the peptide segment adopted a random-coil in aqueous solution. The peptide and PEG segments were hierarchically segregated after the peptide-PEG conjugate was adsorbed on the substrate, and the peptide segment transitioned from a random-coil to a β-sheet conformation specifically at the solid/water interface. In this 2D self-assembly, the high dispersity of the peptide-PEG molecule in solution such that it exists as single molecules is essential for improving the uniformity of the 2D patterned nanostructures. The secondary structure based on the peptide segment was controlled by pH of the solution. Configuration of the peptide-PEG conjugate was also controlled by the temperature of the solution, which depended on the lower critical solution temperature (LCST) of the PEG segments. The variation in concentration of the peptide-PEG conjugate drastically influenced the morphologies of the 2D nanostructures because of the difference in the adsorbed amounts at equilibrium. PMID:24407669

  8. Peptide-Column Interactions and Their Influence on Back Exchange Rates in Hydrogen/Deuterium Exchange-MS

    NASA Astrophysics Data System (ADS)

    Sheff, Joey G.; Rey, Martial; Schriemer, David C.

    2013-07-01

    Hydrogen/deuterium exchange (HDX) methods generate useful information on protein structure and dynamics, ideally at the individual residue level. Most MS-based HDX methods involve a rapid proteolytic digestion followed by LC/MS analysis, with exchange kinetics monitored at the peptide level. Localizing specific sites of HDX is usually restricted to a resolution the size of the host peptide because gas-phase processes can scramble deuterium throughout the peptide. Subtractive methods may improve resolution, where deuterium levels of overlapping and nested peptides are used in a subtractive manner to localize exchange to smaller segments. In this study, we explore the underlying assumption of the subtractive method, namely, that the measured back exchange kinetics of a given residue is independent of its host peptide. Using a series of deuterated peptides, we show that secondary structure can be partially retained under quenched conditions, and that interactions between peptides and reversed-phase LC columns may both accelerate and decelerate residue HDX, depending upon peptide sequence and length. Secondary structure is induced through column interactions in peptides with a solution-phase propensity for structure, which has the effect of slowing HDX rates relative to predicted random coil values. Conversely, column interactions can orient random-coil peptide conformers to accelerate HDX, the degree to which correlates with peptide charge in solution, and which can be reversed by using stronger ion pairing reagents. The dependency of these effects on sequence and length suggest that subtractive methods for improving structural resolution in HDX-MS will not offer a straightforward solution for increasing exchange site resolution.

  9. Atomic Coordination Reflects Peptide Immunogenicity

    PubMed Central

    Antipas, Georgios S. E.; Germenis, Anastasios E.

    2016-01-01

    We demonstrated that the immunological identity of variant peptides may be accurately predicted on the basis of atomic coordination of both unprotonated and protonated tertiary structures, provided that the structure of the native peptide (index) is known. The metric which was discovered to account for this discrimination is the coordination difference between the variant and the index; we also showed that increasing coordination difference in respect to the index was correlated to a correspondingly weakening immunological outcome of the variant. Additionally, we established that this metric quickly seizes to operate beyond the peptide scale, e.g., within a coordination shell inclusive of atoms up to a distance of 7 Å away from the peptide or over the entire pMHC-TCR complex. Analysis of molecular orbital interactions for a range of formal charges further revealed that the N-terminus of the agonists was always able to sustain a stable ammonium (NH3+) group which was consistently absent in antagonists. We deem that the presence of NH3+ constitutes a secondary observable with a biological consequence, signifying a change in T cell activation. While our analysis of protonated structures relied on the quantum chemical relaxation of the H species, the results were consistent across a wide range of peptide charge and spin polarization conditions. PMID:26793714

  10. Peptide Vaccine: Progress and Challenges

    PubMed Central

    Li, Weidang; Joshi, Medha D.; Singhania, Smita; Ramsey, Kyle H.; Murthy, Ashlesh K.

    2014-01-01

    Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines. PMID:26344743

  11. Peptide targeted copper-64 radiopharmaceuticals.

    PubMed

    Ma, Michelle T; Donnelly, Paul S

    2011-01-01

    Peptide targeted ⁶⁴Cu-labelled diagnostic agents for positron emission tomography are viable candidates for molecular imaging of cancer. In a clinical setting, optimal image quality relies on selective tumor uptake of the ⁶⁴Cu-labelled radiotracer. The three components of the radiotracer construct--the chelate group, linker and targeting peptide--all influence the biodistribution of the ⁶⁴Cu-labelled radiotracer in vivo. Low or moderate Cu complex stability in vivo results in transmetallation of ⁶⁴Cu to endogenous proteins, giving rise to high background activity. The length and the nature of the linker group affect the affinity of the ⁶⁴Cu-labelled radiotracer for the target receptor. Variations in the peptide sequence can impact on the metabolic stability and therefore the bioavailability and tumor retention of the ⁶⁴Cu-labelled radiotracer in vivo. Lastly, the hydrophilicity of the construct can influence radiotracer metabolism and clearance pathways. Recent advances in the field of peptide targeted ⁶⁴Cu-labelled radiopharmaceuticals involve GRPR-targeted and αvβ3 integrin receptor-targeted constructs. These constructs are based on the bombesin peptide sequence and the RGD recognition motif respectively. These examples are reviewed as case studies in the optimisation of ⁶⁴Cu radiotracer design.

  12. Structural and pharmacological characteristics of chimeric peptides derived from peptide E and beta-endorphin reveal the crucial role of the C-terminal YGGFL and YKKGE motifs in their analgesic properties.

    PubMed

    Condamine, Eric; Courchay, Karine; Rego, Jean-Claude Do; Leprince, Jérôme; Mayer, Catherine; Davoust, Daniel; Costentin, Jean; Vaudry, Hubert

    2010-05-01

    Peptide E (a 25-amino acid peptide derived from proenkephalin A) and beta-endorphin (a 31-amino acid peptide derived from proopiomelanocortin) bind with high affinity to opioid receptors and share structural similarities but induce analgesic effects of very different intensity. Indeed, whereas they possess the same N-terminus Met-enkephalin message sequence linked to a helix by a flexible spacer and a C-terminal part in random coil conformation, in contrast with peptide E, beta-endorphin produces a profound analgesia. To determine the key structural elements explaining this very divergent opioid activity, we have compared the structural and pharmacological characteristics of several chimeric peptides derived from peptide E and beta-endorphin. Structures were obtained under the same experimental conditions using circular dichroism, computational estimation of helical content and/or nuclear magnetic resonance spectroscopy (NMR) and NMR-restrained molecular modeling. The hot-plate and writhing tests were used in mice to evaluate the antinociceptive effects of the peptides. Our results indicate that neither the length nor the physicochemical profile of the spacer plays a fundamental role in analgesia. On the other hand, while the functional importance of the helix cannot be excluded, the last 5 residues in the C-terminal part seem to be crucial for the expression or absence of the analgesic activity of these peptides. These data raise the question of the true function of peptides E in opioidergic systems.

  13. Vibrational analysis of amino acids and short peptides in aqueous media. V. The effect of the disulfide bridge on the structural features of the peptide hormone somatostatin-14.

    PubMed

    Hernández, Belén; Carelli, Claude; Coïc, Yves-Marie; De Coninck, Joël; Ghomi, Mahmoud

    2009-09-24

    To emphasize the role played by the S-S bridge in the structural features of somatostatin-14 (SST-14), newly recorded CD and Raman spectra of this cyclic peptide and its open analogue obtained by Cys-->Ser substitution are presented. CD spectra of both peptides recorded in aqueous solutions in the 100-500 microM concentration range are strikingly similar. They reveal principally that random conformers constitute the major population in both peptides. Consequently, the S-S bridge has no structuring effect at submillimolar concentrations. In methanol, the CD spectrum of somatostatin-14 keeps globally the same spectral shape as that observed in water, whereas its open analogue presents a major population of helical conformers. Raman spectra recorded as a function of peptide concentration (5-20 mM) and also in the presence of 150 mM NaCl provide valuable conformational information. All Raman spectra present a mixture of random and beta-hairpin structures for both cyclic and open peptides. More importantly, the presence or the absence of the disulfide bridge does not seem to influence considerably different populations of secondary structures within this range of concentrations. CD and Raman data obtained in the submillimolar and millimolar ranges of concentrations, respectively, lead us to accept the idea that SST-14 monomers aggregate upon increasing concentration, thus stabilizing beta-hairpin conformations in solution. However, even at high concentrations, random conformers do not disappear. Raman spectra of SST-14 also reveal a concentration effect on the flexibility of the S-S linkage and consequently on that of its cyclic part. In conclusion, although the disulfide linkage does not seem to markedly influence the SST-14 conformational features in aqueous solutions, its presence seems to be necessary to ensure the flexibility of the cyclic part of this peptide and to maintain its closed structure in lower dielectric constant environments.

  14. Identification of D-peptide ligands through mirror-image phage display.

    PubMed

    Schumacher, T N; Mayr, L M; Minor, D L; Milhollen, M A; Burgess, M W; Kim, P S

    1996-03-29

    Genetically encoded libraries of peptides and oligonucleotides are well suited for the identification of ligands for many macromolecules. A major drawback of these techniques is that the resultant ligands are subject to degradation by naturally occurring enzymes. Here, a method is described that uses a biologically encoded library for the identification of D-peptide ligands, which should be resistant to proteolytic degradation. In this approach, a protein is synthesized in the D-amino acid configuration and used to select peptides from a phage display library expressing random L-amino acid peptides. For reasons of symmetry, the mirror images of these phage-displayed peptides interact with the target protein of the natural handedness. The value of this approach was demonstrated by the identification of a cyclic D-peptide that interacts with the Src homology 3 domain of c- SRC. Nuclear magnetic resonance studies indicate that the binding site for this D-peptide partially overlaps the site for the physiological ligands of this domain.

  15. Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides

    PubMed Central

    Tal, Perry; Eizenberger, Shay; Cohen, Elad; Goldfinger, Naomi; Pietrokovski, Shmuel; Oren, Moshe; Rotter, Varda

    2016-01-01

    The p53 tumor suppressor serves as a major barrier against malignant transformation. Over 50% of tumors inactivate p53 by point mutations in its DNA binding domain. Most mutations destabilize p53 protein folding, causing its partial denaturation at physiological temperature. Thus a high proportion of human tumors overexpress a potential potent tumor suppressor in a non-functional, misfolded form. The equilibrium between the properly folded and misfolded states of p53 may be affected by molecules that interact with p53, stabilizing its native folding and restoring wild type p53 activity to cancer cells. To select for mutant p53 (mutp53) reactivating peptides, we adopted the phage display technology, allowing interactions between mutp53 and random peptide libraries presented on phages and enriching for phage that favor the correctly folded p53 conformation. We obtained a large database of potential reactivating peptides. Lead peptides were synthesized and analyzed for their ability to restore proper p53 folding and activity. Remarkably, many enriched peptides corresponded to known p53-binding proteins, including RAD9. Importantly, lead peptides elicited dramatic regression of aggressive tumors in mouse xenograft models. Such peptides might serve as novel agents for human cancer therapy. PMID:26943582

  16. Tityus serrulatus Hypotensins: a new family of peptides from scorpion venom.

    PubMed

    Verano-Braga, T; Rocha-Resende, C; Silva, D M; Ianzer, D; Martin-Eauclaire, M F; Bougis, P E; de Lima, M E; Santos, R A S; Pimenta, A M C

    2008-07-01

    Using a proteomic approach, a new structural family of peptides was put in evidence in the venom of the yellow scorpion Tityus serrulatus. Tityus serrulatus Hypotensins (TsHpt) are random-coiled linear peptides and have a similar bradykinin-potentiating peptide (BPP) amino acid signature. TsHpt-I (2.7kDa), the first member of this family, was able to potentiate the hypotensive effects of bradykinin (BK) in normotensive rats. Using the C-terminal of this peptide as a template, a synthetic analog peptide (TsHpt-I([17-25])) was designed to held the BK-potentiating effect. A relevant hypotensive effect, independent on BK, was also observed on both TsHpt (native and synthetic). To better evaluate this hypotensive effect, we examined the vasorelaxation of aortic rings from male Wistar rats and the peptides were able to induce endothelium-dependent vasorelaxation dependent on NO release. Both TsHpt could not inhibit ACE activity. These peptides appear to exert their anti-hypertensive effect through NO-dependent and ACE-independent mechanisms. PMID:18445483

  17. Antimicrobial activity of polycationic peptides.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Scalise, G

    1999-11-01

    The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum. PMID:10612440

  18. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  19. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  20. Epitope Fingerprinting for Recognition of the Polyclonal Serum Autoantibodies of Alzheimer's Disease

    PubMed Central

    de Oliveira-Júnior, Luiz Carlos; Araújo Santos, Fabiana de Almeida; Goulart, Luiz Ricardo; Ueira-Vieira, Carlos

    2015-01-01

    Autoantibodies (aAb) associated with Alzheimer's disease (AD) have not been sufficiently characterized and their exact involvement is undefined. The use of information technology and computerized analysis with phage display technology was used, in the present research, to map the epitope of putative self-antigens in AD patients. A 12-mer random peptide library, displayed on M13 phages, was screened using IgG from AD patients with two repetitions. Seventy-one peptides were isolated; however, only 10 were positive using the Elisa assay technique (Elisa Index > 1). The results showed that the epitope regions of the immunoreactive peptides, identified by phage display analysis, were on the exposed surfaces of the proteins. The putative antigens MAST1, Enah, MAO-A, X11/MINT1, HGF, SNX14, ARHGAP 11A, APC, and CENTG3, which have been associated with AD or have functions in neural tissue, may indicate possible therapeutic targets. PMID:26417591

  1. Antagonistic effect of disulfide-rich peptide aptamers selected by cDNA display on interleukin-6-dependent cell proliferation

    SciTech Connect

    Nemoto, Naoto; Tsutsui, Chihiro; Yamaguchi, Junichi; Ueno, Shingo; Machida, Masayuki; Kobayashi, Toshikatsu; Sakai, Takafumi

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Disulfide-rich peptide aptamer inhibits IL-6-dependent cell proliferation. Black-Right-Pointing-Pointer Disulfide bond of peptide aptamer is essential for its affinity to IL-6R. Black-Right-Pointing-Pointer Inhibitory effect of peptide depends on number and pattern of its disulfide bonds. -- Abstract: Several engineered protein scaffolds have been developed recently to circumvent particular disadvantages of antibodies such as their large size and complex composition, low stability, and high production costs. We previously identified peptide aptamers containing one or two disulfide-bonds as an alternative ligand to the interleukin-6 receptor (IL-6R). Peptide aptamers (32 amino acids in length) were screened from a random peptide library by in vitro peptide selection using the evolutionary molecular engineering method 'cDNA display'. In this report, the antagonistic activity of the peptide aptamers were examined by an in vitro competition enzyme-linked immunosorbent assay (ELISA) and an IL-6-dependent cell proliferation assay. The results revealed that a disulfide-rich peptide aptamer inhibited IL-6-dependent cell proliferation with similar efficacy to an anti-IL-6R monoclonal antibody.

  2. Stimuli-responsive conformational conversion of peptide gatekeepers for controlled release of guests from mesoporous silica nanocontainers.

    PubMed

    Lee, Jeonghun; Kim, Hyunmi; Han, Songyi; Hong, Eunjung; Lee, Keun-Hyeung; Kim, Chulhee

    2014-09-17

    The use of peptides as gatekeepers for payloads of mesoporous silica nanoparticles would allow triggering the release of guests by various biological stimuli. We investigated the effect of peptide conformation on their gatekeeping capability by employing two model peptides with a turn or a random structure. The conformation-dependent gatekeeping properties provided an opportunity to utilize the conformational conversion of peptides as a valuable motif for stimuli-responsive gatekeepers. Based on that investigation, we demonstrated that Fmoc-CGGC-SS-Si, which exhibited a zero-release property without any stimuli due to a turn-like conformation induced by the intramolecular disulfide bond, can be triggered to release guests by converting its conformation to a random structure, induced by reduction of the disulfide bond upon addition of glutathione. We further demonstrated that the conformational conversion of Fmoc-CGGC by Zn(II) ion can also be utilized as a triggering motif. PMID:25188823

  3. Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide.

    PubMed Central

    Goy, M F; Oliver, P M; Purdy, K E; Knowles, J W; Fox, J E; Mohler, P J; Qian, X; Smithies, O; Maeda, N

    2001-01-01

    Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) exert their physiological actions by binding to natriuretic peptide receptor A (NPRA), a receptor guanylate cyclase (rGC) that synthesizes cGMP in response to both ligands. The family of rGCs is rapidly expanding, and it is plausible that there might be additional, as yet undiscovered, rGCs whose function is to provide alternative signalling pathways for one or both of these peptides, particularly given the low affinity of NPRA for BNP. We have investigated this hypothesis, using a genetically modified (knockout) mouse in which the gene encoding NPRA has been disrupted. Enzyme assays and NPRA-specific Western blots performed on tissues from wild-type mice demonstrate that ANP-activated cGMP synthesis provides a good index of NPRA protein expression, which ranges from maximal in adrenal gland, lung, kidney, and testis to minimal in heart and colon. In contrast, immunoreactive NPRA is not detectable in tissues isolated from NPRA knockout animals and ANP- and BNP-stimulatable GC activities are markedly reduced in all mutant tissues. However, testis and adrenal gland retain statistically significant, high-affinity responses to BNP. This residual response to BNP cannot be accounted for by natriuretic peptide receptor B, or any other known mammalian rGC, suggesting the presence of a novel receptor in these tissues that prefers BNP over ANP. PMID:11513736

  4. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  5. Peptides and the new endocrinology

    NASA Astrophysics Data System (ADS)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  6. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  7. Membrane disruption mechanism of antimicrobial peptides

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee

    2012-04-01

    Largely distributed among living organisms, antimicrobial peptides are a class of small (<100 residues) host defense peptides that induce selective membrane lytic activity against microbial pathogens. The permeabilizing behavior of these diverse peptides has been commonly attributed to the formation of pores, and such pore formation has been categorized as barrel-stave, toroidal, or carpet-like. With the continuing discovery of new peptide species, many are uncharacterized and the exact mechanism is unknown. Through the use of atomic force microscopy, the disruption of supported lipid bilayer patches by protegrin-1 is concentration-dependent. The intercalation of antimicrobial peptide into the bilayer results in structures beyond that of pore formation, but with the formation of worm-like micelles at high peptide concentration. Our results suggest that antimicrobial peptide acts to lower the interfacial energy of the bilayer in a way similar to detergents. Antimicrobial peptides with structural differences, magainin-1 and aurein 1.1, exhibit a mechanistic commonality.

  8. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  9. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2005-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  10. Synthesis of cyclic disulfide-rich peptides.

    PubMed

    Akcan, Muharrem; Craik, David J

    2013-01-01

    In this chapter we describe two SPPS approaches for producing cyclic disulfide-rich peptides in our laboratory, including cyclotides from plants, cyclic conotoxins from cone snail venoms, chlorotoxin from scorpion venom, and the sunflower trypsin inhibitor peptide, SFTI-1.

  11. Peptide Antibodies: Past, Present, and Future.

    PubMed

    Houen, Gunnar

    2015-01-01

    Peptide antibodies recognize epitopes with amino acid residues adjacent in sequence ("linear" epitopes). Such antibodies can be made to virtually any sequence and have been immensely important in all areas of molecular biology and diagnostics due to their versatility and to the rapid growth in protein sequence information. Today, peptide antibodies can be routinely and rapidly made to large numbers of peptides, including peptides with posttranslationally modified residues, and are used for immunoblotting, immunocytochemistry, immunohistochemistry, and immunoassays. In the future, peptide antibodies will continue to be immensely important for molecular biology, TCR- and MHC-like peptide antibodies may be produced routinely, peptide antibodies with predetermined conformational specificities may be designed, and peptide-based vaccines may become part of vaccination programs.

  12. Two-dimensional self-assembly of amphiphilic peptides; adsorption-induced secondary structural transition on hydrophilic substrate.

    PubMed

    Tanaka, Masayoshi; Abiko, Souhei; Himeiwa, Takahiro; Kinoshita, Takatoshi

    2015-03-15

    Adsorption of sequential amphiphilic peptides on solid substrates triggered the spontaneous construction of nanoscaled architecture. An amphiphilic peptide designed with a cationic amino acid as a hydrophilic residue turned an anionic mica substrate into a water-repellent surface, simply by adsorbing it on the substrate surface. In contrast, an amphiphilic peptide designed with an anionic amino-acid residue formed a precisely controlled fiber array comprising a β-sheet fiber monolayer at the anionic substrate/water interface. This phenomenon was based on the secondary structural transition from random-coil to β-sheet, which occurred specifically when amphiphilic peptide adsorbed on the substrate surface. Such surface-specific nonorder/order transition was implemented by exploiting the strength of adsorption between the peptide and the substrate. A strategic design exploiting weak bonding such as hydrophobic interactions is essential for constructing precisely controlled nano-architectures in two dimensions.

  13. Fluctuation power spectra reveal dynamical heterogeneity of peptides

    NASA Astrophysics Data System (ADS)

    Khatri, Bhavin; Yew, Zu Thur; Krivov, Sergei; McLeish, Tom; Paci, Emanuele

    2010-07-01

    Characterizing the conformational properties and dynamics of biopolymers and their relation to biological activity and function is an ongoing challenge. Single molecule techniques have provided a rich experimental window on these properties, yet they have often relied on simple one-dimensional projections of a multidimensional free energy landscape for a practical interpretation of the results. Here, we study three short peptides with different structural propensity (α helical, β hairpin, and random coil) in the presence (or absence) of a force applied to their ends using Langevin dynamics simulation and an all-atom model with implicit solvation. Each peptide produces fluctuation power spectra with a characteristic dynamic fingerprint consistent with persistent structural motifs of helices, hairpins, and random coils. The spectra for helix formation shows two well-defined relaxation modes, corresponding to local relaxation and cooperative coil to uncoil interconversion. In contrast, both the hairpin and random coil are polymerlike, showing a broad and continuous range of relaxation modes giving characteristic power laws of ω-5/4 and ω-3/2, respectively; the -5/4 power law for hairpins is robust and has not been previously observed. Langevin dynamics simulations of diffusers on a potential of mean force derived from the atomistic simulations fail to reproduce the fingerprints of each peptide motif in the power spectral density, demonstrating explicitly that such information is lacking in such one-dimensional projections. Our results demonstrate the yet unexploited potential of single molecule fluctuation spectroscopy to probe more fine scaled properties of proteins and biological macromolecules and how low dimensional projections may cause the loss of relevant information.

  14. Toxins and antimicrobial peptides: interactions with membranes

    NASA Astrophysics Data System (ADS)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  15. Identification of multifunctional peptides from human milk.

    PubMed

    Mandal, Santi M; Bharti, Rashmi; Porto, William F; Gauri, Samiran S; Mandal, Mahitosh; Franco, Octavio L; Ghosh, Ananta K

    2014-06-01

    Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry.

  16. Targeting RNA with cysteine-constrained peptides

    PubMed Central

    Burns, Virginia A.; Bobay, Benjamin G.; Basso, Anne; Cavanagh, John; Melander, Christian

    2008-01-01

    A combined approach for targeting RNA with novel, biologically active ligands has been developed using a cyclic peptide library and in silico modeling. This approach has successfully identified novel cyclic peptide constructs that can target bTAR RNA. Subsequently, RNA/peptide interactions were effectively modeled using the HADDOCK docking program. PMID:18065222

  17. Acyclic peptide inhibitors of amylases.

    PubMed

    Pohl, Nicola

    2005-12-01

    In this issue of Chemistry and Biology, a library screening approach reveals a linear octapeptide inhibitor of alpha-amylases reached by de novo design . The selected molecule shares characteristics with naturally occurring protein inhibitors -- a result that suggests general rules for the design of peptide-based amylase inhibitors may be achievable.

  18. Single-molecule studies on individual peptides and peptide assemblies on surfaces.

    PubMed

    Yang, Yanlian; Wang, Chen

    2013-10-13

    This review is intended to reflect the recent progress in single-molecule studies of individual peptides and peptide assemblies on surfaces. The structures and the mechanism of peptide assembly are discussed in detail. The contents include the following topics: structural analysis of single peptide molecules, adsorption and assembly of peptides on surfaces, folding structures of the amyloid peptides, interaction between amyloid peptides and dye or drug molecules, and modulation of peptide assemblies by small molecules. The explorations of peptide adsorption and assembly will benefit the understanding of the mechanisms for protein-protein interactions, protein-drug interactions and the pathogenesis of amyloidoses. The investigations on peptide assembly and its modulations could also provide a potential approach towards the treatment of the amyloidoses.

  19. Random bistochastic matrices

    NASA Astrophysics Data System (ADS)

    Cappellini, Valerio; Sommers, Hans-Jürgen; Bruzda, Wojciech; Życzkowski, Karol

    2009-09-01

    Ensembles of random stochastic and bistochastic matrices are investigated. While all columns of a random stochastic matrix can be chosen independently, the rows and columns of a bistochastic matrix have to be correlated. We evaluate the probability measure induced into the Birkhoff polytope of bistochastic matrices by applying the Sinkhorn algorithm to a given ensemble of random stochastic matrices. For matrices of order N = 2 we derive explicit formulae for the probability distributions induced by random stochastic matrices with columns distributed according to the Dirichlet distribution. For arbitrary N we construct an initial ensemble of stochastic matrices which allows one to generate random bistochastic matrices according to a distribution locally flat at the center of the Birkhoff polytope. The value of the probability density at this point enables us to obtain an estimation of the volume of the Birkhoff polytope, consistent with recent asymptotic results.

  20. Generating random density matrices

    NASA Astrophysics Data System (ADS)

    Życzkowski, Karol; Penson, Karol A.; Nechita, Ion; Collins, Benoît

    2011-06-01

    We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transformations are introduced. To analyze statistical properties of quantum entanglement in bi-partite systems we analyze the distribution of Schmidt coefficients of random pure states. Such a distribution is derived in the case of a superposition of k random maximally entangled states. For another ensemble, obtained by performing selective measurements in a maximally entangled basis on a multi-partite system, we show that this distribution is given by the Fuss-Catalan law and find the average entanglement entropy. A more general class of structured ensembles proposed, containing also the case of Bures, forms an extension of the standard ensemble of structureless random pure states, described asymptotically, as N → ∞, by the Marchenko-Pastur distribution.

  1. Randomness: Quantum versus classical

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2016-05-01

    Recent tremendous development of quantum information theory has led to a number of quantum technological projects, e.g. quantum random generators. This development had stimulated a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is the elaboration of a consistent and commonly accepted interpretation of a quantum state. Closely related problem is the clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review, we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. We also discuss briefly “digital philosophy”, its role in physics (classical and quantum) and its coupling to the information interpretation of quantum mechanics (QM).

  2. Quantum random number generator

    DOEpatents

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  3. Autonomous Byte Stream Randomizer

    NASA Technical Reports Server (NTRS)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  4. How antimicrobial peptides disrupt lipid bilayers?

    NASA Astrophysics Data System (ADS)

    Sengupta, Durba

    2011-03-01

    The molecular basis for the activity of cyclic and linear antimicrobial peptides is analysed. We performed multi-scale molecular dynamics simulations and biophysical measurements to probe the interaction of antimicrobial peptides with model membranes. Two linear antimicrobial peptides, magainin and melittin and a cyclic one, BPC194 have been studied. We test different models to determine the generic and specific forces that lead to bilayer disruption. We probe whether interfacial stress or local membrane perturbation is more likely to lead to the porated state. We further analyse the reasons that determine specificity and increase of activity in antimicrobial peptides. The results provide detailed insight in the mode of action of antimicrobial peptides.

  5. Peptides and Peptidomimetics for Antimicrobial Drug Design

    PubMed Central

    Mojsoska, Biljana; Jenssen, Håvard

    2015-01-01

    The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics. PMID:26184232

  6. Fabrication of Odor Sensor Using Peptide

    NASA Astrophysics Data System (ADS)

    Hotokebuchi, Yuta; Hayashi, Kenshi; Toko, Kiyoshi; Chen, Ronggang; Ikezaki, Hidekazu

    We report fabrication of an odor sensor using peptides. Peptides were designed to acquire the specific reception for a target odor molecule. Au surface of the sensor electrode was coated by the designed peptide using the method of self assembled monolayers (SAMs). Functionalized Au surfaces by the peptides were confirmed by ellipsometry and cyclic voltammetry. The odorants of vanillin, phenethyl alcohol and hexanol were discriminated by QCM sensor with the peptide surface. Moreover, we verified specific interaction between amino acid (Trp) and vanillin by fluorescence assay.

