Science.gov

Sample records for 12-month-old samp8 mice

  1. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways.

    PubMed

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E

    2014-01-01

    The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.

  2. Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice.

    PubMed

    Lecoq, Anne-Lise; Zizzari, Philippe; Hage, Mirella; Decourtye, Lyvianne; Adam, Clovis; Viengchareun, Say; Veldhuis, Johannes D; Geoffroy, Valérie; Lombès, Marc; Tolle, Virginie; Guillou, Anne; Karhu, Auli; Kappeler, Laurent; Chanson, Philippe; Kamenický, Peter

    2016-10-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas, particularly of the somatotroph lineage. Mice with global heterozygous inactivation of Aip (Aip(+/-)) also develop pituitary adenomas but differ from AIP-mutated patients by the high penetrance of pituitary disease. The endocrine phenotype of these mice is unknown. The aim of this study was to determine the endocrine phenotype of Aip(+/-) mice by assessing the somatic growth, ultradian pattern of GH secretion and IGF1 concentrations of longitudinally followed male mice at 3 and 12 months of age. As the early stages of pituitary tumorigenesis are controversial, we also studied the pituitary histology and somatotroph cell proliferation in these mice. Aip(+/-) mice did not develop gigantism but exhibited a leaner phenotype than wild-type mice. Analysis of GH pulsatility by deconvolution in 12-month-old Aip(+/-) mice showed a mild increase in total GH secretion, a conserved GH pulsatility pattern, but a normal IGF1 concentration. No pituitary adenomas were detected up to 12 months of age. An increased ex vivo response to GHRH of pituitary explants from 3-month-old Aip(+/-) mice, together with areas of enlarged acini identified on reticulin staining in the pituitary of some Aip(+/-) mice, was suggestive of somatotroph hyperplasia. Global heterozygous Aip deficiency in mice is accompanied by subtle increase in GH secretion, which does not result in gigantism. The absence of pituitary adenomas in 12-month-old Aip(+/-) mice in our experimental conditions demonstrates the important phenotypic variability of this congenic mouse model.

  3. Neuroprotective role of intermittent fasting in senescence-accelerated mice P8 (SAMP8).

    PubMed

    Tajes, M; Gutierrez-Cuesta, J; Folch, J; Ortuño-Sahagun, D; Verdaguer, E; Jiménez, A; Junyent, F; Lau, A; Camins, A; Pallàs, M

    2010-09-01

    Dietary interventions have been proposed as a way to increase lifespan and improve health. The senescence-accelerated prone 8 (SAMP8) mice have a shorter lifespan and show alterations in the central nervous system. Moreover, this mouse strain shows decreased sirtuin 1 protein expression and elevated expression of the acetylated targets NFkappaB and FoxO1, which are implicated in transcriptional control of key genes in cell proliferation and cell survival, in reference to control strain, SAMR1. After eight weeks of intermittent fasting, sirtuin 1 protein expression was recovered in SAMP8. This recovery was accompanied by a reduction in the two acetylated targets. Furthermore, SAMP8 showed a lower protein expression of BDNF and HSP70 while intermittent fasting re-established normal values. The activation of JNK and FoxO1 was also reduced in SAMP8 mice subjected to an IF regimen, compared with control SAMP8. Our findings provide new insights into the participation of sirtuin 1 in ageing and point to a potential novel application of this enzyme to prevent frailty due to ageing processes in the brain.

  4. Cognitive-enhancing effects of hydrolysate of polygalasaponin in SAMP8 mice*

    PubMed Central

    Xu, Pan; Xu, Shu-ping; Wang, Ke-zhu; Lu, Cong; Zhang, Hong-xia; Pan, Rui-le; Qi, Chang; Yang, Yan-yan; Li, Ying-hui; Liu, Xin-min

    2016-01-01

    Objectives: The aim of the study is to evaluate the cognitive-enhancing effects of hydrolysate of polygalasaponin (HPS) on senescence accelerate mouse P8 (SAMP8) mice, an effective Alzheimer’s disease (AD) model, and to research the relevant mechanisms. Methods: The cognitive-enhancing effects of HPS on SAMP8 mice were assessed using Morris water maze (MWM) and step-through passive avoidance tests. Then N-methyl-D-aspartate (NMDA) receptor subunit expression for both the cortex and hippocampus of mice was observed using Western blotting. Results: HPS (25 and 50 mg/kg) improved the escape rate and decreased the escape latency and time spent in the target quadrant for the SAMP8 mice in the MWM after oral administration of HPS for 10 d. Moreover, it decreased error times in the passive avoidance tests. Western blotting showed that HPS was able to reverse the levels of NMDAR1 and NMDAR2B expression in the cortex or hippocampus of model mice. Conclusions: The present study suggested that HPS can improve cognitive deficits in SAMP8 mice, and this mechanism might be associated with NMDA receptor (NMDAR)-related pathways. PMID:27381727

  5. Melatonin improves inflammation processes in liver of senescence-accelerated prone male mice (SAMP8).

    PubMed

    Cuesta, Sara; Kireev, Roman; Forman, Katherine; García, Cruz; Escames, Germaine; Ariznavarreta, Carmen; Vara, Elena; Tresguerres, Jesús A F

    2010-12-01

    Aging is associated with an increase in oxidative stress and inflammation. The aim of this study was to investigate the effect of aging on various physiological parameters related to inflammation in livers obtained from two types of male mice models: Senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant (SAMR1) mice, and to study the influence of the administration of melatonin (1mg/kg/day) for one month on old SAMP8 mice on these parameters. The parameters studied have been the mRNA expression of TNF-α, iNOS, IL-1β, HO-1, HO-2, MCP1, NFkB1, NFkB2, NFkB protein or NKAP and IL-10. All have been measured by real-time reverse transcription polymerase chain reaction RT-PCR. Furthermore we analyzed the protein expression of TNF-α, iNOS, IL-1β, HO-1, HO-2, and IL-10 by Western-blot. Aging increased oxidative stress and inflammation especially in the liver of SAMP8 mice. Treatment with melatonin decreased the mRNA expression of TNF-α, IL-1β, HO (HO-1 and HO-2), iNOS, MCP1, NFκB1, NFκB2 and NKAP in old male mice. The protein expression of TNF-α, IL-1β was also decreased and IL-10 increased with melatonin treatment and no significant differences were observed in the rest of parameters analyzed. The present study showed that aging was related to inflammation in livers obtained from old male senescence prone mice (SAMP8) and old male senescence resistant mice (SAMR1) being the alterations more evident in the former. Exogenous administration of melatonin was able to reduce inflammation.

  6. Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8).

    PubMed

    Cuesta, Sara; Kireev, Roman; García, Cruz; Rancan, Lisa; Vara, Elena; Tresguerres, Jesús A F

    2013-06-01

    The aim of the present study was to investigate the effect of aging on several parameters related to glucose homeostasis and insulin resistance in pancreas and how melatonin administration could affect these parameters. Pancreas samples were obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant mice (SAMR1). Insulin levels in plasma were increased with aging in both SAMP8 and SAMR1 mice, whereas insulin content in pancreas was decreased with aging in SAMP8 and increased in SAMR1 mice. Expressions of glucagon and GLUT2 messenger RNAs (mRNAs) were increased with aging in SAMP8 mice, and no differences were observed in somatostatin and insulin mRNA expressions. Furthermore, aging decreased also the expressions of Pdx-1, FoxO 1, FoxO 3A and Sirt1 in pancreatic SAMP8 samples. Pdx-1 was decreased in SAMR1 mice, but no differences were observed in the rest of parameters on these mice strains. Treatment with melatonin was able to decrease plasma insulin levels and to increase its pancreatic content in SAMP8 mice. In SAMR1, insulin pancreatic content and plasma levels were decreased. HOMA-IR was decreased with melatonin treatment in both strains of animals. On the other hand, in SAMP8 mice, treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin mRNA. Furthermore, it was also able to increase the expression of Sirt1, Pdx-1 and FoxO 3A. According to these results, aging is associated with significant alterations in the relative expression of pancreatic genes associated to glucose metabolism. This has been especially observed in SAMP8 mice. Melatonin administration was able to improve pancreatic function in old SAMP8 mice and to reduce HOMA-IR improving their insulin physiology and glucose metabolism.

  7. Extra virgin olive oil improves learning and memory in SAMP8 mice.

    PubMed

    Farr, Susan A; Price, Tulin O; Dominguez, Ligia J; Motisi, Antonio; Saiano, Filippo; Niehoff, Michael L; Morley, John E; Banks, William A; Ercal, Nuran; Barbagallo, Mario

    2012-01-01

    Polyphenols are potent antioxidants found in extra virgin olive oil (EVOO); antioxidants have been shown to reverse age- and disease-related learning and memory deficits. We examined the effects of EVOO on learning and memory in SAMP8 mice, an age-related learning/memory impairment model associated with increased amyloid-β protein and brain oxidative damage. We administered EVOO, coconut oil, or butter to 11 month old SAMP8 mice for 6 weeks. Mice were tested in T-maze foot shock avoidance and one-trial novel object recognition with a 24 h delay. Mice which received EVOO had improved acquisition in the T-maze and spent more time with the novel object in one-trial novel object recognition versus mice which received coconut oil or butter. Mice that received EVOO had improve T-maze retention compared to the mice that received butter. EVOO increased brain glutathione levels suggesting reduced oxidative stress as a possible mechanism. These effects plus increased glutathione reductase activity, superoxide dismutase activity, and decreased tissue levels of 4-hydroxynoneal and 3-nitrotyrosine were enhanced with enriched EVOO (3 × and 5 × polyphenols concentration). Our findings suggest that EVOO has beneficial effects on learning and memory deficits found in aging and diseases, such as those related to the overproduction of amyloid-β protein, by reversing oxidative damage in the brain, effects that are augmented with increasing concentrations of polyphenols in EVOO.

  8. Osteoporosis Recovery by Antrodia camphorata Alcohol Extracts through Bone Regeneration in SAMP8 Mice

    PubMed Central

    Liu, Hen-Yu; Huang, Chiung-Fang; Li, Chun-Hao; Tsai, Ching-Yu; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Kuo, Yueh-Hsiung; Cheong, Mei-Leng; Deng, Win-Ping

    2016-01-01

    Antrodia camphorata has previously demonstrated the efficacy in treating cancer and anti-inflammation. In this study, we are the first to evaluate Antrodia camphorata alcohol extract (ACAE) for osteoporosis recovery in vitro with preosteoblast cells (MC3T3-E1) and in vivo with an osteoporosis mouse model established in our previous studies, ovariectomized senescence accelerated mice (OVX-SAMP8). Our results demonstrated that ACAE treatment was slightly cytotoxic to preosteoblast at 25 μg/mL, by which the osteogenic gene expression (RUNX2, OPN, and OCN) was significantly upregulated with an increased ratio of OPG to RANKL, indicating maintenance of the bone matrix through inhibition of osteoclastic pathway. Additionally, evaluation by Alizarin Red S staining showed increased mineralization in ACAE-treated preosteoblasts. For in vivo study, our results indicated that ACAE inhibits bone loss and significantly increases percentage bone volume, trabecular bone number, and bone mineral density in OVX-SAMP8 mice treated with ACAE. Collectively, in vitro and in vivo results showed that ACAE could promote osteogenesis and prevent bone loss and should be considered an evidence-based complementary and alternative medicine for osteoporosis therapy through the maintenance of bone health. PMID:27143981

  9. Osteoporosis Recovery by Antrodia camphorata Alcohol Extracts through Bone Regeneration in SAMP8 Mice.

    PubMed

    Liu, Hen-Yu; Huang, Chiung-Fang; Li, Chun-Hao; Tsai, Ching-Yu; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Kuo, Yueh-Hsiung; Cheong, Mei-Leng; Deng, Win-Ping

    2016-01-01

    Antrodia camphorata has previously demonstrated the efficacy in treating cancer and anti-inflammation. In this study, we are the first to evaluate Antrodia camphorata alcohol extract (ACAE) for osteoporosis recovery in vitro with preosteoblast cells (MC3T3-E1) and in vivo with an osteoporosis mouse model established in our previous studies, ovariectomized senescence accelerated mice (OVX-SAMP8). Our results demonstrated that ACAE treatment was slightly cytotoxic to preosteoblast at 25 μg/mL, by which the osteogenic gene expression (RUNX2, OPN, and OCN) was significantly upregulated with an increased ratio of OPG to RANKL, indicating maintenance of the bone matrix through inhibition of osteoclastic pathway. Additionally, evaluation by Alizarin Red S staining showed increased mineralization in ACAE-treated preosteoblasts. For in vivo study, our results indicated that ACAE inhibits bone loss and significantly increases percentage bone volume, trabecular bone number, and bone mineral density in OVX-SAMP8 mice treated with ACAE. Collectively, in vitro and in vivo results showed that ACAE could promote osteogenesis and prevent bone loss and should be considered an evidence-based complementary and alternative medicine for osteoporosis therapy through the maintenance of bone health.

  10. Effect of growth hormone treatment on pancreatic inflammation, oxidative stress, and apoptosis related to aging in SAMP8 mice.

    PubMed

    Cuesta, Sara; Kireev, Roman; García, Cruz; Forman, Katherine; Vara, Elena; Tresguerres, Jesús A F

    2011-10-01

    Aging is associated with an increase in inflammation, oxidative stress, and apoptosis. Furthermore, aging is accompanied by an alteration of the growth hormone (GH) -insulin-like growth factor-1 (IGF-1) axis. The aim of this study was to examine the regulation of these parameters in the pancreas of old mice and how GH treatment could affect this process. Male senescence-accelerated prone mice (SAMP8) and male senescence-accelerated resistant mice (SAMR1) 2 (young) and 10 months old were used (n = 40). Animals were divided into five experimental groups: 1 and 2, SAMP8/R1 young control; 3 and 4, SAMP8/R1 old control (untreated); and 5, SAMP8 old treated with GH. Physiologically equivalent doses of GH were administered for 1 month (2 mg subcutaneously [s.c.]/kg/day) and several parameters were analyzed. Aging was associated with increased inflammation, oxidative stress, and apoptosis (increased tumor necrosis factor-α [TNF-α], interleukin-β [IL-β], IL-6, monocyte chemoattractant protein-1 [MCP1], IL-2, heme oxygenase [HO-1], inducible nitric oxide synthase [iNOS], and nitric oxide metabolites [NOx]). The ratio of anti/pro apoptotic mRNA expression-B cell lymphoma 2 (Bcl-2) Bcl-2-associated X protein (BAX) + Bcl-xL/Bcl-2-associated death promoter (BAD)-was decreased during aging in SAMP8 mice. X-inhibitor of apoptosis (XIAP) was decreased during the aging process. Furthermore, no changes were observed in protein expression of nuclear factor-κB (NF-κB p65 and NF-κBp50-105. However, the protein expression of NF-κB p52-100 and inhibitor kappa B (IκB) alpha was increased with age in the pancreas of SAMP8 mice. On the other hand, the expression of IκB beta was decreased with aging. These results indicate that aging is associated with significant alterations in the relative expression of pancreatic genes involved in inflammation, oxidative stress, and apoptosis. According to our results, GH administration to old SAMP8 mice was able to improve pancreas from

  11. Antisense Oligonucleotide Against GSK-3β in Brain of SAMP8 Mice Improves Learning and Memory and Decreases Oxidative Stress: Involvement of Transcription Factor Nrf2 and Implications for Alzheimer Disease

    PubMed Central

    Farr, Susan A.; Ripley, Jessica L.; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L.; Platt, Thomas L.; Murphy, M. Paul; Morley, John E.; Kumar, Vijaya; Butterfield, D. Allan

    2014-01-01

    Glycogen synthase kinase (GSK) -3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer’s disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ) and neurodegeneration. In this study we used 12 month old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured indicating decreased oxidative stress. Nuclear factor erythroid -2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with

  12. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease.

    PubMed

    Farr, Susan A; Ripley, Jessica L; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L; Platt, Thomas L; Murphy, M Paul; Morley, John E; Kumar, Vijaya; Butterfield, D Allan

    2014-02-01

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased

  13. Neuroprotective Properties of Panax notoginseng Saponins via Preventing Oxidative Stress Injury in SAMP8 Mice

    PubMed Central

    Jing, Xin; Tian, Xin; Qin, Mei-Chun; Xu, Zhe-Hao

    2017-01-01

    Inhibiting oxidative damage in early stage of Alzheimer's disease (AD) is considered as a strategy for AD treatment. Our previous study has shown that Panax notoginseng saponins (PNS) have an antiaging action by increasing the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) in the serum of aged rats. In this study, we aimed to investigate the effects of PNS on antioxidant enzymes and uncoupling proteins (UCPs) involved in oxidative stress in AD mice. The results showed that PNS prevented neuronal loss in hippocampal CA1 region and alleviated pathomorphological change of neurons in CA1 region. Moreover, PNS inhibited the production of 8-hydroxydeoxyguanosine (8-OHdG), enhanced the expressions and activities of SOD, CAT, and GSH-PX, and improved the mRNA and protein levels of UCP4 and UCP5 in the brains of SAMP8 mice. Together, our study shows that PNS has the ability to protect neurons in AD brain from oxidative stress damage through attenuating the production of 8-OHdG, enhancing the activities of antioxidant enzymes and the expressions levels of UCP4 and UCP5. Accordingly, PNS may be a promising agent for AD treatment. PMID:28250796

  14. Cerebrosides from Sea Cucumber Protect Against Oxidative Stress in SAMP8 Mice and PC12 Cells.

    PubMed

    Che, Hongxia; Du, Lei; Cong, Peixu; Tao, Suyuan; Ding, Ning; Wu, Fengjuan; Xue, Changhu; Xu, Jie; Wang, Yuming

    2017-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder. Emerging evidence implicates β-amyloid (Aβ) plays a critical role in the progression of AD. In this study, we investigated the protective effect of cerebrosides obtained from sea cucumber against senescence-accelerated mouse prone 8 (SAMP8) mice in vivo. We also studied the effect of cerebrosides on Aβ-induced cytotoxicity on the rat pheochromocytoma cell (PC12) and the underlying molecular mechanisms. Cerebrosides ameliorated learning and memory deficits and the Aβ accumulation in demented mice, decreased the content of malondialdehyde (MDA), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG), 8-hydroxy-2'-deoxyguanosine (8-oxo-G), and nitric oxide (NO), and enhanced the superoxide dismutase (SOD) activity significantly. The neuroprotective effect of sea cucumber cerebrosides (SCC) was also verified in vitro: the cerebrosides increased the survival rate of PC12 cells, recovered the cellular morphology, downregulated the protein levels of Caspase-9, cleaved Caspase-3, total Caspase-3, and Bax, and upregulated the protein level of Bcl-2, revealing that cerebrosides could inhibit Aβ-induced cell apoptosis. The results showed the protective effect of SCC was regulated by the mitochondria-dependent apoptotic pathway. Our results provide a new approach to developing the marine organisms as functional foods for neuroprotection.

  15. Creatine supplementation augments skeletal muscle carnosine content in senescence-accelerated mice (SAMP8).

    PubMed

    Derave, Wim; Jones, Glenys; Hespel, Peter; Harris, Roger C

    2008-06-01

    The histidine-containing dipeptides (HCD) carnosine and anserine are found in high concentrations in mammalian skeletal muscle. Given its versatile biologic properties, such as antioxidative, antiglycation, and pH buffering capacity, carnosine has been implicated as a protective factor in the aging process. The present study aimed to systematically explore age-related changes in skeletal muscles HCD content in a murine model of accelerated aging. Additionally, we investigated the effect of lifelong creatine supplementation on muscle HCD content and contractile fatiguability. Male senescence-accelerated mice (SAMP8) were fed control or creatine-supplemented (2% of food intake) diet from the age of 10 to 60 weeks. At week 10, 25, and 60, tibialis anterior muscles were dissected and analysed for HCD and taurine content by HPLC. Soleus and EDL muscles were tested for in vitro contractile fatigue and recovery. From 10 to 60 weeks of age, muscular carnosine (-45%), taurine (-24%), and total creatine (-42%) concentrations gradually and significantly decreased. At 25 but not at 60 weeks, oral creatine supplementation significantly increased carnosine (+88%) and anserine (+40%) content compared to age-matched control-fed animals. Taurine and total creatine content were not affected by creatine supplementation at any age. Creatine-treated mice showed attenuated muscle fatigue (soleus) and enhanced force recovery (m. extensor digitorum longus [EDL]) compared to controls at 25 weeks, but not at 60 weeks. From the present study, we can conclude that skeletal muscle tissue exhibits a significant decline in HCD content at old age. Oral creatine supplementation is able to transiently but potently increase muscle carnosine and anserine content, which coincides with improved resistance to contractile fatigue.

  16. Shortened estrous cycle length, increased FSH levels, FSH variance, oocyte spindle aberrations, and early declining fertility in aging senescence-accelerated mouse prone-8 (SAMP8) mice: concomitant characteristics of human midlife female reproductive aging.

    PubMed

    Bernstein, Lori R; Mackenzie, Amelia C L; Kraemer, Duane C; Morley, John E; Farr, Susan; Chaffin, Charles L; Merchenthaler, István

    2014-06-01

    Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.

  17. Effects of dihydrotestosterone on synaptic plasticity of the hippocampus in mild cognitive impairment male SAMP8 mice

    PubMed Central

    Pan, Wensen; Han, Shuo; Kang, Lin; Li, Sha; Du, Juan; Cui, Huixian

    2016-01-01

    The current study focused on how dihydrotestosterone (DHT) regulates synaptic plasticity in the hippocampus of mild cognitive impairment male senescence-accelerated mouse prone 8 (SAMP8) mice. Five-month-old SAMP8 mice were divided into the control, castrated and castrated-DHT groups, in which the mice were castrated and treated with physiological doses of DHT for a period of 2 months. To determine the regulatory mechanisms of DHT in the cognitive capacity, the effects of DHT on the morphology of the synapse and the expression of synaptic marker proteins in the hippocampus were investigated using immunohistochemistry, qPCR and western blot analysis. The results showed that the expression of cAMP-response element binding protein (CREB), postsynaptic density protein 95 (PSD95), synaptophysin (SYN) and developmentally regulated brain protein (Drebrin) was reduced in the castrated group compared to the control group. However, DHT promoted the expression of CREB, PSD95, SYN and Drebrin in the hippocampus of the castrated-DHT group. Thus, androgen depletion impaired the synaptic plasticity in the hippocampus of SAMP8 and accelerated the development of Alzheimer's disease (AD)-like neuropathology, suggesting that a similar mechanism may underlie the increased risk for AD in men with low testosterone. In addition, DHT regulated synaptic plasticity in the hippocampus of mild cognitive impairment (MCI) SAMP8 mice and delayed the progression of disease to Alzheimer's dementia. In conclusion, androgen-based hormone therapy is a potentially useful strategy for preventing the progression of MCI in aging men. Androgens enhance synaptic markers (SYN, PSD95, and Drebrin), activate CREB, modulate the fundamental biology of synaptic structure, and lead to the structural changes of plasticity in the hippocampus, all of which result in improved cognitive function. PMID:27588067

  18. Protective effect of resveratrol against inflammation, oxidative stress and apoptosis in pancreas of aged SAMP8 mice.

    PubMed

    Ginés, Cristina; Cuesta, Sara; Kireev, Roman; García, Cruz; Rancan, Lisa; Paredes, Sergio D; Vara, Elena; Tresguerres, Jesús A F

    2017-04-01

    Aging is a physiological state in which a progressive decline in organ functions is accompanied by the development of age-related diseases. Resveratrol supplementation has been shown to exert anti-inflammatory and antioxidant effects in various mammalian models of aging. Senescence-accelerated mice (SAM) are commonly used as animal models to investigate the aging process. In the present study, the effects of inflammation, oxidative stress and apoptosis in pancreas of two different types of SAM (SAMR1 or resistant to aging, and SAMP8 or prone to aging) have been analysed, as well as the effect of resveratrol administration (5mg/kg/day) on these parameters in the SAMP8 strain. mRNA expressions of sirtuin 1 and FoxO factors were found to be decreased with aging in SAMP8 mice. An increase in inflammatory status and nuclear-factor kappa B (NFκB) protein expression was also observed in old mice, together with a decrease of anti-apoptotic markers and antioxidant-enzyme activity. Resveratrol administration was able to increase sirtuin 1 mRNA expression, as well as decreasing NFκB expression and reducing the proinflammatory and prooxidant status associated with age. In conclusion, resveratrol was able to modulate the inflammatory, oxidative and apoptotic status related to aging, thereby exerting a protective effect on pancreas age-induced damage.

  19. Modulation of infection-induced inflammation and locomotive deficit and longevity in senescence-accelerated mice-prone (SAMP8) model by the oligomerized polyphenol Oligonol.

    PubMed

    Tomobe, Koji; Fujii, Hajime; Sun, Buxiang; Nishioka, Hiroshi; Aruoma, Okezie I

    2007-08-01

    Oligonol is produced from the oligomerization of polyphenols (typically proanthocyanidin from a variety of fruits such as lychees, grapes, apples, persimmons, etc.) and contains catechin-type monomers and oligomers of proanthocyanidins. The ability of Oligonol to affect infection-dependent eye inflammation, locomotion and longevity in senescence-accelerated prone mice (SAMP8) (a model of senescence acceleration and geriatric disorders with increased oxidative stress and neuronal deficit) was investigated. Oligonol (60mg/kg) significantly modulated the extent of inflammation scores in the eye of SAMP8 mice. Examination of the mice indicated infection with mouse hepatitis virus and pinworm (Syphacia obvelata) in both males and females and with the intestinal protozoa (trichomonad) in males. A comparison of the two groups (using log-rank test) and the difference in the mean life span between groups (using Student's t-test) indicated significant differences in survival (p=0.043) and the mean life span (p=0.033) in male SAMP8 mice. Oligonol increased the mean life span and this was statistically significant. In the open-field locomotive test, the 7-week-old SAMP8 mice crossed more than 40 partitioned lines in 1min. At 48-week-old control untreated male SAMP8 crossed 2 lines. The Oligonol-treated 48-week-old male SAMP8 mice crossed 17 lines however. The improved locomotive activity was statistically significant even after 36weeks in the Oligonol-treated male SAMP8 but this was not the case throughout the time course of the study in the Oligonol-treated female SAMP8. Thus Oligonol treatment to SAMP8 mice modulated the severity of infection-dependent inflammation, prolonged life-span and significantly improved locomotive activity indicating potential benefit to aging-associated diseases such as Alzheimer's or Parkinson's diseases. This presents potential for further research to define infection-dependent inflammation associated with degenerative conditions and the

  20. Regulation of the p19Arf/p53 pathway by histone acetylation underlies neural stem cell behavior in senescence-prone SAMP8 mice

    PubMed Central

    Soriano-Cantón, Raúl; Perez-Villalba, Ana; Morante-Redolat, José Manuel; Marqués-Torrejón, María Ángeles; Pallás, Mercé; Pérez-Sánchez, Francisco; Fariñas, Isabel

    2015-01-01

    Brain aging is associated with increased neurodegeneration and reduced neurogenesis. B1/neural stem cells (B1-NSCs) of the mouse subependymal zone (SEZ) support the ongoing production of olfactory bulb interneurons, but their neurogenic potential is progressively reduced as mice age. Although age-related changes in B1-NSCs may result from increased expression of tumor suppressor proteins, accumulation of DNA damage, metabolic alterations, and microenvironmental or systemic changes, the ultimate causes remain unclear. Senescence-accelerated-prone mice (SAMP8) relative to senescence-accelerated-resistant mice (SAMR1) exhibit signs of hastened senescence and can be used as a model for the study of aging. We have found that the B1-NSC compartment is transiently expanded in young SAMP8 relative to SAMR1 mice, resulting in disturbed cytoarchitecture of the SEZ, B1-NSC hyperproliferation, and higher yields of primary neurospheres. These unusual features are, however, accompanied by premature loss of B1-NSCs. Moreover, SAMP8 neurospheres lack self-renewal and enter p53-dependent senescence after only two passages. Interestingly, in vitro senescence of SAMP8 cells could be prevented by inhibition of histone acetyltransferases and mimicked in SAMR1 cells by inhibition of histone deacetylases (HDAC). Our data indicate that expression of the tumor suppressor p19, but not of p16, is increased in SAMP8 neurospheres, as well as in SAMR1 neurospheres upon HDAC inhibition, and suggest that the SAMP8 phenotype may, at least in part, be due to changes in chromatin status. Interestingly, acute HDAC inhibition in vivo resulted in changes in the SEZ of SAMR1 mice that resembled those found in young SAMP8 mice. PMID:25728253

  1. Neuroendocrine immunomodulation network dysfunction in SAMP8 mice and PrP-hAβPPswe/PS1ΔE9 mice: potential mechanism underlying cognitive impairment

    PubMed Central

    Wang, Jian-hui; Cheng, Xiao-rui; Zhang, Xiao-rui; Wang, Tong-xing; Xu, Wen-jian; Li, Fei; Liu, Feng; Cheng, Jun-ping; Bo, Xiao-chen; Wang, Sheng-qi; Zhou, Wen-xia; Zhang, Yong-xiang

    2016-01-01

    Senescence-accelerated mouse prone 8 strain (SAMP8) and PrP-hAβPPswe/PS1ΔE9 (APP/PS1) mice are classic animal models of sporadic Alzheimer's disease and familial AD respectively. Our study showed that object recognition memory, spatial learning and memory, active and passive avoidance were deteriorated and neuroendocrine immunomodulation (NIM) network was imbalance in SAMP8 and APP/PS1 mice. SAMP8 and APP/PS1 mice had their own specific phenotype of cognition, neuroendocrine, immune and NIM molecular network. The endocrine hormone corticosterone, luteinizing hormone and follicle-stimulating hormone, chemotactic factor monocyte chemotactic protein-1, macrophage inflammatory protein-1β, regulated upon activation normal T cell expressed and secreted factor and eotaxin, pro-inflammatory factor interleukin-23, and the Th1 cell acting as cell immunity accounted for cognitive deficiencies in SAMP8 mice, while adrenocorticotropic hormone and gonadotropin-releasing hormone, colony stimulating factor granulocyte colony stimulating factor, and Th2 cell acting as humoral immunity in APP/PS1 mice. On the pathway level, chemokine signaling and T cell receptor signaling pathway played the key role in cognition impairments of two models, while cytokine-cytokine receptor interaction and natural killer cell mediated cytotoxicity were more important in cognitive deterioration of SAMP8 mice than APP/PS1 mice. This mechanisms of NIM network underlying cognitive impairment is significant for further understanding the pathogenesis of AD and can provide useful information for development of AD therapeutic drug. PMID:27049828

  2. The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice.

    PubMed

    Lin, Wei-Sheng; Chen, Jun-Yi; Wang, Jo-Chiao; Chen, Liang-Yu; Lin, Che-Hao; Hsieh, Tsung-Ren; Wang, Ming-Fu; Fu, Tsai-Feng; Wang, Pei-Yu

    2014-04-01

    We investigated the anti-aging effects of Ludwigia octovalvis (Jacq.) P. H. Raven (Onagraceae), an extract of which is widely consumed as a healthful drink in a number of countries. Using the fruit fly, Drosophila melanogaster, as a model organism, we demonstrated that L. octovalvis extract (LOE) significantly extended fly lifespan on a high, but not a low, calorie diet, indicating that LOE may regulate lifespan through a dietary restriction (DR)-related pathway. LOE also attenuated age-related cognitive decline in both flies and in the senescence-accelerated-prone 8 (SAMP8) mouse, without causing any discernable negative trade-offs, including water intake, food intake, fecundity, or spontaneous motor activity. LOE contained high levels of polyphenols and flavonoids, which possess strong DPPH radical scavenging activity, and was shown to attenuate paraquat-induced oxidative damage and lethality in flies. Gas chromatography-mass spectrometry (GC-MS) analyses identified 17 known molecules, of which β-sitosterol and squalene were the two most abundant. We further demonstrated that β-sitosterol was capable of extending lifespan, likely through activating AMP-activated protein kinase (AMPK) in the fat body of adult flies. Taken together, our data suggest that LOE is a potent anti-aging intervention with potential for treating age-related disorders.

  3. Aβ increases neural stem cell activity in senescence-accelerated SAMP8 mice.

    PubMed

    Díaz-Moreno, María; Hortigüela, Rafael; Gonçalves, Ania; García-Carpio, Irmina; Manich, Gemma; García-Bermúdez, Edurne; Moreno-Estellés, Mireia; Eguiluz, César; Vilaplana, Jordi; Pelegrí, Carme; Vilar, Marçal; Mira, Helena

    2013-11-01

    Neurogenesis persists in the adult brain as a form of plasticity due to the existence of neural stem cells (NSCs). Alterations in neurogenesis have been found in transgenic Alzheimer's disease (AD) mouse models, but NSC activity and neurogenesis in sporadic AD models remains to be examined. We herein describe a remarkable increase in NSC proliferation in the forebrain of SAMP8, a non-transgenic mouse strain that recapitulates the transition from healthy aging to AD. The increase in proliferation is transient, precedes AD-like symptoms such as amyloid beta 1-42 [Aβ(1-42)] increase or gliosis, and is followed by a steep decline at later stages. Interestingly, in vitro studies indicate that secreted Aβ(1-42) and PI3K signaling may account for the early boost in NSC proliferation. Our results highlight the role of soluble Aβ(1-42) peptide and PI3K in the autocrine regulation of NSCs, and further suggest that over-proliferation of NSCs before the appearance of AD pathology may underlie neurogenic failure during the age-related progression of the disease. These findings have implications for therapeutic approaches based on neurogenesis in AD.

  4. Greater nucleic acids oxidation in the temporal lobe than the frontal lobe in SAMP8.

    PubMed

    Shi, Fei; Gan, Wei; Nie, Ben; Takagi, Yasumitsu; Hayakawa, Hiroshi; Sekiguchi, Mutsuo; Cai, Jian-Ping

    2012-05-30

    Our previous studies have shown that substantial amounts of 8-oxoguanine are present in the DNA and RNA in the hippocampi of old senescence-accelerated mice (SAMP8); however, oxidative damage to DNA and RNA in the other regions of the brain from a month after birth to the onset of aging has not been examined completely. In this study, we analyzed the amount of 8-oxoguanine in DNA and RNA in the temporal and frontal lobes of SAMP8 during aging by the immunohistochemical method. Compared with age-matched control acceleration-resistant mice (SAMR1), 8- and 12-month-old SAMP8 had increased amounts of 8-oxoguanine in the DNA and RNA in the frontal lobe, whereas in the temporal lobe, this trend began to appear as early as 4 months. The levels of 8-oxoguanine in the temporal lobe were significantly higher than those in the frontal lobe. These results indicate that nucleic acid oxidative damage occurs as an age-associated phenomenon, and can occur more easily in the temporal lobe than in the frontal lobe of SAMP8.

  5. MicroRNA-139 modulates Alzheimer's-associated pathogenesis in SAMP8 mice by targeting cannabinoid receptor type 2.

    PubMed

    Tang, Y; Bao, J S; Su, J H; Huang, W

    2017-02-16

    Alzheimer's disease (AD) is a neurodegenerative disorder, and is the most common type of dementia in the elderly population. Growing evidence indicates that microRNAs (miRNAs) play a crucial role in neuroinflammation associated with AD progression. In this study, we analyzed the expression of microRNA-139 (miR-139) as well as the learning and memory function in AD. We observed that the miR-139 expression was significantly higher in the hippocampus of aged senescence accelerated mouse prone 8 (SAMP8) mice (2.92 ± 0.13) than in the control mice (1.49 ± 0.08). Likewise, the overexpression of miR-139 by means of hippocampal injection impaired the hippocampus-dependent learning and memory formation. In contrast, the downregulation of miR-139 in mice improved learning and memory function in the mice. The level of cannabinoid receptor type 2 (CB2), a potential target gene of miR-139, was inversely correlated with the miR-139 expression in primary hippocampal cells. Furthermore, we demonstrated that miR-139 inversely modulated the responses to proinflammatory stimuli. Together, our findings demonstrate that miR-139 exerts a pathogenic effect in AD by modulating CB2-meditated neuroinflammatory processes.

  6. Effect of a combined treatment with growth hormone and melatonin in the cardiological aging on male SAMP8 mice.

    PubMed

    Forman, Katherine; Vara, Elena; García, Cruz; Kireev, Roman; Cuesta, Sara; Escames, Germaine; Tresguerres, J A F

    2011-08-01

    The effect of a chronic combined treatment with growth hormone (GH) plus melatonin (Mel) on different age-related processes in cytosolic and nuclear fractions of hearts from SAMP8 mice (2 and 10 months) has been investigated. The parameters studied have been messenger RNA expressions of IL-1, IL-10, NFkBp50, NFkBp52, TNFα, eNOS, iNOS, HO-1, HO-2, BAD, BAX, and Bcl2 and protein expressions of iNOS, eNOS, TNFα, IL-1, IL-10, NFkBp50, NFKbp52, and caspase activity (3 and 9). Our results supported the existence of a proapoptotic and oxidative status together with inflammatory processes in the heart of old mice, with increases of inflammatory cytokines, caspase activity, HO-1, BAX, NFkBp50, and NFkBp52 and decreases of eNOS and Bcl2. Also, we were able to observe the translocation of NFkB to nuclei. The combined treatment was able to partially reduce the incidence of these deleterious changes, showing differences with the separated treatments with GH and Mel as were investigated in previous articles from our group.

  7. Western-style diet modulates contractile responses to phenylephrine differently in mesenteric arteries from senescence-accelerated prone (SAMP8) and resistant (SAMR1) mice.

    PubMed

    Jiménez-Altayó, Francesc; Onetti, Yara; Heras, Magda; Dantas, Ana P; Vila, Elisabet

    2013-08-01

    The influence of two known cardiovascular risk factors, aging and consumption of a high-fat diet, on vascular mesenteric artery reactivity was examined in a mouse model of accelerated senescence (SAM). Five-month-old SAM prone (SAMP8) and resistant (SAMR1) female mice were fed a Western-type high-fat diet (WD; 8 weeks). Mesenteric arteries were dissected, and vascular reactivity, protein and messenger RNA expression, superoxide anion (O 2 (·-) ) and hydrogen peroxide formation were evaluated by wire myography, immunofluorescence, RT-qPCR, ethidium fluorescence and ferric-xylenol orange, respectively. Contraction to KCl and relaxation to acetylcholine remained unchanged irrespective of senescence and diet. Although similar contractions to phenylephrine were observed in SAMR1 and SAMP8, accelerated senescence was associated with decreased eNOS and nNOS and increased O 2 (·-) synthesis. Senescence-related alterations were compensated, at least partly, by the contribution of NO derived from iNOS and the enhanced endogenous antioxidant capacity of superoxide dismutase 1 to maintain vasoconstriction. Administration of a WD induced qualitatively different alterations in phenylephrine contractions of mesenteric arteries from SAMR1 and SAMP8. SAMR1 showed increased contractions partly as a result of decreased NO availability generated by decreased eNOS and nNOS and enhanced O 2 (·-) formation. In contrast, WD feeding in SAMP8 resulted in reduced contractions due to, at least in part, the increased functional participation of iNOS-derived NO. In conclusion, senescence-dependent intrinsic alterations during early stages of vascular senescence may promote vascular adaptation and predispose to further changes in response to high-fat intake, which may lead to the progression of aging-related cardiovascular disease, whereas young subjects lack the capacity for this adaptation.

  8. Antisense directed against PS-1 gene decreases brain oxidative markers in aged senescence accelerated mice (SAMP8) and reverses learning and memory impairment: a proteomics study.

    PubMed

    Fiorini, Ada; Sultana, Rukhsana; Förster, Sarah; Perluigi, Marzia; Cenini, Giovanna; Cini, Chiara; Cai, Jian; Klein, Jon B; Farr, Susan A; Niehoff, Michael L; Morley, John E; Kumar, Vijaya B; Allan Butterfield, D

    2013-12-01

    Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD. In the current study, aged SAMP8 were treated by AO directed against PS-1, a component of the γ-secretase complex, and tested for learning and memory in T-maze foot shock avoidance and novel object recognition. Brain tissue was collected to identify the decrease of oxidative stress and to evaluate the proteins that are differently expressed and oxidized after the reduction in free radical levels induced by Aβ. We used both expression proteomics and redox proteomics approaches. In brain of AO-treated mice a decrease of oxidative stress markers was found, and the proteins identified by proteomics as expressed differently or nitrated are involved in processes known to be impaired in AD. Our results suggest that the treatment with AO directed against PS-1 in old SAMP8 mice reverses learning and memory deficits and reduces Aβ-mediated oxidative stress with restoration to the normal condition and identifies possible pharmacological targets to combat this devastating dementing disease.

  9. Senses and Your 8- to 12-Month-Old

    MedlinePlus

    ... TOPIC Feeding Your 8- to 12-Month-Old Sleep and Your 8- to 12-Month-Old Your Child's Vision Communication and Your 8- to 12-Month-Old Movement, Coordination, and Your 8- to 12-Month-Old Your Baby's Growth: 8 Months Your Child's Growth Learning, Play, and ...

  10. Age-related spatial cognitive impairment is correlated with a decrease in ChAT in the cerebral cortex, hippocampus and forebrain of SAMP8 mice.

    PubMed

    Wang, Feng; Chen, Hong; Sun, Xiaojiang

    2009-05-01

    At present, the mechanisms underlying cognitive disorders remain unclear. The senescence-accelerated mice (SAM) prone/8 (P8) has been proposed as a useful model for the study of aging, and SAM resistant/1 (R1) is its control as a normal aging strain. The purpose of this study was to investigate choline acetyltransferase (ChAT) expression in SAM brain. The age-related decline of learning and memory ability in P8 mice (4, 8 and 12 months old, n=10 for each group) was proved in Morris water maze test (MWM). After the behavioral test, protein and mRNA levels of ChAT were determined in the cerebral cortex, hippocampus and forebrain by means of immunostaining, Western blotting, and real time quantitative PCR (QPCR). Comparing with 4-month-old P8 and R1, 8- and 12-month-old P8 showed age-related cognitive impairment in MWM test. The latencies of the 4-month-old P8 in a hidden platform trial were significantly shorter, and the retention time was significantly longer than that of the older P8 groups. In addition, significantly low level of ChAT protein was observed in older P8 groups. Comparing with the 4-month-old P8, ChAT mRNA in the 12-month-old P8 declined significantly in all three regions of P8 brain. Pearson correlation test showed that the latencies in the MWM were positively correlated with the level of ChAT in P8. Such phenomenon could not be detected in normal aging R1 mice. These findings suggest that the decrease of ChAT in P8 mice was responsible for the age-related learning and memory impairments in some sense.

  11. The protective effect of eicosapentaenoic acid-enriched phospholipids from sea cucumber Cucumaria frondosa on oxidative stress in PC12 cells and SAMP8 mice.

    PubMed

    Wu, Feng-Juan; Xue, Yong; Liu, Xiao-Fang; Xue, Chang-Hu; Wang, Jing-Feng; Du, Lei; Takahashi, Koretaro; Wang, Yu-Ming

    2014-01-01

    Alzheimer's disease (AD) is a common neurodegenerative disorders, in which oxidative stress plays an important role. The present study investigated the effect of eicosapentaenoic acid-enriched phospholipids (EPA-enriched PL) from the sea cucumber Cucumaria frondosa on oxidative injury in PC12 cells induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide (t-BHP). We also studied the effect of EPA-enriched PL on learning and memory functions in senescence-accelerated prone mouse strain 8 (SAMP8) in vivo. Pretreatment with EPA-enriched PL resulted in an enhancement of survival in a dose-dependent manner in H2O2 or t-BHP damaged PC12 cells. EPA-enriched PL pretreatment could also reduce the leakage of lactate dehydrogenase (LDH), and increase the intracellular total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity compared with the H2O2 or t-BHP group. The down-regulated Bcl-2 mRNA level and up-regulated Bax, Caspase-9, and Caspase-3 mRNA expression induced by H2O2 or t-BHP could be restored by EPA-enriched PL pretreatment. These results demonstrated that EPA-enriched PL exhibited its neuroprotective effects by virtue of its antioxidant activity, which might be achieved by inhibiting the mitochondria-dependent apoptotic pathway. The neuroprotective effect of EPA-enriched PL was also verified in vivo test: the EPA-enriched PL administration prevented the development of learning and memory impairments in SAMP8 mice. Our results indicated that EPA-enriched PL could offer an efficient and novel strategy to explore novel drugs or functional food for neuronprotection and cognitive improvement.

  12. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage.

    PubMed

    He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen

    2014-11-15

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that

  13. Learning, Play, and Your 8- to 12-Month-Old

    MedlinePlus

    ... Old Learning, Play, and Your 8- to 12-Month-Old KidsHealth > For Parents > Learning, Play, and Your 8- to 12-Month-Old A A A What's in this article? ... baby becomes more mobile during these next few months. What Is My Child Learning? Your little one ...

  14. Feeding Your 8- to 12-Month-Old

    MedlinePlus

    ... 2-Year-Old Feeding Your 8- to 12-Month-Old KidsHealth > For Parents > Feeding Your 8- to 12-Month-Old A A A What's in this article? ... a 12 meses de edad By about 8 months old, most babies are pros at handling the ...

  15. Medical Care and Your 8- to 12-Month-Old

    MedlinePlus

    ... Old Medical Care and Your 8- to 12-Month-Old KidsHealth > For Parents > Medical Care and Your 8- to 12-Month-Old A A A What's in this article? ... baby visits during this period, once at 9 months and again at 12 months . If you have ...

  16. Feeding Your 8- to 12-Month-Old

    MedlinePlus

    ... 2-Year-Old Feeding Your 8- to 12-Month-Old KidsHealth > For Parents > Feeding Your 8- to 12-Month-Old Print A A A What's in this ... a 12 meses de edad By about 8 months old, most babies are pros at handling the ...

  17. Learning, Play, and Your 8- to 12-Month-Old

    MedlinePlus

    ... Old Learning, Play, and Your 8- to 12-Month-Old KidsHealth > For Parents > Learning, Play, and Your 8- to 12-Month-Old Print A A A What's in this ... baby becomes more mobile during these next few months. What Is My Child Learning? Your little one ...

  18. Perceptual learning: 12-month-olds' discrimination of monkey faces.

    PubMed

    Fair, Joseph; Flom, Ross; Jones, Jacob; Martin, Justin

    2012-11-01

    Six-month-olds reliably discriminate different monkey and human faces whereas 9-month-olds only discriminate different human faces. It is often falsely assumed that perceptual narrowing reflects a permanent change in perceptual abilities. In 3 experiments, ninety-six 12-month-olds' discrimination of unfamiliar monkey faces was examined. Following 20 s of familiarization, and two 5-s visual-paired comparison test trials, 12-month-olds failed to show discrimination. However, following 40 s of familiarization and two 10-s test trials, 12-month-olds showed reliable discrimination of novel monkey faces. A final experiment was performed demonstrating 12-month-olds' discrimination of the monkey face was due to the increased familiarization rather than increased time of visual comparison. Results are discussed in the context of perceptual narrowing, in particular the flexible nature of perceptual narrowing.

  19. Walking and Eating Behavior of Toddlers at 12 Months Old

    ERIC Educational Resources Information Center

    Koda, Naoko; Akimoto, Yuko; Hirose, Toshiya; Hinobayashi, Toshihiko; Minami, Tetsuhiro

    2004-01-01

    Locomotive and eating behavior of 52 toddlers was observed at 12 months old in a nursery school and investigated in relation to the acquisition of independent walking. The toddlers who acquired walking ate more by themselves using the hands than the toddlers who did not start walking. This suggested that acquisition of walking was associated with…

  20. Perceptual Learning: 12-Month-Olds' Discrimination of Monkey Faces

    ERIC Educational Resources Information Center

    Fair, Joseph; Flom, Ross; Jones, Jacob; Martin, Justin

    2012-01-01

    Six-month-olds reliably discriminate different monkey and human faces whereas 9-month-olds only discriminate different human faces. It is often falsely assumed that perceptual narrowing reflects a permanent change in perceptual abilities. In 3 experiments, ninety-six 12-month-olds' discrimination of unfamiliar monkey faces was examined. Following…

  1. 12-Month-Olds Produce Others' Intended but Unfulfilled Acts

    ERIC Educational Resources Information Center

    Nielsen, Mark

    2009-01-01

    Following Meltzoff's (1995) behavioral reenactment paradigm, this study investigated the ability of 12-month-olds (N = 44) to reproduce a model's attempted-but-failed actions on objects. Testing was conducted using a novel set of objects designed to enable young infants to readily identify the potential outcome of the model's actions. Infants who…

  2. Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice

    PubMed Central

    Mackenzie, Amelia C. L.; Lee, Se-Jin; Chaffin, Charles L.; Merchenthaler, István

    2016-01-01

    Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called “egg infertility.” A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women. PMID:26713784

  3. Gist extraction and sleep in 12-month-old infants.

    PubMed

    Konrad, Carolin; Herbert, Jane S; Schneider, Silvia; Seehagen, Sabine

    2016-10-01

    Gist extraction is the process of excerpting shared features from a pool of new items. The present study examined sleep and the consolidation of gist in 12-month-old infants using a deferred imitation paradigm. Sixty infants were randomly assigned to a nap, a no-nap or a baseline control condition. In the nap and no-nap conditions, infants watched demonstrations of the same target actions on three different hand puppets that shared some features. During a 4-h delay, infants in the nap condition took a naturally scheduled nap while infants in the no-nap condition naturally stayed awake. Afterwards, infants were exposed to a novel forth hand puppet that combined some of the features from the previously encountered puppets. Only those infants who took a nap after learning produced a significantly higher number of target actions than infants in the baseline control condition who had not seen any demonstrations of target actions. Infants in the nap condition also produced significantly more target actions than infants in the no-nap condition. Sleep appears to support the storage of gist, which aids infants in applying recently acquired knowledge to novel circumstances.

  4. Resveratrol Protects SAMP8 Brain Under Metabolic Stress: Focus on Mitochondrial Function and Wnt Pathway.

    PubMed

    Palomera-Avalos, V; Griñán-Ferré, C; Puigoriol-Ilamola, D; Camins, A; Sanfeliu, C; Canudas, A M; Pallàs, M

    2017-04-01

    Metabolic stress induced by high-fat (HF) diet leads to cognitive dysfunction and aging, but the physiological mechanisms are not fully understood. Senescence-accelerated prone mouse (SAMP8) models were conducted under metabolic stress conditions by feeding HF for 15 weeks, and the preventive effect of resveratrol was studied. This dietary strategy demonstrates cognitive impairment in SAMP8-HF and significant preventive effect by resveratrol-treated animals. Hippocampal changes in the proteins involved in mitochondrial dynamics optic atrophy-1 protein (OPA1) and mitofusin 2 (MFN2) comprised a differential feature found in SAMP8-HF that was prevented by resveratrol. Electronic microscopy showed a larger mitochondria in SAMP8-HF + resveratrol (SAMP8-HF + RV) than in SAMP8-HF, indicating increases in fusion processes in resveratrol-treated mice. According to the mitochondrial morphology, significant increases in the I-NDUFB8, II-SDNB, III-UQCRC2, and V-ATPase complexes, in addition to that of voltage-dependent anion channel 1 (VDAC1)/porin, were found in resveratrol-treated animals with regard to SAMP8-HF, reaching control-animal levels. Moreover, tumor necrosis factor alpha (TNF-α) and interleukin (IL-6) were increased after HF, and resveratrol prevents its increase. Moreover, we found that the HF diet affected the Wnt pathway, as demonstrated by β-catenin inactivation and modification in the expression of several components of this pathway. Resveratrol induced strong activation of β-catenin. The metabolic stress rendered in the cognitive and cellular pathways altered in SAMP8 focus on different targets in order to act on preventing cognitive impairment in neurodegeneration, and resveratrol can offer therapeutic possibilities for preventive strategies in aging or neurodegenerative conditions.

  5. High-fat diet intake from senescence inhibits the attenuation of cell functions and the degeneration of villi with aging in the small intestine, and inhibits the attenuation of lipid absorption ability in SAMP8 mice.

    PubMed

    Yamamoto, Kazushi; E, Shuang; Hatakeyama, Yu; Sakamoto, Yu; Tsuduki, Tsuyoshi

    2015-11-01

    We examined the effect of a high-fat diet from senescence as a means of preventing malnutrition among the elderly. The senescence-accelerated mouse P8 was used and divided into three groups. The 6C group was given a normal diet until 6 months old. The 12N group was given a normal diet until 12 months old. The 12F group was given a normal diet until 6 months old and then a high-fat diet until 12 months old. In the oral fat tolerance test, there was a decrease in area under the curve for serum triacylglycerol level in the 12N group and a significant increase in the 12F group, suggesting that the attenuation of lipid absorption ability with aging was delayed by a high-fat diet from senescence. To examine this mechanism, histological analysis in the small intestine was performed. As a result, the degeneration of villi with aging was inhibited by the high-fat diet. There was also a significant decrease in length of villus in the small intestine in the 12N group and a significant increase in the 12F group. The high-fat diet from senescence inhibited the degeneration of villi with aging in the small intestine, and inhibited the attenuation of lipid absorption ability.

  6. Vowel Production in 7- to 12-Month-Old Infants with Hearing Loss

    ERIC Educational Resources Information Center

    Nelson, Rebecca; Yoshinaga-Itano, Christine; Rothpletz, Ann; Sedey, Allison

    2007-01-01

    The purpose of this study was to examine vowel production in 7- to 12-month-old infants with hearing loss. Fifty-four infants were divided into three groups according to degree of hearing loss (mild-to-moderate, moderately severe-to-severe, profound), and their vocalizations were phonetically transcribed from 30-minute videotaped samples. These…

  7. Evidence for a Unitary Goal Concept in 12-Month-Old Infants

    ERIC Educational Resources Information Center

    Biro, Szilvia; Verschoor, Stephan; Coenen, Lot

    2011-01-01

    We investigated whether infants can transfer their goal attribution between situations that contain different types of information about the goal. We found that 12-month-olds who had attributed a goal based on the causal efficacy of a means-end action generated expectations about the actor's action in another scenario in which the actor could…

  8. Class Matters: 12-Month-Olds' Word-Object Associations Privilege Content over Function Words

    ERIC Educational Resources Information Center

    MacKenzie, Heather; Curtin, Suzanne; Graham, Susan A.

    2012-01-01

    A fundamental step in learning words is the development of an association between a sound pattern and an element in the environment. Here we explore the nature of this associative ability in 12-month-olds, examining whether it is constrained to privilege particular word forms over others. Forty-eight infants were presented with sets of novel…

  9. The Flexibility of 12-Month-Olds' Preferences for Phonologically Appropriate Object Labels

    ERIC Educational Resources Information Center

    MacKenzie, Heather K.; Graham, Susan A.; Curtin, Suzanne; Archer, Stephanie L.

    2014-01-01

    We explored 12-month-olds' flexibility in accepting phonotactically illegal or ill-formed word forms in a modified associative-learning task. Sixty-four English-learning infants were presented with a training phase that either clarified the purpose of a sound--object association task or left the task ambiguous. Infants were then habituated to sets…

  10. Auditory Temporal Pattern Perception in 6- and 12-Month-Old Infants.

    ERIC Educational Resources Information Center

    Morrongiello, Barbara A.

    1984-01-01

    A go/no-go conditioned head-turn paradigm was used to examine the abilities of 6- and 12-month-olds to discriminate changes in temporal grouping and their perception of absolute and relative timing information when listening to patterns of white-noise bursts. (Author/RH)

  11. The Development of Rational Imitation in 9- and 12-Month-Old Infants

    ERIC Educational Resources Information Center

    Zmyj, Norbert; Daum, Moritz M.; Aschersleben, Gisa

    2009-01-01

    Studies on rational imitation have provided evidence for the fact that infants as young as 12 months of age engage in rational imitation. However, the developmental onset of this ability is unclear. In this study, we investigated whether 9- and 12-month-olds detect voluntary and implicit as well as nonvoluntary and explicit constraints in the head…

  12. Limited hippocampal neurogenesis in SAMP8 mouse model of Alzheimer's disease.

    PubMed

    Gang, Baozhi; Yue, Cen; Han, Na; Xue, Hongjuan; Li, Baoxin; Sun, Lihua; Li, Xuelian; Zhao, Qingjie

    2011-05-10

    Increasing adult neurogenesis in the hippocampal formation (HF) has been proposed as a potential foundation for neuronal repair in Alzheimer's disease (AD), but the evidence remains controversial. We used P8 strain of senescence-accelerated mice (SAMP8) as a model of AD to investigate changes in adult neurogenesis. We examined new proliferating cells and their survival in the dentate gyrus (DG) of the HF using 5-bromodeoxyuridine (BrdU) labeling and investigated newborn cell development and differentiation with a combination of phenotype markers. In 5-month-old SAMP8, the number of BrdU(+) cells in the DG was significantly increased relative to controls, in accordance with the rising numbers of doublecortin-positive (DCX(+)) immature neurons. Some of these BrdU(+) cells migrated to cornu ammonis 1 (CA1), possibly related to the compensation of neuronal loss. However, the capacity of neurogenesis to compensate neuronal loss during neurodegeneration was limited. First, only half of the BrdU(+) cells survived 4weeks after mitosis, and even fewer developed into neuron-specific nuclear protein positive (NeuN(+)) mature neurons. Second, the number of BrdU(+) cells and DCX(+) cells was decreased in 10-month-old SAMP8, which exhibited progressive neurodegeneration. In addition, the results provided insight into astrocytes as a crucial component of the neurogenic niche. The number of newborn astrocytes and expression of glial fibrillary acidic protein (GFAP) were diminished in the DG of SAMP8 animals, possibly explaining the insufficient neurogenesis. Thus, stimulating limited neurogenesis in AD by improving the neurogenic niche may have therapeutic potential.

  13. The relationship between attention and deferred imitation in 12-month-old infants.

    PubMed

    Zmyj, Norbert; Schölmerich, Axel; Daum, Moritz M

    2017-03-01

    Imitation is a frequent behavior in the first years of life, and serves both a social function (e.g., to interact with others) and a cognitive function (e.g., to learn a new skill). Infants differ in their temperament, and temperament might be related to the dominance of one function of imitation. In this study, we investigated whether temperament and deferred imitation are related in 12-month-old infants. Temperament was measured via the Infant Behavior Questionnaire Revised (IBQ-R) and parts of the Laboratory Temperament Assessment Battery (Lab-TAB). Deferred imitation was measured via the Frankfurt Imitation Test for 12-month-olds (FIT-12). Regression analyses revealed that the duration of orienting (IBQ-R) and the latency of the first look away in the Task Orientation task (Lab-TAB) predicted the infants' imitation score. These results suggest that attention-related processes may play a major role when infants start to imitate.

  14. Analyses of mRNA Profiling through RNA Sequencing on a SAMP8 Mouse Model in Response to Ginsenoside Rg1 and Rb1 Treatment

    PubMed Central

    Zhang, Shuai; Zhu, Dina; Li, Hong; Zhang, Haijing; Feng, Chengqiang; Zhang, Wensheng

    2017-01-01

    Ginsenoside Rg1 and Rb1 are the major ingredients in two medicines called QiShengLi (Z20027165) and QiShengJing (Z20027164) approved by China. These ingredients are believed to mitigate forgetfulness. Numerous studies have confirmed that GRg1 and GRb1 offer protection against Alzheimer's disease (AD), and our morris water maze (MWM) experiment also indicated that GRg1 and GRb1 may attenuate memory deficits in the 7-month-old SAMP8 mice; however, comprehensive understanding of their roles in AD remains limited. This study systematically explored the mechanism at the genome level of the anti-AD effects of GRg1 and GRb1 in a senescence-accelerated mouse prone 8 (SAMP8) model through deep RNA sequencing. A total of 74,885 mRNA transcripts were obtained. Expression analysis showed that 1,780 mRNA transcripts were differentially expressed in SAMP8 mice compared with the SAMP8+GRg1 mice. Moreover, 1,066 significantly dysregulated mRNA transcripts were identified between SAMP8 and SAMP8+GRb1 mice. Analyses according to gene ontology and the Kyoto Encyclopedia of Genes and Genomes revealed that oral administration of GRg1 and GRb1 improved the learning performance of the SAMP8 mouse model from various aspects, such as nervous system development and mitogen-activated protein kinase signaling pathway. The most probable AD-related transcriptional responses after medication were predicted and discussed in detail. This study is the first to provide a systematic dissection of mRNA profiling in SAMP8 mouse brain in response to GRg1 and GRb1 treatment. We explained their efficacy thoroughly from the source (gene-level explanation). The findings serve as a theoretical basis for the exploration of GRg1 and GRb1 as functional drugs with anti-AD activity. PMID:28289387

  15. Does contingency in adults' responding influence 12-month-old infants' social referencing?

    PubMed

    Stenberg, Gunilla

    2016-12-07

    In two experiments we examined the influence of contingent versus non-contingent responding on infant social referencing behavior. EXPERIMENT 1: Forty 12-month-old infants were exposed to an ambiguous toy in a social referencing situation. In one condition an unfamiliar adult who in a previous play situation had responded contingently to the infant's looks gave the infant positive information about the toy. In the other condition an unfamiliar adult who previously had not responded contingently delivered the positive information. EXPERIMENT 2: Forty-eight 12-month-old infants participated in Experiment 2. In this experiment it was examined whether the familiarity of the adult influences infants' reactions to contingency in responding. In one condition a parent who previously had responded contingently to the infant's looks provided positive information about the ambiguous toy, and in the other condition a parent who previously had not responded contingently provided the positive information. The infants looked more at the contingent experimenter in Experimenter 1, and also played more with the toy after receiving positive information from the contingent experimenter. No differences in looking at the parent and in playing with the toy were found in Experiment 2. The results indicate that contingency in responding, as well as the familiarity of the adult, influence infants' social referencing behavior.

  16. Long-term memory, forgetting, and deferred imitation in 12-month-old infants

    PubMed Central

    Klein, Pamela J.; Meltzoff, Andrew N.

    2013-01-01

    Long-term recall memory, as indexed by deferred imitation, was assessed in 12-month-old infants. Independent groups of infants were tested after retention intervals of 3 min, 1 week and 4 weeks. Deferred imitation was assessed using the ‘observation-only’ procedure in which infants were not allowed motor practice on the tasks before the delay was imposed. Thus, the memory could not have been based on re-accessing a motor habit, because none was formed in the first place. After the delay, memory was assessed either in the same or a different environmental context from the one in which the adult had originally demonstrated the acts. In Experiments 1 and 3, infants observed the target acts while in an unusual environment (an orange and white polka-dot tent), and recall memory was tested in an ordinary room. In Experiment 2, infants observed the target acts in their homes and were tested for memory in a university room. The results showed recall memory after all retention intervals, including the 4 week delay, with no effect of context change. Interestingly, the forgetting function showed that the bulk of the forgetting occurred during the first week. The findings of recall memory without motor practice support the view that infants as young as 12 months old use a declarative (nonprocedural) memory system to span delay intervals as long as 4 weeks. PMID:25147475

  17. Extracorporeal shock wave lithotripsy in infants less than 12-month old.

    PubMed

    Turna, Burak; Tekin, Ali; Yağmur, İsmail; Nazlı, Oktay

    2016-10-01

    There is a lack of literature on children compared to adults regarding the long-term effects of extracorporeal shock wave lithotripsy (SWL), specifically in infants. The aim of the present study was to analyze the efficacy and safety of SWL in infants and also evaluate its potential adverse effects in the mid-term. Between May 1999 and December 2013, 36 infants with 39 renal units underwent SWL treatment for kidney stones with an electrohydraulic lithotripter (Dornier MPL 9000/ELMED Multimed Classic). All children were less than 12-month old. The mid-term effects of SWL were examined at the last follow-up by measuring arterial blood pressure, random blood glucose level and ipsilateral kidney size. Evaluation of treatment and its consequences was based on clinical examination, blood tests and conventional imaging (plain abdominal radiography and ultrasound). Overall stone-free rate was 84.6 % after 3-month follow-up without any major complications. Mid-term follow-up was available in 20 of 36 children with a mean follow-up of 3.2 ± 2.8 years (range 0.5-15.3). None of the infants were found to develop new onset of hypertension or diabetes. All treated infant kidneys' sizes were in the normal percentile range. SWL for management of infant kidney stones is effective and safe in the mid-term.

  18. Neurochemistry, neuropathology, and heredity in SAMP8: a mouse model of senescence.

    PubMed

    Tomobe, Koji; Nomura, Yasuyuki

    2009-04-01

    The SAMP8 strain spontaneously develops learning and memory deficits with characteristics of aging, and is a good model for studying the mechanism of cognitive dysfunction with age. Oxidative stress occurs systemically in SAMP8 from early on in life and increases with aging. Neuropathological changes such as the deposition of A beta, hyperphosphorylation of tau, impaired development of dendritic spines, and sponge formation, and neurochemical changes were found in the SAMP8 brain. These changes may be partially mediated by oxidative stress. Oxidative damage is a major factor in neurodegenerative disorders and aging. A decline in the respiratory control ratio suggesting mitochondrial dysfunction was found in the brain of SAMP8. The rise in oxidative stress following mitochondrial dysfunction may trigger neuropathological and neurochemical changes, disrupting the development of neural networks in the brain in SAMP8.

  19. The First Year Inventory: A Longitudinal Follow-Up of 12-Month-Old to 3-Year-Old Children

    ERIC Educational Resources Information Center

    Turner-Brown, Lauren M.; Baranek, Grace T.; Reznick, J Steven; Watson, Linda R.; Crais, Elizabeth R.

