Science.gov

Sample records for 12-o-tetradecanoylphorbol-13-acetate-treated mouse skin

  1. Erucin exerts anti-inflammatory properties in murine macrophages and mouse skin: possible mediation through the inhibition of NFκB signaling.

    PubMed

    Cho, Han Jin; Lee, Ki Won; Park, Jung Han Yoon

    2013-01-01

    Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L) inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB) DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles) treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling. PMID:24132147

  2. Erucin Exerts Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin: Possible Mediation through the Inhibition of NFκB Signaling

    PubMed Central

    Cho, Han Jin; Lee, Ki Won; Park, Jung Han Yoon

    2013-01-01

    Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L) inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB) DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles) treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling. PMID:24132147

  3. Hyperelastic Material Properties of Mouse Skin under Compression.

    PubMed

    Wang, Yuxiang; Marshall, Kara L; Baba, Yoshichika; Gerling, Gregory J; Lumpkin, Ellen A

    2013-01-01

    The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus). These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6-10 weeks) and intermediate (13-19 weeks) adult ages but by body weight in mature mice (26-34 weeks). Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given location maintains a

  4. Jute batching oil: a tumor promoter on mouse skin

    SciTech Connect

    Mehrotra, N.K.; Kumar, S.; Agarwal, R.; Antony, M.

    1987-02-01

    A mineral oil essentially used in the jute industry for the batching of jute fibers, and earlier reported to be nontumorigenic on mouse skin, has been found to be a tumor promoter following a two-stage mouse-skin bioassay protocol. The types of tumors developed after initiation with a single dose of urethane or 3-methylcholanthrene (subcutaneously), followed by repeated skin painting with jute batching oil (JBO) included benign papillomas, keratoacanthomas, and fibrosarcomas. Chemical analysis of this oil indicated the total aromatic content was 11.71% and the amount of fluoranthene, pyrene, chrysene, and triphenylene was in the range of 192.54 to 227.79 mg/kg in the test sample. The underlying biochemical mechanism for the tumor-promoting effect of JBO seemed to operate through a different pathway rather than involving the induction of cytochrome-dependent monoxygenase and N-demethylase activities in the tissue.

  5. Jute batching oil: a tumor promoter on mouse skin.

    PubMed

    Mehrotra, N K; Kumar, S; Agarwal, R; Antony, M

    1987-02-01

    A mineral oil essentially used in the jute industry for the "batching" of jute fibers, and earlier reported to be nontumorigenic on mouse skin, has been found to be a tumor promoter following a two-stage mouse-skin bioassay protocol. The types of tumors developed after initiation with a single dose of urethane or 3-methylcholanthrene (subcutaneously), followed by repeated skin painting with jute batching oil (JBO) included benign papillomas, keratoacanthomas, and fibrosarcomas. Chemical analysis of this oil indicated the total aromatic content was 11.71% and the amount of fluoranthene, pyrene, chrysene, and triphenylene was in the range of 192.54 to 227.79 mg/kg in the test sample. The underlying biochemical mechanisms for the tumor-promoting effect of JBO seemed to operate through a different pathway rather than involving the induction of cytochrome-dependent monoxygenase and N-demethylase activities in the tissue.

  6. Transgenic mouse model of malignant skin melanoma.

    PubMed Central

    Mintz, B; Silvers, W K

    1993-01-01

    Tyr-SV40E transgenic mice are specifically susceptible to melanoma due to expression of the oncogene in pigment cells. Mice of the more susceptible lines die young of early-onset eye melanomas, when skin melanomas are still infrequent and benign. To surmount this obstacle, skin from donors of two high-susceptibility lines was grafted to Tyr-SV40E hosts of a low-susceptibility line of the same inbred strain, thereby enabling the skin to outlive the donors and continue to grow in immunocompetent but tolerant hosts. Unexpectedly, donor pigment cells in all the grafts soon selectively proliferated close to areas of greatest wound healing, forming a dense black tracery, especially at the outer rim of the grafts. These lesions slowly grew radially within the grafts, producing irregular greyish patches. Local vertical thickenings then appeared and developed into small melanomas, which soon ulcerated through the epidermis. The tumors rapidly enlarged and became deeply invasive. Discrete black nevi also arose, with many becoming larger and distinctly blue, but those not near areas of pronounced wound healing did not progress to malignancy. In this first series, malignant melanoma resulted in all the grafts from the more susceptible of two donor lines and in some grafts from the other line. Distant metastases occurred in some cases from each line. Most tumors were hypomelanotic and heterogeneous, with lobes or areas differing in melanization. The results strongly suggest that growth factors and cytokines--known to be produced in wound repair--are triggering the growth and malignant conversion of these genetically susceptible melanocytes and that in the graft situation we are merely witnessing a caricature--a usefully exaggerated manifestation of the true events underlying the genesis of melanomas. The striking resemblance to the human malignancy, the genetic uniformity and different susceptibilities of the transgenic lines, and the experimental possibilities in the grafted

  7. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    SciTech Connect

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  8. Foot Pad Skin Biopsy in Mouse Models of Hereditary Neuropathy

    PubMed Central

    Dacci, Patrizia; Dina, Giorgia; Cerri, Federica; Previtali, Stefano Carlo; Lopez, Ignazio Diego; Lauria, Giuseppe; Feltri, Maria Laura; Bolino, Alessandra; Comi, Giancarlo; Wrabetz, Lawrence; Quattrini, Angelo

    2010-01-01

    Numerous transgenic and knockout mouse models of human hereditary neuropathies have become available over the past decade. We describe a simple, reproducible, and safe biopsy of mouse skin for histopathological evaluation of the peripheral nervous system (PNS) in models of hereditary neuropathies. We compared the diagnostic outcome between sciatic nerve and dermal nerves found in skin biopsy (SB) from the hind foot. A total of five animal models of different Charcot-Marie-Tooth neuropathies, and one model of congenital muscular dystrophy associated neuropathy were examined. In wild type mice, dermal nerve fibers were readily identified by immunohistochemistry, light, and electron microscopy and they appeared similar to myelinated fibers in sciatic nerve. In mutant mice, SB manifested myelin abnormalities similar to those observed in sciatic nerves, including hypomyelination, onion bulbs, myelin outfolding, redundant loops, and tomacula. In many strains, however, SB showed additional abnormalities—fiber loss, dense neurofilament packing with lower phosphorylation status, and axonal degeneration—undetected in sciatic nerve, possibly because SB samples distal nerves. SB, a reliable technique to investigate peripheral neuropathies in human beings, is also useful to investigate animal models of hereditary neuropathies. Our data indicate that SB may reveal distal axonal pathology in mouse models and permits sequential follow-up of the neuropathy in an individual mouse, thereby reducing the number of mice necessary to document pathology of the PNS. © 2010 Wiley-Liss, Inc. PMID:20878767

  9. Alterations in cell cycle regulation in mouse skin tumors.

    PubMed

    Balasubramanian, S; Ahmad, N; Jeedigunta, S; Mukhtar, H

    1998-02-24

    The connection between cell cycle and cancer has become obvious in as much as it is considered that dysregulated cellular proliferation is a hallmark of cancer. In many studies, the dysregulation of the cyclin-cdk-cki network has been reported in experimental animal and human tumors, but to our knowledge a complete profile of alterations in regulatory molecules in any tumor model system is lacking. In this study, we assessed the expression of various cyclins, cyclin dependent kinases, and cyclin kinase inhibitors in chemically induced squamous papillomas in SENCAR mouse skin. Western blot analysis data showed a significant upregulation of cyclins (31, 6, 19, and 12 folds elevation for cyclin-D1, D2, E, and A, respectively) in tumors compared to the normal skin. The protein expression of the cdk (1, 2, and 4) was also found to be elevated in tumors compared to normal skin (33 fold for cdk1, 14 fold for cdk2, and 9 fold for cdk4). In tumors, compared to the normal skin, a significant increase in the level of protein expression of p27 and p57 (4 and 3 fold, respectively) was evident. In normal skin, p16 and p21 were not detectable but significant expression of these proteins was detected in tumors. Taken together, these data provide evidence that cell cycle deregulation in G1-phase is a critical event during the course of two stage skin carcinogenesis. This may have relevance to epithelial cancers in general.

  10. Evaluation of seven sunscreens on hairless mouse skin

    SciTech Connect

    Walter, J.F.

    1981-01-01

    The ability of seven sunscreens to protect against ultraviolet (UV)--induced inhibition of epidermal DNA synthesis was evaluated in vivo using a hairless mouse model. There were statistically significant differences among sunscreens in their ability to prevent UV-B (290 to 320 nm) inhibition of DNA synthesis. The protective factor (PF) of a sunscreen was arbitrarily defined as the ratio of the dose required to inhibit DNA synthesis by 50% with and without a sunscreen. The following PF values were determined: Coppertone 4, 4.4; Sundown Extra Protection, 8.4; Supershade 15, 21.0; Eclipse 15, 22.2; Blockout 15, 22.4; and Bain de Soleil 15, 27.6. Zinc oxide ointment protected against any significant suppression of DNA synthesis at all UV-B doses used. There was a relatively good correlation between the PF and the sun protection factor (SPF) claimed for each sunscreen by the manufacturer. However, the PF values determined in mouse skin were generally higher than the SPF values measured in human skin. Further studies are needed to determine if sunscreen substantivity (resistance to removal by water) can be evaluated by this technique.

  11. Radiation effect in mouse skin: Dose fractionation and wound healing

    SciTech Connect

    Gorodetsky, R.; Mou, X.D.; Fisher, D.R.; Taylor, J.M.; Withers, H.R. )

    1990-05-01

    Radiation induced dermal injury was measured by the gain in the physical strength of healing wounds in mouse skin. A sigmoid dose response for the inhibition of wound healing 14 days after surgery was found for single doses of X rays. The sparing of dermal damage from fractionation of the X-ray dose was quantified in terms of the alpha/beta ratio in the linear-quadratic (LQ) model, at a wide range of doses per fraction reaching as low as about 1 Gy. The fit and the appropriateness of the LQ model for the skin wound healing assay was examined with the use of the Fe-plot in which inverse total dose is plotted versus dose per fraction for wound strength isoeffects. The alpha/beta ratio of the skin was about 2.5 Gy (95% confidence of less than +/- 1 Gy) and was appropriate over a dose range of 1 Gy to about 8 Gy. The low alpha/beta value is typical for a late responding tissue. This assay, therefore, has the advantage of measuring and forecasting late radiation responses of the dermis within a short time after irradiation.

  12. Preventive effect of antihistaminics on mouse skin photosensitization with hematoporphyrin derivative

    NASA Astrophysics Data System (ADS)

    Fu, Nai-wu; Yan, Li-xue

    1993-03-01

    Beta-carotene 100 mg/kg per day or vitamin C 50 mg/kg per day was administered orally for two days and did not prevent mouse skin photosensitization caused by hematoporphyrin derivative (HpD). However, (beta) -carotene 100 mg/kg per day administered intramuscularly for two days prevented mouse skin reaction. Cimetidine and benadryl 10 mg/kg per day, P.O.X 2, effectively prevented mouse skin reaction. This suggests histamine may be involved in skin photoreaction induced by HpD.

  13. Penetration of oligonucleotides into mouse organism through mucosa and skin.

    PubMed

    Vlassov, V V; Karamyshev, V N; Yakubov, L A

    1993-08-01

    Benzylamide 5'-32P-oligonucleotide derivatives were shown to penetrate into mice organism when administered by various routes; intranasally, per os, intravaginally and per rectum. In all cases, the compounds are rapidly accumulated in blood and guts. Analysis of the radioactive material from blood and pancreas revealed intact oligonucleotides. Although concentrations of oligonucleotides in tissues differ considerably by the various methods of administration, the efficiency of delivery is sufficient to consider all the routes as being of therapeutic value. Dose effect on the efficiency of oligonucleotide penetration into mice suggests the transport to be a saturable process. Application of an oligonucleotide lotion on mice ear helices results in reproducible accumulation of radioactivity in the animal tissues. Effectiveness of oligonucleotide delivery into mouse through skin can be improved by using electrophoretic procedure.

  14. Conflicting effects of DMSO on mouse skin tumorigenesis

    SciTech Connect

    Jacoby, W.T.; Weiss, H.S.