  7. Comparative conformational analysis of peptide T analogs

    NASA Astrophysics Data System (ADS)

    Akverdieva, Gulnare; Godjayev, Niftali; Akyuz, Sevim

    2009-01-01

    A series of peptide T analogs were investigated within the molecular mechanics framework. In order to determine the role of the aminoacid residues in spatial formation of peptide T the conformational peculiarities of the glycine-substituted analogs were investigated. The conformational profiles of some biologically tested analogs of this peptide were determined independently. The received data permit to assess the active form of this peptide. It is characterized by β-turn at the C-terminal physiologically active pentapeptide fragment of peptide molecule. The received results are important for the investigation of the structure-activity relationship and may be used at design of a rigid-molecule drug against HIV.

  8. Isoelectric focusing of proteins and peptides

    NASA Technical Reports Server (NTRS)

    Egen, N.

    1979-01-01

    Egg-white solution was chosen as the reference solution in order to assess the effects of operational parameters (voltage, flow rate, ampholine pH range and concentration, and protein concentration) of the RIEF apparatus on protein resolution. Topics of discussion include: (1) comparison of RIEF apparatus to conventional IEF techniques (column and PAG) with respect to resolution and throughput; (2) peptide and protein separation (AHF, Thymosin - Fraction 5, vasoactive peptide, L-asparaginase and ACP); and (3) detection of peptides - dansyl derivatives of amino acids and peptides, post-focusing fluorescent labeling of amino acids, peptides and proteins, and ampholine extraction from focused gels.

  9. Randomness for Free

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnendu; Doyen, Laurent; Gimbert, Hugo; Henzinger, Thomas A.

    We consider two-player zero-sum games on graphs. These games can be classified on the basis of the information of the players and on the mode of interaction between them. On the basis of information the classification is as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided complete-observation (one player has complete observation); and (c) complete-observation (both players have complete view of the game). On the basis of mode of interaction we have the following classification: (a) concurrent (players interact simultaneously); and (b) turn-based (players interact in turn). The two sources of randomness in these games are randomness in transition function and randomness in strategies. In general, randomized strategies are more powerful than deterministic strategies, and randomness in transitions gives more general classes of games. We present a complete characterization for the classes of games where randomness is not helpful in: (a) the transition function (probabilistic transition can be simulated by deterministic transition); and (b) strategies (pure strategies are as powerful as randomized strategies). As consequence of our characterization we obtain new undecidability results for these games.

  10. Selecting people randomly.

    PubMed

    Broome, John

    1984-10-01

    This article considers what justification can be found for selecting randomly and in what circumstances it applies, including that of selecting patients to be treated by a scarce medical procedure. The author demonstrates that balancing the merits of fairness, common good, equal rights, and equal chance as they apply in various situations frequently leads to the conclusion that random selection may not be the most appropriate mode of selection. Broome acknowledges that, in the end, we may be forced to conclude that the only merit of random selection is the political one of guarding against partiality and oppression.

  11. Towards the MHC-peptide combinatorics.

    PubMed

    Kangueane, P; Sakharkar, M K; Kolatkar, P R; Ren, E C

    2001-05-01

    The exponentially increased sequence information on major histocompatibility complex (MHC) alleles points to the existence of a high degree of polymorphism within them. To understand the functional consequences of MHC alleles, 36 nonredundant MHC-peptide complexes in the protein data bank (PDB) were examined. Induced fit molecular recognition patterns such as those in MHC-peptide complexes are governed by numerous rules. The 36 complexes were clustered into 19 subgroups based on allele specificity and peptide length. The subgroups were further analyzed for identifying common features in MHC-peptide binding pattern. The four major observations made during the investigation were: (1) the positional preference of peptide residues defined by percentage burial upon complex formation is shown for all the 19 subgroups and the burial profiles within entries in a given subgroup are found to be similar; (2) in class I specific 8- and 9-mer peptides, the fourth residue is consistently solvent exposed, however this observation is not consistent in class I specific 10-mer peptides; (3) an anchor-shift in positional preference is observed towards the C terminal as the peptide length increases in class II specific peptides; and (4) peptide backbone atoms are proportionately dominant at the MHC-peptide interface.

  12. Natural and synthetic peptides with antifungal activity.

    PubMed

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  13. Can Natriuretic Peptides be Used to Guide Therapy?

    PubMed Central

    Lupón, Josep; Jaffe, Allan S.

    2016-01-01

    Over the last 15 years, the hypothesis that intensified treatment directed at reducing natriuretic peptide (NP) concentrations may improve the outcomes of patients with heart failure (HF) has been scrutinized in several prospective clinical trials, with conflicting results. Collectively, however, the data suggest that NP concentrations may be useful in guiding HF management and improving HF-related morbidity and mortality. In this review, we summarize the existing data investigating the use of NPs as targets for outpatient HF therapy. We focus on the information gathered in randomized clinical trials and comprehensive meta-analyses, and also on the recommendations of international guidelines (primarily guidelines from the European Society of Cardiology and the American College of Cardiology/American Heart Association). Although the results for this approach are promising overall, additional well-designed prospective randomized controlled trials (e.g., the GUIDE-IT trial) are necessary to confirm or refute the utility of NP-guided outpatient HF management.

  14. Characterization of the Antimicrobial Peptide Penisin, a Class Ia Novel Lantibiotic from Paenibacillus sp. Strain A3

    PubMed Central

    Baindara, Piyush; Chaudhry, Vasvi; Mittal, Garima; Liao, Luciano M.; Matos, Carolina O.; Khatri, Neeraj; Franco, Octavio L.; Patil, Prabhu B.

    2015-01-01

    Attempts to isolate novel antimicrobial peptides from microbial sources have been on the rise recently, despite their low efficacy in therapeutic applications. Here, we report identification and characterization of a new efficient antimicrobial peptide from a bacterial strain designated A3 that exhibited highest identity with Paenibacillus ehimensis. Upon purification and subsequent molecular characterization of the antimicrobial peptide, referred to as penisin, we found the peptide to be a bacteriocin-like peptide. Consistent with these results, RAST analysis of the entire genome sequence revealed the presence of a lantibiotic gene cluster containing genes necessary for synthesis and maturation of a lantibiotic. While circular dichroism and one-dimension nuclear magnetic resonance experiments confirmed a random coil structure of the peptide, similar to other known lantibiotics, additional biochemical evidence suggests posttranslational modifications of the core peptide yield six thioether cross-links. The deduced amino acid sequence of the putative biosynthetic gene penA showed approximately 74% similarity with elgicin A and 50% similarity with the lantibiotic paenicidin A. Penisin effectively killed methicillin-resistant Staphylococcus aureus (MRSA) and did not exhibit hemolysis activity. Unlike other lantibiotics, it effectively inhibited the growth of Gram-negative bacteria. Furthermore, 80 mg/kg of body weight of penisin significantly reduced bacterial burden in a mouse thigh infection model and protected BALB/c mice in a bacteremia model entailing infection with Staphylococcus aureus MTCC 96, suggesting that it could be a promising new antimicrobial peptide. PMID:26574006

  15. RFamide peptides in agnathans and basal chordates.

    PubMed

    Osugi, Tomohiro; Son, You Lee; Ubuka, Takayoshi; Satake, Honoo; Tsutsui, Kazuyoshi

    2016-02-01

    Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution.

  16. Equitable random graphs

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.; Martin, Travis

    2014-11-01

    Random graph models have played a dominant role in the theoretical study of networked systems. The Poisson random graph of Erdős and Rényi, in particular, as well as the so-called configuration model, have served as the starting point for numerous calculations. In this paper we describe another large class of random graph models, which we call equitable random graphs and which are flexible enough to represent networks with diverse degree distributions and many nontrivial types of structure, including community structure, bipartite structure, degree correlations, stratification, and others, yet are exactly solvable for a wide range of properties in the limit of large graph size, including percolation properties, complete spectral density, and the behavior of homogeneous dynamical systems, such as coupled oscillators or epidemic models.

  17. Binding of Hemagglutinin and Influenza Virus to a Peptide-Conjugated Lipid Membrane

    PubMed Central

    Matsubara, Teruhiko; Shibata, Rabi; Sato, Toshinori

    2016-01-01

    Hemagglutinin (HA) plays an important role in the first step of influenza virus (IFV) infection because it initiates the binding of the virus to the sialylgalactose linkages of the receptors on the host cells. We herein demonstrate that a HA-binding peptide immobilized on a solid support is available to bind to HA and IFV. We previously obtained a HA-binding pentapeptide (Ala-Arg-Leu-Pro-Arg), which was identified by phage-display selection against HAs from random peptide libraries. This peptide binds to the receptor-binding site of HA by mimicking sialic acid. A peptide-conjugated lipid (pep-PE) was chemically synthesized from the peptide and a saturated phospholipid. A lipid bilayer composed of pep-PE and an unsaturated phospholipid (DOPC) was immobilized on a mica plate; and the interaction between HA and the pep-PE/DOPC membrane was investigated using atomic force microscopy. The binding of IFV to the pep-PE/DOPC membrane was detected by an enzyme-linked immunosorbent assay and real-time reverse transcription PCR. Our results indicate that peptide-conjugated lipids are a useful molecular device for the detection of HA and IFV. PMID:27092124

  18. Characterizing Energy Landscapes of Peptides Using a Combination of Stochastic Algorithms.

    PubMed

    Devaurs, Didier; Molloy, Kevin; Vaisset, Marc; Shehu, Amarda; Siméon, Thierry; Cortés, Juan

    2015-07-01

    Obtaining accurate representations of energy landscapes of biomolecules such as proteins and peptides is central to the study of their physicochemical properties and biological functions. Peptides are particularly interesting, as they exploit structural flexibility to modulate their biological function. Despite their small size, peptide modeling remains challenging due to the complexity of the energy landscape of such highly-flexible dynamic systems. Currently, only stochastic sampling-based methods can efficiently explore the conformational space of a peptide. In this paper, we suggest to combine two such methods to obtain a full characterization of energy landscapes of small yet flexible peptides. First, we propose a simplified version of the classical Basin Hopping algorithm to reveal low-energy regions in the landscape, and thus to identify the corresponding meta-stable structural states of a peptide. Then, we present several variants of a robotics-inspired algorithm, the Transition-based Rapidly-exploring Random Tree, to quickly determine transition path ensembles, as well as transition probabilities between meta-stable states. We demonstrate this combined approach on met-enkephalin.

  19. The Sushi peptides: structural characterization and mode of action against Gram-negative bacteria.

    PubMed

    Ding, J L; Li, P; Ho, B

    2008-04-01

    The compositional difference in microbial and human cell membranes allows antimicrobial peptides to preferentially bind microbes. Peptides which specifically target lipopolysaccharide (LPS) and palmitoyl-oleoyl-phosphatidylglycerol (POPG) are efficient antibiotics. From the core LPS-binding region of Factor C, two 34-mer Sushi peptides, S1 and S3, were derived. S1 functions as a monomer, while S3 is active as a dimer. Both S1 and S3 display detergent-like properties in disrupting LPS aggregates, with specificity for POPG resulting from electrostatic and hydrophobic forces between the peptides and the bacterial lipids. During interaction with POPG, the S1 transitioned from a random coil to an alpha-helix, while S3 resumed a mixture of alpha-helix and beta-sheet structures. The unsaturated nature of POPG confers fluidity and enhances insertion of the peptides into the lipid bilayer, causing maximal disruption of the bacterial membrane. These parameters should be considered in designing and developing new generations of peptide antibiotics with LPS-neutralizing capability.

  20. Statistical model for large-scale peptide identification in databases from tandem mass spectra using SEQUEST.

    PubMed

    López-Ferrer, Daniel; Martínez-Bartolomé, Salvador; Villar, Margarita; Campillos, Mónica; Martín-Maroto, Fernando; Vázquez, Jesús

    2004-12-01

    Recent technological advances have made multidimensional peptide separation techniques coupled with tandem mass spectrometry the method of choice for high-throughput identification of proteins. Due to these advances, the development of software tools for large-scale, fully automated, unambiguous peptide identification is highly necessary. In this work, we have used as a model the nuclear proteome from Jurkat cells and present a processing algorithm that allows accurate predictions of random matching distributions, based on the two SEQUEST scores Xcorr and DeltaCn. Our method permits a very simple and precise calculation of the probabilities associated with individual peptide assignments, as well as of the false discovery rate among the peptides identified in any experiment. A further mathematical analysis demonstrates that the score distributions are highly dependent on database size and precursor mass window and suggests that the probability associated with SEQUEST scores depends on the number of candidate peptide sequences available for the search. Our results highlight the importance of adjusting the filtering criteria to discriminate between correct and incorrect peptide sequences according to the circumstances of each particular experiment.

  1. Degradation and antioxidant activities of peptides and zinc-peptide complexes during in vitro gastrointestinal digestion.

    PubMed

    Wang, Chan; Li, Bo; Wang, Bo; Xie, Ningning

    2015-04-15

    The degradation characteristics of three peptides (Ser-Met, Asn-Cys-Ser, and glutathione) and their zinc-peptide complexes were studied using a two-stage in vitro digestion model. Enzyme-resistant peptides and zinc-peptide complexes, antioxidant activities, and free amino acids released by digestive enzymes, were measured in this study. The results revealed that the three peptides and their zinc-peptide complexes were resistant to pepsin but not to pancreatin. Pancreatin can partly hydrolyse both peptides and zinc-peptide complexes, but more than half of them remaining in their original form after gastrointestinal digestion. The coordination of zinc improved the enzymatic resistance of the peptide due to lower solubility of complexes and affected the hydrolytic site of pepsin and pancreatin. Zinc-Asn-Cys-Ser, which is highly resistant to enzymatic hydrolysis and maintains Zn in a soluble form, may have potential to improve Zn bioavailability.

  2. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  3. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    PubMed

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations.

  4. Characterization of Peptide Antibodies by Epitope Mapping Using Resin-Bound and Soluble Peptides.

    PubMed

    Trier, Nicole Hartwig

    2015-01-01

    Characterization of peptide antibodies through identification of their target epitopes is of utmost importance. Understanding antibody specificity at the amino acid level provides the key to understand the specific interaction between antibodies and their epitopes and their use as research and diagnostic tools as well as therapeutic agents. This chapter describes a straightforward strategy for mapping of continuous peptide antibody epitopes using resin-bound and soluble peptides. The approach combines three different types of peptide sets for full characterization of peptide antibodies: (1) overlapping peptides, used to locate antigenic regions; (2) truncated peptides, used to identify the minimal peptide length required for antibody binding; and (3) substituted peptides, used to identify the key residues important for antibody binding and to determine the specific contribution of key residues. For initial screening resin-bound peptides are used for epitope estimation, while soluble peptides subsequently are used for fine mapping. The combination of resin-bound peptides and soluble peptides for epitope mapping provides a time-sparing and straightforward approach for characterization of peptide antibodies.

  5. Development of a peptide by phage display for SPECT imaging of resistance-susceptible breast cancer

    PubMed Central

    Larimer, Benjamin M; Deutscher, Susan L

    2014-01-01

    Personalized medicine is at the forefront of cancer diagnosis and therapy. Molecularly targeted therapies such as trastuzumab and tamoxifen have enhanced prognosis of patients with cancers expressing ERBB2 and the estrogen receptor, respectively. One obstacle to targeted therapy is the development of resistance. A targeted peptide that could distinguish resistance-susceptible cancer would aid in treatment. BT-474 human breast cancer cells can be resistant to both tamoxifen and trastuzumab, and may serve as a model for malignancies in which targeted therapy may not work. Bacteriophage (phage) display is a combinatorial technology that has been used to isolate peptides that target a specific cancer subtype. It was hypothesized that in vivo phage display could be used to select a peptide for SPECT imaging of BT-474 human breast cancer xenografts. A phage library displaying random 15 amino acid peptides was subjected to four rounds of selection, after which 14 clones were analyzed for BT-474 binding and specificity. One phage clone, 51, demonstrated superior binding and specificity, and the displayed peptide was synthesized for in vitro characterization. Peptide 51 bound specifically to BT-474 cells with an EC50 = 2.33 µM and was synthesized as a DOTA-conjugated peptide and radiolabeled with 111In for in vitro and in vivo analysis. The radiolabeled peptide exhibited an IC50 = 16.1 nM to BT-474 cells and its biodistribution and SPECT imaging in BT-474 xenografted mice was analyzed. Although tumor uptake was moderate at 0.11% ID/g, SPECT imaging revealed a distinct tumor vasculature binding pattern. It was discovered that peptide 51 had an identical 5 amino acid N-terminal sequence to a peptide, V1, which bound to Nrp1, a tumor vasculature protein. Peptide 51 and V1 were examined for binding to target cells, and 51 bound both target and endothelial cells, while V1 only bound endothelial cells. Truncated versions of 51 did not bind BT-474 cells, demonstrating that the

  6. Peptides and methods against diabetes

    DOEpatents

    Albertini, Richard J.; Falta, Michael T.

    2000-01-01

    This invention relates to methods of preventing or reducing the severity of diabetes. In one embodiment, the method involves administering to the individual a peptide having substantially the sequence of a on-conserved region sequence of a T cell receptor present on the surface of T cells mediating diabetes or a fragment thereof, wherein the peptide or fragment is capable of causing an effect on the immune system to regulate the T cells. In particular, the T cell receptor has the V.beta. regional V.beta.6 or V.beta.14. In another embodiment, the method involves gene therapy. The invention also relates to methods of diagnosing diabetes by determining the presence of diabetes predominant T cell receptors.

  7. Antimicrobial Peptides in Human Sepsis

    PubMed Central

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1–3 and human beta-defensins (HBDs) 1–3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1–3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1–3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1–11 (hLF 1–11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections

  8. Peptide stabilized amphotericin B nanodisks.

    PubMed

    Tufteland, Megan; Pesavento, Joseph B; Bermingham, Rachelle L; Hoeprich, Paul D; Ryan, Robert O

    2007-04-01

    Nanometer scale apolipoprotein A-I stabilized phospholipid disk complexes (nanodisks; ND) have been formulated with the polyene antibiotic amphotericin B (AMB). The present studies were designed to evaluate if a peptide can substitute for the function of the apolipoprotein component of ND with respect to particle formation and stability. An 18-residue synthetic amphipathic alpha-helical peptide, termed 4F (Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH(2)), solubilized vesicles comprised of egg phosphatidylcholine (egg PC), dipentadecanoyl PC or dimyristoylphosphatidylcholine (DMPC) at rates greater than or equal to solubilization rates observed with human apolipoprotein A-I (apoA-I; 243 amino acids). Characterization studies revealed that interaction with DMPC induced a near doubling of 4F tryptophan fluorescence emission quantum yield (excitation 280 nm) and a approximately 7 nm blue shift in emission wavelength maximum. Inclusion of AMB in the vesicle substrate resulted in formation of 4F AMB-ND. Spectra of AMB containing particles revealed the antibiotic is a highly effective quencher of 4F tryptophan fluorescence emission, giving rise to a Ksv=7.7 x 10(4). Negative stain electron microscopy revealed that AMB-ND prepared with 4F possessed a disk shaped morphology similar to ND prepared without AMB or prepared with apoA-I. In yeast and pathogenic fungi growth inhibition assays, 4F AMB-ND was as effective as apoA-I AMB-ND. The data indicate that AMB-ND generated using an amphipathic peptide in lieu of apoA-I form a discrete population of particles that possess potent biological activity. Given their intrinsic versatility, peptides may be preferred for scale up and clinical application of AMB-ND.

  9. Antimicrobial Peptides: Versatile Biological Properties

    PubMed Central

    Pushpanathan, Muthuirulan; Rajendhran, Jeyaprakash

    2013-01-01

    Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries. PMID:23935642

  10. Recent Advances in Peptide Immunomodulators.

    PubMed

    Zerfas, Breanna L; Gao, Jianmin

    2015-01-01

    With the continued rise in antibiotic-resistant bacteria, there is an immense need for the development of new therapeutic agents. Host-defense peptides (HDPs) offer a unique alternative to many of the current approved antibiotics. By targeting the host rather than the pathogen, HDPs offer several benefits over traditional small molecule drug treatments, such as a slower propensity towards resistance, broad-spectrum activity and lower risk of patients developing sepsis. However, natural peptide structures have many disadvantages as well, including susceptibility to proteolytic degradation, significant costs of synthesis and host toxicity. For this reason, much work has been done to examine peptidomimetic structures, in the hopes of finding a structure with all of the desired qualities of an antibiotic drug. Recently, this research has included synthetic constructs that mimic the behavior of HDPs but have no structural similarity to peptides. This review article focuses on the progression of this field of research, beginning with an analysis of a few prominent examples of natural HDPs and moving on to describe how the information learned by studying them have led to the current design platforms.

  11. Platyhelminth FMRFamide-related peptides.

    PubMed

    Shaw, C; Maule, A G; Halton, D W

    1996-04-01

    Platyhelminths are the most primitive metazoan phylum to possess a true central nervous system, comprising a brain and longitudinal nerve cords connected by commissures. Additional to the presence of classical neurotransmitters, the nervous systems of all major groups of flatworms examined have widespread and abundant peptidergic components. Decades of research on the major invertebrate phyla, Mollusca and Arthropoda, have revealed the primary structures and putative functions of several families of structurally related peptides, the best studied being the FMRFamide-related peptides (FaRPs). Recently, the first platyhelminth FaRP was isolated from the tapeworm, Moniezia expansa, and was found to be a hexapeptide amide, GNFFRFamide. Two additional FaRPs were isolated from species of turbellarians; these were pentapeptides, RYIRFamide (Artioposthia triangulata) and GYIRFamide (Dugesia tigrina). The primary structure of a monogenean or digenean FaRP has yet to be deduced. Preliminary physiological studies have shown that both of the turbellarian FaRPs elicit dose-dependent contractions of isolated digenean and turbellarian somatic muscle fibres. Unlike the high structural diversity of FaRPs found in molluscs, arthropods and nematodes, the complement of FaRPs in individual species of platyhelminths appears to be restricted to 1 or 2 related molecules. Much remains to be learnt about platyhelminth FaRPs, particularly from peptide isolation, molecular cloning of precursor proteins, receptor localization, and physiological studies.

  12. Peptide Aptamers That Bind to a Geminivirus Replication Protein Interfere with Viral Replication in Plant Cells †

    PubMed Central

    Lopez-Ochoa, Luisa; Ramirez-Prado, Jorge; Hanley-Bowdoin, Linda

    2006-01-01

    The AL1 protein of tomato golden mosaic virus (TGMV), a member of the geminivirus family, is essential for viral replication in plants. Its N terminus contains three conserved motifs that mediate origin recognition and DNA cleavage during the initiation of rolling-circle replication. We used the N-terminal domain of TGMV AL1 as bait in a yeast two-hybrid screen of a random peptide aptamer library constrained in the active site of the thioredoxin A (TrxA) gene. The screen selected 88 TrxA peptides that also bind to the full-length TGMV AL1 protein. Plant expression cassettes corresponding to the TrxA peptides and a TGMV A replicon encoding AL1 were cotransfected into tobacco protoplasts, and viral DNA replication was monitored by semiquantitative PCR. In these assays, 31 TrxA peptides negatively impacted TGMV DNA accumulation, reducing viral DNA levels to 13 to 64% of those of the wild type. All of the interfering aptamers also bound to the AL1 protein of cabbage leaf curl virus. A comparison of the 20-mer peptides revealed that their sequences are not random. The alignments detected seven potential binding motifs, five of which are more highly represented among the interfering peptides. One motif was present in 18 peptides, suggesting that these peptides interact with a hot spot in the AL1 N terminus. The peptide aptamers characterized in these studies represent new tools for studying AL1 function and can serve as the basis for the development of crops with broad-based resistance to single-stranded DNA viruses. PMID:16731923

  13. Predicting protein-peptide interactions from scratch

    NASA Astrophysics Data System (ADS)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  14. Sensing immune responses with customized peptide microarrays.

    PubMed

    Schirwitz, Christopher; Loeffler, Felix F; Felgenhauer, Thomas; Stadler, Volker; Breitling, Frank; Bischoff, F Ralf

    2012-12-01

    The intent to solve biological and biomedical questions in high-throughput led to an immense interest in microarray technologies. Nowadays, DNA microarrays are routinely used to screen for oligonucleotide interactions within a large variety of potential interaction partners. To study interactions on the protein level with the same efficiency, protein and peptide microarrays offer similar advantages, but their production is more demanding. A new technology to produce peptide microarrays with a laser printer provides access to affordable and highly complex peptide microarrays. Such a peptide microarray can contain up to 775 peptide spots per cm², whereby the position of each peptide spot and, thus, the amino acid sequence of the corresponding peptide, is exactly known. Compared to other techniques, such as the SPOT synthesis, more features per cm² at lower costs can be synthesized which paves the way for laser printed peptide microarrays to take on roles as efficient and affordable biomedical sensors. Here, we describe the laser printer-based synthesis of peptide microarrays and focus on an application involving the blood sera of tetanus immunized individuals, indicating the potential of peptide arrays to sense immune responses.

  15. Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    PubMed Central

    Xu, Ying; Sette, Alessandro; Bourne, Philip E.; Lund, Ole; Ponomarenko, Julia; Nielsen, Morten; Peters, Bjoern

    2010-01-01

    Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined, but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results together in order to support the notion that generating structure based predictions of peptide:MHC binding without using binding data is unlikely to give satisfactory results. PMID:20174654

  16. Human antimicrobial peptides and proteins.

    PubMed

    Wang, Guangshun

    2014-05-13

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat

  17. Human Antimicrobial Peptides and Proteins

    PubMed Central

    Wang, Guangshun

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to

  18. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    SciTech Connect

    York, Roger L.

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal. Upon comparison of

  19. Unifying protein inference and peptide identification with feedback to update consistency between peptides.

    PubMed

    Shi, Jinhong; Chen, Bolin; Wu, Fang-Xiang

    2013-01-01

    We first propose a new method to process peptide identification reports from databases search engines. Then via it we develop a method for unifying protein inference and peptide identification by adding a feedback from protein inference to peptide identification. The feedback information is a list of high-confidence proteins, which is used to update an adjacency matrix between peptides. The adjacency matrix is used in the regularization of peptide scores. Logistic regression (LR) is used to compute the probability of peptide identification with the regularized scores. Protein scores are then calculated with the LR probability of peptides. Instead of selecting the best peptide match for each MS/MS, we select multiple peptides. By testing on two datasets, the results have shown that the proposed method can robustly assign accurate probabilities to peptides, and have a higher discrimination power than PeptideProphet to distinguish correct and incorrect identified peptides. Additionally, not only can our method infer more true positive proteins but also infer less false positive proteins than ProteinProphet at the same false positive rate. The coverage of inferred proteins is also significantly increased due to the selection of multiple peptides for each MS/MS and the improvement of their scores by the feedback from the inferred proteins.

  20. Peptides on phage: a vast library of peptides for identifying ligands.

    PubMed Central

    Cwirla, S E; Peters, E A; Barrett, R W; Dower, W J

    1990-01-01

    We have constructed a vast library of peptides for finding compounds that bind to antibodies and other receptors. Millions of different hexapeptides were expressed at the N terminus of the adsorption protein (pIII) of fd phage. The vector fAFF1, derived from the tetracycline resistance-transducing vector fd-tet, allows cloning of oligonucleotides in a variety of locations in the 5' region of gene III. A library of 3 x 10(8) recombinants was generated by cloning randomly synthesized oligonucleotides. The library was screened for high-avidity binding to a monoclonal antibody (3-E7) that is specific for the N terminus of beta-endorphin (Tyr-Gly-Gly-Phe). Fifty-one clones selected by three rounds of the affinity purification technique called panning were sequenced and found to differ from previously known ligands for this antibody. The striking finding is that all 51 contained tyrosine as the N-terminal residue and that 48 contained glycine as the second residue. The binding affinities of six chemically synthesized hexapeptides from this set range from 0.35 microM (Tyr-Gly-Phe-Trp-Gly-Met) to 8.3 microM (Tyr-Ala-Gly-Phe-Ala-Gln), compared with 7.1 nM for a known high-affinity ligand (Tyr-Gly-Gly-Phe-Leu). These results show that ligands can be identified with no prior information concerning antibody specificity. Peptide libraries are also likely to be useful in finding ligands that bind to other classes of receptors and in discovering pharmacologic agents. Images PMID:2201029

  1. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs.