    2013-01-01

    The First Year Inventory is a parent-report measure designed to identify 12-month-old infants at risk for autism spectrum disorder. First Year Inventory taps behaviors that indicate risk in the developmental domains of sensory--regulatory and social--communication functioning. This longitudinal study is a follow-up of 699 children at 3 years of…

  20. Regional age-related changes in neuronal nitric oxide synthase (nNOS), messenger RNA levels and activity in SAMP8 brain

    PubMed Central

    Colas, Damien; Gharib, Abdallah; Bezin, Laurent; Morales, Anne; Guidon, Gérard; Cespuglio, Raymond; Sarda, Nicole

    2006-01-01

    Background Nitric oxide (NO) is a multifunctional molecule synthesized by three isozymes of the NO synthase (NOSs) acting as a messenger/modulator and/or a potential neurotoxin. In rodents, the role of NOSs in sleep processes and throughout aging is now well established. For example, sleep parameters are highly deteriorated in senescence accelerated-prone 8 (SAMP8) mice, a useful animal model to study aging or age-associated disorders, while the inducible form of NOS (iNOS) is down-regulated within the cortex and the sleep-structures of the brainstem. Evidence is now increasing for a role of iNOS and resulting oxidative stress but not for the constitutive expressed isozyme (nNOS). To better understand the role of nNOS in the behavioural impairments observed in SAMP8 versus SAMR1 (control) animals, we evaluated age-related variations occurring in the nNOS expression and activity and nitrites/nitrates (NOx-) levels, in three brain areas (n = 7 animals in each group). Calibrated reverse transcriptase (RT) and real-time polymerase chain reaction (PCR) and biochemical procedures were used. Results We found that the levels of nNOS mRNA decreased in the cortex and the hippocampus of 8- vs 2-month-old animals followed by an increase in 12-vs 8-month-old animals in both strains. In the brainstem, levels of nNOS mRNA decreased in an age-dependent manner in SAMP8, but not in SAMR1. Regional age-related changes were also observed in nNOS activity. Moreover, nNOS activity in hippocampus was found lower in 8-month-old SAMP8 than in SAMR1, while in the cortex and the brainstem, nNOS activities increased at 8 months and afterward decreased with age in SAMP8 and SAMR1. NOx- levels showed profiles similar to nNOS activities in the cortex and the brainstem but were undetectable in the hippocampus of SAMP8 and SAMR1. Finally, NOx- levels were higher in the cortex of 8 month-old SAMP8 than in age-matched SAMR1. Conclusion Concomitant variations occurring in NO levels derived from n

  1. Food and Nutrient Intake among 12-Month-Old Norwegian-Somali and Norwegian-Iraqi Infants

    PubMed Central

    Grewal, Navnit Kaur; Andersen, Lene Frost; Kolve, Cathrine Solheim; Kverndalen, Ingrid; Torheim, Liv Elin

    2016-01-01

    The aim of the present paper was to describe food and nutrient intake among 12-month-old Norwegian-Somali and Norwegian-Iraqi infants, with a focus on iron and vitamin D intake. A cross-sectional survey was conducted from August 2013 through September 2014. Eighty-nine mothers/infants of Somali origin and 77 mothers/infants of Iraqi origin residing in Eastern Norway participated in the study. Data were collected using two 24-h multiple-pass recalls. Forty percent of the Norwegian-Somali infants and 47% of the Norwegian-Iraqi infants were breastfed at 12 months of age (p = 0.414). Median energy percentages (E%) from protein, fat and carbohydrates were within the recommended intake ranges, except the level of saturated fats (12–13 E%). Median intakes of almost all micronutrients were above the recommended daily intakes. Most of the infants consumed iron-enriched products (81%) and received vitamin D supplements (84%). The median intakes of iron and vitamin D were significantly higher among infants receiving iron-enriched products and vitamin D supplements compared to infants not receiving such products (p < 0.001). The findings indicate that the food and nutrient intake of this group of infants in general seems to be in accordance with Norwegian dietary recommendations. Foods rich in iron and vitamin D supplements were important sources of the infants’ intake of iron and vitamin D and should continue to be promoted. PMID:27690092

  2. Development of category formation for faces differing by age in 9- to 12-month-olds: An effect of experience with infant faces.

    PubMed

    Damon, Fabrice; Quinn, Paul C; Heron-Delaney, Michelle; Lee, Kang; Pascalis, Olivier

    2016-11-01

    We examined category formation for faces differing in age in 9- and 12-month-olds, and the influence of exposure to infant faces on such ability. Infants were familiarized with adult or infant faces, and then tested with a novel exemplar from the familiarized category paired with a novel exemplar from a novel category (Experiment 1). Both age groups formed discrete categories of adult and infant faces, but exposure to infant faces in everyday life did not modulate performance. The same task was conducted with child versus infant faces (Experiment 2). Whereas 9-month-olds preferred infant faces after familiarization with child faces, but not child faces after familiarization with infant faces, 12-month-olds formed discrete categories of child and infant faces. Moreover, more exposure to infant faces correlated with higher novel category preference scores when infants were familiarized with infant faces in 12-month-olds, but not 9-month-olds. The 9-month-old asymmetry did not reflect spontaneous preference for infant over child faces (Experiment 3). These findings indicate that 9- and 12-month-olds can form age-based categories of faces. The ability of 12-month-olds to form separate child and infant categories suggests that they have a more exclusive representation of face age, one that may be influenced by prior experience with infant faces.

  3. Face-Scanning Behavior to Silently-Talking Faces in 12-Month-Old Infants: The Impact of Pre-Exposed Auditory Speech

    ERIC Educational Resources Information Center

    Kubicek, Claudia; de Boisferon, Anne Hillairet; Dupierrix, Eve; Loevenbruck, Helene; Gervain, Judit; Schwarzer, Gudrun

    2013-01-01

    The present eye-tracking study aimed to investigate the impact of auditory speech information on 12-month-olds' gaze behavior to silently-talking faces. We examined German infants' face-scanning behavior to side-by-side presentation of a bilingual speaker's face silently speaking German utterances on one side and French on the other side, before…

  4. Neural correlates of face processing in etiologically-distinct 12-month-old infants at high-risk of autism spectrum disorder.

    PubMed

    Guy, Maggie W; Richards, John E; Tonnsen, Bridgette L; Roberts, Jane E

    2017-03-16

    Neural correlates of face processing were examined in 12-month-olds at high-risk for autism spectrum disorder (ASD), including 21 siblings of children with ASD (ASIBs) and 15 infants with fragile X syndrome (FXS), as well as 21 low-risk (LR) controls. Event-related potentials were recorded to familiar and novel face and toy stimuli. All infants demonstrated greater N290 amplitude to faces than toys. At the Nc component, LR infants showed greater amplitude to novel stimuli than to their mother's face and own toy, whereas infants with FXS showed the opposite pattern of responses and ASIBs did not differentiate based on familiarity. These results reflect developing face specialization across high- and low-risk infants and reveal neural patterns that distinguish between groups at high-risk for ASD.

  5. The effect of a micronutrient-fortified complementary food on micronutrient status, growth and development of 6- to 12-month-old disadvantaged urban South African infants.

    PubMed

    Oelofse, A; Van Raaij, J M A; Benade, A J S; Dhansay, M A; Tolboom, J J M; Hautvast, J G A J

    2003-09-01

    The study was conducted to look at the effectiveness of a multimicronutrient-fortified complementary food on the micronutrient status, linear growth and psychomotor development of 6- to 12-month-old infants from a black urban disadvantaged community in the Western Cape, South Africa. The study was designed as an intervention study. In both the experimental and control groups, serum retinol concentration showed a decline over the intervention period of 6 months. The decline was less pronounced in the experimental group. This resulted in a significantly (P<005) higher serum retinol concentration at 12 months in the experimental group (26.8+/-5.8 microg/dl) compared with the control group (21.4+/-5 microg/dl). Serum iron concentration also declined over the intervention period. The decline was less pronounced in the experimental group. No difference was observed in haemoglobin levels between the groups at 12 months. Serum zinc concentration did not differ significantly between the two groups at follow up. Weight gain over the 6 months period did not differ significantly between the experimental (2.1+/-0.9 kg) and control groups (2.1+/-1.2 kg). There was no difference in linear growth between the experimental (10.0+/-1.5 cm) and control group (10.1+/-2.1 cm) at the end of the follow-up period. Weight and length at 6 months significantly predicted weight and length at 12 months. No difference was observed in psychomotor developmental scores between the two groups after 6 months of intervention. Introducing a multimicronutrient-fortified complementary food into the diet of 6- to 12-month-old infants seemed to have an arresting effect on declining serum retinol and iron concentration in the experimental group. No benefit was observed in serum zinc concentration, linear growth and psychomotor development.

  6. Is selective attention the basis for selective imitation in infants? An eye-tracking study of deferred imitation with 12-month-olds.

    PubMed

    Kolling, Thorsten; Oturai, Gabriella; Knopf, Monika

    2014-08-01

    Infants and children do not blindly copy every action they observe during imitation tasks. Research demonstrated that infants are efficient selective imitators. The impact of selective perceptual processes (selective attention) for selective deferred imitation, however, is still poorly described. The current study, therefore, analyzed 12-month-old infants' looking behavior during demonstration of two types of target actions: arbitrary versus functional actions. A fully automated remote eye tracker was used to assess infants' looking behavior during action demonstration. After a 30-min delay, infants' deferred imitation performance was assessed. Next to replicating a memory effect, results demonstrate that infants do imitate significantly more functional actions than arbitrary actions (functionality effect). Eye-tracking data show that whereas infants do not fixate significantly longer on functional actions than on arbitrary actions, amount of fixations and amount of saccades differ between functional and arbitrary actions, indicating different encoding mechanisms. In addition, item-level findings differ from overall findings, indicating that perceptual and conceptual item features influence looking behavior. Looking behavior on both the overall and item levels, however, does not relate to deferred imitation performance. Taken together, the findings demonstrate that, on the one hand, selective imitation is not explainable merely by selective attention processes. On the other hand, notwithstanding this reasoning, attention processes on the item level are important for encoding processes during target action demonstration. Limitations and future studies are discussed.

  7. Brain reorganization as a function of walking experience in 12-month-old infants: implications for the development of manual laterality

    PubMed Central

    Corbetta, Daniela; Friedman, Denise R.; Bell, Martha Ann

    2014-01-01

    Hand preference in infancy is marked by many developmental shifts in hand use and arm coupling as infants reach for and manipulate objects. Research has linked these early shifts in hand use to the emergence of fundamental postural–locomotor milestones. Specifically, it was found that bimanual reaching declines when infants learn to sit; increases if infants begin to scoot in a sitting posture; declines when infants begin to crawl on hands and knees; and increases again when infants start walking upright. Why such pattern fluctuations during periods of postural–locomotor learning? One proposed hypothesis is that arm use practiced for the specific purpose of controlling posture and achieving locomotion transfers to reaching via brain functional reorganization. There has been scientific support for functional cortical reorganization and change in neural connectivity in response to motor practice in adults and animals, and as a function of crawling experience in human infants. In this research, we examined whether changes in neural connectivity also occurred as infants coupled their arms when learning to walk and whether such coupling mapped onto reaching laterality. Electroencephalogram (EEG) coherence data were collected from 43 12-month-old infants with varied levels of walking experience. EEG was recorded during quiet, attentive baseline. Walking proficiency was laboratory assessed and reaching responses were captured using small toys presented at mid-line while infants were sitting. Results revealed greater EEG coherence at homologous prefrontal/central scalp locations for the novice walkers compared to the prewalkers or more experienced walkers. In addition, reaching laterality was low in prewalkers and early walkers but high in experienced walkers. These results are consistent with the interpretation that arm coupling practiced during early walking transferred to reaching via brain functional reorganization, leading to the observed developmental changes in

  8. Brain reorganization as a function of walking experience in 12-month-old infants: implications for the development of manual laterality.

    PubMed

    Corbetta, Daniela; Friedman, Denise R; Bell, Martha Ann

    2014-01-01

    Hand preference in infancy is marked by many developmental shifts in hand use and arm coupling as infants reach for and manipulate objects. Research has linked these early shifts in hand use to the emergence of fundamental postural-locomotor milestones. Specifically, it was found that bimanual reaching declines when infants learn to sit; increases if infants begin to scoot in a sitting posture; declines when infants begin to crawl on hands and knees; and increases again when infants start walking upright. Why such pattern fluctuations during periods of postural-locomotor learning? One proposed hypothesis is that arm use practiced for the specific purpose of controlling posture and achieving locomotion transfers to reaching via brain functional reorganization. There has been scientific support for functional cortical reorganization and change in neural connectivity in response to motor practice in adults and animals, and as a function of crawling experience in human infants. In this research, we examined whether changes in neural connectivity also occurred as infants coupled their arms when learning to walk and whether such coupling mapped onto reaching laterality. Electroencephalogram (EEG) coherence data were collected from 43 12-month-old infants with varied levels of walking experience. EEG was recorded during quiet, attentive baseline. Walking proficiency was laboratory assessed and reaching responses were captured using small toys presented at mid-line while infants were sitting. Results revealed greater EEG coherence at homologous prefrontal/central scalp locations for the novice walkers compared to the prewalkers or more experienced walkers. In addition, reaching laterality was low in prewalkers and early walkers but high in experienced walkers. These results are consistent with the interpretation that arm coupling practiced during early walking transferred to reaching via brain functional reorganization, leading to the observed developmental changes in

  9. Factors affecting the seroconversion rate of 12-month-old babies after the first injection of measles vaccine in the southeast of Iran.

    PubMed

    Zahraei, Seyed Mohsen; Izadi, Shahrokh; Mokhtari-Azad, Talat

    2016-12-01

    Within the past few years, several measles outbreaks have occurred in the southeast of Iran. To learn about the effectiveness of the immunization services for producing a serologic response against measles, this follow-up study was designed and implemented in the southeast of Iran. In Iran, all routine immunization services provided by the public sector are free of charge. The follow-up study was designed and implemented in 5 Urban Health Centers located in 3 districts of Sistan-va-BaluchestanProvince, Iran. In the pre-vaccination phase, 270 12-month-old babies were blood sampled; and in the post-vaccination phase, 4 to 7 weeks after Measles, Mumps, Rubella (MMR) vaccination, 236 of them were blood sampled (34 dropouts), and their sera were tested for IgG anti-measles antibodies, using indirect ELISA, in the National Reference Measles Laboratory. Out of the 236 participants, who had been blood sampled in the post-vaccination phase, 10 (3.7%) were excluded from the calculations of seroconversion rate, because they had protective levels of antibody before the vaccination. The seroconversion rate for the remaining 226 participants was 91.2% (95% confidence interval: 86.7 to 94.5). Among the variables studied, stunting (height-for-age z-score < -2) showed a strong relationship with the remaining seronegative after the vaccination (odds ratio = 5.6; 95% confidence interval: 1.7-18.2). The chance of seroconversion was inversely related to the mothers' levels of education (up to 9 y of education vs. above nine years) (odds ratio = 0.2; 95% confidence interval: 0.06-0.4). In the study population, the seroconversion rates for anti-measles antibodies after MMR vaccination are acceptable, even though in order to achieve the elimination goal, higher standards need to be achieved.

  10. Environmental Enrichment Modified Epigenetic Mechanisms in SAMP8 Mouse Hippocampus by Reducing Oxidative Stress and Inflammaging and Achieving Neuroprotection

    PubMed Central

    Griñan-Ferré, Christian; Puigoriol-Illamola, Dolors; Palomera-Ávalos, Verónica; Pérez-Cáceres, David; Companys-Alemany, Júlia; Camins, Antonio; Ortuño-Sahagún, Daniel; Rodrigo, M. Teresa; Pallàs, Mercè

    2016-01-01

    With the increase in life expectancy, aging and age-related cognitive impairments are becoming one of the most important issues for human health. At the same time, it has been shown that epigenetic mechanisms are emerging as universally important factors in life expectancy. The Senescence Accelerated Mouse P8 (SAMP8) strain exhibits age-related deterioration evidenced in learning and memory abilities and is a useful model of neurodegenerative disease. In SAMP8, Environmental Enrichment (EE) increased DNA-methylation levels (5-mC) and reduced hydroxymethylation levels (5-hmC), as well as increased histone H3 and H4 acetylation levels. Likewise, we found changes in the hippocampal gene expression of some chromatin-modifying enzyme genes, such as Dnmt3b. Hdac1. Hdac2. Sirt2, and Sirt6. Subsequently, we assessed the effects of EE on neuroprotection-related transcription factors, such as the Nuclear regulatory factor 2 (Nrf2)–Antioxidant Response Element pathway and Nuclear Factor kappa Beta (NF-κB), which play critical roles in inflammation. We found that EE produces an increased expression of antioxidant genes, such as Hmox1. Aox1, and Cox2, and reduced the expression of inflammatory genes such as IL-6 and Cxcl10, all of this within the epigenetic context modified by EE. In conclusion, EE prevents epigenetic changes that promote or drive oxidative stress and inflammaging. PMID:27803663

  11. Planning by 12-Month-Old Infants.

    ERIC Educational Resources Information Center

    Willatts, Peter; Rosie, Karen

    In an investigation of 1-year-olds' ability to plan a sequence of steps, 20 infants were administered a compound means-ends problem. In a planning condition, a barrier was placed in front of a cloth at the far end of which was placed one end of a long string. A toy was fastened to the other end of the string and was placed on a table at some…

  12. Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice.

    PubMed

    Currais, Antonio; Prior, Marguerite; Lo, David; Jolivalt, Corinne; Schubert, David; Maher, Pamela

    2012-12-01

    Mounting evidence supports a link between diabetes, cognitive dysfunction, and aging. However, the physiological mechanisms by which diabetes impacts brain function and cognition are not fully understood. To determine how diabetes contributes to cognitive dysfunction and age-associated pathology, we used streptozotocin to induce type 1 diabetes (T1D) in senescence-accelerated prone 8 (SAMP8) and senescence-resistant 1 (SAMR1) mice. Contextual fear conditioning demonstrated that T1D resulted in the development of cognitive deficits in SAMR1 mice similar to those seen in age-matched, nondiabetic SAMP8 mice. No further cognitive deficits were observed when the SAMP8 mice were made diabetic. T1D dramatically increased Aβ and glial fibrillary acidic protein immunoreactivity in the hippocampus of SAMP8 mice and to a lesser extent in age-matched SAMR1 mice. Further analysis revealed aggregated Aβ within astrocyte processes surrounding vessels. Western blot analyses from T1D SAMP8 mice showed elevated amyloid precursor protein processing and protein glycation along with increased inflammation. T1D elevated tau phosphorylation in the SAMR1 mice but did not further increase it in the SAMP8 mice where it was already significantly higher. These data suggest that aberrant glucose metabolism potentiates the aging phenotype in old mice and contributes to early stage central nervous system pathology in younger animals.

  13. Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model.

    PubMed

    Cuesta, Sara; Kireev, Roman; García, Cruz; Forman, Katherine; Escames, Germaine; Vara, Elena; Tresguerres, Jesús A F

    2011-01-01

    This study has investigated the effect of aging on parameters of inflammation, oxidative stress and apoptosis in pancreas obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and resistant mice (SAMR1). Animals of 2 (young) and 10 months of age (old) were used (n = 64). The influence of the administration of melatonin in the drinking water for one month at two different dosages (1 and 10mg/(kg day) on old SAMP8 mice on these parameters was also studied. SAMP8 mice showed with age a significant increase in the relative expression of pancreatic genes involved in inflammation, oxidative stress and apoptosis. Furthermore the protein expression of several NFκB subunits was also enhanced. On the contrary aged SAMR1 mice did not show significant increases in these parameters. Melatonin administration to SAMP8 mice was able to reduce these age related alterations at the two used dosages.

  14. Rhein lysinate decreases the generation of β-amyloid in the brain tissues of Alzheimer's disease model mice by inhibiting inflammatory response and oxidative stress.

    PubMed

    Liu, Jiang; Hu, Gang; Xu, Rong; Qiao, Yue; Wu, He-Ping; Ding, Xun; Duan, Peng; Tu, Ping; Lin, Ya-Jun

    2013-07-01

    The protective effect of rhein lysinate (RHL) on Alzheimer's disease (AD) was explored in senescence-accelerated mouse prone-8 (SAMP8) mice. SAMP8 mice without treatment were used as the AD-positive control, and senescence-accelerated-resistant mice were used as the AD-negative control. In this study, 4-month-old male SAMP8 mice were orally administered 25 and 50 mg/kg RHL in drinking water for 6 months. The results of brain tissue enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and Western blot were demonstrated that compared with SAMP8 group, β-amyloid1-40 and β-amyloid1-42 were reduced; the levels of tumor necrosis factor-α and interleukin 6 of brain tissues were also significantly decreased; however, the level of sirtuin 1 (SIRT1) was increased in the RHL-treated group. Compared with SAMP8 group, the ROS levels and malondialdehyde levels were decreased; however, superoxide dismutase and glutathione peroxidase levels were increased in the brain tissues of SAMP8 25 and 50 mg/kg RHL-treated groups. In conclusion, the reduction of Aβ induced by RHL was related to the increase of SIRT1 and the inhibition of the inflammatory response and oxidative stress in SAMP8 mice. It might be a promising biological therapeutic drug for AD.

  15. The effects of adults' affective expression and direction of visual gaze on 12-month-olds' visual preferences for an object following a 5-minute, 1-day, or 1-month delay.

    PubMed

    Flom, Ross; Johnson, Sarah

    2011-03-01

    Between 12- and 14 months of age infants begin to use another's direction of gaze and affective expression in learning about various objects and events. What is not well understood is how long infants' behaviour towards a previously unfamiliar object continues to be influenced following their participation in circumstances of social referencing. In this experiment, we examined infants' sensitivity to an adult's direction of gaze and their visual preference for one of two objects following a 5-min, 1-day, or 1-month delay. Ninety-six 12-month-olds participated. For half of the infants during habituation (i.e., familiarization), the adults' direction of gaze was directed towards an unfamiliar object (look condition). For the remaining half of the infants during habituation, the adults' direction of gaze was directed away from the unfamiliar object (look-away condition). All infants were habituated to two events. One event consisted of an adult looking towards (look condition) or away from (look-away condition) an object while facially and vocally conveying a positive affective expression. The second event consisted of the same adult looking towards or away from a different object while conveying a disgusted affective expression. Following the habituation phase and a 5-min, 1-day, or 1-month delay, infants' visual preference was assessed. During the visual preference phase, infants saw the two objects side by side where the adult conveying the affective expression was not visible. Results of the visual preference phase indicate that infants in the look condition showed a significant preference for object previously paired with the positive affect following a 5-min and 1-day delay. No significant visual preference was found in the look condition following a 1-month delay. No significant preferences were found at any retention interval in the look-away condition. Results are discussed in terms of early learning, social referencing, and early memory.

  16. Mutagenic safety and fatty liver improvement of nanonized black soybeans in senescence-accelerated prone-8 mice.

    PubMed

    Liao, J-W; Hong, L-Z; Wang, M-F; Tsai, S-C; Lin, Y-J; Chan, Y-C

    2010-06-01

    Nanotechnology, as a new enabling technology, has the potential to revolutionize food systems. However, much attention has been focused on nanoparticle foods due to their potential physiological properties. This study was aimed to evaluate the mutagenic safety and fatty liver improvement of black soybean in senescence-accelerated mice (SAMP8). The mutagenic activity of black soybeans was investigated using the Ames test (Salmonella Typhimurium TA98, 100, 102, and 1535). Furthermore, senescence-accelerated prone-8 mice (SAMP8) have been reported to display spontaneous fatty liver. Male SAMP8 mice were divided into control and supplemented with 10% micronized or nanonized black soybeans diet and fed for 12 wk. The results revealed that the Ames test of micronized and nanonized black soybeans exhibited no mutagenicity. Administration of black soybeans to mice showed no effects on food intake and body and organ weights. The nanonized black soybean group had a lower degree of spontaneous fatty liver, alanine aminotransferase, and thiobarbituric acid-reactive substance concentrations, and had enhanced superoxide dismutase, catalase, and glutathione peroxidase activities of livers when compared with the SAMP8 control and micronized black soybean groups. The mice fed with black soybeans had significantly lower triglyceride concentrations than the SAMP8 control group. The results of this study suggest that nanonized black soybeans have no side effects and, moreover, may minimize liver lesions in SAMP8 mice.

  17. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.

  18. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier.

    PubMed

    Yanai, Shuichi; Toyohara, Jun; Ishiwata, Kiichi; Ito, Hideki; Endo, Shogo

    2017-04-01

    Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2-(18)F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity.

  19. Medical Care and Your 8- to 12-Month-Old

    MedlinePlus

    ... the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to ... your doctor if you have concerns about your child's development. Reviewed by: Elana Pearl Ben-Joseph, MD Date ...

  20. Mechanism of Isoflavone Aglycone's Effect on Cognitive Performance of Senescence-Accelerated Mice

    ERIC Educational Resources Information Center

    Yang, Hong; Jin, Guifang; Ren, Dongdong; Luo, Sijing; Zhou, Tianhong

    2011-01-01

    This study investigated the effect of isoflavone aglycone (IA) on the learning and memory performance of senescence-accelerated mice, and explored its neural protective mechanism. Results showed that SAM-P/8 senescence-accelerated mice treated with IA performed significantly better in the Y-maze cognitive test than the no treatment control (P less…

  1. Oligomerised lychee fruit-derived polyphenol attenuates cognitive impairment in senescence-accelerated mice and endoplasmic reticulum stress in neuronal cells.

    PubMed

    Sakurai, Takuya; Kitadate, Kentaro; Nishioka, Hiroshi; Fujii, Hajime; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Fujiwara, Tomonori; Akagawa, Kimio; Izawa, Tetsuya; Ohno, Hideki

    2013-11-14

    Recently, the ability of polyphenols to reduce the risk of dementia and Alzheimer's disease (AD) has attracted a great deal of interest. In the present study, we investigated the attenuating effects of oligomerised lychee fruit-derived polyphenol (OLFP, also called Oligonol) on early cognitive impairment. Male senescence-accelerated mouse prone 8 (SAMP8) mice (4 months old) were given OLFP (100 mg/kg per d) for 2 months, and then conditioned fear memory testing was conducted. Contextual fear memory, which is considered hippocampus-dependent memory, was significantly impaired in SAMP8 mice compared with non-senescence-accelerated mice. OLFP attenuated cognitive impairment in SAMP8 mice. Moreover, the results of real-time PCR analysis that followed DNA array analysis in the hippocampus revealed that, compared with SAMP8 mice, the mRNA expression of Wolfram syndrome 1 (Wfs1) was significantly higher in SAMP8 mice administered with OLFP. Wfs1 reportedly helps to protect against endoplasmic reticulum (ER) stress, which is thought to be one of the causes for AD. The expression of Wfs1 was significantly up-regulated in NG108-15 neuronal cells by the treatment with OLFP, and the up-regulation was inhibited by the treatment of the cells with a c-Jun N-terminal kinase-specific inhibitor rather than with an extracellular signal-regulated kinase inhibitor. Moreover, OLFP significantly attenuated the tunicamycin-induced expression of the ER stress marker BiP (immunoglobulin heavy chain-binding protein) in the cells. These results suggest that OLFP has an attenuating effect on early cognitive impairment in SAMP8 mice, and diminishes ER stress in neuronal cells.

  2. Moxidectin toxicity in senescence-accelerated prone and resistant mice.

    PubMed

    Lee, Vanessa K; Tiwary, Asheesh K; Sharma-Reddy, Prachi; Lieber, Karen A; Taylor, Douglas K; Mook, Deborah M

    2009-06-01

    Moxidectin has been used safely as an antiparasitic in many animal species, including for the eradication of the mouse fur mite, Mycoptes musculinus. Although no side effects of moxidectin have previously been reported to occur in mice, 2 strains of the senescence-accelerated mouse (SAMP8 and SAMR1) sustained considerable mortality after routine prophylactic treatment. To investigate the mechanism underlying this effect, moxidectin toxicosis in these mice was evaluated in a controlled study. Moxidectin was applied topically (0.015 mg), and drug concentrations in both brain and serum were analyzed by using HPLC coupled with mass spectrometry. The moxidectin concentration in brain of SAMP8 mice was 18 times that in controls, and that in brain of SAMR1 mice was 14 times higher than in controls, whereas serum moxidectin concentrations did not differ significantly among the 3 strains. Because deficiency of the blood-brain barrier protein P-glycoprotein leads to sensitivity to this class of drugs in other SAM mice, Pgp immunohistochemistry of brain sections from a subset of mice was performed to determine whether this commercially available analysis could predict sensitivity to this class of drug. The staining analysis showed no difference among the strains of mice, indicating that this test does not correlate with sensitivity. In addition, no gross or histologic evidence of organ toxicity was found in brain, liver, lung, or kidney. This report shows that topically applied moxidectin at a standard dose accumulates in the CNS causing toxicosis in both SAMP8 and SAMR1 mice.

  3. Western-type diet induces senescence, modifies vascular function in non-senescence mice and triggers adaptive mechanisms in senescent ones.

    PubMed

    Onetti, Yara; Jiménez-Altayó, Francesc; Heras, Magda; Vila, Elisabet; Dantas, Ana Paula

    2013-12-01

    The effects of high-fat diet ingestion on senescence-induced modulation of contractile responses to phenylephrine (Phe) were determined in aortas of senescence-accelerated (SAMP8) and non-senescent (SAMR1) mice fed (8weeks) a Western-type high-fat diet (WD). Increased levels of senescence-associated β-galactosidase staining were found in aortas of SAMP8 and SAMR1 with WD. In SAMR1, WD did not modify Phe contraction in spite of inducing major changes in the mechanisms of regulation of contractile responses. Although WD increased NAD(P)H-oxidase-derived O2(-) and augmented peroxynitrite formation, we found an increase of inducible NOS (iNOS)-derived NO production which may contribute to maintain Phe contraction in SAMR1 WD. On SAMP8, WD significantly decreased Phe-induced contractions when compared with SAMP8 under normal chow. This response was not dependent on changes of NOS expression, but rather as consequence of increased antioxidant capacity by superoxide dismutase (SOD1). A similar constrictor influence from cyclooxygenase (COX) pathway on Phe responses was found in SAMR1 and SAMP8 ND. However, WD removed that influence on SAMR1, and produced a switch in the balance from a vasoconstrictor to a vasodilator component in SAMP8. These results were associated to the increased COX-2 expression, suggesting that a COX-2-derived vasodilator prostaglandin may contribute to the vascular adaptations after WD intake. Taken together, our data suggest that WD plays a detrimental role in the vasculature of non-senescent mice by increasing pro-inflammatory (iNOS) and pro-oxidative signaling pathways and may contribute to increase vascular senescence. In senescent vessels, however, WD triggers different intrinsic compensatory alterations which include increase of antioxidant activity by SOD1 and vasodilator prostaglandin production via COX-2.

  4. Histological changes of testes in growth hormone transgenic mice with high plasma level of GH and Insulin-like Growth Factor-1

    PubMed Central

    Słuczanowska-Głąbowska, Sylwia; Kucia, Magda; Bartke, Andrzej; Laszczyńska, Maria; Ratajczak, Mariusz Z.

    2016-01-01

    Introduction Overexpression of growth hormone (GH) leads to increase in Insulin-Like Growth Factor-I (IGF-I) plasma level, stimulation of growth and increase in body size, organomegaly and reduced body fat. The action of GH affects all the organs and transgenic mice that overexpress bovine GH (bGH mice) serve as convenient model to study somatotrophic axis. Male mice overexpressing GH are fertile, however, they show reduced overall lifespan as well as reproductive life span. The aim of the study was to evaluate the morphology and expression of androgen receptor (AR) and luteinizing hormone receptor (LHR) of bGH mice testes. Material and methods The experiment was performed on 6 and 12 month-old bGH male mice and 6 and 12 month-old wild type (WT) littermates (8 animals in each group). The morphology of testes was evaluated on deparaffinized sections stained by the periodic acid-Schiff (PAS) method. Expression of AR and LHR was investigated by immunohistochemistry and diameters of seminiferous tubules (ST) were measured on round cross sections of ST. Results We noted larger testes in 6-month bGH mice as compared to normal WT littermates. The morphological observations revealed essentially normal structure of Leydig cells, seminiferous epithelium and other morphological structures. However, some changes like tubules containing only Sertoli cells, tubules with arrested spermatogenesis or vacuoles in seminiferous epithelium could be attributed to the overexpression of GH. In contrast to WT mice, 12 month-old bGH mice displayed first symptoms of testicular aging. The immunoexpression of AR and LHR was decreased in 12 month-old bGH males as compared to 12 month-old WT mice and younger animals. Conclusion Chronic exposure to elevated GH level accelerates testicular aging and thus potentially may change response of Leydig cells to LH and Sertoli and germ cells to testosterone. PMID:26348370

  5. Enhanced Dopamine Transporter Activity in Middle-Aged Gdnf Heterozygous Mice

    PubMed Central

    Littrell, Ofelia M.; Pomerleau, Francois; Huettl, Peter; Surgener, Stewart; McGinty, Jacqueline F.; Middaugh, Lawrence D.; Granholm, Ann-Charlotte; Gerhardt, Greg A.; Boger, Heather A.

    2010-01-01

    Glial cell line-derived neurotrophic factor (GDNF) supports the viability of midbrain dopamine (DA) neurons that degenerate in Parkinson’s disease. Middle aged, 12-month-old, Gdnf heterozygous (Gdnf+/−) mice have diminished spontaneous locomotor activity and enhanced synaptosomal DA uptake compared to wildtype mice. In this study, dopamine transporter (DAT) function in middle-aged, 12-month-old Gdnf+/− mice was more thoroughly investigated using in vivo electrochemistry. Gdnf+/− mice injected with the DAT inhibitor, nomifensine, exhibited significantly more locomotor activity than wildtype mice. In vivo electrochemistry with carbon fiber microelectrodes demonstrated enhanced clearance of DA in the striatum of Gdnf+/− mice, suggesting greater surface expression of DAT than in wildtype littermates. Additionally, 12 month old Gdnf+/− mice expressed greater D2 receptor mRNA and protein in the striatum than wildtype mice. Neurochemical analyses of striatal tissue samples indicated significant reductions in DA and a faster DA metabolic rate in Gdnf+/− mice than in wildtype mice. Altogether, these data support an important role for GDNF in the regulation of uptake, synthesis, and metabolism of DA during aging. PMID:21144620

  6. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    PubMed

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.

  7. Autophagy resolves early retinal inflammation in Igf1-deficient mice.

    PubMed

    Arroba, Ana I; Rodríguez-de la Rosa, Lourdes; Murillo-Cuesta, Silvia; Vaquero-Villanueva, Laura; Hurlé, Juan M; Varela-Nieto, Isabel; Valverde, Ángela M

    2016-09-01

    Insulin-like growth factor-1 (IGF-1) is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1(-/-)), present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1(-/-) mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1(-/-) mice compared to those in age-matched Igf1(+/+) controls. In 6-month-old Igf1(-/-) retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1) protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1(-/-) mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1(+/+) controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1(+/+) and Igf1(-/-) mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL), inner plexiform layer (IPL) and inner nuclear layer (INL), and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1(-/-) mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1(-/-) mice. In conclusion, this study provides new evidence in

  8. Autophagy resolves early retinal inflammation in Igf1-deficient mice

    PubMed Central

    Rodríguez-de la Rosa, Lourdes; Murillo-Cuesta, Silvia; Vaquero-Villanueva, Laura; Hurlé, Juan M.; Varela-Nieto, Isabel; Valverde, Ángela M.

    2016-01-01

    ABSTRACT Insulin-like growth factor-1 (IGF-1) is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1−/−), present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1−/− mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1−/− mice compared to those in age-matched Igf1+/+ controls. In 6-month-old Igf1−/− retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1) protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1−/− mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1+/+ controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1+/+ and Igf1−/− mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL), inner plexiform layer (IPL) and inner nuclear layer (INL), and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1−/− mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1−/− mice. In conclusion, this study

  9. Gender and discipline in 5-12-month-old infants: a longitudinal study.

    PubMed

    Ahl, Richard Evan; Fausto-Sterling, Anne; García-Coll, Cynthia; Seifer, Ronald

    2013-04-01

    We examined the effects of infant age and gender on the behaviors of infants and mothers during discipline interactions using longitudinal, naturalistic, home-based, taped observations of 16 mother-infant dyads (eight males and eight females). These observations were conducted between the child ages of 5 and 12 months and used a devised Maternal Discipline Coding System to code for the occurrence of discipline events. During discipline interactions, mothers vocalized longer, used harsher tones, and used more explanations with older compared to younger infants. Male infants were more likely than female infants to cry or whine during discipline events. Mothers of male infants used longer vocalizations, more words, and more affectionate terms than mothers of female infants. Male infants were more difficult during discipline interactions than female infants, but it appeared that mothers of males responded to this difficulty by using milder discipline techniques.

  10. Case Study Analyses of Play Behaviors of 12-Month-Old Infants Later Diagnosed with Autism

    ERIC Educational Resources Information Center

    Mulligan, Shelley

    2015-01-01

    Case study research methodology was used to describe the play behaviors of three infants at 12 months of age, who were later diagnosed with an autism spectrum disorder. Data included standardized test scores, and analyses of video footage of semi-structured play sessions from infants identified as high risk for autism, because of having a sibling…

  11. The Sustained Effect of Emotional Signals on Neural Processing in 12-Month-Olds

    ERIC Educational Resources Information Center

    Leventon, Jacqueline S.; Bauer, Patricia J.

    2013-01-01

    Around the end of the first year of life, infants develop a social referencing ability -- using emotional information from others to guide their own behavior. Much research on social referencing has focused on changes in behavior in response to emotional information. The present study was an investigation of the changes in neural responses that…

  12. When Familiar Is Not Better: 12-Month-Old Infants Respond to Talk about Absent Objects

    ERIC Educational Resources Information Center

    Osina, Maria A.; Saylor, Megan M.; Ganea, Patricia A.

    2013-01-01

    Three experiments that demonstrate a novel constraint on infants' language skills are described. Across the experiments it is shown that as babies near their 1st birthday, their ability to respond to talk about an absent object is influenced by a referent's spatiotemporal history: familiarizing infants with an object in 1 or several nontest…

  13. Social Looking, Social Referencing and Humor Perception in 6-and-12-month-old Infants

    PubMed Central

    Mireault, Gina C.; Crockenberg, Susan C.; Sparrow, John E.; Pettinato, Christine A.; Woodard, Kelly C.; Malzac, Kirsten

    2014-01-01

    Social referencing refers to infants' use of caregivers as emotional referents in ambiguous situations (Walden, 1993). Studies of social referencing typically require ambulation, thereby over-looking younger, non-ambulatory infants (i.e., ≤ 8-mos) and resulting in a widespread assumption that young infants do not employ this strategy. Using a novel approach that does not require mobility, we found that when parents provided unsolicited affective cues during an ambiguous-absurd (i.e., humorous) event, 6-month-olds employ one component of social referencing, social looking Additionally, 6-month-olds who did not laugh at the event were significantly more likely to look toward parents than their counterparts who found the event funny. Sequential analyses revealed that, following a reference to a smiling parent, 6-month olds were more likely to smile at the parent, but by 12 months were more likely to smile at the event suggesting that older infants are influenced by parental affect in humorous situations. The developmental implications of these findings are discussed, as well as the usefulness of studying humor for understanding important developmental phenomena. PMID:25061893

  14. Social looking, social referencing and humor perception in 6- and-12-month-old infants.

    PubMed

    Mireault, Gina C; Crockenberg, Susan C; Sparrow, John E; Pettinato, Christine A; Woodard, Kelly C; Malzac, Kirsten

    2014-11-01

    Social referencing refers to infants' use of caregivers as emotional referents in ambiguous situations (Walden, 1993). Studies of social referencing typically require ambulation, thereby over-looking younger, non-ambulatory infants (i.e., ≤8-months) and resulting in a widespread assumption that young infants do not employ this strategy. Using a novel approach that does not require mobility, we found that when parents provided unsolicited affective cues during an ambiguous-absurd (i.e., humorous) event, 6-month-olds employ one component of social referencing, social looking Additionally, 6-month-olds who did not laugh at the event were significantly more likely to look toward parents than their counterparts who found the event funny. Sequential analyses revealed that, following a reference to a smiling parent, 6-month olds were more likely to smile at the parent, but by 12 months were more likely to smile at the event suggesting that older infants are influenced by parental affect in humorous situations. The developmental implications of these findings are discussed, as well as the usefulness of studying humor for understanding important developmental phenomena.

  15. Action Production Influences 12-Month-Old Infants' Attention to Others' Actions

    ERIC Educational Resources Information Center

    Cannon, Erin N.; Woodward, Amanda L.; Gredeback, Gustaf; von Hofsten, Claes; Turek, Colleen

    2012-01-01

    Recent work implicates a link between action control systems and action understanding. In this study, we investigated the role of the motor system in the development of visual anticipation of others' actions. Twelve-month-olds engaged in behavioral and observation tasks. "Containment activity", infants' spontaneous engagement in producing…

  16. Visual Experience Influences 12-Month-Old Infants' Perception of Goal-Directed Actions of Others

    ERIC Educational Resources Information Center

    Myowa-Yamakoshi, Masako; Kawakita, Yuka; Okanda, Mako; Takeshita, Hideko

    2011-01-01

    In the present study, we investigated whether infants' own visual experiences affected their perception of the visual status of others engaging in goal-directed actions. In Experiment 1, infants viewed video clips of successful and failed goal-directed actions performed by a blindfolded adult, with half the infants having previously experienced…

  17. Speech Production in 12-Month-Old Children with and without Hearing Loss

    ERIC Educational Resources Information Center

    McGowan, Richard S.; Nittrouer, Susan; Chenausky, Karen

    2008-01-01

    Purpose: The purpose of this study was to compare speech production at 12 months of age for children with hearing loss (HL) who were identified and received intervention before 6 months of age with those of children with normal hearing (NH). Method: The speech production of 10 children with NH was compared with that of 10 children with HL whose…

  18. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI

    PubMed Central

    Deistung, Andreas; Ielacqua, Giovanna D; Seuwen, Aline; Kindler, Diana; Schweser, Ferdinand; Vaas, Markus; Kipar, Anja; Reichenbach, Jürgen R; Rudin, Markus

    2015-01-01

    Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of R2* and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAβ mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.4 T after injection of USPIO. Focal areas with increased magnetic susceptibility and R2* values were discernible across several brain regions in 12-month-old arcAβ compared to 6-month-old arcAβ mice and to non-transgenic littermates, indicating accumulation of particles after USPIO injection. This was concomitant with higher R2* and increased magnetic susceptibility differences relative to cerebrospinal fluid measured in USPIO-injected compared to non-USPIO-injected 12-month-old arcAβ mice. No differences in R2* and magnetic susceptibility were detected in USPIO-injected compared to non-injected 12-month-old non-transgenic littermates. Histological analysis confirmed focal uptake of USPIO particles in perivascular macrophages adjacent to small caliber cerebral vessels with radii of 2–8 µm that showed no cerebral amyloid angiopathy. USPIO-enhanced R2* and quantitative susceptibility mapping constitute quantitative tools to monitor such functional microvasculopathies. PMID:26661253

  19. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI.

    PubMed

    Klohs, Jan; Deistung, Andreas; Ielacqua, Giovanna D; Seuwen, Aline; Kindler, Diana; Schweser, Ferdinand; Vaas, Markus; Kipar, Anja; Reichenbach, Jürgen R; Rudin, Markus

    2016-09-01

    Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of [Formula: see text] and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAβ mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.4 T after injection of USPIO. Focal areas with increased magnetic susceptibility and [Formula: see text] values were discernible across several brain regions in 12-month-old arcAβ compared to 6-month-old arcAβ mice and to non-transgenic littermates, indicating accumulation of particles after USPIO injection. This was concomitant with higher [Formula: see text] and increased magnetic susceptibility differences relative to cerebrospinal fluid measured in USPIO-injected compared to non-USPIO-injected 12-month-old arcAβ mice. No differences in [Formula: see text] and magnetic susceptibility were detected in USPIO-injected compared to non-injected 12-month-old non-transgenic littermates. Histological analysis confirmed focal uptake of USPIO particles in perivascular macrophages adjacent to small caliber cerebral vessels with radii of 2-8 µm that showed no cerebral amyloid angiopathy. USPIO-enhanced [Formula: see text] and quantitative susceptibility mapping constitute quantitative tools to monitor such functional microvasculopathies.

  20. Rate of change of carotid intima-media thickness with magnesium administration in Abcc6⁻/⁻ mice.

    PubMed

    Kupetsky, Erine A; Rincon, Fred; Uitto, Jouni

    2013-12-01

    Pseudoxanthoma elasticum (PXE), caused by mutations in the ABCC6 gene, demonstrates progressive build-up of calcium phosphate and proteoglycans in the skin, eye, and arteries, and is associated to myocardial infarctions, stroke, blindness, and elevated carotid intima-media thickness (CIMT). Although CIMT reduction with magnesium (Mg) has been documented in a mouse model for PXE (Abcc6(-/-) ), it is not clear if Mg is effective in humans with PXE to reduce CIMT. To examine this, we calculated the rate of change of CIMT (washout) in 15- and 12-month-old Abcc6(-/-) mice fed standard rodent diet with or without Mg supplementation for 2 months. Using means in untreated 15- and 12-month-old Abcc6(-/-) mice (145 and 120 μm, respectively), the rate of change was 8.3 μm/month. Using means in treated 15- and 12-month-old Abcc6(-/-) mice (118 and 104.6 μm, respectively), the rate of change was 4.5 μm. Compared to normal progression of CIMT in humans without PXE, PXE has advanced atherosclerosis and possibly a higher CIMT rate of change. This experiment may portend, at least in PXE, the rationale for a 1-year oral Mg CIMT clinical trial and may be useful for application in other progressive mineralizing disorders like atherosclerosis.

  1. Age-dependent effects of UCP2 deficiency on experimental acute pancreatitis in mice.

    PubMed

    Müller, Sarah; Kaiser, Hannah; Krüger, Burkhard; Fitzner, Brit; Lange, Falko; Bock, Cristin N; Nizze, Horst; Ibrahim, Saleh M; Fuellen, Georg; Wolkenhauer, Olaf; Jaster, Robert

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of acute pancreatitis (AP) for many years but experimental evidence is still limited. Uncoupling protein 2 (UCP2)-deficient mice are an accepted model of age-related oxidative stress. Here, we have analysed how UCP2 deficiency affects the severity of experimental AP in young and older mice (3 and 12 months old, respectively) triggered by up to 7 injections of the secretagogue cerulein (50 μg/kg body weight) at hourly intervals. Disease severity was assessed at time points from 3 hours to 7 days based on pancreatic histopathology, serum levels of alpha-amylase, intrapancreatic trypsin activation and levels of myeloperoxidase (MPO) in lung and pancreatic tissue. Furthermore, in vitro studies with pancreatic acini were performed. At an age of 3 months, UCP2-/- mice and wild-type (WT) C57BL/6 mice were virtually indistinguishable with respect to disease severity. In contrast, 12 months old UCP2-/- mice developed a more severe pancreatic damage than WT mice at late time points after the induction of AP (24 h and 7 days, respectively), suggesting retarded regeneration. Furthermore, a higher peak level of alpha-amylase activity and gradually increased MPO levels in pancreatic and lung tissue were observed in UCP2-/- mice. Interestingly, intrapancreatic trypsin activities (in vivo studies) and intraacinar trypsin and elastase activation in response to cerulein treatment (in vitro studies) were not enhanced but even diminished in the knockout strain. Finally, UCP2-/- mice displayed a diminished ratio of reduced and oxidized glutathione in serum but no increased ROS levels in pancreatic acini. Together, our data indicate an aggravating effect of UCP2 deficiency on the severity of experimental AP in older but not in young mice. We suggest that increased severity of AP in 12 months old UCP2-/- is caused by an imbalanced inflammatory response but is unrelated to acinar cell functions.

  2. Human apolipoprotein E ɛ4 expression impairs cerebral vascularization and blood–brain barrier function in mice

    PubMed Central

    Alata, Wael; Ye, Yue; St-Amour, Isabelle; Vandal, Milène; Calon, Frédéric

    2015-01-01

    Human apolipoprotein E (APOE) exists in three isoforms ɛ2, ɛ3, and ɛ4, of which APOE4 is the main genetic risk factor of Alzheimer's disease (AD). As cerebrovascular defects are associated with AD, we tested whether APOE genotype has an impact on the integrity and function of the blood–brain barrier (BBB) in human APOE-targeted replacement mice. Using the quantitative in situ brain perfusion technique, we first found lower (13.0% and 17.0%) brain transport coefficient (Clup) of [3H]-diazepam in APOE4 mice at 4 and 12 months, compared with APOE2 and APOE3 mice, reflecting a decrease in cerebral vascularization. Accordingly, results from immunohistofluorescence experiments revealed a structurally reduced cerebral vascularization (26% and 38%) and thinner basement membranes (30% and 35%) in 12-month-old APOE4 mice compared with APOE2 and APOE3 mice, suggesting vascular atrophy. In addition, APOE4 mice displayed a 29% reduction in [3H]-d-glucose transport through the BBB compared with APOE2 mice without significant changes in the expression of its transporter GLUT1 in brain capillaries. However, an increase of 41.3% of receptor for advanced glycation end products (RAGE) was found in brain capillaries of 12-month-old APOE4 mice. In conclusion, profound divergences were observed between APOE genotypes at the cerebrovascular interface, suggesting that APOE4-induced BBB anomalies may contribute to AD development. PMID:25335802

  3. Onset of juvenile dermatomyositis following varicella infection in a 12-month-old child: a case report

    PubMed Central

    2014-01-01

    Introduction Infections can act as a trigger for juvenile dermatomyositis, with a predominance of respiratory tract infections reported previously. We present the first case of juvenile dermatomyositis following varicella infection to be described in the literature. Case presentation A 15-month-old Caucasian girl was diagnosed with juvenile dermatomyositis 3 months after a varicella infection. The diagnosis was challenging due to her young age, but was supported by magnetic resonance imaging, and confirmed following a later appearance of the characteristic skin rash. Conclusion Varicella infection may be a trigger for juvenile dermatomyositis. Further understanding of disease triggers is required. PMID:24529167

  4. Middle East Consensus Statement on the Diagnosis and Management of Functional Gastrointestinal Disorders in <12 Months Old Infants

    PubMed Central

    Alturaiki, Muath Abdurrahman; Al-Qabandi, Wafaa; AlRefaee, Fawaz; Bassil, Ziad; Eid, Bassam; El Beleidy, Ahmed; Almehaidib, Ali Ibrahim; Mouawad, Pierre; Sokhn, Maroun

    2016-01-01

    This paper covers algorithms for the management of regurgitation, constipation and infantile colic in infants. Anti-regurgitation formula may be considered in infants with troublesome regurgitation, while diagnostic investigations or drug therapy are not indicated in the absence of warning signs. Although probiotics have shown some positive evidence for the management of functional gastrointestinal disorders (FGIDs), the evidence is not strong enough to make a recommendation. A partially hydrolyzed infant formula with prebiotics and β-palmitate may be considered as a dietary intervention for functional constipation in formula fed infants. Lactulose has been shown to be effective and safe in infants younger than 6 months that are constipated. Macrogol (polyethylene glycol, PEG) is not approved for use in infants less than 6 months of age. However, PEG is preferred over lactulose in infants >6 months of age. Limited data suggests that infant formula with a partial hydrolysate, galacto-oligosaccharides/fructo-oligosaccharides, added β-palmitate may be of benefit in reducing infantile colic in formula fed infants in cases where cow's milk protein allergy (CMPA) is not suspected. Evidence suggests that the use of extensively hydrolyzed infant formula for a formula-fed baby and a cow's milk free diet for a breastfeeding mother may be beneficial to decrease infantile colic if CMPA is suspected. None of the FGIDs is a reason to stop breastfeeding. PMID:27738596

  5. Feeding Practices and Expectations among Middle-Class Anglo and Puerto Rican Mothers of 12-Month-Old Infants.

    ERIC Educational Resources Information Center

    Schulze, Pamela A.; Harwood, Robin L.; Schoelmerich, Axel

    2001-01-01

    Investigated differences in beliefs and practices about infant feeding among middle class Anglo and Puerto Rican mothers. Interviews and observations indicated that Anglo mothers reported earlier attainment of self-feeding and more emphasis on child rearing goals related to self-maximization. Puerto Rican mothers reported later attainment of…

  6. Aspects of Juvenile and Adolescent Environment Predict Aggression and Fear in 12-Month-Old Guide Dogs.

    PubMed

    Serpell, James A; Duffy, Deborah L

    2016-01-01

    Maturational changes in behavior, and the possible influence of the puppy-raising environment on behavioral development, were investigated in a total sample of 978 prospective guide dogs belonging to four different breeds/crosses. All dogs belonged to the same guide dog organization, and had been exposed to similar early environmental influences prior to being assigned to puppy-raising households at 7-8 weeks of age. Behavioral data were collected from puppy raisers when the dogs were 6 and 12 months old using the C-BARQ(©), a standardized, validated, and widely used survey instrument that measures the frequency and/or severity of most common behavior problems in dogs. Information about the puppy-raising environment was obtained from puppy raisers using a standardized questionnaire shortly before the dogs were returned to the guide dog organization for training. Data were analyzed using both univariate and multivariate statistics (binary logistic generalized estimating equations modeling and generalized linear modeling). The findings demonstrated specific maturational changes in behavior between 6 and 12 months of age. In particular, German Shepherd dogs displayed an increase in stranger-directed aggression compared with the other breeds/crosses between 6 and 12 months of age. Several aspects of the puppy-raising environment were associated with puppies' C-BARQ scores at 12 months of age. In particular, growing up in households with more experienced puppy raisers, and in the company of at least one other dog, were both associated with positive effects on a number of puppy behaviors. By contrast, puppies that had been frightened by a person or threatened by another unfamiliar dog showed significantly worse scores for fear of strangers and dogs, respectively. Being frightened by a person, being reared by less experienced puppy raisers, and/or in households without other pets were associated with less successful training outcomes. The relevance of these findings to current guide dog breeding and husbandry practices is discussed.

  7. Screening for Autism Spectrum Disorders in 12-Month-Old High-Risk Siblings by Parental Report

    ERIC Educational Resources Information Center

    Rowberry, Justin; Macari, Suzanne; Chen, Grace; Campbell, Daniel; Leventhal, John M.; Weitzman, Carol; Chawarska, Katarzyna

    2015-01-01

    This study examines whether parental report of social-communicative and repetitive behaviors at 12 months can be helpful in identifying autism spectrum disorder (ASD) in younger siblings of children with ASD [high-risk (HR)-siblings]. Parents of HR-siblings and infants without a family history of ASD completed the First Year Inventory at…

  8. Screening for Autism Spectrum Disorders in 12-Month-Old High-Risk Siblings by Parental Report

    PubMed Central

    Macari, Suzanne; Chen, Grace; Campbell, Daniel; Leventhal, John M.; Weitzman, Carol; Chawarska, Katarzyna

    2014-01-01

    This study examines whether parental report of social-communicative and repetitive behaviors at 12 months can be helpful in identifying autism spectrum disorder (ASD) in younger siblings of children with ASD [high-risk (HR)-siblings]. Parents of HR-siblings and infants without a family history of ASD completed the First Year Inventory at 12 months. Developmental outcomes were based on 24- or 36-month assessments. HR-siblings later diagnosed with ASD showed greater impairments in social communication than those with other developmental outcomes based on parental and clinician ratings. Parental report of decline in play and communication and impaired vocal imitation correctly classified a majority of ASD cases with high specificity. These preliminary findings have important implications for the development of early screening instruments for ASD in HR-siblings. PMID:25149178

  9. Aspects of Juvenile and Adolescent Environment Predict Aggression and Fear in 12-Month-Old Guide Dogs

    PubMed Central

    Serpell, James A.; Duffy, Deborah L.

    2016-01-01

    Maturational changes in behavior, and the possible influence of the puppy-raising environment on behavioral development, were investigated in a total sample of 978 prospective guide dogs belonging to four different breeds/crosses. All dogs belonged to the same guide dog organization, and had been exposed to similar early environmental influences prior to being assigned to puppy-raising households at 7–8 weeks of age. Behavioral data were collected from puppy raisers when the dogs were 6 and 12 months old using the C-BARQ©, a standardized, validated, and widely used survey instrument that measures the frequency and/or severity of most common behavior problems in dogs. Information about the puppy-raising environment was obtained from puppy raisers using a standardized questionnaire shortly before the dogs were returned to the guide dog organization for training. Data were analyzed using both univariate and multivariate statistics (binary logistic generalized estimating equations modeling and generalized linear modeling). The findings demonstrated specific maturational changes in behavior between 6 and 12 months of age. In particular, German Shepherd dogs displayed an increase in stranger-directed aggression compared with the other breeds/crosses between 6 and 12 months of age. Several aspects of the puppy-raising environment were associated with puppies’ C-BARQ scores at 12 months of age. In particular, growing up in households with more experienced puppy raisers, and in the company of at least one other dog, were both associated with positive effects on a number of puppy behaviors. By contrast, puppies that had been frightened by a person or threatened by another unfamiliar dog showed significantly worse scores for fear of strangers and dogs, respectively. Being frightened by a person, being reared by less experienced puppy raisers, and/or in households without other pets were associated with less successful training outcomes. The relevance of these findings to current guide dog breeding and husbandry practices is discussed. PMID:27446937

  10. Can You Believe It? 12-Month-Olds Use Word Order to Distinguish between Declaratives and Polar Interrogatives

    ERIC Educational Resources Information Center

    Geffen, Susan; Mintz, Toben H.

    2015-01-01

    Word order is a core mechanism for conveying syntactic structure, yet interrogatives usually disrupt canonical word orders. For example, in English, polar interrogatives typically invert the subject and auxiliary verb and insert an utterance-initial "do" if no auxiliary is present. These word order patterns result from differences in the…

  11. Spirulina prevents memory dysfunction, reduces oxidative stress damage and augments antioxidant activity in senescence-accelerated mice.

    PubMed

    Hwang, Juen-Haur; Lee, I-Te; Jeng, Kee-Ching; Wang, Ming-Fu; Hou, Rolis Chien-Wei; Wu, Su-Mei; Chan, Yin-Ching

    2011-01-01

    Spirulina has proven to be effective in treating certain cancers, hyperlipidemia, immunodeficiency, and inflammatory processes. In this study, we aimed to investigate the effects of Spirulina on memory dysfunction, oxidative stress damage and antioxidant enzyme activity. Three-month-old male senescence-accelerated prone-8 (SAMP8) mice were randomly assigned to either a control group or to one of two experimental groups (one receiving daily dietary supplementation with 50 mg/kg BW and one with 200 mg/kg BW of Spirulina platensis water extract). Senescence-accelerated-resistant (SAMR1) mice were used as the external control. Results showed that the Spirulina-treated groups had better passive and avoidance scores than the control group. The amyloid β-protein (Aβ) deposition was significantly reduced at the hippocampus and whole brain in both Spirulina groups. The levels of lipid peroxidation were significantly reduced at the hippocampus, striatum, and cortex in both Spirulina groups, while catalase activity was significantly higher only in the 200 mg/kg BW Spirulina group than in the control group. Glutathione peroxidase activity was significantly higher only in the cortex of the 200 mg/kg group than in that of the SAMP8 control group. However, superoxide dismutase activity in all parts of the brain did not significantly differ among all groups. In conclusion, Spirulina platensis may prevent the loss of memory possibly by lessening Aβ protein accumulation, reducing oxidative damage and mainly augmenting the catalase activity.

  12. Melatonin decreases the expression of inflammation and apoptosis markers in the lung of a senescence-accelerated mice model.

    PubMed

    Puig, Ángela; Rancan, Lisa; Paredes, Sergio D; Carrasco, Adrián; Escames, Germaine; Vara, Elena; Tresguerres, Jesús A F

    2016-03-01

    Aging is associated with an increase in oxidative stress and inflammation. The aging lung is particularly affected since it is continuously exposed to environmental oxidants while antioxidant machinery weakens with age. Melatonin, a free radical scavenger, counteracts inflammation and apoptosis in healthy cells from several tissues. Its effects on the aging lung are, however, not yet fully understood. This study aimed to investigate the effect of chronic administration of melatonin on the expression of inflammation markers (TNF-α, IL-1β, NFκB2, HO-1) and apoptosis parameters (BAD, BAX, AIF) in the lung tissue of male senescence-accelerated prone mice (SAMP8). In addition, RNA oxidative damage, as the formation of 8-hydroxyguanosine (8-OHG), was also evaluated. Young and old animals, aged 2 and 10 months respectively, were divided into 4 groups: untreated young, untreated old, old mice treated with 1mg/kg/day melatonin, and old animals treated with 10mg/kg/day melatonin. Untreated young and old male senescence accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed. Lungs were collected and immediately frozen in liquid nitrogen. mRNA and protein expressions were measured by RT-PCR and Western blotting, respectively. Levels of 8-OHG were quantified by ELISA. Mean values were analyzed using ANOVA. Old nontreated SAMP8 animals showed increased (p<0.05) mRNA and protein levels of TNF-α, IL-1β, NFκB2, and HO-1 compared to young mice and SAMR1 mice. Melatonin treatment with either dose reversed the aging-derived inflammation (p<0.05). BAD, BAX and AIF expressions also rose with aging, the effect being counteracted with melatonin (p<0.05). Aging also caused a significant elevation (p<0.05) in SAMP8 8-OHG values. This increase was not observed in animals treated with melatonin (p<0.05). In conclusion, melatonin treatment was able to modulate the inflammatory and apoptosis status of the aging lungs, exerting a

  13. Age-Associated Changes in the Vascular Renin-Angiotensin System in Mice

    PubMed Central

    Yoon, Hye Eun; Kim, Eun Nim; Kim, Min Young; Lim, Ji Hee; Jang, In-Ae; Ban, Tae Hyun; Shin, Seok Joon; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-01-01

    Background. This study evaluated whether the change in the renin-angiotensin system (RAS) is associated with arterial aging in mice. Methods. Histologic changes and expressions of transforming growth factor-β (TGF-β), collagen IV, fibronectin, angiotensin II (Ang II), angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), angiotensin II type 1 receptor (AT1R), angiotensin II type 2 receptor (AT2R), prorenin receptor (PRR), Mas receptor (MasR), endothelial nitric oxide synthase (eNOS), NADPH oxidase 2 and oxidase 4 (Nox2 and Nox4), 8-hydroxy-2′-deoxyguanosine (8-OHdG), 3-nitrotyrosine, and superoxide dismutase 1 and dismutase 2 (SOD1 and SOD2) were measured in the thoracic aortas from 2-month-old, 12-month-old, and 24-month-old C57/BL6 mice. Results. Twenty-four-month-old mice showed significantly increased aortic media thickness and expressions of TGF-β, collagen IV, and fibronectin, compared to 2-month-old and 12-month-old mice. The expressions of PRR, ACE, and Ang II, and AT1R-positive area significantly increased, whereas expressions of ACE2 and MasR and AT2R-positive area decreased with age. The expressions of phosphorylated serine1177-eNOS, SOD1, and SOD2 decreased, and the 8-OHdG-positive area and the 3-nitrotyrosine-positive area increased with age. The expression of Nox2 significantly increased with age, but that of Nox4 did not change. Conclusions. The enhanced PRR-ACE-Ang II-AT1R axis and reduced ACE2-MasR axis were associated with arterial aging in mice. PMID:27200147

  14. Age-Associated Changes in the Vascular Renin-Angiotensin System in Mice.

    PubMed

    Yoon, Hye Eun; Kim, Eun Nim; Kim, Min Young; Lim, Ji Hee; Jang, In-Ae; Ban, Tae Hyun; Shin, Seok Joon; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-01-01

    Background. This study evaluated whether the change in the renin-angiotensin system (RAS) is associated with arterial aging in mice. Methods. Histologic changes and expressions of transforming growth factor-β (TGF-β), collagen IV, fibronectin, angiotensin II (Ang II), angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), angiotensin II type 1 receptor (AT1R), angiotensin II type 2 receptor (AT2R), prorenin receptor (PRR), Mas receptor (MasR), endothelial nitric oxide synthase (eNOS), NADPH oxidase 2 and oxidase 4 (Nox2 and Nox4), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 3-nitrotyrosine, and superoxide dismutase 1 and dismutase 2 (SOD1 and SOD2) were measured in the thoracic aortas from 2-month-old, 12-month-old, and 24-month-old C57/BL6 mice. Results. Twenty-four-month-old mice showed significantly increased aortic media thickness and expressions of TGF-β, collagen IV, and fibronectin, compared to 2-month-old and 12-month-old mice. The expressions of PRR, ACE, and Ang II, and AT1R-positive area significantly increased, whereas expressions of ACE2 and MasR and AT2R-positive area decreased with age. The expressions of phosphorylated serine(1177)-eNOS, SOD1, and SOD2 decreased, and the 8-OHdG-positive area and the 3-nitrotyrosine-positive area increased with age. The expression of Nox2 significantly increased with age, but that of Nox4 did not change. Conclusions. The enhanced PRR-ACE-Ang II-AT1R axis and reduced ACE2-MasR axis were associated with arterial aging in mice.

  15. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    PubMed Central

    Wang, Qing M.; Meng, Zhaoxiang; Yin, Zhenglu

    2017-01-01

    Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD) lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75) and an abnormal gait group (n = 25). Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV) in stride length, two with base of support (BOS) deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was significantly higher in

  16. The mtDNA nt7778 G/T polymorphism augments formation of lymphocytic foci but does not aggravate cerulein-induced acute pancreatitis in mice.

    PubMed

    Müller, Sarah; Krüger, Burkhard; Lange, Falko; Bock, Cristin N; Nizze, Horst; Glass, Änne; Ibrahim, Saleh M; Jaster, Robert

    2014-01-01

    A polymorphism in the ATP synthase 8 (ATP8) gene of the murine mitochondrial genome, G-to-T transversion at position 7778, has been suggested to increase susceptibility to multiple autoimmune diseases, including autoimmune pancreatitis (AIP). The polymorphism also induces mitochondrial reactive oxygen species generation, secretory dysfunction and β-cell mass adaptation. Here, we have used two conplastic mouse strains, C57BL/6N-mtAKR/J (B6-mtAKR; nt7778 G; control) and C57BL/6N-mtFVB/N (B6-mtFVB; nt7778 T), to address the question if the polymorphism also affects the course of cerulein-induced acute pancreatitis in mice. Therefore, two age groups of mice (3 and 12-month-old, respectively) were subjected to up to 7 injections of the secretagogue cerulein (50 µg/kg body weight) at hourly intervals. Disease severity was assessed at time points from 3 hours to 7 days based on pancreatic histopathology, serum levels of α-amylase and activities of myeloperoxidase (MPO) in lung tissue. A comparison of cerulein-induced pancreatic tissue damage and increases of α-amylase and MPO activities showed no differences between the age-matched groups of both strains. Interestingly, histological evaluation of pancreatic tissue of both untreated and cerulein-treated B6-mtAKR and B6-mtFVB mice also revealed the presence of infiltrates of immune cells surrounding ducts and vessels; a finding that is compatible with an early stage of AIP. After recovery from cerulein-induced pancreatitis (day 7 after the injections), 12-month-old B6-mtFVB mice but not B6-mtAKR mice displayed aggravated lymphocytic lesions. A comparison of 12-month-old mice with other age groups of both strains revealed that lymphocytic foci were largely absent in 3-month-old mice, while 24-month-old mice were more affected. Together, our data suggest that the mtDNA nt7778 G/T polymorphism does not aggravate cerulein-induced acute pancreatitis. Autoimmune-like lesions, however, may progress faster if additional tissue

  17. Western diet consumption promotes vascular remodeling in non-senescent mice consistent with accelerated senescence, but does not modify vascular morphology in senescent ones.