    1986-03-05

    A number of solvents, including dimethylsulfoxide (DMSO), when substituted for acetone as the vehicle for the potent promoter phorbol-12-myristate-13-acetate (PMA) in the two-stage mouse skin cancer model, tend to inhibit tumorigenesis. DMSO was investigated further because the literature is ambiguous concerning its effect in both single and multi-stage carcinogenesis. As solvent for the complete carcinogen benzo(a)pyrene (BaP, 125 mg in 40 ..mu..l 2x/wk), tumor yield increased an avg of 245% (3 trials in C3H mice) compared to acetone/BaP. However, in the two-stage model (CD-1 mice initiated with 50-100 ..mu..g DMBA) DMSO as the vehicle for PMA (5 ..mu..g in 40 ..mu..l 2x/wk) reduced tumor yield to 34% of the PMA/acetone controls. To test whether the inhibition was an in vitro effect, 40 ..mu..l DMSO was applied at the initiation site, the back, up to one hr before PMA/acetone. In three trials tumor yield averaged 23% of controls. To determine whether the DMSO effect was directly on initiated cells or indirectly via the systemic circulation, 40 ..mu..l DMSO was applied prior to promotion at a site distant from initiation/promotion, the abdomen. In three trials, DMSO enhanced tumor yield by 194%. DMSO itself had no initiating or promotion effects. Thus, it appears that DMSO may either inhibit or enhance mouse skin tumorigenesis depending on its method of application.

  15. Identification of glycoproteins from mouse skin tumors and plasma

    PubMed Central

    Tian, Yuan; Kelly-Spratt, Karen S.; Kemp, Christopher J.; Zhang, Hui

    2010-01-01

    Plasma has been the focus of testing different proteomic technologies for the identification of biomarkers due to its ready accessibility. However, it is not clear if direct proteomic analysis of plasma can be used to discover new marker proteins from tumor that are associated with tumor progression. Here, we reported that such proteins can be detected in plasma in a chemical induced skin cancer mouse model. We analyzed glycoproteins from both benign papillomas and malignant carcinomas from mice using our recently developed platform, solid-phase extraction of glycopeptides (SPEG) and mass spectrometry, and identified 463 unique N-linked glycosites from 318 unique glycoproteins. These include most known extracellular proteins that have been reported to play roles in skin cancer development such as thrombospondin, cathepsins, epidermal growth factor receptor, cell adhesion molecules, cadherins, integrins, tuberin, fibulin, TGFβ receptor, etc. We further investigated whether these tumor proteins could be detected in plasma from tumor bearing mice using isotope labeling and 2D-LC-MALDI-MS/MS. Two tumor glycoproteins, Tenascin-C and Arylsulfatase B, were identified and quantified successfully in plasma from tumor bearing mice. This result indicates that analysis of tumor associated proteins in tumors and plasma by method using glycopeptide capture, isotopic labeling, and mass spectrometry can be used as a discovery tool to identify candidate tumor proteins that may be detected in plasma. PMID:21072318

  16. Tumorigenesis of diesel exhaust, gasoline exhaust, and related emission extracts on SENCAR mouse skin

    SciTech Connect

    Nesnow, S; Triplett, L L; Slaga, T J

    1980-01-01

    The tumorigenicity of diesel exhaust particulate emissions was examined using a sensitive mouse skin tumorigenesis model (SENCAR). The tumorigenic potency of particulate emissions from diesel, gasoline, and related emission sources was compared.

  17. Characterization of the serotoninergic system in the C57BL/6 mouse skin.

    PubMed

    Slominski, Andrzej; Pisarchik, Alexander; Semak, Igor; Sweatman, Trevor; Wortsman, Jacobo

    2003-08-01

    We showed expression of the tryptophan hydroxylase gene and of tryptophan hydroxylase protein immunoreactivity in mouse skin and skin cells. Extracts from skin and melanocyte samples acetylated serotonin to N-acetylserotonin and tryptamine to N-acetyltryptamine. A different enzyme from arylalkylamine N-acetyltransferase mediated this reaction, as this gene was defective in the C57BL6 mouse, coding predominantly for a protein without enzymatic activity. Serotonin (but not tryptamine) acetylation varied according to hair cycle phase and anatomic location. Serotonin was also metabolized to 5-hydroxytryptophol and 5-hydroxyindole acetic acid, probably through stepwise transformation catalyzed by monoamine oxidase, aldehyde dehydrogenase and aldehyde reductase. Activity of the melatonin-forming enzyme hydroxyindole-O-methyltransferase was notably below detectable levels in all samples of mouse corporal skin, although it was detectable at low levels in the ears and in Cloudman melanoma (derived from the DBA/2 J mouse strain). In conclusion, mouse skin has the molecular and biochemical apparatus necessary to produce and metabolize serotonin and N-acetylserotonin, and its activity is determined by topography, physiological status of the skin, cell type and mouse strain. PMID:12899690

  18. Photoeffects of near ultraviolet light upon a polycyclic aromatic hydrocarbon exposed to mouse skin microsomes

    SciTech Connect

    Peirano, W.B.

    1991-01-01

    Near ultraviolet (UV) light has been reported to both enhance and inhibit the tumor incidence in mice dermally exposed to benzo(a)pyrene (BaP) or polycyclic aromatic hydrocarbon (PAH) mixtures. Near UV light interacts with PAHs producing a variety of oxygenated products such as phenols, endoperoxides and quinones. However, little is known about BaP products formed from near UV irradiation of BaP-exposed mouse skin. Therefore, [sup 14]C-BaP was incubated with 3-methylcholanthrene (3-MC) induced C[sub 3]H/HeJ and DBA/2J mouse skin microsomes with or without a 365 nm light source. The results indicated that the concurrent 365 nm light irradiation of induced mouse skin microsomes and BaP greatly enhanced the total conversion of BaP to its products, approximately 3-fold for the C[sub 3]H/HeJ and approximately 7-fold for the DBA/2J mouse microsomes, compared to the induced mouse skin microsomes and BaP alone. HPLC analyses of organic extracts indicated a more than additive enhancement of the formation of most of the individual cochromatographed BaP metabolites due to the combined interaction of 365 nm light with BaP and skin microsomes. Similar interactions were observed using benz(a)anthracene (BaA) in this system. These data show that near UV light alters the metabolic profile of PAHs produced by mouse skin microsomes.

  19. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin

    NASA Astrophysics Data System (ADS)

    Song, Eunjoo; Ahn, YoonJoon; Ahn, Jinhyo; Ahn, Soyeon; Kim, Changhwan; Choi, Sanghoon; Boutilier, Richard Martin; Lee, Yongjoong; Kim, Pilhan; Lee, Ho

    2015-10-01

    We examined the optical clearing assisted confocal microscopy of the transgenic mouse skin. The pinna and dorsal skin were imaged with a confocal microscope after the application of glycerol and FocusClear. In case of the glycerol-treated pinna, the clearing was minimal due to the inefficient permeability. However, the imaging depth was improved when the pinna was treated with FocusClear. In case of dorsal skin, we were able to image deeply to the subcutaneous connective tissue with both agents. Various skin structures such as the vessel, epithelium cells, cartilage, dermal cells, and hair follicles were clearly imaged.

  20. Compression-induced HIF-1 enhances thrombosis and PAI-1 expression in mouse skin.

    PubMed

    Kaneko, Maki; Minematsu, Takeo; Yoshida, Mikako; Nishijima, Yoshimi; Noguchi, Hiroshi; Ohta, Yasunori; Nakagami, Gojiro; Mori, Taketoshi; Sanada, Hiromi

    2015-09-01

    Pressure ulcers result from tissue hypoxia caused by external forces. Thrombosis due to external forces is considered important, and hypoxia inducible factor-1 (HIF-1) is a master regulator of pressure ulcer development. To date, however, their causal relationship has not been determined. This study therefore investigated the mutual relationship between thrombosis and HIF-1 activation in compressed mouse skin, based on a hypothesis that HIF-1 regulation by plasminogen activator inhibitor-1 (PAI-1) enhances thrombosis. Compression of mouse skin significantly increased the numbers of thrombi and HIF-1α-positive cells compared with control skin. A thrombosis inhibitor significantly reduced the numbers of HIF-1α-positive cells and an HIF-1 inhibitor significantly inhibited thrombosis in compressed skin tissue, suggesting a mutual relationship between thrombosis and HIF-1 activation. Compression of mouse skin also enhanced the level of Pai-1 messenger RNA expression, but this increase was significantly reduced by treatment with an HIF-1 inhibitor, whereas a thrombosis inhibitor had no effect. These results suggested the involvement of PAI-1 in HIF-1-enhanced thrombosis and that an additional factor participates in regulating Pai-1 expression in compressed skin. These findings may suggest new strategies in pressure ulcer management.

  1. The optical properties of mouse skin in the visible and near infrared spectral regions.

    PubMed

    Sabino, Caetano P; Deana, Alessandro M; Yoshimura, Tania M; da Silva, Daniela F T; França, Cristiane M; Hamblin, Michael R; Ribeiro, Martha S

    2016-07-01

    Visible and near-infrared radiation is now widely employed in health science and technology. Pre-clinical trials are still essential to allow appropriate translation of optical methods into clinical practice. Our results stress the importance of considering the mouse strain and gender when planning pre-clinical experiments that depend on light-skin interactions. Here, we evaluated the optical properties of depilated albino and pigmented mouse skin using reproducible methods to determine parameters that have wide applicability in biomedical optics. Light penetration depth (δ), absorption (μa), reduced scattering (μ's) and reduced attenuation (μ't) coefficients were calculated using the Kubelka-Munk model of photon transport and spectrophotometric measurements. Within a broad wavelength coverage (400-1400nm), the main optical tissue interactions of visible and near infrared radiation could be inferred. Histological analysis was performed to correlate the findings with tissue composition and structure. Disperse melanin granules present in depilated pigmented mouse skin were shown to be irrelevant for light absorption. Gender mostly affected optical properties in the visible range due to variations in blood and abundance of dense connective tissue. On the other hand, mouse strains could produce more variations in the hydration level of skin, leading to changes in absorption in the infrared spectral region. A spectral region of minimal light attenuation, commonly referred as the "optical window", was observed between 600 and 1350nm. PMID:27101274

  2. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  3. The optical properties of mouse skin in the visible and near infrared spectral regions.

    PubMed

    Sabino, Caetano P; Deana, Alessandro M; Yoshimura, Tania M; da Silva, Daniela F T; França, Cristiane M; Hamblin, Michael R; Ribeiro, Martha S

    2016-07-01

    Visible and near-infrared radiation is now widely employed in health science and technology. Pre-clinical trials are still essential to allow appropriate translation of optical methods into clinical practice. Our results stress the importance of considering the mouse strain and gender when planning pre-clinical experiments that depend on light-skin interactions. Here, we evaluated the optical properties of depilated albino and pigmented mouse skin using reproducible methods to determine parameters that have wide applicability in biomedical optics. Light penetration depth (δ), absorption (μa), reduced scattering (μ's) and reduced attenuation (μ't) coefficients were calculated using the Kubelka-Munk model of photon transport and spectrophotometric measurements. Within a broad wavelength coverage (400-1400nm), the main optical tissue interactions of visible and near infrared radiation could be inferred. Histological analysis was performed to correlate the findings with tissue composition and structure. Disperse melanin granules present in depilated pigmented mouse skin were shown to be irrelevant for light absorption. Gender mostly affected optical properties in the visible range due to variations in blood and abundance of dense connective tissue. On the other hand, mouse strains could produce more variations in the hydration level of skin, leading to changes in absorption in the infrared spectral region. A spectral region of minimal light attenuation, commonly referred as the "optical window", was observed between 600 and 1350nm.

  4. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  5. Ex vivo Culture of Mouse Embryonic Skin and Live-imaging of Melanoblast Migration

    PubMed Central

    Mort, Richard L.; Keighren, Margaret; Hay, Leonard; Jackson, Ian J.