    PubMed

    Cherkasov, Artem; Hilpert, Kai; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Mullaly, Sarah C; Volkmer, Rudolf; Hancock, Robert E W

    2009-01-16

    Increased multiple antibiotic resistance in the face of declining antibiotic discovery is one of society's most pressing health issues. Antimicrobial peptides represent a promising new class of antibiotics. Here we ask whether it is possible to make small broad spectrum peptides employing minimal assumptions, by capitalizing on accumulating chemical biology information. Using peptide array technology, two large random 9-amino-acid peptide libraries were iteratively created using the amino acid composition of the most active peptides. The resultant data was used together with Artificial Neural Networks, a powerful machine learning technique, to create quantitative in silico models of antibiotic activity. On the basis of random testing, these models proved remarkably effective in predicting the activity of 100,000 virtual peptides. The best peptides, representing the top quartile of predicted activities, were effective against a broad array of multidrug-resistant "Superbugs" with activities that were equal to or better than four highly used conventional antibiotics, more effective than the most advanced clinical candidate antimicrobial peptide, and protective against Staphylococcus aureus infections in animal models.

  2. Synthesis of peptide .alpha.-thioesters

    DOEpatents

    Camarero, Julio A.; Mitchell, Alexander R.; De Yoreo, James J.

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  3. Peptide YY receptors in the brain

    SciTech Connect

    Inui, A.; Oya, M.; Okita, M.; Inoue, T.; Sakatani, N.; Morioka, H.; Shii, K.; Yokono, K.; Mizuno, N.; Baba, S.

    1988-01-15

    Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site.

  4. Cryptic Peptides from Collagen: A Critical Review.

    PubMed

    Banerjee, Pradipta; Shanthi, C

    2016-01-01

    Collagen, a predominant structural protein in extracellular matrix (ECM), is now considered to have probable roles in many biological activities and hence, in different forms have found application as nutraceutical or pharmaceutical therapy option. Many of the biological properties are believed to be due to small hidden peptide residues in the collagen molecules, which come into play after the biodegradation or biosorption of the parent molecule. These peptide regions are called cryptic peptides or by some, as cryptides. The proteolytic hydrolysis of the ECM protein releases the cryptic peptides with many novel biological activities not exhibited directly by the parental protein which include angiogenic, antimicrobial, mitogenic and chemotactic properties. The research for understanding the role of these cryptic peptide regions and making use of them in medical field is very active. Such an understanding could lead to the development of peptide supplements for many biomedical applications. The prolific research in this area is reviewed in this paper. PMID:27173646

  5. A novel bioactive peptide from wasp venom

    PubMed Central

    Chen, Lingling; Chen, Wenlin; Yang, Hailong; Lai, Ren

    2010-01-01

    Wasp venoms contain a number of pharmacologically active biomolecules, undertaking a wide range of functions necessary for the wasp's survival. We purified and characterized a novel bioactive peptide (vespin) from the venoms of Vespa magnifica (Smith) wasps with unique primary structure. Its amino acid sequence was determined to be CYQRRVAITAGGLKHRLMSSLIIIIIIRINYLRDNSVIILESSY. It has 44 residues including 15 leucines or isoleucines (32%) in the sequence. Vespin showed contractile activity on isolated ileum smooth muscle. The cDNA encoding vespin precursor was cloned from the cDNA library of the venomous glands. The precursor consists of 67 amino acid residues including the predicted signal peptide and mature vespin. A di-basic enzymatic processing site (-KR-) is located between the signal peptide and the mature peptide. Vespin did not show similarity with any known proteins or peptides by BLAST search, suggesting it is a novel bioactive peptide from wasp venoms. PMID:21544181

  6. Anti-angiogenic peptides for cancer therapeutics.

    PubMed

    Rosca, Elena V; Koskimaki, Jacob E; Rivera, Corban G; Pandey, Niranjan B; Tamiz, Amir P; Popel, Aleksander S

    2011-08-01

    Peptides have emerged as important therapeutics that are being rigorously tested in angiogenesis-dependent diseases due to their low toxicity and high specificity. Since the discovery of endogenous proteins and protein fragments that inhibit microvessel formation (thrombospondin, endostatin) several peptides have shown promise in pre-clinical and clinical studies for cancer. Peptides have been derived from thrombospondin, collagens, chemokines, coagulation cascade proteins, growth factors, and other classes of proteins and target different receptors. Here we survey recent developments for anti-angiogenic peptides with length not exceeding 50 amino acid residues that have shown activity in pre-clinical models of cancer or have been tested in clinical trials; some of the peptides have been modified and optimized, e.g., through L-to-D and non-natural amino acid substitutions. We highlight technological advances in peptide discovery and optimization including computational and bioinformatics tools and novel experimental techniques.

  7. Synthesis and screening of support-bound combinatorial peptide libraries with free C-termini: determination of the sequence specificity of PDZ domains.

    PubMed

    Joo, Sang Hoon; Pei, Dehua

    2008-03-01

    Preparation of support-bound combinatorial peptide libraries with free C-termini has been challenging in the past because solid-phase peptide synthesis usually starts from the C-terminus, which must be covalently attached to the solid support. In this work, we have developed a general methodology to synthesize and screen one-bead-one-compound peptide libraries containing free C-termini. TentaGel microbeads (90 mum) were spatially segregated into outer and inner layers, and peptides were synthesized on the beads in the conventional C --> N manner, with their C-termini attached to the support through an ester linkage on the bead surface but through an amide bond in the bead interior. The surface peptides were cyclized between their N-terminal amine and a carboxyl group installed at a C-terminal linker sequence, while the internal peptides were kept in the linear form. Base hydrolysis of the ester linkage in the cyclic peptides regenerated linear peptides that contained a free alpha-carboxyl group at their C-termini but remained covalently attached to the resin via the N-termini ("inverted" peptides). An inverted peptide library containing five random residues (theoretical diversity of 3.2 x 10 (6)) was synthesized and screened for binding to four postsynaptic density-95/discs large/zona occluden-1 (PDZ) domains of sodium-hydrogen exchanger regulatory factor-1 (NHERF1) and channel-interacting PDZ domain protein (CIPP). The identity of the binding peptides was determined by sequencing the linear encoding peptides inside the bead by partial Edman degradation/mass spectrometry. Consensus recognition motifs were identified for the PDZ domains, and representative peptides were resynthesized and confirmed for binding to their cognate PDZ domains. This method should be generally applicable to all PDZ domains as well as other protein domains and enzymes that recognize the C-terminus of their target proteins.

  8. Use of Galerina marginata genes and proteins for peptide production

    DOEpatents

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  9. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    PubMed

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts.

  10. Effective delivery of a rationally designed intracellular peptide drug with gold nanoparticle-peptide hybrids

    NASA Astrophysics Data System (ADS)

    Lee, Daiyoon; Zhao, Jinbo; Yang, Hong; Xu, Shuyun; Kim, Hyunhee; Pacheco, Shaun; Keshavjee, Shaf; Liu, Mingyao

    2015-07-01

    A novel gold nanoparticle-peptide hybrid strategy was developed to intracellularly deliver a potent PKCδ inhibitor peptide for the treatment of acute lung injury. The gold nanoparticle-peptide hybrids showed good stability with high uptake, and demonstrated in vitro and in vivo efficacy. Our formulation strategy shows great promise in intracellular delivery of peptides.A novel gold nanoparticle-peptide hybrid strategy was developed to intracellularly deliver a potent PKCδ inhibitor peptide for the treatment of acute lung injury. The gold nanoparticle-peptide hybrids showed good stability with high uptake, and demonstrated in vitro and in vivo efficacy. Our formulation strategy shows great promise in intracellular delivery of peptides. Electronic supplementary information (ESI) available: Materials and methods section and additional experiments to support the results in the main text. See DOI: 10.1039/c5nr02377g

  11. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides

    PubMed Central

    Mulder, Kelly C. L.; Lima, Loiane A.; Miranda, Vivian J.; Dias, Simoni C.; Franco, Octávio L.

    2013-01-01

    Cationic antimicrobial peptides (AMPs) and host defense peptides (HDPs) show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their biochemical features, selectivity against extra targets, and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the current scenario for production and the use of nanotechnology as delivery tool for both classes of cationic peptides, as well as the perspectives on improving them is considered. PMID:24198814

  12. Insect inducible antimicrobial peptides and their applications.

    PubMed

    Ezzati-Tabrizi, Reyhaneh; Farrokhi, Naser; Talaei-Hassanloui, Reza; Alavi, Seyed Mehdi; Hosseininaveh, Vahid

    2013-12-01

    Antimicrobial peptides (AMPs) are found as important components of the innate immune system (host defense) of all invertebrates. These peptides can be constitutively expressed or induced in response to microbial infections. Indeed, they vary in their amino acid sequences, potency and antimicrobial activity spectra. The smaller AMPs act greatly by disrupting the structure or function of microbial cell membranes. Here, the insect innate immune system with emphasis on inducible antimicrobial peptide properties against microbial invaders has been discussed.

  13. Salt-resistant short antimicrobial peptides.

    PubMed

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  14. Random quantum operations

    NASA Astrophysics Data System (ADS)

    Bruzda, Wojciech; Cappellini, Valerio; Sommers, Hans-Jürgen; Życzkowski, Karol

    2009-01-01

    We define a natural ensemble of trace preserving, completely positive quantum maps and present algorithms to generate them at random. Spectral properties of the superoperator Φ associated with a given quantum map are investigated and a quantum analogue of the Frobenius-Perron theorem is proved. We derive a general formula for the density of eigenvalues of Φ and show the connection with the Ginibre ensemble of real non-symmetric random matrices. Numerical investigations of the spectral gap imply that a generic state of the system iterated several times by a fixed generic map converges exponentially to an invariant state.

  15. Random walks on networks

    NASA Astrophysics Data System (ADS)

    Donnelly, Isaac

    Random walks on lattices are a well used model for diffusion on continuum. They have been to model subdiffusive systems, systems with forcing and reactions as well as a combination of the three. We extend the traditional random walk framework to the network to obtain novel results. As an example due to the small graph diameter, the early time behaviour of subdiffusive dynamics dominates the observed system which has implications for models of the brain or airline networks. I would like to thank the Australian American Fulbright Association.

  16. Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library.

    PubMed

    Rhaiem, Rafik Ben; Houimel, Mehdi

    2016-07-01

    Cutaneous leishmaniasis (CL) is a global problem caused by intracellular protozoan pathogens of the genus Leishmania for which there are no suitable vaccine or chemotherapy options. Thus, de novo identification of small molecules binding to the Leishmania parasites by direct screening is a promising and appropriate alternative strategy for the development of new drugs. In this study, we used a random linear hexapeptide library fused to the gene III protein of M13 filamentous bacteriophage to select binding peptides to metacyclic promastigotes from a highly virulent strain of Leishmania major (Zymodeme MON-25; MHOM/TN/94/GLC94). After four rounds of stringent selection and amplification, polyclonal and monoclonal phage-peptides directed against L. major metacyclic promastigotes were assessed by ELISA, and the optimal phage-peptides were grown individually and characterized for binding to L. major by monoclonal phage ELISA. The DNA of 42 phage-peptides clones was amplified by PCR, sequenced, and their amino acid sequences deduced. Six different peptide sequences were obtained with frequencies of occurrence ranging from 2.3% to 85.7%. The biological effect of the peptides was assessed in vitro on human monocytes infected with L. major metacyclic promastigotes, and in vivo on susceptible parasite-infected BALB/c mice. The development of cutaneous lesions in the right hind footpads of infected mice after 13 weeks post-infection showed a protection rate of 81.94% with the injected peptide P2. Moreover, Western blots revealed that the P2 peptide interacted with the major surface protease gp63, a protein of 63kDa molecular weight. Moreover, bioinformatics were used to predict the interaction between peptides and the major surface molecule of the L. major. The molecular docking showed that the P2 peptide has the minimum interaction energy and maximum shape complimentarity with the L. major gp63 active site. Our study demonstrated that the P2 peptide occurs at high frequency

  17. Modulation of autoimmunity with artificial peptides

    PubMed Central

    La Cava, Antonio

    2010-01-01

    The loss of immune tolerance to self antigens leads to the development of autoimmune responses. Since self antigens are often multiple and/or their sequences may not be known, one approach to restore immune tolerance uses synthetic artificial peptides that interfere or compete with self peptides in the networks of cellular interactions that drive the autoimmune process. This review describes the rationale behind the use of artificial peptides in autoimmunity and their mechanisms of action. Examples of use of artificial peptides in preclinical studies and in the management of human autoimmune diseases are provided. PMID:20807590

  18. Neuroprotective peptides fused to arginine-rich cell penetrating peptides: Neuroprotective mechanism likely mediated by peptide endocytic properties.

    PubMed

    Meloni, Bruno P; Milani, Diego; Edwards, Adam B; Anderton, Ryan S; O'Hare Doig, Ryan L; Fitzgerald, Melinda; Palmer, T Norman; Knuckey, Neville W

    2015-09-01

    Several recent studies have demonstrated that TAT and other arginine-rich cell penetrating peptides (CPPs) have intrinsic neuroprotective properties in their own right. Examples, we have demonstrated that in addition to TAT, poly-arginine peptides (R8 to R18; containing 8-18 arginine residues) as well as some other arginine-rich peptides are neuroprotective in vitro (in neurons exposed to glutamic acid excitotoxicity and oxygen glucose deprivation) and in the case of R9 in vivo (after permanent middle cerebral artery occlusion in the rat). Based on several lines of evidence, we propose that this neuroprotection is related to the peptide's endocytosis-inducing properties, with peptide charge and arginine residues being critical factors. Specifically, we propose that during peptide endocytosis neuronal cell surface structures such as ion channels and transporters are internalised, thereby reducing calcium influx associated with excitotoxicity and other receptor-mediated neurodamaging signalling pathways. We also hypothesise that a peptide cargo can act synergistically with TAT and other arginine-rich CPPs due to potentiation of the CPPs endocytic traits rather than by the cargo-peptide acting directly on its supposedly intended intracellular target. In this review, we systematically consider a number of studies that have used CPPs to deliver neuroprotective peptides to the central nervous system (CNS) following stroke and other neurological disorders. Consequently, we critically review evidence that supports our hypothesis that neuroprotection is mediated by carrier peptide endocytosis. In conclusion, we believe that there are strong grounds to regard arginine-rich peptides as a new class of neuroprotective molecules for the treatment of a range of neurological disorders.

  19. Sex-peptides: seminal peptides of the Drosophila male.

    PubMed

    Kubli, E

    2003-08-01

    Mating affects the reproductive behaviour of insect females: the egg-laying rate increases and courting males are rejected. These post-mating responses are induced mainly by seminal fluid. In Drosophila melanogaster, males transfer two peptides (sex-peptides, = Sps) that reduce receptivity and elicit increased egg laying in their mating partners. Similarities in the open reading frames of the genes suggest that they have arisen by gene duplication. In females, Sps bind to specific sites in the central and peripheral nervous system, and to the genital tract. The binding proteins of the nervous system and genital tract are membrane proteins, but they differ molecularly. The former protein is proposed to be a receptor located at the top of a signalling cascade leading to the two post-mating responses, whereas the latter is a carrier protein moving Sps from the genital tract into the haemolymph. Sps bind to sperm. Together with sperm they are responsible for the persistence of the two post-mating responses. But Sps are the molecular basis of the sperm effect; sperm is merely the carrier. PMID:14504657

  20. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst

    PubMed Central

    Hermann, Clemens; van Hateren, Andy; Trautwein, Nico; Neerincx, Andreas; Duriez, Patrick J; Stevanović, Stefan; Trowsdale, John; Deane, Janet E; Elliott, Tim; Boyle, Louise H

    2015-01-01

    Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can catalyse the dissociation of peptides from peptide-MHC I complexes, enhance the loading of peptide-receptive MHC I molecules, and discriminate between peptides based on affinity in vitro. In cells, the depletion of TAPBPR increased the diversity of peptides presented on MHC I molecules, suggesting that TAPBPR is involved in restricting peptide presentation. Our results suggest TAPBPR binds to MHC I in a peptide-receptive state and, like tapasin, works to enhance peptide optimisation. It is now clear there are two MHC class I specific peptide editors, tapasin and TAPBPR, intimately involved in controlling peptide presentation to the immune system. DOI: http://dx.doi.org/10.7554/eLife.09617.001 PMID:26439010

  1. Peptide reranking with protein-peptide correspondence and precursor peak intensity information.

    PubMed

    Yang, Chao; He, Zengyou; Yang, Can; Yu, Weichuan

    2012-01-01

    Searching tandem mass spectra against a protein database has been a mainstream method for peptide identification. Improving peptide identification results by ranking true Peptide-Spectrum Matches (PSMs) over their false counterparts leads to the development of various reranking algorithms. In peptide reranking, discriminative information is essential to distinguish true PSMs from false PSMs. Generally, most peptide reranking methods obtain discriminative information directly from database search scores or by training machine learning models. Information in the protein database and MS1 spectra (i.e., single stage MS spectra) is ignored. In this paper, we propose to use information in the protein database and MS1 spectra to rerank peptide identification results. To quantitatively analyze their effects to peptide reranking results, three peptide reranking methods are proposed: PPMRanker, PPIRanker, and MIRanker. PPMRanker only uses Protein-Peptide Map (PPM) information from the protein database, PPIRanker only uses Precursor Peak Intensity (PPI) information, and MIRanker employs both PPM information and PPI information. According to our experiments on a standard protein mixture data set, a human data set and a mouse data set, PPMRanker and MIRanker achieve better peptide reranking results than PetideProphet, PeptideProphet+NSP (number of sibling peptides) and a score regularization method SRPI. The source codes of PPMRanker, PPIRanker, and MIRanker, and all supplementary documents are available at our website: http://bioinformatics.ust.hk/pepreranking/. Alternatively, these documents can also be downloaded from: http://sourceforge.net/projects/pepreranking/.

  2. Nucleation Effects in Peptide Foldamers

    PubMed Central

    Patgiri, Anupam; Joy, Stephen T.; Arora, Paramjit S.

    2012-01-01

    Oligomers composed of β3-amino acid residues and a mixture of α- and β3-residues have emerged as proteolytically stable structural mimics of α-helices. An attractive feature of these oligomers is that they adopt defined conformations in short sequences. In this manuscript, we evaluate the impact of β3-residues as compared to their α-amino acid analogs in prenucleated helices. Our hydrogen-deuterium exchange results suggest that heterogeneous sequences composed of “αααβ” repeats are conformationally more rigid than the corresponding homogeneous α-peptide helices, with the macrocycle templating the helical conformation having a significant influence. PMID:22715982

  3. Gabapentin hybrid peptides and bioconjugates.

    PubMed

    Lebedyeva, Iryna O; Ostrov, David A; Neubert, John; Steel, Peter J; Patel, Kunal; Sileno, Sean M; Goncalves, Kevin; Ibrahim, Mohamed A; Alamry, Khalid A; Katritzky, Alan R

    2014-02-15

    Synthetic approaches to gabapentin bioconjugates that overcome the tendency of gabapentin to cyclize into its γ-lactam are studied. Gabapentin was converted by N-acylation at its N-terminus into di-, tri-, and tetrapeptides (L-Ala-Gbp, L-Val-Gbp, L-Ala-L-Phe-Gbp, Gly-L-Ala-β-Ala-Gbp). Carboxyl-activated Boc-protected gabapentin was used to N-, O-, and S-acylate small peptides and hormones to give conjugates that could also provide prodrugs containing conformationally constrained gabapentin units.

  4. PGx: Putting Peptides to BED.

    PubMed

    Askenazi, Manor; Ruggles, Kelly V; Fenyö, David

    2016-03-01

    Every molecular player in the cast of biology's central dogma is being sequenced and quantified with increasing ease and coverage. To bring the resulting genomic, transcriptomic, and proteomic data sets into coherence, tools must be developed that do not constrain data acquisition and analytics in any way but rather provide simple links across previously acquired data sets with minimal preprocessing and hassle. Here we present such a tool: PGx, which supports proteogenomic integration of mass spectrometry proteomics data with next-generation sequencing by mapping identified peptides onto their putative genomic coordinates.

  5. Randomness Of Amoeba Movements

    NASA Astrophysics Data System (ADS)

    Hashiguchi, S.; Khadijah, Siti; Kuwajima, T.; Ohki, M.; Tacano, M.; Sikula, J.

    2005-11-01

    Movements of amoebas were automatically traced using the difference between two successive frames of the microscopic movie. It was observed that the movements were almost random in that the directions and the magnitudes of the successive two steps are not correlated, and that the distance from the origin was proportional to the square root of the step number.

  6. Random lasers ensnared

    NASA Astrophysics Data System (ADS)

    Leonetti, Marco; López, Cefe

    2012-06-01

    A random laser is formed by a haphazard assembly of nondescript optical scatters with optical gain. Multiple light scattering replaces the optical cavity of traditional lasers and the interplay between gain, scattering and size determines its unique properties. Random lasers studied till recently, consisted of irregularly shaped or polydisperse scatters, with some average scattering strength constant across the gain frequency band. Photonic glasses can sustain scattering resonances that can be placed in the gain window, since they are formed by monodisperse spheres [1]. The unique resonant scattering of this novel material allows controlling the lasing color via the diameter of the particles and their refractive index. Thus a random laser with a priori set lasing peak can be designed [2]. A special pumping scheme that enables to select the number of activated modes in a random laser permits to prepare RLs in two distinct regimes by controlling directionality through the shape of the pump [3]. When pumping is essentially unidirectional, few (barely interacting) modes are turned on that show as sharp, uncorrelated peaks in the spectrum. By increasing angular span of the pump beams, many resonances intervene generating a smooth emission spectrum with a high degree of correlation, and shorter lifetime. These are signs of a phaselocking transition, in which phases are clamped together so that modes oscillate synchronously.

  7. Generating "Random" Integers

    ERIC Educational Resources Information Center

    Griffiths, Martin

    2011-01-01

    One of the author's undergraduate students recently asked him whether it was possible to generate a random positive integer. After some thought, the author realised that there were plenty of interesting mathematical ideas inherent in her question. So much so in fact, that the author decided to organise a workshop, open both to undergraduates and…

  8. Contouring randomly spaced data

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Morris, W. D.; Hamm, R. W.

    1977-01-01

    Computer program using triangulation contouring technique contours data points too numerous to fit into rectangular grid. Using random access procedures, program can handle up to 56,000 data points and provides up to 20 contour intervals for multiple number of parameters.

  9. Uniform random number generators

    NASA Technical Reports Server (NTRS)

    Farr, W. R.

    1971-01-01

    Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

  10. Randomization and sampling issues

    USGS Publications Warehouse

    Geissler, P.H.

    1996-01-01

    The need for randomly selected routes and other sampling issues have been debated by the Amphibian electronic discussion group. Many excellent comments have been made, pro and con, but we have not reached consensus yet. This paper brings those comments together and attempts a synthesis. I hope that the resulting discussion will bring us closer to a consensus.

  11. The ornithine transcarbamylase leader peptide directs mitochondrial import through both its midportion structure and net positive charge

    PubMed Central

    1987-01-01

    The cytoplasmically synthesized precursor of the mitochondrial matrix enzyme, ornithine transcarbamylase (OTC), is targeted to mitochondria by its NH2-terminal leader peptide. We previously established through mutational analysis that the midportion of the OTC leader peptide is functionally required. In this article, we report that study of additional OTC precursors, altered in either a site-directed or random manner, reveals that (a) the midportion, but not the NH2-terminal half, is sufficient by itself to direct import, (b) the functional structure in the midportion is unlikely to be an amphiphilic alpha-helix, (c) the four arginines in the leader peptide contribute collectively to import function by conferring net positive charge, and (d) surprisingly, proteolytic processing of the leader peptide does not require the presence of a specific primary structure at the site of cleavage, in order to produce the mature OTC subunit. PMID:3624306

  12. Structural insights into Cn-AMP1, a short disulfide-free multifunctional peptide from green coconut water.

    PubMed

    Santana, Mábio J; de Oliveira, Aline L; Queiroz Júnior, Luiz H K; Mandal, Santi M; Matos, Carolina O; Dias, Renata de O; Franco, Octavio L; Lião, Luciano M

    2015-02-27

    Multifunctional and promiscuous antimicrobial peptides (AMPs) can be used as an efficient strategy to control pathogens. However, little is known about the structural properties of plant promiscuous AMPs without disulfide bonds. CD and NMR were used to elucidate the structure of the promiscuous peptide Cn-AMP1, a disulfide-free peptide isolated from green coconut water. Data here reported shows that peptide structure is transitory and could be different according to the micro-environment. In this regard, Cn-AMP1 showed a random coil in a water environment and an α-helical structure in the presence of SDS-d25 micelles. Moreover, deuterium exchange experiments showed that Gly4, Arg5 and Met9 residues are less accessible to solvent, suggesting that flexibility and cationic charges seem to be essential for Cn-AMP1 multiple activities.

  13. Stimulating Myocardial Regeneration with Periostin Peptide in Large Mammals Improves Function Post-Myocardial Infarction but Increases Myocardial Fibrosis

    PubMed Central

    Ladage, Dennis; Yaniz-Galende, Elisa; Rapti, Kleopatra; Ishikawa, Kiyotake; Tilemann, Lisa; Shapiro, Scott; Takewa, Yoshiaki; Muller-Ehmsen, Jochen; Schwarz, Martin; Garcia, Mario J.; Sanz, Javier; Hajjar, Roger J.; Kawase, Yoshiaki

    2013-01-01

    Aims Mammalian myocardium has a finite but limited capacity to regenerate. Experimentally stimulating proliferation of cardiomyocytes with extracellular regeneration factors like periostin enhances cardiac repair in rodents. The aim of this study was to develop a safe method for delivering regeneration factors to the heart and to test the functional and structural effects of periostin peptide treatment in a large animal model of myocardial infarction (MI). Methods and Results We developed a controlled release system to deliver recombinant periostin peptide into the pericardial space. A single application of this method was performed two days after experimental MI in swine. Animals were randomly assigned to receive either saline or periostin peptide. Experimental groups were compared at baseline, day 2, 1 month and 3 months. Treatment with periostin peptide increased the EF from 31% to 41% and decreased by 22% the infarct size within 12 weeks. Periostin peptide-treated animals had newly formed myocardium strips within the infarct scar, leading to locally improved myocardial function. In addition the capillary density was increased in animals receiving periostin. However, periostin peptide treatment increased myocardial fibrosis in the remote region at one week and 12 weeks post-treatment. Conclusion Our study shows that myocardial regeneration through targeted peptides is possible. However, in the case of periostin the effects on cardiac fibrosis may limit its clinical application as a viable therapeutic strategy. PMID:23700403

  14. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site

    PubMed Central

    Kurcinski, Mateusz; Jamroz, Michal; Blaszczyk, Maciej; Kolinski, Andrzej; Kmiecik, Sebastian

    2015-01-01

    Protein–peptide interactions play a key role in cell functions. Their structural characterization, though challenging, is important for the discovery of new drugs. The CABS-dock web server provides an interface for modeling protein–peptide interactions using a highly efficient protocol for the flexible docking of peptides to proteins. While other docking algorithms require pre-defined localization of the binding site, CABS-dock does not require such knowledge. Given a protein receptor structure and a peptide sequence (and starting from random conformations and positions of the peptide), CABS-dock performs simulation search for the binding site allowing for full flexibility of the peptide and small fluctuations of the receptor backbone. This protocol was extensively tested over the largest dataset of non-redundant protein–peptide interactions available to date (including bound and unbound docking cases). For over 80% of bound and unbound dataset cases, we obtained models with high or medium accuracy (sufficient for practical applications). Additionally, as optional features, CABS-dock can exclude user-selected binding modes from docking search or to increase the level of flexibility for chosen receptor fragments. CABS-dock is freely available as a web server at http://biocomp.chem.uw.edu.pl/CABSdock. PMID:25943545

  15. On Random Numbers and Design

    ERIC Educational Resources Information Center

    Ben-Ari, Morechai

    2004-01-01

    The term "random" is frequently used in discussion of the theory of evolution, even though the mathematical concept of randomness is problematic and of little relevance in the theory. Therefore, since the core concept of the theory of evolution is the non-random process of natural selection, the term random should not be used in teaching the…

  16. Helix unfolding in unsolvated peptides.

    PubMed

    Kinnear, B S; Hartings, M R; Jarrold, M F

    2001-06-20

    The conformations of unsolvated Ac-K(AGG)(5)+H(+) and Ac-(AGG)(5)K+H(+) peptides (Ac = acetyl, A = alanine, G = glycine, and K = lysine) have been examined by ion mobility measurements over a wide temperature range (150-410 K). The Ac-K(AGG)(5)+H(+) peptide remains a globule (a compact, roughly spherical structure) over the entire temperature range, while both an alpha-helix and a globule are found for Ac-(AGG)(5)K+H(+) at low temperature. As the temperature is raised the alpha-helix unfolds. Rate constants for loss of the helix (on a millisecond time scale) have been determined as a function of temperature and yield an Arrhenius activation energy and preexponential factor of 38.2 +/- 1.0 kJ mol(-1) and 6.5 +/- 3.7 x 10(9) s(-1), respectively. The alpha-helix apparently does not unfold directly into the globule, but first converts into a long-lived intermediate which survives to a significantly higher temperature before converting. According to molecular dynamics simulations, there is a partially untwisted helical conformation that has both a low energy and a well-defined geometry. This special structure lies between the helix and globule and may be the long-lived intermediate. PMID:11403597

  17. Antimicrobial Properties of Amyloid Peptides

    PubMed Central

    Kagan, Bruce L.; Jang, Hyunbum; Capone, Ricardo; Arce, Fernando Teran; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2011-01-01

    More than two dozen clinical syndromes known as amyloid diseases are characterized by the buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining deposits known as amyloids exhibit a characteristic green birefringence and cross-β structure. Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the pathogenesis of these chronic disease states. A growing body of data has suggested that these toxic species form ion channels in cellular membranes causing disruption of calcium homeostasis, membrane depolarization, energy drainage, and in some cases apoptosis. Amyloid peptide channels exhibit a number of common biological properties including the universal U-shape β-strand-turn-β-strand structure, irreversible and spontaneous insertion into membranes, production of large heterogeneous single-channel conductances, relatively poor ion selectivity, inhibition by Congo red, and channel blockade by zinc. Recent evidence has suggested that increased amounts of amyloids are not only toxic to its host target cells but also possess antimicrobial activity. Furthermore, at least one human antimicrobial peptide, protegrin-1, which kills microbes by a channel-forming mechanism, has been shown to possess the ability to form extended amyloid fibrils very similar to those of classic disease-forming amyloids. In this paper, we will review the reported antimicrobial properties of amyloids and the implications of these discoveries for our understanding of amyloid structure and function. PMID:22081976

  18. Combination Effects of Antimicrobial Peptides

    PubMed Central

    Yu, Guozhi; Baeder, Desiree Y.; Regoes, Roland R.