    PubMed

    Dantas, Ana Paula; Onetti, Yara; Oliveira, María Aparecida; Carvalho, Maria Helena; Heras, Magda; Vila, Elisabet; Jiménez-Altayó, Francesc

    2014-07-01

    Senescence accelerated mice (SAM) are susceptible to developing vascular dysfunction and remodeling. Food intake and type of diet have also been identified as determining factors in vascular remodeling. However, the interplay between senescence and diet in vascular remodeling is largely unknown. We aimed to analyze structure of large (aorta) and small (mesenteric; MA) arteries from seven-month-old SAM prone (SAMP8) and resistant (SAMR1) mice that received a Western-type high-fat diet (WD; 8weeks). Aortic structure was assessed by morphometric analysis of hematoxylin and eosin-stained cross sections, and collagen content by qRT-PCR, immunofluorescence and picrosirius red. In MAs, structural and mechanical properties were measured by pressure myography; elastin and collagen content by qRT-PCR and immunofluorescence; nuclei distribution by confocal microscopy; and apoptosis by qRT-PCR and TUNEL assay. In aorta, wall thickness (WT), but not cross-sectional area (CSA), was increased by senescence, and WD only increased WT in SAMR1. WD intake, but not senescence, was associated with increased collagen deposition. In MAs, senescence diminished WT and CSA, without altering collagen and elastin deposition, reduced the number of MA wall cells, and increased pro apoptotic activation. WD consumption promoted in SAMR1 the same remodeling observed with senescence, while in SAMP8 the senescence-associated changes remained unaffected. The mechanisms involved in WD-induced MA remodeling in SAMR1 mimicked those observed in senescence per se. Our study reveals qualitatively different remodeling in aortas and MAs from senescent mice. Consumption of a WD induced remodeling of the SAMR1 vasculature similar to that induced by senescence, while it did not promote any further alteration in the latter. Therefore, we propose that increased consumption of fat-enriched diets could promote accelerated senescence of the non-senescent vasculature, although it does not exacerbate vascular

  18. Chronic stress impairs learning and hippocampal cell proliferation in senescence-accelerated prone mice.

    PubMed

    Yan, Weihong; Zhang, Ting; Jia, Weiping; Sun, Xiaojiang; Liu, Xueyuan

    2011-02-25

    Chronic stress can induce cognitive impairment. It is unclear whether a higher susceptibility to chronic stress is associated with the progression of pathological brain aging. Senescence-accelerated prone mouse 8 (SAMP8) is a naturally occurring animal model of accelerated brain aging. Senescence-accelerated resistant mouse 1 (SAMR1) is usually used as the normal control. In this study, we examined the effects of chronic restraint stress (CRS) on learning in the Y-maze, hippocampal cell proliferation, and the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of 4-month-old SAMP8 and SAMR1. The results showed that exposure to CRS impaired learning and hippocampal cell proliferation in SAMP8 and SAMR1 but to a much greater extent in SAMP8. Furthermore, CRS significantly decreased the expression of BDNF protein and mRNA in the hippocampus of SAMP8 and SAMR1. These data indicated that SAMP8 is more sensitive to the deleterious effects of CRS on learning than SAMR1. A greater decrease in hippocampal cell proliferation caused by chronic stress may be part of the underlying mechanism for the more severe learning deficit observed in SAMP8. In addition, our findings suggested a role of BDNF in the stress-induced impairment of learning and hippocampal cell proliferation in both strains.

  19. Stroke-induced opposite and age-dependent changes of vessel-associated markers in co-morbid transgenic mice with Alzheimer-like alterations.

    PubMed

    Hawkes, Cheryl A; Michalski, Dominik; Anders, Rebecca; Nissel, Sabine; Grosche, Jens; Bechmann, Ingo; Carare, Roxana O; Härtig, Wolfgang

    2013-12-01

    The pathophysiological concept of ischaemic stroke was recently expanded to a more comprehensive perspective, focussing on the vasculature as well as peri- and juxtavascular cells including astrocytes. Increasing evidence also supports a role of the vasculature in Alzheimer's disease (AD), but causal relationships are poorly understood. The purpose of this study was to examine vascular alterations due to cerebral ischaemia in aged wildtype (WT) mice and in the triple-transgenic (3xTg) mouse model of AD. Three- and 12-month-old WT and 3xTg mice underwent permanent middle cerebral artery occlusion. One day after ischaemia onset, expression of collagen IV and laminin as basement membrane constituents, and Solanum tuberosum lectin (STL) as endothelial marker was quantified in the ischaemic neocortex, striatum and hippocampus. Further, CD31- and aquaporin-4-immunoreactivity served for coverage of endothelium and astrocyte endfeet. Ischaemia resulted in strong upregulation of collagen IV and laminin in the neocortex of 3-month-old WT and 3xTg mice, while STL appeared unaffected. Quantification confirmed collagen IV upregulation in the ischaemic neocortex of 3- and 12-month-old WT and 3xTg mice, whereas striatal changes were limited to young WT mice. However, collagen IV expression in the hippocampus appeared nearly unaltered. Qualitative and quantitative data evidenced more severe degeneration of endothelial cells and astrocyte endfeet in 3xTg mice. In conclusion, this study supports the critical impact of the vasculature in the aged and AD brain by showing an age- and genetic background-dependent response of basement membranes to cerebral ischaemia, and a pronounced endothelial and astrocytic degeneration in the AD-like brain.

  20. Evidence for the Need to Renorm the Bayley Scales of Infant Development Based on the Performance of a Population-Based Sample of 12-Month-Old Infants.

    ERIC Educational Resources Information Center

    Campbell, Suzann K.; And Others

    1986-01-01

    A recommendation to renorm the Bayley Scales of Infant Development is based on (1) high scores obtained on infants in rural North Carolina (N=305); (2) published means for other samples of infants born in the 1970s; (3) recent age placement revisions of items on the Gesell Developmental Examination. (Author/JW)

  1. Breastfeeding modifies the impact of diarrhoeal disease on relative weight: a longitudinal analysis of 2-12 month-old Filipino infants.

    PubMed

    Wright, Melecia J; Mendez, Michelle A; Bentley, Margaret E; Adair, Linda S

    2017-04-01

    Undernutrition and diarrhoeal disease are major causes of infant mortality. We investigated the combined roles of breastfeeding and diarrhoea on infant size in 2940 infants from the Cebu Longitudinal Health and Nutrition Survey. The study aimed to assess whether breastfeeding status modified the deficits associated with diarrhoeal disease. The primary exposures were combinations of current breastfeeding status (yes/no), the presence of diarrhoeal disease in previous week (yes/no) and a categorical survey variable (six surveys taken at bimonthly intervals when infants were 2-12 months of age). Relative weight (weight-for-length z-scores), calculated using the WHO growth standards, was estimated using sex-stratified, fixed-effects longitudinal models that also adjusted for energy from complementary foods. Post-estimation Wald tests were conducted to identify subgroup differences in relative weight. Diarrhoea was associated with reduced relative weight in both breastfed and non-breastfed infants of 6-12 months. Diarrhoea-related deficits in relative weight were significantly exacerbated in non-breastfed girls of 6 and 8 months. Importantly, in infants <6 months, being breastfed and having diarrhoea was still associated with greater relative weight compared with being non-breastfed and diarrhoea-free. Breastfeeding emerged as a strong contributor to relative weight in younger infants (<6 months) while diarrhoeal disease strongly contributed to deficits in relative weight in older infants (6-12 months). These findings underscore the importance of breastfeeding for promoting infant nutritional status in infants with or without diarrhoea from birth to 12 months.

  2. Description of the Motor Development of 3-12 Month Old Infants with Down Syndrome: The Influence of the Postural Body Position

    ERIC Educational Resources Information Center

    Tudella, Eloisa; Pereira, Karina; Basso, Renata Pedrolongo; Savelsbergh, Geert J. P.

    2011-01-01

    The purpose of the present study was to describe the rate of motor development in infants with Down syndrome in the age range of 3-12 months and identify the difficulties both in performance and acquiring motor skills in prone, supine, sitting and standing positions. Nineteen infants with Down syndrome and 25 healthy full term typical infants were…

  3. Honokiol improves learning and memory impairments induced by scopolamine in mice.

    PubMed

    Xian, Yan-Fang; Ip, Siu-Po; Mao, Qing-Qiu; Su, Zi-Ren; Chen, Jian-Nan; Lai, Xiao-Ping; Lin, Zhi-Xiu

    2015-08-05

    Honokiol, a lignan isolated from the bark of Magnolia officinalis, has been reported to ameliorate the learning and memory impairments in senesed (SAMP8) mice. However, whether honokiol could improve scopolamine (SCOP)-induced learning and memory deficits in mice is still unknown. In this study, we aimed to investigate whether honokiol could reverse the SCOP-induced learning and memory impairments in mice and to elucidate its underlying mechanisms of action. Mice were given daily intraperitoneal injection of honokiol (10 and 20mg/kg) for 21 consecutive days. The results showed that honokiol significantly improved spatial learning and memory function (as assessed by the Morris water maze test) in the SCOP-treated mice. In addition, treatment with honokiol significantly decreased the protein and mRNA levels of interleukin (IL)-1β and the activity of acetylcholinesterase (AChE), while significantly increased the protein and mRNA levels of IL-10, and the level of acetylcholine (Ach) in the brain of the SCOP-treated mice. Moreover, honokiol also significantly suppressed the production of prostaglandin E 2 (PGE2) and mRNA expression of cyclooxygenase-2 (COX-2) in the brain of the SCOP-treated mice. Mechanistic investigations revealed that honokiol could markedly reverse the amount of phosphorylated Akt and extracellular regulated kinases 1/2 (ERK1/2) changes in the brain of the SCOP-treated mice. These results amply demonstrated that honokiol could improve learning and memory impairments induced by SCOP in mice, and the protective action may be mediated, at least in part, by inhibition of AChE activity, and amelioration of the neuroinflammatory processes in the SCOP-treated mice.

  4. Mechanisms of aging in senescence-accelerated mice

    PubMed Central

    Carter, Todd A; Greenhall, Jennifer A; Yoshida, Shigeo; Fuchs, Sebastian; Helton, Robert; Swaroop, Anand; Lockhart, David J; Barlow, Carrolee

    2005-01-01

    Background Progressive neurological dysfunction is a key aspect of human aging. Because of underlying differences in the aging of mice and humans, useful mouse models have been difficult to obtain and study. We have used gene-expression analysis and polymorphism screening to study molecular senescence of the retina and hippocampus in two rare inbred mouse models of accelerated neurological senescence (SAMP8 and SAMP10) that closely mimic human neurological aging, and in a related normal strain (SAMR1) and an unrelated normal strain (C57BL/6J). Results The majority of age-related gene expression changes were strain-specific, with only a few common pathways found for normal and accelerated neurological aging. Polymorphism screening led to the identification of mutations that could have a direct impact on important disease processes, including a mutation in a fibroblast growth factor gene, Fgf1, and a mutation in and ectopic expression of the gene for the chemokine CCL19, which is involved in the inflammatory response. Conclusion We show that combining the study of inbred mouse strains with interesting traits and gene-expression profiling can lead to the discovery of genes important for complex phenotypes. Furthermore, full-genome polymorphism detection, sequencing and gene-expression profiling of inbred mouse strains with interesting phenotypic differences may provide unique insights into the molecular genetics of late-manifesting complex diseases. PMID:15960800

  5. Age-Dependent Changes in the Inflammatory Nociceptive Behavior of Mice

    PubMed Central

    King-Himmelreich, Tanya S.; Möser, Christine V.; Wolters, Miriam C.; Olbrich, Katrin; Geisslinger, Gerd; Niederberger, Ellen

    2015-01-01

    The processing of pain undergoes several changes in aging that affect sensory nociceptive fibers and the endogenous neuronal inhibitory systems. So far, it is not completely clear whether age-induced modifications are associated with an increase or decrease in pain perception. In this study, we assessed the impact of age on inflammatory nociception in mice and the role of the hormonal inhibitory systems in this context. We investigated the nociceptive behavior of 12-month-old versus 6–8-week-old mice in two behavioral models of inflammatory nociception. Levels of TRP channels, and cortisol as well as cortisol targets, were measured by qPCR, ELISA, and Western blot in the differently aged mice. We observed an age-related reduction in nociceptive behavior during inflammation as well as a higher level of cortisol in the spinal cord of aged mice compared to young mice, while TRP channels were not reduced. Among potential cortisol targets, the NF-κB inhibitor protein alpha (IκBα) was increased, which might contribute to inhibition of NF-κB and a decreased expression and activity of the inducible nitric oxide synthase (iNOS). In conclusion, our results reveal a reduced nociceptive response in aged mice, which might be at least partially mediated by an augmented inflammation-induced increase in the hormonal inhibitory system involving cortisol. PMID:26593904

  6. Age-related changes in pial arterial structure and blood flow in mice.

    PubMed

    Kang, Hye-Min; Sohn, Inkyung; Jung, Junyang; Jeong, Joo-Won; Park, Chan

    2016-01-01

    Age-related cerebral blood flow decreases are thought to deteriorate cognition and cause senescence, although the related mechanism is unclear. To investigate the relationships between aging and changes in cerebral blood flow and vasculature, we obtained fluorescence images of young (2-month-old) and old (12-month-old) mice using indocyanine green (ICG). First, we found that the blood flow in old mice's brains is lower than that in young mice and that old mice had more curved pial arteries and fewer pial artery junctions than young mice. Second, using Western blotting, we determined that the ratio of collagen to elastin (related to cerebral vascular wall distensibility) increased with age. Finally, we found that the peak ICG intensity and blood flow index decreased, whereas the mean transit time increased, with age in the middle cerebral artery and superior sagittal sinus. Age-related changes in pial arterial structure and composition, concurrent with the observed changes in the blood flow parameters, suggest that age-related changes in the cerebral vasculature structure and distensibility may induce altered brain blood flow.

  7. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice

    PubMed Central

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato (Lycopersicon esculentum) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders. PMID:27792185

  8. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice.

    PubMed

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho

    2016-10-26

    A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato (Lycopersicon esculentum) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders.

  9. Mice with Catalytically Inactive Cathepsin A Display Neurobehavioral Alterations

    PubMed Central

    Calhan, O. Y.

    2017-01-01

    The lysosomal carboxypeptidase A, Cathepsin A (CathA), is a serine protease with two distinct functions. CathA protects β-galactosidase and sialidase Neu1 against proteolytic degradation by forming a multienzyme complex and activates sialidase Neu1. CathA deficiency causes the lysosomal storage disease, galactosialidosis. These patients present with a broad range of clinical phenotypes, including growth retardation, and neurological deterioration along with the accumulation of the vasoactive peptide, endothelin-1, in the brain. Previous in vitro studies have shown that CathA has specific activity against vasoactive peptides and neuropeptides, including endothelin-1 and oxytocin. A mutant mouse with catalytically inactive CathA enzyme (CathAS190A) shows increased levels of endothelin-1. In the present study, we elucidated the involvement of CathA in learning and long-term memory in 3-, 6-, and 12-month-old mice. Hippocampal endothelin-1 and oxytocin accumulated in CathAS190A mice, which showed learning impairments as well as long-term and spatial memory deficits compared with wild-type littermates, suggesting that CathA plays a significant role in learning and in memory consolidation through its regulatory role in vasoactive peptide processing. PMID:28133419

  10. N-acetylcysteine reverses existing cognitive impairment and increased oxidative stress in glutamate transporter type 3 deficient mice.

    PubMed

    Cao, L; Li, L; Zuo, Z

    2012-09-18

    Oxidative stress contributes significantly to brain aging. Animals lacking glutamate transporter type 3 (EAAT3) have a decreased level of glutathione, the major intracellular anti-oxidant, in neurons, and present with early onset of brain aging including brain atrophy and cognitive impairment at 11 months of age. Here, 12-month-old male EAAT3 knockout mice received intraperitoneal injection of N-acetylcysteine (NAC) at 150 mg/kg once every day for 4 weeks. NAC is a membrane permeable cysteine precursor that can work as a substrate for glutathione synthesis. EAAT3 knockout mice that received saline injection or did not receive any injection were also included in the study. EAAT3 knockout mice had significantly less freezing behavior than age- and gender-matched wild-type mice in context- and tone-related fear conditioning tests. The knockout mice also had decreased levels of glutathione and increased levels of 4-hydroxy-2-nonenal and proteins containing nitrotyrosine, indicators of oxidative stress, in the cerebral cortex and hippocampus. NAC but not saline injection attenuated these behavioral and biochemical changes in the EAAT3 knockout mice. These results suggest that improvement of anti-oxidative capacity in neurons reverses the existing cognitive impairment in aging brains, implying a potential role of glutathione replacement in cognitive improvement of aging population.

  11. Borage and fish oils lifelong supplementation decreases inflammation and improves bone health in a murine model of senile osteoporosis.

    PubMed

    Wauquier, Fabien; Barquissau, Valentin; Léotoing, Laurent; Davicco, Marie-Jeanne; Lebecque, Patrice; Mercier, Sylvie; Philippe, Claire; Miot-Noirault, Elisabeth; Chardigny, Jean-Michel; Morio, Béatrice; Wittrant, Yohann; Coxam, Véronique

    2012-02-01

    Fats are prevalent in western diets; they have known deleterious effects on muscle insulin resistance and may contribute to bone loss. However, relationships between fatty acids and locomotor system dysfunctions in elderly population remain controversial. The aim of this study was to analyze the impact of fatty acid quality on the age related evolution of the locomotor system and to understand which aging mechanisms are involved. In order to analyze age related complications, the SAMP8 mouse strain was chosen as a progeria model as compared to the SAMR1 control strain. Then, two months old mice were divided in different groups and subjected to the following diets : (1) standard "growth" diet - (2) "sunflower" diet (high ω6/ω3 ratio) - (3) "borage" diet (high γ-linolenic acid) - (4) "fish" diet (high in long chain ω3). Mice were fed ad libitum through the whole protocol. At 12 months old, the mice were sacrificed and tissues were harvested for bone studies, fat and muscle mass measures, inflammation parameters and bone cell marker expression. We demonstrated for the first time that borage and fish diets restored inflammation and bone parameters using an original model of senile osteoporosis that mimics clinical features of aging in humans. Therefore, our study strongly encourages nutritional approaches as relevant and promising strategies for preventing aged-related locomotor dysfunctions.

  12. Tooth loss early in life accelerates age-related bone deterioration in mice.

    PubMed

    Kurahashi, Minori; Kondo, Hiroko; Iinuma, Mitsuo; Tamura, Yasuo; Chen, Huayue; Kubo, Kin-ya

    2015-01-01

    Both osteoporosis and tooth loss are health concerns that affect many older people. Osteoporosis is a common skeletal disease of the elderly, characterized by low bone mass and microstructural deterioration of bone tissue. Chronic mild stress is a risk factor for osteoporosis. Many studies showed that tooth loss induced neurological alterations through activation of a stress hormone, corticosterone, in mice. In this study, we tested the hypothesis that tooth loss early in life may accelerate age-related bone deterioration using a mouse model. Male senescence-accelerated mouse strain P8 (SAMP8) mice were randomly divided into control and toothless groups. Removal of the upper molar teeth was performed at one month of age. Bone response was evaluated at 2, 5 and 9 months of age. Tooth loss early in life caused a significant increase in circulating corticosterone level with age. Osteoblast bone formation was suppressed and osteoclast bone resorption was activated in the toothless mice. Trabecular bone volume fraction of the vertebra and femur was decreased in the toothless mice with age. The bone quality was reduced in the toothless mice at 5 and 9 months of age, compared with the age-matched control mice. These findings indicate that tooth loss early in life impairs the dynamic homeostasis of the bone formation and bone resorption, leading to reduced bone strength with age. Long-term tooth loss may have a cumulative detrimental effect on bone health. It is important to take appropriate measures to treat tooth loss in older people for preventing and/or treating senile osteoporosis.

  13. Toxicity of the Anti-ribosomal Lectin Ebulin f in Lungs and Intestines in Elderly Mice

    PubMed Central

    Garrosa, Manuel; Jiménez, Pilar; Tejero, Jesús; Cabrero, Patricia; Cordoba-Diaz, Damián; Quinto, Emiliano J.; Gayoso, Manuel J.; Girbés, Tomás

    2015-01-01

    All parts of dwarf elder (Sambucus ebulus L.) studied so far contain a ribosome-inactivating protein with lectin activity (ribosome-inactivating lectin; RIL), known as ebulin. Green fruits contain ebulin f, the toxicity of which has been studied in six-week-old mice, where it was found that the intestines were primary targets for it when administered intraperitoneally (i.p.). We performed experiments to assess whether ebulin f administration to six- and 12-month-old mice would trigger higher toxicity than that displayed in six-week-old mice. In the present report, we present evidence indicating that the toxicological effects of ebulin f after its i.p. administration to elderly mice are exerted on the lungs and intestines by an increased rate of apoptosis. We hypothesize that the ebulin f apoptosis-promoting action together with the age-dependent high rate of apoptosis result in an increase in the lectin’s toxicity, leading to a higher lethality level. PMID:25648843

  14. Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia.

    PubMed

    Ebel, Philipp; Imgrund, Silke; Vom Dorp, Katharina; Hofmann, Kristina; Maier, Helena; Drake, Helena; Degen, Joachim; Dörmann, Peter; Eckhardt, Matthias; Franz, Thomas; Willecke, Klaus

    2014-07-01

    Five ceramide synthases (CerS2-CerS6) are expressed in mouse skin. Although CerS3 has been shown to fulfill an essential function during skin development, neither CerS6- nor CerS2-deficient mice show an obvious skin phenotype. In order to study the role of CerS4, we generated CerS4-deficient mice (Cers4-/-) and CerS4-specific antibodies. With these biological tools we analysed the tissue distribution and determined the cell-type specific expression of CerS4 in suprabasal epidermal layers of footpads as well as in sebaceous glands of the dorsal skin. Loss of CerS4 protein leads to an altered lipid composition of the sebum, which is more solidified and therefore might cause progressive hair loss due to physical blocking of the hair canal. We also noticed a strong decrease in C20 1,2-alkane diols consistent with the decrease of wax diesters in the sebum of Cers4-/- mice. Cers4-/- mice at 12 months old display additional epidermal tissue destruction due to dilated and obstructed pilary canals. Mass spectrometric analyses additionally show a strong decrease in C20-containing sphingolipids.

  15. Astrocyte-dependent protective effect of quetiapine on GABAergic neuron is associated with the prevention of anxiety-like behaviors in aging mice after long-term treatment.

    PubMed

    Wang, Junhui; Zhu, Shenghua; Wang, Hongxing; He, Jue; Zhang, Yanbo; Adilijiang, Abulimiti; Zhang, Handi; Hartle, Kelly; Guo, Huining; Kong, Jiming; Huang, Qingjun; Li, Xin-Min

    2014-09-01

    Previous studies have demonstrated that quetiapine (QTP) may have neuroprotective properties; however, the underlying mechanisms have not been fully elucidated. In this study, we identified a novel mechanism by which QTP increased the synthesis of ATP in astrocytes and protected GABAergic neurons from aging-induced death. In 12-month-old mice, QTP significantly improved cell number of GABAegic neurons in the cortex and ameliorated anxiety-like behaviors compared to control group. Complimentary in vitro studies showed that QTP had no direct effect on the survival of aging GABAergic neurons in culture. Astrocyte-conditioned medium (ACM) pretreated with QTP (ACMQTP) for 24 h effectively protected GABAergic neurons against aging-induced spontaneous cell death. It was also found that QTP boosted the synthesis of ATP from cultured astrocytes after 24 h of treatment, which might be responsible for the protective effects on neurons. Consistent with the above findings, a Rhodamine 123 test showed that ACMQTP, not QTP itself, was able to prevent the decrease in mitochondrial membrane potential in the aging neurons. For the first time, our study has provided evidence that astrocytes may be the conduit through which QTP is able to exert its neuroprotective effects on GABAergic neurons. The neuroprotective properties of quetiapine (QTP) have not been fully understood. Here, we identify a novel mechanism by which QTP increases the synthesis of ATP in astrocytes and protects GABAergic neurons from aging-induced death in a primary cell culture model. In 12-month-old mice, QTP significantly improves cell number of GABAegic neurons and ameliorates anxiety-like behaviors. Our study indicates that astrocytes may be the conduit through which QTP exerts its neuroprotective effects on GABAergic neurons.

  16. [Total flavones derived from Lagotis brevituba maxim reduce the levels of inflammatory cytokines in cerebral cortex and hippocampus of Alzheimer's disease mice].

    PubMed

    Yang, Bailing; Hou, Qian; Hu, Feng; Zhang, Fan

    2016-07-01

    Objective To investigate the mechanism behind the treatment of Alzheimer's disease (AD) with total flavones derived from Lagotis brevituba maxim (TF-LBM). Methods Fifty SAMP8 mice (aged 8 months) were randomly divided into 5 groups, (150, 300, 600) mg/kg TF-LBM groups, 0.65 g/kg donepezil HCl group and AD model group; 10 SAMR1 mice (aged 8 months) were used as a control group of normal aging. The AD model group and the normal aging control group were given the same volume of distilled water as TF-LBM groups. Eight weeks after intragastric administration, Morris water maze experiment was conducted to calculate the latency of place navigation. After the behavioral experiment, the brain cortical tissue and hippocampus (CA1 region) of the mice from various groups were taken to observe the morphological changes of the cortical tissue and hippocampus and test IL-1β, IL-6, TNF-α content. Results Compared with the model group, the escape latency of the normal aging group, the high-dose TF-LBM group and the donepezil HCl group were evidently shortened; compared with the normal aging group, IL-1β, IL-6, TNF-αof the model group increased significantly; compared with the model group, IL-1β content of the low-dose TF-LBM group had no obvious difference, while IL-1β content of the median-dose and high-dose TF-LBM groups and the donepezil HCl group decreased significantly; IL-6 content decreased in all TF-LBM groups and the donepezil HCl group; TNF-α level in the low-dose and median-dose TF-LBM groups had no evident difference, while it was reduced significantly in the high-dose TF-LBM group and the donepezil HCl group. Compared with the normal aging group, IL-1β, IL-6 and TNF-α content of the model group increased significantly; compared with the model group, IL-1β, IL-6 and TNF-α content of all TF-LBM groups and the donepezil HCl group decreased. Conclusion TF-LBM can improve the behavior change of SAMP8 mice with AD. TF-LBM can reduce the content of IL-6, IL-1β and

  17. A weekly alternating diet between caloric restriction and medium fat protects the liver from fatty liver development in middle-aged C57BL/6J mice

    PubMed Central

    Rusli, Fenni; Boekschoten, Mark V; Zubia, Arantza Aguirre; Lute, Carolien; Müller, Michael; Steegenga, Wilma T

    2015-01-01

    Scope We investigated whether a novel dietary intervention consisting of an every-other-week calorie-restricted diet could prevent nonalcoholic fatty liver disease (NAFLD) development induced by a medium-fat (MF) diet. Methods and results Nine-week-old male C57BL/6J mice received either a (i) control (C), (ii) 30E% calorie restricted (CR), (iii) MF (25E% fat), or (iv) intermittent (INT) diet, a diet alternating weekly between 40E% CR and an ad libitum MF diet until sacrifice at the age of 12 months. The metabolic, morphological, and molecular features of NAFLD were examined. The INT diet resulted in healthy metabolic and morphological features as displayed by the continuous CR diet: glucose tolerant, low hepatic triglyceride content, low plasma alanine aminotransferase. In contrast, the C- and MF-exposed mice with high body weight developed signs of NAFLD. However, the gene expression profiles of INT-exposed mice differed to those of CR-exposed mice and showed to be more similar with those of C- and MF-exposed mice with a comparable body weight. Conclusions Our study reveals that the INT diet maintains metabolic health and reverses the adverse effects of the MF diet, thus effectively prevents the development of NAFLD in 12-month-old male C57BL/6J mice. PMID:25504628

  18. Loss of the metalloprotease ADAM9 leads to cone-rod dystrophy in humans and retinal degeneration in mice.

    PubMed

    Parry, David A; Toomes, Carmel; Bida, Lina; Danciger, Michael; Towns, Katherine V; McKibbin, Martin; Jacobson, Samuel G; Logan, Clare V; Ali, Manir; Bond, Jacquelyn; Chance, Rebecca; Swendeman, Steven; Daniele, Lauren L; Springell, Kelly; Adams, Matthew; Johnson, Colin A; Booth, Adam P; Jafri, Hussain; Rashid, Yasmin; Banin, Eyal; Strom, Tim M; Farber, Debora B; Sharon, Dror; Blobel, Carl P; Pugh, Edward N; Pierce, Eric A; Inglehearn, Chris F

    2009-05-01

    Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical processes of the retinal pigment epithelium (RPE) cells are disorganized and contact between photoreceptor outer segments (POSs) and the RPE apical surface is compromised. In 20-month-old mice, there is clear evidence of progressive retinal degeneration with disorganized POS and thinning of the outer nuclear layer (ONL) in addition to the anomaly at the POS-RPE junction. RPE basal deposits and macrophages were also apparent in older mice. These findings therefore not only identify ADAM9 as a CRD gene but also identify a form of pathology wherein retinal disease first manifests at the POS-RPE junction.

  19. Loss of the Metalloprotease ADAM9 Leads to Cone-Rod Dystrophy in Humans and Retinal Degeneration in Mice

    PubMed Central

    Parry, David A.; Toomes, Carmel; Bida, Lina; Danciger, Michael; Towns, Katherine V.; McKibbin, Martin; Jacobson, Samuel G.; Logan, Clare V.; Ali, Manir; Bond, Jacquelyn; Chance, Rebecca; Swendeman, Steven; Daniele, Lauren L.; Springell, Kelly; Adams, Matthew; Johnson, Colin A.; Booth, Adam P.; Jafri, Hussain; Rashid, Yasmin; Banin, Eyal; Strom, Tim M.; Farber, Debora B.; Sharon, Dror; Blobel, Carl P.; Pugh, Edward N.; Pierce, Eric A.; Inglehearn, Chris F.

    2009-01-01

    Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical processes of the retinal pigment epithelium (RPE) cells are disorganized and contact between photoreceptor outer segments (POSs) and the RPE apical surface is compromised. In 20-month-old mice, there is clear evidence of progressive retinal degeneration with disorganized POS and thinning of the outer nuclear layer (ONL) in addition to the anomaly at the POS-RPE junction. RPE basal deposits and macrophages were also apparent in older mice. These findings therefore not only identify ADAM9 as a CRD gene but also identify a form of pathology wherein retinal disease first manifests at the POS-RPE junction. PMID:19409519

  20. Persistence of behaviours in the Forced Swim Test in 3xTg-AD mice at advanced stages of disease.

    PubMed

    Torres-Lista, Virginia; Giménez-Llort, Lydia

    2014-07-01

    Forced Swimming Test (FST) models behavioural despair in animals by loss of motivation to respond or the refusal to escape. The present study characterizes the behavioural responses of 12-month-old male 3xTg-AD mice in FST as compared to age-matched no-transgenic (NTg) mice. Paradoxical results were consistently found from what would be expected from their BPSD (Behavioural and Psychological Symptoms of Dementia)-like profile. The comprehensive analysis of the ethogram shown in the FST considered the intervals of the test (0-2 and 2-6min), all the elicited behavioural responses (immobility, swimming and climbing) and their features (total duration, frequency of episodes and mean duration). Both genotypes showed equal number of swimming episodes and climbing attempts during the first interval, that resulted in high swimming times, short climbing and scarce immobility. Thereafter, the NTg mice showed a behavioural shift over time and the immobility response showed up. In contrast, all the measures consistently evidenced that 3xTg-AD persisted with the previous behavioural pattern. Genotype differences consisted in less number of episodes of immobility and swimming, and a low immobility time in favour of swimming. No differences were found in 'climbing' attempts. The behavioural response observed is discussed as a lack of ability of 3xTg-AD mice to shift behaviour over time that may result of poorest cognitive flexibility and copying with stress strategies more than behavioural despair per se.

  1. Effect of age on testicular germ cell apoptosis and sperm aneuploidy in MF-1 mice.

    PubMed

    Brinkworth, M H; Schmid, T E

    2003-01-01

    The spontaneous mutation rate in the male germ-line increases with age. The reason for this is unknown, but presumably involves an age-related degeneration in the efficacy of cellular processes. To investigate the possibility that rates of apoptosis and genetic damage (represented by aneuploidy) might vary with age in mice, the testes and sperm of 2- and 12-month-old male MF-1 mice were examined by a modified TUNEL technique and 3-colour sperm-FISH assay, respectively. Sperm were labeled with probes to chromosomes 8, X and Y and 20,000 sperm scored from each of 5 animals per group. A significant increase in gonosomal disomy was found in the aged mice, especially X-X-8. This suggests that advanced paternal age is associated primarily with meiosis II rather than meiosis I disjunction errors. Neither diploidy nor autosomal disomy was affected in the older group. The rate of germ cell apoptosis (apoptotic cells per seminiferous tubule cross-section per animal per group) was higher in the old mice than controls, but not significantly. Considerable inter-animal variability was observed in the older group. The finding of an increase in levels of sperm aneuploidy is novel for 1-year-old mice and confirms the genotoxic effect of ageing in mice. Since apoptosis is assumed to eliminate cells with unrepaired damage, it may be that the apoptotic response in older mice is compromised, resulting in the higher levels of aneuploidy in sperm. However, given the inter-animal variability in testicular germ cell apoptosis, this awaits confirmation.

  2. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice.

    PubMed

    Peferoen, Laura A N; Breur, Marjolein; van de Berg, Sarah; Peferoen-Baert, Regina; Boddeke, Erik H W G M; van der Valk, Paul; Pryce, Gareth; van Noort, Johannes M; Baker, David; Amor, Sandra

    2016-10-01

    Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical features of MS including relapsing-remitting episodes and secondary-progressive disability. To address the contribution of recurrent inflammatory events and ageing as factors that amplify progressive neurological disease, we examined EAE in 8- to 12-week-old and 12-month-old ABH mice. Compared with the relapsing-remitting (RREAE) and secondary progressive (SPEAE) EAE observed in young mice, old mice developed progressive disease from onset (PEAE) associated with pronounced axonal damage and increased numbers of CD3(+) T cells and microglia/macrophages, but not B cells. Whereas the clinical neurological features of PEAE and SPEAE were comparable, the pathology was distinct. SPEAE was associated with significantly reduced perivascular infiltrates and T-cell numbers in the central nervous system (CNS) compared with PEAE and the acute phase of RREAE. In contrast to perivascular infiltrates that declined during progression from RREAE into SPEAE, the numbers of microglia clusters remained constant. Similar to what is observed during MS, the microglia clusters emerging during EAE were associated with axonal damage and oligodendrocytes expressing heat-shock protein B5, but not lymphocytes. Taken together, our data reveal that the course of EAE is dependent on the age of the mice. Younger mice show a relapsing-remitting phase followed by progressive disease, whereas old mice immediately show progression. This indicates that recurrent episodes of inflammation in the CNS, as well as age, contribute to progressive neurological disease.

  3. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice.

    PubMed

    Serrano, Felipe G; Tapia-Rojas, Cheril; Carvajal, Francisco J; Hancke, Juan; Cerpa, Waldo; Inestrosa, Nibaldo C

    2014-12-18

    Alzheimer's disease (AD) is a neurodegenerative disorder in which the amyloid-β (Aβ) oligomers are a key factor in synaptic impairment and in spatial memory decline associated with neuronal dysfunction. This impairment includes synaptic failure associated with the loss of synaptic proteins that contribute to AD progression. Interestingly, the use of natural compounds is an emergent conceptual strategy in the search for drugs with therapeutic potentials for treating neurodegenerative disorders. In the present study, we report that andrographolide (ANDRO), which is a labdane diterpene extracted from Andrographis paniculata, increases slope of field excitatory postsynaptic potentials (fEPSP) in the CA1 region of hippocampal slices and inhibits long-term depression (LTD), protecting the long-term potentiation (LTP) against the damage induced by Aβ oligomers in vitro, most likely by inhibiting glycogen synthase kinase-3β (GSK-3β). Additionally, ANDRO prevents changes in neuropathology in two different age groups (7- and 12-month-old mice) of an AβPPswe/PS-1 Alzheimer's model. ANDRO reduces the Aβ levels, changing the ontogeny of amyloid plaques in hippocampi and cortices in 7-month-old mice, and reduces tau phosphorylation around the Aβ oligomeric species in both age groups. Additionally, we observed that ANDRO recovers spatial memory functions that correlate with protecting synaptic plasticity and synaptic proteins in two different age groups. Our results suggest that ANDRO could be used in a potential preventive therapy during AD progression.

  4. LW-AFC Effects on N-glycan Profile in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Wang, Jianhui; Cheng, Xiaorui; Zeng, Ju; Yuan, Jiangbei; Wang, Zhongfu; Zhou, Wenxia; Zhang, Yongxiang

    2017-01-01

    Glycosylation is one of the most common eukaryotic post-translational modifications, and aberrant glycosylation has been linked to many diseases. However, glycosylation and glycome analysis is a significantly challenging task. Although several lines of evidence have indicated that protein glycosylation is defective in Alzheimer’s disease (AD), only a few studies have focused on AD glycomics. The etiology of AD is unclear and there are no effective disease-modifying treatments for AD. In this study, we found that the object recognition memory, passive avoidance, and spatial learning and memory of senescence-accelerated mouse prone 8 (SAMP8) strain, an AD animal model, were deficient, and LW-AFC, which was prepared from the traditional Chinese medicine prescription Liuwei Dihuang decoction, showed beneficial effects on the deterioration of cognitive capability in SAMP8 mice. Forty-three and 56 N-glycan were identified in the cerebral cortex and serum of SAMP8 mice, respectively. The N-glycan profile in SAMP8 mice was significantly different from that of senescence accelerated mouse resistant 1 (SAMR1) strains, the control of SAMP8 mice. Treatment with LW-AFC modulated the abundance of 21 and 6 N-glycan in the cerebral cortex and serum of SAMP8 mice, respectively. The abundance of (Hex)3(HexNAc)5(Fuc)1(Neu5Ac)1 and (Hex)2(HexNAc)4 decreased in the cerebral cortex and serum of SAMP8 mice compared with SAMR1 mice, decreases that were significantly correlated with learning and memory measures. The administration of LW-AFC could reverse or increase these levels in SAMP8 mice. These results indicated that the effects of LW-AFC on cognitive impairments in SAMP8 mice might be through modulation of N-glycan patterns, and LW-AFC may be a potential anti-AD agent. PMID:28203484

  5. Motor deficits associated with Huntington's disease occur in the absence of striatal degeneration in BACHD transgenic mice.

    PubMed

    Mantovani, Susanna; Gordon, Richard; Li, Rui; Christie, Daniel C; Kumar, Vinod; Woodruff, Trent M

    2016-05-01

    Huntington's disease (HD) is an incurable neurodegenerative condition characterized by progressive motor and cognitive dysfunction, and depletion of neurons in the striatum. Recently, BACHD transgenic mice expressing the full-length human huntingtin gene have been generated, which recapitulate some of the motor and cognitive deficits seen in HD. In this study, we carried out a series of extensive behavioural and neuropathological tests on BACHD mice, to validate this mouse for preclinical research. Transgenic C57BL/6J BACHD and litter-matched wild-type mice were examined in a battery of motor and cognitive function tests at regular intervals up to 12 months of age. Brains from these mice were also analysed for signs of neurodegeneration and striatal and cortical volume sizes compared using anatomic 16.4T magnetic resonance imaging (MRI) brain scans. BACHD mice showed progressive motor impairments on rotarod and balance beam tests starting from 3 months of age, were hypoactive in the open field tests starting from 6 months of age, however, showed no alterations in gait and grip strength at any age. Surprisingly, despite these distinct motor deficits, no signs of neuronal loss, gliosis or blood-brain barrier degeneration were observed in the striatum of 12-month-old mice. MRI brain scans confirmed no reduction in striatal or cortical volumes at 12 months of age, and BACHD mice had a normal lifespan. These results demonstrate that classical Huntington's-like motor impairments seen in this transgenic model, do not occur due to degeneration of the striatum, and thus caution against the use of this model for preclinical studies into HD.

  6. Transient early food restriction leads to hypothalamic changes in the long-lived crowded litter female mice

    PubMed Central

    Sadagurski, Marianna; Landeryou, Taylor; Cady, Gillian; Bartke, Andrzej; Bernal-Mizrachi, Ernesto; Miller, Richard A

    2015-01-01

    Transient nutrient restriction in the 3 weeks between birth and weaning (producing “crowded litter” or CL mice) leads to a significant increase in lifespan and is associated with permanent changes in energy homeostasis, leptin, and insulin sensitivity. Here, we show this brief period of early food restriction leads to permanent modulation of the arcuate nucleus of the hypothalamus (ARH), markedly increasing formation of both orexigenic agouti-related peptide (AgRP) and anorexigenic proopiomelanocortin (POMC) projections to the paraventricular nucleus of the hypothalamus (PVH). An additional 4 weeks of caloric restriction, after weaning, does not further intensify the formation of AgRP and POMC projections. Acute leptin stimulation of 12-month-old mice leads to a stronger increase in the levels of hypothalamic pStat3 and cFos activity in CL mice than in controls, suggesting that preweaning food restriction leads to long-lasting enhancement of leptin signaling. In contrast, FoxO1 nuclear exclusion in response to insulin is equivalent in young adult CL and control mice, suggesting that hypothalamic insulin signaling is not modulated by the crowded litter intervention. Markers of hypothalamic reactive gliosis associated with aging, such as Iba1-positive microglia and GFAP-positive astrocytes, are significantly reduced in CL mice as compared to controls at 12 and 22 months of age. Lastly, age-associated overproduction of TNF-α in microglial cells is reduced in CL mice than in age-matched controls. Together, these results suggest that transient early life nutrient deprivation leads to long-term hypothalamic changes which may contribute to the longevity of CL mice. PMID:25907790

  7. Prostaglandin receptor EP2 mediates PGE2 stimulated hypercalcemia in mice in vivo.

    PubMed

    Li, Xiaodong; Tomita, Masato; Pilbeam, Carol C; Breyer, Richard M; Raisz, Lawrence G

    2002-04-01

    Prostaglandin E2 (PGE2) can stimulate bone resorption by a cyclic AMP-dependent pathway. Two PGE2 receptors, EP2 and EP4 have been shown to play a role in PGE2 stimulation of osteoclast formation. In primary osteoblastic cell cultures from EP2 wild type (EP2 +/+) mice, PGE2 (0.1 microM) increased cyclic AMP production 3.5-fold, but PGE2 had no effect on cells from mice in which the EP2 receptor had been deleted (EP2 -/-). To examine the role of the EP2 receptor in the resorption response in vivo we injected PGE2 in EP2 -/- mice, and compared them with EP2 +/+ mice. Injection of PGE2 (3 mg/kg, four times daily for three days) in 9- to 12-month-old male mice on a 129 SvEv background increased serum calcium from 9.8 +/- 0.5 to 10.7 +/- 0.3 mg/dl (P < 0.01) in EP2 +/+ mice but not in EP2 -/- mice (10.1 +/- 0.3 vs. 10.2 +/- 0.3 mg/dl). PGE2 injection (6 mg/kg twice a day for three days) in 3-4 month old male mice on a C57 BL/6 X 129 SvEv background increased calcium from 8.2 +/- 0.1 to 9.0 +/- 0.3 mg/dl (P < 0.05) in EP2 +/+ mice but had no effect in EP2-/- mice (8.4 +/- 0.1 vs. 8.3 +/- 0.2 mg/dl). Injection of PGE2 over the calvariae of EP2 +/+ and EP2-/- mice increased the expression of receptor activator of nuclear factor kappaB ligand (RANKL) both locally and in the tibia, but RANKL responses were lower in EP2 -/- mice. We conclude that EP2 receptor plays a role in the hypercalcemic response to PGE2. This impaired response in EP2 -/- mice may be due to decreased ability to stimulate cyclic AMP and in part, to a smaller increase in the expression of RANKL mRNA.

  8. PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice

    PubMed Central

    Wu, He; Wu, Tao; Hua, Wei; Dong, Xianghui; Gao, Yufeng; Zhao, Xiaochun; Chen, Wenwu; Cao, Wangsen; Yang, Qingwu; Qi, Jiping; Zhou, Jin; Wang, Jian

    2015-01-01

    Intracerebral hemorrhage (ICH) is a devastating form of stroke. Misoprostol, a synthetic PGE1 analog and PGE2 receptor agonist, has shown protection against cerebral ischemia. In this study, we tested the efficacy of misoprostol in 12-month-old mice subjected to one of two complementary ICH models, the collagenase model (primary study) and blood model (secondary study, performed in an independent laboratory). We also investigated its potential mechanism of action. Misoprostol post-treatment decreased brain lesion volume, edema, and brain atrophy and improved long-term functional outcomes. In the collagenase-induced ICH model, misoprostol decreased cellular inflammatory response; attenuated oxidative brain damage and gelatinolytic activity; and decreased HMGB1 expression, Src kinase activity, and interleukin-1β expression without affecting cyclooxygenase-2 expression. Further, HMGB1 inhibition with glycyrrhizin decreased Src kinase activity, gelatinolytic activity, neuronal death, and brain lesion volume. Src kinase inhibition with PP2 decreased gelatinolytic activity and brain edema and improved neurologic function, but did not decrease HMGB1 protein level. These results indicate that misoprostol protects brain against ICH injury through mechanisms that may involve the HMGB1, Src kinase, and MMP-2/9 pathway. PMID:25623334

  9. Elimination of p19ARF-expressing cells enhances pulmonary function in mice

    PubMed Central

    Hashimoto, Michihiro; Asai, Azusa; Kawagishi, Hiroyuki; Mikawa, Ryuta; Iwashita, Yuji; Kanayama, Kazuki; Sugimoto, Kazushi; Sato, Tadashi; Maruyama, Mitsuo

    2016-01-01

    Senescent cells accumulate in many tissues as animals age and are considered to underlie several aging-associated pathologies. The tumor suppressors p19ARF and p16INK4a, both of which are encoded in the CDKN2A locus, play critical roles in inducing and maintaining permanent cell cycle arrest during cellular senescence. Although the elimination of p16INK4a-expressing cells extends the life span of the mouse, it is unclear whether tissue function is restored by the elimination of senescent cells in aged animals and whether and how p19ARF contributes to tissue aging. The aging-associated decline in lung function is characterized by an increase in compliance as well as pathogenic susceptibility to pulmonary diseases. We herein demonstrated that pulmonary function in 12-month-old mice was reversibly restored by the elimination of p19ARF-expressing cells. The ablation of p19ARF-expressing cells using a toxin receptor-mediated cell knockout system ameliorated aging-associated lung hypofunction. Furthermore, the aging-associated gene expression profile was reversed after the elimination of p19ARF. Our results indicate that the aging-associated decline in lung function was, at least partly, attributed to p19ARF and was recovered by eliminating p19ARF-expressing cells. PMID:27699227

  10. Elevated intracellular pH appears in aged oocytes and causes oocyte aneuploidy associated with the loss of cohesion in mice.

    PubMed

    Cheng, Jin-Mei; Li, Jian; Tang, Ji-Xin; Chen, Su-Ren; Deng, Shou-Long; Jin, Cheng; Zhang, Yan; Wang, Xiu-Xia; Zhou, Chen-Xi; Liu, Yi-Xun

    2016-09-16

    Increases in the aneuploidy rate caused by the deterioration of cohesion with increasing maternal age have been well documented. However, the molecular mechanism for the loss of cohesion in aged oocytes remains unknown. In this study, we found that intracellular pH (pHi) was elevated in aged oocytes, which might disturb the structure of the cohesin ring to induce aneuploidy. We observed for the first time that full-grown germinal vesicle (GV) oocytes displayed an increase in pHi with advancing age in CD1 mice. Furthermore, during the in vitro oocyte maturation process, the pHi was maintained at a high level, up to ∼7.6, in 12-month-old mice. Normal pHi is necessary to maintain protein localization and function. Thus, we put forward a hypothesis that the elevated oocyte pHi might be related to the loss of cohesion and the increased aneuploidy in aged mice. Through the in vitro alkalinization treatment of young oocytes, we observed that the increased pHi caused an increase in the aneuploidy rate and the sister inter-kinetochore (iKT) distance associated with the strength of cohesion and caused a decline in the cohesin subunit SMC3 protein level. Young oocytes with elevated pHi exhibited substantially the increase in chromosome misalignment.

  11. Reduced expression of pain mediators and pain sensitivity in amyloid precursor protein over-expressing CRND8 transgenic mice.

    PubMed

    Shukla, M; Quirion, R; Ma, W

    2013-10-10

    β-Amyloid (Aβ) peptides are derived from the sequential cleavage of the amyloid precursor protein (APP). They are enriched in plaques present in Alzheimer's brains and thus play important roles in the pathogenesis of this disease. APP is also known to be expressed in the neurons of dorsal root ganglion (DRG) and contributes to neuronal survival and axonal growth during development. However, whether APP and Aβ peptides are involved in nociception and pathological pain states is mostly unknown. In the present study, we have used behavioral, biochemical and morphological approaches to address this issue in both adult rats and APP over-expressing CRND8 transgenic mice. We observed that the Aβ peptide (17-24) was predominantly expressed in small-sized DRG neurons of rats. Following intraplantar (i.pl.) injection of complete Freud's adjuvant (CFA), the levels of APP and Aβ peptides were significantly reduced in the ipsilateral lumbar 4-6 rat DRG. In 3-, 12- and 24-month-old CRND8 mice, pain sensitivity in response to heat and mechanical stimulation was significantly dampened compared to their age-matched wild-type littermates. In parallel with reduced pain sensitivity, the expression of pain mediators such as substance P, calcitonin gene-related peptide and transient receptor potential vanilloid-1 was significantly reduced in L4-6 DRG of CRND8 mice. Although i.pl. injection of CFA induced a rather similar pattern of inflammatory pain in 3-month-old CRND8 mice and their wild-type littermates, recovery from inflammatory pain seemed faster in 12-month-old CRND8 mice than wild-type mice. These findings suggest that APP and Aβ peptides suppress both nociception and inflammatory pain and are likely involved in blunt pain perception of Alzheimer's patients in clinical settings.

  12. Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice.

    PubMed

    Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-10-01

    The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia.

  13. Preliminary Evidence of Apathetic-Like Behavior in Aged Vesicular Monoamine Transporter 2 Deficient Mice

    PubMed Central

    Baumann, Aron; Moreira, Carlos G.; Morawska, Marta M.; Masneuf, Sophie; Baumann, Christian R.; Noain, Daniela

    2016-01-01

    Apathy is considered to be a core feature of Parkinson’s disease (PD) and has been associated with a variety of states and symptoms of the disease, such as increased severity of motor symptoms, impaired cognition, executive dysfunction and dementia. Apart from the high prevalence of apathy in PD, which is estimated to be about 40%, the underlying pathophysiology remains poorly understood and current treatment approaches are unspecific and proved to be only partially effective. In animal models, apathy has been sub-optimally modeled, mostly by means of pharmacological and stress-induced methods, whereby concomitant depressive-like symptoms could not be ruled out. In the context of PD only a few studies on toxin-based models (i.e., 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)) claimed to have determined apathetic symptoms in animals. The assessment of apathetic symptoms in more elaborated and multifaceted genetic animal models of PD could help to understand the pathophysiological development of apathy in PD and eventually advance specific treatments for afflicted patients. Here we report the presence of behavioral signs of apathy in 12 months old mice that express only ~5% of the vesicular monoamine transporter 2 (VMAT2). Apathetic-like behavior in VMAT2 deficient (LO) mice was evidenced by impaired burrowing and nest building skills, and a reduced preference for sweet solution in the saccharin preference test, while the performance in the forced swimming test was normal. Our preliminary results suggest that VMAT2 deficient mice show an apathetic-like phenotype that might be independent of depressive-like symptoms. Therefore VMAT2 LO mice could be a useful tool to study the pathophysiological substrates of apathy and to test novel treatment strategies for apathy in the context of PD. PMID:27917116

  14. Age- and sex-dependent thymic abnormalities in NZB × SJL F1 hybrid mice

    PubMed Central

    Dumont, F.; Robert, F.

    1980-01-01

    The cellular organization of the thymus was investigated in 3- and 12-month-old NZB × SJL F1 hybrid (NS) mice. Age-dependent alterations were demonstrated which differed strikingly according to the sex of the animals. In female mice, marked abnormalities of the thymus developed during ageing. They consisted of a more or less pronounced hypertrophy accompanied by histological changes and modifications in the nature of the lymphocyte populations. Three types of qualitative changes were found at 12 months of age: (1) depletion of cortical thymocytes as evidenced by histology, by the evaluation of peanut-agglutinin (PNA) binding and by cell electrophoresis; (2) hyperplasia of the medullary lymphoid tissue, probably reflecting the expansion of a population of mature T lymphocytes. This was further suggested by a rise (up to 60%) in the frequency of lymphocytes lacking both PNA receptor and B cell markers, by an increased proportion (57%) of high electrophoretic mobility (EPM) lymphocytes and by an augmentation of in vitro reactivities to phytohaemagglutinin (PHA) and, although to a lesser extent, to concanavalin A (Con A). (3) The appearance of significant numbers of B lymphocytes (up to 20%) as assessed by surface immunoglobulin (sIg) and complement receptor (CR) detection which was accompanied by a vigorous responsiveness of thymus cells to lipopolysaccharide (LPS). None of these abnormalities was seen in the male mice. Instead, the thymus of NS males displayed a nearly normal age-related involution without major change in the proportions of its lymphocyte subpopulations. NS mice thus provide an interesting model of thymic disease influenced by sex-linked factors. ImagesFig. 3 PMID:7438550

  15. Tumor-promoting/progressing role of additional chromosome instability in hepatic carcinogenesis in Sgo1 (Shugoshin 1) haploinsufficient mice

    PubMed Central

    Yamada, Hiroshi Y.; Zhang, Yuting; Reddy, Arun; Mohammed, Altaf; Lightfoot, Stan; Dai, Wei

    2015-01-01

    A major etiological risk factor for hepatocellular carcinoma (HCC) is infection by Hepatitis viruses, especially hepatitis B virus and hepatitis C virus. Hepatitis B virus and hepatitis C virus do not cause aggressive activation of an oncogenic pathway, but they transactivate a broad array of genes, cause chronic inflammation, and, through interference with mitotic processes, lead to mitotic error-induced chromosome instability (ME-CIN). However, how ME-CIN is involved in the development of HCC remains unclear. Delineating the effect of ME-CIN on HCC development should help in identifying measures to combat HCC. In this study, we used ME-CIN model mice haploinsufficient in Shugoshin 1 (Sgo1−/+) to assess the role of ME-CIN in HCC development. Treatment with the carcinogen azoxymethane caused Sgo1−/+ ME-CIN model mice to develop HCCs within 6 months, whereas control mice developed no HCC (P < 0.003). The HCC development was associated with expression of early HCC markers (glutamine synthetase, glypican 3, heat shock protein 70, and the serum marker alpha fetoprotein), although without fibrosis. ME-CIN preceded the expression of HCC markers, suggesting that ME-CIN is an important early event in HCC development. In 12-month-old untreated Sgo1 mice, persistent DNA damage, altered gene expression, and spontaneous HCCs were observed. Sgo1 protein accumulated in response to DNA damage in vitro. Overall, Sgo1−/+-mediated ME-CIN strongly promoted/progressed development of HCC in the presence of an initiator carcinogen, and it had a mild initiator effect by itself. Use of the ME-CIN model mice should help in identifying drugs to counteract the effects of ME-CIN and should accelerate anti-HCC drug development. PMID:25740822

  16. Loss of myocardial protection against myocardial infarction in middle-aged transgenic mice overexpressing cardiac thioredoxin-1

    PubMed Central

    Mazo, Tamara; Muñoz, Marina C.; Dominici, Fernando P.; Carreras, María C.; Poderoso, Juan José; Sadoshima, Junichi; Gelpi, Ricardo J.

    2016-01-01

    Thioredoxin-1 (Trx1) protects the heart from ischemia/reperfusion (I/R) injury. Given that the age at which the first episode of coronary disease takes place has considerably decreased, life at middle-aged (MA) emerges as a new field of study. The aim was determine whether infarct size, Trx1 expression and activity, Akt and GSK-3β were altered in young (Y) and MA mice overexpressing cardiac Trx1, and in a dominant negative (DN-Trx1) mutant of Trx1. Langendorff-perfused hearts were subjected to 30 minutes of ischemia and 120 minutes of reperfusion (R). We used 3 and 12 month-old male of wild type (WT), Trx1, and DN-Trx1. Trx1 overexpression reduced infarct size in young mice (WT-Y: 46.8±4.1% vs. Trx1-Y: 27.6±3.5%, p < 0.05). Trx1 activity was reduced by 52.3±3.2% (p < 0.05) in Trx1-MA, accompanied by an increase in nitration by 17.5±0.9%, although Trx1 expression in transgenic mice was similar between young and middle-aged. The expression of p-Akt and p-GSK-3β increased during reperfusion in Trx1-Y. DN-Trx1 mice showed neither reduction in infarct size nor Akt and GSK-3β phosphorylation. Our data suggest that the lack of protection in Trx1 middle-aged mice even with normal Trx1 expression may be associated to decreased Trx1 activity, increased nitration and inhibition of p-Akt and p-GSK-3β. PMID:26933812

  17. Marble-burying is enhanced in 3xTg-AD mice, can be reversed by risperidone and it is modulable by handling.

    PubMed

    Torres-Lista, Virginia; López-Pousa, Secundino; Giménez-Llort, Lydia

    2015-07-01

    Translational research on behavioural and psychological symptoms of dementia (BPSD) is relevant to the study the neuropsychiatric symptoms that strongly affect the quality of life of the human Alzheimer's disease (AD) patient and caregivers, frequently leading to early institutionalization. Among the ethological behavioural tests for rodents, marble burying is considered to model the spectrum of anxiety, psychotic and obsessive-compulsive like symptoms. The present work was aimed to study the behavioural interactions of 12 month-old male 3xTg-AD mice with small objects using the marble-burying test, as compared to the response elicited in age-matched non-transgenic (NTg) mice. The distinction of the classical 'number of buried marbles' but also those left 'intact' and those 'changed' of position of marbles or partially buried (the transitional level of interaction) provided new insights into the modelling of BPSD-like alterations in this AD model. The analysis revealed genotype differences in the behavioural patterns and predominant behaviors. In the NTg mice, predominance was shown in the 'changed or partially buried', while interactions with marble were enhanced in 3xTg-AD mice resulting in an increase of marble burying. Besides, genotype-dependent meaningful correlations were found, with the marble test pattern of 3xTg-AD mice being directly related to neophobia in the corner tests. In both genotypes, the increase of burying was reversed by chronic treatment with risperidone (1mg/kg, s.c.). In 3xTg-AD mice, the repetitive handling of animals during the treatment also exerted modulatory effects. These distinct patterns further characterize the modelling of BPSD-like symptoms in the 3xTg-AD mice, and provide another behavioural tool to assess the benefits of preventive and/or therapeutic strategies, as well as the potential action of risk factors for AD, in this animal model.

  18. Pen-2 overexpression induces Aβ-42 production, memory defect, motor activity enhancement and feeding behavior dysfunction in NSE/Pen-2 transgenic mice.

    PubMed

    Nam, So Hee; Seo, Su Jin; Goo, Jun Seo; Kim, Jee Eun; Choi, Sun Il; Lee, Hae Ryun; Hwang, In Sik; Jee, Seung Wan; Lee, Su Hae; Bae, Chang Jun; Park, Jung Youn; Kim, Hye Sung; Shim, Sun Bo; Hwang, Dae Youn

    2011-12-01

    Pen-2 is a key regulator of the γ-secretase complex, which is involved in the production of the amyloid β (Aβ)-42 peptides, which ultimately lead to Alzheimer's disease (AD). While Pen-2 has been studied in vitro, Pen-2 function in vivo in the brains of transgenic (Tg) mice overexpressing human Pen-2 (hPen-2) protein has not been studied. This study aimed to determine whether Pen-2 overexpression could regulate the AD-like phenotypes in Tg mice. NSE/hPen-2 Tg mice were produced by the microinjection of the NSE/hPen-2 gene into the pronucleus of fertilized eggs. The expression of the hPen-2 gene under the control of the NSE promoter was successfully detected only in the brain and kidney tissue of NSE/hPen-2 Tg mice. Also, 12-month-old NSE/hPen-2 Tg mice displayed behavioral dysfunction in the water maze test, motor activity and feeding behavior dysfunction in food intake/water intake/motor activity monitoring system. In addition, tissue samples displayed dense staining with antibody to the Aβ-42 peptide. Furthermore, NSE/hPen-2 Tg mice exhibiting feeding behavior dysfunction were significantly more apt to display symptoms related to diabetes and obesity. These results suggest that Pen-2 overexpression in NSE/hPen-2 Tg mice may induce all the AD-like phenotypes, including behavioral deficits, motor activity and feeding behavior dysfunction, Aβ-42 peptide deposition and chronic disease induction.

  19. Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein.

    PubMed

    Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik

    2017-02-10

    Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.

  20. Cardiological aging in SAM model: effect of chronic treatment with growth hormone.

    PubMed

    Forman, K; Vara, E; García, C; Ariznavarreta, C; Escames, G; Tresguerres, J A F

    2010-06-01

    The purpose of this study was to investigate the effect of aging on different parameters related to inflammation, oxidative stress and apoptosis in hearts from two types of male mice models: senescence-accelerated mice (SAM-P8) and senescence-accelerated-resistant (SAM-R1), and the influence of chronic administration of Growth Hormone (GH) on old SAM-P8 mice. Forty male mice were used. Animals were divided into five experimental groups: two 10 month old untreated groups (SAM-P8/SAM-R1), two 2 month old young groups (SAM-P8/SAM-R1) and one 10 month old group (SAM-P8) treated with GH for 30 days. The expression of tumor necrosis factor-alpha, interleukin 1, interleukin 10, heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases, NFkB, Bad, Bax and Bcl-2 were determined by real-time reverse transcription polymerase chain reaction (RT-PCR). Results were submitted to a two way ANOVA statistical evaluation using the Statgraphics program. Inflammation, as well as, oxidative stress and apoptosis markers were increased in the heart of old SAM-P8 males, as compared to young controls and this situation was not observed in the old SAM-R1 mice. Exogenous GH administration reverted the effect of aging in the described parameters of old SAM-P8 mice. Our results suggest that inflammation, apoptosis and oxidative stress could play an important role in the observed cardiovascular alterations related to aging of SAM-P8 mice and that GH may play a potential protective effect on the cardiovascular system of these animals.

  1. Cognitive and emotional profiles of aged Alzheimer's disease (3×TgAD) mice: effects of environmental enrichment and sexual dimorphism.

    PubMed

    Blázquez, Gloria; Cañete, Toni; Tobeña, Adolf; Giménez-Llort, Lydia; Fernández-Teruel, Alberto

    2014-07-15

    Alzheimer's disease is a neurodegenerative disorder associated with age which represents the most common cause of dementia. It is characterized by an accelerated memory loss compared to normal aging, and deterioration of other cognitive abilities that interfere with mood, reason, judgment and language. The main neuropathological hallmarks of the disorder are β-amyloid (βA) plaques and neurofibrillary Tau tangles. Triple transgenic 3×TgAD mouse model develops βA and Tau pathologies in a progressive manner, with a specific temporal and anatomic profile mimicking the pattern that takes place in the human brain with AD, and showing cognitive alterations characteristic of the disease. Environmental enrichment treatment in mice induces behavioral and emotional reactivity changes, including cognitive improvements in some AD-related transgenic mice. The present work intended to characterize the behavioral profile of 3×TgAD mice at advanced stages of neuropathological development (12 and 15 months of age) and to investigate whether environmental enrichment administered during adulthood was able to modify some of their behavioral and cognitive alterations. Results show that, at advanced stages of the disease 3×TgAD mice show deficits of spatial learning acquisition, as well as short-term and working memory deficits, while displaying increased levels of anxiety/fearfulness and normal sensorimotor functions. 3×TgAD mice also show sexual dimorphism, as reflected by increased cognitive deficits in females and increased levels of novelty-induced behavioral inhibition in males. Environmental enrichment exerts some slight positive effects, by mainly improving the initial acquisition of the spatial learning and working memory in 12-month-old 3×TgAD mice. Such effects vary depending on the gender.

  2. Age-associated and cell-type-specific neurofibrillary pathology in transgenic mice expressing the human midsized neurofilament subunit.

    PubMed

    Vickers, J C; Morrison, J H; Friedrich, V L; Elder, G A; Perl, D P; Katz, R N; Lazzarini, R A

    1994-09-01

    Alterations in neurofilaments are a common occurrence in neurons of the human nervous system during aging and diseases associated with aging. Such pathologic changes may be attributed to species-specific properties of human neurofilaments as well as cell-type-specific regulation of this element of the cytoskeleton. The development of transgenic animals containing human neurofilament subunits offers an opportunity to study the effects of aging and other experimental conditions on the human-specific form of these proteins in a rodent model. The present study shows that mice from the transgenic line NF(M)27, which express the human midsized neurofilament subunit at low levels (2-25% of the endogenous NF-M), develop neurofilamentous accumulations in specific subgroups of neurons that are age dependent, affecting 78% of transgenic mice over 12 months of age. Similar accumulations do not occur in age-matched, wild-type littermates or in 3-month-old transgenic mice. In 12-month-old transgenic mice, somatic neurofilament accumulations resembling neurofibrillary tangles were present predominantly in layers III and V of the neocortex, as well as in select subpopulations of subcortical neurons. Intraperikaryal, spherical neurofilamentous accumulations were particularly abundant in cell bodies in layer II of the neocortex, and neurofilament-containing distentions of Purkinje cell proximal axons occurred in the cerebellum. These pathological accumulations contained mouse as well as human NF subunits, but could be distinguished by their content of phosphorylation-dependent NF epitopes. These cytoskeletal alterations closely resemble the cell-type-specific alterations in neurofilaments that occur during normal human aging and in diseases associated with aging, indicating that these transgenic animals may serve as models of some aspects of the pathologic features of human neurodegenerative diseases.

  3. 1'-Acetoxychavicol acetate ameliorates age-related spatial memory deterioration by increasing serum ketone body production as a complementary energy source for neuronal cells.

    PubMed

    Kojima-Yuasa, Akiko; Yamamoto, Tomiya; Yaku, Keisuke; Hirota, Shiori; Takenaka, Shigeo; Kawabe, Kouichi; Matsui-Yuasa, Isao

    2016-09-25

    1'-Acetoxychavicol acetate (ACA) is naturally obtained from the rhizomes and seeds of Alpinia galangal. Here, we examined the effect of ACA on learning and memory in senescence-accelerated mice prone 8 (SAMP8). In mice that were fed a control diet containing 0.02% ACA for 25 weeks, the learning ability in the Morris water maze test was significantly enhanced in comparison with mice that were fed the control diet alone. In the Y-maze test, SAMP8 mice showed decreased spontaneous alterations in comparison with senescence-accelerated resistant/1 (SAMR1) mice, a homologous control, which was improved by ACA pretreatment. Serum metabolite profiles were obtained by GC-MS analysis, and each metabolic profile was plotted on a 3D score plot. Based upon the diagram, it can be seen that the distribution areas for the three groups were completely separate. Furthermore, the contents of β-hydroxybutyric acid and palmitic acid in the serum of SAMP8-ACA mice were higher than those of SAMP8-control mice and SAMR1-control mice. We also found that SAMR1 mice did not show histological abnormalities, whereas histological damage in the CA1 region of the hippocampus in SAMP8-control mice was observed. However, SAMP8-ACA mice were observed in a similar manner as SAMR1 mice. These findings confirm that ACA increases the serum concentrations of β-hydroxybutyric acid and palmitic acid levels and thus these fuels might contribute to the maintenance of the cognitive performance of SAMP8 mice.