    2014-01-01

    Melanoblasts are the neural crest derived precursors of melanocytes; the cells responsible for producing the pigment in skin and hair. Melanoblasts migrate through the epidermis of the embryo where they subsequently colonize the developing hair follicles1,2. Neural crest cell migration is extensively studied in vitro but in vivo methods are still not well developed, especially in mammalian systems. One alternative is to use ex vivo organotypic culture3-6. Culture of mouse embryonic skin requires the maintenance of an air-liquid interface (ALI) across the surface of the tissue3,6. High resolution live-imaging of mouse embryonic skin has been hampered by the lack of a good method that not only maintains this ALI but also allows the culture to be inverted and therefore compatible with short working distance objective lenses and most confocal microscopes. This article describes recent improvements to a method that uses a gas permeable membrane to overcome these problems and allow high-resolution confocal imaging of embryonic skin in ex vivo culture6. By using a melanoblast specific Cre-recombinase expressing mouse line combined with the R26YFPR reporter line we are able to fluorescently label the melanoblast population within these skin cultures. The technique allows live-imaging of melanoblasts and observation of their behavior and interactions with the tissue in which they develop. Representative results are included to demonstrate the capability to live-image 6 cultures in parallel. PMID:24894489

  6. Development of a Bioengineered Skin-Humanized Mouse Model for Psoriasis

    PubMed Central

    Guerrero-Aspizua, Sara; García, Marta; Murillas, Rodolfo; Retamosa, Luisa; Illera, Nuria; Duarte, Blanca; Holguín, Almudena; Puig, Susana; Hernández, Maria Isabel; Meana, Alvaro; Jorcano, Jose Luis; Larcher, Fernando; Carretero, Marta; Del Río, Marcela

    2010-01-01

    Over the past few years, whole skin xenotransplantation models that mimic different aspects of psoriasis have become available. However, these models are strongly constrained by the lack of skin donor availability and homogeneity. We present in this study a bioengineering-based skin-humanized mouse model for psoriasis, either in an autologous version using samples derived from psoriatic patients or, more importantly, in an allogeneic context, starting from skin biopsies and blood samples from unrelated healthy donors. After engraftment, the regenerated human skin presents the typical architecture of normal human skin but, in both cases, immunological reconstitution through intradermal injection in the regenerated skin using in vitro-differentiated T1 subpopulations as well as recombinant IL-17 and IL-22 Th17 cytokines, together with removal of the stratum corneum barrier by a mild abrasive treatment, leads to the rapid conversion of the skin into a bona fide psoriatic phenotype. Major hallmarks of psoriasis were confirmed by the evaluation of specific epidermal differentiation and proliferation markers as well as the mesenchymal milieu, including angiogenesis and infiltrate. Our bioengineered skin-based system represents a robust platform to reliably assess the molecular and cellular mechanisms underlying the complex interdependence between epidermal cells and the immune system. The system may also prove suitable to assess preclinical studies that test the efficacy of novel therapeutic treatments and to predict individual patient response to therapy. PMID:20971736

  7. Delayed tail loss during the invasion of mouse skin by cercariae of Schistosoma japonicum.

    PubMed

    Wang, Ting; Fang, Zheng-Ming; Lei, Jia-Hui; Guan, Fei; Liu, Wen-Qi; Bartlett, Ann; Whitfield, Phil; Li, Yong-Long

    2012-02-01

    A traditional assumption is that schistosome cercariae lose their tails at the onset of penetration. It has, however, recently been demonstrated that, for Schistosoma mansoni, cercarial tails were not invariably being shed as penetration took place and a high proportion of tails entered human skin under experimental conditions. This phenomenon was termed delayed tail loss (DTL). In this paper, we report that DTL also happens with S. japonicum cercariae during penetration of mouse skin. It occurred at all cercarial densities tested, from as few as 10 cercariae/2·25 cm(2) of mouse skin up to 200 cercariae. Furthermore, it was demonstrated that there was a density-dependent increase in DTL as cercarial densities increased. No such density-dependent enhancement was shown for percentage attachment over the same cercarial density range.

  8. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin

    PubMed Central

    Tong, Tao; Kim, Nahyun; Park, Taesun

    2015-01-01

    We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936

  9. The biodisposition and hypertrichotic effects of bimatoprost in mouse skin.

    PubMed

    Woodward, David F; Tang, Elaine S-H; Attar, Mayssa; Wang, Jenny W

    2013-02-01

    Studies on bimatoprost were performed with two objectives: (i) to determine whether bimatoprost possesses hair growth-stimulating properties beyond eyelash hypertrichosis and (ii) to investigate the biodisposition of bimatoprost in skin for the first time. Bimatoprost, at the dose used clinically for eyelash growth (0.03%) and given once daily for 14 days, increased pelage hair growth in C57/black 6 mice. This occurred as a much earlier onset of new hair growth in shaved mice and the time taken to achieve complete hair regrowth, according to photographic documentation and visual assessment. Bimatoprost biodisposition in the skin was determined at three concentrations: 0.01%, 0.03% and 0.06%. Dose-dependent C(max) values were obtained (3.41, 6.74, 12.3 μg/g tissue), and cutaneous bimatoprost was well maintained for 24 h following a single dose. Bimatoprost was recovered from the skin only as the intact molecule, with no detectable levels of metabolites. Thus, bimatoprost produces hypertrichosis as the intact molecule.

  10. Influence of the hair cycle on the thickness of mouse skin

    SciTech Connect

    Hansen, L.S.; Coggle, J.E.; Wells, J.; Charles, M.W.

    1984-12-01

    The data on mouse skin thickness reported here was prompted by the need to know the true position of basal cells of the epidermis and hair follicles as these are important cells at risk for a variety of skin reactions including carcinogenesis following exposure to radiation. There is little reliable data in the literature and most previous reports have ignored the shrinkage of skin that occurs because of its natural elasticity. The values determined for mouse flank skin in telogen--the resting phase of the hair cycle for the different skin layers--are epidermis 10 micron, corium 250 micron, adipose layer 150 micron, and hair follicle depth 150 micron. Three days after chemical depilation which triggers the hair follicles into active cycle (anagen) the epidermis doubles in thickness, remains at this value for 7 days, and then gradually returns to telogen values by day 18. The corium and adipose layers also increase significantly to reach approximately 390 micron and approximately 260 micron, respectively, by day 10 and then return to control values from day 15 onward. The change in hair follicles depths are more dramatic with active follicle basal cells reaching approximately 450-550 micron into the adipose layer between days 7 and 15. One important finding is that chemical depilation does not affect the telogen thickness of skin-the teleogen values for the epidermis and dermis immediately prior to and immediately after depilation were similar to those 23 days later at the beginning of the next telogen phase.

  11. The circadian clock controls sunburn apoptosis and erythema in mouse skin.

    PubMed

    Gaddameedhi, Shobhan; Selby, Christopher P; Kemp, Michael G; Ye, Rui; Sancar, Aziz

    2015-04-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early-morning exposure to UV and minimal following an afternoon exposure. Early-morning exposure to UV also produced maximal activation of ataxia telangiectasia mutated and Rad3-related (Atr)-mediated DNA damage checkpoint signaling, including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. These data provide early evidence that the circadian clock has an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, and thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation.

  12. Histology and Ultrastructure of Transitional Changes in Skin Morphology in the Juvenile and Adult Four-Striped Mouse (Rhabdomys pumilio)

    PubMed Central

    Stewart, Eranée; Ajao, Moyosore Salihu

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin. PMID:24288469

  13. Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen

    PubMed Central

    Liakath-Ali, Kifayathullah; Vancollie, Valerie E.; Heath, Emma; Smedley, Damian P.; Estabel, Jeanne; Sunter, David; DiTommaso, Tia; White, Jacqueline K.; Ramirez-Solis, Ramiro; Smyth, Ian; Steel, Karen P.; Watt, Fiona M.

    2014-01-01

    Permanent stop-and-shop large-scale mouse mutant resources provide an excellent platform to decipher tissue phenogenomics. Here we analyse skin from 538 knockout mouse mutants generated by the Sanger Institute Mouse Genetics Project. We optimize immunolabelling of tail epidermal wholemounts to allow systematic annotation of hair follicle, sebaceous gland and interfollicular epidermal abnormalities using ontology terms from the Mammalian Phenotype Ontology. Of the 50 mutants with an epidermal phenotype, 9 map to human genetic conditions with skin abnormalities. Some mutant genes are expressed in the skin, whereas others are not, indicating systemic effects. One phenotype is affected by diet and several are incompletely penetrant. In-depth analysis of three mutants, Krt76, Myo5a (a model of human Griscelli syndrome) and Mysm1, provides validation of the screen. Our study is the first large-scale genome-wide tissue phenotype screen from the International Knockout Mouse Consortium and provides an open access resource for the scientific community. PMID:24721909

  14. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice

    SciTech Connect

    Slaga, T.J.

    1986-09-01

    The SENCAR mouse stock was selectively bred for eight generations for sensitivity to skin tumor induction by the two-stage tumorigenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. The SENCAR mouse was derived by crossing Charles River CD-1 mice with skin-tumor-sensitive mice (STS). The SENCAR mice are much more sensitive to both DMBA tumor initiation and TPA tumor promotion than CD-1, BALB/c, and DBA/2 mice. An even greater difference in the sensitivity to two-stage skin tumorigenesis is apparent between SENCAR and C57BL/6 mice when using DMBA-TPA treatment. However, the SENCAR and C57BL/6 mice have a similar tumor response to DMBA-benzoyl peroxide treatment, suggesting that TPA is not an effective promoter in C57BL/6 mice. The DBA/2 mice respond in a similar manner to the SENCAR mice when using N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-TPA treatment. The SENCAR mouse model provides a good dose-response relationship for many carcinogens used as tumor initiators and for many compounds used as tumor promoter. When compared to other stocks and strains of mice, the SENCAR mouse has one of the largest data bases for carcinogens and promoters.

  15. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    SciTech Connect

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J.; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  16. Defining the clonal dynamics leading to mouse skin tumour initiation.

    PubMed

    Sánchez-Danés, Adriana; Hannezo, Edouard; Larsimont, Jean-Christophe; Liagre, Mélanie; Youssef, Khalil Kass; Simons, Benjamin D; Blanpain, Cédric

    2016-08-18

    The changes in cell dynamics after oncogenic mutation that lead to the development of tumours are currently unknown. Here, using skin epidermis as a model, we assessed the effect of oncogenic hedgehog signalling in distinct cell populations and their capacity to induce basal cell carcinoma, the most frequent cancer in humans. We found that only stem cells, and not progenitors, initiated tumour formation upon oncogenic hedgehog signalling. This difference was due to the hierarchical organization of tumour growth in oncogene-targeted stem cells, characterized by an increase in symmetric self-renewing divisions and a higher p53-dependent resistance to apoptosis, leading to rapid clonal expansion and progression into invasive tumours. Our work reveals that the capacity of oncogene-targeted cells to induce tumour formation is dependent not only on their long-term survival and expansion, but also on the specific clonal dynamics of the cancer cell of origin. PMID:27459053

  17. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  18. Adiponectin resides in mouse skin and upregulates hyaluronan synthesis in dermal fibroblasts.

    PubMed

    Akazawa, Yumiko; Sayo, Tetsuya; Sugiyama, Yoshinori; Sato, Takashi; Akimoto, Noriko; Ito, Akira; Inoue, Shintaro

    2011-01-01

    Adipose tissue is a hormonally active tissue that produces adipokines that influence the activity of other tissues. Adiponectin is an adipocyte-specific adipokine involved in systemic metabolism. We detected the expression of adiponectin receptors (AdipoR1 and AdipoR2) mRNA in cultured dermal fibroblasts. The full-length adiponectin (fAd), but not the globular adiponectin (gAd), increased hyaluronan (HA) production and upregulated HA synthase (HAS) 2 mRNA expression. AdipoR1 and AdipoR2 mRNAs were also expressed in keratinocytes, though neither fAd nor gAd had any effect on HA synthesis. In mouse skin, we found that adiponectin was present and decreased markedly with aging. The age-dependent pattern of adiponectin decrease in skin, correlated well with that of HA in skin. Our experiments were also the first to identify adiponectin production in cultured mouse sebocytes, a finding that suggests that skin adiponectin may derive not only from plasma and/or subcutaneous adipose tissue, but also from the sebaceous gland. These results indicated that adiponectin plays an important role in the HA metabolism of skin. PMID:21117904

  19. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-08-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo.