    2016-01-01

    Antimicrobial peptides (AMPs) are ancient and conserved across the tree of life. Their efficacy over evolutionary time has been largely attributed to their mechanisms of killing. Yet, the understanding of their pharmacodynamics both in vivo and in vitro is very limited. This is, however, crucial for applications of AMPs as drugs and also informs the understanding of the action of AMPs in natural immune systems. Here, we selected six different AMPs from different organisms to test their individual and combined effects in vitro. We analyzed their pharmacodynamics based on the Hill function and evaluated the interaction of combinations of two and three AMPs. Interactions of AMPs in our study were mostly synergistic, and three-AMP combinations displayed stronger synergism than two-AMP combinations. This suggests synergism to be a common phenomenon in AMP interaction. Additionally, AMPs displayed a sharp increase in killing within a narrow dose range, contrasting with those of antibiotics. We suggest that our results could lead a way toward better evaluation of AMP application in practice and shed some light on the evolutionary consequences of antimicrobial peptide interactions within the immune system of organisms. PMID:26729502

  19. B-Type allatostatins and sex peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many species, mating induces a number of behavioral changes in the female. For Drosophila melanogaster, the sex peptide (SP) has been identified as the main molecular factor behind these responses. Recently, the sex peptide receptor (SPR), a GPCR activated by SP has also been characterized as res...

  20. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    PubMed

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions.

  1. Peptidomic Identification of Serum Peptides Diagnosing Preeclampsia

    PubMed Central

    Wu, Shuaibin; Stevenson, David K.; Sheng, Guojun; Butte, Atul J.; Ling, Xuefeng B.

    2013-01-01

    We sought to identify serological markers capable of diagnosing preeclampsia (PE). We performed serum peptide analysis (liquid chromatography mass spectrometry) of 62 unique samples from 31 PE patients and 31 healthy pregnant controls, with two-thirds used as a training set and the other third as a testing set. Differential serum peptide profiling identified 52 significant serum peptides, and a 19-peptide panel collectively discriminating PE in training sets (n = 21 PE, n = 21 control; specificity = 85.7% and sensitivity = 100%) and testing sets (n = 10 PE, n = 10 control; specificity = 80% and sensitivity = 100%). The panel peptides were derived from 6 different protein precursors: 13 from fibrinogen alpha (FGA), 1 from alpha-1-antitrypsin (A1AT), 1 from apolipoprotein L1 (APO-L1), 1 from inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), 2 from kininogen-1 (KNG1), and 1 from thymosin beta-4 (TMSB4). We concluded that serum peptides can accurately discriminate active PE. Measurement of a 19-peptide panel could be performed quickly and in a quantitative mass spectrometric platform available in clinical laboratories. This serum peptide panel quantification could provide clinical utility in predicting PE or differential diagnosis of PE from confounding chronic hypertension. PMID:23840341

  2. [Application on food preservative of antimicrobial peptides].

    PubMed

    Zhao, Hongyan; Mu, Yu; Zhao, Baohua

    2009-07-01

    Antimicrobial peptides are an integral component of the innate immune system, it can counteract outer membrane pathogen such as bacteria, fungi, viruses, protozoan and so on. Owing to the sterilization and innocuity, it has the potential to be crude food preservative. In this paper the uses of antibacterial peptides in the food preservative were analyzed.

  3. Constrained Peptides as Miniature Protein Structures

    PubMed Central

    Yin, Hang

    2012-01-01

    This paper discusses the recent developments of protein engineering using both covalent and noncovalent bonds to constrain peptides, forcing them into designed protein secondary structures. These constrained peptides subsequently can be used as peptidomimetics for biological functions such as regulations of protein-protein interactions. PMID:25969758

  4. Peptide Mass Fingerprinting of Egg White Proteins

    ERIC Educational Resources Information Center

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  5. Intracellular transduction using cell-penetrating peptides.

    PubMed

    Sawant, Rupa; Torchilin, Vladimir

    2010-04-01

    Cell penetrating peptides (CPPs), TATp, in particular, has been used widely for intracellular delivery of various agents ranging from small molecules to proteins, peptides, range of pharmaceutical nanocarriers and imaging agents. This review highlights the mechanisms of CPP-mediated delivery and summarizes numerous examples illustrating the potential of CPPs in the fields of biology and medicine. PMID:20237640

  6. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants

    PubMed Central

    2004-01-01

    Cell-surface saccharides of Mycobacterium tuberculosis appear to be crucial factors in tuberculosis pathogenicity and could be useful antigens in tuberculosis immunodiagnosis. In the present study, we report the successful antigenic and immunogenic mimicry of mannose-containing cell-wall compounds of M. tuberculosis by dodecamer peptides identified by phage-display technology. Using a rabbit antiserum raised against M. tuberculosis cell-surface saccharides as a target for biopanning, peptides with three different consensus sequences were identified. Phage-displayed and chemically synthesized peptides bound to the anticarbohydrate antiserum. Rabbit antibodies elicited against the peptide QEPLMGTVPIRAGGGS recognize the mannosylated M. tuberculosis cell-wall antigens arabinomannan and lipoarabinomannan, and the glycosylated recombinant protein alanine/proline-rich antigen. Furthermore, antibodies were also able to react with mannan from Saccharomyces cerevisiae, but not with phosphatidylinositol dimannosides or arabinogalactan from mycobacteria. These results suggest that the immunogenic peptide mimics oligomannosidic epitopes. Interestingly, this report provides evidence that, in contrast with previously known carbohydrate mimotopes, no aromatic residues are necessary in a peptide sequence for mimicking unusual glycoconjugates synthesized by mycobacteria. The possible usefulness of the identified peptide mimotopes as surrogate reagents for immunodiagnosis and for the study of functional roles of the native non-peptide epitopes is discussed. PMID:15560754

  7. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants.

    PubMed

    Gevorkian, Goar; Segura, Erika; Acero, Gonzalo; Palma, José P; Espitia, Clara; Manoutcharian, Karen; López-Marín, Luz M

    2005-04-15

    Cell-surface saccharides of Mycobacterium tuberculosis appear to be crucial factors in tuberculosis pathogenicity and could be useful antigens in tuberculosis immunodiagnosis. In the present study, we report the successful antigenic and immunogenic mimicry of mannose-containing cell-wall compounds of M. tuberculosis by dodecamer peptides identified by phage-display technology. Using a rabbit antiserum raised against M. tuberculosis cell-surface saccharides as a target for biopanning, peptides with three different consensus sequences were identified. Phage-displayed and chemically synthesized peptides bound to the anticarbohydrate antiserum. Rabbit antibodies elicited against the peptide QEPLMGTVPIRAGGGS recognize the mannosylated M. tuberculosis cell-wall antigens arabinomannan and lipoarabinomannan, and the glycosylated recombinant protein alanine/proline-rich antigen. Furthermore, antibodies were also able to react with mannan from Saccharomyces cerevisiae, but not with phosphatidylinositol dimannosides or arabinogalactan from mycobacteria. These results suggest that the immunogenic peptide mimics oligomannosidic epitopes. Interestingly, this report provides evidence that, in contrast with previously known carbohydrate mimotopes, no aromatic residues are necessary in a peptide sequence for mimicking unusual glycoconjugates synthesized by mycobacteria. The possible usefulness of the identified peptide mimotopes as surrogate reagents for immunodiagnosis and for the study of functional roles of the native non-peptide epitopes is discussed.

  8. Secondary structure formation in peptide amphiphile micelles

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew

    2012-02-01

    Peptide amphiphiles (PAs) are capable of self-assembly into micelles for use in the targeted delivery of peptide therapeutics and diagnostics. PA micelles exhibit a structural resemblance to proteins by having folded bioactive peptides displayed on the exterior of a hydrophobic core. We have studied two factors that influence PA secondary structure in micellar assemblies: the length of the peptide headgroup and amino acids closest to the micelle core. Peptide length was systematically varied using a heptad repeat PA. For all PAs the addition of a C12 tail induced micellization and secondary structure. PAs with 9 amino acids formed beta-sheet interactions upon aggregation, whereas the 23 and 30 residue peptides were displayed in an apha-helical conformation. The 16 amino acid PA experienced a structural transition from helix to sheet, indicating that kinetics play a role in secondary structure formation. A p53 peptide was conjugated to a C16 tail via various linkers to study the effect of linker chemistry on PA headgroup conformation. With no linker the p53 headgroup was predominantly alpha helix and a four alanine linker drastically changed the structure of the peptide headgroup to beta-sheet, highlighting the importance of hydrogen boding potential near the micelle core.

  9. Insect Antimicrobial Peptides and Their Applications

    PubMed Central

    Yi, Hui-Yu; Chowdhury, Munmun; Huang, Ya-Dong; Yu, Xiao-Qiang

    2014-01-01

    Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20–50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications. PMID:24811407

  10. Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive pili from first principles.

    PubMed

    Feliciano, Gustavo T; da Silva, Antonio J R; Reguera, Gemma; Artacho, Emilio

    2012-08-01

    The respiration of metal oxides by the bacterium Geobacter sulfurreducens requires the assembly of a small peptide (the GS pilin) into conductive filaments termed pili. We gained insights into the contribution of the GS pilin to the pilus conductivity by developing a homology model and performing molecular dynamics simulations of the pilin peptide in vacuo and in solution. The results were consistent with a predominantly helical peptide containing the conserved α-helix region required for pilin assembly but carrying a short carboxy-terminal random-coiled segment rather than the large globular head of other bacterial pilins. The electronic structure of the pilin was also explored from first principles and revealed a biphasic charge distribution along the pilin and a low electronic HOMO-LUMO gap, even in a wet environment. The low electronic band gap was the result of strong electrostatic fields generated by the alignment of the peptide bond dipoles in the pilin's α-helix and by charges from ions in solution and amino acids in the protein. The electronic structure also revealed some level of orbital delocalization in regions of the pilin containing aromatic amino acids and in spatial regions of high resonance where the HOMO and LUMO states are, which could provide an optimal environment for the hopping of electrons under thermal fluctuations. Hence, the structural and electronic features of the pilin revealed in these studies support the notion of a pilin peptide environment optimized for electron conduction. PMID:22779741

  11. Cn-AMP2 from green coconut water is an anionic anticancer peptide.

    PubMed

    Prabhu, Saurabh; Dennison, Sarah R; Mura, Manuela; Lea, Robert W; Snape, Timothy J; Harris, Frederick

    2014-12-01

    Globally, death due to cancers is likely to rise to over 20 million by 2030, which has created an urgent need for novel approaches to anticancer therapies such as the development of host defence peptides. Cn-AMP2 (TESYFVFSVGM), an anionic host defence peptide from green coconut water of the plant Cocos nucifera, showed anti-proliferative activity against the 1321N1 and U87MG human glioma cell lines with IC50 values of 1.25 and 1.85 mM, respectively. The membrane interactive form of the peptide was found to be an extended conformation, which primarily included β-type structures (levels > 45%) and random coil architecture (levels > 45%). On the basis of these and other data, it is suggested that the short anionic N-terminal sequence (TES) of Cn-AMP2 interacts with positively charged moieties in the cancer cell membrane. Concomitantly, the long hydrophobic C-terminal sequence (YFVFSVGM) of the peptide penetrates the membrane core region, thereby driving the translocation of Cn-AMP2 across the cancer cell membrane to attack intracellular targets and induce anti-proliferative mechanisms. This work is the first to demonstrate that anionic host defence peptides have activity against human glioblastoma, which potentially provides an untapped source of lead compounds for development as novel agents in the treatment of these and other cancers.

  12. Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors.

    PubMed

    Swaney, Danielle L; McAlister, Graeme C; Wirtala, Matthew; Schwartz, Jae C; Syka, John E P; Coon, Joshua J

    2007-01-15

    Electron-transfer dissociation (ETD) delivers the unique attributes of electron capture dissociation to mass spectrometers that utilize radio frequency trapping-type devices (e.g., quadrupole ion traps). The method has generated significant interest because of its compatibility with chromatography and its ability to: (1) preserve traditionally labile post-translational modifications (PTMs) and (2) randomly cleave the backbone bonds of highly charged peptide and protein precursor ions. ETD, however, has shown limited applicability to doubly protonated peptide precursors, [M + 2H]2+, the charge and type of peptide most frequently encountered in "bottom-up" proteomics. Here we describe a supplemental collisional activation (CAD) method that targets the nondissociated (intact) electron-transfer (ET) product species ([M + 2H]+*) to improve ETD efficiency for doubly protonated peptides (ETcaD). A systematic study of supplementary activation conditions revealed that low-energy CAD of the ET product population leads to the near-exclusive generation of c- and z-type fragment ions with relatively high efficiency (77 +/- 8%). Compared to those formed directly via ETD, the fragment ions were found to comprise increased relative amounts of the odd-electron c-type ions (c+*) and the even-electron z-type ions (z+). A large-scale analysis of 755 doubly charged tryptic peptides was conducted to compare the method (ETcaD) to ion trap CAD and ETD. ETcaD produced a median sequence coverage of 89%-a significant improvement over ETD (63%) and ion trap CAD (77%).

  13. A health food high-peptide meal alleviates immunosuppression induced by hydrocortisone and cyclophosphamide in mice.

    PubMed

    Yingjian, Lv; Junming, Huang; Min, Cai; Chenyue, Li; Dachao, Zhang; Yuanhua, Hu; Zhi, Li

    2013-09-01

    This study set out to determine the immunomodulatory effects of a health food high-peptide meal in immunodeficient mice that was induced by either hydrocortisone (HY) or cyclophosphamide (CP). Five separate trials were performed in which animals were randomly divided into 5 groups of 12 mice for each experimental trial. Group 1 served as the vehicle control. Animals assigned to groups 3-5 (dose groups), were each administered once daily with 1.67, 3.33 or 6.67 g kg(-1) body weight of a high-peptide meal, respectively, for 30 consecutive days. Animals from groups 2 to 5 that were included in trials 1 to 4, each received an intramuscular administration of HY at 40 mg kg(-1) body weight on days 22, 24, 26, 28, 30. Animals from groups 2-5, in trial 5, each received an intraperitoneal administration of CP at 50 mg kg(-1) body weight, on days 26 and 27. On day 31, all groups of mice were differentially screened for immunomodulatory activity following the conclusion of the above experiments. In HY-treated mice, the high-peptide meal accelerated the recovery of the phagocytic function of both macrophages and the reticuloendothelial system, and restored NK cell activity. In CP-treated mice, the high-peptide meal promoted a humoral immune response to sheep red blood cells (SRBCs). These results demonstrated the immunomodulatory effects of a high-peptide meal.

  14. The molecular mechanism of interaction between sushi peptide and Pseudomonas endotoxin.

    PubMed

    Li, Peng; Sun, Miao; Wohland, Thorsten; Ho, Bow; Ding, Jeak Ling

    2006-02-01

    Septic shock is caused by Gram-negative bacterial infection. Lipopolysaccharide (LPS) is the bioactive molecule present on the outer membrane of the Gram-negative bacteria. It is generally thought that LPS interacts with sensors on the host cell membrane to activate the intracellular signaling pathway resulting in the overproduction of cytokines such as TNF-alpha. This causes inflammation and ultimately, septic shock. Lipid A is the pharmacophore of the LPS molecule. Thus, developing bio-molecules which are capable of binding LPS at high affinity, especially to the lipid A moiety is an efficient way to neutralize the LPS toxicity. Factor C, a serine protease in the horseshoe crab ameobocytes, is sensitive to trace levels of LPS. We have derived Sushi peptides from the LPS-binding domains of Factor C. Our earlier study showed that the Sushi peptides inhibit LPS-induced septic shock in mice. Here, we demonstrate that the molecular interaction between LPS and Sushi 1 peptide is supported by the hydrophobic interaction between the lipid tail of LPS and Sushi 1 peptide. Furthermore, in the presence of LPS, the peptide transitions from a random structure into an alpha-helical conformation and it disrupts LPS aggregates, hence, neutralizing the LPS toxicity.

  15. Conformational Fine-Tuning of Pore-Forming Peptide Potency and Selectivity

    PubMed Central

    2015-01-01

    To better understand the sequence–structure–function relationships that control the activity and selectivity of membrane-permeabilizing peptides, we screened a peptide library, based on the archetypal pore-former melittin, for loss-of-function variants. This was accomplished by assaying library members for failure to cause leakage of entrapped contents from synthetic lipid vesicles at a peptide-to-lipid ratio of 1:20, 10-fold higher than the concentration at which melittin efficiently permeabilizes the same vesicles. Surprisingly, about one-third of the library members are inactive under these conditions. In the negative peptides, two changes of hydrophobic residues to glycine were especially abundant. We show that loss-of-function activity can be completely recapitulated by a single-residue change of the leucine at position 16 to glycine. Unlike the potently cytolytic melittin, the loss-of-function peptides, including the single-site variant, are essentially inactive against phosphatidylcholine vesicles and multiple types of eukaryotic cells. Loss of function is shown to result from a shift in the binding–folding equilibrium away from the active, bound, α-helical state toward the inactive, unbound, random-coil state. Accordingly, the addition of anionic lipids to synthetic lipid vesicles restored binding, α-helical secondary structure, and potent activity of the “negative” peptides. While nontoxic to mammalian cells, the single-site variant has potent bactericidal activity, consistent with the anionic nature of bacterial membranes. The results show that conformational fine-tuning of helical pore-forming peptides is a powerful way to modulate their activity and selectivity. PMID:26632653

  16. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.

    PubMed

    Gao, Xiang; Zhang, Xiaohong; Song, Jinlin; Xu, Xiao; Xu, Anxiu; Wang, Mengke; Xie, Bingwu; Huang, Enyi; Deng, Feng; Wei, Shicheng

    2015-01-01

    The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering. PMID:26604759

  17. PEP-on-DEP: A competitive peptide-based disposable electrochemical aptasensor for renin diagnostics.

    PubMed

    Biyani, Manish; Kawai, Keiko; Kitamura, Koichiro; Chikae, Miyuki; Biyani, Madhu; Ushijima, Hiromi; Tamiya, Eiichi; Yoneda, Takashi; Takamura, Yuzuru

    2016-10-15

    Antibody-based immunosensors are relatively less accessible to a wide variety of unreachable targets, such as low-molecular-weight biomarkers that represent a rich untapped source of disease-specific diagnostic information. Here, we present a peptide aptamer-based electrochemical sensor technology called 'PEP-on-DEP' to detect less accessible target molecules, such as renin, and to improve the quality of life. Peptide-based aptamers represent a relatively smart class of affinity binders and show great promise in biosensor development. Renin is involved in the regulation of arterial blood pressure and is an emerging biomarker protein for predicting cardiovascular risk and prognosis. To our knowledge, no studies have described aptamer molecules that can be used as new potent probes for renin. Here, we describe a portable electrochemical biosensor platform based on the newly identified peptide aptamer molecules for renin. We constructed a randomized octapeptide library pool with diversified sequences and selected renin specific peptide aptamers using cDNA display technology. We identified a few peptide aptamer sequences with a KD in the µM binding affinity range for renin. Next, we grafted the selected peptide aptamers onto gold nanoparticles and detected renin in a one-step competitive assay using our originally developed DEP (Disposable Electrochemical Printed) chip and a USB powered portable potentiostat system. We successfully detected renin in as little as 300ngmL(-1) using the PEP-on-DEP method. Thus, the generation and characterization of novel probes for unreachable target molecules by merging a newly identified peptide aptamer with electrochemical transduction allowed for the development of a more practical biosensor that, in principle, can be adapted to develop a portable, low-cost and mass-producible biosensor for point-of-care applications.

  18. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering

    PubMed Central

    Gao, Xiang; Zhang, Xiaohong; Song, Jinlin; Xu, Xiao; Xu, Anxiu; Wang, Mengke; Xie, Bingwu; Huang, Enyi; Deng, Feng; Wei, Shicheng

    2015-01-01

    The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering. PMID:26604759

  19. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide.

    PubMed

    Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin

    2015-10-14

    The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials.

  20. Engineering RNA phage MS2 virus-like particles for peptide display

    NASA Astrophysics Data System (ADS)

    Jordan, Sheldon Keith

    Phage display is a powerful and versatile technology that enables the selection of novel binding functions from large populations of randomly generated peptide sequences. Random sequences are genetically fused to a viral structural protein to produce complex peptide libraries. From a sufficiently complex library, phage bearing peptides with practically any desired binding activity can be physically isolated by affinity selection, and, since each particle carries in its genome the genetic information for its own replication, the selectants can be amplified by infection of bacteria. For certain applications however, existing phage display platforms have limitations. One such area is in the field of vaccine development, where the goal is to identify relevant epitopes by affinity-selection against an antibody target, and then to utilize them as immunogens to elicit a desired antibody response. Today, affinity selection is usually conducted using display on filamentous phages like M13. This technology provides an efficient means for epitope identification, but, because filamentous phages do not display peptides in the high-density, multivalent arrays the immune system prefers to recognize, they generally make poor immunogens and are typically useless as vaccines. This makes it necessary to confer immunogenicity by conjugating synthetic versions of the peptides to more immunogenic carriers. Unfortunately, when introduced into these new structural environments, the epitopes often fail to elicit relevant antibody responses. Thus, it would be advantageous to combine the epitope selection and immunogen functions into a single platform where the structural constraints present during affinity selection can be preserved during immunization. This dissertation describes efforts to develop a peptide display system based on the virus-like particles (VLPs) of bacteriophage MS2. Phage display technologies rely on (1) the identification of a site in a viral structural protein that is

  1. Role of peptide bond in the realization of biological activity of short peptides.

    PubMed

    Khavinson, V Kh; Tarnovskaya, S I; Lin'kova, N S; Chervyakova, N A; Nichik, T E; Elashkina, E V; Chalisova, N I

    2015-02-01

    We performed a comparative analysis of biological activity of Lys-Glu peptide and its amino acid constituents. It was established that Lys-Glu stimulated proliferation of splenic cells in organotypic culture, while the mixture of glutamic acid and lysine inhibited culture growth. Using the method of molecular docking, we showed that glutamic acid, lysine, and Lys-Glu peptide can interact with different DNA sequences. The energy of interaction and the most beneficial localization of glutamic acid, lysine, and Lys-Glu peptide in DNA molecule was calculated. We demonstrated the interaction of the peptide and amino acids with DNA along the minor groove. The energy of DNA interaction with the peptide is higher than with individual amino acids. The peptide bonds increase the interaction of Lys-Glu peptide with DNA, which potentiates the biological effect on cell proliferation in organotypic culture of splenic cells.

  2. Measuring peptide translocation into large unilamellar vesicles.

    PubMed

    Spinella, Sara A; Nelson, Rachel B; Elmore, Donald E

    2012-01-27

    There is an active interest in peptides that readily cross cell membranes without the assistance of cell membrane receptors(1). Many of these are referred to as cell-penetrating peptides, which are frequently noted for their potential as drug delivery vectors(1-3). Moreover, there is increasing interest in antimicrobial peptides that operate via non-membrane lytic mechanisms(4,5), particularly those that cross bacterial membranes without causing cell lysis and kill cells by interfering with intracellular processes(6,7). In fact, authors have increasingly pointed out the relationship between cell-penetrating and antimicrobial peptides(1,8). A firm understanding of the process of membrane translocation and the relationship between peptide structure and its ability to translocate requires effective, reproducible assays for translocation. Several groups have proposed methods to measure translocation into large unilamellar lipid vesicles (LUVs)(9-13). LUVs serve as useful models for bacterial and eukaryotic cell membranes and are frequently used in peptide fluorescent studies(14,15). Here, we describe our application of the method first developed by Matsuzaki and co-workers to consider antimicrobial peptides, such as magainin and buforin II(16,17). In addition to providing our protocol for this method, we also present a straightforward approach to data analysis that quantifies translocation ability using this assay. The advantages of this translocation assay compared to others are that it has the potential to provide information about the rate of membrane translocation and does not require the addition of a fluorescent label, which can alter peptide properties(18), to tryptophan-containing peptides. Briefly, translocation ability into lipid vesicles is measured as a function of the Foster Resonance Energy Transfer (FRET) between native tryptophan residues and dansyl phosphatidylethanolamine when proteins are associated with the external LUV membrane (Figure 1). Cell

  3. Entropy reduction in unfolded peptides (and proteins) due to conformational preferences of amino acid residues.

    PubMed

    Schweitzer-Stenner, Reinhard; Toal, Siobhan E

    2014-11-01

    As established by several groups over the last 20 years, amino acid residues in unfolded peptides and proteins do not exhibit the unspecific random distribution as assumed by the classical random coil model. Individual amino acid residues in small peptides were found to exhibit different conformational preferences. Here, we utilize recently obtained conformational distributions of guest amino acid residues in GxG peptides to estimate their conformational entropy, which we find to be significantly lower than the entropy of an assumed random coil like distribution. Only at high temperature do backbone entropies approach random coil like values. We utilized the obtained backbone entropies of the investigated amino acid residues to estimate the loss of conformational entropy caused by a coil → helix transition and identified two subsets of amino acid residues for which the thus calculated entropy losses correlate well with the respective Gibbs energy of helix formation obtained for alanine based host-guest systems. Calculated and experimentally derived entropic losses were found to be in good agreement. For most of the amino acid residues investigated entropic losses derived from our GxG distributions correlate very well with corresponding values recently obtained from MD simulations biased by conformational propensities derived from truncated coil libraries. Both, conformational entropy and the entropy of solvation exhibit a strong, residue specific temperature dependence, which can be expected to substantially affect the stability of unfolded states. Altogether, our results provide strong evidence for the notion that conformational preferences of amino acid residues matter with regard to the thermodynamics of peptide and protein folding.