  4. Experimentally induced diabetes worsens neuropathology, but not learning and memory, in middle aged 3xTg mice.

    PubMed

    Hayashi-Park, Emi; Ozment, Bria N; Griffith, Chelsea M; Zhang, Haiying; Patrylo, Peter R; Rose, Gregory M

    2017-03-30

    Alzheimer's disease (AD) is the primary cause of dementia in the elderly. The cause of the disease is still unknown, but amyloid plaques and neurofibrillary tangles in the brain are thought to play a role. However, transgenic mouse models expressing these neuropathological features do not show severe or consistent cognitive impairments. There is accumulating evidence that diabetes increases the risk for developing AD. We tested the hypothesis that experimentally induced diabetes would exacerbate cognitive symptoms in a mouse model of AD. Diabetes was induced in 12-month old 3xTg mice using streptozotocin (STZ; 90mg/kg, i.p., on two successive days). Hyperglycemia was verified by sampling blood glucose levels. Three months after injection (at 15 months of age), the mice were behaviorally tested in the Morris water maze and contextual fear conditioning. Subsequently, the hippocampal region was examined using immunohistochemistry (6E10 antibody for amyloid) and immunoblotting (AT8 antibody for phosphorylated tau). No differences were found in learning or memory between the vehicle-treated control and STZ-treated groups. A significant increase in the number of amyloid-positive plaques was observed in the subiculum of STZ-treated mice; very few plaques were seen in other hippocampal regions in either group. No differences in AT8 load were observed. These results reinforce that amyloid plaques, per se, are not sufficient to cause memory impairments. Further, while diabetes can enhance this aspect of brain pathology, the combination of disrupted glucose metabolism and the transgenes is still not sufficient to cause the severe cognitive impairments associated with clinical AD.

  5. The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Niehoff, Michael L; Morley, John E; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Farr, Susan A; Vrang, Niels

    2015-01-01

    Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of amyloid-β plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD.

  6. Early postnatal handling and environmental enrichment improve the behavioral responses of 17-month-old 3xTg-AD and non-transgenic mice in the Forced Swim Test in a gender-dependent manner.

    PubMed

    Torres-Lista, Virginia; Giménez-Llort, Lydia

    2015-11-01

    Forced Swimming Test (FST) models behavioural despair in animals by loss of motivation to respond or the refusal to escape. The present study was aimed at characterizing genetic (genotype and gender) and environmental factors (age/stage of disease and rearing conditions: C, standard; H, early postnatal handling; EE, environmental enrichment consisting in physical exercise as well as social and object enrichment) that may modulate the poor behavioural and cognitive flexibility response we have recently described in 12-month-old male 3xTg-AD mice in the FST. The comprehensive analysis of the ethogram shown in the FST considered the intervals of the test (0-2 and 2-6min), all the elicited behavioural responses (immobility, swimming and climbing) and their features (total duration and frequency of episodes). The long persistence of behaviours found in 17-month-old (late-stages of disease) 3xTg-AD mice was comparable to that recently described in males at 12 months of age (beginning of advanced stages) but also suggested increased age-dependent frailty in both genotypes. The poor behavioral flexibility of 3xTg-AD mice to elicit the behavioural despair shown by the NTg mice, was also found in the female gender. Finally, the present work demonstrates that early-life interventions were able to improve the time and frequency of episodes of immobility, being more evident in the female gender of both old NTg and 3xTg-AD mice. Ontogenic modulation by early-postnatal handling resulted in a more effective long-term improvement of the elicited behaviours in the FST than that achieved by environmental enrichment. The results talk in favor of the beneficence of early-life interventions on ageing in both healthy and disease conditions.

  7. Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice

    PubMed Central

    Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd

    2012-01-01

    OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during

  8. Silencing [Formula: see text] Rescues Tau Pathologies and Memory Deficits through Rescuing PP2A and Inhibiting GSK-3β Signaling in Human Tau Transgenic Mice.

    PubMed

    Zhang, Yao; Ma, Rong-Hong; Li, Xia-Chun; Zhang, Jia-Yu; Shi, Hai-Rong; Wei, Wei; Luo, Dan-Ju; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2014-01-01

    Increase of inhibitor-2 of protein phosphatase-2A [Formula: see text] is associated with protein phosphatase-2A (PP2A) inhibition and tau hyperphosphorylation in Alzheimer's disease (AD). Down-regulating [Formula: see text] attenuated amyloidogenesis and improved the cognitive functions in transgenic mice expressing amyloid precursor protein (tg2576). Here, we found that silencing [Formula: see text] by hippocampal infusion of [Formula: see text] down-regulated [Formula: see text] (~45%) with reduction of tau phosphorylation/accumulation, improvement of memory deficits, and dendritic plasticity in 12-month-old human tau transgenic mice. Silencing [Formula: see text] not only restored PP2A activity but also inhibited glycogen synthase kinase-3β (GSK-3β) with a significant activation of protein kinase A (PKA) and Akt. In HEK293/tau and N2a/tau cells, silencing [Formula: see text] by [Formula: see text] also significantly reduced tau hyperphosphorylation with restoration of PP2A activity and inhibition of GSK-3β, demonstrated by the decreased GSK-3β total protein and mRNA levels, and the increased inhibitory phosphorylation of GSK-3β at serine-9. Furthermore, activation of PKA but not Akt mediated the inhibition of GSK-3β by [Formula: see text] silencing. We conclude that targeting [Formula: see text] can improve tau pathologies and memory deficits in human tau transgenic mice, and activation of PKA contributes to GSK-3β inhibition induced by silencing [Formula: see text]in vitro, suggesting that [Formula: see text] is a promising multiple target of AD.

  9. Silencing I2PP2A Rescues Tau Pathologies and Memory Deficits through Rescuing PP2A and Inhibiting GSK-3β Signaling in Human Tau Transgenic Mice

    PubMed Central

    Zhang, Yao; Ma, Rong-Hong; Li, Xia-Chun; Zhang, Jia-Yu; Shi, Hai-Rong; Wei, Wei; Luo, Dan-Ju; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2014-01-01

    Increase of inhibitor-2 of protein phosphatase-2A I2PP2A is associated with protein phosphatase-2A (PP2A) inhibition and tau hyperphosphorylation in Alzheimer’s disease (AD). Down-regulating I2PP2A attenuated amyloidogenesis and improved the cognitive functions in transgenic mice expressing amyloid precursor protein (tg2576). Here, we found that silencing I2PP2A by hippocampal infusion of Lenti - siI2PP2A down-regulated I2PP2A (~45%) with reduction of tau phosphorylation/accumulation, improvement of memory deficits, and dendritic plasticity in 12-month-old human tau transgenic mice. Silencing I2PP2A not only restored PP2A activity but also inhibited glycogen synthase kinase-3β (GSK-3β) with a significant activation of protein kinase A (PKA) and Akt. In HEK293/tau and N2a/tau cells, silencing I2PP2A by pSUPER - siI2PP2A also significantly reduced tau hyperphosphorylation with restoration of PP2A activity and inhibition of GSK-3β, demonstrated by the decreased GSK-3β total protein and mRNA levels, and the increased inhibitory phosphorylation of GSK-3β at serine-9. Furthermore, activation of PKA but not Akt mediated the inhibition of GSK-3β by I2PP2A silencing. We conclude that targeting I2PP2A can improve tau pathologies and memory deficits in human tau transgenic mice, and activation of PKA contributes to GSK-3β inhibition induced by silencing I2PP2A in vitro, suggesting that I2PP2A is a promising multiple target of AD. PMID:24987368

  10. Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8.

    PubMed

    Tha, K K; Okuma, Y; Miyazaki, H; Murayama, T; Uehara, T; Hatakeyama, R; Hayashi, Y; Nomura, Y

    2000-12-01

    The senescence-accelerated mouse (SAM) is known to be a murine model for accelerated aging. The SAMP8 strain shows age-related deterioration of learning and memory at an earlier age than control mice (SAMR1). In the present study, we investigated the changes in expressions of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in the brain of SAMP8. In the hippocampus of 10 months old SAMP8, the expression of IL-1 mRNA was significantly elevated in comparison with that of SAMR1. In both strains of SAMs, increases in IL-1beta protein in the brain were observed at 10 months of age compared with 2 and 5 months. The only differences found between the strain in protein levels were at 10 months and were elevations in IL-1beta in the hippocampus and hypothalamus, and in TNF-alpha and IL-6 in the cerebral cortex and the hippocampus in SAMP8 as compared with SAMR1. However, lipopolysaccharide-induced increases in the expression of these cytokines in brain did not differ between SAMP8 and SAMR1. Increases in expression of proinflammatory cytokines in the brain may be involved in the age-related neural dysfunction and/or learning deficiency in SAMP8.

  11. Influence of aging and growth hormone on different members of the NFkB family and IkB expression in the heart from a murine model of senescence-accelerated aging.

    PubMed

    Forman, K; Vara, E; García, C; Kireev, R; Cuesta, S; Acuña-Castroviejo, D; Tresguerres, J A F

    2016-01-01

    Inflammation is related to several pathological processes. The aim of this study was to investigate the protein expression of the different subunits of the nuclear factor Kappa b (NFkBp65, p50, p105, p52, p100) and the protein expressions of IkB beta and alpha in the hearts from a murine model of accelerated aging (SAM model) by Western blot. In addition, the translocation of some isoforms of NFkB from cytosol to nuclei (NFkBp65, p50, p52) and ATP level content was studied. In addition we investigated the effect of the chronic administration of growth hormone (GH) on these age-related parameters. SAMP8 and SAMR1 mice of 2 and 10 months of age were used (n = 30). Animals were divided into five experimental groups: 2 old untreated (SAMP8/SAMR1), 2 young control (SAMP8/SAMR1) and one GH treated-old groups (SAMP8). Age-related changes were found in the studied parameters. We were able to see decreases of ATP level contents and the translocation of the nuclear factor kappa B p50, p52 and p65 from cytosol to nuclei in old SAMP8 mice together with a decrease of IKB proteins. However p100 and p105 did not show differences with aging. No significant changes were recorded in SAMR1 animals. GH treatment showed beneficial effects in old SAMP8 mice inducing an increase in ATP levels and inhibiting the translocation of some NFkB subunits such as p52. Our results supported the relation of NFkB activation with enhanced apoptosis and pro-inflammatory status in old SAMP8 mice and suggested a selective beneficial effect of the GH treatment, which was able to partially reduce the incidence of some deleterious changes in the heart of those mice.

  12. AVCRI104P3, a novel multitarget compound with cognition-enhancing and anxiolytic activities: studies in cognitively poor middle-aged mice.

    PubMed

    Giménez-Llort, L; Ratia, M; Pérez, B; Camps, P; Muñoz-Torrero, D; Badia, A; Clos, M V

    2015-06-01

    The present work describes, for the first time, the in vivo effects of the multitarget compound AVCRI104P3, a new anticholinesterasic drug with potent inhibitory effects on human AChE, human BuChE and BACE-1 activities as well as on the AChE-induced and self-induced Aβ aggregation. We characterized the behavioral effects of chronic treatment with AVCRI104P3 (0.6 μmol kg(-1), i.p., 21 days) in a sample of middle aged (12-month-old) male 129/Sv×C57BL/6 mice with poor cognitive performance, as shown by the slow acquisition curves of saline-treated animals. Besides, a comparative assessment of cognitive and non-cognitive actions was done using its in vitro equipotent doses of huprine X (0.12 μmol kg(-1)), a huperzine A-tacrine hybrid. The screening assessed locomotor activity, anxiety-like behaviors, cognitive function and side effects. The results on the 'acquisition' of spatial learning and memory show that AVCRI104P3 exerted pro-cognitive effects improving both short- and long-term processes, resulting in a fast and efficient acquisition of the place task in the Morris water maze. On the other hand, a removal test and a perceptual visual learning task indicated that both AChEIs improved short-term 'memory' as compared to saline treated mice. Both drugs elicited the same response in the corner test, but only AVCRI104P3 exhibited anxiolytic-like actions in the dark/light box test. These cognitive-enhancement and anxiolytic-like effects demostrated herein using a sample of middle-aged animals and the lack of adverse effects, strongly encourage further studies on AVCRI104P3 as a promising multitarget therapeutic agent for the treatment of cholinergic dysfunction underlying natural aging and/or dementias.

  13. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice.

    PubMed

    Mably, Alexandra J; Liu, Wen; Mc Donald, Jessica M; Dodart, Jean-Cosme; Bard, Frédérique; Lemere, Cynthia A; O'Nuallain, Brian; Walsh, Dominic M

    2015-10-01

    Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD). A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble assemblies loosely referred to as "oligomers" and that these are primary mediators of synaptic dysfunction. As such, Aβ, and specifically Aβ oligomers, are targets for disease modifying therapies. Currently, the most advanced experimental treatment for AD relies on the use of anti-Aβ antibodies. In this study, we tested the ability of the monomer-preferring antibody, m266 and a novel aggregate-preferring antibody, 1C22, to attenuate spatial reference memory impairments in J20 mice. Chronic treatment with m266 resulted in a ~70-fold increase in Aβ detected in the bloodstream, and a ~50% increase in water-soluble brain Aβ--and in both cases Aβ was bound to m266. In contrast, 1C22 increased the levels of free Aβ in the bloodstream, and bound to amyloid deposits in J20 brain. However, neither 1C22 nor m266 attenuated the cognitive deficits evident in 12month old J20 mice. Moreover, both antibodies failed to alter the levels of soluble Aβ oligomers in J20 brain. These results suggest that Aβ oligomers may mediate the behavioral deficits seen in J20 mice and highlight the need for the development of aggregate-preferring antibodies that can reach the brain in sufficient levels to neutralize bioactive Aβ oligomers. Aside from the lack of positive effect of m266 and 1C22 on cognition, a substantial number of deaths occurred in m266- and 1C22-immunized J20 mice. These fatalities were specific to anti-Aβ antibodies and to the J20 mouse line since treatment of wild type or PDAPP mice with these antibodies did not cause any deaths. These and other recent results indicate that J20 mice are particularly susceptible to targeting of the APP/Aβ/tau axis. Notwithstanding the specificity of fatalities for J20 mice, it is worrying that the

  14. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice

    PubMed Central

    Mably, Alexandra J.; Liu, Wen; Mc Donald, Jessica M.; Dodart, Jean-Cosme; Bard, Frédérique; Lemere, Cynthia A.; O’Nuallain, Brian; Walsh, Dominic M.

    2015-01-01

    Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer’s disease (AD). A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble assemblies loosely referred to as “oligomers” and that these are primary mediators of synaptic dysfunction. As such, Aβ, and specifically Aβ oligomers, are targets for disease modifying therapies. Currently, the most advanced experimental treatment for AD relies on the use of anti-Aβ antibodies. In this study, we tested the ability of the monomer-preferring antibody, m266 and a novel aggregate-preferring antibody, 1C22, to attenuate spatial reference memory impairments in J20 mice. Chronic treatment with m266 resulted in a ~70-fold increase in Aβ detected in the bloodstream, and a ~50% increase in water-soluble brain Aβ – and in both cases Aβ was bound to m266. In contrast, 1C22 increased the levels of free Aβ in the bloodstream, and bound to amyloid deposits in J20 brain. However, neither 1C22 nor m266 attenuated the cognitive deficits evident in 12 month old J20 mice. Moreover, both antibodies failed to alter the levels of soluble Aβ oligomers in J20 brain. These results suggest that Aβ oligomers may mediate the behavioral deficits seen in J20 mice and highlight the need for the development of aggregate-preferring antibodies that can reach the brain in sufficient levels to neutralize bioactive Aβ oligomers. Aside from the lack of positive effect of m266 and 1C22 on cognition a substantial number of deaths occurred in m266- and 1C22-immunized J20 mice. These fatalities were specific to anti-Aβ antibodies and to the J20 mouse line since treatment of wild type or PDAPP mice with these antibodies did not cause any deaths. These and other recent results indicate that J20 mice are particularly susceptible to targeting of the APP/Aβ/tau axis. Notwithstanding the specificity of fatalities for J20 mice, it is worrying that

  15. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer's disease animal model.

    PubMed

    Cheng, Xiao-rui; Zhou, Wen-xia; Zhang, Yong-xiang

    2014-01-01

    Alzheimer's disease (AD) is a widespread and devastating progressive neurodegenerative disease. Disease-modifying treatments remain beyond reach, and the etiology of the disease is uncertain. Animal model are essential for identifying disease mechanisms and developing effective therapeutic strategies. Research on AD is currently being carried out in rodent models. The most common transgenic mouse model mimics familial AD, which accounts for a small percentage of cases. The senescence-accelerated mouse prone 8 (SAMP8) strain is a spontaneous animal model of accelerated aging. Many studies indicate that SAMP8 mice harbor the behavioral and histopathological signatures of AD, namely AD-like cognitive and behavioral alterations, neuropathological phenotypes (neuron and dendrite spine loss, spongiosis, gliosis and cholinergic deficits in the forebrain), β-amyloid deposits resembling senile plaques, and aberrant hyperphosphorylation of Tau-like neurofibrillary tangles. SAMP8 mice are useful in the development of novel therapies, and many pharmacological agents and approaches are effective in SAMP8 mice. SAMP8 mice are considered a robust model for exploring the etiopathogenesis of sporadic AD and a plausible experimental model for developing preventative and therapeutic treatments for late-onset/age-related AD, which accounts for the vast majority of cases.

  16. “Super p53” Mice Display Retinal Astroglial Changes

    PubMed Central

    Salazar, Juan J.; Gallego-Pinazo, Roberto; de Hoz, Rosa; Pinazo-Durán, Maria D.; Rojas, Blanca; Ramírez, Ana I.; Serrano, Manuel; Ramírez, José M.

    2013-01-01

    Tumour-suppressor genes, such as the p53 gene, produce proteins that inhibit cell division under adverse conditions, as in the case of DNA damage, radiation, hypoxia, or oxidative stress (OS). The p53 gene can arrest proliferation and trigger death by apoptosis subsequent to several factors. In astrocytes, p53 promotes cell-cycle arrest and is involved in oxidative stress-mediated astrocyte cell death. Increasingly, astrocytic p53 is proving fundamental in orchestrating neurodegenerative disease pathogenesis. In terms of ocular disease, p53 may play a role in hypoxia due to ischaemia and may be involved in the retinal response to oxidative stress (OS). We studied the influence of the p53 gene in the structural and quantitative characteristics of astrocytes in the retina. Adult mice of the C57BL/6 strain (12 months old) were distributed into two groups: 1) mice with two extra copies of p53 (“super p53”; n = 6) and 2) wild-type p53 age-matched control, as the control group (WT; n = 6). Retinas from each group were immunohistochemically processed to locate the glial fibrillary acidic protein (GFAP). GFAP+ astrocytes were manually counted and the mean area occupied for one astrocyte was quantified. Retinal-astrocyte distribution followed established patterns; however, morphological changes were seen through the retinas in relation to p53 availability. The mean GFAP+ area occupied by one astrocyte in “super p53” eyes was significantly higher (p<0.05; Student’s t-test) than in the WT. In addition, astroglial density was significantly higher in the “super p53” retinas than in the WT ones, both in the whole-retina (p<0,01 Student’s t-test) and in the intermediate and peripheral concentric areas of the retina (p<0.05 Student’s t-test). This fact might improve the resistance of the retinal cells against OS and its downstream signalling pathways. PMID:23762373

  17. A comprehensive multiomics approach toward understanding the relationship between aging and dementia.

    PubMed

    Currais, Antonio; Goldberg, Joshua; Farrokhi, Catherine; Chang, Max; Prior, Marguerite; Dargusch, Richard; Daugherty, Daniel; Armando, Aaron; Quehenberger, Oswald; Maher, Pamela; Schubert, David

    2015-11-01

    Because age is the greatest risk factor for sporadic Alzheimer's disease (AD), phenotypic screens based upon old age-associated brain toxicities were used to develop the potent neurotrophic drug J147. Since certain aspects of aging may be primary cause of AD, we hypothesized that J147 would be effective against AD-associated pathology in rapidly aging SAMP8 mice and could be used to identify some of the molecular contributions of aging to AD. An inclusive and integrative multiomics approach was used to investigate protein and gene expression, metabolite levels, and cognition in old and young SAMP8 mice. J147 reduced cognitive deficits in old SAMP8 mice, while restoring multiple molecular markers associated with human AD, vascular pathology, impaired synaptic function, and inflammation to those approaching the young phenotype. The extensive assays used in this study identified a subset of molecular changes associated with aging that may be necessary for the development of AD.

  18. Differential Effects of C1qa Ablation on Glaucomatous Damage in Two Sexes in DBA/2NNia Mice

    PubMed Central

    Genis, Alina; Danias, John

    2015-01-01

    +/+ animals. In male mice, there was a tendency for 12 month old C1qa -/- animals to have better RGC scores and higher RGC counts, but this didn't reach statistical significance. ON scores in 11–13 month old animals of either sex were not different between all three genotype. Microglial activation in male 5–6 month old C1qa -/- mice was decreased compared to C1qa +/+ animals; no such effect was seen in females. Conclusions Absence of C1qa ameliorates RGC and ON loss in the DBA/2NNia strain, but this effect differs between the two sexes. C1q-mediated RGC damage seems to be more potent than IOP-mediated RGC loss. In contrast, C1qa absence provides axonal protection early on, but this protection cannot overcome the effects of significant IOP elevation. PMID:26544197

  19. Effects of Specific Multi-Nutrient Enriched Diets on Cerebral Metabolism, Cognition and Neuropathology in AβPPswe-PS1dE9 Mice

    PubMed Central

    Jansen, Diane; Zerbi, Valerio; Arnoldussen, Ilse A. C.; Wiesmann, Maximilian; Rijpma, Anne; Fang, Xiaotian T.; Dederen, Pieter J.; Mutsaers, Martina P. C.; Broersen, Laus M.; Lütjohann, Dieter; Miller, Malgorzata; Joosten, Leo A. B.; Heerschap, Arend; Kiliaan, Amanda J.

    2013-01-01

    Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment and prevention of Alzheimer's disease (AD). In this study we investigated to which extent long-term consumption of two specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old AβPPswe-PS1dE9 mice. Starting from 2 months of age, male AβPP-PS1 mice and wild-type littermates were fed either a control diet, the DHA+EPA+UMP (DEU) diet enriched with uridine monophosphate (UMP) and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), or the Fortasyn® Connect (FC) diet enriched with the DEU diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair. Both diets elevated interleukin-1β mRNA levels in AβPP-PS1 and wild-type mice. The FC diet additionally restored neurogenesis in AβPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and AβPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field behavior. In conclusion, the current data indicate that specific multi-nutrient diets can influence AD

  20. Electroacupuncture Treatment Improves Learning-Memory Ability and Brain Glucose Metabolism in a Mouse Model of Alzheimer's Disease: Using Morris Water Maze and Micro-PET

    PubMed Central

    Jiang, Jing; Gao, Kai; Zhou, Yuan; Xu, Anping; Shi, Suhua; Liu, Gang; Li, Zhigang

    2015-01-01

    Introduction. Alzheimer's disease (AD) causes progressive hippocampus dysfunctions leading to the impairment of learning and memory ability and low level of uptake rate of glucose in hippocampus. What is more, there is no effective treatment for AD. In this study, we evaluated the beneficial and protective effects of electroacupuncture in senescence-accelerated mouse prone 8 (SAMP8). Method. In the electroacupuncture paradigm, electroacupuncture treatment was performed once a day for 15 days on 7.5-month-old SAMP8 male mice. In the normal control paradigm and AD control group, 7.5-month-old SAMR1 male mice and SAMP8 male mice were grabbed and bandaged while electroacupuncture group therapy, in order to ensure the same treatment conditions, once a day, 15 days. Results. From the Morris water maze (MWM) test, we found that the treatment of electroacupuncture can improve the spatial learning and memory ability of SAMP8 mouse, and from the micro-PET test, we proved that after the electroacupuncture treatment the level of uptake rate of glucose in hippocampus was higher than normal control group. Conclusion. These results suggest that the treatment of electroacupuncture may provide a viable treatment option for AD. PMID:25821477

  1. Beneficial effect of melatonin treatment on age-related insulin resistance and on the development of type 2 diabetes.

    PubMed

    Tresguerres, Jesus A F; Cuesta, Sara; Kireev, Roman A; Garcia, Cruz; Acuña-Castroviejo, Dario; Vara, Elena

    2013-12-01

    Abstract This paper will review the effect of aging on glucose metabolism and insulin resistance in pancreas and in peripheral tissues and how melatonin administration could affect these parameters. In SAMP8 mice insulin levels in plasma were found to be increased together with enhanced HOMA-IR values, whereas insulin content in pancreas showed a decrease with aging. Aging in SAMP8 mice was also associated with a significant increase in the relative expression of both protein and mRNA of different pro-inflammatory mediators. Furthermore, aging was associated with a decrease in the expression of Pdx-1, FoxO 1 and FoxO 3A and Sirt 1 in pancreas SAMP8 samples. Melatonin administration was able to reduce these age-related alterations, decreasing plasma insulin levels and increasing its pancreatic content in SAMP8 mice. HOMA-IR was decreased with melatonin treatment in all animals. Conversely, in SAMP8 mice, melatonin treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin. Furthermore it was also able to increase the expression of Sirt 1, Pdx-1 and FoxO 3A. The present study has shown that aging is associated with significant alterations in the relative expression of pancreatic genes involved in both insulin secretion and glucose metabolism and that these are associated with an increase in inflammation and oxidative stress. Melatonin administration was able to reduce oxidative stress and inflammation and thus to improve pancreatic function in old mice. By doing so, insulin resistance is diminished and plasma insulin is reduced, enhancing insulin pancreatic content and reducing plasma glucose levels and HOMA index.

  2. Age-related changes of brain iron load changes in the frontal cortex in APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease.

    PubMed

    Xian-hui, Dong; Wei-juan, Gao; Tie-mei, Shao; Hong-lin, Xie; Jiang-tao, Bai; Jing-yi, Zhao; Xi-qing, Chai

    2015-04-01

    Alzheimer's disease (AD) as a neurodegenerative brain disorder is a devastating pathology leading to disastrous cognitive impairments and dementia, associated with major social and economic costs to society. Iron can catalyze damaging free radical reactions. With age, iron accumulates in brain frontal cortex regions and may contribute to the risk of AD. In this communication, we investigated the age-related brain iron load changes in the frontal cortex of 6- and 12-month-old C57BL/6J (C57) and APPswe/PS1ΔE9 (APP/PS1) double transgenic mouse by using graphite furnace atomic absorption spectrometry (GFAAS) and Perls' reaction. In the present study, we also evaluated the age-related changes of DMT1 and FPN1 by using Western blot and qPCR. We found that compared with 6-month-old APP/PS1 mice and the 12-month-old C57 mice, the 12-month-old APP/PS1 mice had increased iron load in the frontal cortex. The levels of DMT1 were significantly increased and the FPN1 were significantly reduced in the frontal cortex of the 12-month-old APP/PS1 mice than that in the 6-month-old APP/PS1 mice and 12-month-old C57 mice. We conclude that in AD damage occurs in conjunction with iron accumulation, and the brain iron load associated with loss control of the brain iron metabolism related protein DMT1 and FPN1 expressions.

  3. Macromegakaryocytosis after hydroxyurea. [Mice

    SciTech Connect

    Ebbe, S.; Phalen, E.

    1982-11-01

    A single injection of hydroxyurea (OHU) produced transient megakaryocytopenia in mice. An increase in the average mean size of mature, stage III megakaryocytes coincided with their depopulation. This was due to a selective reduction in numbers of smaller cells. In contrast, the macromegakaryocytosis of immunothrombocytopenia showed substantial increases in numbers of larger cells and reductions in smaller. Further reduction in numbers of smaller cells occurred when OHU was given to mice with immunothrombocytopenia, and the megakaryocytopenia was somewhat more severe than that produced by OHU in normal mice. OHU produced mild thrombocytopenia in normal mice and compromised recovery of the platelet count from immunothrombocytopenia. The most likely explanation for the increase in mean megakaryocyte size in the hypomegakaryocytic state produced by OHU is that the temporary imbalance between a low rate of influx and a normal rate of maturation produced a shift of the age distribution of the cells due to a deficiency of immature cells.

  4. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging.

    PubMed

    Forman, Katherine; Vara, Elena; García, Cruz; Kireev, Roman; Cuesta, Sara; Acuña-Castroviejo, Darío; Tresguerres, J A F

    2010-10-01

    This study investigated the effect of aging-related parameters such as inflammation, oxidative stress and cell death in the heart in an animal model of accelerated senescence and analyzed the effects of chronic administration of melatonin on these markers. Thirty male mice of senescence-accelerated prone (SAMP8) and 30 senescence-accelerated-resistant mice (SAMR1) at 2 and 10 months of age were used. Animals were divided into eight experimental groups, four from each strain: two young control groups, two old untreated control groups, and four melatonin-treated groups. Melatonin was provided at two different dosages (1 and 10 mg/kg/day) in the drinking water. After 30 days of treatment, the expression of inflammatory mediators (tumor necrosis factor-alpha, interleukin 1 and 10, NFkBp50 and NFkBp52), apoptosis markers (BAD, BAX and Bcl2) and parameters related to oxidative stress (heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases) were determined in the heart by real-time reverse transcription polymerase chain reaction (RT-PCR). Inflammation, as well as, oxidative stress and apoptosis markers was increased in old SAMP8 males, when compared to its young controls. SAMR1 mice showed significantly lower basal levels of the measured parameters and smaller increases with age or no increases at all. After treatment with melatonin, these age-altered parameters were partially reversed, especially in SAMP8 mice. The results suggest that oxidative stress and inflammation increase with aging and that chronic treatment with melatonin, a potent antioxidant, reduces these parameters. The effects were more marked in the SAMP8 animals.

  5. Neuroprotective effect of the Chinese medicine Tiantai No. 1 and its molecular mechanism in the senescence-accelerated mouse prone 8

    PubMed Central

    Li, Ying-hong; Wang, Xu-sheng; Chen, Xiao-lin; Jin, Yu; Chen, Hong-bo; Jia, Xiu-qin; Zhang, Yong-feng; Wu, Zheng-zhi

    2017-01-01

    Tiantai No. 1, a Chinese medicine predominantly composed of powdered Rhizoma Gastrodiae, Radix Ginseng, and Ginkgo leaf at a ratio of 2:1:2 and dissolved in pure water, is neuroprotective in animal models of various cognitive disorders, but its molecular mechanism remains unclear. We administered Tiantai No. 1 intragastrically to senescence-accelerated mouse prone 8 (SAMP8) mice (a model of Alzheimer's disease) at doses of 50, 100 or 150 mg/kg per day for 8 weeks and evaluated their behavior in the Morris water maze and expression of Alzheimer's disease-related proteins in the brain. Tiantai No. 1 shortened the escape latency in the water maze training trials, and increased swimming time in the target quadrant during the spatial probe test, indicating that Tiantai No. 1 improved learning and memory in SAMP8 mice. Immunohistochemistry revealed that Tiantai No. 1 restored the proliferation potential of Ki67-positive cells in the hippocampus. In addition, mice that had received Tiantai No. 1 had fewer astrocytes, and less accumulation of amyloid-beta and phosphorylated tau. These results suggest that Tiantai No. 1 is neuroprotective in the SAMP8 mouse model of Alzheimer's disease and acts by restoring neuronal number and proliferation potential in the hippocampus, decreasing astrocyte infiltration, and reducing the accumulation of amyloid-beta and phosphorylated tau.

  6. The status of MICE

    NASA Astrophysics Data System (ADS)

    Liu, Ao; Muon Ionization Cooling Experiment (MICE) Collaboration

    2017-01-01

    Muon beams of low emittance provide the basis for the intense, well characterised neutrino beams of the Neutrino Factory and for lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam. MICE is being constructed in a series of Steps. The configuration currently in operation at the Rutherford Appleton Laboratory is optimised for the study the properties of liquid hydrogen and lithium hydride that affect cooling. The results that have recently been submitted for publication will be described along with preliminary results from the MICE study of the effect of liquid hydrogen and lithium hydride on the muon beam. The plans for data taking in the present configuration will be described together with a summary of the status of preparation of the final experimental configuration by which MICE will demonstrate the principle of ionization cooling.

  7. Status of MICE

    SciTech Connect

    Soler, F. J. P.

    2010-03-30

    The Muon Ionization Cooling Experiment (MICE) is an experiment currently under construction at the Rutherford Appleton Laboratory (RAL) in the UK. The aim of the experiment is to demonstrate the concept of ionization cooling for a beam of muons, crucial for the requirements of a Neutrino Factory and a Muon Collider. Muon cooling is achieved by measuring the reduction of the four dimensional transverse emittance for a beam of muons passing through low density absorbers and then accelerating the longitudinal component of the momentum using RF cavities. The absorbers are maintained in a focusing magnetic field to reduce the beta function of the beam and the RF cavities are kept inside coupling coils. The main goal of MICE is to measure a fractional drop in emittance, of order -10% for large emittance beams, with an accuracy of 1%(which imposes a requirement that the absolute emittance be measured with an accuracy of 0.1%). This paper will discuss the status of MICE, including the progress in commissioning the muon beam line at the ISIS accelerator at RAL, the construction of the different detector elements in MICE and the prospects for the future.

  8. Colorful Kindergarten Mice

    ERIC Educational Resources Information Center

    Bobick, Bryna; Wheeler, Elizabeth

    2008-01-01

    Developing kindergarten lessons can be very challenging, especially at the beginning of the school year when many students are just learning to cut paper and hold crayons. The author's favorite beginning unit of the year is "mice paintings," a practical introduction to drawing, color theory, and painting. This unit also incorporates children's…

  9. Status of MICE

    NASA Astrophysics Data System (ADS)

    Soler, F. J. P.

    2010-03-01

    The Muon Ionization Cooling Experiment (MICE) is an experiment currently under construction at the Rutherford Appleton Laboratory (RAL) in the UK. The aim of the experiment is to demonstrate the concept of ionization cooling for a beam of muons, crucial for the requirements of a Neutrino Factory and a Muon Collider. Muon cooling is achieved by measuring the reduction of the four dimensional transverse emittance for a beam of muons passing through low density absorbers and then accelerating the longitudinal component of the momentum using RF cavities. The absorbers are maintained in a focusing magnetic field to reduce the beta function of the beam and the RF cavities are kept inside coupling coils. The main goal of MICE is to measure a fractional drop in emittance, of order -10% for large emittance beams, with an accuracy of 1% (which imposes a requirement that the absolute emittance be measured with an accuracy of 0.1%). This paper will discuss the status of MICE, including the progress in commissioning the muon beam line at the ISIS accelerator at RAL, the construction of the different detector elements in MICE and the prospects for the future.

  10. Mice and Men.

    ERIC Educational Resources Information Center

    Willingham, Shively; Thompson, Charles L.

    Observations and experiments with mice, developed and tested at the Pennsylvania Advancement School with underachieving boys in grades seven and eight, are described in this teachers' guide which includes copies of student worksheets for exercises needing them. In addition to lists of materials and procedural suggestions, ideas for guiding…

  11. Formylhydrazine carcinogenesis in mice.

    PubMed Central

    Toth, B.

    1978-01-01

    Administration of 0.125% formylhydrazine in drinking water to 6-week-old randomly bred Swiss albino mice for life, induced lung tumours. Compared to untreated controls, the lung-tumour incidence rose from 15 to 94% in the females and from 22 to 100% in the males. The treatment had no detectable tumorigenic effect in other organs. PMID:678435

  12. Mice Drawer System

    NASA Technical Reports Server (NTRS)

    Cancedda, Ranieri

    2008-01-01

    The Mice Drawer System (MDS) is an Italian Space Agency (ASI) facility which is able to support mice onboard the International Space Station during long-duration exploration missions (from 100 to 150-days) by living space, food, water, ventilation and lighting. Mice can be accommodated either individually (maximum 6) or in groups (4 pairs). MDS is integrated in the Space Shuttle middeck during transportation (uploading and downloading) to the ISS and in an EXPRESS Rack in Destiny, the US Laboratory during experiment execution. Osteoporosis is a debilitating disease that afflicts millions of people worldwide. One of the physiological changes experienced by astronauts during space flight is the accelerated loss of bone mass due to the lack of gravitational loading on the skeleton. This bone loss experienced by astronauts is similar to osteoporosis in the elderly population. MDS will help investigate the effects of unloading on transgenic (foreign gene that has been inserted into its genome to exhibit a particular trait) mice with the Osteoblast Stimulating Factor-1, OSF-1, a growth and differentiation factor, and to study the genetic mechanisms underlying the bone mass pathophysiology. MDS will test the hypothesis that mice with an increased bone density are likely to be more protected from osteoporosis, when the increased bone mass is a direct effect of a gene involved in skeletogenesis (skeleton formation). Osteoporosis is a debilitating disease that afflicts millions worldwide. One of the physiological changes experienced by astronauts during space flight is the accelerated loss of bone mass due to the lack of gravitational loading on the skeleton, a loss that is similar to osteoporosis in the elderly population on Earth. Osteoblast Stimulating Factor-1 (OSF-1), also known as pleiotrophin (PTN) or Heparin-Binding Growth- Associated Molecule (HB-GAM) belongs to a family of secreted heparin binding proteins..OSF-1 is an extracellular matrix-associated growth and

  13. Partial Return Yoke for MICE

    SciTech Connect

    Witte H.; Plate, S

    2013-05-03

    The international Muon Ionization Cooling Experiment (MICE) is a large scale experiment which is presently assembled at the Rutherford Appleton Laboratory in Didcot, UK. The purpose of MICE is to demonstrate the concept of ionization cooling experimentally. Ionization cooling is an important accelerator concept which will be essential for future HEP experiments such as a potential Muon Collider or a Neutrino Factory. The MICE experiment will house up to 18 superconducting solenoids, all of which produce a substantial amount of magnetic flux. Recently it was realized that this magnetic flux leads to a considerable stray magnetic field in the MICE hall. This is a concern as technical equipment in the MICE hall may may be compromised by this. In July 2012 a concept called partial return yoke was presented to the MICE community, which reduces the stray field in the MICE hall to a safe level. This report summarizes the general concept, engineering considerations and the expected shielding performance.

  14. Mice with human livers.

    PubMed

    Grompe, Markus; Strom, Stephen

    2013-12-01

    Animal models are used to study many aspects of human disease and to test therapeutic interventions. However, some very important features of human biology cannot be replicated in animals, even in nonhuman primates or transgenic rodents engineered with human genes. Most human microbial pathogens do not infect animals and the metabolism of many xenobiotics is different between human beings and animals. The advent of transgenic immune-deficient mice has made it possible to generate chimeric animals harboring human tissues and cells, including hepatocytes. The liver plays a central role in many human-specific biological processes and mice with humanized livers can be used to model human metabolism, liver injury, gene regulation, drug toxicity, and hepatotropic infections.

  15. Systematic Analysis of Long Noncoding RNAs in the Senescence-accelerated Mouse Prone 8 Brain Using RNA Sequencing

    PubMed Central

    Zhang, Shuai; Qin, Chunxia; Cao, Guoqiong; Xin, Wenfeng; Feng, Chengqiang; Zhang, Wensheng

    2016-01-01

    Long noncoding RNAs (lncRNAs) may play an important role in Alzheimer's disease (AD) pathogenesis. However, despite considerable research in this area, the comprehensive and systematic understanding of lncRNAs in AD is still limited. The emergence of RNA sequencing provides a predictor and has incomparable advantage compared with other methods, including microarray. In this study, we identified lncRNAs in a 7-month-old mouse brain through deep RNA sequencing using the senescence-accelerated mouse prone 8 (SAMP8) and senescence-accelerated mouse resistant 1 (SAMR1) models. A total of 599,985,802 clean reads and 23,334 lncRNA transcripts were obtained. Then, we identified 97 significantly upregulated and 114 significantly downregulated lncRNA transcripts from all cases in SAMP8 mice relative to SAMR1 mice. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these significantly dysregulated lncRNAs were involved in regulating the development of AD from various angles, such as nerve growth factor term (GO: 1990089), mitogen-activated protein kinase signaling pathway, and AD pathway. Furthermore, the most probable AD-associated lncRNAs were predicted and listed in detail. Our study provided the systematic dissection of lncRNA profiling in SAMP8 mouse brain and accelerated the development of lncRNA biomarkers in AD. These attracting biomarkers could provide significant insights into AD therapy in the future. PMID:27483026

  16. Experimental Paracoccidioidomycosis in Mice

    PubMed Central

    Linares, Leonor I.; Friedman, Lorraine

    1972-01-01

    Virulence and infectivity of nine strains of Paracoccidioides brasiliensis were investigated in groups of mice which were inoculated intranasally or intravenously, and some of each were treated with corticosteroids. Fatal infections were not often seen among untreated mice, but mortality usually occurred when corticosteroids were given, regardless of the route of fungus inoculation. Prior treatment did not uniformly increase the incidence of infection, however; only in the case of intranasally inoculated mice was this effect seen. Most strains appeared to be more virulent when administered intravenously, with the exception of a single strain which, under the influence of corticosteroids, repeatedly displayed greatest virulence when given intranasally. All animals that died early in the course of the disease, irrespective of route of inoculation, always had acute pulmonary lesions and usually no other organ was involved. Animals which died later or were sacrificed always had chronic lung lesions. Whether or not chronically diseased animals had additional organ involvement correlated with how the organisms were administered; intravenously inoculated animals usually had extrapulmonary as well as pulmonary lesions, but lesions of those inoculated intranasally were almost exclusively pulmonary. Corticosteroids did not alter the histologic characteristics of either the acute or the chronic type of lesion, but the lesions of treated animals were usually more extensive. Most of the survivors appeared healthy even when infection was extensive. Images PMID:4637603

  17. Age-Dependent Long-Term Potentiation Deficits in the Prefrontal Cortex of the Fmr1 Knockout Mouse Model of Fragile X Syndrome.

    PubMed

    Martin, Henry G S; Lassalle, Olivier; Brown, Jonathan T; Manzoni, Olivier J

    2016-05-01

    The most common inherited monogenetic cause of intellectual disability is Fragile X syndrome (FXS). The clinical symptoms of FXS evolve with age during adulthood; however, neurophysiological data exploring this phenomenon are limited. The Fmr1 knockout (Fmr1KO) mouse models FXS, but studies in these mice of prefrontal cortex (PFC) function are underrepresented, and aging linked data are absent. We studied synaptic physiology and activity-dependent synaptic plasticity in the medial PFC of Fmr1KO mice from 2 to 12 months. In young adult Fmr1KO mice, NMDA receptor (NMDAR)-mediated long-term potentiation (LTP) is intact; however, in 12-month-old mice this LTP is impaired. In parallel, there was an increase in the AMPAR/NMDAR ratio and a concomitant decrease of synaptic NMDAR currents in 12-month-old Fmr1KO mice. We found that acute pharmacological blockade of mGlu5 receptor in 12-month-old Fmr1KO mice restored a normal AMPAR/NMDAR ratio and LTP. Taken together, the data reveal an age-dependent deficit in LTP in Fmr1KO mice, which may correlate to some of the complex age-related deficits in FXS.

  18. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2016-02-01

    drinking in the dark ’ 36, 37 6 Experimental design: 12 month old human tau transgenic mice were subjected to 5 concussive brain injuries or sham...tau immunohistochemistry 9 Figure 3: Silver stain analysis of white matter tracts in aged human transgenic mice. (A) Corticospinal tract. (B...the Dark " (DID): a simple mouse model of binge-like alcohol intake. Current protocols in neuroscience / editorial board, Jacqueline N Crawley [et

  19. Transposon Mutagenesis in Mice

    PubMed Central

    Largaespada, David A.

    2010-01-01

    Understanding the functional landscape of the mammalian genome is the next big challenge of biomedical research. The completion of the first phases of the mouse and human genome projects, and expression analyses using microarray hybridization, generate critically important questions about the functional landscape and structure of the mammalian genome: how many genes, and of what type, are there; what kind of functional elements make up a properly functioning gene? One step in this process will be to create mutations in every identifiable mouse gene and analyze the resultant phenotypes. Transposons are being considered as tools to further initiatives to create a comprehensive resource of mutant mouse strains. Also, it may be possible to use transposons in true forward genetic screens in the mouse. The “Sleeping Beauty” (SB) transposon system is one such tool. Moreover, due to its tendency for local hopping, SB has been proposed as a method for regional saturation mutagenesis of the mouse genome. In this chapter, we review the tools and methods currently available to create mutant mice using in vivo, germline transposition in mice. PMID:19266336

  20. Changes in nerve- and endothelium-mediated contractile tone of the corpus cavernosum in a mouse model of pre-mature ageing.

    PubMed

    Lafuente-Sanchis, A; Triguero, D; Garcia-Pascual, A

    2014-07-01

    Erectile dysfunction (ED) is very prevalent in the older population, although the ageing-related mechanisms involved in the development of ED are poorly understood. We propose that age-induced differences in nerve- and endothelium-mediated smooth muscle contractility in the corpus cavernosum (CC) could be found between a senescent-accelerated mouse prone (SAMP8) and senescent-accelerated mouse resistant (SAMR1) strains. We analysed the changes in muscle tension induced by electrical field stimulation (EFS) or agonist addition 'in vitro', assessing nerve density (adrenergic, cholinergic and nitrergic), the expression of endothelial nitric oxide synthase (eNOS), cGMP accumulation and the distribution of interstitial cells (ICs) by immunofluorescence. We observed no change in both the nerve-dependent adrenergic excitatory contractility at physiological levels of stimulation and in the nitrergic inhibitory response in SAMP8 animals. Unlike cholinergic innervation, the density of adrenergic and nitrergic nerves increased in SAMP8 mice. In contrast, smooth muscle sensitivity to exogenous noradrenaline (NA) was slightly reduced, whereas cGMP accumulation in response to EFS and DEA/NO, and relaxations to DEA/NO and sildenafil, were not modified. No changes in the expression of eNOS and in the distribution of vimentin-positive ICs were detected in the aged animals. The ACh induced atropine-sensitive biphasic endothelium-dependent responses involved relaxation at low concentrations that turned into contractions at the highest doses. CC relaxation was mainly because of the production of NO together with some relaxant prostanoid, which did not change in SAMP8 animals. In contrast, the contractile component was considerably higher in the aged animals and it was completely inhibited by indomethacin. In conclusion, a clear imbalance towards enhanced production of contractile prostanoids from the endothelium may contribute to ED in the elderly. On the basis of these data, we

  1. Status of MICE

    SciTech Connect

    Bross, A.D.; Kaplan, D.M.; / /IIT, Chicago

    2008-11-01

    Muon ionization cooling is the only practical method for preparing high-brilliance beams needed for a neutrino factory or muon collider. The muon ionization cooling experiment (MICE) under development at the Rutherford Appleton Laboratory comprises a dedicated beamline to generate a range of input emittance and momentum, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. A first measurement of emittance is performed in the upstream magnetic spectrometer with a scintillating-fiber tracker. A cooling cell will then follow, alternating energy loss in liquid hydrogen with RF acceleration. A second spectrometer identical to the first and a particle identification system will measure the outgoing emittance. Plans for measurements of emittance and cooling are described.

  2. Resilience in Aging Mice.

    PubMed

    Kirkland, James L; Stout, Michael B; Sierra, Felipe

    2016-11-01

    Recently discovered interventions that target fundamental aging mechanisms have been shown to increase life span in mice and other species, and in some cases, these same manipulations have been shown to enhance health span and alleviate multiple age-related diseases and conditions. Aging is generally associated with decreases in resilience, the capacity to respond to or recover from clinically relevant stresses such as surgery, infections, or vascular events. We hypothesize that the age-related increase in susceptibility to those diseases and conditions is driven by or associated with the decrease in resilience. Thus, a test for resilience at middle age or even earlier could represent a surrogate approach to test the hypothesis that an intervention delays the process of aging itself. For this, animal models to test resilience accurately and predictably are needed. In addition, interventions that increase resilience might lead to treatments aimed at enhancing recovery following acute illnesses, or preventing poor outcomes from medical interventions in older, prefrail subjects. At a meeting of basic researchers and clinicians engaged in research on mechanisms of aging and care of the elderly, the merits and drawbacks of investigating effects of interventions on resilience in mice were considered. Available and potential stressors for assessing physiological resilience as well as the notion of developing a limited battery of such stressors and how to rank them were discussed. Relevant ranking parameters included value in assessing general health (as opposed to focusing on a single physiological system), ease of use, cost, reproducibility, clinical relevance, and feasibility of being repeated in the same animal longitudinally. During the discussions it became clear that, while this is an important area, very little is known or established. Much more research is needed in the near future to develop appropriate tests of resilience in animal models within an aging context

  3. Leptin pharmacokinetics in male mice

    PubMed Central

    Dobos, Robin C; Agnew, Linda L; Smart, Neil A; McFarlane, James R

    2017-01-01

    Pharmacokinetics of leptin in mammals has not been studied in detail and only one study has examined more than one time point in non-mutant mice and this was in a female mice. This is the first study to describe leptin distribution over a detailed time course in normal male mice. A physiologic dose (12 ng) of radiolabelled leptin was injected into adult male mice via the lateral tail vein and tissues were dissected out and measured for radioactivity over a time course of up to two hours. Major targets were the digestive tract, kidneys, skin and lungs. The brain was not a major target, and 0.15% of the total dose was recovered from the brain 5 min after administration. Major differences appear to exist in the distribution of leptin between the male and female mice, indicating a high degree of sexual dimorphism. Although the half-lives were similar between male and female mice, almost twice the proportion of leptin was recovered from the digestive tract of male mice in comparison to that reported previously for females. This would seem to indicate a major difference in leptin distribution and possibly function between males and females. PMID:27998953

  4. Experimental cryptosporidiosis in laboratory mice.

    PubMed Central

    Sherwood, D; Angus, K W; Snodgrass, D R; Tzipori, S

    1982-01-01

    Eight strains of laboratory mice were susceptible to subclinical infections with Cryptosporidium sp. at 1 to 4 days of age, but only a transient infection could be established at 21 days of age or older. Immunosuppression of 21-day-old mice failed to render them more susceptible to infection. Laboratory storage conditions for Cryptosporidium sp. were investigated by titration in 1- to 4-day-old mice. Storage by freezing with a variety of cryoprotectants was unsuccessful, but storage at 4 degrees C in phosphate-buffered saline or 2.5% potassium dichromate was possible for 4 to 6 months. PMID:7141705

  5. Inborn anemias in mice

    SciTech Connect

    Bernstein, S.E.; Barker, J.E.; Russell, E.S.

    1981-06-01

    hereditary anemias of mice have been the chief objects of investigation. At present under study are four macrocytic anemias, five hemolytic anemias, nonhemolytic microcytic anemia, transitory siderocytic anemia, sex-linked iron-transport anemia, an ..cap alpha..-thalassemia, and a new target-cell anemia. Each of these blood dyscrasias is caused by the action of a unique mutant gene, which determines the structure of different intracellular molecules, and thus controls a different metabolic process. Thus our wide range of different hereditary anemias has considerable potential for uncovering many different aspects of hemopoietic homeostatic mechanisms in the mouse. Each anemia is studied through: (a) characterization of peripheral blood values, (b) determinations of radiosensitivity under a variety of conditions, (c) measurements of iron metabolism and heme synthesis, (d) histological and biochemical study of blood-forming tissue, (e) functional tests of the stem cell component, (f) examination of responses to erythroid stimuli, and (g) transplantation of tissue between individuals of differently affected genotypes.

  6. Assessing hoarding in mice.

    PubMed

    Deacon, Robert M J

    2006-01-01

    Hoarding is a species-typical behavior shown by rodents, as well as other animals. By hoarding, the rodent secures a food supply for times of emergency (for example, when threatened by a predator) or for times of seasonal adversity such as winter. Scatter hoarding, as seen typically in squirrels and birds, involves placing small caches of food in hidden places, generally underground. Most rodents, however, hoard a supply of food in or near the home base--for example, in 'larders' near the sleeping quarters in a burrow. In the laboratory, measurement of hoarding involves simply weighing the food transported into the home cage from an external source, but the route to that source must be secure and animal-proof; for example, there should be no holes large enough to permit escape of a mouse, and no weak points that could be enlarged by gnawing. A suitable and easily constructed apparatus is described in the protocol. Hoarding has been shown to be sensitive to brain lesions and pharmacological agents, and is a suitable test for species-typical behavior in genetically modified mice.

  7. The MICE Muon Beam Line

    SciTech Connect

    Apollonio, Marco

    2011-10-06

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  8. The MICE Muon Beam Line

    NASA Astrophysics Data System (ADS)

    Apollonio, Marco

    2011-10-01

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  9. Owls and larks in mice.

    PubMed

    Pfeffer, Martina; Wicht, Helmut; von Gall, Charlotte; Korf, Horst-Werner

    2015-01-01

    Humans come in different chronotypes and, particularly, the late chronotype (the so-called owl) has been shown to be associated with several health risks. A number of studies show that laboratory mice also display various chronotypes. In mice as well as in humans, the chronotype shows correlations with the period length and rhythm stability. In addition, some mouse models for human diseases show alterations in their chronotypic behavior, which are comparable to those humans. Thus, analysis of the behavior of mice is a powerful tool to unravel the molecular and genetic background of the chronotype and the prevalence of risks and diseases that are associated with it. In this review, we summarize the correlation of chronotype with free-running period length and rhythm stability in inbred mouse strains, in mice with a compromised molecular clockwork, and in a mouse model for neurodegeneration.

  10. Transgenic mice in developmental toxicology

    SciTech Connect

    Woychik, R.P.

    1992-01-01

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  11. Transgenic mice in developmental toxicology

    SciTech Connect

    Woychik, R.P.

    1992-12-31

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  12. The MICE Run Control System

    NASA Astrophysics Data System (ADS)

    Hanlet, Pierrick; Mice Collaboration

    2014-06-01

    The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the feasibility of cooling a beam of muons for use in a Neutrino Factory and/or Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, MICE will measure the beam emittance before and after the cooling channel at the level of 1%, or a relative measurement of 0.001. This renders MICE a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, Data monitoring systems, and a configuration database. The new MICE Run Control has been developed to ensure proper sequencing of equipment and use of system resources to protect data quality. A description of this system, its implementation, and performance during recent muon beam data collection will be discussed.

  13. Lipoprotein(a) accelerates atherosclerosis in uremic mice[S

    PubMed Central

    Pedersen, Tanja X.; McCormick, Sally P.; Tsimikas, Sotirios; Bro, Susanne; Nielsen, Lars B.

    2010-01-01

    Uremic patients have increased plasma lipoprotein(a) [Lp(a)] levels and elevated risk of cardiovascular disease. Lp(a) is a subfraction of LDL, where apolipoprotein(a) [apo(a)] is disulfide bound to apolipoprotein B-100 (apoB). Lp(a) binds oxidized phospholipids (OxPL), and uremia increases lipoprotein-associated OxPL. Thus, Lp(a) may be particularly atherogenic in a uremic setting. We therefore investigated whether transgenic (Tg) expression of human Lp(a) increases atherosclerosis in uremic mice. Moderate uremia was induced by 5/6 nephrectomy (NX) in Tg mice with expression of human apo(a) (n = 19), human apoB-100 (n = 20), or human apo(a) + human apoB [Lp(a)] (n = 15), and in wild-type (WT) controls (n = 21). The uremic mice received a high-fat diet, and aortic atherosclerosis was examined 35 weeks later. LDL-cholesterol was increased in apoB-Tg and Lp(a)-Tg mice, but it was normal in apo(a)-Tg and WT mice. Uremia did not result in increased plasma apo(a) or Lp(a). Mean atherosclerotic plaque area in the aortic root was increased 1.8-fold in apo(a)-Tg (P = 0.025) and 3.3-fold (P = 0.0001) in Lp(a)-Tg mice compared with WT mice. Plasma OxPL, as detected with the E06 antibody, was associated with both apo(a) and Lp(a). In conclusion, expression of apo(a) or Lp(a) increased uremia-induced atherosclerosis. Binding of OxPL on apo(a) and Lp(a) may contribute to the atherogenicity of Lp(a) in uremia. PMID:20584868

  14. Practical pathology of aging mice

    PubMed Central

    Pettan-Brewer, Christina; Treuting, Piper M.

    2011-01-01

    Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington. PMID:22953032

  15. Voluntary Wheel Running in Mice

    PubMed Central

    Goh, Jorming; Ladiges, Warren

    2015-01-01

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. The basic protocol consists of allowing mice to run freely on the open surface of a slanted plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured to a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. PMID:26629772

  16. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  17. Immature mice are more susceptible than adult mice to acetaminophen-induced acute liver injury

    PubMed Central

    Lu, Yan; Zhang, Cheng; Chen, Yuan-Hua; Wang, Hua; Zhang, Zhi-Hui; Chen, Xi; Xu, De-Xiang

    2017-01-01

    Acetaminophen (APAP) overdose induces acute liver injury. The aim of the present study was to analyze the difference of susceptibility between immature and adult mice to APAP-induced acute liver injury. Weanling immature and adult mice were injected with APAP (300 mg/kg). As expected, immature mice were more susceptible than adult mice to APAP-induced acute liver injury. APAP-evoked hepatic c-Jun N-terminal kinase phosphorylation was stronger in immature mice than in adult mice. Hepatic receptor-interacting protein (RIP)1 was obviously activated at APAP-exposed immature and adult mice. Interestingly, hepatic RIP3 activation was more obvious in APAP-treated immature mice than adult mice. Although there was no difference on hepatic GSH metabolic enzymes between immature and adult mice, immature mice were more susceptible than adult mice to APAP-induced hepatic GSH depletion. Of interest, immature mice expressed a much higher level of hepatic Cyp2e1 and Cyp3a11 mRNAs than adult mice. Correspondingly, immature mice expressed a higher level of hepatic CYP2E1, the key drug metabolic enzyme that metabolized APAP into the reactive metabolite NAPQI. These results suggest that a higher level of hepatic drug metabolic enzymes in immature mice than adult mice might contribute to the difference of susceptibility to APAP-induced acute liver injury. PMID:28205631

  18. Modified Protein Improves Vitiligo Symptoms in Mice

    MedlinePlus

    ... 2013 (historical) Modified Protein Improves Vitiligo Symptoms in Mice Altering a key protein involved in the development ... pigmentation loss associated with the skin disorder in mice, according to recent research funded by the NIH’s ...

  19. Stress inoculation modeled in mice

    PubMed Central

    Brockhurst, J; Cheleuitte-Nieves, C; Buckmaster, C L; Schatzberg, A F; Lyons, D M

    2015-01-01

    Stress inoculation entails intermittent exposure to mildly stressful situations that present opportunities to learn, practice and improve coping in the context of exposure psychotherapies and resiliency training. Here we investigate behavioral and hormonal aspects of stress inoculation modeled in mice. Mice randomized to stress inoculation or a control treatment condition were assessed for corticosterone stress hormone responses and behavior during open-field, object-exploration and tail-suspension tests. Stress inoculation training sessions that acutely increased plasma levels of corticosterone diminished subsequent immobility as a measure of behavioral despair on tail-suspension tests. Stress inoculation also decreased subsequent freezing in the open field despite comparable levels of thigmotaxis in mice from both treatment conditions. Stress inoculation subsequently decreased novel-object exploration latencies and reduced corticosterone responses to repeated restraint. These results demonstrate that stress inoculation acutely stimulates glucocorticoid signaling and then enhances subsequent indications of active coping behavior in mice. Unlike mouse models that screen for the absence of vulnerability to stress or presence of traits that occur in resilient individuals, stress inoculation training reflects an experience-dependent learning-like process that resembles interventions designed to build resilience in humans. Mouse models of stress inoculation may provide novel insights for new preventive strategies or therapeutic treatments of human psychiatric disorders that are triggered and exacerbated by stressful life events. PMID:25826112

  20. Humanized mice and tissue transplantation

    PubMed Central

    Kenney, Laurie L; Shultz, Leonard D.; Greiner, Dale L; Brehm, Michael A.

    2017-01-01

    Our understanding of the molecular pathways that control immune responses, particularly immunomodulatory molecules that control the extent and duration of an immune response, have led to new approaches in the field of transplantation immunology to induce allograft survival. These molecular pathways are being defined precisely in murine models, and are now being translated into clinical practice. However, many of the newly available drugs are human-specific reagents and furthermore, there exist many species-specific differences between mouse and human immune systems. Recent advances in the development of humanized mice, i.e., immunodeficient mice engrafted with functional human immune systems, have led to the availability of a small animal model for the study of human immune responses. Humanized mice represent an important pre-clinical model system for evaluation of new drugs as well as identification of the mechanisms underlying human allograft rejection without putting patients at risk. This review highlights recent advances in the development of humanized mice and their use as pre-clinical models for the study of human allograft responses. PMID:26588186

  1. HZE Radiation Leukemogenesis in Mice

    NASA Astrophysics Data System (ADS)

    Peng, Yuanlin

    Radiation exposure is a risk factor for acute myeloid leukemia (AML). The Leukemogenesis NSCOR was developed to compare this risk for low LET vs HZE radiations as a means to better assess the leukemia risk to astronauts posed by space radiation. Individual projects within the NSCOR explore HZE radiation leukemogenesis in murine model systems and extend the findings to AML in humans. AML sensitive CBA/CaJ mice have been irradiated with 1 GeV 56 Fe particles at NSRL and with 137 Cs gamma-rays at Colorado State University and followed to 800 days of age for the development of AML. Molecular and cytogenetic analyses of HZE- and gamma-induced AML, including assays for chromosomal aberrations, PU.1 deletion, gene expression, array CGH and microsatellite instability are ongoing. Preliminary data indicate that 56 Fe particles are no more effective in inducing AML or shortening lifespan than gamma-rays. Studies designed to address the individual molecular steps in leukemogenesis and determine the effects of radiation and genetic background on each step have been initiated using knockout mice. Deletion of the PU.1 gene on mouse chromosome 2 is a critical step in this murine model of radiation leukemogenesis. Two of the three HZE-induced AMLs that could be assayed and thirteen of fourteen γ-induced AMLs had PU.1 loss as determined by Fluorescence in Situ Hybridization (FISH). We have found that AML sensitive CBA/CaJ mice have a higher incidence of Chr. 2 deletion in bone marrow cells following 56 Fe irradiation than AML resistant C57BL/6 mice. This study is being extended to proton irradiated mice. Our preliminary results indicate that microsatellite instability may be common in HZE irradiated progenitor cells. To determine if these cytogenetic changes can be induced in human myeloid progenitor cells by gamma, proton or HZE irradiation we are generating NOD/SCID mice that have been "humanized" by being transplanted with human hematopoietic stem cells. We are currently

  2. Transplacental arsenic carcinogenesis in mice

    SciTech Connect

    Waalkes, Michael P. Liu, Jie; Diwan, Bhalchandra A.

    2007-08-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  3. What Art Three Blind Mice Up To?

    ERIC Educational Resources Information Center

    Peace, Suze

    1998-01-01

    Offers an integrated art lesson in which kindergarten students drew a picture in response to the "Three Blind Mice" using geometric shapes for the mice. Summarizes the technique used to create the mice and focuses on mixing colors to introduce tints and shading to the students. (CMK)

  4. [Model of meningococcal sepsis in mice].

    PubMed

    Krasnoproshina, L I; Ermakova, L G; Belova, T N; Filippov, Iu V; Efimov, D D

    1978-11-01

    The authors studied a possibility of obtaining experimental meningococcus sepsis model on mice. The use of cyclophosphane, iron compounds, yolk medium produced no significant organism. When 4--5% mucine was injected intraperitoneally together with meningococcus culture mice died with sepsis phenomena. Differences were revealed in the sensitivity of linear and mongrel mice to meningococcus infection--AKR mice proved to be more sensitive. At the same time it was found that mongrel mice weighing from 10 to 12 g could be used to induce meningococcus sepsis.

  5. Socially induced morphine pseudosensitization in adolescent mice.

    PubMed

    Hodgson, Stephen R; Hofford, Rebecca S; Roberts, Kris W; Wellman, Paul J; Eitan, Shoshana

    2010-03-01

    Given that social influences are among the strongest predictors of adolescents' drug use, this study examined the effect of social interaction on morphine-induced hyperlocomotion in both adolescent and adult mice. Three experimental groups of adolescent and adult male mice were examined (i) morphine-treated mice (twice daily, 10-40 mg/kg, subcutaneous), (ii) saline-injected mice housed together with the morphine-treated mice ('saline cage-mates'), and (iii) saline-injected mice housed physically and visually separated from the morphine-treated mice ('saline alone'). After the treatment period, mice were tested individually for their locomotor response to 10 mg/kg morphine (subcutaneous). Adolescent saline cage-mates, though administered morphine for the very first time, exhibited an enhanced hyperlocomotion response similar to the locomotor sensitization response exhibited by the morphine-treated mice. This was not observed in adults. In adults, there were no significant differences in morphine-induced hyperlocomotion between saline alone and saline cage-mates. As expected, morphine-treated adults and adolescents both exhibited locomotor sensitization. These results show a vulnerability to social influences in adolescent mice, which does not exist in adult mice.

  6. Progress of MICE RFCC Module

    SciTech Connect

    Li, D.; Bowring, D.; DeMello, A.; Gourlay, S.; Green, M.; Li, N.; Niinikoski, T.; Pan, H.; Prestemon, S.; Virostek, S.; Zisman, M.; Bross, A.; Carcagno, R.; Kashikhin, V.; Sylvester, C.; Chen, A. B.; Guo, Bin; Li, Liyi; Xu, Fengyu; Cao, Y.; Sun, S.; Wang, Li; Yin, Lixin; Luo, Tianhuan; Summers, Don; Smith, B.; Radovinsky, A.; Zhukovsky, A.; Kaplan, D.

    2012-05-20

    Recent progress on the design and fabrication of the RFCC (RF and superconducting Coupling Coil) module for the international MICE (Muon Ionization Cooling Experiment) are reported. The MICE ionization cooling channel has two RFCC modules, each having four 201- MHz normal conducting RF cavities surrounded by one superconducting coupling coil (solenoid) magnet. The magnet is designed to be cooled by three cryocoolers. Fabrication of the RF cavities is complete; preparation for the cavity electro-polishing, low power RF measurements, and tuning are in progress at Lawrence Berkeley National Laboratory (LBNL). Fabrication of the cold mass of the first coupling coil magnet has been completed in China and the cold mass arrived at LBNL in late 2011. Preparations for testing the cold mass are currently under way at Fermilab. Plans for the RFCC module assembly and integration are being developed and are described.