  20. A study of the penetration of five novel synthetic steroids through hairless mouse skin in vitro.

    PubMed

    Michniak-Mikolajczak, B B; Bodor, N

    1985-08-01

    Synopsis The change in the physiochemical properties of topical corticosteroids by addition of one or more chemical substituents is probably one of the most important factors affecting the activity and bioavailability of the steroid. During work on developing new steroids five synthetic steroids were tested for their ability to pass through freshly excised hairless mouse skin placed in diffusion cells at 33 1 degrees C. Analysis of the compounds was made using high performance liquid chromatography. The presence of flourine at carbon 9, in the chemical grouping at carbon 17, or the addition of a pentyl group was found to increase the penetration of the steroid through the skin. PMID:19460025

  1. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation.

    PubMed

    Jagetia, Ganesh Chandra; Rajanikant, Golgod Krishnamurthy

    2015-01-01

    Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation. PMID:26785336

  2. Metabolic activation of chrysene in mouse skin: evidence for the involvement of a triol-epoxide.

    PubMed

    Hodgson, R M; Weston, A; Grover, P L

    1983-12-01

    All three possible dihydrodiols of chrysene and a chrysene triol, formed from the further metabolism of the chrysene-1,2-diol, were detected when ether extracts of mouse skin that had been treated with 3H-labelled chrysene were examined by h.p.l.c. The major deoxyribonucleoside-hydrocarbon adducts present in hydrolysates of DNA isolated from the mouse skin were examined by chromatography on Sephadex LH20 and by h.p.l.c. on Zorbax ODS. One adduct had chromatographic properties identical to those of the major adduct formed when r-1,t-2-dihydroxy-t-3,4-oxy-1,2,3,4-tetrahydrochrysene reacts with DNA. A second major adduct was present that had chromatographic properties that were indistinguishable from those of an adduct that was formed when either chrysene-1,2-diol or 3-hydroxychrysene were incubated with DNA in a rat liver microsomal metabolising system. The results provide evidence that this new adduct is formed via the reaction of a 'triol-epoxide', that appears to be 9-hydroxy-chrysene-1,2-diol 3,4-oxide, with DNA in mouse skin.

  3. Induction of megakaryocytic colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters

    SciTech Connect

    Clark, D.A.; Dessypris, E.N.; Koury, M.J.

    1987-03-01

    The production of megakaryocytic colony-stimulating activity (MEG-CSA) was assayed in acetic acid extracts of skin from mice topically treated with inflammatory and tumor-promoting agents. A rapid induction of MEG-CSA was found in skin treated both with phorbol 12-myristate 13-acetate (PMA), a strong tumor promoter, and with mezerein, a weak tumor promoter, but no induction was found in untreated skin. The time course of induction of MEG-CSA following treatment of skin with PMA or mezerein was very similar to that previously demonstrated for the induction of granulocyte-macrophage colony-stimulating activity in mouse skin by these agents. The induced MEG-CSA was found in both the epidermis and the dermis. Pretreatment of the skin with US -methasone abrogated the MEG-CSA induction. The cell number response curve suggests that the MEG-CSA acts directly on the progenitor cells of the megakaryocyte colonies. That topical administration of diterpene esters results in the rapid, local induction of MEG-CSA which can be blocked by US -methasone pretreatment suggests a mechanism for the thrombocytosis associated with some inflammatory states. The indirect action in which diterpene esters induce in certain cells the production or release of growth regulatory factors for other cell types may also aid in understanding their carcinogenic properties.

  4. Isoflavonoid photoprotection in mouse and human skin is dependent on metallothionein.

    PubMed

    Widyarini, Sitarina; Allanson, Munif; Gallagher, Nerida L; Pedley, Julie; Boyle, Glen M; Parsons, Peter G; Whiteman, David C; Walker, Catherine; Reeve, Vivienne E

    2006-01-01

    Previous studies report that selected topical isoflavonoids are immunoprotective in both mice and humans, when applied following UV irradiation. Isoflavonoids have documented antioxidant activity, but their mechanism of immunomodulation remains unclear. This study examines whether photoimmunoprotection by the isoflavonoids might result from their interaction with one cutaneous antioxidant known to modulate UV photodamage, metallothionein (MT). In mice bearing a null mutation for MT-I and -II, we found that immunoprotection by the isoflavonoid 4',7-dihydroxyisoflavane (equol) against solar-simulated UV radiation (SSUV) or exogenous cis-urocanic acid was abrogated. Topical equol did not activate MT expression in normal mouse skin, but markedly enhanced the increase in MT expression in murine epidermis following SSUV irradiation. Normal human skin, unlike murine, expressed MT in the basal epidermis. Following SSUV irradiation, topical application of the related synthetic isoflavonoid NV-07alpha to human skin also markedly enhanced epidermal MT expression. The NV-07alpha has been reported previously to protect humans against the UV suppression of Mantoux reactions. Thus, epidermal MT expression appears to protect against photoimmunosuppression in both human and mouse skin. We speculate that equol and its related derivative NV-07alpha may activate the MT gene synergistically with SSUV, to produce the enhanced immunoprotective effect.

  5. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. PMID:25791923

  6. Reduction in squamous cell carcinomas in mouse skin by dietary zinc supplementation.

    PubMed

    Sun, Jin; Shen, Rulong; Schrock, Morgan S; Liu, James; Pan, Xueliang; Quimby, Donald; Zanesi, Nicola; Druck, Teresa; Fong, Louise Y; Huebner, Kay

    2016-08-01

    Inadequate dietary Zn consumption increases susceptibility to esophageal and other cancers in humans and model organisms. Since Zn supplementation can prevent cancers in rodent squamous cell carcinoma (SCC) models, we were interested in determining if it could have a preventive effect in a rodent skin cancer model, as a preclinical basis for considering a role for Zn in prevention of human nonmelanoma skin cancers, the most frequent cancers in humans. We used the 7,12-dimethyl benzanthracene carcinogen/phorbol myristate acetate tumor promoter treatment method to induce skin tumors in Zn-sufficient wild-type and Fhit (human or mouse protein) knockout mice. Fhit protein expression is lost in >50% of human cancers, including skin SCCs, and Fhit-deficient mice show increased sensitivity to carcinogen induction of tumors. We hypothesized that: (1) the skin cancer burdens would be reduced by Zn supplementation; (2) Fhit(-/-) (Fhit, murine fragile histidine triad gene) mice would show increased susceptibility to skin tumor induction versus wild-type mice. 30 weeks after initiating treatment, the tumor burden was increased ~2-fold in Fhit(-/-) versus wild-type mice (16.2 versus 7.6 tumors, P < 0.001); Zn supplementation significantly reduced tumor burdens in Fhit(-/-) mice (males and females combined, 16.2 unsupplemented versus 10.3 supplemented, P = 0.001). Most importantly, the SCC burden was reduced after Zn supplementation in both strains and genders of mice, most significantly in the wild-type males (P = 0.035). Although the mechanism(s) of action of Zn supplementation in skin tumor prevention is not known in detail, the Zn-supplemented tumors showed evidence of reduced DNA damage and some cohorts showed reduced inflammation scores. The results suggest that mild Zn supplementation should be tested for prevention of skin cancer in high-risk human cohorts. PMID:27185213

  7. Cutaneous Surgical Denervation: A Method for Testing the Requirement for Nerves in Mouse Models of Skin Disease.

    PubMed

    Peterson, Shelby C; Brownell, Isaac; Wong, Sunny Y

    2016-01-01

    Cutaneous somatosensory nerves function to detect diverse stimuli that act upon the skin. In addition to their established sensory roles, recent studies have suggested that nerves may also modulate skin disorders including atopic dermatitis, psoriasis and cancer. Here, we describe protocols for testing the requirement for nerves in maintaining a cutaneous mechanosensory organ, the touch dome (TD). Specifically, we discuss methods for genetically labeling, harvesting and visualizing TDs by whole-mount staining, and for performing unilateral surgical denervation on mouse dorsal back skin. Together, these approaches can be used to directly compare TD morphology and gene expression in denervated as well as sham-operated skin from the same animal. These methods can also be readily adapted to examine the requirement for nerves in mouse models of skin pathology. Finally, the ability to repeatedly sample the skin provides an opportunity to monitor disease progression at different stages and times after initiation. PMID:27404892

  8. Dose-Dependent Onset of Regenerative Program in Neutron Irradiated Mouse Skin

    PubMed Central

    Artibani, Mara; Kobos, Katarzyna; Colautti, Paolo; Negri, Rodolfo; Amendola, Roberto

    2011-01-01

    Background Tissue response to irradiation is not easily recapitulated by cell culture studies. The objective of this investigation was to characterize, the transcriptional response and the onset of regenerative processes in mouse skin irradiated with different doses of fast neutrons. Methodology/Principal Findings To monitor general response to irradiation and individual animal to animal variation, we performed gene and protein expression analysis with both pooled and individual mouse samples. A high-throughput gene expression analysis, by DNA oligonucleotide microarray was done with three months old C57Bl/6 mice irradiated with 0.2 and 1 Gy of mono-energetic 14 MeV neutron compared to sham irradiated controls. The results on 440 irradiation modulated genes, partially validated by quantitative real time RT-PCR, showed a dose-dependent up-regulation of a sub-class of keratin and keratin associated proteins, and members of the S100 family of Ca2+-binding proteins. Immunohistochemistry confirmed mRNA expression data enabled mapping of protein expression. Interestingly, proteins up-regulated in thickening epidermis: keratin 6 and S100A8 showed the most significant up-regulation and the least mouse-to-mouse variation following 0.2 Gy irradiation, in a concerted effort toward skin tissue regeneration. Conversely, mice irradiated at 1 Gy showed most evidence of apoptosis (Caspase-3 and TUNEL staining) and most 8-oxo-G accumulation at 24 h post-irradiation. Moreover, no cell proliferation accompanied 1 Gy exposure as shown by Ki67 immunohistochemistry. Conclusions/Significance The dose-dependent differential gene expression at the tissue level following in vivo exposure to neutron radiation is reminiscent of the onset of re-epithelialization and wound healing and depends on the proportion of cells carrying multiple chromosomal lesions in the entire tissue. Thus, this study presents in vivo evidence of a skin regenerative program exerted independently from DNA repair

  9. Oral Supplementation with Cocoa Extract Reduces UVB-Induced Wrinkles in Hairless Mouse Skin.

    PubMed

    Kim, Jong-Eun; Song, Dasom; Kim, Junil; Choi, Jina; Kim, Jong Rhan; Yoon, Hyun-Sun; Bae, Jung-Soo; Han, Mira; Lee, Sein; Hong, Ji Sun; Song, Dayoung; Kim, Seong-Jin; Son, Myoung-Jin; Choi, Sang-Woon; Chung, Jin Ho; Kim, Tae-Aug; Lee, Ki Won

    2016-05-01

    Cacao beans contain various bioactive phytochemicals that could modify the pathogeneses of certain diseases. Here, we report that oral administration of cacao powder (CP) attenuates UVB-induced skin wrinkling by the regulation of genes involved in dermal matrix production and maintenance. Transcriptome analysis revealed that 788 genes are down- or upregulated in the CP supplemented group, compared with the UVB-irradiated mouse skin controls. Among the differentially expressed genes, cathepsin G and serpin B6c play important roles in UVB-induced skin wrinkle formation. Gene regulatory network analysis also identified several candidate regulators responsible for the protective effects of CP supplementation against UVB-induced skin damage. CP also elicited antiwrinkle effects via inhibition of UVB-induced matrix metalloproteinases-1 expression in both the human skin equivalent model and human dermal fibroblasts. Inhibition of UVB-induced activator protein-1 via CP supplementation is likely to affect the expression of matrix metalloproteinases-1. CP supplementation also downregulates the expression of cathepsin G in human dermal fibroblasts. 5-(3',4'-Dihydroxyphenyl)-γ-valerolactone, a major in vivo metabolite of CP, showed effects similar to CP supplementation. These results suggest that cacao extract may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, which leads to an overall reduction in wrinkle formation. PMID:26854493

  10. Dosimetry of PAH skin carcinogenesis: covalent binding of benzo(a)pyrene to mouse epidermal DNA

    SciTech Connect

    Shugart, L.; Holland, J.M.; Rahn, R.O.