  4. Antimicrobial peptides important in innate immunity.

    PubMed

    Cederlund, Andreas; Gudmundsson, Gudmundur H; Agerberth, Birgitta

    2011-10-01

    Antimicrobial peptides are present in all walks of life, from plants to animals, and they are considered to be endogenous antibiotics. In general, antimicrobial peptides are determinants of the composition of the microbiota and they function to fend off microbes and prevent infections. Antimicrobial peptides eliminate micro-organisms through disruption of their cell membranes. Their importance in human immunity, and in health as well as disease, has only recently been appreciated. The present review provides an introduction to the field of antimicrobial peptides in general and discusses two of the major classes of mammalian antimicrobial peptides: the defensins and the cathelicidins. The review focuses on their structures, their main modes of action and their regulation.

  5. Periodic Patterns in Distributions of Peptide Masses

    PubMed Central

    Hubler, Shane L.; Craciun, Gheorghe

    2015-01-01

    We are investigating the distribution of the number of peptides for given masses, and especially the observation that peptide density reaches a local maximum approximately every 14 Daltons. This wave pattern exists across species (e.g. human or yeast) and enzyme digestion techniques. To analyze this phenomenon we have developed a mathematical method for computing the mass distributions of peptides, and we present both theoretical and empirical evidence that this 14-Dalton periodicity does not arise from species selection of peptides but from the number-theoretic properties of the masses of amino acid residues. We also describe other, more subtle periodic patterns in the distribution of peptide masses. We also show that these periodic patterns are robust under a variety of conditions, including the addition of amino acid modifications and selection of mass accuracy scale. The method used here is also applicable to any family of sequential molecules, such as linear hydrocarbons, RNA, single- and double-stranded DNA. PMID:22579741

  6. Periodic patterns in distributions of peptide masses.

    PubMed

    Hubler, Shane L; Craciun, Gheorghe

    2012-08-01

    We are investigating the distribution of the number of peptides for given masses, and especially the observation that peptide density reaches a local maximum approximately every 14Da. This wave pattern exists across species (e.g. human or yeast) and enzyme digestion techniques. To analyze this phenomenon we have developed a mathematical method for computing the mass distributions of peptides, and we present both theoretical and empirical evidence that this 14-Da periodicity does not arise from species selection of peptides but from the number- theoretic properties of the masses of amino acid residues. We also describe other, more subtle periodic patterns in the distribution of peptide masses. We also show that these periodic patterns are robust under a variety of conditions, including the addition of amino acid modifications and selection of mass accuracy scale. The method used here is also applicable to any family of sequential molecules, such as linear hydrocarbons, RNA, single- and double-stranded DNA.

  7. Postformulation Peptide Drug Loading of Nanostructures

    PubMed Central

    Pan, Hua; Marsh, Jon N.; Christenson, Eric T.; Soman, Neelesh R.; Ivashyna, Olena; Lanza, Gregory M.; Schlesinger, Paul H.; Wickline, Samuel A.

    2013-01-01

    Cytolytic peptides have commanded attention for their anticancer potential because the membrane-disrupting function that produces cell death is less likely to be overcome by resistant mutations. Congruently, peptides that are involved in molecular recognition and biological activities become attractive therapeutic candidates because of their high specificity, better affinity, reduced immunogenicity, and reduced off target toxicity. However, problems of inadequate delivery, rapid deactivation in vivo, and poor bioavailability have limited clinical application. Therefore, peptide drug development for clinical use requires an appropriate combination of an effective therapeutic peptide and a robust delivery methodology. In this chapter, we describe methods for the postformulation insertion of peptide drugs into lipidic nanostructures, the physical characterization of peptide–nanostructure complexes, and the evaluation of their therapeutic effectiveness both in vitro and in vivo. PMID:22449919

  8. Intracellular signalling by C-peptide.

    PubMed

    Hills, Claire E; Brunskill, Nigel J

    2008-01-01

    C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na(+)/K(+) ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes. PMID:18382618

  9. Chemical reactions directed Peptide self-assembly.

    PubMed

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  10. A Candida albicans PeptideAtlas

    PubMed Central

    Vialas, Vital; Sun, Zhi; Penha, Carla Verónica Loureiro y; Carrascal, Montserrat; Abian, Joaquin; Monteoliva, Lucía; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Gil, Concha

    2013-01-01

    Candida albicans public proteomic data sets, though growing steadily in the last few years, still have a very limited presence in online repositories. We report here the creation of a C. albicans PeptideAtlas comprising near 22000 distinct peptides at a 0.24 % False Discovery Rate (FDR) that account for over 2500 canonical proteins at a 1.2% FDR. Based on data from 16 experiments, we attained coverage of 41% of the C.albicans open reading frame sequences (ORFs) in the database used for the searches. This PeptideAtlas provides several useful features, including comprehensive protein and peptide-centered search capabilities and visualization tools that establish a solid basis for the study of basic biological mechanisms key to virulence and pathogenesis such as dimorphism, adherence, and apoptosis. Further, it is a valuable resource for the selection of candidate proteotypic peptides for targeted proteomic experiments via selected reaction monitoring (SRM) or SWATH-MS. PMID:23811049

  11. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  12. Supramolecular Nanofibers of Peptide Amphiphiles for Medicine

    PubMed Central

    Webber, Matthew J.; Berns, Eric J.; Stupp, Samuel I.

    2014-01-01

    Peptide nanostructures are an exciting class of supramolecular systems that can be designed for novel therapies with great potential in advanced medicine. This paper reviews progress on nanostructures based on peptide amphiphiles capable of forming one-dimensional assemblies that emulate in structure the nanofibers present in extracellular matrices. These systems are highly tunable using supramolecular chemistry, and can be designed to signal cells directly with bioactive peptides. Peptide amphiphile nanofibers can also be used to multiplex functions through co-assembly and designed to deliver proteins, nucleic acids, drugs, or cells. We illustrate here the functionality of these systems describing their use in regenerative medicine of bone, cartilage, the nervous system, the cardiovascular system, and other tissues. In addition, we highlight recent work on the use of peptide amphiphile assemblies to create hierarchical biomimetic structures with order beyond the nanoscale, and also discuss the future prospects of these supramolecular systems. PMID:24532851

  13. A peptide's perspective of water dynamics.

    PubMed

    Ghosh, Ayanjeet; Hochstrasser, Robin M

    2011-11-18

    This Perspective is focused on amide groups of peptides interacting with water. The 2D IR spectroscopy has already enabled structural aspects of the peptide backbone to be determined through its ability to measure the coupling between different amide-I modes. Here we describe why nonlinear IR is emerging as the method of choice to examine the fast components of the water dynamics near peptides and how isotopically edited peptide links can be used to probe the local water at a residue level in proteins. This type of research necessarily involves an intimate mix of theory and experiment. The description of the results is underpinned by relatively well established quantum-statistical theories that describe the important manifestations of peptide vibrational frequency fluctuations. PMID:22844177

  14. Engineering short peptide sequences for uranyl binding.

    PubMed

    Lebrun, Colette; Starck, Matthieu; Gathu, Vicky; Chenavier, Yves; Delangle, Pascale

    2014-12-01

    Peptides are interesting tools to rationalize uranyl-protein interactions, which are relevant to uranium toxicity in vivo. Structured cyclic peptide scaffolds were chosen as promising candidates to coordinate uranyl thanks to four amino acid side chains pre-oriented towards the dioxo cation equatorial plane. The binding of uranyl by a series of decapeptides has been investigated with complementary analytical and spectroscopic methods to determine the key parameters for the formation of stable uranyl-peptide complexes. The molar ellipticity of the uranyl complex at 195 nm is directly correlated to its stability, which demonstrates that the β-sheet structure is optimal for high stability in the peptide series. Cyclodecapeptides with four glutamate residues exhibit the highest affinities for uranyl with log KC =8.0-8.4 and, therefore, appear as good starting points for the design of high-affinity uranyl-chelating peptides. PMID:25324194

  15. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  16. Design of Asymmetric Peptide Bilayer Membranes.

    PubMed

    Li, Sha; Mehta, Anil K; Sidorov, Anton N; Orlando, Thomas M; Jiang, Zhigang; Anthony, Neil R; Lynn, David G

    2016-03-16

    Energetic insights emerging from the structural characterization of peptide cross-β assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel β-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-β assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies.

  17. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for tt{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts. PMID:20866862

  18. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for tt{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts.

  19. Interactions in random copolymers

    NASA Astrophysics Data System (ADS)

    Marinov, Toma; Luettmer-Strathmann, Jutta

    2002-04-01

    The description of thermodynamic properties of copolymers in terms of simple lattice models requires a value for the effective interaction strength between chain segments, in addition to parameters that can be derived from the properties of the corresponding homopolymers. If the monomers are chemically similar, Berthelot's geometric-mean combining rule provides a good first approximation for interactions between unlike segments. In earlier work on blends of polyolefins [1], we found that the small-scale architecture of the chains leads to corrections to the geometric-mean approximation that are important for the prediction of phase diagrams. In this work, we focus on the additional effects due to sequencing of the monomeric units. In order to estimate the effective interaction for random copolymers, the small-scale simulation approach developed in [1] is extended to allow for random sequencing of the monomeric units. The approach is applied here to random copolymers of ethylene and 1-butene. [1] J. Luettmer-Strathmann and J.E.G. Lipson. Phys. Rev. E 59, 2039 (1999) and Macromolecules 32, 1093 (1999).

  20. Modelling water molecules inside cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Tiangtrong, Prangsai; Thamwattana, Ngamta; Baowan, Duangkamon

    2016-03-01

    Cyclic peptide nanotubes occur during the self-assembly process of cyclic peptides. Due to the ease of synthesis and ability to control the properties of outer surface and inner diameter by manipulating the functional side chains and the number of amino acids, cyclic peptide nanotubes have attracted much interest from many research areas. A potential application of peptide nanotubes is their use as artificial transmembrane channels for transporting ions, biomolecules and waters into cells. Here, we use the Lennard-Jones potential and a continuum approach to study the interaction of a water molecule in a cyclo[(- D-Ala- L-Ala)_4-] peptide nanotube. Assuming that each unit of a nanotube comprises an inner and an outer tube and that a water molecule is made up of a sphere of two hydrogen atoms uniformly distributed over its surface and a single oxygen atom at the centre, we determine analytically the interaction energy of the water molecule and the peptide nanotube. Using this energy, we find that, independent of the number of peptide units, the water molecule will be accepted inside the nanotube. Once inside the nanotube, we show that a water molecule prefers to be off-axis, closer to the surface of the inner nanotube. Furthermore, our study of two water molecules inside the peptide nanotube supports the finding that water molecules form an array of a 1-2-1-2 file inside peptide nanotubes. The theoretical study presented here can facilitate thorough understanding of the behaviour of water molecules inside peptide nanotubes for applications, such as artificial transmembrane channels.

  1. Engineered Cystine-Knot Peptides That Bind αvβ3 Integrin With Antibody-Like Affinities

    PubMed Central

    Silverman, Adam P.; Levin, Aron M.; Lahti, Jennifer L.; Cochran, Jennifer R.

    2010-01-01

    The αvβ3 integrin receptor is an important cancer target due to its overexpression on many solid tumors and the tumor neovasculature, and its role in metastasis and angiogenesis. We used a truncated form of the Agouti-related protein (AgRP), a 4 kDa cystine-knot peptide with four disulfide bonds and four solvent-exposed loops, as a scaffold for engineering peptides that bound to αvβ3 integrins with high affinity and specificity. A yeast-displayed cystine-knot peptide library was generated by substituting a 6-amino acid loop of AgRP with a 9-amino acid loop containing the Arg-Gly-Asp (RGD) integrin recognition motif and randomized flanking residues. Mutant cystine-knot peptides were screened in a high-throughput manner by fluorescence-activated cell sorting (FACS) to identify clones with high affinity to detergent-solubilized αvβ3 integrin receptor. Select integrin-binding peptides were expressed recombinantly in Pichia pastoris and were tested for their ability to bind to human cancer cells expressing various integrin receptors. These studies showed that the engineered AgRP peptides bound to cells expressing αvβ3 integrins with affinities ranging from 15 nM to 780 pM. Furthermore, the engineered peptides were shown bind specifically to αvβ3 integrins, and had only minimal or no binding to αvβ5, α5β1, and αiibβ3 integrins. The engineered AgRP peptides were also shown to inhibit cell adhesion to the extracellular matrix protein vitronectin, which is a naturally-occurring ligand for αvβ3 and other integrins. Next, to evaluate whether the other three loops of AgRP could modulate integrin specificity, we made second generation libraries by individually randomizing these loops in one of the high affinity integrin-binding variants. Screening of these loop-randomized libraries against αvβ3 integrins resulted in peptides that retained high affinities for αvβ3 and had increased specificities for αvβ3 over αiibβ3 integrins. Collectively, these data

  2. Computational Framework for Prediction of Peptide Sequences That May Mediate Multiple Protein Interactions in Cancer-Associated Hub Proteins.

    PubMed

    Sarkar, Debasree; Patra, Piya; Ghosh, Abhirupa; Saha, Sudipto

    2016-01-01

    A considerable proportion of protein-protein interactions (PPIs) in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs), often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME) were used to identify such peptides in three cancer-associated hub proteins-MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs). These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI modulators. PMID

  3. Computational Framework for Prediction of Peptide Sequences That May Mediate Multiple Protein Interactions in Cancer-Associated Hub Proteins

    PubMed Central

    Sarkar, Debasree; Patra, Piya; Ghosh, Abhirupa; Saha, Sudipto

    2016-01-01

    A considerable proportion of protein-protein interactions (PPIs) in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs), often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME) were used to identify such peptides in three cancer-associated hub proteins—MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs). These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI modulators. PMID

  4. Antimicrobial peptides in the brain.

    PubMed

    Su, Yanhua; Zhang, Kai; Schluesener, Hermann J

    2010-10-01

    Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune system of many species. The brain is an immunologically privileged organ but can produce a robust immune response against pathogens and cell debris, promoting rapid and efficient clearance. AMPs may be critically involved in the innate immune system of the brain. Though the mechanisms of AMPs' action in the brain still need further elucidation, many studies have shown that AMPs are multifunctional molecules in the brain. In addition to antimicrobial action, they take part in congenital and adaptive immune reactions (immunoregulation), function as signaling molecules in tissue repair, inflammation and other important processes through different mechanisms, and they might, in addition, become diagnostic markers of brain disease.

  5. Encapsulation of Enzymes and Peptides

    NASA Astrophysics Data System (ADS)

    Meesters, Gabrie M. H.

    A large part of formulated peptides and proteins, e.g., enzymes used as food ingredients, are formulated in a liquid form. Often, they are dissolved in water to which glycerol or sorbitol is added to reduce the water activity of the liquid, thus reducing the change of microbial growth. Still, there are reasons to formulate them in a solid form. Often, these reasons are stability, since a dry formulation is often much better than liquid formulations, and less transportation cost, since less mass is transported if one gets rid of the liquid; however, most of the times, the reason is that the product is mixed with a solid powder. Here, a liquid addition would lead to lump formation.

  6. Antimicrobial peptides of multicellular organisms

    NASA Astrophysics Data System (ADS)

    Zasloff, Michael

    2002-01-01

    Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

  7. Adhesion through single peptide aptamers

    PubMed Central

    Aubin-Tam, Marie-Eve; Appleyard, David C.; Ferrari, Enrico; Garbin, Valeria; Fadiran, Oluwatimilehin O.; Kunkel, Jacquelyn; Lang, Matthew J.

    2014-01-01

    Aptamer and antibody mediated adhesion is central to biological function and valuable in the engineering of “lab on a chip” devices. Single molecule force spectroscopy using optical tweezers enables direct non-equilibrium measurement of these non-covalent interactions for three peptide aptamers selected for glass, polystyrene, and carbon nanotubes. A comprehensive examination of the strong attachment between anti-fluorescein 4-4-20 and fluorescein was also carried out using the same assay. Bond lifetime, barrier width, and free energy of activation are extracted from unbinding histogram data using three single molecule pulling models. The evaluated aptamers appear to adhere stronger than the fluorescein antibody under no- and low-load conditions, yet weaker than antibodies at loads above ~25pN. Comparison to force spectroscopy data of other biological linkages shows the diversity of load dependent binding and provides insight into linkages used in biological processes and those designed for engineered systems. PMID:20795685

  8. A random number generator for continuous random variables

    NASA Technical Reports Server (NTRS)

    Guerra, V. M.; Tapia, R. A.; Thompson, J. R.

    1972-01-01

    A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form.

  9. Ribosome regulation by the nascent peptide.

    PubMed Central

    Lovett, P S; Rogers, E J

    1996-01-01

    Studies of bacterial and eukaryotic systems have identified two-gene operons in which the translation product of the upstream gene influences translation of the downstream gene. The upstream gene, referred to as a leader (gene) in bacterial systems or an upstream open reading frame (uORF) in eukaryotes, encodes a peptide that interferes with a function(s) of its translating ribosome. The peptides are therefore cis-acting negative regulators of translation. The inhibitory peptides typically consist of fewer than 25 residues and function prior to emergence from the ribosome. A biological role for this class of translation inhibitor is demonstrated in translation attenuation, a form or regulation that controls the inducible translation of the chloramphenicol resistance genes cat and cmlA in bacteria. Induction of cat or cmlA requires ribosome stalling at a particular codon in the leader region of the mRNA. Stalling destabilizes an adjacent, downstream mRNA secondary structure that normally sequesters the ribosome-binding site for the cat or cmlA coding regions. Genetic studies indicate that the nascent, leader-encoded peptide is the selector of the site of ribosome stalling in leader mRNA by cis interference with translation. Synthetic leader peptides inhibit ribosomal peptidyltransferase in vitro, leading to the prediction that this activity is the basis for stall site selection. Recent studies have shown that the leader peptides are rRNA-binding peptides with targets at the peptidyl transferase center of 23S rRNA. uORFs associated with several eukaryotic genes inhibit downstream translation. When inhibition depends on the specific codon sequence of the uORF, it has been proposed that the uORF-encoded nascent peptide prevents ribosome release from the mRNA at the uORF stop codon. This sets up a blockade to ribosome scanning which minimizes downstream translation. Segments within large proteins also appear to regulate ribosome activity in cis, although in most of the

  10. Peptide-Based Treatment: A Promising Cancer Therapy

    PubMed Central

    Xiao, Yu-Feng; Jie, Meng-Meng; Li, Bo-Sheng; Hu, Chang-Jiang; Xie, Rui; Tang, Bo; Yang, Shi-Ming

    2015-01-01

    Many new therapies are currently being used to treat cancer. Among these new methods, chemotherapy based on peptides has been of great interest due to the unique advantages of peptides, such as a low molecular weight, the ability to specifically target tumor cells, and low toxicity in normal tissues. In treating cancer, peptide-based chemotherapy can be mainly divided into three types, peptide-alone therapy, peptide vaccines, and peptide-conjugated nanomaterials. Peptide-alone therapy may specifically enhance the immune system's response to kill tumor cells. Peptide-based vaccines have been used in advanced cancers to improve patients' overall survival. Additionally, the combination of peptides with nanomaterials expands the therapeutic ability of peptides to treat cancer by enhancing drug delivery and sensitivity. In this review, we mainly focus on the new advances in the application of peptides in treating cancer in recent years, including diagnosis, treatment, and prognosis. PMID:26568964

  11. Identification of peptides that selectively bind to myoglobin by biopanning of phage displayed-peptide library.

    PubMed

    Padmanaban, Guruprasath; Park, Hyekyung; Choi, Ji Suk; Cho, Yong-Woo; Kang, Woong Chol; Moon, Chan-Il; Kim, In-San; Lee, Byung-Heon

    2014-10-10

    Biopanning of phage displayed-peptide library was performed against myoglobin, a marker for the early assessment of acute myocardial infarction (AMI), to identify peptides that selectively bind to myoglobin. Using myoglobin-conjugated magnetic beads, phages that bound to myoglobin were collected and amplified for the next round of screening. A 148-fold enrichment of phage titer was observed after five rounds of screening relative to the first round. After phage binding ELISA, three phage clones were selected (3R1, 3R7 and 3R10) and the inserted peptides were chemically synthesized. The analysis of binding affinity showed that the 3R7 (CPSTLGASC) peptide had higher binding affinity (Kd=57 nM) than did the 3R1 (CNLSSSWIC) and 3R10 (CVPRLSAPC) peptide (Kd=125 nM and 293 nM, respectively). Cross binding activity to other proteins, such as bovine serum albumin, troponin I, and creatine kinase-MB, was minimal. In a peptide-antibody sandwich ELISA, the selected peptides efficiently captured myoglobin. Moreover, the concentrations of myoglobin in serum samples measured by a peptide-peptide sandwich assay were comparable to those measured by a commercial antibody-based kit. These results indicate that the identified peptides can be used for the detection of myoglobin and may be a cost effective alternative to antibodies.

  12. Randomizing Roaches: Exploring the "Bugs" of Randomization in Experimental Design

    ERIC Educational Resources Information Center

    Wagler, Amy; Wagler, Ron

    2014-01-01

    Understanding the roles of random selection and random assignment in experimental design is a central learning objective in most introductory statistics courses. This article describes an activity, appropriate for a high school or introductory statistics course, designed to teach the concepts, values and pitfalls of random selection and assignment…

  13. Peptide design for antimicrobial and immunomodulatory applications.

    PubMed

    Haney, Evan F; Hancock, Robert E W

    2013-11-01

    The increasing threat of antibiotic resistance in pathogenic bacteria and the dwindling supply of antibiotics available to combat these infections poses a significant threat to human health throughout the world. Antimicrobial peptides (AMPs) have long been touted as the next generation of antibiotics capable of filling the anti-infective void. Unfortunately, peptide-based antibiotics have yet to realize their potential as novel pharmaceuticals, in spite of the immense number of known AMP sequences and our improved understanding of their antibacterial mechanism of action. Recently, the immunomodulatory properties of certain AMPs have become appreciated. The ability of small synthetic peptides to protect against infection in vivo has demonstrated that modulation of the innate immune response is an effective strategy to further develop peptides as novel anti-infectives. This review focuses on the screening methods that have been used to assess novel peptide sequences for their antibacterial and immunomodulatory properties. It will also examine how we have progressed in our ability to identify and optimize peptides with desired biological characteristics and enhanced therapeutic potential. In addition, the current challenges to the development of peptides as anti-infectives are examined and the strategies being used to overcome these issues are discussed.

  14. Hydroxyapatite surface-induced peptide folding.

    PubMed

    Capriotti, Lisa A; Beebe, Thomas P; Schneider, Joel P

    2007-04-25

    Herein, we describe the design and surface-binding characterization of a de novo designed peptide, JAK1, which undergoes surface-induced folding at the hydroxyapatite (HA)-solution interface. JAK1 is designed to be unstructured in buffered saline solution, yet undergo HA-induced folding that is largely governed by the periodic positioning of gamma-carboxyglutamic acid (Gla) residues within the primary sequence of the peptide. Circular dichroism (CD) spectroscopy and analytical ultracentrifugation indicate that the peptide remains unfolded and monomeric in solution under normal physiological conditions; however, CD spectroscopy indicates that in the presence of hydroxyapatite, the peptide avidly binds to the mineral surface adopting a helical structure. Adsorption isotherms indicate nearly quantitative surface coverage and Kd = 310 nM for the peptide-surface binding event. X-ray photoelectron spectroscopy (XPS) coupled with the adsorption isotherm data suggests that JAK1 binds to HA, forming a self-limiting monolayer. This study demonstrates the feasibility of using HA surfaces to trigger the intramolecular folding of designed peptides and represents the initial stages of defining the design rules that allow HA-induced peptide folding.

  15. Peptide separation in hydrophilic interaction capillary electrochromatography.

    PubMed

    Fu, Hongjing; Jin, Wenhai; Xiao, Hua; Huang, Haiwei; Zou, Hanfa

    2003-06-01

    Separation of small peptides by hydrophilic interaction capillary electrochromatography (HI-CEC) has been investigated. The negative surface charge of a hydrophilic, strong-cation-exchange stationary phase (PolySULFOETHYL A) provided a substantial cathodic electroosmotic flow (EOF). The influence of acetonitrile content, ionic strength, mobile phase pH as well as applied voltage on the migration of the peptides was studied. Possible retention mechanisms of the peptides in HI-CEC were discussed. It was found that hydrophilic interaction between the solutes and the stationary phase played a major role in this system, especially when mobile phases with high acetonitrile content were used. However, an ion-exchange mechanism and electrophoretic mobility also affect the migration of the peptides in HI-CEC. Elution order and selectivity was proved to be different in HI-CEC and capillary zone electrophoresis (CZE), thus revealing the potential of HI-CEC as a complementary technique to CZE for the separation of peptides. Efficiency and selectivity of HI-CEC for the separation of peptides were demonstrated by baseline separating nine peptides in 6 min. PMID:12858379

  16. C-Peptide and its intracellular signaling.

    PubMed

    Hills, Claire E; Brunskill, Nigel J

    2009-01-01

    Although long believed to be inert, C-peptide has now been shown to have definite biological effects both in vitro and in vivo in diabetic animals and in patients with type 1 diabetes. These effects point to a protective action of C-peptide against the development of diabetic microvascular complications. Underpinning these observations is undisputed evidence of C-peptide binding to a variety of cell types at physiologically relevant concentrations, and the downstream stimulation of multiple cell signaling pathways and gene transcription via the activation of numerous transcription factors. These pathways affect such fundamental cellular processes as re-absorptive and/or secretory phenotype, migration, growth, and survival. Whilst the receptor remains to be identified, experimental data points strongly to the existence of a specific G-protein-coupled receptor for C-peptide. Of the cell types studied so far, kidney tubular cells express the highest number of C-peptide binding sites. Accordingly, C-peptide exerts major effects on the function of these cells, and in the context of diabetic nephropathy appears to antagonise the pathophysiological effects of major disease mediators such as TGFbeta1 and TNFalpha. Therefore, based on its cellular activity profile C-peptide appears well positioned for development as a therapeutic tool to treat microvascular complications in type 1 diabetes. PMID:20039003

  17. Novel pH-Sensitive Cyclic Peptides.

    PubMed

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K; Andreev, Oleg A; Parang, Keykavous; Reshetnyak, Yana K

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  18. Novel pH-Sensitive Cyclic Peptides

    PubMed Central

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K.; Andreev, Oleg A.; Parang, Keykavous; Reshetnyak, Yana K.

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  19. Hydroxyapatite surface-induced peptide folding.