  7. Ca(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington's disease.

    PubMed

    Pellman, Jessica J; Hamilton, James; Brustovetsky, Tatiana; Brustovetsky, Nickolay

    2015-08-01

    We investigated Ca(2+) handling in isolated brain synaptic and non-synaptic mitochondria and in cultured striatal neurons from the YAC128 mouse model of Huntington's disease. Both synaptic and non-synaptic mitochondria from 2- and 12-month-old YAC128 mice had larger Ca(2+) uptake capacity than mitochondria from YAC18 and wild-type FVB/NJ mice. Synaptic mitochondria from 12-month-old YAC128 mice had further augmented Ca(2+) capacity compared with mitochondria from 2-month-old YAC128 mice and age-matched YAC18 and FVB/NJ mice. This increase in Ca(2+) uptake capacity correlated with an increase in the amount of mutant huntingtin protein (mHtt) associated with mitochondria from 12-month-old YAC128 mice. We speculate that this may happen because of mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca(2+)-induced damage. In experiments with striatal neurons from YAC128 and FVB/NJ mice, brief exposure to 25 or 100 μM glutamate produced transient elevations in cytosolic Ca(2+) followed by recovery to near resting levels. Following recovery of cytosolic Ca(2+), mitochondrial depolarization with FCCP produced comparable elevations in cytosolic Ca(2+), suggesting similar Ca(2+) release and, consequently, Ca(2+) loads in neuronal mitochondria from YAC128 and FVB/NJ mice. Together, our data argue against a detrimental effect of mHtt on Ca(2+) handling in brain mitochondria of YAC128 mice. We demonstrate that mutant huntingtin (mHtt) binds to brain synaptic and nonsynaptic mitochondria and the amount of mitochondria-bound mHtt correlates with increased mitochondrial Ca(2+) uptake capacity. We propose that this may happen due to mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca(2+)-induced damage.

  8. Ca2+ Handling in Isolated Brain Mitochondria and Cultured Neurons Derived from the YAC128 Mouse Model of Huntington’s Disease

    PubMed Central

    Pellman, Jessica J.; Hamilton, James; Brustovetsky, Tatiana; Brustovetsky, Nickolay

    2015-01-01

    We investigated Ca2+ handling in isolated brain synaptic and nonsynaptic mitochondria and in cultured striatal neurons from the YAC128 mouse model of Huntington’s disease (HD). Both synaptic and nonsynaptic mitochondria from 2- and 12-month-old YAC128 mice had larger Ca2+ uptake capacity than mitochondria from YAC18 and wild-type FVB/NJ mice. Synaptic mitochondria from 12-month-old YAC128 mice had further augmented Ca2+ capacity compared with mitochondria from 2-month-old YAC128 mice and age-matched YAC18 and FVB/NJ mice. This increase in Ca2+ uptake capacity correlated with an increase in the amount of mutant huntingtin protein (mHtt) associated with mitochondria from 12-month-old YAC128 mice. We speculate that this may happen due to mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca2+-induced damage. In experiments with striatal neurons from YAC128 and FVB/NJ mice, brief exposure to 25 or 100μM glutamate produced transient elevations in cytosolic Ca2+ followed by recovery to near resting levels. Following recovery of cytosolic Ca2+, mitochondrial depolarization with FCCP produced comparable elevations in cytosolic Ca2+, suggesting similar Ca2+ release and, consequently, Ca2+ loads in neuronal mitochondria from YAC128 and FVB/NJ mice. Together, our data argue against a detrimental effect of mHtt on Ca2+ handling in brain mitochondria of YAC128 mice. PMID:25963273

  9. Postnatal Hematopoiesis and Gut Microbiota in NOD Mice Deviate from C57BL/6 Mice

    PubMed Central

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss; Wiese, Maria; Lundsager, Mia; Buschard, Karsten Stig; Hansen, Axel Kornerup; Frøkiær, Hanne

    2016-01-01

    Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND) 1–4 in NOD mice. Furthermore, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface in NOD compared to C57BL/6 mice. PMID:26783537

  10. Idiotypic manipulation in mice: BALB/c mice can express the crossreactive idiotype of A/J mice.

    PubMed Central

    Moser, M; Leo, O; Hiernaux, J; Urbain, J

    1983-01-01

    The response of A/J mice to arsonate-coupled keyhole limpet hemocyanin is characterized by a crossreactive idiotype (CRIA). CRIA+ antibodies are restricted to the Igh-Ic haplotype and are never expressed in BALB/c mice after immunization with antigen. Studies at the DNA level suggest that the gene encoding the CRIA heavy chain in A/J mice is probably absent in the genome of BALB/c mice. Despite this, using the immunization cascade tool, we have been able to induce the expression of CRIA+ antibodies in BALB/c mice. These studies led to an apparent paradox, whose understanding will provide new insights into the regulatory mechanisms of the immune system. We suggest that clones secreting CRIA-like Igs in BALB/c mice are "somatic variants" that could arise from gene conversion events. PMID:6576348

  11. Adoptive transfer of experimental autoimmune hepatitis in mice: cellular interaction between donor and recipient mice

    PubMed Central

    Ogawa, M.; Mori, Y.; Mori, T.; Ueda, S.; Yoshida, H.; Kato, I.; Iesato, K.; Wakashin, Y.; Azemoto, R.; Wakashin, M.; Okuda, K.; Ohto, M.

    1988-01-01

    This report extends our previous study on experimental autoimmune hepatitis in C57BL/6 (B6) mice. Cellular immunity involved in the induction of liver injury in this model was studied by transfer of primed spleen cells from hepatitis donor mice to syngeneic normal recipient mice. The most prominent liver damage in recipient B6 mice was induced by transfer of nylon wool adherent spleen cells from hepatitis donor mice, and T cells in this fraction were the essential requirement for the liver damage in the recipient mice. Nylon wool adherent spleen cells from hepatitis donor mice after depletion of the suppressor T-cell function by low-dose (300 rad) irradiation induced more severe liver injury compared to the same cells without irradiation. When the recipient mice were depleted of lymphocytes by low or high dose (700 rad) whole body irradiation, transfer of primed spleen cells from hepatitis donor mice did not induce liver lesion in the lymphocyte-depleted mice. This low susceptibility of lymphocyte-depleted recipient mice to primed spleen cells of hepatitis mice was no longer demonstrated after reconstitution with normal spleen cells. In a cell-migration study using 51Cr-labelled spleen cells, it was shown that a considerable number of infiltrating cells in the liver of recipient mice were derived from recipient mice themselves. These results seem to indicate that cell-to-cell interaction between radiosensitive precursor cells of recipient mice and liver-antigen-primed T cells from hepatitis donor mice play an essential role in the induction of liver injury in the recipient mice. ImagesFig. 1 PMID:3052945

  12. Musical Electroacupuncture May Be a Better Choice than Electroacupuncture in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Jiang, Jing; Liu, Gang

    2016-01-01

    Objectives. To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer's disease (AD), and normal (N) groups were assessed. Results. The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and Aβ amyloid content in the frontal lobe, compared with the AD group (P < 0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD. Conclusion. MEA therapy may be superior to EA in treating Alzheimer's disease as demonstrated in SAMP8 mice. PMID:27974974

  13. Kanamycin ototoxicity in glutamate transporter knockout mice.

    PubMed

    Shimizu, Yoshitaka; Hakuba, Nobuhiro; Hyodo, Jun; Taniguchi, Masafumi; Gyo, Kiyofumi

    2005-06-03

    Glutamate-aspartate transporter (GLAST), a powerful glutamate uptake system, removes released glutamate from the synaptic cleft and facilitates the re-use of glutamate as a neurotransmitter recycling system. Aminoglycoside-induced hearing loss is mediated via a glutamate excitotoxic process. We investigated the effect of aminoglycoside ototoxicity in GLAST knockout mice using the recorded auditory brainstem response (ABR) and number of hair cells in the cochlea. Kanamycin (100 mg/mL) was injected directly into the posterior semicircular canal of mice. Before the kanamycin treatment, there was no difference in the ABR threshold average between the wild-type and knockout mice. Kanamycin injection aggravated the ABR threshold in the GLAST knockout mice compared with the wild-type mice, and the IHC degeneration was more severe in the GLAST knockout mice. These findings suggest that GLAST plays an important role in preventing the degeneration of inner hair cells in aminoglycoside ototoxicity.

  14. Carcinogenicity of Embedded Tungsten Alloys in Mice

    DTIC Science & Technology

    2007-03-01

    out a two-year protocol in mice based upon NTP guidelines. The uses the B6C3F1 hybrid mouse , a strain commonly used in carcinogenicity and toxicity...the same percentages present in the alloys). Aim 2: Sacrifice mice at various times after alloy implantation to detect early signs of tumor...Alloys in Mice PRINCIPAL INVESTIGATOR: David E. McClain, Ph.D. CONTRACTING ORGANIZATION: Henry M. Jackson Foundation for the

  15. The Mice in Council: An Acquisition Fable

    DTIC Science & Technology

    2012-02-01

    53 Defense AT&L: January–February 2012 The Mice in Council An Acquisition Fable Edward Todd Urbansky, Ph.D. Urbansky is the senior Air Force ...write stories for his three daughters and sometimes for his coworkers. Throughout the day, the field mice went about their lives under constant threat...from the cat who patrolled their grounds and disrupted their ac-tivities. In frustration, the field mice called for a council, to determine the best

  16. Of mice and microflora: considerations for genetically engineered mice.

    PubMed

    Treuting, P M; Clifford, C B; Sellers, R S; Brayton, C F

    2012-01-01

    The phenotype of genetically engineered mice is a combination of both genetic and environmental factors that include the microflora of the mouse. The impact a particular microbe has on a mouse reflects the host-microbe interaction within the context of the mouse genotype and environment. Although often considered a confounding variable, many host-microbe interactions have resulted in the generation of novel model systems and characterization of new microbial agents. Microbes associated with overt disease in mice have been the historical focus of the laboratory animal medical and pathology community and literature. The advent of genetic engineering and the complex of mouse models have revealed previously unknown or disregarded agents that now oblige the attention of the biomedical research community. The purpose of this article is to describe and illustrate how phenotypes can be affected by microflora by focusing on the infectious diseases present in genetically engineered mouse (GEM) colonies of our collective institutions and by reviewing important agents that are rarely seen in most research facilities today. The goal is to introduce the concept of the role of microflora on phenotypes and in translational research using GEM models.

  17. The Gut Microbiota of Wild Mice

    PubMed Central

    Weldon, Laura; Abolins, Stephen; Lenzi, Luca; Bourne, Christian; Riley, Eleanor M.; Viney, Mark

    2015-01-01

    The gut microbiota profoundly affects the biology of its host. The composition of the microbiota is dynamic and is affected by both host genetic and many environmental effects. The gut microbiota of laboratory mice has been studied extensively, which has uncovered many of the effects that the microbiota can have. This work has also shown that the environments of different research institutions can affect the mouse microbiota. There has been relatively limited study of the microbiota of wild mice, but this has shown that it typically differs from that of laboratory mice (and that maintaining wild caught mice in the laboratory can quite quickly alter the microbiota). There is also inter-individual variation in the microbiota of wild mice, with this principally explained by geographical location. In this study we have characterised the gut (both the caecum and rectum) microbiota of wild caught Mus musculus domesticus at three UK sites and have investigated how the microbiota varies depending on host location and host characteristics. We find that the microbiota of these mice are generally consistent with those described from other wild mice. The rectal and caecal microbiotas of individual mice are generally more similar to each other, than they are to the microbiota of other individuals. We found significant differences in the diversity of the microbiotas among mice from different sample sites. There were significant correlations of microbiota diversity and body weight, a measure of age, body-mass index, serum concentration of leptin, and virus, nematode and mite infection. PMID:26258484

  18. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    ERIC Educational Resources Information Center

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  19. MICE Spectrometer Magnet System Progress

    SciTech Connect

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  20. Phenotyping Circadian Rhythms in Mice.

    PubMed

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2015-09-01

    Circadian rhythms take place with a periodicity of 24 hr, temporally following the rotation of the earth around its axis. Examples of circadian rhythms are the sleep/wake cycle, feeding, and hormone secretion. Light powerfully entrains the mammalian clock and assists in keeping animals synchronized to the 24-hour cycle of the earth by activating specific neurons in the "central pacemaker" of the brain, the suprachiasmatic nucleus. Absolute periodicity of an animal can deviate slightly from 24 hr as manifest when an animal is placed into constant dark or "free-running" conditions. Simple measurements of an organism's activity in free-running conditions reveal its intrinsic circadian period. Mice are a particularly useful model for studying circadian rhythmicity due to the ease of genetic manipulation, thus identifying molecular contributors to rhythmicity. Furthermore, their small size allows for monitoring locomotion or activity in their homecage environment with relative ease. Several tasks commonly used to analyze circadian periodicity and plasticity in mice are presented here including the process of entrainment, determination of tau (period length) in free-running conditions, determination of circadian periodicity in response to light disruption (e.g., jet lag studies), and evaluation of clock plasticity in non-24-hour conditions (T-cycles). Studying the properties of circadian periods such as their phase, amplitude, and length in response to photic perturbation, can be particularly useful in understanding how humans respond to jet lag, night shifts, rotating shifts, or other transient or chronic disruption of environmental surroundings.

  1. Teratogenicity of asbestos in mice.

    PubMed

    Fujitani, Tomoko; Hojo, Motoki; Inomata, Akiko; Ogata, Akio; Hirose, Akihiko; Nishimura, Tetsuji; Nakae, Dai

    2014-04-01

    Possible teratogenicity of 3 different asbestos (crocidolite, chrysotile and amosite) was assessed in CD1(ICR) mice. Dams on day 9 of gestation were given a single intraperitoneal administration at dose of 40 mg/kg body weight of asbestos suspended in 2% sodium carboxymethyl cellulose solution in phosphate buffered saline, while dams in the control group were given vehicle (10 ml/kg body weight). Dams and fetuses were examined on day 18 of gestation. To compare with the control group, the mean percentage of live fetuses in implantations in the group given crocidolite and the incidence of dams with early dead fetuses in the groups given chrysotile or amosite were increased. While no external or skeletal malformation was observed in the control group, the incidence of external malformation (mainly reduction deformity of limb) in the group given amosite, and the incidences of skeletal malformation (mainly fusion of vertebrae) in the all dosed groups were significantly increased. The result indicated that asbestos (crocidolite, chrysotile and amosite) have fetotoxicity and teratogenicity in mice.

  2. Euthanasia of neonatal mice with carbon dioxide

    USGS Publications Warehouse

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  3. Abnormal osmotic regulation in trpv4-/- mice

    PubMed Central

    Liedtke, Wolfgang; Friedman, Jeffrey M.

    2003-01-01

    Osmotic homeostasis is one of the most aggressively defended physiological parameters in vertebrates. However, the molecular mechanisms underlying osmotic regulation are poorly understood. The transient receptor potential channel, vanilloid subfamily (TRPV4), is an osmotically activated ion channel that is expressed in circumventricular organs in the mammalian CNS, which is an important site of osmotic sensing. We have generated trpv4-null mice and observed abnormalities of their osmotic regulation. trpv4-/- mice drank less water and became more hyperosmolar than did wild-type littermates, a finding that was seen with and without administration of hypertonic saline. In addition, plasma levels of antidiuretic hormone were significantly lower in trpv4-/- mice than in wild-type littermates after a hyperosmotic challenge. Continuous s.c. infusion of the antidiuretic hormone analogue, dDAVP, resulted in systemic hypotonicity in trpv4-/- mice, despite the fact that their renal water reabsorption capacity was normal. Thus, the response to both hyper- and hypoosmolar stimuli is impaired in trpv4-/- mice. After a hyperosmolar challenge, there was markedly reduced expression of c-FOS in the circumventricular organ, the organum vasculosum of the lamina terminalis, of trpv4-/- mice compared with wild-type mice. This finding suggests that there is an impairment of osmotic sensing in the CNS of trpv4-/- mice. These data indicate that TRPV4 is necessary for the normal response to changes in osmotic pressure and functions as an osmotic sensor in the CNS. PMID:14581612

  4. Adult neurogenesis in serotonin transporter deficient mice.

    PubMed

    Schmitt, A; Benninghoff, J; Moessner, R; Rizzi, M; Paizanis, E; Doenitz, C; Gross, S; Hermann, M; Gritti, A; Lanfumey, L; Fritzen, S; Reif, A; Hamon, M; Murphy, D L; Vescovi, A; Lesch, K-P

    2007-09-01

    Serotonin (5-HT) is a regulator of morphogenetic activities during early brain development and neurogenesis, including cell proliferation, migration, differentiation, and synaptogenesis. The 5-HT transporter (5-HTT, SLC6A4) mediates high-affinity reuptake of 5-HT into presynaptic terminals and thereby fine-tunes serotonergic neurotransmission. Inactivation of the 5-HTT gene in mice reduces 5-HT clearance resulting in persistently increased concentrations of synaptic 5-HT. In the present study, we investigated the effects of elevated 5-HT levels on adult neurogenesis in the hippocampus of 5-HTT deficient mice, including stem cell proliferation, survival, and differentiation. Using an in vivo approach, we showed an increase in proliferative capacity of hippocampal adult neural stem cells in aged 5-HTT knockout mice (approximately 14.5 months) compared to wildtype controls. In contrast, in vivo and additional in vitro analyses of younger adult 5-HTT knockout mice (approximately 7 weeks and approximately 3.0 months) did not reveal significant changes in proliferation of neural stem cells or survival of newborn cells. We showed that the cellular fate of newly generated cells in 5-HTT knockout mice is not different with respect to the total number and percentage of neurons or glial cells from wildtype controls. Our findings indicate that elevated synaptic 5-HT concentration throughout early development and later life of 5-HTT deficient mice does not induce adult neurogenesis in adult mice, but that elevated 5-HT levels in aged mice influence stem cell proliferation.

  5. Age-Related Alterations in the Metabolic Profile in the Hippocampus of the Senescence-Accelerated Mouse Prone 8: A Spontaneous Alzheimer's Disease Mouse Model

    PubMed Central

    Wang, Hualong; Lian, Kaoqi; Han, Bing; Wang, Yanyong; Kuo, Sheng-Han; Geng, Yuan; Qiang, Jing; Sun, Meiyu; Wang, Mingwei

    2015-01-01

    Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD. PMID:24284365

  6. Bangle (Zingiber purpureum) Improves Spatial Learning, Reduces Deficits in Memory, and Promotes Neurogenesis in the Dentate Gyrus of Senescence-Accelerated Mouse P8.

    PubMed

    Nakai, Megumi; Iizuka, Michiro; Matsui, Nobuaki; Hosogi, Kazuko; Imai, Akiko; Abe, Noriaki; Shiraishi, Hisashi; Hirata, Ayumu; Yagi, Yusuke; Jobu, Kohei; Yokota, Junko; Kato, Eishin; Hosoda, Shinya; Yoshioka, Saburo; Harada, Kenichi; Kubo, Miwa; Fukuyama, Yoshiyasu; Miyamura, Mitsuhiko

    2016-05-01

    Bangle (Zingiber purpureum) is a tropical ginger that is used as a spice in Southeast Asia. Phenylbutenoid dimers isolated from Bangle have exhibited neurotrophic effects in primary cultured rat cortical neurons and PC12 cells. Furthermore, chronic treatment with phenylbutenoid dimers enhances hippocampal neurogenesis in olfactory bulbectomized mice. In this study, we investigated the effects of Bangle extract on behavior and hippocampal neurogenesis in vivo. SAMP8 mice, which are an established model for accelerated aging, with age-related learning and memory impairments, were given a Bangle-containing diet for 1 month, and subsequent behavioral tests and immunohistochemistry for Ki67, a proliferating cell marker, were performed. We found that the Bangle-containing diet improved spatial learning and memory deficits in the Morris water maze and significantly increased the numbers of Ki67-positive cells in the dentate gyrus of the SAMP8 mice. In addition, the Bangle extract exhibited a neurotrophin-like activity as indicated by the induction of neurite sprouting in PC12 cells. Our results suggest that Bangle is beneficial for the prevention of age-related progression of cognitive impairment.

  7. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer's disease.

    PubMed

    Moreno, Lina Clara Gayoso E Ibiapina; Puerta, Elena; Suárez-Santiago, José Eduardo; Santos-Magalhães, Nereide Stela; Ramirez, Maria J; Irache, Juan M

    2017-01-30

    Quercetin has been identified as a promising compound with a neuroprotective potential against age-related neurodegenerative diseases such as Alzheimer's disease (AD). Nevertheless, the clinical application of quercetin is hampered by its low oral bioavailability. The aim of this work was to evaluate the capability of nanoencapsulated quercetin in zein nanoparticles (NPQ), that significantly improves the oral absorption and bioavailability of the flavonoid, as potential oral treatment for AD. For this purpose, SAMP8 mice were orally treated for two months with either NPQ (25mg/kg every 48h) or a solution of quercetin (Q; 25mg/kg daily). NPQ displayed a size of 260nm and a payload of about 70μg/mg. For Q, no significant effects were observed in animals. On the contrary, the oral administration of NPQ improved the cognition and memory impairments characteristics of SAMP8 mice. These observations appeared to be related with a decreased expression of the hippocampal astrocyte marker GFAP. Furthermore, significant levels of quercetin were quantified in the brain of mice treated with nanoparticles. These findings highlight the potential of zein nanoparticles to promote the oral absorption of quercetin as well as the therapeutic potential of this flavonoid in AD pathogenesis.

  8. Video-oculography in mice.

    PubMed

    de Jeu, Marcel; De Zeeuw, Chris I

    2012-07-19

    performance as well as plasticity of the oculomotor system can be tested, allowing research on learning and memory processes. Genetically modified mice are nowadays widely available and they form an important source for the exploration of brain functions at various levels. In addition, they can be used as models to mimic human diseases. Applying oculography on normal, pharmacologically-treated or genetically modified mice is a powerful research tool to explore the underlying physiology of motor behaviors under normal and pathological conditions. Here, we describe how to measure video-oculography in mice.

  9. Video-oculography in Mice

    PubMed Central

    de Jeu, Marcel; De Zeeuw, Chris I.

    2012-01-01

    performance as well as plasticity of the oculomotor system can be tested, allowing research on learning and memory processes9. Genetically modified mice are nowadays widely available and they form an important source for the exploration of brain functions at various levels10. In addition, they can be used as models to mimic human diseases. Applying oculography on normal, pharmacologically-treated or genetically modified mice is a powerful research tool to explore the underlying physiology of motor behaviors under normal and pathological conditions. Here, we describe how to measure video-oculography in mice8. PMID:22847328

  10. Pion contamination in the MICE muon beam

    SciTech Connect

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J. -B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  11. Pion contamination in the MICE muon beam

    NASA Astrophysics Data System (ADS)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  12. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  13. Transmitochondrial mito-miceΔ and mtDNA mutator mice, but not aged mice, share the same spectrum of musculoskeletal disorders.

    PubMed

    Mito, Takayuki; Ishizaki, Hikari; Suzuki, Michiko; Morishima, Hitomi; Ota, Azusa; Ishikawa, Kaori; Nakada, Kazuto; Maeno, Akiteru; Shiroishi, Toshihiko; Hayashi, Jun-Ichi

    2015-01-24

    The spectra of phenotypes associated with aging and mitochondrial diseases sometimes appear to overlap with each other. We used aged mice and a mouse model of mitochondrial diseases (transmitochondrial mito-miceΔ with deleted mtDNA) to study whether premature aging phenotypes observed in mtDNA mutator mice are associated with aging or mitochondrial diseases. Here, we provide convincing evidence that all the mice examined had musculoskeletal disorders of osteoporosis and muscle atrophy, which correspond to phenotypes prevalently observed in the elderly. However, precise investigation of musculoskeletal disorders revealed that the spectra of osteoporosis and muscle atrophy phenotypes in mtDNA mutator mice were very close to those in mito-miceΔ, but different from those of aged mice. Therefore, mtDNA mutator mice and mito-miceΔ, but not aged mice, share the spectra of musculoskeletal disorders.

  14. Phenotyping Circadian Rhythms in Mice

    PubMed Central

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2015-01-01

    Circadian rhythms take place with a periodicity of twenty-four hours, temporally following the rotation of the earth around its axis. Examples of circadian rhythms are the sleep/wake cycle, feeding, and hormone secretion. Light powerfully entrains the mammalian clock and assists in keeping animals synchronized to the 24-hour cycle of the earth by activating specific neurons in the “central pacemaker” of the brain, the suprachiasmatic nucleus. Absolute periodicity of an animal can deviate slightly from 24 hours as manifest when an animal is placed into constant dark- or “free running”- conditions. Simple measurements of an organism's activity in free running conditions reveal its intrinsic circadian period. Mice are a particularly useful model for studying circadian rhythmicity due to the ease of genetic manipulation, thus identifying molecular contributors to rhythmicity. Furthermore, their small size allows for monitoring locomotion or activity in their home cage environment with relative ease. Several tasks commonly used to analyze circadian periodicity and plasticity in mice are outlined here including the process of entrainment, determination of tau (period length) in free running conditions, determination of circadian periodicity in response to light disruption (i.e. jet lag studies), and evaluation of clock plasticity in non-twenty-four hour conditions (T-cycles). Studying the properties of circadian periods such as their phase, amplitude, and length in response to photic perturbation, can be particularly useful in understanding how humans respond to jet lag, night shifts, rotating shifts, or other transient or chronic disruption of one's environmental surroundings. PMID:26331760

  15. Experimental anisakid infections in mice.

    PubMed

    Vericimo, M A; Figueiredo, I; Teixeira, G A P B; Clemente, S C São

    2015-09-01

    Anisakidosis is a human parasitic disease caused by infections with members of the Anisakidae family. Accidental infection after fish intake affects the gastrointestinal tract as a consequence of mechanical damage caused by migrating larvae. Infections can also trigger allergies, hives, severe asthma or anaphylaxis with angioedema. Although mouse models of intraperitoneal antigenic stimulation exist, enabling immunological studies, few models using gastric introduction of live larvae are available for the study of immunological and gastrointestinal damage in mice. This study was designed to characterize serum reactivity against Anisakis spp. and Contracaecum spp. in Balb/c mice following orogastric inoculation and to assess gastrointestinal damage. These anisakid species were classified at the Universidade Federal Fluminense (UFF) School of Veterinary Medicine and materials for live larval inoculation were developed at the UFF Immunobiology laboratory. Live larvae were inoculated following injection with a NaCl solution. Blood samples were collected and sera screened for immunoglobulin (Ig)E and IgG anti-larva responses to both nematodes, specific for somatic and excretory/secretory antigens, by enzyme-linked immunosorbent assay (ELISA). The means of the optical densities were analysed using analysis of variance (ANOVA) with Tukey's post-hoc test and the general linear model. This analysis identified the presence of anti-IgG seroreactivity to both somatic and excretory/secretory Anisakis antigens in inoculated animals compared with controls (P< 0.001), and no gastric or intestinal damage was observed. These experiments demonstrated that introduction of live Contracaecum spp. into the gastrointestinal tract did not elicit serum sensitization in animals.

  16. Hearing Dysfunction in Xpa-Deficient Mice

    PubMed Central

    Shinomiya, Hitomi; Yamashita, Daisuke; Fujita, Takeshi; Nakano, Eiji; Inokuchi, Go; Hasegawa, Shingo; Otsuki, Naoki; Nishigori, Chikako; Nibu, Ken-ichi

    2017-01-01

    Xeroderma pigmentosum (XP) is a rare recessive heredity disease caused by DNA repair impairment characterized by photosensitivity and neurologic symptoms in half of the cases. There are eight subtypes of XP: XP-A–XP-G and XP variant. Among eight subtypes, XP complementation group A (XP-A) display the lowest DNA repair ability and the severest cutaneous and neurologic symptoms. While its pathogenesis of skin symptoms have been well-studied, that of neurological symptoms, including sensorineural hearing loss (SNHL) remains unknown. Basic studies have suggested that SNHL may be caused by inner ear damage, including damage to the spiral ganglion neurons and organ of Corti, and that the XP-A is associated with most severe form of SNHL in humans. Here, we report the occurrence of SNHL in Xpa-deficient mice. Xpa-deficient mice and wild-type mice underwent measurements for auditory brainstem response, and the results revealed that Xpa-deficient mice exhibited significantly greater (p < 0.01) ABR thresholds at 4, 8, and 16 kHz than the wild-type mice. Furthermore, the number of spiral ganglion neurons was reduced in Xpa-deficient mice compared with that in wild-type mice, indicating that hearing loss may be related to spiral ganglion neuron deficiency, consistent with the few reports published in human patients with XP. These results provide important insights into the pathogenesis of SNHL in patients with XP-A. PMID:28239347

  17. Critical periods for behavioral anomalies in mice.

    PubMed Central

    Rodier, P M

    1976-01-01

    While mice have been used less frequently than rats in behavioral research, there use has some advantages in teratological studies. The development of the mouse CNS has been investigated more extensively than that of the rat. Since time of insult has been found to be an important factor in effects on both anatomy and behavior, data on the sequence of events in CNS development are valuable in planning and interpreting behavioral assessments of potential teratogens. A comparison of studies in mice and rats suggests that behavioral effects of teratogens are similar in the two species and demonstrates that mice can be used successfully in a variety of behavioral evaluations. PMID:71232

  18. The fate of spermatogonial stem cells in the cryptorchid testes of RXFP2 deficient mice.

    PubMed

    Ferguson, Lydia; How, Javier J; Agoulnik, Alexander I

    2013-01-01

    The environmental niche of the spermatogonial stem cell pool is critical to ensure the continued generation of the germ cell population. To study the consequences of an aberrant testicular environment in cryptorchidism we used a mouse model with a deletion of Rxfp2 gene resulting in a high intra-abdominal testicular position. Mutant males were infertile with the gross morphology of the cryptorchid testis progressively deteriorating with age. Few spermatogonia were identifiable in 12 month old cryptorchid testes. Gene expression analysis showed no difference between mutant and control testes at postnatal day 10. In three month old males a decrease in expression of spermatogonial stem cell (SSC) markers Id4, Nanos2, and Ret was shown. The direct counting of ID4+ cells supported a significant decrease of SSCs. In contrast, the expression of Plzf, a marker for undifferentiated and differentiating spermatogonia was not reduced, and the number of PLZF+ cells in the cryptorchid testis was higher in three month old testes, but equal to control in six month old mutants. The PLZF+ cells did not show a higher rate of apoptosis in cryptorchid testis. The expression of the Sertoli cell FGF2 gene required for SSC maintenance was significantly reduced in mutant testis. Based on these findings we propose that the deregulation of somatic and germ cell genes in the cryptorchid testis, directs the SSCs towards the differentiation pathway. This leads to a depletion of the SSC pool and an increase in the number of PLZF+ spermatogonial cells, which too, eventually decreases with the exhaustion of the stem cell pool. Such a dynamic suggests that an early correction of cryptorchidism is critical for the retention of the SSC pool.

  19. Recovery of immunological responsiveness in thymectomized mice

    PubMed Central

    Dukor, P.; Dietrich, F. M.; Rosenthal, M.

    1966-01-01

    After a limited period of immunological unresponsiveness, neonatally thymectomized colony-bred Swiss mice were found to recover their ability to form haemagglutinins and haemolysins as well as their antibody-plaque-forming capacity following injection of sheep erythrocytes. No such spontaneous reconstitution was observed in F1-hybrids of highly inbred CBA and CBA-T6T6 mice. Adult thymectomized and irradiated Swiss mice similarly regained their ability to form haemolysins and haemagglutinins, but no regeneration of antibody-plaque production occurred in these mice during the period of observation. No regular correlation was found between the degree of immunological deficiency on the one hand and the level of circulating lymphocytes or the histological appearance of the spleens on the other, following neonatal thymectomy or adult thymectomy and irradiation. The possible mechanism of recovery from immunological impairment after thymectomy and the apparent discrepancies between overall haemolysin production and haemolytic plaque production in the spleen are discussed. PMID:5969684

  20. Social transfer of pain in mice

    PubMed Central

    Smith, Monique L.; Hostetler, Caroline M.; Heinricher, Mary M.; Ryabinin, Andrey E.

    2016-01-01

    A complex relationship exists between the psychosocial environment and the perception and experience of pain, and the mechanisms of the social communication of pain have yet to be elucidated. The present study examined the social communication of pain and demonstrates that “bystander” mice housed and tested in the same room as mice subjected to inflammatory pain or withdrawal from morphine or alcohol develop corresponding hyperalgesia. Olfactory cues mediate the transfer of hyperalgesia to the bystander mice, which can be measured using mechanical, thermal, and chemical tests. Hyperalgesia in bystanders does not co-occur with anxiety or changes in corticosterone and cannot be explained by visually dependent emotional contagion or stress-induced hyperalgesia. These experiments reveal the multifaceted relationship between the social environment and pain behavior and support the use of mice as a model system for investigating these factors. In addition, these experiments highlight the need for proper consideration of how experimental animals are housed and tested. PMID:27774512

  1. Intranasal immunization of mice against Pasteurella multocida.

    PubMed Central

    Smith, R H; Babiuk, L A; Stockdale, P H

    1981-01-01

    A potassium thiocyanate (KSCN) extract of Pasteurella multocida serotype III:A was shown to protect mice from an intranasal challenge with up to 300 50% lethal doses of P. multocida. In addition to preventing death, bacteria were rapidly cleared from the lungs of immunized mice so that by 72 to 96 h postchallenge no bacteria were present in the lungs of immunized mice, whereas up to 10(9) bacteria were present in lungs of nonimmunized mice. Immunization by the intranasal route was slightly better than that by the intramuscular route. Protection was considered specific, since immunization with P. multocida protected only against P. multocida and not against Salmonella agona. Furthermore, a similar KSCN extract from P. haemolytica did not protect against P. multocida challenge. A comparison of the KSCN extract with a Formalin-killed bacterin suggested that the KSCN extract may be superior to the bacterin. PMID:7216441

  2. Zika Infection Shrinks Testicles in Mice

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_163733.html Zika Infection Shrinks Testicles in Mice Study authors unsure ... 22, 2017 WEDNESDAY, Feb. 22, 2017 (HealthDay News) -- Zika virus can be sexually transmitted through semen, and ...

  3. Electroencephalographic changes with age in male mice.

    PubMed

    Eleftheriou, B E; Zolovick, A J; Elias, M F

    1975-01-01

    Electroencephalographic (EEG) changes, as measured by the awake state, slow-wave sleep (SWS), rapid-eye movement (REM) patterns and ratio of REM/total sleep, were recorded in aging male mice of DBA/2J and C57BL/6J strains. Results indicate that there is a significant increase in the awake state accompanied by significant decrease in SWS with advancing age for both strains, although these changes appear more pronounced in DBA/2J mice than C57BL/6J mice. Of considerable significance is the finding that REM sleep is absent in mice of DBA/2J strain at 23.5 months of age. Based on these findings, the conclusion was reached that strain DBA/2J ages significantly faster than C57BL/6J. The difference in aging between the two strains emphasizes the need for additional studies dealing with genetic aspects of aging.

  4. Deoxyspergualin is a new radioprotector in mice

    SciTech Connect

    Nemoto, Kyuichi; Horiuchi, Kazuyuki; Miyamoto, Tadaaki

    1995-02-01

    A novel immunosuppressant, deoxyspergualin, given at doses of 2.5 to 20 mg/kg/day on days -3, -2 and -1 before X irradiation protected BALB/c mice from the lethal effects of radiation in a dose-dependent manner. The dose of radiation that killed 50% of the mice within 30 days was 5.63 Gy for mice receiving radiation alone, but was 7.13 Gy in the mice given deoxyspergualin at 20 mg/kg. Prior administration of deoxyspergualin ameliorated leukopenia and thrombocytopenia induced by sublethal irradiation, and significantly increased the number of femoral spleen colony-forming units (CFU-S) that survived irradiation. Deoxyspergualin also reduced the proportion of CFU-S in S phase, as determined by in vitro sensitivity to hydroxyurea. These findings suggest that deoxyspergualin may be effective in the prevention of hematopoietic injury caused by radiotherapy. 15 refs., 1 fig., 3 tabs.

  5. Aging Selectively Modulates Vitamin C Transporter Expression Patterns in the Kidney.

    PubMed

    Forman, Katherine; Martínez, Fernando; Cifuentes, Manuel; Bertinat, Romina; Salazar, Katterine; Nualart, Francisco

    2016-07-27

    In the kidney, vitamin C is reabsorbed from the glomerular ultrafiltrate by sodium-vitamin C cotransporter isoform 1 (SVCT1) located in the brush border membrane of the proximal tubules. Although we know that vitamin C levels decrease with age, the adaptive physiological mechanisms used by the kidney for vitamin C reabsorption during aging remain unknown. In this study, we used an animal model of accelerated senescence (SAMP8 mice) to define the morphological alterations and aging-induced changes in the expression of vitamin C transporters in renal tissue. Aging induced significant morphological changes, such as periglomerular lymphocytic infiltrate and glomerular congestion, in the kidneys of SAMP8 mice, although no increase in collagen deposits was observed using 2-photon microscopy analysis and second harmonic generation. The most characteristic histological alteration was the dilation of intracellular spaces in the basolateral region of proximal tubule epithelial cells. Furthermore, a combination of laser microdissection, qRT-PCR and immunohistochemical analyses allowed us to determine that SVCT1 expression specifically increased in the proximal tubules from the outer strip of the outer medulla (segment S3) and cortex (segment S2) during aging and that these tubules also express GLUT1. We conclude that aging modulates vitamin C transporter expression and that renal over-expression of SVCT1 enhances vitamin C reabsorption in aged animals that may synthesize less vitamin C. This article is protected by copyright. All rights reserved.

  6. MICE: a mouse imaging collaboration environment

    NASA Astrophysics Data System (ADS)

    Szymanski, Jacek; Flask, Chris; Wilson, David; Johnson, David; Muzic, Raymond F., Jr.; Zhang, Guo-Qiang

    2006-03-01

    With the ever-increasing complexity of science and engineering, many important research problems are being addressed by collaborative, multidisciplinary teams. We present a web-based collaborative environment for small animal imaging research, called the Mouse Imaging Collaboration Environment (MICE). MICE provides an effective and user-friendly tool for managing and sharing of the terabytes of high-resolution and high-dimension image data generated at small animal imaging core facilities. We describe the design of MICE and our experience in the implementation and deployment of a beta-version baseline-MICE. The baseline-MICE provides an integrated solution from image data acquisition to end-user access and long-term data storage at our UH/Case Small Animal Imaging Resource Center. As image data is acquired from scanners, it is pushed to the MICE server which automatically stores it in a directory structure according to its DICOM metadata. The directory structure reflects imaging modality, principle investigators, animal models, scanning dates and study details. Registered end-users access this imaging data through an authenticated web-interface. Thumbnail images are created by custom scripts running on the MICE server while data down-loading is achieved through standard web-browser ftp. MICE provides a security infrastructure that manages user roles, their access privileges such as read/write, and the right to modify the access privileges. Additional data security measures include a two server paradigm with the Web access server residing outside a network firewall to provide access through the Internet, and the imaging data server - a large RAID storage system supporting flexible backup policies - residing behind the protected firewall with a dedicated link to the Web access server. Direct network link to the RAID storage system outside the firewall other than this dedicated link is not permitted. Establishing the initial image directory structure and letting the

  7. Responses of Male C57BL/6N Mice to Observing the Euthanasia of Other Mice

    PubMed Central

    Boivin, Gregory P; Bottomley, Michael A; Grobe, Nadja

    2016-01-01

    The AVMA Panel on Euthanasia recommends that sensitive animals should not be present during the euthanasia of others, especially of their own species, but does not provide guidelines on how to identify a sensitive species. To determine if mice are a sensitive species we reviewed literature on empathy in mice, and measured the cardiovascular and activity response of mice observing euthanasia of conspecifics. We studied male 16-wk-old C57BL/6N mice and found no increase in cardiovascular parameters or activity in the response of the mice to observing CO2 euthanasia. Mice observing decapitation had an increase in all values, but this was paralleled by a similar increase during mock decapitations in which no animals were handled or euthanized. We conclude that CO2 euthanasia of mice does not have an impact on other mice in the room, and that euthanasia by decapitation likely only has an effect due to the noise of the guillotine. We support the conceptual idea that mice are both a sensitive species and display empathy, but under the controlled circumstances of the euthanasia procedures used in this study there was no signaling of stress to witnessing inhabitants in the room. PMID:27423146

  8. Normal Conducting RF Cavity for MICE

    SciTech Connect

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-05-23

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  9. Aerosol infection of mice with Bordetella pertussis.

    PubMed Central

    Sato, Y; Izumiya, K; Sato, H; Cowell, J L; Manclark, C R

    1980-01-01

    Aerosol inhalation of Bordetella pertussis Tohama phase I resulted in a reproducible and uniform infection of mice (strain DDY or ICR). Mice in groups of 10 exposed for 30 min to aerosols generated from bacterial suspensions of 10(9) and 10(10) organisms per ml resulted in mean bacterial counts of 2.3 (+/- 0.3) X 10(4) and 1.0 (+/- 0.3) X 10(5) colony-forming units, respectively, in the lung of each animal. Subsequent studies using a 30-min aerosol inoculation of ICR mice with 2 X 10(9) bacterial cells per ml showed: (i) B. pertussis cells reached a maximum of about 10(7) colony-forming units per lung 14 days after inhalation. (ii) Deaths (10 to 100%, depending on mouse age) occurred 10 to 14 days after exposure. (iii) The lung weight and the leukocyte count increased from basal values of 100 mg and 10(4) leukocytes per mm3 to a plateau of 950 mg and 1.95 X 10(5) leukocytes per mm3, respectively, 14 days after challenge. (iv) There was a significantly reduced rate of body weight gain by infected mice compared to noninfected mice. (v) With mortality as the criterion for disease, susceptibility varied with the age of mice as follows: 10 days old greater than 18 greater than 28 greater than 49. (vi) Bacteria were associated with ciliated respiratory epithelial cells by scanning electron microscopy. Images Fig. 4 PMID:6249758

  10. A Study of Statistical Errors in MICE

    SciTech Connect

    Forrest, D.; Soler, F. J. P.

    2010-03-30

    The Muon Ionization Cooling Experiment (MICE) will measure ionization cooling from a beam of muons at the Rutherford Appleton Laboratory in the UK. The aim of MICE is to measure a fractional drop in emittance, due to ionization cooling, of order 10% for a range of emittances and momenta, to an accuracy of 1%. A greater understanding of the statistical (as well as systematic) errors on emittance measurement in MICE is paramount to meeting this goal.This paper describes a study aimed at exploiting the computing power of the Grid to determine the number of muons necessary to meet the scientific goals of MICE. In this study, tens of thousands of G4MICE Monte Carlo simulations were run to determine the scaling laws that govern the fractional change in emittance as a function of the number of muons (N) in the simulation. By varying random conditions, the standard deviation of these distributions was studied as a function of N. The results of the study indicate that, due to the effect of correlations, of order 10{sup 5} muons are required to meet the goal of MICE for large emittance beams, without which 10{sup 6} would be required.

  11. Hypothyroidism compromises hypothalamic leptin signaling in mice.

    PubMed

    Groba, Claudia; Mayerl, Steffen; van Mullem, Alies A; Visser, Theo J; Darras, Veerle M; Habenicht, Andreas J; Heuer, Heike

    2013-04-01

    The impact of thyroid hormone (TH) on metabolism and energy expenditure is well established, but the role of TH in regulating nutritional sensing, particularly in the central nervous system, is only poorly defined. Here, we studied the consequences of hypothyroidism on leptin production as well as leptin sensing in congenital hypothyroid TRH receptor 1 knockout (Trhr1 ko) mice and euthyroid control animals. Hypothyroid mice exhibited decreased circulating leptin levels due to a decrease in fat mass and reduced leptin expression in white adipose tissue. In neurons of the hypothalamic arcuate nucleus, hypothyroid mice showed increased leptin receptor Ob-R expression and decreased suppressor of cytokine signaling 3 transcript levels. In order to monitor putative changes in central leptin sensing, we generated hypothyroid and leptin-deficient animals by crossing hypothyroid Trhr1 ko mice with the leptin-deficient ob/ob mice. Hypothyroid Trhr1/ob double knockout mice showed a blunted response to leptin treatment with respect to body weight and food intake and exhibited a decreased activation of phospho-signal transducer and activator of transcription 3 as well as a up-regulation of suppressor of cytokine signaling 3 upon leptin treatment, particularly in the arcuate nucleus. These data indicate alterations in the intracellular processing of the leptin signal under hypothyroid conditions and thereby unravel a novel mode of action by which TH affects energy metabolism.

  12. Palmoplantar Keratoderma in Slurp2-Deficient Mice.

    PubMed

    Allan, Christopher M; Procaccia, Shiri; Tran, Deanna; Tu, Yiping; Barnes, Richard H; Larsson, Mikael; Allan, Bernard B; Young, Lorraine C; Hong, Cynthia; Tontonoz, Peter; Fong, Loren G; Young, Stephen G; Beigneux, Anne P

    2016-02-01

    SLURP1, a member of the lymphocyte antigen 6 protein family, is secreted by suprabasal keratinocytes. Mutations in SLURP1 cause a palmoplantar keratoderma (PPK) known as mal de Meleda. SLURP2, another secreted lymphocyte antigen 6 protein, is encoded by a gene located ?20 kb downstream from SLURP1. SLURP2 is produced by suprabasal keratinocytes. To investigate the importance of SLURP2, we first examined Slurp2 knockout mice in which exon 2-3 sequences had been replaced with lacZ and neo cassettes. Slurp2(-/-) mice exhibited hyperkeratosis on the volar surface of the paws (i.e., palmoplantar keratoderma), increased keratinocyte proliferation, and an accumulation of lipid droplets in the stratum corneum. They also exhibited reduced body weight and hind limb clasping. These phenotypes are similar to those of Slurp1(-/-) mice. To solidify a link between Slurp2 deficiency and palmoplantar keratoderma and to be confident that the disease phenotypes in Slurp2(-/-) mice were not secondary to the effects of the lacZ and neo cassettes on Slurp1 expression, we created a new line of Slurp2 knockout mice (Slurp2X(-/-)) in which Slurp2 was inactivated with a simple nonsense mutation. Slurp2X(-/-) mice exhibited the same disease phenotypes. Thus, Slurp2 deficiency and Slurp1 deficiencies cause the same disease phenotypes.

  13. Plasminogen promotes macrophage phagocytosis in mice.

    PubMed

    Das, Riku; Ganapathy, Swetha; Settle, Megan; Plow, Edward F

    2014-07-31

    The phagocytic function of macrophages plays a pivotal role in eliminating apoptotic cells and invading pathogens. Evidence implicating plasminogen (Plg), the zymogen of plasmin, in phagocytosis is extremely limited with the most recent in vitro study showing that plasmin acts on prey cells rather than on macrophages. Here, we use apoptotic thymocytes and immunoglobulin opsonized bodies to show that Plg exerts a profound effect on macrophage-mediated phagocytosis in vitro and in vivo. Plg enhanced the uptake of these prey by J774A.1 macrophage-like cells by 3.5- to fivefold Plg receptors and plasmin proteolytic activity were required for phagocytosis of both preys. Compared with Plg(+/+) mice, Plg(-/-) mice exhibited a 60% delay in clearance of apoptotic thymocytes by spleen and an 85% reduction in uptake by peritoneal macrophages. Phagocytosis of antibody-mediated erythrocyte clearance by liver Kupffer cells was reduced by 90% in Plg(-/-) mice compared with Plg(+/+) mice. A gene array of splenic and hepatic tissues from Plg(-/-) and Plg(+/+) mice showed downregulation of numerous genes in Plg(-/-) mice involved in phagocytosis and regulation of phagocytic gene expression was confirmed in macrophage-like cells. Thus, Plg may play an important role in innate immunity by changing expression of genes that contribute to phagocytosis.

  14. Quantification of alcohol drinking patterns in mice.

    PubMed

    Eisenhardt, Manuela; Leixner, Sarah; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-01

    The use of mice in alcohol research provides an excellent model system for a better understanding of the genetics and neurobiology of alcohol addiction. Almost 60 years ago, alcohol researchers began to test strains of mice for alcohol preference and intake. In particular, various voluntary alcohol drinking paradigms in the home cage were developed. In mouse models of voluntary oral alcohol consumption, animals have concurrent access to water and either one or several concentrated alcohol solutions in their home cages. Although these models have high face validity, many experimental conditions require a more precise monitoring of alcohol consumption in mice in order to capture the role of specific strains or genes, or any other manipulation on alcohol drinking behavior. Therefore, we have developed a fully automated, highly precise monitoring system for alcohol drinking in mice in the home cage. This system is now commercially available. We show that this drinkometer system allows for detecting differences in drinking behavior (i) in transgenic mice, (ii) following alcohol deprivation, and (iii) following stress applications that are usually not detected by classical home-cage drinking paradigms. In conclusion, our drinkometer system allows disturbance-free and high resolution monitoring of alcohol drinking behavior. In particular, micro-drinking and circadian drinking patterns can be monitored in genetically modified and inbred strains of mice after environmental and pharmacological manipulation, and therefore this system represents an improvement in measuring behavioral features that are of relevance for the development of alcohol use disorders.

  15. Loss of CB1 receptors leads to differential age-related changes in reward-driven learning and memory

    PubMed Central

    Albayram, Onder; Bilkei-Gorzo, Andras; Zimmer, Andreas

    2012-01-01

    Previous studies have shown that cannabinoid 1 (CB1) receptor signaling dissociates between reward-associated and aversive memories. The influence of CB1 receptors on the aversion-driven spatial learning in the Morris water maze test is strongly age-dependent: mice with genetic deletion of CB1 receptors (Cnr1−/−) show superior learning when young but inferior learning when old compared to age-matched wild-type mice. Whether the reward-driven spatial learning is influenced in the same way by CB1 receptor signaling as the aversion-driven learning remains unclear. Thus, we examined the performance of Cn1−/− and their wild-type littermates at ages of 2-, 5-, and 12-months-old in the eight-arm radial maze test—a reward-motivated model of spatial learning. Interestingly, 2-months-old Cnr1−/− mice had a superior learning ability to wild-type mice. At the age of 5-months, Cnr1−/− mice showed the same performance as the wild-type littermates. However, 12-months-old Cnr1−/− mice showed significantly impaired performances in each parameter of the test. Accordingly, this study provides compelling support for our previous result that genetic deletion of CB1 receptor leads to early onset of age-related memory decline, similarly affecting both reward and aversion-driven learning. PMID:23227007

  16. Dysfunctional dopaminergic neurotransmission in asocial BTBR mice

    PubMed Central

    Squillace, M; Dodero, L; Federici, M; Migliarini, S; Errico, F; Napolitano, F; Krashia, P; Di Maio, A; Galbusera, A; Bifone, A; Scattoni, M L; Pasqualetti, M; Mercuri, N B; Usiello, A; Gozzi, A

    2014-01-01

    Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by pronounced social and communication deficits and stereotyped behaviours. Recent psychosocial and neuroimaging studies have highlighted reward-processing deficits and reduced dopamine (DA) mesolimbic circuit reactivity in ASD patients. However, the neurobiological and molecular determinants of these deficits remain undetermined. Mouse models recapitulating ASD-like phenotypes could help generate hypotheses about the origin and neurophysiological underpinnings of clinically relevant traits. Here we used functional magnetic resonance imaging (fMRI), behavioural and molecular readouts to probe dopamine neurotransmission responsivity in BTBR T+ Itpr3tf/J mice (BTBR), an inbred mouse line widely used to model ASD-like symptoms owing to its robust social and communication deficits, and high level of repetitive stereotyped behaviours. C57BL/6J (B6) mice were used as normosocial reference comparators. DA reuptake inhibition with GBR 12909 produced significant striatal DA release in both strains, but failed to elicit fMRI activation in widespread forebrain areas of BTBR mice, including mesolimbic reward and striatal terminals. In addition, BTBR mice exhibited no appreciable motor responses to GBR 12909. DA D1 receptor-dependent behavioural and signalling responses were found to be unaltered in BTBR mice, whereas dramatic reductions in pre- and postsynaptic DA D2 and adenosine A2A receptor function was observed in these animals. Overall these results document profoundly compromised DA D2-mediated neurotransmission in BTBR mice, a finding that is likely to have a role in the distinctive social and behavioural deficits exhibited by these mice. Our results call for a deeper investigation of the role of dopaminergic dysfunction in mouse lines exhibiting ASD-like phenotypes, and possibly in ASD patient populations. PMID:25136890

  17. Pleiotropic effects in Eya3 knockout mice

    PubMed Central

    Söker, Torben; Dalke, Claudia; Puk, Oliver; Floss, Thomas; Becker, Lore; Bolle, Ines; Favor, Jack; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kallnik, Magdalena; Kling, Eva; Moerth, Corinna; Schrewe, Anja; Stigloher, Christian; Topp, Stefanie; Gailus-Durner, Valerie; Naton, Beatrix; Beckers, Johannes; Fuchs, Helmut; Ivandic, Boris; Klopstock, Thomas; Schulz, Holger; Wolf, Eckhard; Wurst, Wolfgang; Bally-Cuif, Laure; de Angelis, Martin Hrabé; Graw, Jochen

    2008-01-01

    Background In Drosophila, mutations in the gene eyes absent (eya) lead to severe defects in eye development. The functions of its mammalian orthologs Eya1-4 are only partially understood and no mouse model exists for Eya3. Therefore, we characterized the phenotype of a new Eya3 knockout mouse mutant. Results Expression analysis of Eya3 by in-situ hybridizations and β-Gal-staining of Eya3 mutant mice revealed abundant expression of the gene throughout development, e.g. in brain, eyes, heart, somites and limbs suggesting pleiotropic effects of the mutated gene. A similar complex expression pattern was observed also in zebrafish embryos. The phenotype of young adult Eya3 mouse mutants was systematically analyzed within the German Mouse Clinic. There was no obvious defect in the eyes, ears and kidneys of Eya3 mutant mice. Homozygous mutants displayed decreased bone mineral content and shorter body length. In the lung, the tidal volume at rest was decreased, and electrocardiography showed increased JT- and PQ intervals as well as decreased QRS amplitude. Behavioral analysis of the mutants demonstrated a mild increase in exploratory behavior, but decreased locomotor activity and reduced muscle strength. Analysis of differential gene expression revealed 110 regulated genes in heart and brain. Using real-time PCR, we confirmed Nup155 being down regulated in both organs. Conclusion The loss of Eya3 in the mouse has no apparent effect on eye development. The wide-spread expression of Eya3 in mouse and zebrafish embryos is in contrast to the restricted expression pattern in Xenopus embryos. The loss of Eya3 in mice leads to a broad spectrum of minor physiological changes. Among them, the mutant mice move less than the wild-type mice and, together with the effects on respiratory, muscle and heart function, the mutation might lead to more severe effects when the mice become older. Therefore, future investigations of Eya3 function should focus on aging mice. PMID:19102749

  18. Dysfunctional dopaminergic neurotransmission in asocial BTBR mice.

    PubMed

    Squillace, M; Dodero, L; Federici, M; Migliarini, S; Errico, F; Napolitano, F; Krashia, P; Di Maio, A; Galbusera, A; Bifone, A; Scattoni, M L; Pasqualetti, M; Mercuri, N B; Usiello, A; Gozzi, A

    2014-08-19

    Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by pronounced social and communication deficits and stereotyped behaviours. Recent psychosocial and neuroimaging studies have highlighted reward-processing deficits and reduced dopamine (DA) mesolimbic circuit reactivity in ASD patients. However, the neurobiological and molecular determinants of these deficits remain undetermined. Mouse models recapitulating ASD-like phenotypes could help generate hypotheses about the origin and neurophysiological underpinnings of clinically relevant traits. Here we used functional magnetic resonance imaging (fMRI), behavioural and molecular readouts to probe dopamine neurotransmission responsivity in BTBR T(+) Itpr3(tf)/J mice (BTBR), an inbred mouse line widely used to model ASD-like symptoms owing to its robust social and communication deficits, and high level of repetitive stereotyped behaviours. C57BL/6J (B6) mice were used as normosocial reference comparators. DA reuptake inhibition with GBR 12909 produced significant striatal DA release in both strains, but failed to elicit fMRI activation in widespread forebrain areas of BTBR mice, including mesolimbic reward and striatal terminals. In addition, BTBR mice exhibited no appreciable motor responses to GBR 12909. DA D1 receptor-dependent behavioural and signalling responses were found to be unaltered in BTBR mice, whereas dramatic reductions in pre- and postsynaptic DA D2 and adenosine A2A receptor function was observed in these animals. Overall these results document profoundly compromised DA D2-mediated neurotransmission in BTBR mice, a finding that is likely to have a role in the distinctive social and behavioural deficits exhibited by these mice. Our results call for a deeper investigation of the role of dopaminergic dysfunction in mouse lines exhibiting ASD-like phenotypes, and possibly in ASD patient populations.

  19. Chronic Co-species Housing Mice and Rats Increased the Competitiveness of Male Mice.

    PubMed

    Liu, Ying-Juan; Li, Lai-Fu; Zhang, Yao-Hua; Guo, Hui-Fen; Xia, Min; Zhang, Meng-Wei; Jing, Xiao-Yuan; Zhang, Jing-Hua; Zhang, Jian-Xu

    2017-01-10

    Rats are predators of mice in nature. Nevertheless, it is a common practice to house mice and rats in a same room in some laboratories. In this study, we investigated the behavioral and physiological responsively of mice in long-term co-species housing conditions. Twenty-four male mice were randomly assigned to their original raising room (control) or a rat room (co-species-housed) for more than 6 weeks. In the open-field and light-dark box tests, the behaviors of the co-species-housed mice and controls were not different. In a 2-choice test of paired urine odors [rabbit urine (as a novel odor) vs. rat urine, cat urine (as a natural predator-scent) vs. rabbit urine, and cat urine vs. rat urine], the co-species-housed mice were more ready to investigate the rat urine odor compared with the controls and may have adapted to it. In an encounter test, the rat-room-exposed mice exhibited increased aggression levels, and their urines were more attractive to females. Correspondingly, the levels of major urinary proteins were increased in the co-species-housed mouse urine, along with some volatile pheromones. The serum testosterone levels were also enhanced in the co-species-housed mice, whereas the corticosterone levels were not different. The norepinephrine, dopamine, and 5-HT levels in the right hippocampus and striatum were not different between the 2. Our findings indicate that chronic co-species housing results in adaptation in male mice; furthermore, it appears that long-term rat-odor stimuli enhance the competitiveness of mice, which suggests that appropriate predator-odor stimuli may be important to the fitness of prey animals.

  20. Demodex musculi Infestation in Genetically Immunomodulated Mice.

    PubMed

    Smith, Peter C; Zeiss, Caroline J; Beck, Amanda P; Scholz, Jodi A

    2016-01-01

    Demodex musculi, a prostigmatid mite that has been reported infrequently in laboratory mice, has been identified with increasing frequency in contemporary colonies of immunodeficient mice. Here we describe 2 episodes of D. musculi infestation with associated clinical signs in various genetically engineered mouse strains, as well as treatment strategies and an investigation into transmissibility and host susceptibility. The first case involved D. musculi associated with clinical signs and pathologic lesions in BALB/c-Tg(DO11.10)Il13(tm) mice, which have a defect in type 2 helper T cell (Th2) immunity. Subsequent investigation revealed mite transmission to both parental strains (BALB/c-Tg[DO11.10] and BALB/c-Il13(tm)), BALB/c-Il13/Il4(tm), and wild-type BALB/c. All Tg(DO11.10)Il13(tm) mice remained infested throughout the investigation, and D. musculi were recovered from all strains when they were cohoused with BALB/c-Tg(DO11.10)Il13(tm) index mice. However, only Il13(tm) and Il13/Il4(tm) mice demonstrated persistent infestation after index mice were removed. Only BALB/c-Tg(DO11.10)Il13(tm) showed clinical signs, suggesting that the phenotypic dysfunction of Th2 immunity is sufficient for persistent infestation, whereas clinical disease associated with D. musculi appears to be genotype-specific. This pattern was further exemplified in the second case, which involved NOD.Cg-Prkdc(scid)Il2r(tm1Wjl)/SzJ (NSG) and C;129S4 Rag2(tm1.1Flv) Il2rg(tm1.1Flv)/J mice with varying degrees of blepharitis, conjunctivitis, and facial pruritis. Topical amitraz decreased mite burden but did not eliminate infestation or markedly ameliorate clinical signs. Furthermore, mite burden began to increase by 1 mo posttreatment, suggesting that topical amitraz is an ineffective treatment for D. musculi. These experiences illustrate the need for vigilance regarding opportunistic and uncommon pathogens in rodent colonies, especially among mice with immunologic deficits.

  1. Demodex musculi Infestation in Genetically Immunomodulated Mice

    PubMed Central

    Smith, Peter C; Zeiss, Caroline J; Beck, Amanda P; Scholz, Jodi A

    2016-01-01

    Demodex musculi, a prostigmatid mite that has been reported infrequently in laboratory mice, has been identified with increasing frequency in contemporary colonies of immunodeficient mice. Here we describe 2 episodes of D. musculi infestation with associated clinical signs in various genetically engineered mouse strains, as well as treatment strategies and an investigation into transmissibility and host susceptibility. The first case involved D. musculi associated with clinical signs and pathologic lesions in BALB/c-Tg(DO11.10)Il13tm mice, which have a defect in type 2 helper T cell (Th2) immunity. Subsequent investigation revealed mite transmission to both parental strains (BALB/c-Tg[DO11.10] and BALB/c-Il13tm), BALB/c-Il13/Il4tm, and wild-type BALB/c. All Tg(DO11.10)Il13tm mice remained infested throughout the investigation, and D. musculi were recovered from all strains when they were cohoused with BALB/c-Tg(DO11.10)Il13tm index mice. However, only Il13tm and Il13/Il4tm mice demonstrated persistent infestation after index mice were removed. Only BALB/c-Tg(DO11.10)Il13tm showed clinical signs, suggesting that the phenotypic dysfunction of Th2 immunity is sufficient for persistent infestation, whereas clinical disease associated with D. musculi appears to be genotype-specific. This pattern was further exemplified in the second case, which involved NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) and C;129S4 Rag2tm1.1Flv Il2rgtm1.1Flv/J mice with varying degrees of blepharitis, conjunctivitis, and facial pruritis. Topical amitraz decreased mite burden but did not eliminate infestation or markedly ameliorate clinical signs. Furthermore, mite burden began to increase by 1 mo posttreatment, suggesting that topical amitraz is an ineffective treatment for D. musculi. These experiences illustrate the need for vigilance regarding opportunistic and uncommon pathogens in rodent colonies, especially among mice with immunologic deficits. PMID:27538858

  2. Trace metals and otolith defects in mocha mice.

    PubMed

    Rolfsen, R M; Erway, L C

    1984-01-01

    Mocha mice with pigment anomalies of the coat, eyes, and inner ears also have congenital otolith defects, and they exhibit progressive cochlear degeneration. Mocha mice were first reported to exhibit otolith defects comparable to those of pallid mice. Since manganese supplementation is effective in preventing the otolith defects in pallid mice and in pastel mink, we sought to establish whether or not manganese also might be effective in mocha mice. The otolith defects of mocha mice were prevented or reduced by supplementing the pregnant dams with manganese and/or zinc. The mocha mice also exhibited high perinatal mortality that was not reduced by the supplementary metals. Surviving mocha mice have behavioral anomalies associated with their inner ear defects. Preliminary observations of auditory-evoked brainstem responses and of cochlear degeneration in the mocha mice are discussed.

  3. Pion contamination in the MICE muon beam

    DOE PAGES

    Adams, D.; Alekou, A.; Apollonio, M.; ...

    2016-03-01

    Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less thanmore » $$\\sim$$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $$f_\\pi < 1.4\\%$$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.« less

  4. Seasonal acclimation of prairie deer mice

    NASA Astrophysics Data System (ADS)

    Andrews, R. V.; Belknap, R. W.

    1993-12-01

    Prairie deer mice responded to long nights by reducing their metabolic rates, core temperatures, thermal conductances and incremental metabolic responses to cold stimulus, while increasing their capacities for nonshivering thermogenesis. Some winter animals spontaneously entered daily torpor in the mornings and thereby further reduced their metabolic rates and core temperatures. Provision of exogenous melatonin (by subdermal implants) mimiced short photoperiod effects on metabolic rates and core temperatures of wild-caught, laboratory maintained animals. Provision of supplemental dietary tryptophan to laboratory animals conditioned to natural light cycles mimiced metabolic effects of long nights in summer animals, and further reduced metabolic rates of winter mice, but did not affect their core temperature levels. Newly caught, laboratory maintained deer mice responded to natural seasonal clues of shortphotoperiod and increased dietary tryptophan by reducing their resting energy requirements through both lower metabolic and lower core temperature levels. Short photoperiod and seasonal change also promoted gonadal involution, and resulted in more socially tolerant huddling by mice with reduced core temperature. Reduced 24-hour LH excretion rates were also observed in winter animals which were exposed to seasonal light cycles at warm (25°C) room temperatures. We propose that seasonal acclimatization involves pineal effects on sex hormone-influenced social behaviors and on resting metabolism. These effects serve to conserve resting energy expenditure and promote hypothermic insulation by wild prairie deer mice.

  5. Cacao polyphenols ameliorate autoimmune myocarditis in mice.

    PubMed

    Zempo, Hirofumi; Suzuki, Jun-ichi; Watanabe, Ryo; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Komuro, Issei; Isobe, Mitsuaki

    2016-04-01

    Myocarditis is a clinically severe disease; however, no effective treatment has been established. The aim of this study was to determine whether cacao bean (Theobroma cacao) polyphenols ameliorate autoimmune myocarditis. We used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. Mice with induced EAM were treated with a cacao polyphenol extract (CPE, n=12) or vehicle (n=12). On day 21, hearts were harvested and analyzed. Elevated heart weight to body weight and fibrotic area ratios as well as high cardiac cell infiltration were observed in the vehicle-treated EAM mice. However, these increases were significantly suppressed in the CPE-treated mice. Reverse transcriptase-PCR revealed that mRNA expressions of interleukin (Il)-1β, Il-6, E-selectin, vascular cell adhesion molecule-1 and collagen type 1 were lower in the CPE group compared with the vehicle group. The mRNA expressions of nicotinamide adenine dinucleotide phosphate-oxidase (Nox)2 and Nox4 were increased in the vehicle-treated EAM hearts, although CPE treatment did not significantly suppress the transcription levels. However, compared with vehicle treatment of EAM hearts, CPE treatment significantly suppressed hydrogen peroxide concentrations. Cardiac myeloperoxidase activity, the intensity of dihydroethidium staining and the phosphorylation of nuclear factor-κB p65 were also lower in the CPE group compared with the vehicle group. Our data suggest that CPE ameliorates EAM in mice. CPE is a promising dietary supplement to suppress cardiovascular inflammation and oxidative stress.