    1983-01-01

    Benzo(a)pyrene (BaP) is metabolized to the chemically reactive anti and syn isomers of the 7,8-diol-9,10-epoxides of BaP (BPDE) which bind covalently to DNA to form DNA/BPDE complexes. Tetrols liberated from the DNA/BPDE complex by acid hydrolysis are easily quantified by h.p.l.c. using fluorescence detection. This approach allows femtomole amounts of BPDE associated with the DNA isolated from a single mouse to be detected using conventional instrumentation. The usefulness of this technique to estimate the interaction of BaP with DNA of mouse skin, both in the intact animal and in organ culture, was investigated. With mouse skin in organ culture it could be demonstrated that: (1) upon a single topical application of 5 ..mu..g of BaP, binding to DNA occurred via BPDE at a linear rate for up to 65 h, (2) the amount of binding was dose dependent at concentrations of BaP <10 ..mu..g.

  11. Combined optical coherence tomography based on the extended Huygens-Fresnel principle and histology of mouse skin

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Zhifang; Li, Hui; Shi, Xianghua

    2010-02-01

    Noninvasive measurement technique to obtain tissue optical properties such as the scattering coefficient μs and the anisotropy factor g using optical coherence tomography (OCT) scattering model which based on the Extended Huygens-Fresnel principle is developed in our paper. Older and younger mouse-skin are as animal model to compare its scattering coefficient μs and the anisotropy factor g, the outcome shows that scattering coefficient μs is increased with the age of mouse-skin. Furthermore, we have made age's mouse-skin into H.E stain slices; the result of its morphology is consistent with the OCT imaging and OCT-EHF principle. All of that have provided the theoretical basis which to the research on photo-aging skin and photo-rejuvenation.

  12. Compressive viscoelasticity of freshly excised mouse skin is dependent on specimen thickness, strain level and rate.

    PubMed

    Wang, Yuxiang; Marshall, Kara L; Baba, Yoshichika; Lumpkin, Ellen A; Gerling, Gregory J

    2015-01-01

    Although the skin's mechanical properties are well characterized in tension, little work has been done in compression. Here, the viscoelastic properties of a population of mouse skin specimens (139 samples from 36 mice, aged 5 to 34 weeks) were characterized upon varying specimen thickness, as well as strain level and rate. Over the population, we observed the skin's viscoelasticity to be quite variable, yet found systematic correlation of residual stress ratio with skin thickness and strain, and of relaxation time constants with strain rates. In particular, as specimen thickness ranged from 211 to 671 μm, we observed significant variation in both quasi-linear viscoelasticity (QLV) parameters, the relaxation time constant (τ1 = 0.19 ± 0.10 s) and steady-state residual stress ratio (G∞ = 0.28 ± 0.13). Moreover, when τ1 was decoupled and fixed, we observed that G∞ positively correlated with skin thickness. Second, as steady-state stretch was increased (λ∞ from 0.22 to 0.81), we observed significant variation in both QLV parameters (τ1 = 0.26 ± 0.14 s, G∞ = 0.47 ± 0.17), and when τ1 was fixed, G∞ positively correlated with stretch level. Third, as strain rate was increased from 0.06 to 22.88 s-1, the median time constant τ1 varied from 1.90 to 0.31 s, and thereby negatively correlated with strain rate. These findings indicate that the natural range of specimen thickness, as well as experimental controls of compression level and rate, significantly influence measurements of skin viscoelasticity.

  13. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway.

    PubMed

    Mishra, Sakshi; Tripathi, Anurag; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2014-09-01

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84-672nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672nmol) caused significant enhancement in [(3)H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposure also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168nmol) showed no tumorigenesis after 24weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. PMID:24937323

  14. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

    SciTech Connect

    Mishra, Sakshi; Tripathi, Anurag; Chaudhari, Bhushan P.; Dwivedi, Premendra D.; Pandey, Haushila P.; Das, Mukul

    2014-09-01

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposure also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and NF

  15. Retinoic acid and mouse skin morphogenesis. II. Role of epidermal competence in hair glandular metaplasia.

    PubMed

    Viallet, J P; Dhouailly, D

    1994-11-01

    Retinoic acid (RA) has marked effects on mouse upper-lip skin morphogenesis, leading to the development of glomerular gland instead of hair vibrissa follicle, but does not apparently change the dorsal pelage hair developmental program. In order to test the hypothesis that an up-regulation of the beta retinoic acid nuclear receptor (RAR beta) may be implicated in the alteration of the dermal-epidermal interactions which occur during cutaneous appendage development, RA-treated and untreated skin explants, controls as well as heterotopic recombinants, were made among nasal, upper-lip, and dorsal mouse embryonic tissues. They were analyzed by in situ hybridization with RAR beta 35S-labeled probe after 48 hr of in vitro culture as well as by identification of the morphological phenotype of cutaneous appendages after 6 additional days of culture on the chick chorioallantoic membrane. The results show that only mesenchyme from the facial region can express the RAR beta gene either normally or after RA treatment, depending on its nasal or upper-lip origin. However, the RAR beta up-regulation is unrelated to hair glandular metaplasia, which depends both on a glandular bias of the upper-lip epidermis and on the weakening of hair follicle-inducing dermal properties. The latter occurs in both the upper-lip and dorsal dermis as a consequence of RA treatment.

  16. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications

    PubMed Central

    Abel, Erika L.; Angel, Joe M; Kiguchi, Kaoru; DiGiovanni, John

    2011-01-01

    For more than 60 years, the chemical induction of tumors in mouse skin has been used to study mechanisms of epithelial carcinogenesis and evaluate modifying factors. In the traditional two-stage skin carcinogenesis model, initiation is accomplished by the application of a subcarcinogenic dose of a carcinogen. Subsequently, tumor development is elicited by repeated treatment with a tumor promoting agent. The initiation protocol can be completed within 1–3 hours depending on the number of mice used, while the promotion phase requires twice weekly treatments (1–2 hours) and once weekly tumor palpation (1–2 hours) for the duration of the study. A highly reproducible papilloma burden is expected within 10–20 weeks with progression of a portion of the tumors to squamous cell carcinomas within 20–50 weeks. In contrast to complete skin carcinogenesis, the two-stage model allows for greater yield of premalignant lesions as well as separation of the initiation and promotion phases. PMID:19713956

  17. The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin.

    PubMed

    Ito, Shinobu; Itoga, Kazuyoshi; Yamato, Masayuki; Akamatsu, Hirohiko; Okano, Teruo

    2010-01-12

    The role of fullerene as a pro-oxidant or anti-oxidant in Ultraviolet B ray (UV-B)-induced disorders in mouse skin was investigated. Fullerene gave no photo-toxic effect to UV-B-irradiated mouse skin. Since erythema was concentrated at the pore circumference in a UV-B irradiation experiment in mouse skin, the sebaceous gland pairs was strongly implicated as a site for the generation of reactive oxygen species (ROS). In a histological evaluation of the skin stained with CH(3)MDFDA (ROS index) and YO-Pro-1 (apoptosis index), the fluorescence intensity of a sebaceous gland significantly increased with UV-B irradiation. With the application of fullerene to UV-irradiated mouse skin, no toxicity was recognized in comparison with the control, and erythema, the ROS index, and the apoptosis index decrease with the application of fullerene. Ascorbyl radical (AA*) increased with the application of ascorbate (AA) to UV-B-irradiated mouse skin, and AA* decreased with the application of fullerene. The co-application of AA and fullerene, which suppressed AA* in vitro, significantly suppressed erythema, and also suppressed both the ROS index and apoptosis index in mouse skin after UV-B irradiation. In both mouse skin at 48 h after UV-B irradiation and in an attempt to reproduce this phenomenon artificially in vitro, a similar high AA* peak (AA*/H*>4) was observed in electron spin resonance (ESR) charts. The binding of fullerene with AA impairs the Fenton reaction between AA and Fe-protein based on the observation of ascorbate-specific UV absorption and a linear equation for the calibration curve. Therefore, fullerene may impair the intercalation of AA to a heme pocket by binding with AA. These results suggest that the co-application of AA and fullerene is effective against oxidative skin damage caused by UV-B irradiation, and the development of an AA* inhibitor such as fullerene should be useful for reducing organ damage associated with Fe-protein oxidation.

  18. Biological and metabolic response in STS-135 space-flown mouse skin.

    PubMed

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.

  19. Biological and metabolic response in STS-135 space-flown mouse skin.

    PubMed

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue. PMID:24796731

  20. Compressive Viscoelasticity of Freshly Excised Mouse Skin Is Dependent on Specimen Thickness, Strain Level and Rate

    PubMed Central

    Wang, Yuxiang; Marshall, Kara L.; Baba, Yoshichika; Lumpkin, Ellen A.; Gerling, Gregory J.

    2015-01-01

    Although the skin’s mechanical properties are well characterized in tension, little work has been done in compression. Here, the viscoelastic properties of a population of mouse skin specimens (139 samples from 36 mice, aged 5 to 34 weeks) were characterized upon varying specimen thickness, as well as strain level and rate. Over the population, we observed the skin’s viscoelasticity to be quite variable, yet found systematic correlation of residual stress ratio with skin thickness and strain, and of relaxation time constants with strain rates. In particular, as specimen thickness ranged from 211 to 671 μm, we observed significant variation in both quasi-linear viscoelasticity (QLV) parameters, the relaxation time constant (τ1 = 0.19 ± 0.10 s) and steady-state residual stress ratio (G∞ = 0.28 ± 0.13). Moreover, when τ1 was decoupled and fixed, we observed that G∞ positively correlated with skin thickness. Second, as steady-state stretch was increased (λ∞ from 0.22 to 0.81), we observed significant variation in both QLV parameters (τ1 = 0.26 ± 0.14 s, G∞ = 0.47 ± 0.17), and when τ1 was fixed, G∞ positively correlated with stretch level. Third, as strain rate was increased from 0.06 to 22.88 s−1, the median time constant τ1 varied from 1.90 to 0.31 s, and thereby negatively correlated with strain rate. These findings indicate that the natural range of specimen thickness, as well as experimental controls of compression level and rate, significantly influence measurements of skin viscoelasticity. PMID:25803703

  1. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    SciTech Connect

    Abel, E.L.; Boulware, S.; Fields, T.; McIvor, E.; Powell, K.L.; DiGiovanni, J.; Vasquez, K.M.; MacLeod, M.C.

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  2. Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse

    PubMed Central

    Gong, Husile

    2016-01-01

    Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the skin is highly divergent between human and mouse. The GO term of secretion was highly enriched, and this category was specific in human compared to mouse. These secretion genes might be involved in eccrine system evolution in human. In addition, total 62,637 miRNA binding target sites were predicted in human integument genes (IGs), while 26,280 miRNA binding target sites were predicted in mouse IGs. The interactions between miRNAs and IGs in human are more complex than those in mouse. Furthermore, hsa-miR-548, mmu-miR-466, and mmu-miR-467 have an enormous number of targets on IGs, which both have the role of inhibition of host immunity response. The pattern of distribution on the chromosome of these three miRNAs families is very different. The interaction of miRNA/IGs has added the new dimension in traditional gene regulation networks of skin. Our results are generating new insights into the gene networks basis of skin difference between human and mouse.

  3. Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse

    PubMed Central

    Gong, Husile

    2016-01-01

    Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the skin is highly divergent between human and mouse. The GO term of secretion was highly enriched, and this category was specific in human compared to mouse. These secretion genes might be involved in eccrine system evolution in human. In addition, total 62,637 miRNA binding target sites were predicted in human integument genes (IGs), while 26,280 miRNA binding target sites were predicted in mouse IGs. The interactions between miRNAs and IGs in human are more complex than those in mouse. Furthermore, hsa-miR-548, mmu-miR-466, and mmu-miR-467 have an enormous number of targets on IGs, which both have the role of inhibition of host immunity response. The pattern of distribution on the chromosome of these three miRNAs families is very different. The interaction of miRNA/IGs has added the new dimension in traditional gene regulation networks of skin. Our results are generating new insights into the gene networks basis of skin difference between human and mouse. PMID:27689084

  4. Epidermal hyperplasia in mouse skin following treatment with alternative drinking water disinfectants

    SciTech Connect

    Robinson, M.; Bull, R.J.; Schamer, M.; Long, R.E.