    PubMed

    Capriotti, Lisa A; Beebe, Thomas P; Schneider, Joel P

    2007-04-25

    Herein, we describe the design and surface-binding characterization of a de novo designed peptide, JAK1, which undergoes surface-induced folding at the hydroxyapatite (HA)-solution interface. JAK1 is designed to be unstructured in buffered saline solution, yet undergo HA-induced folding that is largely governed by the periodic positioning of gamma-carboxyglutamic acid (Gla) residues within the primary sequence of the peptide. Circular dichroism (CD) spectroscopy and analytical ultracentrifugation indicate that the peptide remains unfolded and monomeric in solution under normal physiological conditions; however, CD spectroscopy indicates that in the presence of hydroxyapatite, the peptide avidly binds to the mineral surface adopting a helical structure. Adsorption isotherms indicate nearly quantitative surface coverage and Kd = 310 nM for the peptide-surface binding event. X-ray photoelectron spectroscopy (XPS) coupled with the adsorption isotherm data suggests that JAK1 binds to HA, forming a self-limiting monolayer. This study demonstrates the feasibility of using HA surfaces to trigger the intramolecular folding of designed peptides and represents the initial stages of defining the design rules that allow HA-induced peptide folding. PMID:17397165

  20. Chemotactic peptide receptor modulation in polymorphonuclear leukocytes

    PubMed Central

    1980-01-01

    The binding of the chemotactic peptide N- formylnorleucylleucylphenylalanine (FNLLP) to its receptor on rabbit polymorphonuclear leukocytes (PMNs) modulates the number of available peptide receptors. Incubation with FNLLP decreases subsequent binding capacity, a phenomenon that has been termed receptor down regulation. Down regulation of the chemotactic peptide receptor is concentration dependent in both the rate and extent of receptor loss. The dose response parallels that of FNLLP binding to the recptor. The time- course is rapid; even at concentrations of FNLLP as low as 3 x 10(-9) M, the new equilibrium concentration of receptors is reached within 15 min. Down regulation is temperature dependent, but does occur even at 4 degrees C. Concomitant with down regulation, some of the peptide becomes irreversibly cell associated. At 4 degrees C, there is a small accumulation of nondissociable peptide that rapidly reaches a plateau. At higher temperatures, accumulation of nondissociable peptide continues after the rceptor number has reached equilibrium, and the amount accumulated can exceed the initial number of receptors by as much as 300%. The dose response of peptide uptake at 37 degrees C reflects that of binding, suggesting that it is receptor mediated. This uptake may occur via a pinocytosis mechanism. Although PMNs have not been considered to be pinocytic, the addition of FNLLP causes a fourfold stimulation of the rate of pinocytosis as measured by the uptake of [3H]sucrose. PMID:7391138

  1. Creating functional peptide architectures at interfaces

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew

    2001-03-01

    Short peptide sequences, derived from whole proteins, can be useful synthetic agents for conferring a specific biological function to a material surface. Their ability to do this depends on delivering them to the surface in a biologically recognizable form, that is in a spatial configuration that is not too different from that adopted by the peptide in the whole protein. Most functional proteins have secondary and tertiary levels of structure that are essential to their activities; peptides have simpler but no less important structures. In our work, we have focussed on peptides derived from extracellular matrix proteins. We have found that attaching synthetic lipid tails to peptides fragments gives them two very useful properties for surface modification. The hydrophobic tails give rise to a self-assembly capacity enabling these molecules to organize into membrane, monolayer and bilayer structures. Less expected is that this level of self-assembly induces a second level in the peptide headgroup. Peptides from alpha-helical and triple-helical regions of protein are induced by the lipid tails to form protein-like secondary structures and therefore to have more effective biological activity.

  2. Peptide Therapeutics for Treating Ocular Surface Infections

    PubMed Central

    2014-01-01

    Abstract Microbial pathogens—bacteria, viruses, fungi, and parasites—are significant causes of blindness, particularly in developing countries. For bacterial and some viral infections a number of antimicrobial drugs are available for therapy but there are fewer available for use in treating fungal and parasitic keratitis. There are also problems with current antimicrobials, such as limited efficacy and the presence of drug-resistant microbes. Thus, there is a need to develop additional drugs. Nature has given us an example of 1 potential source of new antimicrobials: antimicrobial peptides and proteins that are either present in bodily fluids and tissues constitutively or are induced upon infection. Given the nature of peptides, topical applications are the most likely use to be successful and this is ideal for treating keratitis. Such peptides would also be active against drug-resistant pathogens and might act synergistically if used in combination therapy. Hundreds of peptides with antimicrobial properties have been isolated or synthesized but only a handful have been tested against ocular pathogens and even fewer have been tested in animal models. This review summarizes the currently available information on the use of peptides to treat keratitis, outlines some of the problems that have been identified, and discusses future studies that will be needed. Most of the peptides that have been tested have shown activity at concentrations that do not warrant further development, but 1 or 2 have promising activity raising the possibility that peptides can be developed to treat keratitis. PMID:25250986

  3. Multiplex De Novo Sequencing of Peptide Antibiotics

    NASA Astrophysics Data System (ADS)

    Mohimani, Hosein; Liu, Wei-Ting; Yang, Yu-Liang; Gaudêncio, Susana P.; Fenical, William; Dorrestein, Pieter C.; Pevzner, Pavel A.

    Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is NMR-based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic NRPs using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown familiy of cyclic NRPs produced by marine bacteria.

  4. Mode of action of anticancer peptides (ACPs) from amphibian origin.

    PubMed

    Oelkrug, Christopher; Hartke, Martin; Schubert, Andreas

    2015-02-01

    Although cancer belongs to one of the leading causes of death around the world, fortunately studies have shown that tumor cells have various targets that are susceptible to attack. Interestingly, tumor cells are comprised of cellular membranes, which are altered in chemical composition relative to non-neoplastic cells, giving them an increased net negative charge. These altered membranes are ideal targets for antimicrobial peptides (AMPs) shown to have additional tumoricidal properties and, hence, named anticancer peptides (ACPs). Several hundred ACPs have been explored in vitro and in vivo on various types of cancer. Novel anticancer agents are supposed not to cause serious side effects and the formation of multidrug-resistant tumor cells. During the quest for potent ACPs, promising candidates were isolated from skin secretions of amphibians, such as the granular glands of the Chinese brown frog, Rana chensinensis. ACPs have to be selective to cancer cells and should not induce strong immune responses or be cleared from the body rapidly. Several modifications can improve ACPs either by optimizing the primary structure rationally or randomly or even by introducing other chemical modifications. PMID:25667440

  5. Conformational Variety of Polyanionic Peptides At Low Salt Concentrations

    NASA Astrophysics Data System (ADS)

    Bertrand, Marylène; Brack, André

    1997-12-01

    Cordially dedicated to Dr. Leslie Orgel on the occasion of his 70th birthday. Sequential oligo- and polypeptides based on glutamic acid and leucine residues have been synthesized. In pure water, they exhibit a random coil conformation. Addition of very small amounts of divalent metallic cations induces the formation of ordered structure in the peptides which remain in solution. Higher salt concentrations precipitate the peptides. Polypeptides with alternating glutamic acid and leucine residues undergo a coil to β-sheet transition in the presence of Ca^2+, Ba^2+, Mn^2+, Co^2+, Zn^2+ and Hg^2+. Addition of Cu^2+ or Fe^3+ induces the formation of an α-helix. Solid amorphous CdS generates water soluble β-sheets, as well. Sequential poly(Leu-Glu-Glu-Leu) adopts an α-helix in the presence of divalent cations. The sequence-dependent conformational diversity was extended to poly(Asp-Leu) and poly(Leu-Asp-Asp-Leu).

  6. Cluster Randomized Controlled Trial

    PubMed Central

    Young, John; Chapman, Katie; Nixon, Jane; Patel, Anita; Holloway, Ivana; Mellish, Kirste; Anwar, Shamaila; Breen, Rachel; Knapp, Martin; Murray, Jenni; Farrin, Amanda

    2015-01-01

    Background and Purpose— We developed a new postdischarge system of care comprising a structured assessment covering longer-term problems experienced by patients with stroke and their carers, linked to evidence-based treatment algorithms and reference guides (the longer-term stroke care system of care) to address the poor longer-term recovery experienced by many patients with stroke. Methods— A pragmatic, multicentre, cluster randomized controlled trial of this system of care. Eligible patients referred to community-based Stroke Care Coordinators were randomized to receive the new system of care or usual practice. The primary outcome was improved patient psychological well-being (General Health Questionnaire-12) at 6 months; secondary outcomes included functional outcomes for patients, carer outcomes, and cost-effectiveness. Follow-up was through self-completed postal questionnaires at 6 and 12 months. Results— Thirty-two stroke services were randomized (29 participated); 800 patients (399 control; 401 intervention) and 208 carers (100 control; 108 intervention) were recruited. In intention to treat analysis, the adjusted difference in patient General Health Questionnaire-12 mean scores at 6 months was −0.6 points (95% confidence interval, −1.8 to 0.7; P=0.394) indicating no evidence of statistically significant difference between the groups. Costs of Stroke Care Coordinator inputs, total health and social care costs, and quality-adjusted life year gains at 6 months, 12 months, and over the year were similar between the groups. Conclusions— This robust trial demonstrated no benefit in clinical or cost-effectiveness outcomes associated with the new system of care compared with usual Stroke Care Coordinator practice. Clinical Trial Registration— URL: http://www.controlled-trials.com. Unique identifier: ISRCTN 67932305. PMID:26152298

  7. Composite Random Fiber Networks

    NASA Astrophysics Data System (ADS)

    Picu, Catalin; Shahsavari, Ali

    2013-03-01

    Systems made from fibers are common in the biological and engineering worlds. In many instances, as for example in skin, where elastin and collagen fibers are present, the fiber network is composite, in the sense that it contains fibers of very different properties. The relationship between microstructural parameters and the elastic moduli of random fiber networks containing a single type of fiber is understood. In this work we address a similar target for the composite networks. We show that linear superposition of the contributions to stiffness of individual sub-networks does not apply and interesting non-linear effects are observed. A physical basis of these effects is proposed.

  8. Can randomization be informative?

    NASA Astrophysics Data System (ADS)

    Pereira, Carlos A. B.; Campos, Thiago F.; Silva, Gustavo M.; Wechsler, Sergio

    2012-10-01

    In this paper the Pair of Siblings Paradox introduced by Pereira [1] is extended by considering more than two children and more than one child observed for gender. We follow the same lines of Wechsler et al. [2] that generalizes the three prisoners' dilemma, introduced by Gardner [3]. This paper's conjecture is that the Pair of Siblings and the Three Prisoners dilemma are dual paradoxes. Looking at possible likelihoods, the sure (randomized) selection for the former is non informative (informative), the opposite that holds for the latter. This situation is maintained for generalizations. Non informative likelihood here means that prior and posterior are equal.

  9. Ultrashort Antimicrobial Peptides with Antiendotoxin Properties

    PubMed Central

    Chih, Ya-Han; Lin, Yen-Shan; Yip, Bak-Sau; Wei, Hsiu-Ju; Chu, Hung-Lun; Yu, Hui-Yuan; Cheng, Hsi-Tsung

    2015-01-01

    Release of lipopolysaccharide (LPS) (endotoxin) from bacteria into the bloodstream may cause serious unwanted stimulation of the host immune system. Some but not all antimicrobial peptides can neutralize LPS-stimulated proinflammatory responses. Salt resistance and serum stability of short antimicrobial peptides can be boosted by adding β-naphthylalanine to their termini. Herein, significant antiendotoxin effects were observed in vitro and in vivo with the β-naphthylalanine end-tagged variants of the short antimicrobial peptides S1 and KWWK. PMID:26033727

  10. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  11. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2009-10-13

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  12. Processable Cyclic Peptide Nanotubes with Tunable Interiors

    SciTech Connect

    Hourani, Rami; Zhang, Chen; van der Weegen, Rob; Ruiz, Luis; Li, Changyi; Keten, Sinan; Helms, Brett A.; Xu, Ting

    2011-09-06

    A facile route to generate cyclic peptide nanotubes with tunable interiors is presented. By incorporating 3-amino-2-methylbenzoic acid in the d,l-alternating primary sequence of a cyclic peptide, a functional group can be presented in the interior of the nanotubes without compromising the formation of high aspect ratio nanotubes. The new design of such a cyclic peptide also enables one to modulate the nanotube growth process to be compatible with the polymer processing window without compromising the formation of high aspect ratio nanotubes, thus opening a viable approach toward molecularly defined porous membranes.

  13. Immunocytochemical and Immunohistochemical Staining with Peptide Antibodies.

    PubMed

    Friis, Tina; Pedersen, Klaus Boberg; Hougaard, David; Houen, Gunnar

    2015-01-01

    Peptide antibodies are particularly useful for immunocytochemistry (ICC) and immunohistochemistry (IHC), where antigens may denature due to fixation of tissues and cells. Peptide antibodies can be made to any defined sequence, including unknown putative proteins and posttranslationally modified sequences. Moreover, the availability of large amounts of the antigen (peptide) allows inhibition/adsorption controls, which are important in ICC/IHC, due to the many possibilities for false-positive reactions caused by immunoglobulin Fc receptors, nonspecific reactions, and cross-reactivity of primary and secondary antibodies with other antigens and endogenous immunoglobulins, respectively. Here, simple protocols for ICC and IHC are described together with recommendations for appropriate controls.

  14. Boosting salt resistance of short antimicrobial peptides.

    PubMed

    Chu, Hung-Lun; Yu, Hui-Yuan; Yip, Bak-Sau; Chih, Ya-Han; Liang, Chong-Wen; Cheng, Hsi-Tsung; Cheng, Jya-Wei

    2013-08-01

    The efficacies of many antimicrobial peptides are greatly reduced under high salt concentrations, therefore limiting their use as pharmaceutical agents. Here, we describe a strategy to boost salt resistance and serum stability of short antimicrobial peptides by adding the nonnatural bulky amino acid β-naphthylalanine to their termini. The activities of the short salt-sensitive tryptophan-rich peptide S1 were diminished at high salt concentrations, whereas the activities of its β-naphthylalanine end-tagged variants were less affected.

  15. How Nature Morphs Peptide Scaffolds into Antibiotics

    PubMed Central

    Nolan, Elizabeth M.; Walsh, Christopher T.

    2010-01-01

    The conventional notion that peptides are poor candidates for orally available drugs because of protease-sensitive peptide bonds, intrinsic hydrophilicity, and ionic charges contrasts with the diversity of antibiotic natural products with peptide-based frameworks that are synthesized and utilized by Nature. Several of these antibiotics, including penicillin and vancomycin, are employed to treat bacterial infections in humans and have been best-selling therapeutics for decades. Others might provide new platforms for the design of novel therapeutics to combat emerging antibiotic-resistant bacterial pathogens. PMID:19058272

  16. The Potential of Antimicrobial Peptides as Biocides

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2011-01-01

    Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections. PMID:22072905

  17. Discovering and improving novel peptide therapeutics.

    PubMed

    McGregor, Duncan Patrick

    2008-10-01

    Peptides have a number of advantages over small molecules in terms of specificity and affinity for targets, and over antibodies in terms of size. However, sensitivity to serum and tissue proteases coupled with short serum half-life has resulted in few recombinant library derived peptides, making the transition from lead to drug on the market. Recently, a series of technologies have been developed to address both these issues: selection methodologies addressing protease resistance have been developed that when combined with methods such as pegylation antibody Fc attachment and binding to serum albumin look likely to finally turn therapeutic peptides into a widely accepted drug class.

  18. Asymmetric catalysis with short-chain peptides.

    PubMed

    Lewandowski, Bartosz; Wennemers, Helma

    2014-10-01

    Within this review article we describe recent developments in asymmetric catalysis with peptides. Numerous peptides have been established in the past two decades that catalyze a wide variety of transformations with high stereoselectivities and yields, as well as broad substrate scope. We highlight here catalytically active peptides, which have addressed challenges that had thus far remained elusive in asymmetric catalysis: enantioselective synthesis of atropoisomers and quaternary stereogenic centers, regioselective transformations of polyfunctional substrates, chemoselective transformations, catalysis in-flow and reactions in aqueous environments.

  19. Random numbers from vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Shi, Yicheng; Chng, Brenda; Kurtsiefer, Christian

    2016-07-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  20. Random recursive trees and the elephant random walk

    NASA Astrophysics Data System (ADS)

    Kürsten, Rüdiger

    2016-03-01

    One class of random walks with infinite memory, so-called elephant random walks, are simple models describing anomalous diffusion. We present a surprising connection between these models and bond percolation on random recursive trees. We use a coupling between the two models to translate results from elephant random walks to the percolation process. We calculate, besides other quantities, exact expressions for the first and the second moment of the root cluster size and of the number of nodes in child clusters of the first generation. We further introduce another model, the skew elephant random walk, and calculate the first and second moment of this process.

  1. Random recursive trees and the elephant random walk.

    PubMed

    Kürsten, Rüdiger

    2016-03-01

    One class of random walks with infinite memory, so-called elephant random walks, are simple models describing anomalous diffusion. We present a surprising connection between these models and bond percolation on random recursive trees. We use a coupling between the two models to translate results from elephant random walks to the percolation process. We calculate, besides other quantities, exact expressions for the first and the second moment of the root cluster size and of the number of nodes in child clusters of the first generation. We further introduce another model, the skew elephant random walk, and calculate the first and second moment of this process. PMID:27078296

  2. Effects of the properties of short peptides conjugated with cell-penetrating peptides on their internalization into cells.

    PubMed

    Matsumoto, Ryo; Okochi, Mina; Shimizu, Kazunori; Kanie, Kei; Kato, Ryuji; Honda, Hiroyuki

    2015-01-01

    Peptides, especially intracellular functional peptides that can play a particular role inside a cell, have attracted attention as promising materials to control cell fate. However, hydrophilic materials like peptides are difficult for cells to internalize. Therefore, the screening and design of intracellular functional peptides are more difficult than that of extracellular ones. An effective high-throughput screening system for intracellular functional peptides has not been reported. Here, we demonstrate a novel peptide array system for screening intracellular functional peptides, in which both cell-penetrating peptide (CPP) domain and photo-cleavable linkers are used. By using this screening system, we determined how the cellular uptake properties of CPP-conjugated peptides varied depending on the properties of the conjugated peptides. We found that the internalization ability of CPP-conjugated peptides varied greatly depending on the property of the conjugated peptides, and anionic peptides drastically decreased the uptake ability. We summarized our data in a scatter diagram that plots hydrophobicity versus isoelectric point (pI) of conjugated peptides. These results define a peptide library suitable for screening of intracellular functional peptides. Thus, our system, including the diagram, is a promising tool for searching biological active molecules such as peptide-based drugs. PMID:26256261

  3. Random-walk enzymes

    NASA Astrophysics Data System (ADS)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  4. Random rough surface photofabrication

    NASA Astrophysics Data System (ADS)

    Brissonneau, Vincent; Escoubas, Ludovic; Flory, François; Berginc, Gérard

    2011-10-01

    Random rough surfaces are of primary interest for their optical properties: reducing reflection at the interface or obtaining specific scattering diagram for example. Thus controlling surface statistics during the fabrication process paves the way to original and specific behaviors of reflected optical waves. We detail an experimental method allowing the fabrication of random rough surfaces showing tuned statistical properties. A two-step photoresist exposure process was developed. In order to initiate photoresist polymerization, an energy threshold needs to be reached by light exposure. This energy is brought by a uniform exposure equipment comprising UV-LEDs. This pre-exposure is studied by varying parameters such as optical power and exposure time. The second step consists in an exposure based on the Gray method.1 The speckle pattern of an enlarged scattered laser beam is used to insolate the photoresist. A specific photofabrication bench using an argon ion laser was implemented. Parameters such as exposure time and distances between optical components are discussed. Then, we describe how we modify the speckle-based exposure bench to include a spatial light modulator (SLM). The SLM used is a micromirror matrix known as Digital Micromirror Device (DMD) which allows spatial modulation by displaying binary images. Thus, the spatial beam shape can be tuned and so the speckle pattern on the photoresist is modified. As the photoresist photofabricated surface is correlated to the speckle pattern used to insolate, the roughness parameters can be adjusted.

  5. Random-walk enzymes.

    PubMed

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  6. Random-walk enzymes

    PubMed Central

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  7. Random-walk enzymes.

    PubMed

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  8. Random Numbers and Quantum Computers

    ERIC Educational Resources Information Center

    McCartney, Mark; Glass, David

    2002-01-01

    The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…

  9. Work analysis by random sampling.

    PubMed Central

    Divilbiss, J L; Self, P C

    1978-01-01

    Random sampling of work activities using an electronic random alarm mechanism provided a simple and effective way to determine how time was divided between various activities. At each random alarm the subject simply recorded the time and the activity. Analysis of the data led to reassignment of staff functions and also resulted in additional support for certain critical activities. PMID:626793

  10. Random Selection for Drug Screening

    SciTech Connect

    Center for Human Reliability Studies

    2007-05-01

    Simple random sampling is generally the starting point for a random sampling process. This sampling technique ensures that each individual within a group (population) has an equal chance of being selected. There are a variety of ways to implement random sampling in a practical situation.

  11. Investigating the Randomness of Numbers

    ERIC Educational Resources Information Center

    Pendleton, Kenn L.

    2009-01-01

    The use of random numbers is pervasive in today's world. Random numbers have practical applications in such far-flung arenas as computer simulations, cryptography, gambling, the legal system, statistical sampling, and even the war on terrorism. Evaluating the randomness of extremely large samples is a complex, intricate process. However, the…

  12. Randomized Response Analysis in Mplus

    ERIC Educational Resources Information Center

    Hox, Joop; Lensvelt-Mulders, Gerty

    2004-01-01

    This article describes a technique to analyze randomized response data using available structural equation modeling (SEM) software. The randomized response technique was developed to obtain estimates that are more valid when studying sensitive topics. The basic feature of all randomized response methods is that the data are deliberately…

  13. Intracellular screening of a peptide library to derive a potent peptide inhibitor of α-synuclein aggregation.

    PubMed

    Cheruvara, Harish; Allen-Baume, Victoria L; Kad, Neil M; Mason, Jody M

    2015-03-20

    Aggregation of α-synuclein (α-syn) into toxic fibrils is a pathogenic hallmark of Parkinson disease (PD). Studies have focused largely on residues 71-82, yet most early-onset mutations are located between residues 46 and 53. A semirationally designed 209,952-member library based entirely on this region was constructed, containing all wild-type residues and changes associated with early-onset PD. Intracellular cell survival screening and growth competition isolated a 10-residue peptide antagonist that potently inhibits α-syn aggregation and associated toxicity at a 1:1 stoichiometry. This was verified using continuous growth measurements and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity studies. Atomic force microscopy and circular dichroism on the same samples showed a random-coil structure and no oligomers. A new region of α-syn for inhibitor targeting has been highlighted, together with the approach of using a semirational design and intracellular screening. The peptides can then be used as candidates for modification in drugs capable of slowing or even preventing the onset of PD.

  14. Intracellular Screening of a Peptide Library to Derive a Potent Peptide Inhibitor of α-Synuclein Aggregation*

    PubMed Central

    Cheruvara, Harish; Allen-Baume, Victoria L.; Kad, Neil M.; Mason, Jody M.

    2015-01-01

    Aggregation of α-synuclein (α-syn) into toxic fibrils is a pathogenic hallmark of Parkinson disease (PD). Studies have focused largely on residues 71–82, yet most early-onset mutations are located between residues 46 and 53. A semirationally designed 209,952-member library based entirely on this region was constructed, containing all wild-type residues and changes associated with early-onset PD. Intracellular cell survival screening and growth competition isolated a 10-residue peptide antagonist that potently inhibits α-syn aggregation and associated toxicity at a 1:1 stoichiometry. This was verified using continuous growth measurements and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity studies. Atomic force microscopy and circular dichroism on the same samples showed a random-coil structure and no oligomers. A new region of α-syn for inhibitor targeting has been highlighted, together with the approach of using a semirational design and intracellular screening. The peptides can then be used as candidates for modification in drugs capable of slowing or even preventing the onset of PD. PMID:25616660

  15. Exploiting protected maleimides to modify oligonucleotides, peptides and peptide nucleic acids.

    PubMed

    Paris, Clément; Brun, Omar; Pedroso, Enrique; Grandas, Anna

    2015-04-10

    This manuscript reviews the possibilities offered by 2,5-dimethylfuran-protected maleimides. Suitably derivatized building blocks incorporating the exo Diels-Alder cycloadduct can be introduced at any position of oligonucleotides, peptide nucleic acids, peptides and peptoids, making use of standard solid-phase procedures. Maleimide deprotection takes place upon heating, which can be followed by either Michael-type or Diels-Alder click conjugation reactions. However, the one-pot procedure in which maleimide deprotection and conjugation are simultaneously carried out provides the target conjugate more quickly and, more importantly, in better yield. This procedure is compatible with conjugates involving oligonucleotides, peptides and peptide nucleic acids. A variety of cyclic peptides and oligonucleotides can be obtained from peptide and oligonucleotide precursors incorporating protected maleimides and thiols.

  16. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects.

    PubMed

    Ponnappan, Nisha; Budagavi, Deepthi Poornima; Yadav, Bhoopesh Kumar; Chugh, Archana

    2015-03-01

    Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.

  17. On the hydrophobicity of peptides: Comparing empirical predictions of peptide log P values.

    PubMed

    Thompson, Sarah J; Hattotuwagama, Channa K; Holliday, John D; Flower, Darren R

    2006-01-01

    Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient logP, is useful for the development of predictive Quantitative Structure-Activity Relationships (QSARs). We have investigated the accuracy of available programs for the prediction of logP values for peptides with known experimental values obtained from the literature. Eight prediction programs were tested, of which seven programs were fragment-based methods: XLogP, LogKow, PLogP, ACDLogP, AlogP, Interactive Analysis's LogP and MlogP; and one program used a whole molecule approach: QikProp. The predictive accuracy of the programs was assessed using r(2) values, with ALogP being the most effective (r( 2) = 0.822) and MLogP the least (r(2) = 0.090). We also examined three distinct types of peptide structure: blocked, unblocked, and cyclic. For each study (all peptides, blocked, unblocked and cyclic peptides) the performance of programs rated from best to worse is as follows: all peptides - ALogP, QikProp, PLogP, XLogP, IALogP, LogKow, ACDLogP, and MlogP; blocked peptides - PLogP, XLogP, ACDLogP, IALogP, LogKow, QikProp, ALogP, and MLogP; unblocked peptides - QikProp, IALogP, ALogP, ACDLogP, MLogP, XLogP, LogKow and PLogP; cyclic peptides - LogKow, ALogP, XLogP, MLogP, QikProp, ACDLogP, IALogP. In summary, all programs gave better predictions for blocked peptides, while, in general, logP values for cyclic peptides were under-predicted and those of unblocked peptides were over-predicted. PMID:17597897

  18. A statistical approach to determining responses to individual peptides from pooled-peptide ELISpot data.

    PubMed

    Ström, Peter; Støer, Nathalie; Borthwick, Nicola; Dong, Tao; Hanke, Tomáš; Reilly, Marie

    2016-08-01

    To investigate in detail the effect of infection or vaccination on the human immune system, ELISpot assays are used to simultaneously test the immune response to a large number of peptides of interest. Scientists commonly use "peptide pools", where, instead of an individual peptide, a test well contains a group of peptides. Since the response from a well may be due to any or many of the peptides in the pool, pooled assays usually need to be followed by confirmatory assays of a number of individual peptides. We present a statistical method that enables estimation of individual peptide responses from pool responses using the Expectation Maximization (EM) algorithm for "incomplete data". We demonstrate the accuracy and precision of these estimates in simulation studies of ELISpot plates with 90 pools of 6 or 7 peptides arranged in three dimensions and three Mock wells for the estimation of background. In analysis of real pooled data from 6 subjects in a HIV-1 vaccine trial, where 199 peptides were arranged in 80 pools if size 9 or 10, our estimates were in very good agreement with the results from individual-peptide confirmatory assays. Compared to the classical approach, we could identify almost all the same peptides with high or moderate response, with less than half the number of confirmatory tests. Our method facilitates efficient use of the information available in pooled ELISpot data to avoid or reduce the need for confirmatory testing. We provide an easy-to-use free online application for implementing the method, where on uploading two spreadsheets with the pool design and pool responses, the user obtains the estimates of the individual peptide responses. PMID:27196788

  19. Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment.