  6. Dietary composition programmes placental phenotype in mice.

    PubMed

    Coan, P M; Vaughan, O R; McCarthy, J; Mactier, C; Burton, G J; Constância, M; Fowden, A L

    2011-07-15

    Dietary composition during pregnancy influences fetal and adult phenotype but its effects on placental phenotype remain largely unknown. Using molecular, morphological and functional analyses, placental nutrient transfer capacity was examined in mice fed isocaloric diets containing 23%, 18% or 9% casein (C) during pregnancy. At day 16, placental transfer of glucose, but not methyl-aminoisobutyric acid (MeAIB), was greater in C18 and C9 than C23 mice, in association with increased placental expression of the glucose transporter Slc2a1/GLUT1, and the growth factor Igf2. At day 19, placental glucose transport remained high in C9 mice while MeAIB transfer was less in C18 than C23 mice, despite greater placental weights in C18 and C9 than C23 mice. Placental System A amino acid transporter expression correlated with protein intake at day 19. Relative growth of transport verses endocrine zones of the placenta was influenced by diet at both ages without changing the absolute volume of the transport surface. Fetal weight was unaffected by diet at day 16 but was reduced in C9 animals by day 19. Morphological and functional adaptations in placental phenotype, therefore, occur to optimise nutrient transfer when dietary composition is varied, even subtly. This has important implications for the intrauterine programming of life expectancy.

  7. Humanized mice with ectopic artificial liver tissues.

    PubMed

    Chen, Alice A; Thomas, David K; Ong, Luvena L; Schwartz, Robert E; Golub, Todd R; Bhatia, Sangeeta N

    2011-07-19

    "Humanized" mice offer a window into aspects of human physiology that are otherwise inaccessible. The best available methods for liver humanization rely on cell transplantation into immunodeficient mice with liver injury but these methods have not gained widespread use due to the duration and variability of hepatocyte repopulation. In light of the significant progress that has been achieved in clinical cell transplantation through tissue engineering, we sought to develop a humanized mouse model based on the facile and ectopic implantation of a tissue-engineered human liver. These human ectopic artificial livers (HEALs) stabilize the function of cryopreserved primary human hepatocytes through juxtacrine and paracrine signals in polymeric scaffolds. In contrast to current methods, HEALs can be efficiently established in immunocompetent mice with normal liver function. Mice transplanted with HEALs exhibit humanized liver functions persistent for weeks, including synthesis of human proteins, human drug metabolism, drug-drug interaction, and drug-induced liver injury. Here, mice with HEALs are used to predict the disproportionate metabolism and toxicity of "major" human metabolites using multiple routes of administration and monitoring. These advances may enable manufacturing of reproducible in vivo models for diverse drug development and research applications.

  8. Lipid transport in cholecystokinin knockout mice.

    PubMed

    King, Alexandra; Yang, Qing; Huesman, Sarah; Rider, Therese; Lo, Chunmin C

    2015-11-01

    Cholecystokinin (CCK) is released in response to lipid feeding and regulates pancreatic digestive enzymes vital to the absorption of nutrients. Our previous reports demonstrated that cholecystokinin knockout (CCK-KO) mice fed for 10 weeks of HFD had reduced body fat mass, but comparable glucose uptake by white adipose tissues and skeletal muscles. We hypothesized that CCK is involved in energy homeostasis and lipid transport from the small intestine to tissues in response to acute treatment with dietary lipids. CCK-KO mice with comparable fat absorption had increased energy expenditure and were resistant to HFD-induced obesity. Using intraduodenal infusion of butter fat and intravenous infusion using Liposyn III, we determined the mechanism of lipid transport from the small intestine to deposition in lymph and adipocytes in CCK-KO mice. CCK-KO mice had delayed secretion of Apo B48-chylomicrons, lipid transport to the lymphatic system, and triglyceride (TG)-derived fatty acid uptake by epididymal fat in response to acute treatment of intraduodenal lipids. In contrast, CCK-KO mice had comparable TG clearance and lipid uptake by white adipocytes in response to TGs in chylomicron-like emulsion. Thus, we concluded that CCK is important for lipid transport and energy expenditure to control body weight in response to dietary lipid feeding.

  9. Connexin mediated cataract prevention in mice.

    PubMed

    Li, Lin; Cheng, Catherine; Xia, Chun-hong; White, Thomas W; Fletcher, Daniel A; Gong, Xiaohua

    2010-09-09

    Cataracts, named for any opacity in the ocular lens, remain the leading cause of vision loss in the world. Non-surgical methods for cataract prevention are still elusive. We have genetically tested whether enhanced lens gap junction communication, provided by increased α3 connexin (Cx46) proteins expressed from α8(Kiα3) knock-in alleles in Gja8tm1(Gja3)Tww mice, could prevent nuclear cataracts caused by the γB-crystallin S11R mutation in CrygbS11R/S11R mice. Remarkably, homozygous knock-in α8(Kiα3/Kiα3) mice fully prevented nuclear cataracts, while single knock-in α8(Kiα3/-) allele mice showed variable suppression of nuclear opacities in CrygbS11R/S11R mutant mice. Cataract prevention was correlated with the suppression of many pathological processes, including crystallin degradation and fiber cell degeneration, as well as preservation of normal calcium levels and stable actin filaments in the lens. This work demonstrates that enhanced intercellular gap junction communication can effectively prevent or delay nuclear cataract formation and suggests that small metabolites transported through gap junction channels protect the stability of crystallin proteins and the cytoskeletal structures in the lens core. Thus, the use of an array of small molecules to promote lens homeostasis may become a feasible non-surgical approach for nuclear cataract prevention in the future.

  10. Phenylthiocarbamide produces conditioned taste aversions in mice.

    PubMed

    St John, Steven J; Pour, Lindsay; Boughter, John D

    2005-06-01

    Previous work has demonstrated that SWR/J (SW) mice avoid phenylthiocarbamide (PTC) to a greater degree than C3HeB/FeJ mice in 48 h, two-bottle preference tests given in ascending series. The authors hypothesized, based also on previous work, that SW mice might form a conditioned taste aversion over time due to the toxic properties of PTC. We directly tested this hypothesis by attempting to condition a taste aversion to sucrose by injections of PTC. In experiment 1, PTC was nearly as effective as a strong dose of LiCl in reducing sucrose drinking. In experiment 2, the sucrose aversions were parametrically modified by both sucrose concentration and PTC dose, a hallmark of conditioned taste aversion. We conclude that PTC can cause a conditioned taste aversion and discuss the importance of considering toxic effects of aversive tastants when analyzing behavioral strain differences.

  11. The superconducting solenoid magnets for MICE

    SciTech Connect

    Green, Michael A.

    2002-12-22

    The Muon Ionization Cooling Experiment (MICE) is a channel of superconducting solenoid magnets. The magnets in MICE are around the RF cavities, absorbers (liquid or solid) and the primary particle detectors [1], [2]. The MICE superconducting solenoid system consists of eighteen coils that are grouped in three types of magnet assemblies. The cooling channel consists of two complete cell of an SFOFO cooling channel. Each cell consists of a focusing coil pair around an absorber and a coupling coil around a RF cavity that re-accelerates the muons to their original momentum. At the ends of the experiment are uniform field solenoids for the particle detectors and a set of matching coils used to match the muon beam to the cooling cells. Three absorbers are used instead of two in order to shield the detectors from dark currents generated by the RF cavities at high operating acceleration gradients.

  12. Brain toxicokinetics of prometryne in mice.

    PubMed

    Dikić, Domagoj; Sajli, Lana; Benković, Vesna; Knezević, Anica Horvat; Brozović, Gordana; Lisicić, Duje; Mojsović, Ana; Orsolić, Nada

    2010-03-01

    Prometryne is a methylthio-s-triazine herbicide. Significant trace amounts are found in the environment, mainly in water, soil, and food plants. The aim of this study was to establish brain and blood prometryne levels after single oral dose (1 g kg-1) in adult male and female mice. Prometryne was measured using the GC/MS assay at 1, 2, 4, 8, and 24 h after prometryne administration. Peak brain and blood prometryne values were observed 1 h after administration and they decreased in a time-dependent manner. Male mice had consistently higher brain and blood prometryne levels than female mice. The observed prometryne kinetics was similar to that reported for the structurally related herbicide atrazine.

  13. Payload Processing for Mice Drawer System

    NASA Technical Reports Server (NTRS)

    Brown, Judy

    2007-01-01

    Experimental payloads flown to the International Space Station provide us with valuable research conducted in a microgravity environment not attainable on earth. The Mice Drawer System is an experiment designed by Thales Alenia Space Italia to study the effects of microgravity on mice. It is designed to fly to orbit on the Space Shuttle Utilization Logistics Flight 2 in October 2008, remain onboard the International Space Station for approximately 100 days and then return to earth on a following Shuttle flight. The experiment apparatus will be housed inside a Double Payload Carrier. An engineering model of the Double Payload Carrier was sent to Kennedy Space Center for a fit check inside both Shuttles, and the rack that it will be installed in aboard the International Space Station. The Double Payload Carrier showed a good fit quality inside each vehicle, and Thales Alenia Space Italia will now construct the actual flight model and continue to prepare the Mice Drawer System experiment for launch.

  14. The somatotropic axis and longevity in mice

    PubMed Central

    2015-01-01

    The somatotropic signaling pathway has been implicated in aging and longevity studies in mice and other species. The physiology and lifespans of a variety of mutant mice, both spontaneous and genetically engineered, have contributed to our current understanding of the role of growth hormone and insulin-like growth factor I on aging-related processes. Several other mice discovered to live longer than their wild-type control counterparts also exhibit differences in growth factor levels; however, the complex nature of the phenotypic changes in these animals may also impact lifespan. The somatotropic axis impacts several pathways that dictate insulin sensitivity, nutrient sensing, mitochondrial function, and stress resistance as well as others that are thought to be involved in lifespan regulation. PMID:26219867

  15. Chronic fatal pneumocystosis in nude mice.

    PubMed

    Ueda, K; Goto, Y; Yamazaki, S; Fujiwara, K

    1977-12-01

    A chronic pulmonary disease was encountered in nude mice of a barrier sustained colony, and Pneumocystis carinii was identified as the causative agent histopathologically as well as on impression smear preparations in the affected lungs. Fatal infection was seen only in old nude mice aged more than 6 months, while focal pulmonary lesions were developed without clinical signs in young adult nudes 2 to 3 months of age. The lesions produced in aged nude mice were characterized by propagation of mononuclear cells with the presence of foamy masses of P. carinii. Heterozygous littermates were much less susceptible to the infection but pneumocystic lesions could be produced readily by multiple treatment with immunosuppressants. The infection could be transmitted without immunosuppressant to non-infected nudes but not to heterozygous littermates after intranasal inoculation of affected tissue emulsion or by cage mating with severely affected nudes.

  16. Magnetic biomineralisation in Huntington's disease transgenic mice

    NASA Astrophysics Data System (ADS)

    Beyhum, W.; Hautot, D.; Dobson, J.; Pankhurst, Q. A.

    2005-01-01

    The concentration levels of biogenic magnetite nanoparticles in transgenic R6/2 Huntington's disease (HD) mice have been investigated, using seven control and seven HD mice each from an 8 week-old litter and from a 12 week-old litter. Hysteresis and isothermal remnant magnetisation data were collected on a SQUID magnetometer, and analysed using a model comprising dia/paramagnetic, ferrimagnetic and superparamagnetic contributions, to extract the magnetite and ferritin concentrations present. It was found that magnetite was present in both superparamagnetic and blocked states. A larger spread and higher concentration of magnetite levels was found in the diseased mice for both the 8 week-old and 12 week-old batches, compared to the controls.

  17. Ghrelin reverses experimental diabetic neuropathy in mice

    SciTech Connect

    Kyoraku, Itaru; Shiomi, Kazutaka; Kangawa, Kenji; Nakazato, Masamitsu

    2009-11-20

    Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin {alpha}, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.

  18. Ocular Phenotype of Fbn2-Null Mice

    PubMed Central

    Shi, Yanrong; Tu, Yidong; Mecham, Robert P.; Bassnett, Steven

    2013-01-01

    Purpose. Fibrillin-2 (Fbn2) is the dominant fibrillin isoform expressed during development of the mouse eye. To test its role in morphogenesis, we examined the ocular phenotype of Fbn2−/− mice. Methods. Ocular morphology was assessed by confocal microscopy using antibodies against microfibril components. Results. Fbn2−/− mice had a high incidence of anterior segment dysgenesis. The iris was the most commonly affected tissue. Complete iridal coloboma was present in 37% of eyes. Dyscoria, corectopia and pseudopolycoria were also common (43% combined incidence). In wild-type (WT) mice, fibrillin-2-rich microfibrils are prominent in the pupillary membrane (PM) during development. In Fbn2-null mice, the absence of Fbn2 was partially compensated for by increased expression of fibrillin-1, although the resulting PM microfibrils were disorganized, compared with WTs. In colobomatous adult Fbn2−/− eyes, the PM failed to regress normally, especially beneath the notched region of the iris. Segments of the ciliary body were hypoplastic, and zonular fibers, although relatively plentiful, were unevenly distributed around the lens equator. In regions where the zonular fibers were particularly disturbed, the synchronous differentiation of the underlying lens fiber cells was affected. Conclusions. Fbn2 has an indispensable role in ocular morphogenesis in mice. The high incidence of iris coloboma in Fbn2-null animals implies a previously unsuspected role in optic fissure closure. The observation that fiber cell differentiation was disturbed in Fbn2−/− mice raises the possibility that the attachment of zonular fibers to the lens surface may help specify the equatorial margin of the lens epithelium. PMID:24130178

  19. Xanthohumol improved cognitive flexibility in young mice.

    PubMed

    Zamzow, Daniel R; Elias, Valerie; Legette, LeeCole L; Choi, Jaewoo; Stevens, J Fred; Magnusson, Kathy R

    2014-12-15

    The protein palmitoylation cycle has been shown to be important for protein signaling and synaptic plasticity. Data from our lab showed a change in the palmitoylation status of certain proteins with age. A greater percentage of the NMDA receptor subunits GluN2A and GluN2B, along with Fyn and PSD95 proteins, were palmitoylated in the old mice. The higher level of protein palmitoylation was also associated with poorer learning scores. Xanthohumol is a prenylated flavonoid that has been shown to increase beta-oxidation in the livers of rodents, decreasing circulating free fatty acids in the serum. What is not known is whether the application of xanthohumol could influence the palmitoylation status of proteins. In this study, young and old mice were fed a diet supplemented with xanthohumol for 8 weeks. Spatial memory was assessed with the Morris water maze and protein palmitoylation quantified. The young xanthohumol-treated mice showed a significant improvement in cognitive flexibility. However, this appeared to be associated with the young control mice, on a defined, phytoestrogen-deficient diet, performing as poorly as the old mice and xanthohumol reversing this effect. The old mice receiving xanthohumol did not significantly improve their learning scores. Xanthohumol treatment was unable to affect the palmitoylation of NMDA receptor subunits and associated proteins assessed in this study. This evidence suggests that xanthohumol may play a role in improving cognitive flexability in young animals, but it appears to be ineffective in adjusting the palmitoylation status of neuronal proteins in aged individuals.

  20. Xanthohumol improved cognitive flexibility in young mice

    PubMed Central

    Zamzow, Daniel R; Elias, Valerie; Legette, LeeCole L; Choi, Jaewoo; Stevens, J. Fred; Magnusson, Kathy R

    2014-01-01

    The protein palmitoylation cycle has been shown to be important for protein signaling and synaptic plasticity. Data from our lab showed a change in the palmitoylation status of certain proteins with age. A greater percentage of the NMDA receptor subunits GluN2A and GluN2B, along with Fyn and PSD95 proteins, were palmitoylated in the old mice. The higher level of protein palmitoylation was also associated with poorer learning scores. Xanthohumol is a prenylated flavonoid that has been shown to increase beta-oxidation in the livers of rodents, decreasing circulating free fatty acids in the serum. What is not known is whether the application of xanthohumol could influence the palmitoylation status of proteins. In this study, young and old mice were fed a diet supplemented with xanthohumol for 8 weeks. Spatial memory was assessed with the Morris water maze and protein palmitoylation quantified. The young xanthohumol-treated mice showed a significant improvement in cognitive flexibility. However, this appeared to be associated with the young control mice, on a defined, phytoestrogen-deficient diet, performing as poorly as the old mice and xanthohumol reversing this effect. The old mice receiving xanthohumol did not significantly improve their learning scores. Xanthohumol treatment was unable to affect the palmitoylation of NMDA receptor subunits and associated proteins assessed in this study. This evidence suggests that xanthohumol may play a role in improving cognitive flexability in young animals, but it appears to be ineffective in adjusting the palmitoylation status of neuronal proteins in aged individuals. PMID:25192637

  1. Aorta Atherosclerosis Lesion Analysis in Hyperlipidemic Mice

    PubMed Central

    Mohanta, Sarajo; Yin, Changjun; Weber, Christian; Hu, Desheng; Habenicht, Andreas JR

    2016-01-01

    Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries. Apolipoprotein E-deficient (ApoE-/-) mice are used as experimental models to study human atherosclerosis. ApoE-/- mice are constitutively hyperlipidemic and develop intima plaques that resemble human plaques. Various issues including experimental design for lesion analysis, dietary conditions, isolation of the aorta, staining methods, morphometry, group size, age, the location within the arterial tree, and statistical analyses are important parameters that need to be addressed to obtain robust data. Here, we provide detailed methods to quantify aorta atherosclerosis. PMID:27366759

  2. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  3. Molecular basis of cleft palates in mice

    PubMed Central

    Funato, Noriko; Nakamura, Masataka; Yanagisawa, Hiromi

    2015-01-01

    Cleft palate, including complete or incomplete cleft palates, soft palate clefts, and submucosal cleft palates, is the most frequent congenital craniofacial anomaly in humans. Multifactorial conditions, including genetic and environmental factors, induce the formation of cleft palates. The process of palatogenesis is temporospatially regulated by transcription factors, growth factors, extracellular matrix proteins, and membranous molecules; a single ablation of these molecules can result in a cleft palate in vivo. Studies on knockout mice were reviewed in order to identify genetic errors that lead to cleft palates. In this review, we systematically describe these mutant mice and discuss the molecular mechanisms of palatogenesis. PMID:26322171

  4. Social and Sexual Behaivours of Mice in Partial Gravity

    NASA Astrophysics Data System (ADS)

    Aou, Shuji; Hasegawa, Katsuya; Kumei, Yasuhiro; Inoue, Katarzyna; Zeredo, Jorge; Narikiyo, Kimiya; Watanabe, Yuuki

    2012-07-01

    We examined social and sexual behaviours in normal ICR mice, C57BL mice and obese db/db mice lacking leptin receptors in low gravity conditions using parabolic-flight to generate graded levels of partial gravity. Although both normal and obese mice floated with vigorous limb and tail movements when a floor is smooth in microgravity but they were rather stable if a floor is cover by carpet. Obese mice were more stable and socially contacted longer with a partner in low-gravity conditions. When they returned to the home cage after parabolic flights, obese mice started to eat sooner without restless behaviour, while control mice showed restless behaviour without eating. Face grooming, an indicator of stress response, was found more often in the control mice than the obese mice. Obese mice returned to resting condition faster than the control. We also analysed sexual behaviour of ICR mice and C57BL mice but not db/db mice since they are sexually inactive. Social and sexual behaviour could be evaluated in partial gravity conditions to get basic data concerning whether rodents can communicate and reproduce in Moon, Mars and space or not. Supported by Grant-in-Aid for Exploratory Research (JSPS) to S Aou and FY2010 grants from JAXA and Japan Society for Promotion of Science to Y. Kumei.

  5. Biochemical and microscopic analysis of sperm in copper deficient mice

    SciTech Connect

    Everett, J.; Jackson, P.; Allison, S.

    1986-03-01

    The Mottle Brindle Mouse Syndrome is a disease in mice which mimics Menkes Syndrome in humans. Treatment of affected male mice has led to varying survival rates in mice and few attempts have led to the development of virile male offsprings in mice and none in humans. In this study the authors examined sperm produced by Brindle mice in an attempt to ascertain reasons for the observed failure of the Brindle mice to reproduce. Microscopic analysis revealed that sperm counts in these mice are higher than sperm counts of the C57/BL or the C57/6J (normal) mice. Microscopically, sperm from Brindle mice showed changes in the acrosomal and flagellum regions. Motility of these sperm were 10% to 50% that of sperm from normal mice. Biochemically, cytochrome oxidase activity was 10% to 50% of the activity seen in normal mice. Hexokinase activity and pyruvate dehydrogenase activity was equal to that observed in normal mice. These observations suggest that infertility in Brindle male mice is due to an impairment of testicular copper transport which leads to a decline in copper dependent processes.

  6. Skeletal muscle weakness in osteogeneis imperfecta mice

    PubMed Central

    Gentry, Bettina A; Ferreira, J. Andries; McCambridge, Amanda J.; Brown, Marybeth; Phillips, Charlotte L.

    2010-01-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (Po, Po/mg and Po/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased Po and an inability to sustain Po for the 300 ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. PMID:20619344

  7. Unexpected regeneration in middle-aged mice.

    PubMed

    Reines, Brandon; Cheng, Lily I; Matzinger, Polly

    2009-02-01

    Complete regeneration of damaged extremities, including both the epithelium and the underlying tissues, is thought to occur mainly in embryos, fetuses, and juvenile mammals, but only very rarely in adult mammals. Surprisingly, we found that common strains of mice are able to regenerate all of the tissues necessary to completely fill experimentally punched ear holes, but only if punched at middle age. Although young postweaning mice regrew the epithelium without typical pre-scar granulation tissue, they showed only minimal regeneration of connective tissues. In contrast, mice punched at 5-11 months of age showed true amphibian-like blastema formation and regrowth of cartilage, fat, and dermis, with blood vessels, sebaceous glands, hair follicles, and, in black mice, melanocytes. These data suggest that at least partial appendage regeneration may be more common in adult mammals than previously thought and call into question the common view that regenerative ability is lost with age. The data suggest that the age at which various inbred mouse strains become capable of epimorphic regeneration may be correlated with adult body weight.

  8. Genomic imprinting: an obsession with depilatory mice.

    PubMed

    Haig, David; Úbeda, Francisco

    2011-04-12

    Excessive grooming in mice has been promoted as a model of human obsessive-compulsive disorders. A recent paper adds Grb10 to the list of genes with effects on behavioral hair loss, with the added twist that this time the gene is imprinted.

  9. Hyperalgesic activity of kisspeptin in mice

    PubMed Central

    2011-01-01

    Background Kisspeptin is a neuropeptide known for its role in the hypothalamic regulation of the reproductive axis. Following the recent description of kisspeptin and its 7-TM receptor, GPR54, in the dorsal root ganglia and dorsal horns of the spinal cord, we examined the role of kisspeptin in the regulation of pain sensitivity in mice. Results Immunofluorescent staining in the mouse skin showed the presence of GPR54 receptors in PGP9.5-positive sensory fibers. Intraplantar injection of kisspeptin (1 or 3 nmol/5 μl) induced a small nocifensive response in naive mice, and lowered thermal pain threshold in the hot plate test. Both intraplantar and intrathecal (0.5 or 1 nmol/3 μl) injection of kisspeptin caused hyperalgesia in the first and second phases of the formalin test, whereas the GPR54 antagonist, p234 (0.1 or 1 nmol), caused a robust analgesia. Intraplantar injection of kisspeptin combined with formalin enhanced TRPV1 phosphorylation at Ser800 at the injection site, and increased ERK1/2 phosphorylation in the ipsilateral dorsal horn as compared to naive mice and mice treated with formalin alone. Conclusion These data demonstrate for the first time that kisspeptin regulates pain sensitivity in rodents and suggest that peripheral GPR54 receptors could be targeted by novel drugs in the treatment of inflammatory pain. PMID:22112588

  10. Induction of experimental allergic sialadenitis in mice.

    PubMed Central

    Hayashi, Y.; Sato, M.; Hirokawa, K.

    1985-01-01

    This article reports that sialadenitis developed in female CRJ:CD-1 mice thymectomized 3 days after birth and later immunized with a homogenate of the submandibular salivary gland emulsified with complete Freund's adjuvant. Significant inflammatory changes did not develop in various control groups, including animals thymectomized at Day 3 but not immunized and animals not thymectomized on the day of birth but immunized. Because a more marked decrease of Lyt 2+ cells was found in mice thymectomized on Day 3 after birth than in neonatally thymectomized mice, thymectomy at 3 days of age is more effective for the induction of sialadenitis, presumably by markedly decreasing a population of suppressor T cells. The lesions observed in mice with sialadenitis were mostly composed of small and medium-sized lymphocytes stained by anti-Thy 1.2 and Lyt 2 antibodies and in later stages by immunoglobulin-containing cells in the periphery of inflammatory lesions. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3156505

  11. Progress of the MICE experiment at RAL

    NASA Astrophysics Data System (ADS)

    Bonesini, M.

    2013-04-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling of a muon beam. The demonstration comprises one cell of the US Neutrino Factory Study II cooling channel. Results obtained on the construction of the beamline and its instrumentation (STEP I) will be reviewed, together with progress towards final measurements of ionization cooling (STEP IV and VI).

  12. Unexpected Regeneration in Middle-Aged Mice

    PubMed Central

    Cheng, Lily I.; Matzinger, Polly

    2009-01-01

    Abstract Complete regeneration of damaged extremities, including both the epithelium and the underlying tissues, is thought to occur mainly in embryos, fetuses, and juvenile mammals, but only very rarely in adult mammals. Surprisingly, we found that common strains of mice are able to regenerate all of the tissues necessary to completely fill experimentally punched ear holes, but only if punched at middle age. Although young postweaning mice regrew the epithelium without typical pre-scar granulation tissue, they showed only minimal regeneration of connective tissues. In contrast, mice punched at 5–11 months of age showed true amphibian-like blastema formation and regrowth of cartilage, fat, and dermis, with blood vessels, sebaceous glands, hair follicles, and, in black mice, melanocytes. These data suggest that at least partial appendage regeneration may be more common in adult mammals than previously thought and call into question the common view that regenerative ability is lost with age. The data suggest that the age at which various inbred mouse strains become capable of epimorphic regeneration may be correlated with adult body weight. PMID:19226206

  13. Focusing solenoids for the MICE cooling channel

    SciTech Connect

    Green, M.A.; Baynham, E.; Barr, G.; Lau, W.; Rochford, J.H.; Yang, S.

    2003-09-15

    This report describes a design for focusing solenoids for the low beta sections for the proposed Muon Ionization Cooling Experiment (MICE). There are three focusing solenoid pairs that will be around the muon absorbers for MICE. The two solenoid coils have an inside diameter of 510 mm, a length of 180 mm, and a thickness of 100 mm. A distance of 260 mm separates the two coils in the pair. The coils are designed to operate at opposite polarity, in order to create a gradient field in the low beta sections of the MICE cooling channel. As result, the force pushing the coil pair apart approaches 270 metric tons when the coils operate close to the short sample current for the superconductor. The forces between the coils will be carried by a support structure that is both on the inside and the outside the coils. During some modes of operation for MICE, the coils may operate at the same polarity, which means that the force between the coils pushes them together. The focusing magnet must be designed for both modes of operation. This support structure for the coils will be part of the focusing magnet quench protection system.

  14. Of Mice and Men: Interdisciplinary Unit. Revised.

    ERIC Educational Resources Information Center

    Beck Middle School, Cherry Hill, NJ.

    "Of Mice and Men" is developed as an interdisciplinary unit to be team taught by math, science, language arts, and social studies teachers and team guidance counselors. Developed as an individualized program for middle school students, a variety of supplementary materials is provided to exemplify the types of activities suggested for students.…

  15. Gene therapy for trigeminal pain in mice

    PubMed Central

    Tzabazis, Alexander Z.; Klukinov, Michael; Feliciano, David P.; Wilson, Steven P.; Yeomans, David C.

    2014-01-01

    The aim of this study was to test the efficacy of a single direct injection of viral vector encoding for encephalin to induce a widespread expression of the transgene and potential analgesic effect in trigeminal behavioral pain models in mice. After direct injection of HSV-1 based vectors encoding for human preproenkephalin (SHPE) or the lacZ reporter gene (SHZ.1, control virus) into the trigeminal ganglia in mice, we performed an orofacial formalin test and assessed the cumulative nociceptive behavior at different time points after injection of the viral vectors. We observed an analgesic effect on nociceptive behavior that lasted up to 8 weeks after a single injection of SHPE into the trigeminal ganglia. Control virus injected animals showed nociceptive behavior similar to naïve mice. The analgesic effect of SHPE injection was reversed/attenuated by subcutaneous naloxone injections, a μ-opioid receptor antagonist. SHPE injected mice also showed normalization in withdrawal latencies upon thermal noxious stimulation of inflamed ears after subdermal complete Freund’s adjuvans injection indicating widespread expression of the transgene. Quantitative immunohistochemistry of trigeminal ganglia showed expression of human preproenkephalin after SHPE injection. Direct injection of viral vectors proved to be useful for exploring the distinct pathophysiology of the trigeminal system and could also be an interesting addition to the pain therapists’ armamentarium. PMID:24572785

  16. Pathogenicity of Allescheria boydii for Mice

    PubMed Central

    Lupan, David M.; Cazin, John

    1973-01-01

    Allescheria boydii and its imperfect state, Monosporium apiospermum, were studied to determine whether asexual or sexual strains might exhibit different pathogenic potentials for mice. Six different strains of the fungus were inoculated into mice by the intravenous, intracerebral, intraperitoneal, and intranasal routes. Cortisone-treated mice regularly developed infections after inoculation by any of the routes tested. Mice that had not been treated with cortisone were most susceptible to infection by the intravenous route and least susceptible to infection by the intranasal or intraperitoneal route; nevertheless, all animals that did not receive cortisone were considerably more resistant to infection by the fungus than were comparable groups of cortisone-treated animals. Pathogenicity of the fungus appears to be strain dependent and entirely unrelated to its sexual or asexual form. Studies made to determine accurate viable spore counts of the fungus revealed that the highest viable spore count was generally observed using Sabouraud dextrose agar or potato dextrose agar at an incubation temperature of 37 C for a period of 5 days. Images PMID:4795949

  17. Altered schistosome granuloma formation in nude mice.

    PubMed

    Byram, J E; von Lichtenberg, F

    1977-09-01

    Schistosome egg-induced lesions in congenitally athymic mice differed from those found in normal heterozygous controls. Heterozygote liver granulomas were chareacterized by poorly phagocytic epithelioid macrophages, and were rich in eosinophils and fibroblasts, with peripheral lymphocytes and plasma cells. Hepatic lesions in nude mice were much smaller and lacked epithelioid macrophages, with lesions about mature eggs, typically consisting of monocytes and macrophages filled with pigment, occasional neutrophils, and rarely one or more eosinophils or giant cells. While heterozygote granulomas damaged liver cells mainly by encroachment or by their vascular effects, in the nudes hepatocytes bordering the lesions showed microvesicular cytoplasmic damage and either hydropic degeneration or focal acidophilic necrosis of individual liver cells. In heterozygotes, immunofluorescent-stainable schistosome egg antigen (SEA) was concentrated in the granuloma center. In nude mice, SEA, was distributed throughout the infiltrates and in and around hepatocytes adjacent to egg lesions corresponding to the observed pattern of hepatocyte necrosis. We conclude that, in contrast to heterozygotes, nude mice lack hypersensitivity granulomas and fail to sequester toxic egg products, this resulting in zonal hepatocellular damage. Alternative explanations include the possibility of a latent hepatitis virus being activated by the schistosome infection; however, several cogent arguments are presented against that alternative.

  18. Endogenous opiates mediate radiogenic behavioral change. [Mice

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.; White, G.A.; Gibbs, G.L.

    1983-06-10

    Exposure of C57BL/6J mice to ionizing radiation caused stereotypical locomotor hyperactivity similar to that produced by morphine. Naloxone administration prevented this radiation-induced behavioral activation. These results support the hypothesis that endorphins are involved in some aspects of radiogenic behavioral change.

  19. Hyperglycemia impairs atherosclerosis regression in mice.

    PubMed

    Gaudreault, Nathalie; Kumar, Nikit; Olivas, Victor R; Eberlé, Delphine; Stephens, Kyle; Raffai, Robert L

    2013-12-01

    Diabetic patients are known to be more susceptible to atherosclerosis and its associated cardiovascular complications. However, the effects of hyperglycemia on atherosclerosis regression remain unclear. We hypothesized that hyperglycemia impairs atherosclerosis regression by modulating the biological function of lesional macrophages. HypoE (Apoe(h/h)Mx1-Cre) mice express low levels of apolipoprotein E (apoE) and develop atherosclerosis when fed a high-fat diet. Atherosclerosis regression occurs in these mice upon plasma lipid lowering induced by a change in diet and the restoration of apoE expression. We examined the morphological characteristics of regressed lesions and assessed the biological function of lesional macrophages isolated with laser-capture microdissection in euglycemic and hyperglycemic HypoE mice. Hyperglycemia induced by streptozotocin treatment impaired lesion size reduction (36% versus 14%) and lipid loss (38% versus 26%) after the reversal of hyperlipidemia. However, decreases in lesional macrophage content and remodeling in both groups of mice were similar. Gene expression analysis revealed that hyperglycemia impaired cholesterol transport by modulating ATP-binding cassette A1, ATP-binding cassette G1, scavenger receptor class B family member (CD36), scavenger receptor class B1, and wound healing pathways in lesional macrophages during atherosclerosis regression. Hyperglycemia impairs both reduction in size and loss of lipids from atherosclerotic lesions upon plasma lipid lowering without significantly affecting the remodeling of the vascular wall.

  20. Effect of ammonia on Swiss albino mice

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Casey, C. J.; Furst, A.

    1977-01-01

    Times to incapacitation and death and LC /50/ values were determined for Swiss albino male mice exposed to different concentrations of ammonia in a 4.2 liter hemispherical chamber. The LC/50/ for a 30 minute exposure was 21,430 ppm.

  1. Non-invasive physiology in conscious mice.

    PubMed

    Kale, Ajit; Amende, Ivo; Piskorski, Katrina; Chu, Victor; Otero, Jose M; Mueller, Peter; Hampton, Thomas G

    2004-06-01

    Linking gene defect to disease phenotypes in mice has become an essential step in the development of new drugs. Yet, many in vitro and in vivo assays require anaesthetic and surgery or do not reflect physiologically relevant phenomena. The effects of genes or diseases may only become apparent with stressors. Here, we apply non-invasive ECG monitoring and gait imaging systems to describe changes in the electrocardiogram and in gait dynamics resulting from a doubling of the ambulatory speed of mice. We found that B6C3H mice (n = 5) take 3.6 +/- 0.1 strides/second to walk 18cm/second and have a heart rate of 750 +/- 2bpm after 1 minute of walking at this speed. These mice significantly increase stride frequency to 5.2 +/- 0.1 strides/second in order to increase their speed to 36cm/second. The heart rate increased significantly (814 +/- 9bpm, p < 0.05) after trotting at the higher speed for 90 seconds, and the QRS interval duration significantly decreased (9.4 +/- 0.3ms vs. 10.4 +/- 0.3ms, p < 0.05). We discuss the application of the ECG screening and gait imaging systems to mouse models of Duchenne muscular dystrophy, Down syndrome and amyotrophic lateral sclerosis, diseases in humans that are known to affect the heart and neuromuscular systems.

  2. Generation of Gene Knockout Mice by ES Cell Microinjection

    PubMed Central

    Longenecker, Glenn; Kulkarni, Ashok B

    2009-01-01

    This unit lists and describes protocols used in the production of chimeric mice leading to the generation of gene knockout mice. These protocols include the collection of blastocyst embryos, ES cell injection, and uterine transfer of injected blastocysts. Support protocols in the superovulation of blastocyst donor mice, generation of pseudopregnant recipients, fabrication of glass pipettes, and generation of germline mice are also included. Practical tips and solutions are mentioned to help troubleshoot problems that may occur. PMID:19731226

  3. CD137 ligand reverse signaling skews hematopoiesis towards myelopoiesis during aging.

    PubMed

    Tang, Qianqiao; Koh, Liang Kai; Jiang, Dongsheng; Schwarz, Herbert

    2013-09-01

    CD137 is a costimulatory molecule expressed on activated T cells. Its ligand, CD137L, is expressed on the surface of hematopoietic progenitor cells, and upon binding to CD137 induces reverse signaling into hematopoietic progenitor cells promoting their activation, proliferation and myeloid differentiation. Since aging is associated with an increasing number of myeloid cells we investigated the role of CD137 and CD137L on myelopoiesis during aging. Comparing 3 and 12 months old WT, CD137‐/‐ and CD137L‐/‐ mice we found significantly more granulocytes and monocytes in the bone marrow of older WT mice, while this age‐dependent increase was absent in CD137‐/‐ and CD137L‐/‐ mice. Instead, the bone marrow of 12 months old CD137‐/‐ and CD137L‐/‐ mice was characterized by an accumulation of hematopoietic progenitor cells, suggesting that the differentiation of hematopoietic progenitor cells became arrested in the absence of CD137L signaling. CD137L signaling is initiated by activated CD137‐expressing, CD4+ T cells. These data identify a novel molecular mechanisms underlying immune aging by demonstrating that CD137‐expressing CD4+ T cells in the bone marrow engage CD137L on hematopoietic progenitor cells, and that this CD137L signaling biases hematopoiesis towards myelopoiesis during aging.

  4. [Mice are not Men and yet… how humanized mice inform us about human infectious diseases].

    PubMed

    Cachat, Anne; Villaudy, Julien; Rigal, Dominique; Gazzolo, Louis; Duc Dodon, Madeleine

    2012-01-01

    The study of human pathologies is often limited by the absence of animal models which are robust, cost-effective and reproduce the hallmarks of human infections. While mice have been frequently employed to study human diseases, many of important pathogens display unique human tropism. These last two decades the graft of human progenitor cells or tissues into -immunodeficient mice has allowed the elaboration of so called humanized mice. Humanized mouse technology has made rapid progress, and it is now possible to achieve high levels of human chimerism in various organs and tissues, particularly the immune system and the liver. The review briefly summarizes the different models of humanized mice available for in vivo experiments. With a focus on lymphotropic, monocytotropic and hepatotropic viruses, we here discuss the current status and future prospects of these models for studying the pathogenesis of infectious diseases. Furthermore, they provide a powerful tool for the development of innovative therapies.

  5. Neural Tube Defects In Mice Exposed To Tap Water

    PubMed Central

    Mallela, Murali K; Werre, Stephen R; Hrubec, Terry C

    2010-01-01

    In May of 2006 we suddenly began to observe neural tube defects (NTDs) in embryos of untreated control mice. We hypothesized the mice were being exposed unknowingly to a teratogenic agent and investigated the cause. Our results suggested that NTDs were not resulting from bedding material, feed, strain or source of the mice. Additionally, mice were negative for routine and comprehensive screens of pathogens. To further test whether the NTDs resulted from infectious or genetic cause localized to our facility, we obtained three strains of timed pregnant mice from commercial suppliers located in 4 different states. All strains and sources of mice arrived in our laboratory with NTDs, implying that commercially available mice were possibly exposed to a teratogen prior to purchase. Our investigation eventually concluded that exposure to tap water was causing the NTDs. The incidence of NTDs was greatest in purchased mice provided tap water and lowest in purchased mice provided distilled deionized water (DDI). Providing mice DDI water for two generations (F2-DDI) eliminated the NTDs. When F2-DDI mice were provided tap water from three different urban areas prior to breeding, their offspring again developed NTDs. Increased length of exposure to tap water significantly increased the incidence of NTDs. These results indicate that a contaminant in municipal tap water is likely causing NTDs in mice. The unknown teratogen appears to have a wide geographic distribution but has not yet been identified. Water analysis is currently underway to identify candidate contaminants that might be responsible for the malformations. PMID:20549630

  6. Caloric Restriction Chronically Impairs Metabolic Programming in Mice

    PubMed Central

    Kirchner, Henriette; Hofmann, Susanna M.; Fischer-Rosinský, Antje; Hembree, Jazzminn; Abplanalp, William; Ottaway, Nickki; Donelan, Elizabeth; Krishna, Radha; Woods, Stephen C.; Müller, Timo D.; Spranger, Joachim; Perez-Tilve, Diego; Pfluger, Paul T.; Tschöp, Matthias H.; Habegger, Kirk M.

    2012-01-01

    Although obesity rates are rapidly rising, caloric restriction remains one of the few safe therapies. Here we tested the hypothesis that obesity-associated disorders are caused by increased adipose tissue as opposed to excess dietary lipids. Fat mass (FM) of lean C57B6 mice fed a high-fat diet (HFD; FMC mice) was “clamped” to match the FM of mice maintained on a low-fat diet (standard diet [SD] mice). FMC mice displayed improved glucose and insulin tolerance as compared with ad libitum HFD mice (P < 0.001) or SD mice (P < 0.05). These improvements were associated with fewer signs of inflammation, consistent with the less-impaired metabolism. In follow-up studies, diet-induced obese mice were food restricted for 5 weeks to achieve FM levels identical with those of age-matched SD mice. Previously, obese mice exhibited improved glucose and insulin tolerance but showed markedly increased fasting-induced hyperphagia (P < 0.001). When mice were given ad libitum access to the HFD, the hyperphagia of these mice led to accelerated body weight gain as compared with otherwise matched controls without a history of obesity. These results suggest that although caloric restriction on a HFD provides metabolic benefits, maintaining those benefits may require lifelong continuation, at least in individuals with a history of obesity. PMID:22787140

  7. Effect of chrysotile asbestos fibers on germ cells of mice

    SciTech Connect

    Rita, P.; Reddy, P.P.

    1986-10-01

    An Indian form of chrysotile asbestos procured from a local asbestos factory (Hyderabad) was tested for its toxic effects on spermatocytes and sperm of mice. Swiss albino male mice were fed orally with chrysotile asbestos suspended in water. The concentration tested was 20 mg/kg/day. Chronic oral administration of chrysotile failed to induce chromosomal aberrations and abnormal sperms in mice.

  8. The Mice Drawer System (MDS) experiment and the space endurance record-breaking mice.

    PubMed

    Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore

    2012-01-01

    The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th), 2009. MDS returned to Earth on November 27(th), 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  9. The Mice Drawer System (MDS) Experiment and the Space Endurance Record-Breaking Mice

    PubMed Central

    Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore

    2012-01-01

    The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28th, 2009. MDS returned to Earth on November 27th, 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages. PMID:22666312

  10. The Skeletal Phenotype of Chondroadherin Deficient Mice

    PubMed Central

    Wenglén, Christina; Petzold, Christiane; Tanner, Elizabeth K.; Brorson, Sverre-Henning; Baekkevold, Espen S.; Önnerfjord, Patrik; Reinholt, Finn P.; Heinegård, Dick

    2013-01-01

    Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their α2β1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the α1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth. PMID

  11. Ascaris: development of selected genotypes in mice.

    PubMed

    Peng, Weidong; Yuan, Keng; Peng, Guohua; Qiu, Lin; Dai, Zhifang; Yuan, Fang; Hu, Yinying; Hu, Ningyan

    2012-05-01

    Using nucleotide variation in the first internal transcribed spacer of nuclear ribosomal DNA, five different genotypes (designated G1-G5) have been identified and the preponderance of genotype G1 in humans and of genotype G3 in pigs led to the proposal that parasites bearing the two genotypes have an affinity for a particular host species. A subsequent study using eggs of genotype G1 from humans and G3 from pigs to infect pigs and mice indicated that there is a significant difference in the ability to infect and establish as larvae in mice and as adults in pigs between the two genotypes. Extending previous investigations, the present study investigated whether there are differences in development as designated by egg hatching, larvae migration and distribution in the mice between the Ascaris strains with known genotypes. Ascaris eggs of genotypes G1 (predominating in human-derived worms) and G3 (predominating in pig-derived worms) were used to infect C57BL/6 mice orally. Eggs/larvae were examined from the small and large intestines, thoracic and abdominal cavities, peripheral blood, livers and lungs at intervals of 2h until 12h post-infection, then periodically until 34 days of infection. Results showed distinct differences in egg hatching (the timing and location of hatching, and the numbers hatched), and in larvae migration and distribution (the means and constituent ratios, the time of peak recovery, and larvae reappearing in intestines) between the two strains. The results can explain the findings of significantly higher larval recovery of genotype G1 than G3 in the mice, and may shed some enlightenment to understand the difference in host affiliation of Ascaris of different genotypes.

  12. NSG Mice Provide a Better Spontaneous Model of Breast Cancer Metastasis than Athymic (Nude) Mice

    PubMed Central

    Puchalapalli, Madhavi; Zeng, Xianke; Mu, Liang; Anderson, Aubree; Hix Glickman, Laura; Zhang, Ming; Sayyad, Megan R.; Mosticone Wangensteen, Sierra; Clevenger, Charles V.; Koblinski, Jennifer E.

    2016-01-01

    Metastasis is the most common cause of mortality in breast cancer patients worldwide. To identify improved mouse models for breast cancer growth and spontaneous metastasis, we examined growth and metastasis of both estrogen receptor positive (T47D) and negative (MDA-MB-231, SUM1315, and CN34BrM) human breast cancer cells in nude and NSG mice. Both primary tumor growth and spontaneous metastases were increased in NSG mice compared to nude mice. In addition, a pattern of metastasis similar to that observed in human breast cancer patients (metastases to the lungs, liver, bones, brain, and lymph nodes) was found in NSG mice. Furthermore, there was an increase in the metastatic burden in NSG compared to nude mice that were injected with MDA-MB-231 breast cancer cells in an intracardiac experimental metastasis model. This data demonstrates that NSG mice provide a better model for studying human breast cancer metastasis compared to the current nude mouse model. PMID:27662655

  13. Wound healing in hemophilia B mice and low tissue factor mice.

    PubMed

    Monroe, Dougald M; Mackman, Nigel; Hoffman, Maureane

    2010-04-01

    Wound healing involves a number of physiologic mechanisms including coagulation, inflammation, formation of granulation tissue, and tissue remodeling. Coagulation with robust thrombin generation leading to fibrin formation is necessary for wound healing. It is less clear if there is a requirement for ongoing coagulation to support tissue remodeling. We have studied wound healing in mice with defects in both the initiation (low tissue factor) and propagation (hemophilia B) phases. In hemophilia B mice, dermal wound healing is delayed; this delay is associated with bleeding into the granulation tissue. Mice can be treated with replacement therapy (factor IX) or bypassing agents (factor VIIa) to restore thrombin generation. If treated just prior to wound placement, mice will have normal hemostasis in the first day of wound healing. As the therapeutic agents clear, the mice will revert to hemophilic state. If the primary role of coagulation in wound healing is to provide a stable platelet/fibrin plug that is loaded with thrombin, then treating hemophilic animals just prior to wound placement should restore normal wound healing. The results from this study did not support that hypothesis. Instead the results show that restoring thrombin generation only at the time of wound placement did not improve the delayed wound healing. In preliminary studies on low tissue factor mice, there also appears to be a delay in wound healing with evidence of bleeding into the granulation tissue. The current data suggests that ongoing coagulation function needs to be maintained to support a normal wound healing process.

  14. Defective bone microstructure in hydronephrotic mice: a histomorphometric study in ICR/Mlac-hydro mice.

    PubMed

    Suntornsaratoon, Panan; Wongdee, Kannikar; Tiyasatkulkovit, Wacharaporn; Ampawong, Sumate; Krishnamra, Nateetip; Kengkoom, Kanchana; Charoenphandhu, Narattaphol

    2014-02-01

    Chronic renal impairment can lead to bone deterioration and abnormal bone morphology, but whether hydronephrosis is associated with bone loss remains unclear. Herein, we aimed to use computer-assisted bone histomorphometric technique to investigate microstructural bone changes in Imprinting Control Region (ICR) mice with a spontaneous mutation that was associated with bilateral nonobstructive hydronephrosis (ICR/Mlac-hydro). The results showed that 8-week-old ICR/Mlac-hydro mice manifested decreases in trabecular bone number and thickness, and an increased trabecular separation, thereby leading to a reduction in trabecular bone volume compared with the wild-type mice. Furthermore, histomorphometric parameters related to both bone resorption and formation, that is, eroded surface, osteoclast surface, and osteoblast surface, were much lower in ICR/Mlac-hydro mice than in the wild type. A decrease in moment of inertia was found in ICR/Mlac-hydro mice, indicating a decrease in bone strength. In conclusion, ICR/Mlac-hydro mice exhibited trabecular bone loss, presumably caused by marked decreases in both osteoblast and osteoclast activities, which together reflected abnormally low bone turnover. Thus, this mouse strain appeared to be a valuable model for studying the hydronephrosis-associated bone disease.

  15. Oral lactoferrin protects against experimental candidiasis in mice

    PubMed Central

    Velliyagounder, Kabilan; Alsaedi, Wijdan; Alabdulmohsen, Waad; Markowitz, Kenneth; Fine, Daniel H.

    2015-01-01

    Aims To determine the role of lactoferrin in protecting the oral cavities of mice against Candida albicans infection in lactoferrin knockout (LFKO−/−) mice were compared to wild-type (WT) mice. We also determine the protective role of human lactoferrin in the LFKO−/− mice. Methods and Results Antibiotic treated immunosuppressed mice were inoculated with C. albicans (or sham infection) by oral swab and evaluated for the severity of infection after 7 days of infection. To determine the protective role of hLF, we added 0.3% solution of hLF to the drinking water given to some of the mice. CFU count, scoring of lesions and microscopic observations were carried out to determine the severity of infection. LFKO−/−I mice showed a 2 log (P=0.001) higher CFUs of C. albicans in the oral cavity compared to the WTI mice. LFKO−/−I mice given hLF had a 3 log (P=0.001) reduction in CFUs in the oral cavity compared to untreated LFKO−/−I mice. The severity of infection, observed by light microscopy revealed that the tongue of the LFKO−/−I mice showed more white patches compared to WTI and LFKO−/−I+hLF mice. Scanning electron microscopic observation revealed that more filiform papillae were destroyed in LFKO−/−I mice when compared to WTI or LFKO−/−I +hLF mice. Conclusions Human lactoferrin is important in protecting mice from oral C. albicans infection. Administered hLF may be used to prevent C. albicans infection. Significance and Impact of the Study Human lactoferrin, a multifunctional iron-binding glycoprotein can be used as a therapeutic active ingredient in oral health care products against C. albicans. PMID:25319508

  16. Cardiomyocyte ultrastructural damage in β-thalassaemic mice

    PubMed Central

    Sanyear, Chanita; Butthep, Punnee; Nithipongvanich, Ramaneeya; Sirankapracha, Pornpan; Winichagoon, Pranee; Fucharoen, Suthat; Svasti, Saovaros

    2013-01-01

    β-thalassaemia is a hereditary anaemia resulting from the absence or reduction in β-globin chain production. Heart complications related to iron overload are the most serious cause of death in these patients. In this report cardiac pathology of β-thalassaemic mice was evaluated by light and electron microscopy. The study was carried out in thalassaemic mice carrying human β-thalassaemia mutation, IVSII-654 (654), transgenic mice carrying human βE-globin transgene insertion (E4), thalassaemic mice with human βE-globin transgene insertion (654/E4) and homozygous thalassaemic mice rescued by the human βE-globin transgene (R), which is generated by cross-breeding between the 654 and E4 mice. Histology showed iron deposition in cardiac myocytes of 654 and R mice, but the ultrastructural damage was observed only in the R mice when compared with the wild type, 654, E4 and 654/E4 mice. Histopathological changes in the cardiomyocytes of the R mice included mitochondrial swelling, loss of myofilaments and the presence of lipofuscin, related to the increased level of tissue iron content. The progressive ultrastructural pathology in R mice cardiomyocytes is consistent with the ultrastructural pathology previously studied in patients with thalassaemia. Thus, this R thalassaemic mouse model is suitable for in vivo pathophysiological study of thalassaemic heart. PMID:24020406

  17. Chronic stress impairs collateral blood flow recovery in aged mice.

    PubMed

    Lassance-Soares, Roberta M; Sood, Subeena; Chakraborty, Nabarun; Jhamnani, Sunny; Aghili, Nima; Nashin, Hajra; Hammamieh, Rasha; Jett, Marti; Epstein, Stephen E; Burnett, Mary Susan

    2014-11-01

    Chronic stress is associated with increased risk of cardiovascular diseases. Aging is also associated with vascular dysfunction. We hypothesize that chronic stress accelerates collateral dysfunction in old mice. Mice were subjected to either chronic social defeat (CSD) or chronic cold stress (CCS). The CSD mice were housed in a box inside an aggressor's cage and exposed to the aggressor. The CCS group was placed in iced water. After chronic stress, mice underwent femoral artery ligation (FAL) and flow recovery was measured. For the CSD group, appearance and use scores of the foot and a behavioral test were performed. CSD impaired collateral flow recovery after FAL. Further, stressed mice had greater ischemic damage, impaired foot function, and altered behavior. The CCS mice also showed impaired collateral flow recovery. Chronic stress causes hind limb collateral dysfunction in old mice, a conclusion reinforced by the fact that two types of stress produced similar changes.

  18. Effect of carbon monoxide and nitrogen dioxide on ICR mice

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Times to incapacitation and death and LC(50) values were determined for male ICR mice exposed to different concentration of carbon monoxide for 30 min and of nitrogen dioxide for 10 min in a 4.2 liter hemispherical chamber. The data indicate that ICR mice are more resistant to these two toxicants than Swiss albino mice. The carbon monoxide LC(50) for a 30-min exposure was about 8,000 ppm for ICR mice compared to 3,570 ppm for Swiss albino mice. The nitrogen dioxide LC(50) for a 10-min exposure was above 2,000 ppm for ICR mice compared to about 1,000 ppm for Swiss albino mice.

  19. Microglial cells from psychologically stressed mice as an accelerator of cerebral cryptococcosis.

    PubMed

    Shimoda, Masae; Jones, Vickie C; Kobayashi, Makiko; Suzuki, Fujio

    2006-12-01

    Severe stress decreases the resistance of hosts exposed to microbial infections. As compared with two groups of control mice (normal mice, food-and-water-deprived mice [FWD mice]), restraint-stressed mice (RST mice) were shown to be greatly susceptible to intracerebral growth of Cryptococcus neoformans. The susceptibility of FWD mice to cerebral cryptococcosis increased to the level shown in RST mice, when these groups of mice were inoculated with microglial cells from the brains of RST mice. However, the susceptibility of FWD mice to cerebral cryptococcosis was not influenced by the adoptive transfer of microglial cells from normal mice or FWD mice. Microglial cells from RST mice produced CC-chemokine ligand-2 (CCL-2/monocyte chemoattractant protein 1), but not microglial cells from FWD mice. The resistance of RST mice to cerebral cryptococcosis was improved to the extent shown in FWD mice, when they were treated with anti-CCL-2 antibody. However, the susceptibility of normal mice and FWD mice to cerebral cryptococcosis increased to that shown in RST mice, when they were treated with rCCL-2. Microglial cells from RST mice were discriminated from the same cell preparations derived from FWD mice by their abilities to produce CCL-2, to phagocytize C. neoformans cells and to express Toll-like receptor 2. These results indicate that the resistance of RST mice to cerebral cryptococcosis is diminished by CCL-2 produced by microglial cells that are influenced by restraint stress.

  20. Acute acetaminophen toxicity in transgenic mice with elevated hepatic glutathione.

    PubMed

    Rzucidlo, S J; Bounous, D I; Jones, D P; Brackett, B G

    2000-06-01

    Previous studies demonstrated that elevation of hepatic glutathione (GSH) concentrations protect against acetaminophen (APAP) hepatotoxicity in mice. Employing transgenic mice overexpressing glutathione synthetase, this study was conducted to determine if sustained elevation of hepatic GSH concentrations could ameliorate or prevent APAP toxicity. International Cancer Research transgenic mouse males and matched (ie same strain, sex, and age) control nontransgenic mice were pretreated ip with GSH synthetase substrate gamma-glutamylcysteinyl ethyl ester (gamma-GCE) or with saline. After a 16-h fast, mice received a single dose of 500 mg APAP/kg bw in saline ip and were sacrificed 4 h later. Other mice similarly pretreated were killed without APAP challenge. The elevated GSH concentrations in transgenic mice livers did not lessen APAP hepatotoxicity. Instead higher degrees of hepatotoxicity and nephrotoxicity were observed in transgenic mice than in controls as indicated by higher serum alanine aminotransferase activity and more severe histopathological lesions in transgenic mice livers and kidneys. Pretreatment with gamma-GCE did not affect either initial or post-APAP treatment tissue GSH concentrations or observed degrees of toxicity. Detection of a higher level of serum APAP in transgenic mice and the histopathological lesions found in transgenic mice kidneys together with no observable nephrotoxicity in control mice indicated early kidney damage in transgenic mice. Our findings suggest that high levels of GSH-APAP conjugates resulting from increased GSH concentrations in the livers of transgenic mice caused rapid kidney damage. Compromised excretory ability may have caused retention of APAP, which, in effect, elicited higher hepatotoxicity than that observed in nontransgenic mice.

  1. Hyperoxia Inhibits T Cell Activation in Mice

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    Background: The immune response is blunted in mice and humans in spaceflight. The effects of hyperoxia in mice alter expression of some of the same immune response genes. If these two conditions are additive, there could be an increased risk of infection in long duration missions. Immunosuppression is seen in healthy astronauts who have flown in space; however little is known about the mechanisms that cause the reduced immunity in spaceflight. Here we examine the role of oxidative stress on mice exposed to periods of high O2 levels mimicking pre-breathing protocols and extravehicular activity (EVA). To prevent decompression sickness, astronauts are exposed to elevated oxygen (hyperoxia) before and during EVA activities. Spaceflight missions may entail up to 24 hours of EVA per crewmember per week to perform construction and maintenance tasks. The effectiveness and success of these missions depends on designing EVA systems and protocols that maximize human performance and efficiency while minimizing health and safety risks for crewmembers. To our knowledge, no studies have been conducted on the immune system under 100% oxygen exposures to determine the potential for immune compromise due to prolonged and repeated EVAs. Methods: Animals were exposed to hyperoxic or control conditions for 8 hours per day over a period of 3 days, initiated 4 hours into the dark cycle (12h dark/12h light), using animal environmental control cabinets and oxygen controller (Biospherix, Lacona, NY). Experimental mice were exposed to 98-100% oxygen as a model for pre-breathing and EVA conditions, while control mice were maintained in chambers supplied with compressed air. These are ground control studies where we use real-time RTPCR (qRTPCR) to measure gene expression of the early immune gene expression during bead activation of splenocytes of normoxic and hyperoxic mice. All procedures were reviewed and approved by the IACUC at Ames Research Center. After the last 8h of hyperoxic exposure

  2. Effects of chronic centrifugation on mice

    NASA Technical Reports Server (NTRS)

    Janer, L.; Duke, J.

    1984-01-01

    Previous studies have shown that exposure to excess gravity in vitro alters the developmental sequence in embryonic mouse limbs and palates (Duke, Janer and Campbell, 1984; Duke, 1983). The effects of excess gravity on in vivo mammalian development was investigated using a small animal centrifuge. Four-week old female mice exposed to excess gravities of 1.8-3.5 G for eight weeks weighed significantly less than controls. Mice were mated after five weeks of adaptation to excess G, and sacrificed either at gestational day 12 or 18. There were fewer pregnancies in the centrifuged group (4/36) than in controls (9/31), and crown rump lengths (CRL) of embryos developing in the centrifuge were less than CRLs of 1-G embryos. These results show that although immersed in amniotic fluid, embryos are responsive to Delta-G.

  3. Running enhances spatial pattern separation in mice

    PubMed Central

    Creer, David J.; Romberg, Carola; Saksida, Lisa M.; van Praag, Henriette; Bussey, Timothy J.

    2010-01-01

    Increasing evidence suggests that regular exercise improves brain health and promotes synaptic plasticity and hippocampal neurogenesis. Exercise improves learning, but specific mechanisms of information processing influenced by physical activity are unknown. Here, we report that voluntary running enhanced the ability of adult (3 months old) male C57BL/6 mice to discriminate between the locations of two adjacent identical stimuli. Improved spatial pattern separation in adult runners was tightly correlated with increased neurogenesis. In contrast, very aged (22 months old) mice had impaired spatial discrimination and low basal cell genesis that was refractory to running. These findings suggest that the addition of newly born neurons may bolster dentate gyrus-mediated encoding of fine spatial distinctions. PMID:20133882

  4. Progress on the MICE Tracker Solenoid

    SciTech Connect

    Green, Michael A.; Virostek, Steve P.; Lau, W.; Yang, Stephanie Q.

    2006-06-10

    This report describes the 400 mm warm bore tracker solenoid for the Muon Ionization Cooling Experiment (MICE). The 2.923 m long tracker solenoid module includes the radiation shutter between the end absorber focus coil modules and the tracker as well as the 2.735 m long magnet cryostat vacuum vessel. The 2.554 m long tracker solenoid cold mass consists of two sections, a three-coil spectrometer magnet and a two-coil matching section that matches the uniform field 4 T spectrometer solenoid into the MICE cooling channel. The two tracker magnets are used to provide a uniform magnetic field for the fiber detectors that are used to measure the muon beam emittance at the two ends of the cooling channel. This paper describes the design for the tracker magnet coils and the 4.2 K cryogenic coolers that are used to cool the superconducting magnet. Interfaces between the magnet and the detectors are discussed.

  5. MISS- Mice on International Space Station

    NASA Astrophysics Data System (ADS)

    Falcetti, G. C.; Schiller, P.

    2005-08-01

    The use of rodents for scientific research to bridge the gap between cellular biology and human physiology is a new challenge within the history of successful developments of biological facilities. The ESA funded MISS Phase A/B study is aimed at developing a design concept for an animal holding facility able to support experimentation with mice on board the International Space Station (ISS).The MISS facility is composed of two main parts:1. The MISS Rack to perform scientific experiments onboard the ISS.2. The MISS Animals Transport Container (ATC) totransport animals from ground to orbit and vice- versa.The MISS facility design takes into account guidelines and recommendations used for mice well-being in ground laboratories. A summary of the MISS Rack and MISS ATC design concept is hereafter provided.

  6. Circadian Dysfunction Induces Leptin Resistance in Mice.

    PubMed

    Kettner, Nicole M; Mayo, Sara A; Hua, Jack; Lee, Choogon; Moore, David D; Fu, Loning

    2015-09-01

    Circadian disruption is associated with obesity, implicating the central clock in body weight control. Our comprehensive screen of wild-type and three circadian mutant mouse models, with or without chronic jet lag, shows that distinct genetic and physiologic interventions differentially disrupt overall energy homeostasis and Leptin signaling. We found that BMAL1/CLOCK generates circadian rhythm of C/EBPα-mediated leptin transcription in adipose. Per and Cry mutant mice show similar disruption of peripheral clock and deregulation of leptin in fat, but opposite body weight and composition phenotypes that correlate with their distinct patterns of POMC neuron deregulation in the arcuate nucleus. Chronic jet lag is sufficient to disrupt the endogenous adipose clock and also induce central Leptin resistance in wild-type mice. Thus, coupling of the central and peripheral clocks controls Leptin endocrine feedback homeostasis. We propose that Leptin resistance, a hallmark of obesity in humans, plays a key role in circadian dysfunction-induced obesity and metabolic syndromes.

  7. STUDIES ON TRANSMISSIBLE LYMPHOID LEUCEMIA OF MICE.

    PubMed

    Furth, J; Strumia, M

    1931-04-30

    Lymphoid leucemia of the mouse is readily transmitted by intravenous inoculations. The majority of the mice inoculated successfully develop leucemic, a smaller number of them, aleucemic lymphadenosis. The data presented favor the view that leucemic and aleucemic lymphadenosis are essentially the same condition. Leucemia produced by transmission is preceded by an aleucemic stage, in which the lymph nodes and the spleen are uniformly enlarged, and the white blood count and the percentage of lymphocytes are within the normal range but immature lymphocytes are numerous in the circulating blood. Young as well as old mice may develop leucemia if leucotic material enters their circulation. Studies of transmissible leucemia favor the view that leucemia of mammals is a neoplastic disease. The basic problem of leucemia would seem to be determination of the factors that bring about a malignant transformation of lymphoid cells.

  8. Human malignant melanoma heterotransplanted to nude mice.

    PubMed

    Tropé, C; Johnsson, J E; Alm, P; Landberg, T; Olsson, H; Wennerberg, J

    1981-01-01

    Five different human malignant melanoma were heterotransplanted subcutaneously to nude mice. When small tissue pieces were used 3 out of 5 tumors grew. Subcutaneous injections of suspended tumor cells were also made, but all failed to take. Metastatic or infiltrative growth was never seen in the mice observed for up to 2.5 months. The successful grafts largely retained the original morphologicaL features. The three successfully transplanted tumors could all be serially transferred with 100% tumor take. In one case passage time was reduced from 40 days to 15 days. As measured with 3H-thymidine incorporation the proliferation rate increased during the passages. These changes might be due to a selection of more rapidly growing tumor cells in the nudes.

  9. Antidepressant Activity of Brahmi in Albino Mice

    PubMed Central

    Kadali, SLDV Ramana Murty; M.C., Das; Rao A.S.R., Srinivasa; Sri G, Karuna

    2014-01-01

    Context: In traditional system of medicine brahmi has been used to enhance memory. Recently it has been reported to have action in psychiatric disorders. With these backgrounds the work has been undertaken to study antidepressant activity of brahmi in albino mice. Aim: To evaluate antidepressant activity of brahmi in experimental models. Materials and Methods: The antidepressant activity was studied in albino mice using forced swimming test (FST), tail suspension test (TST) and shock induced depression (SID). Imipramine (10mg/kg), fluoxetine (30mg/kg) were used as standard drugs and brahmi (10, 20, 30mg/kg) was used as test drug. Results: Brahmi exhibited significant decrease in duration of immobility in FST and reduced the shock induced decrease in activity in SID models. It didn’t show any activity in the TST model. Conclusion: Brahmi has shown antidepressant activity in FST and SID. PMID:24783074

  10. Construction noise decreases reproductive efficiency in mice.

    PubMed

    Rasmussen, Skye; Glickman, Gary; Norinsky, Rada; Quimby, Fred W; Tolwani, Ravi J

    2009-07-01

    Excessive noise is well known to impair rodent health. To better understand the effect of construction noise and to establish effective noise limits during a planned expansion of our vivarium, we analyzed the effects of construction noise on mouse gestation and neonatal growth. Our hypothesis was that high levels of construction noise would reduce the number of live births and retard neonatal growth. Female Swiss Webster mice were individually implanted with 15 B6CBAF1/J embryos and then exposed to 70- and 90-dBA concrete saw cutting noise samples at defined time points during gestation. In addition, groups of mice with litters were exposed to noise at 70, 80, or 90 dBA for 1 h daily during the first week after parturition. Litter size, birth weight, incidence of stillborn pups, and rate of neonatal weight gain were analyzed. Noise decreased reproductive efficiency by decreasing live birth rates and increasing the number of stillborn pups.