    1986-11-01

    Female SENCAR mice were treated with aqueous solutions of hypochlorous acid (HOCl), sodium hypochlorite (NaOCl), chlorine dioxide (ClO/sub 2/), and monochloramine (NH/sub 2/Cl) by whole body exposure (except head) for a 10-min period for 4 days in the first experiment and for 1 day (except NH/sub 2/Cl) in the second experiment. Animals were sacrificed the day following the last treatment (experiment 1) or on day 1, 2, 3, 4, 5, 8, 10, and 12 following treatment (experiment 2), and skin thickness was measured by light microscopy. Concentrations of disinfectants were 1, 10, 100, 300, and 1000 mg/L, for experiment 1 and 1000 mg/L for experiment 2. Thickness of the interfollicular epidermis (IFE) for control animals was 15.4 +/- 1.5 ..mu..m. After 4 days of treatment at 1000 mg/L, HOCl and ClO/sub 2/ increased thickness to 30 +/- 7.0 and 40.2 +/- 11.8, and NaOCl increased thickness to 25.2 +/- 6.1 ..mu.. m. The response to HOCl was found to be dose-related. The time-course study following a single treatment of 1000 mg/L HOCl, showed a progression of IFE thickening of from 18.3 +/- 1.4 at 1 day to 30.8 +/- 8.0 at 8 days, decreasing to 19.1 +/- 6.2 ..mu..m at 12 days. ClO/sub 2/ and NaOCl when tested in this manner did not produce increased thickness of IFE with time, but rather gave a persistent level of increase that remained for the 12 days. NH/sub 2/Cl reduced skin thickness to 13.6 +/- 6.1 ..mu..m. Examination of sections of skin treated with HOCl and ClO/sub 2/ indicated an increase in cell numbers. HOCl and ClO/sub 2/ are therefore capable of inducting hyperplastic responses in the mouse skin. The basis for the decrease in skin thickness resulting from NH/sub 2/Cl treatment remains to be established.

  5. Skin cancer treatment by albumin/5-Fu loaded magnetic nanocomposite spheres in a mouse model.

    PubMed

    Misak, H; Zacharias, N; Song, Z; Hwang, S; Man, K-P; Asmatulu, R; Yang, S-Y

    2013-03-10

    Albumin/drug loaded magnetic nanocomposite spheres were fabricated using an oil-in-oil emulsion/solvent evaporation method, and tested on a mouse model (experimental squamous cell carcinoma) to determine the efficacy of the drug delivery system (DDS) on skin cancer. This novel DDS consists of human serum albumin, poly(lactic-co-glycolic acid) (PLGA), 5-fluorouracil (5-Fu), magnetic nanoparticles (10 nm) and fluorescent labeling molecule (diphenylhexatriene). One of the major purposes of using albumin is that it likely provides internal binding to and retention by the inflammatory tissues to reduce the amount of magnetic nanoparticles needed in the drug loaded microspheres (750–1100 nm). This study is aimed at reducing many negative side effects of conventionally used chemotherapy drugs by localizing the chemotherapy drug, controlling the release of the therapeutic agent and encouraging uptake of the DDS into cancerous cells. A group of mice treated with (1) the magnetic targeted DDS were compared to the other three groups, including, (2) DDS without a magnet, (3) 5-Fu local injection, and (4) untreated groups. The fluorescent tracer was ubiquitously identified inside the tumor tissue, and the DDS/tumor tissue boundary presented a leaky interface. The test results clearly showed that the magnetic targeted DDS exhibited significantly superior therapeutic effects in treating the skin cancer, with the increased efficacy to halt the tumor growth. PMID:23395619

  6. A method to visualize transdermal nickel permeation in mouse skin using a nickel allergy patch

    PubMed Central

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Hongo, Toshio; Omagari, Daisuke; Komiyama, Kazuo; Oikawa, Masakazu; Kusama, Mikio; Mori, Yoshiyuki

    2015-01-01

    Metal patch test is often used in clinical settings when metal-induced contact dermatitis is suspected. However, the transdermal permeation behavior of metal ions from the patch test remains unclear. Current patch tests using high concentrations of metal salt solutions have some side effects, e.g. acute skin reactions to high concentrations of metal salt. To resolve these, estimating metal ion transdermal permeation is wished. In this study, synchrotron radiation X-ray fluorescence (SR-XRF) and micro-focused particle-induced X-ray emission (micro-PIXE) were used to visualize the time-dependent Ni permeation in mouse skin. The cross-sectional diffusion of Ni was visualized in a time-dependent manner. Our results indicate that maximum Ni permeation occurs after 24 h of patch treatment, and the permeated Ni content was high in the epidermis and spread into the dermis beyond the basal layer. This method may be useful to determine the appropriate solution concentration and duration of administration for the patch test. PMID:26484550

  7. Stimulatory effect of topical application of caffeine on UVB-induced apoptosis in mouse skin.

    PubMed

    Lu, Yao-Ping; Lou, You-Rong; Li, Xiang-Hong; Xie, Jian-Guo; Lin, Yong; Shih, Weichung Joe; Conney, Allan H

    2002-01-01

    In an earlier study, we showed that oral administration of green tea or caffeine to SKH-1 mice for 2 weeks prior to a single application of UVB enhanced UVB-induced increases in the number of p53-positive cells, p21(WAF1/CIP1)-positive cells, and apoptotic sunburn cells in the epidermis. In the present study, we found that topical application of caffeine, a major chemopreventive agent in tea, to the dorsal skin of SKH-1 mice immediately after irradiation with UVB (30 mJ/cm2) enhanced UVB-induced apoptosis as measured by the number of morphologically distinct epidermal apoptotic sunburn cells and the number of caspase 3-positive cells. Time course studies indicated that UVB-induced increases in apoptotic sunburn cells were correlated with elevated levels of caspase 3, a key protease that becomes activated during an early stage of apoptosis. Topical application of caffeine immediately after UVB enhanced UVB-induced increases in caspase 3 (active form)-immunoreactive-positive cells and in caspase 3 enzyme activity in the epidermis. Topical application of caffeine had only a small stimulatory effect on UVB-induced increases in the level of wild-type p53 protein and these changes were not related temporally to caffeine-induced increases in apoptotic cells. There was little or no effect of topical applications of caffeine on epidermal cell proliferation as determined by bromodeoxyuridine (BrdU) incorporation into DNA. Topical application of (-)-epigallocatechin gallate (EGCG) to the dorsal skin of mice immediately after irradiation with UVB had a small inhibitory effect on UVB-induced increases in BrdU-positive cells in the basal layer of the epidermis, but this treatment had no effect on UVB-induced increases in apoptotic sunburn cells. The results of this study indicate a proapoptotic effect of topical application of caffeine on UVB-irradiated mouse skin.

  8. In Vivo Assessment of Acute UVB Responses in Normal and Xeroderma Pigmentosum (XP-C) Skin-Humanized Mouse Models

    PubMed Central

    García, Marta; Llames, Sara; García, Eva; Meana, Alvaro; Cuadrado, Natividad; Recasens, Mar; Puig, Susana; Nagore, Eduardo; Illera, Nuria; Jorcano, José Luis; Del Rio, Marcela; Larcher, Fernando

    2010-01-01

    In vivo studies of UVB effects on human skin are precluded by ethical and technical arguments on volunteers and inconceivable in cancer-prone patients such as those affected with Xeroderma Pigmentosum (XP). Establishing reliable models to address mechanistic and therapeutic matters thus remains a challenge. Here we have used the skin-humanized mouse system that circumvents most current model constraints. We assessed the UVB radiation effects including the sequential changes after acute exposure with respect to timing, dosage, and the relationship between dose and degree-sort of epidermal alteration. On Caucasian-derived regenerated skins, UVB irradiation (800 J/m2) induced DNA damage (cyclobutane pyrimidine dimers) and p53 expression in exposed keratinocytes. Epidermal disorganization was observed at higher doses. In contrast, in African descent–derived regenerated skins, physiological hyperpigmentation prevented tissue alterations and DNA photolesions. The acute UVB effects seen in Caucasian-derived engrafted skins were also blocked by a physical sunscreen, demonstrating the suitability of the system for photoprotection studies. We also report the establishment of a photosensitive model through the transplantation of XP-C patient cells as part of a bioengineered skin. The inability of XP-C engrafted skin to remove DNA damaged cells was confirmed in vivo. Both the normal and XP-C versions of the skin-humanized mice proved proficient models to assess UVB-mediated DNA repair responses and provide a strong platform to test novel therapeutic strategies. PMID:20558577

  9. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    SciTech Connect

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  10. Multimodality pH imaging in a mouse dorsal skin fold window chamber model

    NASA Astrophysics Data System (ADS)

    Leung, Hui Min; Schafer, Rachel; Pagel, Mark M.; Robey, Ian F.; Gmitro, Arthur F.

    2013-03-01

    Upregulate levels of expression and activity of membrane H+ ion pumps in cancer cells drives the extracellular pH (pHe,) to values lower than normal. Furthermore, disregulated pH is indicative of the changes in glycolytic metabolism in tumor cells and has been shown to facilitate extracellular tissue remodeling during metastasis Therefore, measurement of pHe could be a useful cancer biomarker for diagnostic and therapy monitoring evaluation. Multimodality in-vivo imaging of pHe in tumorous tissue in a mouse dorsal skin fold window chamber (DSFWC) model is described. A custom-made plastic window chamber structure was developed that is compatible with both imaging optical and MR imaging modalities and provides a model system for continuous study of the same tissue microenvironment on multiple imaging platforms over a 3-week period. For optical imaging of pHe, SNARF-1 carboxylic acid is injected intravenously into a SCID mouse with an implanted tumor. A ratiometric measurement of the fluorescence signal captured on a confocal microscope reveals the pHe of the tissue visible within the window chamber. This imaging method was used in a preliminary study to evaluate sodium bicarbonate as a potential drug treatment to reverse tissue acidosis. For MR imaging of pHe the chemical exchange saturation transfer (CEST) was used as an alternative way of measuring pHe in a DSFWC model. ULTRAVIST®, a FDA approved x-ray/CT contrast agent has been shown to have a CEST effect that is pH dependent. A ratiometric analysis of water saturation at 5.6 and 4.2 ppm chemical shift provides a means to estimate the local pHe.

  11. Multimodality pH imaging in a mouse dorsal skin fold window chamber model

    PubMed Central

    Leung, Hui Min; Schafer, Rachel; Pagel, Mark M.; Robey, Ian F.; Gmitro, Arthur F.

    2016-01-01

    Upregulate levels of expression and activity of membrane H+ ion pumps in cancer cells drives the extracellular pH (pHe,) to values lower than normal. Furthermore, disregulated pH is indicative of the changes in glycolytic metabolism in tumor cells and has been shown to facilitate extracellular tissue remodeling during metastasis Therefore, measurement of pHe could be a useful cancer biomarker for diagnostic and therapy monitoring evaluation. Multimodality in-vivo imaging of pHe in tumorous tissue in a mouse dorsal skin fold window chamber (DSFWC) model is described. A custom-made plastic window chamber structure was developed that is compatible with both imaging optical and MR imaging modalities and provides a model system for continuous study of the same tissue microenvironment on multiple imaging platforms over a 3-week period. For optical imaging of pHe, SNARF-1 carboxylic acid is injected intravenously into a SCID mouse with an implanted tumor. A ratiometric measurement of the fluorescence signal captured on a confocal microscope reveals the pHe of the tissue visible within the window chamber. This imaging method was used in a preliminary study to evaluate sodium bicarbonate as a potential drug treatment to reverse tissue acidosis. For MR imaging of pHe the chemical exchange saturation transfer (CEST) was used as an alternative way of measuring pHe in a DSFWC model. ULTRAVIST®, a FDA approved x-ray/CT contrast agent has been shown to have a CEST effect that is pH dependent. A ratiometric analysis of water saturation at 5.6 and 4.2 ppm chemical shift provides a means to estimate the local pHe.

  12. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    PubMed

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations.