    PubMed

    Yamashita, Hiroko; Kato, Takuma; Oba, Makoto; Misawa, Takashi; Hattori, Takayuki; Ohoka, Nobumichi; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2016-01-01

    Cell-penetrating peptides (CPP) are received a lot of attention as an intracellular delivery tool for hydrophilic molecules such as drugs, proteins, and DNAs. We designed and synthesized nona-arginine analogues 1-5 [FAM-β-Ala-(l-Arg-l-Arg-l-Pro)3-(Gly)3-NH2 (1), FAM-β-Ala-(l-Arg-l-Arg-l-Pro(NH2))3-(Gly)3-NH2 (2), FAM-β-Ala-(l-Arg-l-Arg-l-Pro(Gu))3-(Gly)3-NH2 (3), FAM-β-Ala-(l-Arg)2-(l-Pro(Gu))2-(l-Arg)4-l-Pro(Gu)-(Gly)3-NH2 (4), and FAM-β-Ala-(l-Arg)6-(l-Pro(Gu))3-(Gly)3-NH2 (5)] containing l-proline (l-Pro) or cationic proline derivatives (l-Pro(NH2) and l-Pro(Gu)), and investigated their cell-penetrating abilities. Interestingly, only peptide 3 having the side-chain guanidinyl l-Pro(Gu) exhibited a secondary structural change in cellular environment. Specifically, peptide 3 formed a random structure in hydrophilic conditions, whereas it formed a helical structure under amphipathic conditions. Furthermore, during cellular permeability tests, peptide 3 demonstrated greater cell-penetrating activity than other peptides and effectively transported plasmid DNA into HeLa cells. Thus, l-Pro(Gu)-containing peptide 3 may be a useful candidate as a gene delivery carrier. PMID:27609319

  20. Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment

    PubMed Central

    Yamashita, Hiroko; Kato, Takuma; Oba, Makoto; Misawa, Takashi; Hattori, Takayuki; Ohoka, Nobumichi; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2016-01-01

    Cell-penetrating peptides (CPP) are received a lot of attention as an intracellular delivery tool for hydrophilic molecules such as drugs, proteins, and DNAs. We designed and synthesized nona-arginine analogues 1–5 [FAM-β-Ala-(l-Arg-l-Arg-l-Pro)3-(Gly)3-NH2 (1), FAM-β-Ala-(l-Arg-l-Arg-l-ProNH2)3-(Gly)3-NH2 (2), FAM-β-Ala-(l-Arg-l-Arg-l-ProGu)3-(Gly)3-NH2 (3), FAM-β-Ala-(l-Arg)2-(l-ProGu)2-(l-Arg)4-l-ProGu-(Gly)3-NH2 (4), and FAM-β-Ala-(l-Arg)6-(l-ProGu)3-(Gly)3-NH2 (5)] containing l-proline (l-Pro) or cationic proline derivatives (l-ProNH2 and l-ProGu), and investigated their cell-penetrating abilities. Interestingly, only peptide 3 having the side-chain guanidinyl l-ProGu exhibited a secondary structural change in cellular environment. Specifically, peptide 3 formed a random structure in hydrophilic conditions, whereas it formed a helical structure under amphipathic conditions. Furthermore, during cellular permeability tests, peptide 3 demonstrated greater cell-penetrating activity than other peptides and effectively transported plasmid DNA into HeLa cells. Thus, l-ProGu-containing peptide 3 may be a useful candidate as a gene delivery carrier. PMID:27609319

  1. Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment.

    PubMed

    Yamashita, Hiroko; Kato, Takuma; Oba, Makoto; Misawa, Takashi; Hattori, Takayuki; Ohoka, Nobumichi; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2016-01-01

    Cell-penetrating peptides (CPP) are received a lot of attention as an intracellular delivery tool for hydrophilic molecules such as drugs, proteins, and DNAs. We designed and synthesized nona-arginine analogues 1-5 [FAM-β-Ala-(l-Arg-l-Arg-l-Pro)3-(Gly)3-NH2 (1), FAM-β-Ala-(l-Arg-l-Arg-l-Pro(NH2))3-(Gly)3-NH2 (2), FAM-β-Ala-(l-Arg-l-Arg-l-Pro(Gu))3-(Gly)3-NH2 (3), FAM-β-Ala-(l-Arg)2-(l-Pro(Gu))2-(l-Arg)4-l-Pro(Gu)-(Gly)3-NH2 (4), and FAM-β-Ala-(l-Arg)6-(l-Pro(Gu))3-(Gly)3-NH2 (5)] containing l-proline (l-Pro) or cationic proline derivatives (l-Pro(NH2) and l-Pro(Gu)), and investigated their cell-penetrating abilities. Interestingly, only peptide 3 having the side-chain guanidinyl l-Pro(Gu) exhibited a secondary structural change in cellular environment. Specifically, peptide 3 formed a random structure in hydrophilic conditions, whereas it formed a helical structure under amphipathic conditions. Furthermore, during cellular permeability tests, peptide 3 demonstrated greater cell-penetrating activity than other peptides and effectively transported plasmid DNA into HeLa cells. Thus, l-Pro(Gu)-containing peptide 3 may be a useful candidate as a gene delivery carrier.

  2. Viral morphogenesis is the dominant source of sequence censorship in M13 combinatorial peptide phage display.

    SciTech Connect

    Rodi, D. J.; Soares, A. S.; Makowski, L.; Biosciences Division; BNL

    2002-01-01

    Novel statistical methods have been developed and used to quantitate and annotate the sequence diversity within combinatorial peptide libraries on the basis of small numbers (1-200) of sequences selected at random from commercially available M13 p3-based phage display libraries. These libraries behave statistically as though they correspond to populations containing roughly 4.0{+-}1.6% of the random dodecapeptides and 7.9{+-}2.6% of the random constrained heptapeptides that are theoretically possible within the phage populations. Analysis of amino acid residue occurrence patterns shows no demonstrable influence on sequence censorship by Escherichia coli tRNA isoacceptor profiles or either overall codon or Class II codon usage patterns, suggesting no metabolic constraints on recombinant p3 synthesis. There is an overall depression in the occurrence of cysteine, arginine and glycine residues and an overabundance of proline, threonine and histidine residues. The majority of position-dependent amino acid sequence bias is clustered at three positions within the inserted peptides of the dodecapeptide library, +1, +3 and +12 downstream from the signal peptidase cleavage site. Conformational tendency measures of the peptides indicate a significant preference for inserts favoring a {beta}-turn conformation. The observed protein sequence limitations can primarily be attributed to genetic codon degeneracy and signal peptidase cleavage preferences. These data suggest that for applications in which maximal sequence diversity is essential, such as epitope mapping or novel receptor identification, combinatorial peptide libraries should be constructed using codon-corrected trinucleotide cassettes within vector-host systems designed to minimize morphogenesis-related censorship.

  3. Ribosomally synthesized peptides from natural sources.

    PubMed

    Singh, Nidhi; Abraham, Jayanthi

    2014-04-01

    There are many antibiotic-resistant microbial pathogens that have emerged in recent years causing normal infections to become harder and sometimes impossible to treat. The major mechanisms of acquired resistance are the ability of the microorganisms to destroy or modify the drug, alter the drug target, reduce uptake or increase efflux of the drug and replace the metabolic step targeted by the drug. However, in recent years, resistant strains have been reported from almost every environment. New antimicrobial compounds are of major importance because of the growing problem of bacterial resistance, and antimicrobial peptides have been gaining a lot of interest. Their mechanism of action, however, is often obscure. Antimicrobial peptides are widespread and have a major role in innate immunity. An increasing number of peptides capable of inhibiting microbial growth are being reviewed here. In this article, we consider the possible use of antimicrobial peptides against pathogens.

  4. Electron Transport in Short Peptide Single Molecules

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Brisendine, Joseph; Ng, Fay; Nuckolls, Colin; Koder, Ronald; Venkarataman, Latha

    We present a study of the electron transport through a series of short peptides using scanning tunneling microscope-based break junction method. Our work is motivated by the need to gain a better understanding of how various levels of protein structure contribute to the remarkable capacity of proteins to transport charge in biophysical processes such as respiration and photosynthesis. We focus here on short mono, di and tri-peptides, and probe their conductance when bound to gold electrodes in a native buffer environment. We first show that these peptides can bind to gold through amine, carboxyl, thiol and methyl-sulfide termini. We then focus on two systems (glycine and alanine) and show that their conductance decays faster than alkanes terminated by the same linkers. Importantly, our results show that the peptide bond is less conductive than a sigma carbon-carbon bond. This work was supported in part by NSF-DMR 1507440.

  5. Peptide-based vaccines for cancer therapy.

    PubMed

    Parmiani, Giorgio; Russo, Vincenzo; Maccalli, Cristina; Parolini, Danilo; Rizzo, Nathalie; Maio, Michele

    2014-01-01

    Interest for cancer vaccination started more than 30 years ago after the demonstration that both in animal models and later on in patients it is possible to generate anti-tumor immune responses. The clinical application of this knowledge, however, was disappointing. In this review we summarize results on peptides epitopes recognized by T cells that have been studied thanks to their easy synthesis and the lack of significant side effects when administered in-vivo. To improve the clinical efficacy, peptides were modified in their aminoacid sequence to augment their immunogenicity. Peptides vaccines were recently shown to induce a high frequency of immune response in patients that were accompanied by clinical efficacy. These data are discussed at the light of recent progression of immunotherapy caused by the addition of check-point antibodies thus providing a general picture of the potential therapeutic efficacy of the peptide-based vaccines and their combination with other biological agents.

  6. Self-Assembly of Peptides to Nanostructures

    PubMed Central

    Mandal, Dindyal; Shirazi, Amir Nasrolahi; Parang, Keykavous

    2014-01-01

    The formation of well-ordered nanostructures through self-assembly of diverse organic and inorganic building blocks has drawn much attention owing to their potential applications in biology and chemistry. Among all organic building blocks, peptides are one of the most promising platforms due to their biocompatibility, chemical diversity, and resemblance with proteins. Inspired from the protein assembly in biological systems, various self-assembled peptide structures have been constructed using several amino acids and sequences. This review focuses on this emerging area, the recent advances in peptide self-assembly, and formation of different nanostructures, such as tubular, fibers, vesicles, spherical, and rod coil structures. While different peptide nanostructures are discovered, potential applications will be explored in drug delivery, tissue engineering, wound healing, and surfactants. PMID:24756480

  7. Advances in synthetic peptides reagent discovery

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Bacterial display technology offers a number of advantages over competing display technologies (e.g, phage) for the rapid discovery and development of peptides with interaction targeted to materials ranging from biological hazards through inorganic metals. We have previously shown that discovery of synthetic peptide reagents utilizing bacterial display technology is relatively simple and rapid to make laboratory automation possible. This included extensive study of the protective antigen system of Bacillus anthracis, including development of discovery, characterization, and computational biology capabilities for in-silico optimization. Although the benefits towards CBD goals are evident, the impact is far-reaching due to our ability to understand and harness peptide interactions that are ultimately extendable to the hybrid biomaterials of the future. In this paper, we describe advances in peptide discovery including, new target systems (e.g. non-biological materials), advanced library development and clone analysis including integrated reporting.

  8. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  9. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  10. Peptide Seems to Boost Human Memory.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1981

    1981-01-01

    This article discusses recent studies which have shown that the peptide hormone vasopressin apparently can stimulate memory and learning in healthy human volunteers and in certain mentally disturbed patients. (ECO)

  11. Refoldable Peptide Barrel -- Carbon Nanotube Junctions

    NASA Astrophysics Data System (ADS)

    Titov, Alexey; Wang, Boyang; Kral, Petr

    2008-03-01

    We design hybrid bio-nano-junctions formed by cylindrical peptide structures covalently attached to carbon nanotubes. The cylinders are composed of 5 pairs of antiparallel peptide strands that are ``one-to-one'' matched and covalently bonded through ester and amide bonds to the terminal C atoms in two (20,0) carbon nanotubes. The remaining terminal carbons in the CNTs are replaced by nitrogens, forming embedded quinoline-like structures. The used peptide strands are composed of charged amino acids that form cylindrical patterns with preferred stable configurations. By applying a torque to the nanotubes, we can reversibly fold and control the overall structure of the peptide barrels. The junctions might allow the collection and delivery of drugs and activation of biological molecules attached to them.

  12. Bioactive Proteins and Peptides from Soybeans.

    PubMed

    Agyei, Dominic

    2015-01-01

    Dietary proteins from soybeans have been shown to offer health benefits in vivo and/or in vitro either as intact proteins or in partially digested forms also called bioactive peptides. Upon oral administration and absorption, soy-derived bioactive peptides may induce several physiological responses such as antioxidative, antimicrobial, antihypertensive, anticancer and immunomodulatory effects. There has therefore been a mounting research interest in the therapeutic potential of soy protein hydrolysates and their subsequent incorporation in functional foods and 'Food for Specified Health Uses' (FOSHU) related products where their biological activities may assist in the promotion of good health or in the control and prevention of diseases. This mini review discusses relevant patents and gives an overview on bioactive proteins and peptides obtainable from soybeans. Processes for the production and formulation of these peptides are given, together with specific examples of their therapeutic potential and possible areas of application.

  13. Deciphering enzyme function using peptide arrays.

    PubMed

    Thiele, Alexandra; Stangl, Gabriele I; Schutkowski, Mike

    2011-11-01

    Enzymes are key molecules in signal-transduction pathways. However, only a small fraction of more than 500 human kinases, 300 human proteases and 200 human phosphatases is characterised so far. Peptide microarray based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimisation of enzyme substrates. Focus of this review is on assay principles for measuring activities of kinases, phosphatases or proteases and on substrate identification/optimisation for kinases. Additionally, several examples for reliable identification of substrates for lysine methyl-transferases, histone deacetylases and SUMO-transferases are given. Finally, use of high-density peptide microarrays for the simultaneous profiling of kinase activities in complex biological samples like cell lysates or lysates of complete organisms is described. All published examples of peptide arrays used for enzyme profiling are summarised comprehensively.

  14. Tailoring elastase inhibition with synthetic peptides.

    PubMed

    Vasconcelos, Andreia; Azoia, Nuno G; Carvalho, Ana C; Gomes, Andreia C; Güebitz, Georg; Cavaco-Paulo, Artur

    2011-09-01

    Chronic wounds are the result of excessive amounts of tissue destructive proteases such as human neutrophil elastase (HNE). The high levels of this enzyme found on those types of wounds inactivate the endogenous inhibitor barrier thus, the search for new HNE inhibitors is required. This work presents two new HNE inhibitor peptides, which were synthesized based on the reactive-site loop of the Bowman-Birk inhibitor protein. The results obtained indicated that these new peptides are competitive inhibitors for HNE and, the inhibitory activity can be modulated by modifications introduced at the N- and C-terminal of the peptides. Furthermore, these peptides were also able to inhibit elastase from a human wound exudate while showing no cytotoxicity against human skin fibroblasts in vitro, greatly supporting their potential application in chronic wound treatment.

  15. Peptide platforms for metal ion sensing

    NASA Astrophysics Data System (ADS)

    Imperiali, Barbara; Pearce, Dierdre A.; Sohna Sohna, Jean-Ernest; Walkup, Grant; Torrado, Alicia

    1999-12-01

    Naturally occurring motifs have been redesigned to product fluorescent peptidyl-chemosensors that sensitively and selectively recognize Cu(II) or Fe(III). The modular nature of peptide architecture allows preparation and evaluation of potential sensors on solid supports.

  16. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? .

    PubMed

    Marelli, Udaya Kiran; Ovadia, Oded; Frank, Andreas Oliver; Chatterjee, Jayanta; Gilon, Chaim; Hoffman, Amnon; Kessler, Horst

    2015-10-19

    Recent structural studies on libraries of cyclic hexapeptides led to the identification of common backbone conformations that may be instrumental to the oral availability of peptides. Furthermore, the observation of differential Caco-2 permeabilities of enantiomeric pairs of some of these peptides strongly supports the concept of conformational specificity driven uptake and also suggests a pivotal role of carrier-mediated pathways for peptide transport, especially for scaffolds of polar nature. This work presents investigations on the Caco-2 and PAMPA permeability profiles of 13 selected N-methylated cyclic pentaalanine peptides derived from the basic cyclo(-D-Ala-Ala4 -) template. These molecules generally showed moderate to low transport in intestinal epithelia with a few of them exhibiting a Caco-2 permeability equal to or slightly higher than that of mannitol, a marker for paracellular permeability. We identified that the majority of the permeable cyclic penta- and hexapeptides possess an N-methylated cis-peptide bond, a structural feature that is also present in the orally available peptides cyclosporine A and the tri-N-methylated analogue of the Veber-Hirschmann peptide. Based on these observations it appears that the presence of N-methylated cis-peptide bonds at certain locations may promote the intestinal permeability of peptides through a suitable conformational preorganization.

  17. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    PubMed Central

    McCloskey, Alice P.; Gilmore, Brendan F.; Laverty, Garry

    2014-01-01

    Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection. PMID:25436505

  18. Post-translational Modifications of Natural Antimicrobial Peptides and Strategies for Peptide Engineering.

    PubMed

    Wang, Guangshun

    2012-02-01

    Natural antimicrobial peptides (AMPs) are gene-coded defense molecules discovered in all the three life domains: Eubacteria, Archaea, and Eukarya. The latter covers protists, fungi, plants, and animals. It is now recognized that amino acid composition, peptide sequence, and post-translational modifications determine to a large extent the structure and function of AMPs. This article systematically describes post-translational modifications of natural AMPs annotated in the antimicrobial peptide database (http://aps.unmc.edu/AP). Currently, 1147 out of 1755 AMPs in the database are modified and classified into more than 17 types. Through chemical modifications, the peptides fold into a variety of structural scaffolds that target bacterial surfaces or molecules within cells. Chemical modifications also confer desired functions to a particular peptide. Meanwhile, these modifications modulate other peptide properties such as stability. Elucidation of the relationship between AMP property and chemical modification inspires peptide engineering. Depending on the objective of our design, peptides may be modified in various ways so that the desired features can be enhanced whereas unwanted properties can be minimized. Therefore, peptide design plays an essential role in developing natural AMPs into a new generation of therapeutic molecules.

  19. A self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs.

    PubMed

    Sun, Lijuan; Zhao, Xiaojun

    2012-01-01

    Mechanical strength of nanofiber scaffolds formed by the self-assembling peptide RADA16-I or its derivatives is not very good and limits their application. To address this problem, we inserted spidroin uncrystalline motifs, which confer incomparable elasticity and hydrophobicity to spider silk GGAGGS or GPGGY, into the C-terminus of RADA16-I to newly design two peptides: R3 (n-RADARADARADARADA-GGAGGS-c) and R4 (n-RADARADARADARADA-GPGGY-c), and then observed the effect of these motifs on biophysical properties of the peptide. Atomic force microscopy, transmitting electron microscopy, and circular dichroism spectroscopy confirm that R3 and R4 display β-sheet structure and self-assemble into long nanofibers. Compared with R3, the β-sheet structure and nanofibers formed by R4 are more stable; they change to random coil and unordered aggregation at higher temperature. Rheology measurements indicate that novel peptides form hydrogel when induced by DMEM, and the storage modulus of R3 and R4 hydrogel is 0.5 times and 3 times higher than that of RADA16-I, respectively. Furthermore, R4 hydrogel remarkably promotes growth of liver cell L02 and liver cancer cell SMCC7721 compared with 2D culture, determined by MTT assay. Novel peptides still have potential as hydrophobic drug carriers; they can stabilize pyrene microcrystals in aqueous solution and deliver this into a lipophilic environment, identified by fluorescence emission spectra. Altogether, the spider fibroin motif GPGGY most effectively enhances mechanical strength and hydrophobicity of the peptide. This study provides a new method in the design of nanobiomaterials and helps us to understand the role of the amino acid sequence in nanofiber formation.

  20. Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy

    PubMed Central

    Prickett, S R; Rolland, J M; O'Hehir, R E

    2015-01-01

    Allergen immunotherapy (AIT) has been practised since 1911 and remains the only therapy proven to modify the natural history of allergic diseases. Although efficacious in carefully selected individuals, the currently licensed whole allergen extracts retain the risk of IgE-mediated adverse events, including anaphylaxis and occasionally death. This together with the need for prolonged treatment regimens results in poor patient adherence. The central role of the T cell in orchestrating the immune response to allergen informs the choice of T cell targeted therapies for down-regulation of aberrant allergic responses. Carefully mapped short synthetic peptides that contain the dominant T cell epitopes of major allergens and bind to a diverse array of HLA class II alleles, can be delivered intradermally into non-inflamed skin to induce sustained clinical and immunological tolerance. The short peptides from allergenic proteins are unable to cross-link IgE and possess minimal inflammatory potential. Systematic progress has been made from in vitro human models of allergen T cell epitope-based peptide anergy in the early 1990s, through proof-of-concept murine allergy models and early human trials with longer peptides, to the current randomized, double-blind, placebo-controlled clinical trials with the potential new class of synthetic short immune-regulatory T cell epitope peptide therapies. Sustained efficacy with few adverse events is being reported for cat, house dust mite and grass pollen allergy after only a short course of treatment. Underlying immunological mechanisms remain to be fully delineated but anergy, deletion, immune deviation and Treg induction all seem contributory to successful outcomes, with changes in IgG4 apparently less important compared to conventional AIT. T cell epitope peptide therapy is promising a safe and effective new class of specific treatment for allergy, enabling wider application even for more severe allergic diseases. PMID:25900315

  1. Molecular mechanisms that govern the specificity of Sushi peptides for Gram-negative bacterial membrane lipids.

    PubMed

    Li, Peng; Sun, Miao; Wohland, Thorsten; Yang, Daiwen; Ho, Bow; Ding, Jeak Ling

    2006-09-01

    Factor C-derived Sushi peptides (S1 and S3) have been shown to bind lipopolysaccharide (LPS) and inhibit the growth of Gram-negative bacteria but do not affect mammalian cells. On the premise that the composition of membrane phospholipids differs between the microbial and human cells, we studied the modes of interaction between S1 and S3 and the bacterial membrane phospholipids, POPG, in comparison to that with the mammalian cell membrane phospholipids, POPC and POPE. S1 exhibits specificity against POPG, suggesting its preference for bacterial anionic phospholipids, regardless of whether the phospholipids form vesicles in a solution or a monolayer on a solid surface. The specificity of the Sushi peptides for POPG is a consequence of the electrostatic and hydrophobic forces. The unsaturated nature of POPG confers fluidity to the lipid layer, and being in the proximity of LPS in the microenvironmental milieu, POPG probably enhances the insertion of the peptide-LPS complex into the bacterial inner membrane. Furthermore, during its interaction with POPG, the S1 peptide underwent a transition from random to alpha-helical coil, while S3 became a mixture of beta-sheet and alpha-helical structures. This differential structural change in the peptides could be responsible for their different modes of disruption of POPG vesicles. Conceivably, the selectivity for POPG spares the mammalian membranes from undesirable effects of antimicrobial peptides, which could be helpful in designing and developing a new generation of antibiotics and in offering some clues about the specific function of Factor C, a LPS biosensor.

  2. Peptide-Graphene Interactions Enhance the Mechanical Properties of Silk Fibroin.

    PubMed

    Cheng, Yuan; Koh, Leng-Duei; Li, Dechang; Ji, Baohua; Zhang, Yingyan; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei

    2015-10-01

    Studies reveal that biomolecules can form intriguing molecular structures with fascinating functionalities upon interaction with graphene. Then, interesting questions arise. How does silk fibroin interact with graphene? Does such interaction lead to an enhancement in its mechanical properties? In this study, using large-scale molecular dynamics simulations, we first examine the interaction of graphene with several typical peptide structures of silk fibroin extracted from different domains of silk fibroin, including pure amorphous (P1), pure crystalline (P2), a segment from N-terminal (P3), and a combined amorphous and crystalline segment (P4), aiming to reveal their structural modifications. Our study shows that graphene can have intriguing influences on the structures formed by the peptides with sequences representing different domains of silk fibroin. In general, for protein domains with stable structure and strong intramolecular interaction (e.g., β-sheets), graphene tends to compete with the intramolecular interactions and thus weaken the interchain interaction and reduce the contents of β-sheets. For the silk domains with random or less ordered secondary structures and weak intramolecular interactions, graphene tends to enhance the stability of peptide structures; in particular, it increases the contents of helical structures. Thereafter, tensile simulations were further performed on the representative peptides to investigate how such structure modifications affect their mechanical properties. It was found that the strength and resilience of the peptides are enhanced through their interaction with graphene. The present work reveals interesting insights into the interactions between silk peptides and graphene, and contributes in the efforts to enhance the mechanical properties of silk fibroin.

  3. The peptide route to multifunctional gold nanoparticles.

    PubMed

    Wang, Zhenxin; Lévy, Raphaël; Fernig, David G; Brust, Mathias

    2005-01-01

    Extremely stable, peptide-capped gold nanoparticles with two different biomolecular recognition motifs expressed on their surface have been prepared, and their specific and selective binding to artificial, DNA-modified target particles and to DNA and protein microarrays has been demonstrated. Stabilization and biofunctionalization has been achieved in a single preparative step starting with citrate-stabilized gold hydrosols and a derivatization cocktail of peptide-capping ligands, which carry the functionalities of choice.

  4. Affinity-based release of polymer-binding peptides from hydrogels with the target segments of peptides.

    PubMed

    Serizawa, Takeshi; Fukuta, Hiroki; Date, Takaaki; Sawada, Toshiki

    2016-02-01

    Peptides with affinities for the target segments of polymer hydrogels were identified by biological screening using phage-displayed peptide libraries, and these peptides exhibited an affinity-based release capability from hydrogels. The results from cell culture assays demonstrated the sustained anticancer effects of the drug-conjugated peptides that were released from the hydrogels.

  5. Liquid-phase synthesis of bridged peptides using olefin metathesis of a protected peptide with a long aliphatic chain anchor.

    PubMed

    Aihara, Keisuke; Komiya, Chiaki; Shigenaga, Akira; Inokuma, Tsubasa; Takahashi, Daisuke; Otaka, Akira

    2015-02-01

    Bridged peptides including stapled peptides are attractive tools for regulating protein-protein interactions (PPIs). An effective synthetic methodology in a heterogeneous system for the preparation of these peptides using olefin metathesis and hydrogenation of protected peptides with a long aliphatic chain anchor is reported. PMID:25629979

  6. Liquid-phase synthesis of bridged peptides using olefin metathesis of a protected peptide with a long aliphatic chain anchor.

    PubMed

    Aihara, Keisuke; Komiya, Chiaki; Shigenaga, Akira; Inokuma, Tsubasa; Takahashi, Daisuke; Otaka, Akira

    2015-02-01

    Bridged peptides including stapled peptides are attractive tools for regulating protein-protein interactions (PPIs). An effective synthetic methodology in a heterogeneous system for the preparation of these peptides using olefin metathesis and hydrogenation of protected peptides with a long aliphatic chain anchor is reported.

  7. Random cyclic matrices.

    PubMed

    Jain, Sudhir R; Srivastava, Shashi C L

    2008-09-01

    We present a Gaussian ensemble of random cyclic matrices on the real field and study their spectral fluctuations. These cyclic matrices are shown to be pseudosymmetric with respect to generalized parity. We calculate the joint probability distribution function of eigenvalues and the spacing distributions analytically and numerically. For small spacings, the level spacing distribution exhibits either a Gaussian or a linear form. Furthermore, for the general case of two arbitrary complex eigenvalues, leaving out the spacings among real eigenvalues, and, among complex conjugate pairs, we find that the spacing distribution agrees completely with the Wigner distribution for a Poisson process on a plane. The cyclic matrices occur in a wide variety of physical situations, including disordered linear atomic chains and the Ising model in two dimensions. These exact results are also relevant to two-dimensional statistical mechanics and nu -parametrized quantum chromodynamics. PMID:18851127

  8. Structure of random foam.

    SciTech Connect

    Reinelt, Douglas A.; van Swol, Frank B.; Kraynik, Andrew Michael

    2004-06-01

    The Surface Evolver was used to compute the equilibrium microstructure of dry soap foams with random structure and a wide range of cell-size distributions. Topological and geometric properties of foams and individual cells were evaluated. The theory for isotropic Plateau polyhedra describes the dependence of cell geometric properties on their volume and number of faces. The surface area of all cells is about 10% greater than a sphere of equal volume; this leads to a simple but accurate theory for the surface free energy density of foam. A novel parameter based on the surface-volume mean bubble radius R32 is used to characterize foam polydispersity. The foam energy, total cell edge length, and average number of faces per cell all decrease with increasing polydispersity. Pentagonal faces are the most common in monodisperse foam but quadrilaterals take over in highly polydisperse structures.

  9. CONTOURING RANDOMLY SPACED DATA

    NASA Technical Reports Server (NTRS)

    Hamm, R. W.

    1994-01-01

    This program prepares contour plots of three-dimensional randomly spaced data. The contouring techniques use a triangulation procedure developed by Dr. C. L. Lawson of the Jet Propulsion Laboratory which allows the contouring of randomly spaced input data without first fitting the data into a rectangular grid. The program also allows contour points to be fitted with a smooth curve using an interpolating spline under tension. The input data points to be contoured are read from a magnetic tape or disk file with one record for each data point. Each record contains the X and Y coordinates, value to be contoured, and an alternate contour value (if applicable). The contour data is then partitioned by the program to reduce core storage requirements. Output consists of the contour plots and user messages. Several output options are available to the user such as: controlling which value in the data record is to be contoured, whether contours are drawn by polygonal lines or by a spline under tension (smooth curves), and controlling the contour level labels which may be suppressed if desired. The program can handle up to 56,000 data points and provide for up to 20 contour intervals for a multiple number of parameters. This program was written in FORTRAN IV for implementation on a CDC 6600 computer using CALCOMP plotting capabilities. The field length required is dependent upon the number of data points to be contoured. The program requires 42K octal storage locations plus the larger of: 24 times the maximum number of points in each data partition (defaults to maximum of 1000 data points in each partition with 20 percent overlap) or 2K plus four times the total number of points to be plotted. This program was developed in 1975.