  11. The origin of common laboratory mice.

    PubMed

    Nishioka, Y

    1995-02-01

    The house mouse is one of the model organisms in genetics and more than 400 inbred strains have been established. However, many of the strains are related and their ancestry can be traced back to European fancy mice inbred in the 1920s. Recent molecular studies corroborate the early historical records that assert that Japanese fancy mice were introduced into European stocks and thus contributed to the development of "old" inbred strains. Consequently, many inbred strains have genomic DNA derived from more than one subspecies of Mus musculus. The subspecific hybrid origin of common inbred strains has important bearings on the interpretation of genetic data, and the limitations that history imposes upon the currently available strains make it necessary to establish new inbred strains representing specific wild populations.

  12. Oxytocin and behavior: Lessons from knockout mice.

    PubMed

    Caldwell, Heather K; Aulino, Elizabeth A; Freeman, Angela R; Miller, Travis V; Witchey, Shannah K

    2017-02-01

    It is well established that the nonapeptide oxytocin (Oxt) is important for the neural modulation of behaviors in many mammalian species. Since its discovery in 1906 and synthesis in the early 1950s, elegant pharmacological work has helped identify specific neural substrates on which Oxt exerts its effects. More recently, mice with targeted genetic disruptions of the Oxt system-i.e., both the peptide and its receptor (the Oxtr)-have further defined Oxt's actions and laid some important scientific groundwork for studies in other species. In this article, we highlight the scientific contributions that various mouse knockouts of the Oxt system have made to our understanding of Oxt's modulation of behavior. We specifically focus on how the use of these mice has shed light on our understanding of social recognition memory, maternal behavior, aggression, and several nonsocial behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 190-201, 2017.

  13. Natural effector T lymphocytes in normal mice.

    PubMed Central

    Pereira, P; Larsson, E L; Forni, L; Bandeira, A; Coutinho, A

    1985-01-01

    The "natural" T-cell activity in normal unimmunized mice was studied. By double-parameter fluorescence-activated cell sorter analysis, it was found that 5-10% of all splenic Lyt-2+ and L3T4+ lymphocytes are large, of which more than half are in mitotic cycle. In contrast with small resting cells of the same phenotype, activated (large) T cells isolated from normal mice are functional effector cells: L3T4+ large cells induce normal B lymphocytes into proliferation and antibody secretion, while large Lyt-2+ cells efficiently suppress B-lymphocyte responses. No effector cell cytolytic activity could be detected among naturally activated T cells. The significance of these findings for the internal activity in the normal immune system is discussed. PMID:2933744

  14. Hoxc13 mutant mice lack external hair.

    PubMed

    Godwin, A R; Capecchi, M R

    1998-01-01

    Hox genes are usually expressed temporally and spatially in a colinear manner with respect to their positions in the Hox complex. Consistent with the expected pattern for a paralogous group 13 member, early embryonic Hoxc13 expression is found in the nails and tail. Hoxc13 is also expressed in vibrissae, in the filiform papillae of the tongue, and in hair follicles throughout the body; a pattern that apparently violates spatial colinearity. Mice carrying mutant alleles of Hoxc13 have been generated by gene targeting. Homozygotes have defects in every region in which gene expression is seen. The most striking defect is brittle hair resulting in alopecia (hairless mice). One explanation for this novel role is that Hoxc13 has been recruited for a function common to hair, nail, and filiform papilla development.

  15. PUMA Suppresses Intestinal Tumorigenesis in Mice

    PubMed Central

    Qiu, Wei; Carson-Walter, Eleanor B.; Kuan, Shih Fan; Zhang, Lin; Yu, Jian

    2010-01-01

    Defective apoptosis contributes to tumorigenesis, although the critical molecular targets remain to be fully characterized. PUMA, a BH3-only protein essential for p53-dependent apoptosis, has been shown to suppress lymphomagenesis. In this study, we investigated the role of PUMA in intestinal tumorigenesis using two animal models. In the azoxymethane (AOM)/dextran sulfate sodium salt model, PUMA deficiency increased the multiplicity and size of colon tumors but reduced the frequency of β-catenin hotspot mutations. The absence of PUMA led to a significantly elevated incidence of precursor lesions induced by AOM. AOM was found to induce p53-dependent PUMA expression and PUMA-dependent apoptosis in the colonic crypts and stem cell compartment. Furthermore, PUMA deficiency significantly enhanced the formation of spontaneous macroadenomas and microadenomas in the distal small intestine and colon of APCMin/+ mice. These results show an essential role of PUMA-mediated apoptosis in suppressing intestinal tumorigenesis in mice. PMID:19491259

  16. MICE data handling on the Grid

    NASA Astrophysics Data System (ADS)

    Martyniak, J.; Mice Collaboration

    2014-06-01

    The international Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the principle of muon ionisation cooling for the first time, for application to a future Neutrino factory or Muon Collider. The experiment is currently under construction at the ISIS synchrotron at the Rutherford Appleton Laboratory (RAL), UK. In this paper we present a system - the Raw Data Mover, which allows us to store and distribute MICE raw data - and a framework for offline reconstruction and data management. The aim of the Raw Data Mover is to upload raw data files onto a safe tape storage as soon as the data have been written out by the DAQ system and marked as ready to be uploaded. Internal integrity of the files is verified and they are uploaded to the RAL Tier-1 Castor Storage Element (SE) and placed on two tapes for redundancy. We also make another copy at a separate disk-based SE at this stage to make it easier for users to access data quickly. Both copies are check-summed and the replicas are registered with an instance of the LCG File Catalog (LFC). On success a record with basic file properties is added to the MICE Metadata DB. The reconstruction process is triggered by new raw data records filled in by the mover system described above. Off-line reconstruction jobs for new raw files are submitted to RAL Tier-1 and the output is stored on tape. Batch reprocessing is done at multiple MICE enabled Grid sites and output files are shipped to central tape or disk storage at RAL using a custom File Transfer Controller.

  17. Immunomodulatory activities of gemifloxacin in mice

    PubMed Central

    Umair, Muhammad; Javeed, Aqeel; Ghafoor, Aamir; Ashraf, Muhammad

    2016-01-01

    Objective(s): Gemifloxacin is a broad spectrum antibiotic and has shown excellent coverage against a wide variety of microorganisms. In this study, an attempt was made to evaluate the immunomodulatory potential of gemifloxacin in male swiss albino mice in vivo. Materials and Methods: Three doses of gemifloxacin 25 mg/kg, 50 mg/kg and 75 mg/kg were used intraperitoneally (IP) for the evaluation of immune responses in mice. Delayed type hypersensitivity (DTH), heamagglutination assay, jerne hemolytic plaque formation assay and cyclophosphamide induced neutropenia assay were performed to evaluate the effect of gemifloxacin on immune responses. Results: DTH assay has shown the significant immune suppressant potential of gemifloxacin at 25 mg/kg dose and 75mg/kg dose. Total leukocyte count (TLC) has shown decrease in leukocyte count (P<0.05) in drug treatment groups before cyclophosphamide administration and significant decrease (P<0.001) in leukocyte count after cyclophosphamide administration as compared to negative control group. Differential leukocyte count (DLC) has shown significant decrease (P<0.001) in percentage count of lymphocytes in 75 mg/kg treatment group in leukopenic mice while increase (P<0.01) in monocytes percentage in 50 mg/kg treatment group in leukopenic mice and increase in neutrophil percentage count (P<0.05) in all treatment groups was observed after cyclophosphamide administration. Humoral immune response is shown to be suppressed in dose dependent manner by both heamagglutination titre values (P<0.001) and jerne hemolytic plaque formation assay (P<0.001). Conclusion: The results of this work clearly demonstrate that gemifloxacin has significant immunomodulatory potential. PMID:27803786

  18. Health Evaluation of Experimental Laboratory Mice

    PubMed Central

    Burkholder, Tanya; Foltz, Charmaine; Karlsson, Eleanor; Linton, C Garry; Smith, Joanne M

    2012-01-01

    Good science and good animal care go hand in hand. A sick or distressed animal does not produce the reliable results that a healthy and unstressed animal produces. This unit describes the essentials of assessing mouse health, colony health surveillance, common conditions, and determination of appropriate endpoints. Understanding the health and well-being of the mice used in research enables the investigator to optimize research results and animal care. PMID:22822473

  19. Development of Social Vocalizations in Mice

    PubMed Central

    Grimsley, Jasmine M. S.; Monaghan, Jessica J. M.; Wenstrup, Jeffrey J.

    2011-01-01

    Adult mice are highly vocal animals, with both males and females vocalizing in same sex and cross sex social encounters. Mouse pups are also highly vocal, producing isolation vocalizations when they are cold or removed from the nest. This study examined patterns in the development of pup isolation vocalizations, and compared these to adult vocalizations. In three litters of CBA/CaJ mice, we recorded isolation vocalizations at ages postnatal day 5 (p5), p7, p9, p11, and p13. Adult vocalizations were obtained in a variety of social situations. Altogether, 28,384 discrete vocal signals were recorded using high-frequency-sensitive equipment and analyzed for syllable type, spectral and temporal features, and the temporal sequencing within bouts. We found that pups produced all but one of the 11 syllable types recorded from adults. The proportions of syllable types changed developmentally, but even the youngest pups produced complex syllables with frequency-time variations. When all syllable types were pooled together for analysis, changes in the peak frequency or the duration of syllables were small, although significant, from p5 through p13. However, individual syllable types showed different, large patterns of change over development, requiring analysis of each syllable type separately. Most adult syllables were substantially lower in frequency and shorter in duration. As pups aged, the complexity of vocal bouts increased, with a greater tendency to switch between syllable types. Vocal bouts from older animals, p13 and adult, had significantly more sequential structure than those from younger mice. Overall, these results demonstrate substantial changes in social vocalizations with age. Future studies are required to identify whether these changes result from developmental processes affecting the vocal tract or control of vocalization, or from vocal learning. To provide a tool for further research, we developed a MATLAB program that generates bouts of vocalizations

  20. A prototype molecular interactive collaborative environment (MICE).

    PubMed

    Bourne, P; Gribskov, M; Johnson, G; Moreland, J; Wavra, S; Weissig, H

    1998-01-01

    Illustrations of macromolecular structure in the scientific literature contain a high level of semantic content through which the authors convey, among other features, the biological function of that macromolecule. We refer to these illustrations as molecular scenes. Such scenes, if available electronically, are not readily accessible for further interactive interrogation. The basic PDB format does not retain features of the scene; formats like PostScript retain the scene but are not interactive; and the many formats used by individual graphics programs, while capable of reproducing the scene, are neither interchangeable nor can they be stored in a database and queried for features of the scene. MICE defines a Molecular Scene Description Language (MSDL) which allows scenes to be stored in a relational database (a molecular scene gallery) and queried. Scenes retrieved from the gallery are rendered in Virtual Reality Modeling Language (VRML) and currently displayed in WebView, a VRML browser modified to support the Virtual Reality Behavior System (VRBS) protocol. VRBS provides communication between multiple client browsers, each capable of manipulating the scene. This level of collaboration works well over standard Internet connections and holds promise for collaborative research at a distance and distance learning. Further, via VRBS, the VRML world can be used as a visual cue to trigger an application such as a remote MEME search. MICE is very much work in progress. Current work seeks to replace WebView with Netscape, Cosmoplayer, a standard VRML plug-in, and a Java-based console. The console consists of a generic kernel suitable for multiple collaborative applications and additional application-specific controls. Further details of the MICE project are available at http:/(/)mice.sdsc.edu.

  1. Radioprotectors and Tumors: Molecular Studies in Mice

    SciTech Connect

    Gayle Woloschak, David Grdina

    2010-03-10

    This proposal investigated effects of radiation using a set of archival tissues. Main interests of this proposal were to investigate effects of irradiation alone or in the presence or radioprotectors; to investigate these effects on different tissues; and to use/develop molecular biology techniques that would be suitable for work with archived tissues. This work resulted in several manuscripts published or in preparation. Approach for evaluation of gene copy numbers by quantitative real time PCR has been developed and we are striving to establish methods to utilize Q-RT-PCR data to evaluate genomic instability caused by irradiation(s) and accompanying treatments. References: 1. Paunesku D, Paunesku T, Wahl A, Kataoka Y, Murley J, Grdina DJ, Woloschak GE. Incidence of tissue toxicities in gamma ray and fission neutron-exposed mice treated with Amifostine. Int J Radiat Biol. 2008, 84(8):623-34. PMID: 18661379, http://informahealthcare.com/doi/full/10.1080/09553000802241762?cookieSet=1 2. Wang Q, Paunesku T and Woloschak GE. Tissue and data archives from irradiation experiments conducted at Argonne National Laboratory over a period of four decades, in press in Radiation and Environmental Biophysics. 3. Alcantara M, Paunesku D, Rademaker A, Paunesku T and Woloschak GE. A RETROSPECTIVE ANALYSIS OF TISSUE TOXICITIES IN B6CF1 MICE IRRADIATED WITH FISSION NEUTRONS OR COBALT 60 GAMMA RAYS: Gender modulates accumulation of tissue toxicities caused by low dose rate fractionated irradiation; in preparation; this document has been uploaded as STI product 4. Wang Q, Paunesku T Wanzer B and Woloschak GE. Mitochondrial gene copy number differences in different tissues of irradiated and control mice with lymphoid cancers; in preparation 5. Wang Q, Raha, S, Paunesku T and Woloschak GE. Evaluation of gene copy number differences in different tissues of irradiated and control mice; in preparation

  2. Microangiography in Living Mice Using Synchrotron Radiation

    SciTech Connect

    Yuan Falei; Wang Yongting; Xie Bohua; Tang Yaohui; Guan Yongjing; Lu Haiyan; Yang Guoyuan; Xie Honglan; Du Guohao; Xiao Tiqiao

    2010-07-23

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 {mu}m/pixel. The optimal dose of contrast agent is 100 {mu}l per injection and the injecting rate is 33 {mu}l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43{+-}6.8 {mu}m. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  3. The mesenchymal stem cells derived from transgenic mice carrying human coagulation factor VIII can correct phenotype in hemophilia A mice.

    PubMed

    Wang, Qing; Gong, Xiuli; Gong, Zhijuan; Ren, Xiaoyie; Ren, Zhaorui; Huang, Shuzhen; Zeng, Yitao

    2013-12-20

    Hemophilia A (HA) is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. Previous studies showed that introduction of mesenchymal stem cells (MSCs) modified by FVIII-expressing retrovirus may result in phenotypic correction of HA animals. This study aimed at the investigation of an alternative gene therapy strategy that may lead to sustained FVIII transgene expression in HA mice. B-domain-deleted human FVIII (hFVIIIBD) vector was microinjected into single-cell embryos of wild-type mice to generate a transgenic mouse line, from which hFVIIIBD-MSCs were isolated, followed by transplantation into HA mice. RT-PCR and real-time PCR analysis demonstrated the expression of hFVIIIBD in multi-organs of recipient HA mice. Immunohistochemistry showed the presence of hFVIIIBD positive staining in multi-organs of recipient HA mice. ELISA indicated that plasma hFVIIIBD level in recipient mice reached its peak (77 ng/mL) at the 3rd week after implantation, and achieved sustained expression during the 5-week observation period. Plasma FVIII activities of recipient HA mice increased from 0% to 32% after hFVIIIBD-MSCs transplantation. APTT (activated partial thromboplastin time) value decreased in hFVIIIBD-MSCs transplanted HA mice compared with untreated HA mice (45.5 s vs. 91.3 s). Our study demonstrated an effective phenotypic correction in HA mice using genetically modified MSCs from hFVIIIBD transgenic mice.

  4. Drug-induced regeneration in adult mice

    PubMed Central

    Zhang, Yong; Strehin, Iossif; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise; Leferovich, John; Messersmith, Phillip B.; Heber-Katz, Ellen

    2015-01-01

    Whereas amphibians regenerate lost appendages spontaneously, mammals generally form scars over the injury site through the process of wound repair. The MRL mouse strain is an exception among mammals because it shows a spontaneous regenerative healing trait and so can be used to investigate proregenerative interventions in mammals. We report that hypoxia-inducible factor 1α (HIF-1α) is a central molecule in the process of regeneration in adult MRL mice. The degradation of HIF-1α protein, which occurs under normoxic conditions, is mediated by prolyl hydroxylases (PHDs). We used the drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), a PHD inhibitor, to stabilize constitutive expression of HIF-1α protein. A locally injectable hydrogel containing 1,4-DPCA was designed to achieve controlled delivery of the drug over 4 to 10 days. Subcutaneous injection of the 1,4-DPCA/hydrogel into Swiss Webster mice that do not show a regenerative phenotype increased stable expression of HIF-1α protein over 5 days, providing a functional measure of drug release in vivo. Multiple peripheral subcutaneous injections of the 1,4-DPCA/hydrogel over a 10-day period led to regenerative wound healing in Swiss Webster mice after ear hole punch injury. Increased expression of the HIF-1α protein may provide a starting point for future studies on regeneration in mammals. PMID:26041709

  5. Impairment of mice spermatogenesis by sodium arsenite.

    PubMed

    Ferreira, Mónica; Matos, Rita Cerejeira; Oliveira, Helena; Nunes, Bruno; Pereira, Maria de Lourdes

    2012-03-01

    In order to assess the effect of arsenic on the male reproductive impairment in mice, 7-week-old animals were exposed to 7.5 mg sodium arsenite (NaAsO(2))/kg body weight, during 35 days (one spermatogenic cycle). One group of animals was sacrificed after exposure, while another group received distilled water for an additional period of 35 days, in order to study the spermatoxic effect and the recovery of spermatogenesis. In mice sacrificed after NaAsO(2) exposure, a decrease in testis/body weight ratio and reduction of tubular diameter were observed. Both groups of NaAsO(2)-exposed animals showed remarkable histopathological changes, such as sloughing of immature germ cells. Animals sacrificed after NaAsO(2) exposure showed decreased sperm motility, increased abnormal sperm morphology and decreased sperm viability. The effects of NaAsO(2) on sperm motility recovered to normal values after one spermatogenic cycle, while increased sperm abnormality was maintained. However, at this period, a decrease in acrosome integrity was detected. Concerning oxidative stress parameters, animals sacrificed after NaAsO(2) exposure showed a decreased selenium-dependent glutathione peroxidase activity, which was not detected after the recovery. Conversely, at this period, total glutathione peroxidase activity increased in exposed animals. These results demonstrate the toxic effects of NaAsO(2) on mice spermatogenesis and show the lack of recovery after one spermatogenic cycle.

  6. Wallerian degeneration in ICAM-1-deficient mice.

    PubMed Central

    Vougioukas, V. I.; Roeske, S.; Michel, U.; Brück, W.

    1998-01-01

    Wallerian degeneration of the peripheral nervous system was studied in ICAM-1-deficient mice and compared with the phenomena observed in C57BL wild-type animals. There was a decrease in myelin density in both mice strains 4 and 6 days after transection of the sciatic nerve. The degenerating nerves were invaded by Mac-1-, LFA-1-, and F4/80-positive macrophages; significantly lower numbers of macrophages were present in ICAM-1-deficient nerves. Myelin loss decreased after nerve transection with a more prominent loss in ICAM-1-deficient animals. Schwann cells revealed a much higher myelin load in these animals when compared with wild-type nerves, and there was an increased proliferation of endoneurial cells in ICAM-1-deficient mice. These data indicate that ICAM-1 is involved in macrophage recruitment to injured peripheral nerves as well as in the proliferative and phagocytic response of Schwann cells after peripheral nerve transection. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9422541

  7. Superconducting solenoids for the MICE channel

    SciTech Connect

    Green, M.A.; Barr, G.; Baynham, D.E.; Rockford, J.H.; Fabbricatore, P.; Farinin, S.; Palmer, R.B.; Rey, J.M.

    2003-05-01

    This report describes the channel of superconductingsolenoids for the proposed international Muon Ionization CoolingExperiment (MICE). MICE consists of two cells of a SFOFO cooling channelthat is similar to that studied in the level 2 study of a neutrinofactory[1]. MICE also consists of two detector solenoids at either end ofthe cooling channel section. The superconducting solenoids for MICEperform three functions. The coupling solenoids, which are largesolenoids around 201.25 MHz RF cavities, couple the muon beam between thefocusing sections as it passes along the cooling channel. The focusingsolenoids are around the liquid hydrogen absorber that reduces themomentum of the muons in all directions. These solenoids generate agradient field along the axis as they reduce the beta of the muon beambefore it enters the absorber. Each detector solenoid system consists offive coils that match the muon beam coming to or from an absorber to a4.0 T uniform solenoidal field section that that contains the particledetectors at the ends of the experiment. There are detector solenoids atthe beginning and at the end of the experiment. This report describes theparameters of the eighteen superconducting coils that make up the MICEmagnetic channel.

  8. Zoopharmacognosy in Diseased Laboratory Mice: Conflicting Evidence

    PubMed Central

    Kapadia, Minesh; Zhao, Hui; Ma, Donglai; Hatkar, Rupal; Marchese, Monica; Sakic, Boris

    2014-01-01

    Zoopharmacognosy denotes a constellation of learned ingestive responses that promote healing and survival of infected or poisoned animals. A similar self-medication phenomenon was reported in diseased laboratory rodents. In particular, a series of studies revealed that autoimmune MRL/lpr mice readily consume solutions paired or laced with cyclophosphamide (CY), an immunosuppressive drug that prevents inflammatory damage to internal organs. However, due to design limitations, it could not be elucidated whether such a response reflects the learned therapeutic effect of CY, or a deficit in sensory input. We presently assess the behavioural effects of prolonged consumption of CY-laced, 16% sucrose solution in a continuous choice paradigm, with tap water available ad lib. Contrary to overall expectation, MRL/lpr mice did not increase their intake of CY with disease progression. Moreover, they ingested lower doses of CY and preferred less CY-laced sucrose solution than age-matched controls. The results obtained could not confirm zoopharmacognosy in diseased MRL/lpr mice, likely due to impaired responsiveness to palatable stimulation, or attenuated survival mechanisms after prolonged inbreeding in captivity. However, by revealing the effectiveness of unrestricted drinking of drug-laced sucrose solution on behavior and immunity, the current study supports broader use of such an administration route in behavioural studies sensitive to external stressors. PMID:24956477

  9. Critical period for acoustic preference in mice

    PubMed Central

    Yang, Eun-Jin; Lin, Eric W.; Hensch, Takao K.

    2012-01-01

    Preference behaviors are often established during early life, but the underlying neural circuit mechanisms remain unknown. Adapting a unique nesting behavior assay, we confirmed a “critical period” for developing music preference in C57BL/6 mice. Early music exposure between postnatal days 15 and 24 reversed their innate bias for silent shelter, which typically could not be altered in adulthood. Instead, exposing adult mice treated acutely with valproic acid or carrying a targeted deletion of the Nogo receptor (NgR−/−) unmasked a strong plasticity of preference consistent with a reopening of the critical period as seen in other systems. Imaging of cFos expression revealed a prominent neuronal activation in response to the exposed music in the prelimbic and infralimbic medial prefrontal cortex only under conditions of open plasticity. Neither behavioral changes nor selective medial prefrontal cortex activation was observed in response to pure tone exposure, indicating a music-specific effect. Open-field center crossings were increased concomitant with shifts in music preference, suggesting a potential anxiolytic effect. Thus, music may offer both a unique window into the emotional state of mice and a potentially efficient assay for molecular “brakes” on critical period plasticity common to sensory and higher order brain areas. PMID:23045690

  10. Antiamnesic effects of Desmodium gangeticum in mice.

    PubMed

    Joshi, Hanumanthachar; Parle, Milind

    2006-09-01

    Dementia is a mental disorder characterized by loss of intellectual ability sufficiently severe enough to interfere with one's occupational or social activities. Desmodium gangeticum commonly known as Salparni, is widely used in ayurveda for the treatment of neurological disorders. The present work was designed to assess the potential of aqueous extract of D. gangeticum (DG) as a nootropic agent in mice. DG (50, 100 and 200 mg/kg, p.o.) was administered for 7 successive days to both young and older mice. Exteroceptive behavioral models such as elevated plus maze and passive avoidance paradigm were employed to evaluate learning and memory. Scopolamine (0.4 mg/kg, i.p.) induced amnesia and ageing induced amnesia were the interoceptive behavioral models. To delineate the mechanism by which DG exerts nootropic activity, the effect of DG on whole brain AChE activity was also assessed. Piracetam (200 mg/kg, i.p.) was used as a standard nootropic agent. Pretreatment with DG (50, 100 and 200 mg/kg p.o.) for seven successive days significantly improved learning and memory in mice and reversed the amnesia induced by both, scopolamine (0.4 mg/kg, i.p.) and natural ageing. DG also decreased whole brain acetyl cholinesterase activity. Hence, D. gangeticum appears to be a promising candidate for improving memory and it would be worthwhile to explore the potential of this plant in the management of dementia and Alzheimer disease.

  11. Heart regeneration in adult MRL mice

    NASA Astrophysics Data System (ADS)

    Leferovich, John M.; Bedelbaeva, Khamilia; Samulewicz, Stefan; Zhang, Xiang-Ming; Zwas, Donna; Lankford, Edward B.; Heber-Katz, Ellen

    2001-08-01

    The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary capacity to heal surgical wounds, a complex trait that maps to at least seven genetic loci. Here, we extend these studies to cardiac wounds and demonstrate that a severe transmural, cryogenically induced infarction of the right ventricle heals extensively within 60 days, with the restoration of normal myocardium and function. Scarring is markedly reduced in MRL mice compared with C57BL/6 mice, consistent with both the reduced hydroxyproline levels seen after injury and an elevated cardiomyocyte mitotic index of 10-20% for the MRL compared with 1-3% for the C57BL/6. The myocardial response to injury observed in these mice resembles the regenerative process seen in amphibians.

  12. Zoopharmacognosy in diseased laboratory mice: conflicting evidence.

    PubMed

    Kapadia, Minesh; Zhao, Hui; Ma, Donglai; Hatkar, Rupal; Marchese, Monica; Sakic, Boris

    2014-01-01

    Zoopharmacognosy denotes a constellation of learned ingestive responses that promote healing and survival of infected or poisoned animals. A similar self-medication phenomenon was reported in diseased laboratory rodents. In particular, a series of studies revealed that autoimmune MRL/lpr mice readily consume solutions paired or laced with cyclophosphamide (CY), an immunosuppressive drug that prevents inflammatory damage to internal organs. However, due to design limitations, it could not be elucidated whether such a response reflects the learned therapeutic effect of CY, or a deficit in sensory input. We presently assess the behavioural effects of prolonged consumption of CY-laced, 16% sucrose solution in a continuous choice paradigm, with tap water available ad lib. Contrary to overall expectation, MRL/lpr mice did not increase their intake of CY with disease progression. Moreover, they ingested lower doses of CY and preferred less CY-laced sucrose solution than age-matched controls. The results obtained could not confirm zoopharmacognosy in diseased MRL/lpr mice, likely due to impaired responsiveness to palatable stimulation, or attenuated survival mechanisms after prolonged inbreeding in captivity. However, by revealing the effectiveness of unrestricted drinking of drug-laced sucrose solution on behavior and immunity, the current study supports broader use of such an administration route in behavioural studies sensitive to external stressors.

  13. APP Causes Hyperexcitability in Fragile X Mice.

    PubMed

    Westmark, Cara J; Chuang, Shih-Chieh; Hays, Seth A; Filon, Mikolaj J; Ray, Brian C; Westmark, Pamela R; Gibson, Jay R; Huber, Kimberly M; Wong, Robert K S

    2016-01-01

    Amyloid-beta protein precursor (APP) and metabolite levels are altered in fragile X syndrome (FXS) patients and in the mouse model of the disorder, Fmr1(KO) mice. Normalization of APP levels in Fmr1(KO) mice (Fmr1(KO) /APP(HET) mice) rescues many disease phenotypes. Thus, APP is a potential biomarker as well as therapeutic target for FXS. Hyperexcitability is a key phenotype of FXS. Herein, we determine the effects of APP levels on hyperexcitability in Fmr1(KO) brain slices. Fmr1(KO) /APP(HET) slices exhibit complete rescue of UP states in a neocortical hyperexcitability model and reduced duration of ictal discharges in a CA3 hippocampal model. These data demonstrate that APP plays a pivotal role in maintaining an appropriate balance of excitation and inhibition (E/I) in neural circuits. A model is proposed whereby APP acts as a rheostat in a molecular circuit that modulates hyperexcitability through mGluR5 and FMRP. Both over- and under-expression of APP in the context of the Fmr1(KO) increases seizure propensity suggesting that an APP rheostat maintains appropriate E/I levels but is overloaded by mGluR5-mediated excitation in the absence of FMRP. These findings are discussed in relation to novel treatment approaches to restore APP homeostasis in FXS.

  14. APP Causes Hyperexcitability in Fragile X Mice

    PubMed Central

    Westmark, Cara J.; Chuang, Shih-Chieh; Hays, Seth A.; Filon, Mikolaj J.; Ray, Brian C.; Westmark, Pamela R.; Gibson, Jay R.; Huber, Kimberly M.; Wong, Robert K. S.

    2016-01-01

    Amyloid-beta protein precursor (APP) and metabolite levels are altered in fragile X syndrome (FXS) patients and in the mouse model of the disorder, Fmr1KO mice. Normalization of APP levels in Fmr1KO mice (Fmr1KO/APPHET mice) rescues many disease phenotypes. Thus, APP is a potential biomarker as well as therapeutic target for FXS. Hyperexcitability is a key phenotype of FXS. Herein, we determine the effects of APP levels on hyperexcitability in Fmr1KO brain slices. Fmr1KO/APPHET slices exhibit complete rescue of UP states in a neocortical hyperexcitability model and reduced duration of ictal discharges in a CA3 hippocampal model. These data demonstrate that APP plays a pivotal role in maintaining an appropriate balance of excitation and inhibition (E/I) in neural circuits. A model is proposed whereby APP acts as a rheostat in a molecular circuit that modulates hyperexcitability through mGluR5 and FMRP. Both over- and under-expression of APP in the context of the Fmr1KO increases seizure propensity suggesting that an APP rheostat maintains appropriate E/I levels but is overloaded by mGluR5-mediated excitation in the absence of FMRP. These findings are discussed in relation to novel treatment approaches to restore APP homeostasis in FXS. PMID:28018172

  15. Acute toxicity of karlotoxins to mice

    PubMed Central

    Place, Allen R.; Munday, R.; Munday, J.S.

    2015-01-01

    Karlotoxins, polyketide derivatives produced by the dinoflagellate Karlodinium veneficum, are associated with fish kills in temperate estuaries world wide. In this study, the acute effects of 3 pure karlotoxin analogs (KmTx 1, KmTx 3 and KmTx 2) have been examined in mice. Transient lethargy and increased respiratory rates were observed soon after dosing with the karlotoxins by intraperitoneal injection, but no deaths were recorded in animals dosed with KmTx 2 at up to 500 μg/kg or with KmTx 1 or KmTx 3 at up to 4000 μg/kg. Animals dosed intraperitoneally with KmTx 1 and KmTx 3 at 4000 μg/kg showed a pronounced decrease in food and water intake, lasting 3–4 days after dosing, accompanied by a significant decrease in body weight. After this time, the lost body weight was regained and the behavior and appearance of the mice remained normal throughout the following 10 day observation period. No effects were seen in mice dosed orally with KmTx 1 or KmTx 3 at a dose of 4000 μg/kg. It is concluded that contamination of seafood if it were to occur with these karlotoxins is unlikely to pose a major risk of acute intoxication in consumers. PMID:25150200

  16. Olfactory epithelium changes in germfree mice

    PubMed Central

    François, Adrien; Grebert, Denise; Rhimi, Moez; Mariadassou, Mahendra; Naudon, Laurent; Rabot, Sylvie; Meunier, Nicolas

    2016-01-01

    Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration. PMID:27089944

  17. Circadian Behaviour in Neuroglobin Deficient Mice

    PubMed Central

    Hundahl, Christian A.; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night. PMID:22496809

  18. [Effect of scopolamine on depression in mice].

    PubMed

    Ji, Cheng-xue; Zhang, Jian-jun

    2011-04-01

    Based on the report of previous clinical study which showed cholinergic receptor antagonist scopolamine had antidepressant activity, this study was to investigate the antidepressant activity of scopolamine and explore its effective dose in mice, and to evaluate the effect of scopolamine on the central nervous system and learning/memory ability at its antidepressant effective dose. Tail suspension test, forced swimming test, step-down passive avoidance test and open field test were used to evaluate its effects on mice. Compared with the vehicle control group, single-dose administration of scopolamine (0.1-0.4 mg x kg(-1), ip) significantly decreased the immobility time (P < 0.01 or P < 0.001) in tail suspension test, and significantly decreased the immobility time (P < 0.001) in forced swimming test, but had no effect on the step-down latency and errors in step-down passive avoidance test. Scopolamine (0.1 and 0.2 mg x kg(-1), ip) had no influence on the locomotor activity in open field test, while at dose of 0.4 mg x kg(-1) significantly increase the locomotor activity. These results showed that scopolamine produced reliable antidepressant effect at doses of 0.1 and 0.2 mg x kg(-1), without impairment on learning and memory, as well as excitory or inhibitory effect on central nervous system in mice.

  19. Antifatigue effect of Gracilaria eucheumoides in mice.

    PubMed

    Shao, Jin-Ting; Wang, Mei-Yan; Zheng, Lu-Bin

    2013-12-01

    Gracilaria eucheumoides Linn (Gracilariaceae; G. eucheumoides) is abundant in dietary fiber, which aids the clearance of excess cholesterol from the blood and maintains stable blood glucose levels. The aim of the present study was to investigate the antifatigue effect of G. eucheumoides in mice and the physiological and molecular mechanisms underlying this effect. Mice were randomly divided into four groups and three of the groups were administered different doses of G. eucheumoides extract. A loaded swimming test demonstrated that the swimming times of the low-, medium- and high-dose groups were longer than those of the control group. Examinations revealed that the liver and muscle glycogen, lactate dehydrogenase and blood glucose concentration levels of the treatment groups were higher than those of the control group (P<0.05). However, this was not the case for lactic acid concentration (P>0.05). Quantitative polymerase chain reaction showed that the gene expression levels of glucose transport protein 4 and AMP-activated protein kinase in the medium-dose group exhibited the largest increases, compared with the other treatment groups, and were 3.0- and 1.8-fold higher than those in the control group, respectively. The results of the present study indicated that G. eucheumoides exerts an antifatigue effect on mice.

  20. Antifatigue effect of Gracilaria eucheumoides in mice

    PubMed Central

    SHAO, JIN-TING; WANG, MEI-YAN; ZHENG, LU-BIN

    2013-01-01

    Gracilaria eucheumoides Linn (Gracilariaceae; G. eucheumoides) is abundant in dietary fiber, which aids the clearance of excess cholesterol from the blood and maintains stable blood glucose levels. The aim of the present study was to investigate the antifatigue effect of G. eucheumoides in mice and the physiological and molecular mechanisms underlying this effect. Mice were randomly divided into four groups and three of the groups were administered different doses of G. eucheumoides extract. A loaded swimming test demonstrated that the swimming times of the low-, medium- and high-dose groups were longer than those of the control group. Examinations revealed that the liver and muscle glycogen, lactate dehydrogenase and blood glucose concentration levels of the treatment groups were higher than those of the control group (P<0.05). However, this was not the case for lactic acid concentration (P>0.05). Quantitative polymerase chain reaction showed that the gene expression levels of glucose transport protein 4 and AMP-activated protein kinase in the medium-dose group exhibited the largest increases, compared with the other treatment groups, and were 3.0- and 1.8-fold higher than those in the control group, respectively. The results of the present study indicated that G. eucheumoides exerts an antifatigue effect on mice. PMID:24255683

  1. Parturition failure in mice lacking Mamld1.

    PubMed

    Miyado, Mami; Miyado, Kenji; Katsumi, Momori; Saito, Kazuki; Nakamura, Akihiro; Shihara, Daizou; Ogata, Tsutomu; Fukami, Maki

    2015-10-05

    In mice, the onset of parturition is triggered by a rapid decline in circulating progesterone. Progesterone withdrawal occurs as a result of functional luteolysis, which is characterized by an increase in the enzymatic activity of 20α-hydroxysteroid dehydrogenase (20α-HSD) in the corpus luteum and is mediated by the prostaglandin F2α (PGF2α) signaling. Here, we report that the genetic knockout (KO) of Mamld1, which encodes a putative non-DNA-binding regulator of testicular steroidogenesis, caused defective functional luteolysis and subsequent parturition failure and neonatal deaths. Progesterone receptor inhibition induced the onset of parturition in pregnant KO mice, and MAMLD1 regulated the expression of Akr1c18, the gene encoding 20α-HSD, in cultured cells. Ovaries of KO mice at late gestation were morphologically unremarkable; however, Akr1c18 expression was reduced and expression of its suppressor Stat5b was markedly increased. Several other genes including Prlr, Cyp19a1, Oxtr, and Lgals3 were also dysregulated in the KO ovaries, whereas PGF2α signaling genes remained unaffected. These results highlight the role of MAMLD1 in labour initiation. MAMLD1 likely participates in functional luteolysis by regulating Stat5b and other genes, independent of the PGF2α signaling pathway.

  2. Dehydration anorexia is attenuated in oxytocin-deficient mice.

    PubMed

    Rinaman, Linda; Vollmer, Regis R; Karam, Joseph; Phillips, Donnesha; Li, Xia; Amico, Janet A

    2005-06-01

    Evidence in rats suggests that central oxytocin (OT) signaling pathways contribute to suppression of food intake during dehydration (i.e., dehydration anorexia). The present study examined water deprivation-induced dehydration anorexia in wild-type and OT -/- mice. Mice were deprived of food alone (fasted, euhydrated) or were deprived of both food and water (fasted, dehydrated) for 18 h overnight. Fasted wild-type mice consumed significantly less chow during a 60-min refeeding period when dehydrated compared with their intake when euhydrated. Conversely, fasting-induced food intake was slightly but not significantly suppressed by dehydration in OT -/- mice, evidence for attenuated dehydration anorexia. In a separate experiment, mice were deprived of water (but not food) overnight for 18 h; then they were anesthetized and perfused with fixative for immunocytochemical analysis of central Fos expression. Fos was elevated similarly in osmo- and volume-sensitive regions of the basal forebrain and hypothalamus in wild-type and OT -/- mice after water deprivation. OT-positive neurons expressed Fos in dehydrated wild-type mice, and vasopressin-positive neurons were activated to a similar extent in wild-type and OT -/- mice. Conversely, significantly fewer neurons within the hindbrain dorsal vagal complex were activated in OT -/- mice after water deprivation compared with activation in wild-type mice. These findings support the view that OT-containing projections from the hypothalamus to the hindbrain are necessary for the full expression of compensatory behavioral and physiological responses to dehydration.

  3. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice.

    PubMed

    Galipeau, Heather J; McCarville, Justin L; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G; Verdu, Elena F

    2015-11-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk.

  4. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  5. Kidney histologic alterations in α-Galactosidase-deficient mice.

    PubMed

    Valbuena, Carmen; Oliveira, João Paulo; Carneiro, Fátima; Relvas, Sandra; Ganhão, Mariana; Sá-Miranda, M Clara; Rodrigues, Lorena G

    2011-04-01

    Fabry disease is a rare X-linked disorder caused by mutations in the α-galactosidase gene (GLA), the resultant deficiency of lysosomal α-galactosidase enzyme activity leading to systemic accumulation of globotriaosylceramide and other glycosphingolipids. GLA knockout mice ("Fabry mice") were generated as an animal model for Fabry disease but, as they do not manifest progressive chronic kidney disease (CKD), their relevance as a model for human Fabry nephropathy is uncertain. We evaluated the histological alterations in the kidneys of Fabry mice at different ages, as contrasted to those observed in wild-type mice. Furthermore, we compared the renal histological alterations of Fabry mice to the kidney pathology reported in patients with Fabry disease at comparable age ranges and across different CKD stages, using a scoring system that has been developed for Fabry nephropathy. Fabry mice are phenotypically different from wild-type mice, displaying progressive age-related accumulation of glycosphingolipids in all types of renal cells. There were no statistically significant differences between Fabry mice and Fabry patients in the prevalence of glycosphingolipid storage per renal cell type with the exceptions of mesangial (higher in humans) and proximal tubular cells (higher in mice). However, Fabry mice lack the nonspecific histological glomerulosclerotic and interstitial fibrotic renal lesions that best correlate with progressive CKD in Fabry patients, and do not develop large podocyte inclusions. We postulate that the elucidation of the mechanisms underlying these species differences, may contribute important clues to a better understanding of the pathogenesis of Fabry nephropathy.

  6. IL-4 Knock Out Mice Display Anxiety-Like Behavior.

    PubMed

    Moon, Morgan L; Joesting, Jennifer J; Blevins, Neil A; Lawson, Marcus A; Gainey, Stephen J; Towers, Albert E; McNeil, Leslie K; Freund, Gregory G

    2015-07-01

    Inflammation is a recognized antecedent and coincident factor when examining the biology of anxiety. Little is known, however, about how reductions in endogenous anti-inflammatory mediators impact anxiety. Therefore, mood- cognition- and anxiety-associated/like behaviors were examined in IL-4 knock out (KO) mice and wild-type (WT) mice. In comparison to WT mice, IL-4 KO mice demonstrated decreased burrowing and increased social exploration. No differences were seen in forced swim or saccharine preference testing. IL-4 KO mice had similar performance to WT mice in the Morris water maze and during object location and novel object recognition. In the elevated zero-maze, IL-4 KO mice, in comparison to WT mice, demonstrated anxiety-like behavior. Anxiety-like behavior in IL-4 KO mice was not observed, however, during open-field testing. Taken together, these data indicate that IL-4 KO mice display state, but not trait, anxiety suggesting that reductions in endogenous anti-inflammatory bioactives can engender subtypes of anxiety.

  7. IL-4 Knock out Mice Display Anxiety-like Behavior

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Blevins, Neil A.; Lawson, Marcus A.; Gainey, Stephen J.; Towers, Albert E.; McNeil, Leslie K.; Freund, Gregory G.

    2015-01-01

    Inflammation is a recognized antecedent and coincident factor when examining the biology of anxiety. Little is known, however, about how reductions in endogenous anti-inflammatory mediators impact anxiety. Therefore, mood- cognition- and anxiety-associated/like behaviors were examined in IL-4 knock out (KO) mice and wild-type (WT) mice. In comparison to WT mice, IL-4 KO mice demonstrated decreased burrowing and increased social exploration. No differences were seen in forced swim or saccharine preference testing. IL-4 KO mice had similar performance to WT mice in the Morris water maze and during object location and novel object recognition. In the elevated zero-maze, IL-4 KO mice, in comparison to WT mice, demonstrated anxiety-like behavior. Anxiety-like behavior in IL-4 KO mice was not observed, however, during open-field testing. Taken together, these data indicate that IL-4 KO mice display state, but not trait, anxiety suggesting that reductions in endogenous anti-inflammatory bioactives can engender subtypes of anxiety. PMID:25772794

  8. Intestinal Microbiota Modulates Gluten-Induced Immunopathology in Humanized Mice

    PubMed Central

    Galipeau, Heather J.; McCarville, Justin L.; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A.; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G.; Verdu, Elena F.

    2016-01-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk. PMID:26456581

  9. Lipid metabolism and body composition in Gclm(-/-) mice

    SciTech Connect

    Kendig, Eric L.; Chen, Ying; Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N.; Genter, Mary Beth; Nebert, Daniel W.; Shertzer, Howard G.

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  10. Adaptation and immunogenicity of Cryptosporidium parvum to immunocompetent mice.

    PubMed

    Matsuo, Tomohide; Tsuge, Yasuko; Umemiya-Shirafuji, Rika; Fujino, Takashi; Matsui, Toshihiro

    2014-03-01

    The adaptation and immunogenisity of Cryptosporidium parvum isolated from Siberian chipmunks (SC1 strain) in immunocompetent (ICR) mice were examined. The oocysts were received to the severe combined immunodeficiency (SCID) mice by repeated passage. The oocysts collected from the 18th SCID mice were inoculated to 5 ICR mice. The mice began to shed oocysts from 6 days after inoculation, the patency was 5 days, and the maximum oocysts per gram of feces (OPG) value was 10(4). The maximum of OPG value was gradually increased by successive passage, and finally that in the 22nd mice reached 10(6) (patency: 11 days). It is considered that these results indicate completion of their adaptation to ICR mice. To examine the immunogenicity of C. parvum to ICR mice, 8 groups of 5 mice each were inoculated with 1.3 × 10(6) oocysts of SC1 strain, which were collected after adaptation to SCID mice. All groups shed oocysts from 6th day, and their patency was from 8 to 12 days. On the 21st day after the primary infection, these mice were challenged with 1.3 × 10(6) oocysts. No oocysts shed from any groups, although 2 control groups shed oocysts from the 6th day, and their OPG values were more than 10(6). These results suggest that this strain has strong immunogenicity against ICR mice. Therefore, the immunological healthy mice were considered a useful experimental model to investigate immunological and drug treatments in the strain of C. parvum.

  11. Changes in the pharmacokinetics of digoxin in polyuria in streptozotocin-induced diabetic mice and lithium carbonate-treated mice.

    PubMed

    Ikarashi, Nobutomo; Kagami, Mai; Kobayashi, Yasushi; Ishii, Makoto; Toda, Takahiro; Ochiai, Wataru; Sugiyama, Kiyoshi

    2011-06-01

    In humans, digoxin is mainly eliminated through the kidneys unchanged, and renal clearance represents approximately 70% of the total clearance. In this study, we used the mouse models to examine digoxin pharmacokinetics in polyuria induced by diabetes mellitus and lithium carbonate (Li(2)CO(3)) administration, including mechanistic evaluation of the contribution of glomerular filtration, tubular secretion, and tubular reabsorption. After digoxin administration to streptozotocin (STZ)-induced diabetic mice, digoxin CL/F increased to approximately 2.2 times that in normal mice. After treatment with Li(2)CO(3) (0.2%) for 10 days, the CL/F increased approximately 1.1 times for normal mice and 1.6 times for STZ mice. Creatinine clearance (CLcr) and the renal mRNA expression levels of mdr1a did not differ significantly between the normal, STZ, and Li(2)CO(3)-treated mice. The urine volume of STZ mice was approximately 26 mL/day, 22 times that of normal mice. The urine volume of Li(2)CO(3)-treated mice increased approximately 7.3 times for normal mice and 2.3 times for STZ mice. These results suggest that the therapeutic effect of digoxin may be significantly reduced in the presence of polyuria either induced by diabetes mellitus or manifested as an adverse effect of Li(2)CO(3) in diabetic patients, along with increased urine volume.

  12. BALB/c Mice Can Learn Touchscreen Visual Discrimination and Reversal Tasks Faster than C57BL/6 Mice.

    PubMed

    Turner, Karly M; Simpson, Christopher G; Burne, Thomas H J

    2017-01-01

    Touchscreen technology is increasingly being used to characterize cognitive performance in rodent models of neuropsychiatric disorders. Researchers are attracted to the automated system and translational potential for touchscreen-based tasks. However, training time is extensive and some mouse strains have struggled to learn touchscreen tasks. Here we compared the performance of commonly used C57BL/6 mice against the BALB/c mice, which are considered a poor performing strain, using a touchscreen task. BALB/c and C57BL/6 mice were trained to operate the touchscreens before learning a visual discrimination (VD) and reversal task. Following touchscreen testing, these strains were assessed for differences in locomotion and learned helplessness. BALB/c mice finished training in nearly half the number of sessions taken by C57BL/6 mice. Following training, mice learned a VD task where BALB/c mice again reached criteria in fewer than half the sessions required for C57BL/6 mice. Once acquired, there were no strain differences in % correct responses, correction trials or response latency. BALB/c mice also learnt the reversal task in significantly fewer sessions than C57BL/6 mice. On the open field test C57BL/6 mice traveled further and spent more time in the center, and spent less time immobile than BALB/c mice on the forced swim test (FST). After touchscreen testing, strains exhibited well-established behavioral traits demonstrating the extensive training and handling from touchscreen testing did not alter their behavioral phenotype. These results suggest that BALB/c mice can be examined using touchscreen tasks and that task adaptations may improve feasibility for researchers using different strains.

  13. BALB/c Mice Can Learn Touchscreen Visual Discrimination and Reversal Tasks Faster than C57BL/6 Mice

    PubMed Central

    Turner, Karly M.; Simpson, Christopher G.; Burne, Thomas H. J.

    2017-01-01

    Touchscreen technology is increasingly being used to characterize cognitive performance in rodent models of neuropsychiatric disorders. Researchers are attracted to the automated system and translational potential for touchscreen-based tasks. However, training time is extensive and some mouse strains have struggled to learn touchscreen tasks. Here we compared the performance of commonly used C57BL/6 mice against the BALB/c mice, which are considered a poor performing strain, using a touchscreen task. BALB/c and C57BL/6 mice were trained to operate the touchscreens before learning a visual discrimination (VD) and reversal task. Following touchscreen testing, these strains were assessed for differences in locomotion and learned helplessness. BALB/c mice finished training in nearly half the number of sessions taken by C57BL/6 mice. Following training, mice learned a VD task where BALB/c mice again reached criteria in fewer than half the sessions required for C57BL/6 mice. Once acquired, there were no strain differences in % correct responses, correction trials or response latency. BALB/c mice also learnt the reversal task in significantly fewer sessions than C57BL/6 mice. On the open field test C57BL/6 mice traveled further and spent more time in the center, and spent less time immobile than BALB/c mice on the forced swim test (FST). After touchscreen testing, strains exhibited well-established behavioral traits demonstrating the extensive training and handling from touchscreen testing did not alter their behavioral phenotype. These results suggest that BALB/c mice can be examined using touchscreen tasks and that task adaptations may improve feasibility for researchers using different strains. PMID:28197083

  14. Changes in nerve-mediated contractility of the lower urinary tract in a mouse model of premature ageing

    PubMed Central

    Triguero, D; Lafuente-Sanchis, A; Garcia-Pascual, A

    2014-01-01

    Background and Purpose A high incidence of lower urinary tract disorders is associated with ageing. In the senescent-accelerated prone (SAMP8) mouse strain and the senescent-accelerated resistant (SAMR1) strain, we compared smooth muscle contractility in responses to intrinsic neurotransmitters, both in the bladder and urethra. Experimental Approach We analysed micturition frequency, the changes in muscle tension induced by electrical field stimulation or agonist administration, the density of nerves (adrenergic, cholinergic and nitrergic) and interstitial cells (ICs), as well as cGMP accumulation in bladder and urethral preparations. Key Results Senescent mice of the SAMP8 strain displayed increased micturition frequency and excitatory contractility of neurogenic origin in the bladder. While cholinergic nerve density remained unchanged, there was a mild sensitization to ACh in male mice. Potentiation in the detrusor may be also provoked by the stronger contribution of ATP, together with reduced adrenergic innervation in males and COX-derived prostanoid production in females. The greater excitatory contractility in the urethra was probably due to the sensitization to noradrenaline, in conjunction with attenuated nitrergic relaxation. There were also fewer neuronal NOS immunoreactive (ir) nerves and vimentin-positive ICs, although the sildenafil-and diethylamine-NONOate-induced relaxations and cGMP-ir remained unchanged. Conclusions and Implications Premature senescent mice exhibit bladder and urethral hyperexcitability, coupled with reduced urethral relaxation of neurogenic origin, which could model the impaired urinary function in elderly humans. We propose that senescence-accelerated mice provide a useful tool to analyse the basic mechanisms of age-related changes in bladder and urethral function. PMID:24372152

  15. Neutrophil depletion delays wound repair in aged mice

    PubMed Central

    Nishio, Naomi; Okawa, Yayoi; Sakurai, Hidetoshi

    2008-01-01

    One of the most important clinical problems in caring for elderly patients is treatment of pressure ulcers. One component of normal wound healing is the generation of an inflammatory reaction, which is characterized by the sequential infiltration of neutrophils, macrophages and lymphocytes. Neutrophils migrate early in the wound healing process. In aged C57BL/6 mice, wound healing is relatively inefficient. We examined the effects of neutrophil numbers on wound healing in both young and aged mice. We found that the depletion of neutrophils by anti-Gr-1 antibody dramatically delayed wound healing in aged mice. The depletion of neutrophils in young mice had less effect on the kinetics of wound healing. Intravenous G-CSF injection increased the migration of neutrophils to the wound site. While the rate of wound repair did not change significantly in young mice following G-CSF injection, it increased significantly in old mice. PMID:19424869

  16. Spontaneous development of autoimmune sialadenitis in aging BDF1 mice.

    PubMed Central

    Hayashi, Y.; Kurashima, C.; Utsuyama, M.; Hirokawa, K.

    1988-01-01

    This study reports that spontaneous autoimmune sialadenitis developed in aging female, rather than male, BDF1 mice. The lesions first appeared in 6-month-old female BDF1 mice and were aggravated with advancing age, especially in 24-month-old and 30-month-old senescent mice. In contrast, significant inflammatory changes did not develop in aging male BDF1 mice. The presence of antisalivary duct antibody was found in sera from mice with sialadenitis. The infiltrating cells in the lesions of submandibular salivary glands were mainly composed of T cells, especially Lyt 1+ and L3T4+ cells. Moreover, mild inflammatory lesions were observed in parotid, sublingual salivary glands, pancreas, or kidneys in some mice that developed spontaneously occurring sialadenitis. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3260751

  17. Bex1 knock out mice show altered skeletal muscle regeneration

    SciTech Connect

    Koo, Jae Hyung Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-11-16

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca{sup 2+}/CaM may be involved in skeletal muscle regeneration.

  18. Contact hypersensitivity response to isophorone diisocyanate in mice

    SciTech Connect

    Stern, M.L.; Brown, T.A.; Brown, R.D.; Munson, A.E. )

    1989-09-01

    Isophorone diisocyanate was evaluated for its potential as a sensitizing agent for allergic contact hypersensitivity in mice. Female B6C3F1 mice were sensitized with 0.1, 0.3, and 1.0% isophorone diisocyanate and challenged with 3.0% isophorone diisocyanate. Doses of isophorone diisocyanate were selected from assays for primary irritancy. Mice received 20 microliters by direct dermal application, for 5 days, to sites prepared by shaving, dermabrading and, in some mice, with intra dermal injection of complete Freund's adjuvant. The rest period was 7 days. Measurement of the contact hypersensitivity response in mice was by radioisotopic assay two days after challenge and mouse ear swelling one and two days after challenge. Mice demonstrated statistically significant dose-dependent contact hypersensitivity responses to isophorone diisocyanate with or without adjuvant pretreatment.

  19. Methylphenidate restores novel object recognition in DARPP-32 knockout mice.

    PubMed

    Heyser, Charles J; McNaughton, Caitlyn H; Vishnevetsky, Donna; Fienberg, Allen A

    2013-09-15

    Previously, we have shown that Dopamine- and cAMP-regulated phosphoprotein of 32kDa (DARPP-32) knockout mice required significantly more trials to reach criterion than wild-type mice in an operant reversal-learning task. The present study was conducted to examine adult male and female DARPP-32 knockout mice and wild-type controls in a novel object recognition test. Wild-type and knockout mice exhibited comparable behavior during the initial exploration trials. As expected, wild-type mice exhibited preferential exploration of the novel object during the substitution test, demonstrating recognition memory. In contrast, knockout mice did not show preferential exploration of the novel object, instead exhibiting an increase in exploration of all objects during the test trial. Given that the removal of DARPP-32 is an intracellular manipulation, it seemed possible to pharmacologically restore some cellular activity and behavior by stimulating dopamine receptors. Therefore, a second experiment was conducted examining the effect of methylphenidate. The results show that methylphenidate increased horizontal activity in both wild-type and knockout mice, though this increase was blunted in knockout mice. Pretreatment with methylphenidate significantly impaired novel object recognition in wild-type mice. In contrast, pretreatment with methylphenidate restored the behavior of DARPP-32 knockout mice to that observed in wild-type mice given saline. These results provide additional evidence for a functional role of DARPP-32 in the mediation of processes underlying learning and memory. These results also indicate that the behavioral deficits in DARPP-32 knockout mice may be restored by the administration of methylphenidate.

  20. Pentylenetetrazol-kindling in mice overexpressing heat shock protein 70.

    PubMed

    Ammon-Treiber, Susanne; Grecksch, Gisela; Angelidis, Charalampos; Vezyraki, Patra; Höllt, Volker; Becker, Axel

    2007-04-01

    Kindling induced by the convulsant pentylenetetrazol (PTZ) is an accepted model of primary generalized epilepsy. Because seizures represent a strong distressing stimulus, stress-induced proteins such as heat shock proteins might counteract the pathology of increased neuronal excitation. Therefore, the aim of the present study was to determine whether PTZ kindling outcome parameters are influenced by heat shock protein 70 (Hsp70) overexpression in Hsp70 transgenic mice as compared to the respective wild-type mice. Kindling was performed by nine intraperitoneal injections of PTZ (ED(16) for induction of clonic-tonic seizures, every 48 h); control animals received saline instead of PTZ. Seven days after the final injection, all mice received a PTZ challenge dose. Outcome parameters included evaluation of seizure stages and overall survival rates. In addition, histopathological findings such as cell number in hippocampal subfields CA1 and CA3 were determined. The onset of the highest convulsion stage was delayed in Hsp70 transgenic mice as compared to wild-type mice, and overall survival during kindling was improved in Hsp70 transgenic mice as compared to wild-type mice. In addition, a challenge dose after termination of kindling produced less severe seizures in Hsp70 transgenic mice than in wild-type mice. PTZ kindling did not result in significant subsequent neuronal cell loss in CA1 or CA3 neither in wild-type mice nor in the Hsp70 transgenic mice. The results of the present experiments clearly demonstrate that overexpression of Hsp70 exerts protective effects regarding seizure severity and overall survival during PTZ kindling. In addition, the decreased seizure severity in Hsp70 transgenic mice after a challenge dose suggests an interference of Hsp70 with the developmental component of kindling.

  1. Prolonged administration of antithymocyte serum in mice. II. Histopathological investigation

    PubMed Central

    Simpson, Elizabeth; Nehlsen, Sandra L.

    1971-01-01

    Prolonged administration of ATS to mice resulted in depletion of small lymphocytes in the thymus-dependent (paracortical) areas of lymph nodes in all mice. Small lymphocyte depletion of the thymus-dependent periarteriolar region of the spleen was present in most mice, although this feature was masked by plasmacytosis in this region in some. Depletion of small lymphocytes in the thymus-dependent areas of Peyer's patches was evident in some of the younger mice. None of these changes in lymphoid organs were seen in control mice, untreated or given NRS. The thymus was unaffected except in some ATS- or NRS-treated mice which were sick and/or old, in which the narrowing of the thymic cortex was attributed to non-specific stress. Plasmacytosis was seen in the medullae of lymph nodes of both ATS- and NRS-treated mice, although it was more intense in the latter. In non-lymphoid organs the most striking changes were seen in the kidneys of mice treated both with ATS and NRS. Complex-type nephritis followed by amyloidosis was seen in a large proportion of mice over 6 months old in both these groups and in these mice amyloid was seen frequently in other organs, including spleen and liver. Tumours occurred in fifty-four ATS-treated mice, but in no other group. Fifty-two of these tumours were attributable to polyoma virus; two other were lymphoblastomas. Reticulum cell hyperplasia was seen in two further mice. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18 PMID:4326920

  2. SUPPRESSION OF IMMUNOGLOBULIN CLASS SYNTHESIS IN MICE

    PubMed Central

    Lawton, Alexander R.; Asofsky, Richard; Hylton, Martha B.; Cooper, Max D.

    1972-01-01

    Germfree BALB/c mice have been treated from birth with intraperitoneal injections of purified goat antibodies to mouse IgM. The treated mice, and controls which had received an equivalent amount of goat γ-globulin, were sacrificed at 8 or 13 wk of age. Compared to controls, mice given anti-µ (a) had very few germinal centers in spleen and lymph node, (b) had decreased numbers of mature plasma cells synthesizing IgM and IgG1 in spleen, and virtual absence of IgA-synthesizing plasma cells in the gut, (c) had greatly diminished numbers of B lymphocytes bearing membrane-bound immunoglobulins of the IgM, IgG1, IgG2, and IgA classes in spleen, (d) had reduced synthesis of IgM, IgG2, and IgA by in vitro spleen cultures, and (e) had significant decreases in serum levels of IgM, IgG1, IgG2, and IgA. The treated animals failed to make antibodies to ferritin after hyperimmunization, and lacked natural antibodies to sheep erythrocytes. These results indicate that cells ultimately committed to synthesis of IgG1, IgG2, and IgA immunoglobulins are derived from cells which have expressed IgM determinants at an earlier stage of differentiation. They are consistent with a proposed two-stage model for plasma cell differentiation. The first stage is antigen independent, involves sequential activation of Cµ, Cγ, and Cα genes by progeny of a single stem cell, and results in the formation of B lymphocytes bearing membrane-bound recognition antibodies of each class. The second, antigen-dependent, stage results in formation of mature plasmacytes and memory cells. PMID:4551216

  3. JWH-018 impairs sensorimotor functions in mice.

    PubMed

    Ossato, A; Vigolo, A; Trapella, C; Seri, C; Rimondo, C; Serpelloni, G; Marti, M

    2015-08-06

    Naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) is a synthetic cannabinoid agonist illegally marketed in "Spice" and "herbal blend" for its psychoactive effect greater than those produced by cannabis. In rodents JWH-018 reproduces typical effects of (-)-Δ(9)-THC or Dronabinol® (Δ(9)-THC) such as hypothermia, analgesia, hypolocomotion and akinesia, while its effects on sensorimotor functions are still unknown. Therefore, the aim of the present study is to investigate the effect of acute administration of JWH-018 (0.01-6mg/kg i.p.) on sensorimotor functions in male CD-1 mice and to compare its effects with those caused by the administration of Δ(9)-THC (0.01-6mg/kg i.p.). A specific battery of behavioral tests were adopted to investigate effects of cannabinoid agonists on sensorimotor functions (visual, auditory, tactile) and neurological changes (convulsion, myoclonia, hyperreflexia) while video-tracking analysis was used to study spontaneous locomotion. JWH-018 administration inhibited sensorimotor responses at lower doses (0.01-0.1mg/kg), reduced spontaneous locomotion at intermediate/high doses (1-6mg/kg) and induced convulsions, myoclonia and hyperreflexia at high doses (6mg/kg). Similarly, administration of Δ(9)-THC reduced sensorimotor responses in mice but it did not inhibit spontaneous locomotion and it did not induce neurological alterations. All behavioral effects and neurological alterations were prevented by the administration of the selective CB1 receptor antagonist/inverse agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (AM 251). For the first time these data demonstrate that JWH-018 impairs sensorimotor responses in mice. This aspect should be carefully evaluated to better understand the potential danger that JWH-018 may pose to public health, with particular reference to decreased performance in driving and hazardous works.

  4. The MICE Demonstration of Ionization Cooling

    SciTech Connect

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  5. Sleep in Kcna2 knockout mice

    PubMed Central

    Douglas, Christopher L; Vyazovskiy, Vladyslav; Southard, Teresa; Chiu, Shing-Yan; Messing, Albee; Tononi, Giulio; Cirelli, Chiara

    2007-01-01

    Background Shaker codes for a Drosophila voltage-dependent potassium channel. Flies carrying Shaker null or hypomorphic mutations sleep 3–4 h/day instead of 8–14 h/day as their wild-type siblings do. Shaker-like channels are conserved across species but it is unknown whether they affect sleep in mammals. To address this issue, we studied sleep in Kcna2 knockout (KO) mice. Kcna2 codes for Kv1.2, the alpha subunit of a Shaker-like voltage-dependent potassium channel with high expression in the mammalian thalamocortical system. Results Continuous (24 h) electroencephalograph (EEG), electromyogram (EMG), and video recordings were used to measure sleep and waking in Kcna2 KO, heterozygous (HZ) and wild-type (WT) pups (P17) and HZ and WT adult mice (P67). Sleep stages were scored visually based on 4-s epochs. EEG power spectra (0–20 Hz) were calculated on consecutive 4-s epochs. KO pups die by P28 due to generalized seizures. At P17 seizures are either absent or very rare in KO pups (< 1% of the 24-h recording time), and abnormal EEG activity is only present during the seizure. KO pups have significantly less non-rapid eye movement (NREM) sleep (-23%) and significantly more waking (+21%) than HZ and WT siblings with no change in rapid eye movement (REM) sleep time. The decrease in NREM sleep is due to an increase in the number of waking episodes, with no change in number or duration of sleep episodes. Sleep patterns, daily amounts of sleep and waking, and the response to 6 h sleep deprivation are similar in HZ and WT adult mice. Conclusion Kv1.2, a mammalian homologue of Shaker, regulates neuronal excitability and affects NREM sleep. PMID:17925011

  6. Vocal Ontogeny in Neotropical Singing Mice (Scotinomys)

    PubMed Central

    Campbell, Polly; Pasch, Bret; Warren, Ashley L.; Phelps, Steven M.

    2014-01-01

    Isolation calls produced by dependent young are a fundamental form of communication. For species in which vocal signals remain important to adult communication, the function and social context of vocal behavior changes dramatically with the onset of sexual maturity. The ontogenetic relationship between these distinct forms of acoustic communication is surprisingly under-studied. We conducted a detailed analysis of vocal development in sister species of Neotropical singing mice, Scotinomys teguina and S. xerampelinus. Adult singing mice are remarkable for their advertisement songs, rapidly articulated trills used in long-distance communication; the vocal behavior of pups was previously undescribed. We recorded 30 S. teguina and 15 S. xerampelinus pups daily, from birth to weaning; 23 S. teguina and 11 S. xerampelinus were recorded until sexual maturity. Like other rodent species with poikilothermic young, singing mice were highly vocal during the first weeks of life and stopped vocalizing before weaning. Production of first advertisement songs coincided with the onset of sexual maturity after a silent period of ≧2 weeks. Species differences in vocal behavior emerged early in ontogeny and notes that comprise adult song were produced from birth. However, the organization and relative abundance of distinct note types was very different between pups and adults. Notably, the structure, note repetition rate, and intra-individual repeatability of pup vocalizations did not become more adult-like with age; the highly stereotyped structure of adult song appeared de novo in the first songs of young adults. We conclude that, while the basic elements of adult song are available from birth, distinct selection pressures during maternal dependency, dispersal, and territorial establishment favor major shifts in the structure and prevalence of acoustic signals. This study provides insight into how an evolutionarily conserved form of acoustic signaling provides the raw material for

  7. Imaging hallmarks of cancer in living mice.

    PubMed

    Ellenbroek, Saskia I J; van Rheenen, Jacco

    2014-06-01

    To comprehend the complexity of cancer, the biological characteristics acquired during the initiation and progression of tumours were classified as the 'hallmarks of cancer'. Intravital microscopy techniques have been developed to study individual cells that acquire these crucial traits, by visualizing tissues with cellular or subcellular resolution in living animals. In this Review, we highlight the latest intravital microscopy techniques that have been used in living animals (predominantly mice) to unravel fundamental and dynamic aspects of various hallmarks of cancer. In addition, we discuss the application of intravital microscopy techniques to cancer therapy, as well as limitations and future perspectives for these techniques.