  13. The effect of vehicle on the diffusion of salicylic acid through hairless mouse skin.

    PubMed

    Sloan, K B; Siver, K G; Koch, S A

    1986-08-01

    The solubilities of salicylic acid in, and the fluxes through, hairless mouse skin from isopropyl myristate, 1-octanol, 1-propanol, propylene glycol, and formamide have been determined experimentally. Values for permeability coefficients (Kp) corresponding to the respective fluxes were determined from: flux/solubility = Kp. These values were then compared with values for the respective partition coefficients (P) which were calculated from the known solubility parameters for the vehicles (delta v), salicylic acid (delta i), and skin (delta s). Two different delta i values were used to calculate theoretical P values, one based on the peak solubility method and the other based on calculation from group contributions (11 and 14.4 (cal/cm3)1/2, respectively). There was good correlation between the values for theoretical log P - 1.42 and experimental log Kp for the delivery of salicylic acid from vehicles exhibiting solubility parameters in the range of delta v = 10-18 (cal/cm3)1/2, when delta i was assumed to be 14.4 (cal/cm3)1/2. There was also a good correlation between the values for theoretical log P - 2.09 and experimental log Kp for vehicles exhibiting solubility parameters in the range of delta v = 7.6-10 (cal/cm3)1/2, when delta i was assumed to be 11 (cal/cm3)1/2. Two different delta i values were used because salicylic acid apparently behaves like a polar molecule in polar vehicles and a nonpolar molecule in nonpolar vehicles. Qualitatively, fluxes and permeability coefficients were found to be inversely dependent on drug solubility in the vehicles, with a minimum that corresponded approximately to the point where delta v = delta i, and the minimum within the theoretical P curve.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy

    PubMed Central

    Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean

    2016-01-01

    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422

  15. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy.

    PubMed

    Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean

    2016-01-01

    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422

  16. Mapping tissue shear modulus on Thiel soft-embalmed mouse skin with shear wave optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.

  17. Antiinflammatory and Antiphotodamaging Effects of Ergostatrien-3β-ol, Isolated from Antrodia camphorata, on Hairless Mouse Skin.

    PubMed

    Kuo, Yueh-Hsiung; Lin, Tzu-Yu; You, Ya-Jhen; Wen, Kuo-Ching; Sung, Ping-Jyun; Chiang, Hsiu-Mei

    2016-01-01

    Ergostatrien-3β-ol (EK100), isolated from the submerged whole broth of Antrodia camphorata, has antidiabetic, hyperlipidemic, and hepatoprotective activities. However, the antiphotodamage activity of EK100 has still not been revealed. Inflammation and collagen degradation contribute to skin photodamage and premature aging. In the present study, in vivo experiments were designed to investigate the antiinflammatory and antiphotodamaging activities of EK100 in hairless mice by physiological and histological analysis of the skin. Results indicated that topical application of EK100 (25 and 100 μM) for 10 weeks efficiently inhibited ultraviolet B (UVB)-induced wrinkle formation, erythema, and epidermal thickness in the mice skin. EK100 also restored UVB-induced collagen content reduction in hairless mice skin. In addition, the immunohistochemistry results indicated that EK100 significantly inhibited the UVB-induced expression of matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and nuclear factor kappaB (NF-κB) in the mouse skin. The expression of these proteins was similar to the Normal group after 100 μM EK100 treatment. EK100 inhibited collagen degradation in the skin through MMP-1 inhibition and antiinflammation. EK100 significantly reduced the transepidermal water loss (TEWL), indicating that EK100 protected skin from UVB-induced damage. Our findings strongly suggest that EK100 has significant beneficial antiinflammatory and antiphotoaging activities and that EK100 can be developed as an antiphotodamaging agent. PMID:27626393

  18. The plasma membrane-associated NADH oxidase (ECTO-NOX) of mouse skin responds to blue light

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.

    2003-01-01

    NADH oxidases of the external plasma membrane surface (ECTO-NOX proteins) are characterized by oscillations in activity with a regular period length of 24 min. Explants of mouse skin exhibit the oscillatory activity as estimated from the decrease in A(340) suggesting that individual ECTO-NOX molecules must somehow be induced to function synchronously. Transfer of explants of mouse skin from darkness to blue light (495 nm, 2 min, 50 micromol m(-1) s(-1)) resulted in initiation of a new activity maximum (entrainment) with a midpoint 36 min after light exposure followed by maxima every 24 min thereafter. Addition of melatonin resulted in a new maximum 24 min after melatonin addition. The findings suggest that the ECTO-NOX proteins play a central role in the entrainment of the biological clock both by light and by melatonin.

  19. Transport behavior of hairless mouse skin during constant current DC iontophoresis I: baseline studies.

    PubMed

    Liddell, Mark R; Li, S Kevin; Higuchi, William I

    2011-04-01

    The fluxes of charged and nonionic molecules across hairless mouse skin (HMS) were induced by direct current iontophoresis and used to characterize the transport pathways of the epidermal membrane. Experimental data were used to determine permeability coefficients from which the effective pore radii (Rp) of the transport pathways were calculated. Permeants used in these experiments were nonionic permeants (urea, mannitol, and raffinose), monovalent cationic permeants (sodium, tetraethylammonium, and tetraphenylphosphonium ions), and monovalent anionic permeants (chloride, salicylate, and taurocholate ions). The Rp estimates obtained by the anionic permeant pairs were 49, 22, and 20 Å for the chloride/salicylate (Cl:SA), chloride/taurocholate (Cl:TC), and salicylate/taurocholate (SA:TC) pairs, respectively; with the cationic permeant pairs, the Rp values obtained were 19, 30, and 24 Å for the sodium/tetraethylammonium (Na:TEA), sodium/tetraphenylphosphonium (Na:TPP), and the tetraethylammonium/tetraphenylphosphonium (TEA:TPP) pairs, respectively. Rp estimates for HMS obtained from nonionic permeant experiments ranged from 6.7 to 13.4 Å. When plotted versus their respective diffusion coefficients, all of the permeability coefficients for the cationic permeants were greater than those of the anionic permeants. Additionally, the magnitudes of permeability coefficients determined in the current study with HMS were of the same order of magnitude as those previously determined in our laboratory using human epidermal membrane under similar iontophoresis conditions. PMID:21259234

  20. Carcinogenicity and co-carcinogenicity studies on propoxur in mouse skin.

    PubMed

    Shukla, Y; Baqar, S M; Mehrotra, N K

    1998-12-01

    Propoxur (2-isopropoxyphenyl methylcarbamate) is a widely used broad spectrum carbamate insecticide mainly used to control household pests. Propoxur exposure is reported to inhibit cholinesterase activity in rodents. Apart from other toxic effects, propoxur was found to possess tumorigenic activity in rats after oral administration. Propoxur does not produce tumours in mice or hamsters, or bladder hyperplasia in dogs and monkeys following oral feeding. In this set of investigations the complete carcinogenic, tumour initiating and promoting potential of propoxur was evaluated in male and female Swiss albino mice, since no information was available following dermal exposure of propoxur. The animals were exposed to propoxur through topical painting on the interscapular region at a dose of 100 mg/kg body weight. The results revealed that propoxur has tumour promoting potential on mouse skin following a two-stage initiation-promotion protocol, but it failed to induce the tumour(s) at a significant level, when tested for tumour initiating and complete carcinogenic property.

  1. Transport behavior of hairless mouse skin during constant current DC iontophoresis I: baseline studies.

    PubMed

    Liddell, Mark R; Li, S Kevin; Higuchi, William I

    2011-04-01

    The fluxes of charged and nonionic molecules across hairless mouse skin (HMS) were induced by direct current iontophoresis and used to characterize the transport pathways of the epidermal membrane. Experimental data were used to determine permeability coefficients from which the effective pore radii (Rp) of the transport pathways were calculated. Permeants used in these experiments were nonionic permeants (urea, mannitol, and raffinose), monovalent cationic permeants (sodium, tetraethylammonium, and tetraphenylphosphonium ions), and monovalent anionic permeants (chloride, salicylate, and taurocholate ions). The Rp estimates obtained by the anionic permeant pairs were 49, 22, and 20 Å for the chloride/salicylate (Cl:SA), chloride/taurocholate (Cl:TC), and salicylate/taurocholate (SA:TC) pairs, respectively; with the cationic permeant pairs, the Rp values obtained were 19, 30, and 24 Å for the sodium/tetraethylammonium (Na:TEA), sodium/tetraphenylphosphonium (Na:TPP), and the tetraethylammonium/tetraphenylphosphonium (TEA:TPP) pairs, respectively. Rp estimates for HMS obtained from nonionic permeant experiments ranged from 6.7 to 13.4 Å. When plotted versus their respective diffusion coefficients, all of the permeability coefficients for the cationic permeants were greater than those of the anionic permeants. Additionally, the magnitudes of permeability coefficients determined in the current study with HMS were of the same order of magnitude as those previously determined in our laboratory using human epidermal membrane under similar iontophoresis conditions.

  2. Protective effect of alpha-tocopherol-6-O-phosphate against ultraviolet B-induced damage in cultured mouse skin.

    PubMed

    Nakayama, Satomi; Katoh, Eiko M; Tsuzuki, Toshi; Kobayashi, Shizuko

    2003-08-01

    The ability of the novel water-soluble provitamin E, alpha-tocopherol-6-O-phosphate, to protect against ultraviolet B-induced damage in cultured mouse skin was investigated and compared with the protectiveness of alpha-tocopherol acetate in cultured mouse skin. Pretreatment of skin with 0.5% (9.4 mM) alpha-tocopherol-6-O-phosphate in medium for 3 h significantly prevented such photodamage as sunburn cell formation, DNA degradation, and lipid peroxidation, which were induced in control cultured skin by a single dose of ultraviolet B irradiation at 0 to 40 kJ per m2 (290-380 nm, maximum 312 nm). This protection was greater than that seen with alpha-tocopherol acetate, the most common provitamin E that is used in commercial human skin care products. The concentration of alpha-tocopherol in cultured skin pretreated with 0.5% alpha-tocopherol-6-O-phosphate rose to approximately two to three times that found in the control skin and the reduction in cutaneous alpha-tocopherol that was induced by ultraviolet irradiation was significantly inhibited. In the group pretreated with 0.5% alpha-tocopherol acetate, however, conversion of alpha-tocopherol acetate to alpha-tocopherol was not observed, although the level of provitamin incorporated into the cultured skin was the same as that for alpha-tocopherol-6-O-phosphate. These findings indicated that the enhanced ability of alpha-tocopherol-6-O-phosphate to protect against ultraviolet B-induced skin damage compared with alpha-tocopherol acetate may have been due to alpha-tocopherol-6-O-phosphate's conversion to alpha-tocopherol. Moreover, following pretreatment with a 0.5% alpha-tocopherol-6-O-phosphate, alpha-tocopherol-6-O-phosphate was incorporated into the human skin in a three-dimensional model and 5% of the incorporated alpha-tocopherol-6-O-phosphate was converted to alpha-tocopherol. These results suggest that treatment with the novel provitamin E, alpha-tocopherol-6-O-phosphate may be useful in preventing ultraviolet

  3. Covalent binding of benzo(a)pyrene diol epoxide to DNA of mouse skin: in vivo persistence of adducts formation

    SciTech Connect

    Shugart, L.

    1985-01-01

    In the first 9 d after topical application of a single dose of benzo(a)pyrene to the dorsal skin of C/sub 3/H mice, the half-lives of benzo(a)pyrene diol epoxide-DNA adducts and of DNA were determined to be approximately 5 d. These data indicate that, in proliferating mouse skin, benzo(a)pyrene diol epoxide-DNA lesions are not repaired, but are diluted from the genome at a rate equivalent to DNA turnover (i.e., replication versus degradation). Subsequent to this initial period, benzo(a)pyrene diol epoxide-DNA adduct removal continues, but at a much reduced rate. At 30 d posttreatment with benzo(a)pyrene, approximately 15% of the adducts are still detectable; however, their half-lives had increased to 30 d. Similar experiments with a hairless mouse showed that, although the amount of adduct formation was lower initially, the kinetics of aduct disappearance and persistence were essentially the same as found with the C/sub 3/H mouse. The data obtained in this work are consistent with the hypothesis that benzo(a)pyrene diol epoxide adducts persist in a subpopulation of skin cells long after their disappearance by DNA turnover would predict.