  10. D-Peptides as Recognition Molecules and Therapeutic Agents.

    PubMed

    Liu, Min; Li, Xue; Xie, Zuoxu; Xie, Cao; Zhan, Changyou; Hu, Xuefeng; Shen, Qing; Wei, Xiaoli; Su, Bingxia; Wang, Jing; Lu, Weiyue

    2016-08-01

    Over recent years, D-peptides have attracted increasing attention. D-peptides increase enzymatic stability, prolong the plasma half-life, improve oral bioavailability, and enhance binding activity and specificity with receptor or target proteins, in comparison with the corresponding L-peptide. Therefore, D-peptides are considered to have potential as recognition molecules and therapeutic agents. This review focuses on the design and application of D-peptides with biological activity. PMID:27255896

  11. Antimicrobial cyclic peptides for plant disease control.

    PubMed

    Lee, Dong Wan; Kim, Beom Seok

    2015-03-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

  12. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  13. Self-Assembly of Tetraphenylalanine Peptides.

    PubMed

    Mayans, Enric; Ballano, Gema; Casanovas, Jordi; Díaz, Angélica; Pérez-Madrigal, Maria M; Estrany, Francesc; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2015-11-16

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists of three FFFF molecules defining a ring through head-to-tail NH3(+)⋅⋅⋅(-)OOC interactions, which in turn stack to produce deformed channels with internal diameters between 12 and 16 Å. Depending on the experimental conditions used for the peptide incubation, N-fluorenylmethoxycarbonyl (Fmoc) protected FFFF self-assembles into a variety of polymorphs: ultra-thin nanoplates, fibrils, and star-like submicrometric aggregates. DFT calculations indicate that Fmoc-FFFF prefers a parallel rather than an antiparallel β-sheet assembly. Finally, coexisting multiple assemblies (up to three) were observed for Fmoc-FFFF-OBzl (OBzl = benzyl ester), which incorporates aromatic protecting groups at the two peptide terminals. This unusual and noticeable feature is attributed to the fact that the assemblies obtained by combining the Fmoc and OBzl groups contained in the peptide are isoenergetic.

  14. Peptide Toxins in Solitary Wasp Venoms.

    PubMed

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-04-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na⁺ channel inactivation, in particular against neuronal type Na⁺ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B₁ or B₂ receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  15. Effects of opioid peptides on thermoregulation

    SciTech Connect

    Clark, W.G.

    1981-11-01

    In a given species, injected opioid peptides usually cause changes in temperature similar to those caused by nonpeptide opioids. The main effect in those species most studied, the cat, rat, and mouse, is an increase in the level about which body temperature is regulated; there is a coordinated change in the activity of thermoregulatory effectors such that hyperthermia is produced in both hot and cold environments. Larger doses may depress thermoregulation, thereby causing body temperature to decrease in the cold. Elicitation of different patterns of response over a range of environmental temperatures and studies with naloxone and naltrexone indicate that stimulation of a number of different receptors by both peptide and nonpeptide opioids can evoke thermoregulatory responses. ..beta..-Endorphin is readily antagonized by naloxone whereas methionine-enkephalin can act on naloxone-insensitive receptors. Moreover, synthetic peptide analogs do not necessarily evoke the same response as does the related endogenous peptide. The lack of effect of naloxone on body temperature of subjects housed at usual laboratory temperature or on pyrogen-induced increases in body temperature indicates that an action of endogenous peptides on naloxone-sensitive receptors plays little, if any, role in normal thermoregulation or in fever. However, there is some evidence that such an action may be involved in responses to restraint or ambient temperature-induced stress. Further evaluation of possible physiological roles of endogenous opioid peptides will be facilitated when specific antagonists at other types of opioid receptors become available.

  16. Peptide Toxins in Solitary Wasp Venoms

    PubMed Central

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-01-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  17. Protein quantification using a cleavable reporter peptide.

    PubMed

    Duriez, Elodie; Trevisiol, Stephane; Domon, Bruno

    2015-02-01

    Peptide and protein quantification based on isotope dilution and mass spectrometry analysis are widely employed for the measurement of biomarkers and in system biology applications. The accuracy and reliability of such quantitative assays depend on the quality of the stable-isotope labeled standards. Although the quantification using stable-isotope labeled peptides is precise, the accuracy of the results can be severely biased by the purity of the internal standards, their stability and formulation, and the determination of their concentration. Here we describe a rapid and cost-efficient method to recalibrate stable isotope labeled peptides in a single LC-MS analysis. The method is based on the equimolar release of a protein reference peptide (used as surrogate for the protein of interest) and a universal reporter peptide during the trypsinization of a concatenated polypeptide standard. The quality and accuracy of data generated with such concatenated polypeptide standards are highlighted by the quantification of two clinically important proteins in urine samples and compared with results obtained with conventional stable isotope labeled reference peptides. Furthermore, the application of the UCRP standards in complex samples is described.

  18. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  19. Protein quantification using a cleavable reporter peptide.

    PubMed

    Duriez, Elodie; Trevisiol, Stephane; Domon, Bruno

    2015-02-01

    Peptide and protein quantification based on isotope dilution and mass spectrometry analysis are widely employed for the measurement of biomarkers and in system biology applications. The accuracy and reliability of such quantitative assays depend on the quality of the stable-isotope labeled standards. Although the quantification using stable-isotope labeled peptides is precise, the accuracy of the results can be severely biased by the purity of the internal standards, their stability and formulation, and the determination of their concentration. Here we describe a rapid and cost-efficient method to recalibrate stable isotope labeled peptides in a single LC-MS analysis. The method is based on the equimolar release of a protein reference peptide (used as surrogate for the protein of interest) and a universal reporter peptide during the trypsinization of a concatenated polypeptide standard. The quality and accuracy of data generated with such concatenated polypeptide standards are highlighted by the quantification of two clinically important proteins in urine samples and compared with results obtained with conventional stable isotope labeled reference peptides. Furthermore, the application of the UCRP standards in complex samples is described. PMID:25411902

  20. SPdb – a signal peptide database

    PubMed Central

    Choo, Khar Heng; Tan, Tin Wee; Ranganathan, Shoba

    2005-01-01

    Background The signal peptide plays an important role in protein targeting and protein translocation in both prokaryotic and eukaryotic cells. This transient, short peptide sequence functions like a postal address on an envelope by targeting proteins for secretion or for transfer to specific organelles for further processing. Understanding how signal peptides function is crucial in predicting where proteins are translocated. To support this understanding, we present SPdb signal peptide database , a repository of experimentally determined and computationally predicted signal peptides. Results SPdb integrates information from two sources (a) Swiss-Prot protein sequence database which is now part of UniProt and (b) EMBL nucleotide sequence database. The database update is semi-automated with human checking and verification of the data to ensure the correctness of the data stored. The latest release SPdb release 3.2 contains 18,146 entries of which 2,584 entries are experimentally verified signal sequences; the remaining 15,562 entries are either signal sequences that fail to meet our filtering criteria or entries that contain unverified signal sequences. Conclusion SPdb is a manually curated database constructed to support the understanding and analysis of signal peptides. SPdb tracks the major updates of the two underlying primary databases thereby ensuring that its information remains up-to-date. PMID:16221310

  1. Biomathematical description of synthetic peptide libraries.

    PubMed

    Sieber, Timo; Hare, Eric; Hofmann, Heike; Trepel, Martin

    2015-01-01

    Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries. PMID:26042419

  2. Peptide pheromone signaling in Streptococcus and Enterococcus.

    PubMed

    Cook, Laura C; Federle, Michael J

    2014-05-01

    Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways.

  3. Biomathematical description of synthetic peptide libraries.

    PubMed

    Sieber, Timo; Hare, Eric; Hofmann, Heike; Trepel, Martin

    2015-01-01

    Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries.

  4. Confinement-dependent friction in peptide bundles.

    PubMed

    Erbaş, Aykut; Netz, Roland R

    2013-03-19

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity.

  5. Peptide Binding for Bio-Based Nanomaterials.

    PubMed

    Bedford, N M; Munro, C J; Knecht, M R

    2016-01-01

    Peptide-based strategies represent transformative approaches to fabricate functional inorganic materials under sustainable conditions by modeling the methods exploited in biology. In general, peptides with inorganic affinity and specificity have been isolated from organisms and through biocombinatorial selection techniques (ie, phage and cell surface display). These peptides recognize and bind the inorganic surface through a series of noncovalent interactions, driven by both enthalpic and entropic contributions, wherein the biomolecules wrap the metallic nanoparticle structure. Through these interactions, modification of the inorganic surface can be accessed to drive the incorporation of significantly disordered surface metal atoms, which have been found to be highly catalytically active for a variety of chemical transformations. We have employed synthetic, site-directed mutagenesis studies to reveal localized binding effects of the peptide at the metallic nanoparticle structure to begin to identify the biological basis of control over biomimetic nanoparticle catalytic activity. The protocols described herein were used to fabricate and characterize peptide-capped nanoparticles in atomic resolution to identify peptide sequence effects on the surface structure of the materials, which can then be directly correlated to the catalytic activity to identify structure/function relationships. PMID:27586350

  6. Relaxin and related peptides in male reproduction.

    PubMed

    Agoulnik, Alexander I

    2007-01-01

    The relaxin hormone is renowned for its function in pregnancy, parturition and other aspects of female reproduction. At the same time, the role of relaxin in male reproduction is still debated. Relaxin is prominently expressed in prostate and its receptors are found in several male reproductive organs; however, the data indicative of its contribution to differentiation and functioning of prostate or testis are contradictory. Prostate relaxin is a main source of this peptide in the seminal plasma. The relaxin effects on sperm motility and fertilization have been reported. The expression of other relaxin related peptides, such as INSL5 and INSL6 was described in testis; yet, currently there are no experimental data to pinpoint their biological functions. The other member of relaxin peptide family, insulin-like 3 peptide (INSL3), is a major player in male development. The INSL3 peptide is expressed in testicular fetal and adult Leydig cells and is directly responsible for the process of abdominal testicular descent (migration of the testes towards the scrotum during male development). Genetic targeting of the Insl3 gene or INSL3 GPCR receptor Lgr8/Rxfp2 causes high intra-abdominal cryptorchidism due to a differentiation failure of testicular ligaments, the gubernacula. Several mutations of these two genes rendering nonfunctional proteins have been described in human patients with testicular maldescent. Thus, in this chapter we review the data related to the expression and function of relaxin and related peptides in male reproduction.

  7. Sequential and competitive adsorption of peptides at pendant PEO layers.

    PubMed

    Wu, Xiangming; Ryder, Matthew P; McGuire, Joseph; Snider, Joshua L; Schilke, Karl F

    2015-06-01

    Earlier work provided direction for development of responsive drug delivery systems based on modulation of the structure, amphiphilicity, and surface density of bioactive peptides entrapped within pendant polyethylene oxide (PEO) brush layers. In this work, we describe the sequential and competitive adsorption behavior of such peptides at pendant PEO layers. Three cationic peptides were used for this purpose: the arginine-rich, amphiphilic peptide WLBU2, a peptide chemically identical to WLBU2 but of scrambled sequence (S-WLBU2), and the non-amphiphilic peptide poly-L-arginine (PLR). Optical waveguide lightmode spectroscopy (OWLS) was used to quantify the rate and extent of peptide adsorption and elution at surfaces coated with PEO. UV spectroscopy and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used to quantify the extent of peptide exchange during the course of sequential and competitive adsorption. Circular dichroism (CD) was used to evaluate conformational changes after adsorption of peptide mixtures at PEO-coated silica nanoparticles. Results indicated that amphiphilic peptides are able to displace adsorbed, non-amphiphilic peptides in PEO layers, while non-amphiphilic peptides were not able to displace more amphiphilic peptides. In addition, peptides of greater amphiphilicity dominated the adsorption at the PEO layer from mixtures with less amphiphilic or non-amphiphilic peptides.

  8. Factors Affecting Peptide Interactions with Surface-Bound Microgels.

    PubMed

    Nyström, Lina; Nordström, Randi; Bramhill, Jane; Saunders, Brian R; Álvarez-Asencio, Rubén; Rutland, Mark W; Malmsten, Martin

    2016-02-01

    Effects of electrostatics and peptide size on peptide interactions with surface-bound microgels were investigated with ellipsometry, confocal microscopy, and atomic force microscopy (AFM). Results show that binding of cationic poly-L-lysine (pLys) to anionic, covalently immobilized, poly(ethyl acrylate-co-methacrylic acid) microgels increased with increasing peptide net charge and microgel charge density. Furthermore, peptide release was facilitated by decreasing either microgel or peptide charge density. Analogously, increasing ionic strength facilitated peptide release for short peptides. As a result of peptide binding, the surface-bound microgels displayed pronounced deswelling and increased mechanical rigidity, the latter quantified by quantitative nanomechanical mapping. While short pLys was found to penetrate the entire microgel network and to result in almost complete charge neutralization, larger peptides were partially excluded from the microgel network, forming an outer peptide layer on the microgels. As a result of this difference, microgel flattening was more influenced by the lower Mw peptide than the higher. Peptide-induced deswelling was found to be lower for higher Mw pLys, the latter effect not observed for the corresponding microgels in the dispersed state. While the effects of electrostatics on peptide loading and release were similar to those observed for dispersed microgels, there were thus considerable effects of the underlying surface on peptide-induced microgel deswelling, which need to be considered in the design of surface-bound microgels as carriers of peptide loads, for example, in drug delivery or in functionalized biomaterials. PMID:26750986

  9. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer

    PubMed Central

    Nobrega, Franklin L.; Martins, Ivone M.

    2016-01-01

    The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line– 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 –CPTASNTSC and 4T1pep2—EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy. PMID:27548261

  10. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer.

    PubMed

    Silva, Vera L; Ferreira, Debora; Nobrega, Franklin L; Martins, Ivone M; Kluskens, Leon D; Rodrigues, Ligia R

    2016-01-01

    The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line- 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 -CPTASNTSC and 4T1pep2-EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy. PMID:27548261

  11. How random are random numbers generated using photons?

    NASA Astrophysics Data System (ADS)

    Solis, Aldo; Angulo Martínez, Alí M.; Ramírez Alarcón, Roberto; Cruz Ramírez, Hector; U'Ren, Alfred B.; Hirsch, Jorge G.

    2015-06-01

    Randomness is fundamental in quantum theory, with many philosophical and practical implications. In this paper we discuss the concept of algorithmic randomness, which provides a quantitative method to assess the Borel normality of a given sequence of numbers, a necessary condition for it to be considered random. We use Borel normality as a tool to investigate the randomness of ten sequences of bits generated from the differences between detection times of photon pairs generated by spontaneous parametric downconversion. These sequences are shown to fulfil the randomness criteria without difficulties. As deviations from Borel normality for photon-generated random number sequences have been reported in previous work, a strategy to understand these diverging findings is outlined.

  12. Quantum random walk polynomial and quantum random walk measure

    NASA Astrophysics Data System (ADS)

    Kang, Yuanbao; Wang, Caishi

    2014-05-01

    In the paper, we introduce a quantum random walk polynomial (QRWP) that can be defined as a polynomial , which is orthogonal with respect to a quantum random walk measure (QRWM) on , such that the parameters are in the recurrence relations and satisfy . We firstly obtain some results of QRWP and QRWM, in which case the correspondence between measures and orthogonal polynomial sequences is one-to-one. It shows that any measure with respect to which a quantum random walk polynomial sequence is orthogonal is a quantum random walk measure. We next collect some properties of QRWM; moreover, we extend Karlin and McGregor's representation formula for the transition probabilities of a quantum random walk (QRW) in the interacting Fock space, which is a parallel result with the CGMV method. Using these findings, we finally obtain some applications for QRWM, which are of interest in the study of quantum random walk, highlighting the role played by QRWP and QRWM.

  13. Fluorogenic peptide sequences--transformation of short peptides into fluorophores under ambient photooxidative conditions.

    PubMed

    Juskowiak, Gary L; Stachel, Shawn J; Tivitmahaisoon, Parcharee; Van Vranken, David L

    2004-01-21

    Long-lived proteins are susceptible to nonenzymatic chemical reactions and the evolution of fluorescence; however, little is known about the sequence-dependence of fluorogenesis. We synthesized a library of over half a million octapeptides and exposed it to light and air in pH 7.4 buffer to identify fluorogenic peptides that evolve under mild oxidative conditions. The bead-based peptide library was composed of the general sequence H(2)N-Ala-(Xxx)(6)-Ala-resin, where Xxx was one of nine representative amino acids: Asp, Gly, His, Leu, Lys, Pro, Ser, Trp, and Tyr. Next, we selected five highly fluorescent beads from the library and subjected them to microsequencing, revealing the sequence of the unreacted peptide. All five of the fluorogenic sequences were ionic; lacked Tyr, His, and Leu; and most of the sequences contained only one Trp. We then synthesized the five soluble peptides corresponding to the fluorogenic peptide sequences and exposed them to photooxidative conditions. In general, the soluble peptides reacted slowly, generating nonfluorescent monooxygenated and dioxygenated products. However, one peptide (H(2)N-AlaLysProTrpGlyGlyAspAla-CONH(2)) evolved into a highly fluorescent photoproduct as well as a nonfluorescent monooxygenated photoproduct. The fluorescent photoproduct consisted of a 2-carboxy-quinolin-4-yl moiety fused to the N-terminus of GlyGlyAspAla. The formation of this photoproduct requires cleavage of the peptide backbone and a dramatic reorganization of tryptophan. This work demonstrates that sequencing unreacted peptide on beads can reveal sequences with unique nonenzymatic reactivity. The study also confirms that peptide fluorogenesis is dependent on sequence and not merely on the presence of tryptophan. The potential importance of fluorogenic peptide sequences is two-fold. First, fluorogenic sequences that arise through mutation could prove to be hot spots for human aging. Second, fluorogenic sequences, particularly those compatible with

  14. A Cocoa Peptide Protects Caenorhabditis elegans from Oxidative Stress and β-Amyloid Peptide Toxicity

    PubMed Central

    Martorell, Patricia; Bataller, Esther; Llopis, Silvia; Gonzalez, Núria; Álvarez, Beatriz; Montón, Fernando; Ortiz, Pepa; Ramón, Daniel; Genovés, Salvador

    2013-01-01

    Background Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. Methodology/Principal Findings A bioactive peptide, 13L (DNYDNSAGKWWVT), was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP) was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ1–42 peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL) showed the highest antioxidant activity (P≤0.001) in the wild-type strain (N2). Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24–47 h period after Aβ1–42 peptide induction (P≤0.0001). This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. Conclusions/Significance These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals. PMID:23675471

  15. Conformational preferences of a peptide corresponding to the major antigenic determinant of foot-and-mouth disease virus: implications for peptide-vaccine approaches.

    PubMed

    de Prat-Gay, G

    1997-05-15

    The conformational preferences in solution of a peptide corresponding to the GH loop of the VP1 capsid protein from the foot-and-mouth disease virus were examined by proton nuclear magnetic resonance and circular dichroism. The GH loop is the major antigenic determinant of the virus and participates in cell attachment through an integrin-like Arg-Gly-Asp sequence. The synthetic peptide, corresponding to residues Gly132 to Ser162 of the VP1 capsid protein of the serotype O, is largely disordered in aqueous solution as shown by the absence of long- and medium-range NOE contacts and by random-like chemical shifts values. Helical contents in aqueous solution were estimated to be less than 10%, as determined by extrapolation of trifluoroethanol titration from CD measurements, in good agreement with estimations from NMR experiments. In the presence of 40% trifluoroethanol an alpha-helix, flanked by two proline residues between Asn12 (Asn143 in the intact protein) and Leu28 (159), is induced. This contrasts with the 3(10) helix observed between residues Leu148 and Val155 in the crystal structure of the dithiothreitol-reduced virus, indicating that the cosolvent does not stabilize a residual, low-populated structure, similar to that in the intact virus. Several algorithms also fail to predict the structure found in the intact virus because these are based mainly on local sequence information. The lack of structure of the peptide in aqueous solution strongly suggests that the conformational determinants sufficient for the structure stabilization of this highly immunogenic antigen are mostly dictated by interactions of the loop with other regions of the virus structure, and do not arise from local amino acid sequence information. The ability of designed GH-VP1 peptides to neutralize anti-virus antibodies is likely to arise from antibody-induced conformation of the peptide and its application as peptide vaccines is not straightforward. Similarly, insertion of these peptides

  16. B-type natriuretic peptide modulates ghrelin, hunger, and satiety in healthy men.

    PubMed

    Vila, Greisa; Grimm, Gabriele; Resl, Michael; Heinisch, Birgit; Einwallner, Elisa; Esterbauer, Harald; Dieplinger, Benjamin; Mueller, Thomas; Luger, Anton; Clodi, Martin

    2012-10-01

    Chronic heart failure is accompanied by anorexia and increased release of B-type natriuretic peptide (BNP) from ventricular cardiomyocytes. The pathophysiological mechanisms linking heart failure and appetite regulation remain unknown. In this study, we investigated the impact of intravenous BNP administration on appetite-regulating hormones and subjective ratings of hunger and satiety in 10 healthy volunteers. Participants received in a randomized, placebo-controlled, crossover, single-blinded study (subject) placebo once and 3.0 pmol/kg/min human BNP-32 once administered as a continuous infusion during 4 h. Circulating concentrations of appetite-regulating peptides were measured hourly. Subjective ratings of hunger and satiety were evaluated by visual analog scales. BNP inhibited the fasting-induced increase in total and acylated ghrelin concentrations over time (P = 0.043 and P = 0.038, respectively). In addition, BNP decreased the subjective rating of hunger (P = 0.009) and increased the feeling of satiety (P = 0.012) when compared with placebo. There were no significant changes in circulating peptide YY, glucagon-like peptide 1, oxyntomodulin, pancreatic polypeptide, leptin, and adiponectin concentrations. In summary, our results demonstrate that BNP exerts anorectic effects and reduces ghrelin concentrations in men. These data, taken together with the known cardiovascular properties of ghrelin, support the existence of a heart-gut-brain axis, which could be therapeutically targeted in patients with heart failure and obesity.

  17. Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite.

    PubMed

    Yu, Xiang; Wang, Qiuming; Lin, Yinan; Zhao, Jun; Zhao, Chao; Zheng, Jie

    2012-04-24

    The misfolding and aggregation of amyloid-β (Aβ) peptides into amyloid fibrils in solution and on the cell membrane has been linked to the pathogenesis of Alzheimer's disease. Although it is well-known that the presence of different surfaces can accelerate the aggregation of Aβ peptides into fibrils, surface-induced conformation, orientation, aggregation, and adsorption of Aβ peptides have not been well understood at the atomic level. Here, we perform all-atom explicit-water molecular dynamics (MD) simulations to study the orientation change, conformational dynamics, surface interaction of small Aβ aggregates with different sizes (monomer to tetramer), and conformations (α-helix and β-hairpin) upon adsorption on the graphite surface, in comparison with Aβ structures in bulk solution. Simulation results show that hydrophobic graphite induces the quick adsorption of Aβ peptides regardless of their initial conformations and sizes. Upon the adsorption, Aβ prefers to adopt random structure for monomers and to remain β-rich-structure for small oligomers, but not helical structures. More importantly, due to the amphiphilic sequence of Aβ and the hydrophobic nature of graphite, hydrophobic C-terminal residues of higher-order Aβ oligomers appear to have preferential interactions with the graphite surface for facilitating Aβ fibril formation and fibril growth. In combination of atomic force microscopy (AFM) images and MD simulation results, a postulated mechanism is proposed to describe the structure and kinetics of Aβ aggregation from aqueous solution to the graphite surface, providing parallel insights into Aβ aggregation on biological cell membranes.

  18. Towards automated discrimination of lipids versus peptides from full scan mass spectra

    PubMed Central

    Dittwald, Piotr; Nghia, Vu Trung; Harris, Glenn A.; Caprioli, Richard M.; Van de Plas, Raf; Laukens, Kris; Gambin, Anna; Valkenborg, Dirk

    2014-01-01

    Although physicochemical fractionation techniques play a crucial role in the analysis of complex mixtures, they are not necessarily the best solution to separate specific molecular classes, such as lipids and peptides. Any physical fractionation step such as, for example, those based on liquid chromatography, will introduce its own variation and noise. In this paper we investigate to what extent the high sensitivity and resolution of contemporary mass spectrometers offers viable opportunities for computational separation of signals in full scan spectra. We introduce an automatic method that can discriminate peptide from lipid peaks in full scan mass spectra, based on their isotopic properties. We systematically evaluate which features maximally contribute to a peptide versus lipid classification. The selected features are subsequently used to build a random forest classifier that enables almost perfect separation between lipid and peptide signals without requiring ion fragmentation and classical tandem MS-based identification approaches. The classifier is trained on in silico data, but is also capable of discriminating signals in real world experiments. We evaluate the influence of typical data inaccuracies of common classes of mass spectrometry instruments on the optimal set of discriminant features. Finally, the method is successfully extended towards the classification of individual lipid classes from full scan mass spectral features, based on input data defined by the Lipid Maps Consortium. PMID:25414814

  19. Mitochondria-Targeted Peptide Reverses Mitochondrial Dysfunction and Cognitive Deficits in Sepsis-Associated Encephalopathy.

    PubMed

    Wu, Jing; Zhang, Mingqiang; Hao, Shuangying; Jia, Ming; Ji, Muhuo; Qiu, Lili; Sun, Xiaoyan; Yang, Jianjun; Li, Kuanyu

    2015-08-01

    Sepsis-associated encephalopathy (SAE) is associated with increased mortality, morbidity, and long-term cognitive impairments. Its pathophysiology remains to be determined and an effective pharmacologic treatment is lacking. The goal of this study was to investigate the effects of the mitochondria-targeted peptide SS-31 on mitochondrial function and cognitive deficits in SAE mice. C57BL/6 male mice were randomly divided into sham, sham + SS-31, cecal ligation and puncture (CLP), and CLP + SS-31 groups. Peptide SS-31 (5 mg/kg) was intraperitoneally administrated immediately after operation and afterwards once daily for six consecutive days. Surviving mice were subjected to behavioral tests and the hippocampus was collected for biochemical analysis 7 days after operation. The results showed that CLP resulted in high mortality rate and cognitive deficits, representative characteristics of SAE. A physiological mechanistic investigation revealed that mitochondrial function of hippocampus was severely impaired, coupled with reactive oxygen species (ROS) generation, triggering neuronal apoptosis and inflammation. Notably, administration of peptide SS-31 protected the integrity of mitochondria, reversed the mitochondrial dysfunction, inhibited the apoptosis resulting from the release of cytochrome c, diminished the response of inflammation, and ultimately reversed the behavior deficits in the SAE mice. In conclusion, our data demonstrate that daily treatment with mitochondria-targeted peptide SS-31 reduces mortality rate and ameliorates cognitive deficits, which is possibly through a mechanism of reversing mitochondrial dysfunction and partial inhibition of neuronal apoptosis and inflammation in the hippocampus of the SAE mice.

  20. Study of Two Bioactive Peptides in Vacuum and Solvent by Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Yaşar, F.; Demir, K.

    The thermodynamic and structural properties of Tyrosine-Glycine-Leusine-Phenylalanine (YGLF, in a one letter code) and Lysine-Valine-Leusine-Proline-Valine-Proline-Glutamine (KVLPVPQ) peptide sequences were studied by three-dimensional molecular modeling in vacuum and solution. All the three-dimensional conformations of each peptide sequences were obtained by multicanonical simulations with using ECEPP/2 force field and each simulation started from completely random initial conformation. Solvation contributions are included by a term that is proportional to solvent-accessible surface areas of peptides. In the present study, we calculated the average values of total energy, specific heat, fourth-order cumulant and end-to-end distance for two peptide sequences of milk protein as a function of temperature. With using major advantage of this simulation technique, Ramachandran plots were prepared and analysed to predict the relative occurrence probabilities of β-turn, γ-turn and helical structures. Although structural predictions of these sequences indicate both the presence of high level of γ-turns and low level of β-turns in vacuum and solvent, it was observed that these probabilities in vacuum were higher than the ones in solvent model.