  8. Humanized Mice as Preclinical Models in Transplantation.

    PubMed

    Safinia, N; Becker, P D; Vaikunthanathan, T; Xiao, F; Lechler, R; Lombardi, G

    2016-01-01

    Animal models have been instrumental in our understanding of the mechanisms of rejection and the testing of novel treatment options in the context of transplantation. We have now entered an exciting era with research on humanized mice driving advances in translational studies and in our understanding of the function of human cells in response to pathogens and cancer as well as the recognition of human allogeneic tissues in vivo. In this chapter we provide a historical overview of humanized mouse models of transplantation to date, outlining the distinct strains and share our experiences in the study of human transplantation immunology.

  9. Restraint stress augments antibody production in cyclophosphamide-treated mice.

    PubMed

    Karp, J D; Smith, J; Hawk, K

    2000-01-01

    These studies evaluated the effects of a psychological stressor (restraint, RST) on antibody production in male BALB/cByJ mice. In Experiment 1, mice were immunized with keyhole limpet hemocyanin (KLH, 100 microg i.p.) 8 h prior to 15 h of RST or food and water deprivation (FWD). RST mice exhibited higher serum anti-KLH IgM and IgG antibodies than FWD mice. In Experiment 2, mice were given either cyclophosphamide (CY, 15 mg/kg) or saline (SAL) prior to immunization with KLH and RST or FWD. ANOVA revealed serum anti-KLH IgG antibody titers in CY+RST animals to be significantly higher than in CY+FWD, SAL+FWD, and SAL+RST mice. Anti-KLH IgM titers of CY+RST mice were higher than those of other groups before and after a second immunization with KLH. In Experiment 3, we show that these changes in antibody production are not likely to be mediated via CY-induced alterations in the reactivity of the hypothalamo-pituitary-adrenal axis to RST. Together, these results indicate two potentially immunomodulatory parameters (RST and CY) can interact to alter a humoral immune response. In addition, these data support the hypothesis that humoral immune response of mice can be more reactive to stress when the mice are given a low dose of an immunomodulatory drug prior to stressor exposure.

  10. Hepatitis E virus DNA vaccine elicits immunologic memory in mice.

    PubMed

    He, J; Hayes, C G; Binn, L N; Seriwatana, J; Vaughn, D W; Kuschner, R A; Innis, B L

    2001-01-01

    Injection of an expression vector pJHEV containing hepatitis E virus (HEV) structural protein open reading frame 2 gene generates a strong antibody response in BALB/c mice that can bind to and agglutinate HEV. In this study, we tested for immunologic memory in immunized mice whose current levels of IgG to HEV were low or undetectable despite 3 doses of HEV DNA vaccine 18 months earlier. Mice previously vaccinated with vector alone were controls. All mice were administered a dose of HEV DNA vaccine to simulate an infectious challenge with HEV. The endpoint was IgG to HEV determined by ELISA. Ten days after the vaccine dose, 5 of 9 mice previously immunized with HEV DNA vaccine had a slight increase in IgG to HEV. By 40 days after the vaccine dose, the level of IgG to HEV had increased dramatically in all 9 mice (108-fold increase in geometric mean titer). In contrast, no control mice became seropositive. These results indicate that mice vaccinated with 3 doses of HEV DNA vaccine retain immunologic memory. In response to a small antigenic challenge delivered as DNA, possibly less than delivered by a human infective dose of virus, mice with memory were able to generate high levels of antibody in less time than the usual incubation period of hepatitis E. We speculate that this type of response could protect a human from overt disease.

  11. Experimental Pneumocystis carinii pneumonia in different strains of cortisonized mice.

    PubMed Central

    Walzer, P D; Powell, R D; Yoneda, K

    1979-01-01

    Pneumocystis carinii pneumonia was produced in eight different strains of mice by the administration of corticosteroids, low (8%)-protein diet, and tetracycline in the drinking water. Heavier degrees of P. carinii infection were most consistently found in C3H/HeN mice; intermediate levels occurred in BALB/c AnN, C57BL/6N, B10.A(2R), AKR/J, and Swiss Webster mice; lighter degrees were found in DBA/2N and DBA/IJ mice. Histopathologically, P. carinii organisms were morphologically indistinguishable from human and rat P. carinii, and elicited a predominantly mononuclear response that was similar among the various mouse strains. The optimal cortisone acetate regimen was 1 mg injected subcutaneously twice weekly. Higher doses shortened the life span of the mice, presumably by inducing overwhelming bacterial infection. This problem occurred not only in different strains of mice, but also in the same strain of mice obtained from different breeders. Thus, cortisonized mice should be useful in the study of experimental P. carinii infection. Success of this model depends on the corticosteroid dose, as well as the strain, source, general health, and preexisting microbial flora of the mice chosen for study. Images PMID:313907

  12. Partial Return Yoke for MICE Step IV and Final Step

    SciTech Connect

    Witte, Holger; Plate, Stephen; Berg, J.Scott; Tarrant, Jason; Bross, Alan

    2015-06-01

    This paper reports on the progress of the design and construction of a retro-fitted return yoke for the international Muon Ionization Cooling Experiment (MICE). MICE is a proof-of-principle experiment aiming to demonstrate ionization cooling experimentally. In earlier studies we outlined how a partial return yoke can be used to mitigate stray magnetic field in the experimental hall; we report on the progress of the construction of the partial return yoke for MICE Step IV. We also discuss an extension of the Partial Return Yoke for the final step of MICE; we show simulation results of the expected performance.

  13. Humanization of excretory pathway in chimeric mice with humanized liver.

    PubMed

    Okumura, Hirotoshi; Katoh, Miki; Sawada, Toshiro; Nakajima, Miki; Soeno, Yoshinori; Yabuuchi, Hikaru; Ikeda, Toshihiko; Tateno, Chise; Yoshizato, Katsutoshi; Yokoi, Tsuyoshi

    2007-06-01

    The liver of a chimeric urokinase-type plasminogen activator (uPA)(+/+)/severe combined immunodeficient (SCID) mouse line recently established in Japan could be replaced by more than 80% with human hepatocytes. We previously reported that the chimeric mice with humanized liver could be useful as a human model in studies on drug metabolism and pharmacokinetics. In the present study, the humanization of an excretory pathway was investigated in the chimeric mice. Cefmetazole (CMZ) was used as a probe drug. The CMZ excretions in urine and feces were 81.0 and 5.9% of the dose, respectively, in chimeric mice and were 23.7 and 59.4% of the dose, respectively, in control uPA(-/-)/SCID mice. Because CMZ is mainly excreted in urine in humans, the excretory profile of chimeric mice was demonstrated to be similar to that of humans. In the chimeric mice, the hepatic mRNA expression of human drug transporters could be quantified. On the other hand, the hepatic mRNA expression of mouse drug transporters in the chimeric mice was significantly lower than in the control uPA(-/-)/SCID mice. In conclusion, chimeric mice exhibited a humanized profile of drug excretion, suggesting that this chimeric mouse line would be a useful animal model in excretory studies.

  14. Chronic rapamycin treatment causes diabetes in male mice.

    PubMed

    Schindler, Christine E; Partap, Uttara; Patchen, Bonnie K; Swoap, Steven J

    2014-08-15

    Current evidence indicates that the mammalian target of rapamycin inhibitor rapamycin both increases longevity and, seemingly contradictorily, impairs glucose homeostasis. Most studies exploring the dimensions of this paradox have been based on rapamycin treatment in mice for up to 20 wk. We sought to better understand the metabolic effects of oral rapamycin over a substantially longer period of time in HET3 mice. We observed that treatment with rapamycin for 52 wk induced diabetes in male mice, characterized by hyperglycemia, significant urine glucose levels, and severe glucose and pyruvate intolerance. Glucose intolerance occurred in male mice by 4 wk on rapamycin and could be only partially reversed with cessation of rapamycin treatment. Female mice developed moderate glucose intolerance over 1 yr of rapamycin treatment, but not diabetes. The role of sex hormones in the differential development of diabetic symptoms in male and female mice was further explored. HET3 mice treated with rapamycin for 52 wk were gonadectomized and monitored over 10 wk. Castrated male mice remained glucose intolerant, while ovariectomized females developed significant glucose intolerance over the same time period. Subsequent replacement of 17β-estradiol (E2) in ovariectomized females promoted a recovery of glucose tolerance over a 4-wk period, suggesting the protective role of E2 against rapamycin-induced diabetes. These results indicate that 1) oral rapamycin treatment causes diabetes in male mice, 2) the diabetes is partially reversible with cessation of treatment, and 3) E2 plays a protective role against the development of rapamycin-induced diabetes.

  15. Experimental oral and nasal transmission of rabies virus in mice.

    PubMed

    Charlton, K M; Casey, G A

    1979-01-01

    Weanling female white Swiss mice were exposed to challenge virus standard rabies virus and street virus isolates from various domestic and wild animals. Virus was given free choice as suspension or as infected mouse brain by stomach tube, by single injection of suspension into the oral cavity of unanesthetized mice, by repeated injection into the oral cavity of anesthetized mice and by single application to the external nares of anesthetized mice. Challenge virus standard virus in mouse brain suspension and a suspension of skunk salivary glands infected with street virus (titers greater than or equal to 10(6)MICLD50/0.03 ml) consistently produced high rates of infection in mice exposed intranasally, low to high rates of infection in mice exposed by forced feeding and other artificial methods of oral exposure and very low rates of infection when given free choice. Street virus isolates passaged intracerebrally in mice had titers less than or equal to 10(4.5) MICLD50/0.03 ml and rarely caused rabies in mice exposed orally or nasally by any method. The results indicate that with the isolates used, virus of high titer (greater than or equal to 10(6)MICLD50/0.03 ml) is required to consistently produce infection in mice by the nasal route and that the mucosa of the nasal cavity probably is the chief route of infection even after oral administration.

  16. Experimental oral and nasal transmission of rabies virus in mice.

    PubMed Central

    Charlton, K M; Casey, G A

    1979-01-01

    Weanling female white Swiss mice were exposed to challenge virus standard rabies virus and street virus isolates from various domestic and wild animals. Virus was given free choice as suspension or as infected mouse brain by stomach tube, by single injection of suspension into the oral cavity of unanesthetized mice, by repeated injection into the oral cavity of anesthetized mice and by single application to the external nares of anesthetized mice. Challenge virus standard virus in mouse brain suspension and a suspension of skunk salivary glands infected with street virus (titers greater than or equal to 10(6)MICLD50/0.03 ml) consistently produced high rates of infection in mice exposed intranasally, low to high rates of infection in mice exposed by forced feeding and other artificial methods of oral exposure and very low rates of infection when given free choice. Street virus isolates passaged intracerebrally in mice had titers less than or equal to 10(4.5) MICLD50/0.03 ml and rarely caused rabies in mice exposed orally or nasally by any method. The results indicate that with the isolates used, virus of high titer (greater than or equal to 10(6)MICLD50/0.03 ml) is required to consistently produce infection in mice by the nasal route and that the mucosa of the nasal cavity probably is the chief route of infection even after oral administration. PMID:427634

  17. Intrastrain variations in anxiolytic effect of nitrazepam in mice.

    PubMed

    Reddy, P Venugopal; Devi, Kshama

    2006-01-01

    This study investigated the individual differences in the baseline anxiety and anxiolytic effect of nitrazepam in Balb/c mice. Initially mice were sorted according into low, intermediate and high anxiety groups (LA, IA and HA) based on the number of entries to and time spent in open arms in elevated plus maze. Later, anxiolytic effect of nitrazepam (2 mg/kg, p.o) in LA, IA and HA mice was evaluated using hole board and light/dark tests. In Hole board test, LA mice made more number of head dippings and spent more time during head dippings, while HA mice made less number of head dippings and spent less time during head dipping when compared to that of IA mice. In light/dark test LA mice made more reentries to and spent more time in bright compartment, while HA mice made few reentries to and spent less time in bright compartment. Results suggest that mice of a single strain differ in their baseline anxiety and anxiolytic effect of nitrazepam.

  18. Lipopolysaccharide-induced lethality and cytokine production in aged mice.

    PubMed Central

    Tateda, K; Matsumoto, T; Miyazaki, S; Yamaguchi, K

    1996-01-01

    This study was designed to define the lipopolysaccharide (LPS) sensitivity of aged mice in terms of lethality and cytokine production and to determine down-regulating responses of corticosterone and interleukin 10 (IL-10). The 50% lethal doses of LPS in young (6- to 7-week-old) and aged (98- to 102-week-old) mice were 601 and 93 microg per mouse (25.6 and 1.6 mg per kg of body weight), respectively. Aged mice were approximately 6.5-fold more sensitive to the lethal toxicity of LPS in micrograms per mouse (16-fold more sensitive in milligrams per kilogram) than young mice. Levels in sera of tumor necrosis factor-alpha (TNF-alpha) IL-1alpha, and IL-6 after intraperitoneal injection of 100 microg of LPS peaked at 1.5, 3, and 3 h, respectively, and declined thereafter in both groups of mice. However, the peak values of these cytokines were significantly higher in aged than in young mice (P < 0.05). Gamma interferon (IFN-gamma) was detectable at 3 h, and sustained high levels were still detected after 12 h in both age groups. Although there were no significant differences in levels of IFN-gamma in sera from both groups, aged mice showed higher IFN-gamma levels throughout the 3- to 12-h study period. Administration of increasing doses of LPS revealed that aged mice had a lower threshold to IL-1alpha production than young mice. In addition, aged mice were approximately 4-fold more sensitive to the lethal toxicity of exogenous TNF in units per mouse (10-fold more sensitive in units per kilogram) than young mice. With regard to down-regulating factors, corticosterone amounts were similar at basal levels and no differences in kinetics after the LPS challenge were observed, whereas IL-10 levels in sera were significantly higher in aged mice at 1.5 and 3 h than in young mice (P < 0.01). These results indicate that aged mice are more sensitive to the lethal toxicities of LPS and TNF than young mice. We conclude that a relatively activated, or primed, state for LPS

  19. Treatment of Experimental Acute Radiation Disease in Mice with Probiotics, Quinolones, and General Gnotobiological Isolation

    DTIC Science & Technology

    1998-09-01

    Armed Forces Ra ioloy Research Institute Treatment of Experimental Acute Radiation Disease in Mice with Probiotics , Quinolones, and General...Gnotobiological Isolation Russia State Medical University 19990119 114 Treatment of Experimental Acute Radiation Disease in Mice with Probiotics , Quinolones...effects of antibiotics and probiotics (Bifidobacterium and Lactobacillus) in mice irradiated with 7 Gy. The effects were studied in normal mice and mice

  20. Dietary CLA-induced lipolysis is delayed in soy oil-fed mice compared to coconut oil-fed mice.

    PubMed

    Ippagunta, S; Angius, Z; Sanda, M; Barnes, K M

    2013-11-01

    Conjugated linoleic acid (CLA) has been shown to cause a reduction in obesity in several species. CLA-induced body fat loss is enhanced when mice are fed coconut oil (CO) and involves increased lipolysis. The objective of this paper was to determine if the CLA-induced lipolysis in mice fed with different oil sources was time-dependent. Mice were fed 7 % soybean oil (SO) or CO diets for 6 week and then supplemented with 0 or 0.5 % CLA for 3, 7, 10 or 14 days. Body fat and ex-vivo lipolysis was determined. Body fat was reduced by CO on day 7 (P < 0.01) and in both CO and SO-fed mice (P < 0.05) in response to CLA on d14. Lipolysis was increased by CLA in CO-fed mice (P < 0.01) but not in SO-fed mice on day 7 and 10, but on day 14 CLA increased lipolysis in both CO- and SO-fed mice (P < 0.001). Expression and activation level of proteins involved in lipolysis and lipogenesis was determined by western blotting and real-time PCR, respectively. No significant differences were detected in protein expression. CO-fed mice had greater fatty acid synthase and stearyl CoA desaturase 1 mRNA expression and less acetyl CoA carboxylase mRNA expression (P < 0.01). Sterol regulatory binding protein 1c was decreased by CLA in CO-fed mice and increased in SO-fed mice (P < 0.05). Malic enzyme expression was increased by CLA (P < 0.001) and CO (P < 0.01). Therefore, CLA-induced lipolysis occurs more rapidly in CO vs SO-fed mice and lipogenesis is decreased in CO-fed mice with CLA supplementation.

  1. Comparative toxicity of acephate in laboratory mice, white-footed mice and meadow voles

    USGS Publications Warehouse

    Rattner, B.A.; Hoffman, D.J.

    1983-01-01

    The LD50 (95% confidence limits) of the organophosphorus insecticide acephate was estimated to be 351, 380, and 321 mg/kg (295?416, 280?516, and 266?388 mg/kg) for CD-1 laboratory mice (Mus musculus), white-footed mice (Peromyscus leucopus noveboracensis), and meadow voles (Microtus pennsylvanicus), respectively. In a second study, these species were provided mash containing 0, 25, 100, and 400 ppm acephate for five days. Brain and plasma cholinesterase activities were reduced in a dose-dependent manner to a similar extent in the three species (inhibition of brain acetyl-cholinesterase averaged for each species ranged from 13 to 22% at 25 ppm, 33 to 42% at 100 ppm, and 56 to 57% at 400 ppm). Mash intake, body or liver weight, plasma enzyme activities (alkaline phosphatase, alanine and aspartate aminotransferase), hepatic enzyme activities (aniline hydroxylase, 7-ethoxycoumarin O-deethylase, and glutathione S-transferase), and cytochrome content (P-450 and b5) were not affected by acephate ingestion, although values differed among species. In a third experiment, mice and voles received 400 ppm acephate for 5 days followed by untreated food for up to 2 weeks. Mean inhibition of brain acetylcholin-esterase for the three species ranged from 47 to 58% on day 5, but by days 12 and 19, activity had recovered to 66 to 76% and 81 to 88% of concurrent control values. These findings indicate that CD-1 laboratory mice, white-footed mice, and meadow voles are equally sensitive to acephate when maintained under uniform laboratory conditions. Several factors (e.g., behavior, food preference, habitat) could affect routes and degree of exposure in the field, thereby rendering some species of wild rodents ecologically more vulnerable to organophosphorus insecticides.

  2. Comparative toxicity of acephate in laboratory mice, white-footed mice, and meadow voles

    USGS Publications Warehouse

    Rattner, B.A.; Hoffman, D.J.

    1984-01-01

    The LD50 (95% confidence limits) of the organophosphorus insecticide acephate was estimated to be 351, 380, and 321 mg/kg (295?416, 280?516, and 266?388 mg/kg) for CD-1 laboratory mice (Mus musculus), white-footed mice (Peromyscus leucopus noveboracensis), and meadow voles (Microtus pennsylvanicus), respectively. In a second study, these species were provided mash containing 0, 25, 100, and 400 ppm acephate for five days. Brain and plasma cholinesterase activities were reduced in a dose-dependent manner to a similar extent in the three species (inhibition of brain acetyl-cholinesterase averaged for each species ranged from 13 to 22% at 25 ppm, 33 to 42% at 100 ppm, and 56 to 57% at 400 ppm). Mash intake, body or liver weight, plasma enzyme activities (alkaline phosphatase, alanine and aspartate aminotransferase), hepatic enzyme activities (aniline hydroxylase, 7-ethoxycoumarin O-deethylase, and glutathione S-transferase), and cytochrome content (P-450 and b5) were not affected by acephate ingestion, although values differed among species. In a third experiment, mice and voles received 400 ppm acephate for 5 days followed by untreated food for up to 2 weeks. Mean inhibition of brain acetylcholin-esterase for the three species ranged from 47 to 58% on day 5, but by days 12 and 19, activity had recovered to 66 to 76% and 81 to 88% of concurrent control values. These findings indicate that CD-1 laboratory mice, white-footed mice, and meadow voles are equally sensitive to acephate when maintained under uniform laboratory conditions. Several factors (e.g., behavior, food preference, habitat) could affect routes and degree of exposure in the field, thereby rendering some species of wild rodents ecologically more vulnerable to organophosphorus insecticides.

  3. Origin and course of the coronary arteries in normal mice and in iv/iv mice

    PubMed Central

    ICARDO, JOSÉ M.; COLVEE, ELVIRA

    2001-01-01

    This paper reports on the origin and distribution of the coronary arteries in normal mice and in mice of the iv/iv strain, which show situs inversus and heterotaxia. The coronary arteries were studied by direct observation of the aortic sinuses with the scanning electron microscope, and by examination of vascular corrosion casts. In the normal mouse, the left and right coronaries (LC, RC) arise from the respective Valsalva sinus and course along the ventricular borders to reach the heart apex. Along this course the coronary arteries give off small branches at perpendicular or acute angles to supply the ventricles. The ventricular septum is supplied by the septal artery, which arises as a main branch from the right coronary. Conus arteries arise from the main coronary trunks, from the septal artery and/or directly from the Valsalva sinus. The vascular casts demonstrate the presence of intercoronary anastomoses. The origin of the coronary arteries was found to be abnormal in 84% of the iv/iv mice. These anomalies included double origin, high take-off, slit-like openings and the presence of a single coronary orifice. These anomalies occurred singly or in any combination, and were independent of heart situs. The septal artery originated from RC in most cases of situs solitus but originated predominantly from LC in situs inversus hearts. Except for this anomalous origin no statistical correlation was found between the coronary anomalies and heart situs or a particular mode of heterotaxia. The coronary anomalies observed in the iv/iv mice are similar to those found in human hearts. Most coronary anomalies appear to be due to defective connections between the aortic root and the developing coronaries. iv/iv mice may therefore constitute a good model to study the development of similar anomalies in the human heart. PMID:11693308

  4. Scurfy mice: A model for autoimmune disease

    SciTech Connect

    Godfrey, V.L.

    1993-01-01

    Autoimmune disease-the condition in which the body attacks its own tissue-has been an object of public concern recently. Former President George Bush and his wife Barbara both are afflicted with Graves' disease in which the body's own immune system attakcs the thyroid gland. The safety of breast implants was called into question because of evidence that some recipients had developed autoimmune disorders such a rheumatoid arthritis, systemic lupus erythematosus, and scleroderma. Women, the media pointed out, have a higher-than-average incidence of many autoimmune disorders. These events suggest the need to know more about what makes the immune system work so well and what makes it go awry. At ORNL's Biology Division, progress is being in understanding the underlying causes of immune disease by studying mice having a disease that causes them to be underdeveloped; to have scaly skin, small ears, and large spleens; to open their eyes late; and to die early. These [open quotes]scurfy[close quotes]mice are helping us better understand the role of the thymus gland in autoimmune disease.

  5. Characterization of natural fluorescence in mice

    NASA Astrophysics Data System (ADS)

    Djeziri, Salim; Ma, Guobin; Mincu, Niculae; Benyamin Seeyar, Anader; Khayat, Mario

    2008-02-01

    One important challenge for in-vivo imaging fluorescence in cancer research and related pharmaceutical studies is to discriminate the exogenous fluorescence signal of the specific tagged agents from the natural fluorescence. For mice, natural fluorescence is composed of endogenous fluorescence from organs like the skin, the bladder, etc. and from ingested food. The discrimination between the two kinds of fluorescence makes easy monitoring the targeted tissues. Generally, the amplitude of the fluorescence signal depends on the location and on the amount of injected fluorophore, which is limited in in-vivo experiments. This paper exposes some results of natural fluorescence analysis from in-vivo mice experiments using a time domain small animal fluorescence imaging system: eXplore Optix TM. Fluorescence signals are expressed by a Time Point Spread Function (TPSF) at each scan point. The study uses measures of similarity applied purposely to the TPSF to evaluate the discrepancy and/or the homogeneity of scanned regions of a mouse. These measures allow a classification scheme to be performed on the TPSF's based on their temporal shapes. The work ends by showing how the exogenous fluorescence can be distinguished from natural fluorescence by using the TPSF temporal shape.

  6. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    PubMed

    Tang, Xuan; Zhuang, Jingjing; Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  7. Teratogenic effects of noise in mice

    NASA Astrophysics Data System (ADS)

    Murata, M.; Takigawa, H.

    1989-07-01

    This study was undertaken to assess the hazardous effects of noise on embryonic development. The experiment was composed of two parts; one was the observation of the effect due to noise alone, and the other was the observation of the combined effect of noise and known teratogens. ICR mice were exposed to a wide octave-band noise at 100 dB(C) for 6 hours a day in three ways: the first group was exposed to a continuous noise only on day 7 of pregnancy (group "N"), the second was exposed to an intermittent noise (15 min ON/15 min OFF) only on day 7 of pregnancy (group "IN"), and the third was exposed daily to a continuous noise during days 7-12 of pregnancy (group "RN"). Cadmium sulfate or trypan blue was applied as a teratogen, and was administered intraperitoneously on day 7 of pregnancy. On day 18 of pregnancy, mice were sacrificed and the developmental status and external malformations of their fetuses were examined. Each type of noise exposure did not significantly induce embryolethality and fetal growth retardation. However, teratogenicity was observed in groups "N" and "IN". Combined effects of teratogen and noise did not show clear-cut interactions.

  8. Inhaled linalool-induced sedation in mice.

    PubMed

    Linck, Viviane Moura; da Silva, Adriana Lourenço; Figueiró, Micheli; Piato, Angelo Luis; Herrmann, Ana Paula; Dupont Birck, Franciele; Caramão, Elina Bastos; Nunes, Domingos Sávio; Moreno, Paulo Roberto H; Elisabetsky, Elaine

    2009-04-01

    Linalool is a monoterpene often found as a major component of essential oils obtained from aromatic plant species, many of which are used in traditional medical systems as hypno-sedatives. Psychopharmacological evaluations of linalool (i.p. and i.c.v.) revealed marked sedative and anticonvulsant central effects in various mouse models. Considering this profile and alleged effects of inhaled lavender essential oil, the purpose of this study was to examine the sedative effects of inhaled linalool in mice. Mice were placed in an inhalation chamber during 60 min, in an atmosphere saturated with 1% or 3% linalool. Immediately after inhalation, animals were evaluated regarding locomotion, barbiturate-induced sleeping time, body temperature and motor coordination (rota-rod test). The 1% and 3% linalool increased (p<0.01) pentobarbital sleeping time and reduced (p<0.01) body temperature. The 3% linalool decreased (p<0.01) locomotion. Motor coordination was not affected. Hence, linalool inhaled for 1h seems to induce sedation without significant impairment in motor abilities, a side effect shared by most psycholeptic drugs.

  9. The MICE Demonstration of Muon Ionization Cooling

    SciTech Connect

    Lagrange, Jean-Baptiste; Hunt, Christopher; Palladino, Vittorio; Pasternak, Jaroslaw

    2016-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment.

  10. Heart rate reduction and longevity in mice.

    PubMed

    Gent, Sabine; Kleinbongard, Petra; Dammann, Philip; Neuhäuser, Markus; Heusch, Gerd

    2015-03-01

    Heart rate correlates inversely with life span across all species, including humans. In patients with cardiovascular disease, higher heart rate is associated with increased mortality, and such patients benefit from pharmacological heart rate reduction. However, cause-and-effect relationships between heart rate and longevity, notably in healthy individuals, are not established. We therefore prospectively studied the effects of a life-long pharmacological heart rate reduction on longevity in mice. We hypothesized, that the total number of cardiac cycles is constant, and that a 15% heart rate reduction might translate into a 15% increase in life span. C57BL6/J mice received either placebo or ivabradine at a dose of 50 mg/kg/day in drinking water from 12 weeks to death. Heart rate and body weight were monitored. Autopsy was performed on all non-autolytic cadavers, and parenchymal organs were evaluated macroscopically. Ivabradine reduced heart rate by 14% (median, interquartile range 12-15%) throughout life, and median life span was increased by 6.2% (p = 0.01). Body weight and macroscopic findings were not different between placebo and ivabradine. Life span was not increased to the same extent as heart rate was reduced, but nevertheless significantly prolonged by 6.2%.

  11. Xenobiotic receptor humanized mice and their utility.

    PubMed

    Scheer, Nico; Roland Wolf, C

    2013-02-01

    The nuclear receptors pregnane X receptor, constitutive androstane receptor, and peroxisome proliferator-activated receptor alpha have important endogenous functions and are also involved in the induction of drug-metabolizing enzymes and transporters in response to exogenous xenobiotics. Though not belonging to the same protein family, the Per-Sim-ARNT domain receptor aryl hydrocarbon receptor functionally overlaps with the three nuclear receptors in many aspects and is therefore included in this review. Significant species differences in ligand affinity and biological responses as a result of activation of these receptors have been described. Several xenobiotic receptor humanized mice have been created to overcome these species differences and to provide in vivo models that are more predictive for human responses. This review provides an overview of the different xenobiotic receptor humanized mouse models described to date and will summarize how these models can be applied in basic research and improve drug discovery and development. Some of the key applications in the evaluation of drug induction, drug-drug interactions, nongenotoxic carcinogenicity, other toxicity, or efficacy studies are described. We also discuss relevant considerations in the interpretation of such data and potential future directions for the use of xenobiotic receptor humanized mice.

  12. Safety study of Ciprofloxacin in newborn mice.

    PubMed

    Bourgeois, Thomas; Delezoide, Anne-Lise; Zhao, Wei; Guimiot, Fabien; Adle-Biassette, Homa; Durand, Estelle; Ringot, Maud; Gallego, Jorge; Storme, Thomas; Le Guellec, Chantal; Kassaï, Behrouz; Turner, Mark A; Jacqz-Aigrain, Evelyne; Matrot, Boris

    2016-02-01

    Ciprofloxacin, a broad-spectrum antimicrobial agent belonging to the fluoroquinolone family, is prescribed off-label in infants less than one year of age. Ciprofloxacin is included in the European Medicines Agency priority list of off-patent medicinal products requiring evaluation in neonates. This evaluation is undergoing within the TINN (Treat Infections in Neonates) FP7 EU project. As part of the TINN project, the present preclinical study was designed to assess the potential adverse effects of Ciprofloxacin on neurodevelopment, liver and joints in mice. Newborn mice received subcutaneous Ciprofloxacin at 10, 30 and 100 mg/kg/day from 2 to 12 postnatal days. Peak plasma levels of Ciprofloxacin were in the range of levels measured in human neonates. We examined vital functions in vivo, including cardiorespiratory parameters and temperature, psychomotor development, exploratory behavior, arthro-, nephro- and hepato-toxic effects. We found no effect of Ciprofloxacin at 10 and 30 mg/kg/day. In contrast, administration at 100 mg/kg/day delayed weight gain, impaired cardiorespiratory and psychomotor development, caused inflammatory infiltrates in the connective tissues surrounding the knee joint, and moderately increased extramedullary hematopoiesis. The present study pleads for careful watching of cardiorespiratory and motor development in neonates treated with Ciprofloxacin, in addition to the standard surveillance of arthrotoxicity.

  13. Lung disease in mice with cystic fibrosis.

    PubMed Central

    Kent, G; Iles, R; Bear, C E; Huan, L J; Griesenbach, U; McKerlie, C; Frndova, H; Ackerley, C; Gosselin, D; Radzioch, D; O'Brodovich, H; Tsui, L C; Buchwald, M; Tanswell, A K

    1997-01-01

    The leading cause of mortality and morbidity in humans with cystic fibrosis is lung disease. Advances in our understanding of the pathogenesis of the lung disease of cystic fibrosis, as well as development of innovative therapeutic interventions, have been compromised by the lack of a natural animal model. The utility of the CFTR-knockout mouse in studying the pathogenesis of cystic fibrosis has been limited because of their failure, despite the presence of severe intestinal disease, to develop lung disease. Herein, we describe the phenotype of an inbred congenic strain of CFTR-knockout mouse that develops spontaneous and progressive lung disease of early onset. The major features of the lung disease include failure of effective mucociliary transport, postbronchiolar over inflation of alveoli and parenchymal interstitial thickening, with evidence of fibrosis and inflammatory cell recruitment. We speculate that the basis for development of lung disease in the congenic CFTR-knockout mice is their observed lack of a non-CFTR chloride channel normally found in CFTR-knockout mice of mixed genetic background. PMID:9399953

  14. Acute toxicity of gymnodimine to mice.

    PubMed

    Munday, Rex; Towers, Neale R; Mackenzie, Lincoln; Beuzenberg, Veronica; Holland, Patrick T; Miles, Christopher O

    2004-08-01

    The acute toxicity of the phycotoxin gymnodimine to female Swiss mice by intraperitoneal injection and by oral administration has been determined. Gymnodimine was highly toxic by injection, the LD50 being only 96 microg/kg. Animals either died within 10 min of injection or made a full recovery with no perceptible long-term effects. Gymnodimine was also toxic after oral administration by gavage (LD50 755 microg/kg), but was much less toxic when administered with food. No signs of toxicity were seen in mice voluntarily ingesting food containing gymnodimine at a level sufficient to give a dose of approximately 7500 microg/kg. Pre-treatment with physostigmine or neostigmine protected against injected gymnodimine, suggesting that the latter exerts its toxic effects via blockade of nicotinic receptors at the neuromuscular junction. The low toxicity of gymnodimine when ingested with food suggests that this compound is of low risk to humans, a conclusion that is consonant with anecdotal evidence for the absence of harmful effects in individuals consuming shellfish contaminated with gymnodimine.

  15. Behavioral characterization of P311 knockout mice

    PubMed Central

    Taylor, Gregory A.; Rodriguiz, Ramona M.; Greene, Robert I.; Daniell, Xiaoju; Henry, Stanley C.; Crooks, Kristy R.; Kotloski, Robert; Tessarollo, Lino; Phillips, Lindsey E.; Wetsel, William C.

    2013-01-01

    P311 is an 8-kDa protein that is expressed in many brain regions, particularly the hippocampus, cerebellum and olfactory lobes, and is under stringent regulation by developmental, mitogenic and other physiological stimuli. P311 is thought to be involved in the transformation and motility of neural cells; however, its role in normal brain physiology is undefined. To address this point, P311-deficient mice were developed through gene targeting and their behaviors were characterized. Mutants displayed no overt abnormalities, bred normally and had normal survival rates. Additionally, no deficiencies were noted in motor co-ordination, balance, hearing or olfactory discrimination. Nevertheless, P311-deficient mice showed altered behavioral responses in learning and memory. These included impaired responses in social transmission of food preference, Morris water maze and contextual fear conditioning. Additionally, mutants displayed altered emotional responses as indicated by decreased freezing in contextual and cued fear conditioning and reduced fear-potentiated startle. Together, these data establish P311 as playing an important role in learning and memory processes and emotional responses. PMID:18616608

  16. Deletion of ultraconserved elements yields viable mice

    SciTech Connect

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  17. Inherited resistance to Corynebacterium kutscheri in mice.

    PubMed Central

    Hirst, R G; Wallace, M E

    1976-01-01

    An analysis of the factors responsible for inherited resistance to Corynebacterium kutscheri was undertaken. Various inbred mouse strains were examined; these included the Swiss Lynch and C57Bl/l mice, their F1 and F2 progeny, and the progeny of the F1 backcrossed to each parent strain. Two modes of inherited resistance are described. An examination suggested that resistance as measured by the mean lethal dose of C. kutscheri was under polygenic control and was inherited continuously. However, the efficiency with which C. kutscheri was eliminated by the mononuclear phagocyte cells of the liver over 3 days differed markedly among strains. A genetic analysis of this mononuclear phagocyte microbicidal efficiency (MPME) in Swiss Lynch and C57Bl/6 mice was undertaken. The trait, MPME, was present, but did not segregate, in the F1 progeny or in the progeny of the backcross to the resistant C57Bl/6 parent; this was clear evidence of dominance. Moreover, MPME segregated in a ratio of 1:1 in the progeny of the backcross to the sensitive Swiss Lynch parent and in a ratio of 3:1 in the F2 progeny. It was concluded that MPME was inherited discontinuously and was controlled by a single dominant autosomal gene (or closely linked group); the recessive allele was assigned the gene symbol ack. Linkage experiments showed there to be no association between the ack locus and any of the immune-response genes. PMID:971958

  18. Photoperiod and reproduction in female deer mice

    SciTech Connect

    Whitsett, J.M.; Miller, L.L.

    1982-03-01

    Female deer mice were exposed to a short day photoperiod beginning during 1 of 3 stages of life. In the first experiment, exposure to SD during adulthood resulted in a minimal disruption of reproductive condition; many females bore 2 litters after the onset of this treatment. In the second experiment, females reared on SD from weaning matured normally, as measured by vaginal introitus; however, vaginal closure occurred in approximately one-half of these females by 9 weeks of age. In the third experiment, females were born of mothers housed on either an SD or a long day photoperiod, and were continued on the maternal photoperiod until 6 weeks of postnatal age. The SD photoperiod markedly inhibited reproductive maturation as measured by vaginal patency, ovarian weight, and uterine weight. A comparison of reproductive organ weights and vaginal condition provided evidence for the validity of the latter measure as an index of reproductive state. As assayed by the present testing procedure, the sensitivity of the reproductive system to photoperiod decreases as a function of age in female deer mice.

  19. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  20. Piperine prevents cholesterol gallstones formation in mice.

    PubMed

    Song, Xiu-Yun; Xu, Shuang; Hu, Jin-Feng; Tang, Jia; Chu, Shi-Feng; Liu, Hang; Han, Ning; Li, Jing-Wei; Zhang, Dong-Ming; Li, Yue-Ting; Chen, Nai-Hong

    2015-03-15

    Biliary cholesterol may contribute to the formation of cholesterol gallstones, and regulation of these levels could be a useful therapeutic strategy for gallstones disease. Piperine (PA) is a potential cholesterol lowering agent. In this study, we assessed the effect and mechanism of PA in preventing cholesterol gallstones formation induced by feeding lithogenic diet containing high cholesterol levels to mice. C57BL/6 inbred mice were fed lithogenic or chow diets for 10 weeks, with or without PA (15, 30 and 60 mg/kg) or ursodeoxycholic acid (UDCA, 60 mg/kg) administration. Cholesterol, phospholipids and crystals in bile, the lipid in serum, pathological changes and proteins expression in liver were analyzed. The results showed that PA could decrease the cholesterol potency and crystals in bile, reduce total cholesterol (TC), triglycerides (TG) and increase high-density lipoprotein/low-density lipoprotein (HDL/LDL) levels in serum. Furthermore, PA treatment reduced liver lipid peroxidation and protected hepatobiliary cells from liver injury by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD). In addition, PA inhibited the expression of ATP-binding cassette transporters G5/8 (ABCG5/8) and liver X receptor (LXR) in liver, and reduced cholesterol transport from the hepatocytes to the gallbladder. It may be the mechanism of PA in preventing cholesterol gallstones formation. PA as a potential drug for prevention cholesterol gallstones merits further investigation.

  1. Early Neurobehavioral Development of Mice Lacking Endogenous PACAP.

    PubMed

    Farkas, Jozsef; Sandor, Balazs; Tamas, Andrea; Kiss, Peter; Hashimoto, Hitoshi; Nagy, Andras D; Fulop, Balazs D; Juhasz, Tamas; Manavalan, Sridharan; Reglodi, Dora

    2017-04-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide. In addition to its diverse physiological roles, PACAP has important functions in the embryonic development of various tissues, and it is also considered as a trophic factor during development and in the case of neuronal injuries. Data suggest that the development of the nervous system is severely affected by the lack of endogenous PACAP. Short-term neurofunctional outcome correlates with long-term functional deficits; however, the early neurobehavioral development of PACAP-deficient mice has not yet been evaluated. Therefore, the aim of the present study was to describe the postnatal development of physical signs and neurological reflexes in mice partially or completely lacking PACAP. We examined developmental hallmarks during the first 3 weeks of the postnatal period, during which period most neurological reflexes and motor coordination show most intensive development, and we describe the neurobehavioral development using a complex battery of tests. In the present study, we found that PACAP-deficient mice had slower weight gain throughout the observation period. Interestingly, mice partially lacking PACAP weighed significantly less than homozygous mice. There was no difference between male and female mice during the first 3 weeks. Some other signs were also more severely affected in the heterozygous mice than in the homozygous mice, such as air righting, grasp, and gait initiation reflexes. Interestingly, incisor teeth erupted earlier in mice lacking PACAP. Motor coordination, shown by the number of foot-faults on an elevated grid, was also less developed in PACAP-deficient mice. In summary, our results show that mice lacking endogenous PACAP have slower weight gain during the first weeks of development and slower neurobehavioral development regarding a few developmental hallmarks.

  2. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    PubMed Central

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (P<0.01)). Skeletal muscle glycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (P<0.0001). Glycogen synthase activity was 12% higher (P<0.05) but glycogen branching enzyme activity was 70% lower (P<0.01) in mdx compared with wild-type mice. The rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 62% lower activity (P<0.01) in mdx mice resulting from a 24% reduction in PKA activity (P<0.01). In mdx mice glycogen debranching enzyme expression was 50% higher (P<0.001) together with starch-binding domain protein 1 (219% higher; P<0.01). In addition, mdx mice were glucose intolerant (P<0.01) and had 30% less liver glycogen (P<0.05) compared with control mice. Subsequent analysis of the enzymes dysregulated in skeletal muscle glycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; P<0.05) as a possible cause of this phenotype. Conclusion We identified that mdx mice were glucose intolerant, and had increased skeletal muscle glycogen but reduced amounts of liver glycogen. PMID:24626262

  3. Experimental infection of mice with bovine viral diarrhea virus.

    PubMed

    Seong, Giyong; Oem, Jae-Ku; Lee, Kyung-Hyun; Choi, Kyoung-Seong

    2015-06-01

    The objective of this study was to test the ability of bovine viral diarrhea virus (BVDV) to infect mice. Two mice each were either mock infected or inoculated with one of three BVDV strains by the intraperitoneal (IP) (n = 8) or intranasal (IN) (n = 8) route. All mice were euthanized at day 7 postinfection (p.i.). None of the infected mice exhibited any clinical signs of illness; however, the tissues harvested after BVDV challenge showed significant histopathological changes. Blood samples from five mice that were injected IP and one mouse that was inoculated IN were positive for BVDV by reverse transcription polymerase chain reaction (RT-PCR). Immunohistochemistry (IHC) was used to assess the presence of viral antigen in the organs of mice infected with three BVDV strains. In IP-injected mice, BVDV antigen was detected in the spleen (5/6), mesenteric lymph nodes (4/6), lymphatic tissue of the lung (3/6), lung (1/6), and stomach (1/6) of the infected mice; however, it was not detected in the liver (0/6) or kidney (0/6). In IN-inoculated mice, BVDV antigen was detected in the lung and mesenteric lymph nodes of one BVDV-infected mouse but was not detected in other tissues. The results of this study suggest that the spleen is the most reliable tissue for BVDV antigen detection using IHC in the IP-injected group. Our study demonstrates that mice can be infected by BVDV. This is the first report of BVDV infection in mice.

  4. Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice

    PubMed Central

    Tkatchenko, Tatiana V.; Tkatchenko, Andrei V.

    2010-01-01

    Mice have increasingly been used as a model for studies of myopia. The key to successful use of mice for myopia research is the ability to obtain accurate measurements of refractive status of their eyes. In order to obtain accurate measurements of refractive errors in mice, the refraction needs to be performed along the optical axis of the eye. This represents a particular challenge, because mice are very difficult to immobilize. Recently, ketamine-xylazine anesthesia has been used to immobilize mice before measuring refractive errors, in combination with tropicamide ophthalmic solution to induce mydriasis. Although these drugs have increasingly been used while refracting mice, their effects on the refractive state of the mouse eye have not yet been investigated. Therefore, we have analyzed the effects of tropicamide eye drops and ketamine-xylazine anesthesia on refraction in P40 C57BL/6J mice. We have also explored two alternative methods to immobilize mice, i.e. the use of a restraining platform and pentobarbital anesthesia. We found that tropicamide caused a very small, but statistically significant, hyperopic shift in refraction. Pentobarbital did not have any substantial effect on refractive status, whereas ketamine-xylazine caused a large and highly significant hyperopic shift in refraction. We also found that the use of a restraining platform represents good alternative for immobilization of mice prior to refraction. Thus, our data suggest that ketamine-xylazine anesthesia should be avoided in studies of refractive development in mice and underscore the importance of providing appropriate experimental conditions when measuring refractive errors in mice. PMID:20813132

  5. Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture.

    PubMed

    Chen, Yueh-Sheng; Chen, Shang-Der; Wu, Chia-Lin; Huang, Shiang-Suo; Yang, Ding-I

    2014-03-01

    Accumulation of amyloid β-peptide (Aβ) in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neurodegeneration. Recent studies suggested sestrin2 as a crucial mediator for reactive oxygen species (ROS) scavenging and autophagy regulation that both play a pivotal role in age-dependent neurodegenerative diseases. However, the potential link between sestrin2 and Aβ neurotoxicity has never been explored. The present study was therefore undertaken to test whether sestrin2 may be induced by Aβ and its possible role in modulating Aβ neurotoxicity. We showed that sestrin2 expression was elevated in primary rat cortical neurons upon Aβ exposure; a heightened extent of sestrin2 expression was also detected in the cortices of 12-month-old APPswe/PSEN1dE9 transgenic mice. Exposure of cortical neurons to Aβ led to formation of LC3B-II, an autophagic marker; an increased LC3B-II level was also observed in the cortices of 12-month-old AD transgenic mice. More importantly, downregulation of sestrin2 by siRNA abolished LC3B-II formation caused by Aβ that was accompanied by more severe neuronal death. Inhibition of autophagy by bafilomycin A1 also enhanced Aβ neurotoxicity. Together, these results indicate that sestrin2 induced by Aβ plays a protective role against Aβ neurotoxicity through, at least in part, regulation of autophagy.

  6. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline.

    PubMed

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-08-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline.

  7. Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1

    PubMed Central

    Fujitsuka, N; Asakawa, A; Morinaga, A; Amitani, M S; Amitani, H; Katsuura, G; Sawada, Y; Sudo, Y; Uezono, Y; Mochiki, E; Sakata, I; Sakai, T; Hanazaki, K; Yada, T; Yakabi, K; Sakuma, E; Ueki, T; Niijima, A; Nakagawa, K; Okubo, N; Takeda, H; Asaka, M; Inui, A

    2016-01-01

    Caloric restriction (CR) is known to retard aging and delay functional decline as well as the onset of diseases in most organisms. Ghrelin is secreted from the stomach in response to CR and regulates energy metabolism. We hypothesized that in CR ghrelin has a role in protecting aging-related diseases. We examined the physiological mechanisms underlying the ghrelin system during the aging process in three mouse strains with different genetic and biochemical backgrounds as animal models of accelerated or normal human aging. The elevated plasma ghrelin concentration was observed in both klotho-deficient and senescence-accelerated mouse prone/8 (SAMP8) mice. Ghrelin treatment failed to stimulate appetite and prolong survival in klotho-deficient mice, suggesting the existence of ghrelin resistance in the process of aging. However, ghrelin antagonist hastened death and ghrelin signaling potentiators rikkunshito and atractylodin ameliorated several age-related diseases with decreased microglial activation in the brain and prolonged survival in klotho-deficient, SAMP8 and aged ICR mice. In vitro experiments, the elevated sirtuin1 (SIRT1) activity and protein expression through the cAMP–CREB pathway was observed after ghrelin and ghrelin potentiator treatment in ghrelin receptor 1a-expressing cells and human umbilical vein endothelial cells. Furthermore, rikkunshito increased hypothalamic SIRT1 activity and SIRT1 protein expression of the heart in the all three mouse models of aging. Pericarditis, myocardial calcification and atrophy of myocardial and muscle fiber were improved by treatment with rikkunshito. Ghrelin signaling may represent one of the mechanisms activated by CR, and potentiating ghrelin signaling may be useful to extend health and lifespan. PMID:26830139

  8. Effect of Low-Magnitude, High-Frequency Vibration Treatment on Retardation of Sarcopenia: Senescence-Accelerated Mouse-P8 Model.

    PubMed

    Guo, An-Yun; Leung, Kwok-Sui; Qin, Jiang-Hui; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2016-08-01

    Sarcopenia-related falls and fall-related injuries in community-dwelling elderly people garnered more and more interest in recent years. Low-magnitude high-frequency vibration (LMHFV) was proven beneficial to musculoskeletal system and recommended for sarcopenia treatment. This study aimed to evaluate the effects of LMHFV on the sarcopenic animals and explore the mechanism of the stimulatory effects. Senescence-accelerated mouse P8 (SAMP8) mice at month 6 were randomized into control (Ctrl) and vibration (Vib) groups and the mice in the Vib group were given LMHFV (0.3 g, 20 min/day, 5 days/week) treatment. At months 0, 1, 2, 3, and 4 post-treatment, muscle mass, structure, and function were assessed. The potential proliferation capacity of the muscle was also evaluated by investigating satellite cells (SCs) pool and serum myostatin expression. At late stage, the mice in the Vib group showed higher muscle strength (month 4, p = 0.028). Generally, contractibility was significantly improved by LMHFV (contraction time [CT], p = 0.000; half-relaxation time [RT50], p = 0.000). Enlarged cross-sectional area of fiber type IIA was observed in the Vib group when compared with Ctrl group (p = 0.000). No significant difference of muscle mass was observed. The promotive effect of LMHFV on myoregeneration was reflected by suppressed SC pool reduction (month 3, p = 0.000; month 4, p = 0.000) and low myostatin expression (p = 0.052). LMHFV significantly improved the structural and functional outcomes of the skeletal muscle, hence retarding the progress of sarcopenia in SAMP8. It would be a good recommendation for prevention of the diseases related to skeletal muscle atrophy.

  9. Vitamin D receptor signaling enhances locomotive ability in mice.

    PubMed

    Sakai, Sadaoki; Suzuki, Miho; Tashiro, Yoshihito; Tanaka, Keisuke; Takeda, Satoshi; Aizawa, Ken; Hirata, Michinori; Yogo, Kenji; Endo, Koichi

    2015-01-01

    Bone fractures markedly reduce quality of life and life expectancy in elderly people. Although osteoporosis increases bone fragility, fractures frequently occur in patients with normal bone mineral density. Because most fractures occur on falling, preventing falls is another focus for reducing bone fractures. In this study, we investigated the role of vitamin D receptor (VDR) signaling in locomotive ability. In the rotarod test, physical exercise enhanced locomotive ability of wild-type (WT) mice by 1.6-fold, whereas exercise did not enhance locomotive ability of VDR knockout (KO) mice. Compared with WT mice, VDR KO mice had smaller peripheral nerve axonal diameter and disordered AChR morphology on the extensor digitorum longus muscle. Eldecalcitol (ED-71, ELD), an analog of 1,25(OH)2 D3 , administered to rotarod-trained C57BL/6 mice enhanced locomotor performance compared with vehicle-treated nontrained mice. The area of AChR cluster on the extensor digitorum longus was greater in ELD-treated mice than in vehicle-treated mice. ELD and 1,25(OH)2 D3 enhanced expression of IGF-1, myelin basic protein, and VDR in rat primary Schwann cells. VDR signaling regulates neuromuscular maintenance and enhances locomotive ability after physical exercise. Further investigation is required, but Schwann cells and the neuromuscular junction are targets of vitamin D3 signaling in locomotive ability.

  10. Effects of simulated heat waves on ApoE-/- mice.

    PubMed

    Wang, Chunling; Zhang, Shuyu; Tian, Ying; Wang, Baojian; Shen, Shuanghe

    2014-01-28

    The effects of simulated heat waves on body weight, body temperature, and biomarkers of cardiac function in ApoE-/- mice were investigated. Heat waves were simulated in a meteorological environment simulation chamber according to data from a heat wave that occurred in July 2001 in Nanjing, China. Eighteen ApoE-/- mice were divided into control group, heat wave group, and heat wave BH4 group. Mice in the heat wave and BH4 groups were exposed to simulated heat waves in the simulation chamber. Mice in BH4 group were treated with gastric lavage with BH4 2 h prior to heat wave exposure. Results showed that the heat waves did not significantly affect body weight or ET-1 levels. However, mice in the heat wave group had significantly higher rectal temperature and NO level and lower SOD activity compared with mice in the control group (p < 0.01), indicating that heat wave had negative effects on cardiac function in ApoE-/- mice. Gastric lavage with BH4 prior to heat wave exposure significantly reduced heat wave-induced increases in rectal temperature and decreases in SOD activity. Additionally, pretreatment with BH4 further increased NO level in plasma. Collectively, these beneficial effects demonstrate that BH4 may potentially mitigate the risk of coronary heart disease in mice under heat wave exposure. These results may be useful when studying the effects of heat waves on humans.

  11. Major contribution of tubular secretion to creatinine clearance in mice

    PubMed Central

    Eisner, Christoph; Faulhaber-Walter, Robert; Wang, Yaohui; Leelahavanichkul, Asada; Yuen, Peter S.T.; Mizel, Diane; Star, Robert A.; Briggs, Josephine P.; Levine, Mark; Schnermann, Jurgen

    2011-01-01

    This study was performed to quantify the fraction of excreted creatinine not attributable to creatinine filtration for accurately determining the glomerular filtration rate in mice. To measure this we compared creatinine filtration with the simultaneous measurement of inulin clearance using both single-bolus fluorescein isothiocyanate (FITC)-inulin elimination kinetics and standard FITC-inulin infusion. During anesthesia, creatinine filtration was found to be systematically higher than inulin clearance in both male and female C57BL/6J mice. The secretion fraction was significantly less in female mice. Administration of either cimetidine or para-aminohippuric acid, competitors of organic cation and anion transport respectively, significantly reduced the secretion fraction in male and female mice and both significantly increased the plasma creatinine level. Creatinine secretion in both genders was not mediated by the organic cation transporters OCT1 or OCT 2 since secretion fraction levels were identical in FVB wild-type and OCT1/2 knockout mice. Thus, secretion accounts for about 50 and 35% of excreted creatinine in male and female mice, respectively. Increasing plasma creatinine threefold by infusion further increased the secretion fraction. Renal organic anion transporter 1 mRNA expression was higher in male than in female mice, reflecting the gender difference in creatinine secretion. Hence we show that there is a major secretory contribution to creatinine excretion mediated through the organic anion transport system. This feature adds to problems associated with measuring endogenous creatinine filtration in mice. PMID:20032962

  12. Abetalipoproteinemia induced by overexpression of ORP150 in mice.

    PubMed

    Kobayashi, Tomohiro; Iguchi, Taisen; Ohta, Yasuhiko

    2007-06-01

    ORP150 is an endoplasmic-resident, hypoxic stress-induced protein, but little is known about the effects of its systemic overexpression. We have produced a transgenic strain of mice that overexpress ORP150 (ORP-Tg mice). These mice exhibit severe growth retardation concomitant with vacuolar degeneration in the heart. To investigate the cause of the observed growth retardation in response to ORP150 overexpression, we conducted a clinical evaluation of the ORP-Tg mice. Blood analysis showed significantly lower concentrations of serum triglyceride, cholesterol, glucose and insulin. The triglyceride components that were reduced in ORP-Tg mice were localized mainly at the origin and in the pre-beta fraction on agarose gel electrophoresis, corresponding to chylomicrons and very low-density lipoproteins. A lipid-loading test of ORP-Tg mice revealed reduced triglyceride uptake, which mainly was due to suppressed uptake of very low-density lipoproteins. An intraperitoneal glucose tolerance test indicated that the ORP-Tg mice have a significantly higher rate of glucose degradation. These findings suggest that overexpression of ORP150 in mice leads to abetalipoproteinemia with alteration of glucose and lipid metabolism. These data could provide clues for a therapeutic target of dyslipidemia or diabetes.

  13. REVIEW - Thermal Physiology of Laboratory Mice: Defining Thermoneutrality

    EPA Science Inventory

    In terms of total number of publications, the laboratory mouse (Mus musculus) has emerged as the most popular test subject in biomedical research. Mice are used as models to study obesity, diabetes, eNS diseases and variety of other pathologies. Mice are classified as homeotherms...

  14. `Mice In Space': evaluation of a new housing system

    NASA Astrophysics Data System (ADS)

    Silva, Mitchell; Liu, Yi; Serradj, Nadjet; Salanova, Michele; Touma, Chadi; Poursaberi, Ahmad; Jamon, Marc; Blottner, Dieter; Cancedda, Ranieri; Giuliani, Alessandra; Rustichelli, Franco; Aerts, Jean-Marie; Vico, Lawrence; D'Hooge, Rudi; Falcetti, Giancarlo; Berckmans, Daniel

    In this project a cage design is being proposed in which mice can be housed in a microgravity environment. The objective of this paper is to describe and evaluate the proposed cage design, by investigating the micro-environment within such a MIS cage, and to quantify the difference in activity between single and double housed mice by using integrated cameras in the top covers of the cages and quantifying the differences in stress levels by fecal hormone extraction. By assessing the gradients in air circulation in the cage, it can be visualized that high air flow gradients exist within the MIS cage. Measuring the 3D temperature distribution showed small temperature gradients, being maximum 0.1 C. Single housed MIS mice showed significant different body weight compared to double housed MIS mice and controls (p¡0.05). The effect of individual or double housing on activity was quantified with images recorded during 25 day trials. There was a significantly difference observed as single housed show significant more activity compared to double housed mice (p¡0.05). No significant difference was found in stress levels between MIS housed mice and control mice. The technical description in this paper should allow researchers to be informed about the possibilities that will come available to do mice experimentations in space. Keywords: mouse, spaceflight, animal housing, cage design, micro environment

  15. Myocarditis induced by coxsackie B3 virus in mature mice.

    PubMed

    Jaśkiewicz, K; Mrozińska, B

    1975-01-01

    Forty female mice during breast-feeding were infected intraperitoneally with coxackie B3 virus. Gross and microscopic examination of the hearts of the mice 7, 20, 44 and 120 days after infection revealed myocarditis typical of the acute stage of the disease, not reported previously, and gradually increasing intensity of immunologic changes in the chronic stage.

  16. Preference for and Discrimination of Paintings by Mice

    PubMed Central

    Watanabe, Shigeru

    2013-01-01

    I measured preference for paintings (Renoir vs. Picasso or Kandinsky vs. Mondrian) in mice. In general mice did not display a painting preference except for two mice: one preferred Renoir to Picasso, and the other preferred Kandinsky to Mondrian. Thereafter, I examined discrimination of paintings with new mice. When exposure to paintings of one artist was associated with an injection of morphine (3.0 mg/kg), mice displayed conditioned preference for those paintings, showing discrimination of paintings by Renoir from those by Picasso, and paintings by Kandinsky from those by Mondrian after the conditioning. They also exhibited generalization of the preference to novel paintings of the artists. After conditioning with morphine for a set of paintings consisting of two artists, mice showed discrimination between two sets of paintings also from the two artists but not in association with morphine. These results suggest that mice can discriminate not only between an artist’s style but also among paintings of the same artist. When mice were trained to discriminate a pair of paintings by Kandinsky and Renoir in an operant chamber equipped with a touch screen, they showed transfer of the discrimination to new pairs of the artists, but did not show transfer of discrimination of paintings by other artists, suggesting generalization. PMID:23762346

  17. Preference for and discrimination of paintings by mice.

    PubMed

    Watanabe, Shigeru

    2013-01-01

    I measured preference for paintings (Renoir vs. Picasso or Kandinsky vs. Mondrian) in mice. In general mice did not display a painting preference except for two mice: one preferred Renoir to Picasso, and the other preferred Kandinsky to Mondrian. Thereafter, I examined discrimination of paintings with new mice. When exposure to paintings of one artist was associated with an injection of morphine (3.0 mg/kg), mice displayed conditioned preference for those paintings, showing discrimination of paintings by Renoir from those by Picasso, and paintings by Kandinsky from those by Mondrian after the conditioning. They also exhibited generalization of the preference to novel paintings of the artists. After conditioning with morphine for a set of paintings consisting of two artists, mice showed discrimination between two sets of paintings also from the two artists but not in association with morphine. These results suggest that mice can discriminate not only between an artist's style but also among paintings of the same artist. When mice were trained to discriminate a pair of paintings by Kandinsky and Renoir in an operant chamber equipped with a touch screen, they showed transfer of the discrimination to new pairs of the artists, but did not show transfer of discrimination of paintings by other artists, suggesting generalization.

  18. Transmission of multiple system atrophy prions to transgenic mice

    PubMed Central

    Watts, Joel C.; Giles, Kurt; Oehler, Abby; Middleton, Lefkos; Dexter, David T.; Gentleman, Steve M.; DeArmond, Stephen J.; Prusiner, Stanley B.

    2013-01-01

    Prions are proteins that adopt alternative conformations, which become self-propagating. Increasing evidence argues that prions feature in the synucleinopathies that include Parkinson’s disease, Lewy body dementia, and multiple system atrophy (MSA). Although TgM83+/+ mice homozygous for a mutant A53T α-synuclein transgene begin developing CNS dysfunction spontaneously at ∼10 mo of age, uninoculated TgM83+/− mice (hemizygous for the transgene) remain healthy. To determine whether MSA brains contain α-synuclein prions, we inoculated the TgM83+/− mice with brain homogenates from two pathologically confirmed MSA cases. Inoculated TgM83+/− mice developed progressive signs of neurologic disease with an incubation period of ∼100 d, whereas the same mice inoculated with brain homogenates from spontaneously ill TgM83+/+ mice developed neurologic dysfunction in ∼210 d. Brains of MSA-inoculated mice exhibited prominent astrocytic gliosis and microglial activation as well as widespread deposits of phosphorylated α-synuclein that were proteinase K sensitive, detergent insoluble, and formic acid extractable. Our results provide compelling evidence that α-synuclein aggregates formed in the brains of MSA patients are transmissible and, as such, are prions. The MSA prion represents a unique human pathogen that is lethal upon transmission to Tg mice and as such, is reminiscent of the prion causing kuru, which was transmitted to chimpanzees nearly 5 decades ago. PMID:24218576

  19. Bone growth and turnover in progesterone receptor knockout mice.

    SciTech Connect

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O'Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  20. A touchscreen based global motion perception task for mice.

    PubMed

    Stirman, Jeffrey N; Townsend, Leah B; Smith, Spencer L

    2016-10-01

    Global motion perception is a function of higher, or extrastriate, visual system circuitry. These circuits can be engaged in visually driven navigation, a behavior at which mice are adept. However, the properties of global motion perception in mice are unclear. Therefore, we developed a touchscreen-based, two-alternative forced choice (2AFC) task to explore global motion detection in mice using random dot kinematograms (RDK). Performance data was used to compute coherence thresholds for global motion perception. The touchscreen-based task allowed for parallel training and testing with multiple chambers and minimal experimenter intervention with mice performing hundreds of trials per session. Parameters of the random dot kinematograms, including dot size, lifetime, and speed, were tested. Mice learned to discriminate kinematograms whose median motion direction differed by 90 degrees in 7-24days after a 10-14day pre-training period. The average coherence threshold (measured at 70% correct) in mice for this task was 22±5%, with a dot diameter of 3.88mm and speed of 58.2mm/s. Our results confirm the ability of mice to perform global motion discriminations, and the touchscreen assay provides a flexible, automated, and relatively high throughput method with which to probe complex visual function in mice.

  1. Leptin responsiveness in mice that ectopically express agouti protein.

    PubMed

    Harris, Ruth B S; Mitchell, Tiffany D; Mynatt, Randall L

    Agouti protein is an endogenous antagonist of melanocortin receptors (MCR), including MCR3 and MCR4, which have been implicated as part of the hypothalamic mechanism that mediates leptin-induced hypophagia. In this experiment we examined the effects of peripheral and central leptin administration in male and female beta-actin promoter (BAPa) mice that express agouti protein ectopically and have a phenotype that includes obesity and diabetes which is exaggerated in males compared with females. Intraperitoneal infusion of 10 microg leptin/day for 13 days caused weight loss and a transient inhibition of food intake in wild-type mice, with a greater effect in males than females. Male BAPa mice were resistant to leptin infusion whereas female mice lost weight. All of the mice lost body weight following a single intracerebroventricular injection of leptin but the effect was greater in female BAPa mice than any other group. There also was a delayed suppression of food intake that was the same for wild-type and BAPa female mice, whereas food intake recovered faster in BAPa than wild-type males. The dissociation between food intake and body weight loss implies a significant effect of leptin on energy expenditure in BAPa mice. These results demonstrate that the effect of leptin on energy balance is not entirely dependent upon the melanocortin system.

  2. Altered food consumption in mice lacking lysophosphatidic acid receptor-1.

    PubMed

    Dusaulcy, R; Daviaud, D; Pradère, J P; Grès, S; Valet, Ph; Saulnier-Blache, J S

    2009-12-01

    The release of lysophosphatidic acid (LPA) by adipocytes has previously been proposed to play a role in obesity and associated pathologies such as insulin resistance and diabetes. In the present work, the sensitivity to diet-induced obesity was studied in mice lacking one of the LPA receptor subtype (LPA1R). Conversely to what was observed in wild type (WT) mice, LPA1R-KO-mice fed a high fat diet (HFD) showed no significant increase in body weight or fat mass when compared to low fat diet (LFD). In addition, in contrast to what was observed in WT mice, LPA1R-KO mice did not exhibit over-consumption of food associated with HFD. Surprisingly, when fed a LFD, LPA1R-KO mice exhibited significant higher plasma leptin concentration and higher level of adipocyte leptin mRNA than WT mice. In conclusion, LPA1R-KO mice were found to be resistant to diet-induced obesity consecutive to a resistance to fat-induced over-consumption of food that may result at least in part from alterations in leptin expression and production.

  3. Peromyscus leucopus mice: a potential animal model for haematological studies.

    PubMed

    Sun, Yu; Desierto, Marie J; Ueda, Yasutaka; Kajigaya, Sachiko; Chen, Jichun; Young, Neal S

    2014-10-01

    Peromyscus leucopus mice share physical similarities with laboratory mice Mus musculus (MM) but have higher agility and longer lifespan. We compared domesticated P. leucopus linville (PLL) and M. musculus C57BL/6 (MMB6) mice for cellular composition of peripheral blood (PB), bone marrow (BM) and spleen. PLL mice had significantly fewer platelets and significantly more monocytes in the blood, and notably fewer megakaryocytes in the BM. Spleens of PLL mice were significantly smaller, with 50% fewer cells and reduced 'red pulp'. There was no obvious haematological change in PLL mice between 2-8 and 16-26 months of age, except for a significant increase in blood monocytes. Cellular reactive oxygen species (ROS) content showed no change with age but differed significantly between different cell types. Treating two to eight month-old PLL mice with antioxidant N-acetylcysteine in drinking water for three months did not affect cellular ROS content, but increased blood leucocytes especially the concentration of monocytes. The low platelets, low megakaryocytes, high monocytes and low splenic erythropoiesis in PLL mice resemble human measurements better than the values seen in MMB6.

  4. Peromyscus leucopus mice: a potential animal model for haematological studies

    PubMed Central

    Sun, Yu; Desierto, Marie J; Ueda, Yasutaka; Kajigaya, Sachiko; Chen, Jichun; Young, Neal S

    2014-01-01

    Peromyscus leucopus mice share physical similarit