  4. Combined effect of cyclin D3 expression and abrogation of cyclin D1 prevent mouse skin tumor development

    PubMed Central

    Wang, Xian; Sistrunk, Christopher; Miliani de Marval, Paula L; Kim, Yongbaek

    2012-01-01

    We have previously demonstrated that ras-mediated skin tumorigenesis depends on signaling pathways that act preferentially through cyclin D1 and D2. Interestingly, the expression of cyclin D3 inhibits skin tumor development, an observation that conflicts with the oncogenic role of D-type cyclins in the mouse epidermis. Here, we show that simultaneous up and downregulation of particular members of the D-type cyclin family is a valuable approach to reduce skin tumorigenesis. We developed the K5D3/cyclin D1−/− compound mouse, which overexpresses cyclin D3 but lacks expression of cyclin D1 in the skin. Similar to K5D3 transgenic mice, keratinocytes from K5D3/cyclin D1−/− compound mice show a significant reduction of cyclin D2 levels. Therefore, this model allows us to determine the effect of cyclin D3 expression when combined with reduced or absent expression of the remaining two members of the D-type cyclin family in mouse epidermis. Our data show that induced expression of cyclin D3 compensates for the reduced level of cyclin D1 and D2, resulting in normal keratinocyte proliferation. However, simultaneous ablation of cyclin D1 and downregulation of cyclin D2 via cyclin D3 expression resulted in a robust reduction in ras-mediated skin tumorigenesis. We conclude that modulation of the levels of particular members of the D-type cyclin family could be useful to inhibit tumor development and, in particular, ras-mediated tumorigenesis. PMID:22214766

  5. Moisturizing lotions can increase transdermal absorption of the herbicide 2,4-dichlorophenoxacetic acid across hairless mouse skin.

    PubMed

    Brand, R M; Charron, A R; Sandler, V L; Jendrzejewski, J L

    2007-01-01

    Moisturizing lotions can be an effective treatment for occupationally induced dry skin. These compounds are designed to be hygroscopic and retain water to keep the stratum corneum hydrated, while at the same time enhancing the horny layer to prevent increases in transepidermal water loss (TEWL). Skin hydration levels, however, are known to influence barrier properties. The purpose of this work was to compare skin moisture levels induced by four commercially available moisturizing lotions with their capacity as transdermal penetration enhancers using the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) as a model chemical. Further, the effect of moisturizing the skin after washing with sodium lauryl sulfate (SLS) on transdermal absorption was determined. Skin moisture levels were also measured noninvasively and were correlated to penetration enhancement. Hairless mouse skin was pretreated with commercially available moisturizing lotions either with or without SLS washing and in vitro permeability studies were performed with the herbicide 2,4-D. The data demonstrate that pretreatment with three of the four lotions tested increased the transdermal absorption of 2,4-D as evidenced by cumulative penetration or faster lag times (p < 0.05). Skin moisture levels correlated with the penetration enhancement capabilities of the lotion. Washing the skin with 5% SDS increased the transdermal absorption of 2,4-D (p < 0.05) and application of moisturizing lotions increased the absorption further. In summary moisturizing lotions may influence transdermal penetration of the skin, with the more effective moisturizers having a greater effect on 2,4-D absorption.

  6. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17.

    PubMed

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E; Alberts, David; Bowden, G Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M; Surh, Young-Joon; Cho, Yong-Yeon; Dong, Zigang

    2015-11-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17. PMID:26271098

  7. Impact of Cosmetic Lotions on Nanoparticle Penetration through ex vivo C57BL/6 Hairless Mouse and Human Skin: A Comparison Study

    PubMed Central

    Jatana, Samreen; Callahan, Linda M.; Pentland, Alice P.; DeLouise, Lisa A.

    2016-01-01

    Understanding the interactions of nanoparticles (NPs) with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this study are to investigate the impact of common skin lotions on NP penetration and to quantify penetration differences of quantum dot (QD) NPs between freshly excised human and mouse skin. QDs were mixed in 7 different vehicles, including 5 commercial skin lotions. These were topically applied to skin using two exposure methods; a petri dish protocol and a Franz diffusion cell protocol. QD presence in the skin was quantified using Confocal Laser Scanning Microscopy. Results show that the commercial vehicles can significantly impact QD penetration in both mouse and human skin. Lotions that contain alpha hydroxyl acids (AHA) facilitated NP penetration. Lower QD signal was observed in skin studied using a Franz cell. Freshly excised human skin was also studied immediately after the sub-cutaneous fat removal process, then after 24 hours rest ex vivo. Resting human skin 24 hours prior to QD exposure significantly reduced epidermal presence. This study exemplifies how application vehicles, skin processing and the exposure protocol can affect QD penetration results and the conclusions that maybe drawn between skin models. PMID:27453793

  8. Continuous imaging of the blood vessels in tumor mouse dorsal skin window chamber model by using SD-OCT

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Yang, Shaozhuang; Yu, Bin; Wang, Qi; Lin, Danying; Gao, Jian; Zhang, Peiqi; Ma, Yiqun; Qu, Junle; Niu, Hanben

    2016-03-01

    Optical Coherence Tomography (OCT) has been widely applied into microstructure imaging of tissues or blood vessels with a series of advantages, including non-destructiveness, real-time imaging, high resolution and high sensitivity. In this study, a Spectral Domain OCT (SD-OCT) system with higher sensitivity and signal-to-noise ratio (SNR) was built up, which was used to observe the blood vessel distribution and blood flow in the dorsal skin window chamber of the nude mouse tumor model. In order to obtain comparable data, the distribution images of blood vessels were collected from the same mouse before and after tumor injection. In conclusion, in vivo blood vessel distribution images of the tumor mouse model have been continuously obtained during around two weeks.

  9. Cholera toxin, a potent inducer of epidermal hyperplasia but with no tumor promoting activity in mouse skin carcinogenesis

    SciTech Connect

    Kuroki, T.; Chida, K.; Munakata, K.; Murakami, Y.

    1986-05-29

    Intracutaneous injection of cholera toxin into mice induced epidermal hyperplasia to a greater extent than 12-O-tetra-decanoylphorbol-13-acetate. It also induced adenylate cyclase and through weakly, ornithine decarboxylase of the epidermis. Cholera toxin, however, showed no tumor promoting activity in mouse skin carcinogenesis. In the single stage promotion, cholera toxin (50 ng) was injected once a week for 10 weeks into the skin of SENCAR mice initiated with 25 ..mu..g 7,12-dimethyl-benz(a)anthracene, but no tumors developed. In the two-stage promotion test, cholera toxin (10-100 ng) was injected for one or two weeks into the initiated skin and then mezerein (4 ..mu..g) was applied twice a week for 18 weeks, but the toxin did not increase incidence or numbers of papillomas.

  10. Effects of the co-carcinogen catechol on benzo(a)pyrene metabolism and DNA adduct formation in mouse skin

    SciTech Connect

    Melikian, A.A.; Leszczynska, J.M.; Hecht, S.S.; Hoffmann, D.

    1986-01-01

    We have studied the effects of the co-carcinogen catechol (1,2-dihydroxybenzene) on the metabolic activation of (/sup 3/H) benzo(a)pyrene (BaP) in mouse skin, in vivo and on the binding of BaP metabolites to DNA and protein at intervals from 0.5-24 h. Upon topical application of 0.015 mg (/sup 3/H)BaP and 0.25 or 0.5 mg catechol per mouse, catechol had little effect on the total amount of (/sup 3/H)BaP metabolized in mouse skin, but it affected the relative proportions of (/sup 3/H)BaP metabolites. Catechol (0.5 mg/mouse) decreased the proportion of water-soluble (/sup 3/H)BaP metabolites, ethyl acetate-soluble polar metabolites and quinones, but doubled the levels of unconjugated 3-hydroxy-BaP at all measured intervals after treatment. Catechol also caused a small increase in the levels of trans-7,8-dihydroxy-7,8-dihydroBaP and trans-9,10-dihydroxy-9,10-dihydroBaP 0.5 h after treatment. Two hours after treatment, the levels of these metabolites subsided to those of the controls. Catechol did not affect the levels of glutathione conjugates of BaP. However, it caused a decrease in glucuronide and sulphate conjugate formation from BaP. Catechol caused an approximately 2-fold increase in the formation of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydroBaP (BPDE) DNA adducts and elevated the ratio of anti-syn-BPDE-DNA adducts 1.6 to 2.9-fold. Catechol treatment increased the radioactivity associated with epidermal proteins after (/sup 3/H)BaP application. Because catechol increased levels of 3-hydroxyBaP, we considered the possibility that 3-hydroxyBaP might enhance the tumor initiating activities of BaP or BPDE in mouse skin; a bioassay demonstrated that this was not the case. The results of this study indicate that one important effect of catechol related to its co-carcinogenicity is its ability to enhance formation of anti-BPDE-DNA adducts in mouse skin.

  11. CDK2 activation in mouse epidermis induces keratinocyte proliferation but does not affect skin tumor development.

    PubMed

    Macias, Everardo; Miliani de Marval, Paula L; De Siervi, Adriana; Conti, Claudio J; Senderowicz, Adrian M; Rodriguez-Puebla, Marcelo L

    2008-08-01

    It has been widely assumed that elevated CDK2 kinase activity plays a contributory role in tumorigenesis. We have previously shown that mice overexpressing CDK4 under control of the keratin 5 promoter (K5CDK4 mice) develop epidermal hyperplasia and increased susceptibility to squamous cell carcinomas. In this model, CDK4 overexpression results in increased CDK2 activity associated with the noncatalytic function of CDK4, sequestration of p21(Cip1) and p27(Kip1). Furthermore, we have shown that ablation of Cdk2 reduces Ras-Cdk4 tumorigenesis, suggesting that increased CDK2 activity plays an important role in Ras-mediated tumorigenesis. To investigate this hypothesis, we generated two transgenic mouse models of elevated CDK2 kinase activity, K5Cdk2 and K5Cdk4(D158N) mice. The D158N mutation blocks CDK4 kinase activity without interfering with its binding capability. CDK2 activation via overexpression of CDK4(D158N), but not of CDK2, resulted in epidermal hyperplasia. We observed elevated levels of p21(Cip1) in K5Cdk2, but not in K5Cdk4(D158N), epidermis, suggesting that CDK2 overexpression elicits a p21(Cip1) response to maintain keratinocyte homeostasis. Surprisingly, we found that neither CDK2 overexpression nor the indirect activation of CDK2 enhanced skin tumor development. Thus, although the indirect activation of CDK2 is sufficient to induce keratinocyte hyperproliferation, activation of CDK2 alone does not induce malignant progression in Ras-mediated tumorigenesis.

  12. CDK2 Activation in Mouse Epidermis Induces Keratinocyte Proliferation but Does Not Affect Skin Tumor Development

    PubMed Central

    Macias, Everardo; Miliani de Marval, Paula L.; De Siervi, Adriana; Conti, Claudio J.; Senderowicz, Adrian M.; Rodriguez-Puebla, Marcelo L.

    2008-01-01

    It has been widely assumed that elevated CDK2 kinase activity plays a contributory role in tumorigenesis. We have previously shown that mice overexpressing CDK4 under control of the keratin 5 promoter (K5CDK4 mice) develop epidermal hyperplasia and increased susceptibility to squamous cell carcinomas. In this model, CDK4 overexpression results in increased CDK2 activity associated with the noncatalytic function of CDK4, sequestration of p21Cip1 and p27Kip1. Furthermore, we have shown that ablation of Cdk2 reduces Ras-Cdk4 tumorigenesis, suggesting that increased CDK2 activity plays an important role in Ras-mediated tumorigenesis. To investigate this hypothesis, we generated two transgenic mouse models of elevated CDK2 kinase activity, K5Cdk2 and K5Cdk4D158N mice. The D158N mutation blocks CDK4 kinase activity without interfering with its binding capability. CDK2 activation via overexpression of CDK4D158N, but not of CDK2, resulted in epidermal hyperplasia. We observed elevated levels of p21Cip1 in K5Cdk2, but not in K5Cdk4D158N, epidermis, suggesting that CDK2 overexpression elicits a p21Cip1 response to maintain keratinocyte homeostasis. Surprisingly, we found that neither CDK2 overexpression nor the indirect activation of CDK2 enhanced skin tumor development. Thus, although the indirect activation of CDK2 is sufficient to induce keratinocyte hyperproliferation, activation of CDK2 alone does not induce malignant progression in Ras-mediated tumorigenesis. PMID:18599613

  13. Differential Features between Chronic Skin Inflammatory Diseases Revealed in Skin-Humanized Psoriasis and Atopic Dermatitis Mouse Models.

    PubMed

    Carretero, Marta; Guerrero-Aspizua, Sara; Illera, Nuria; Galvez, Victoria; Navarro, Manuel; García-García, Francisco; Dopazo, Joaquin; Jorcano, Jose Luis; Larcher, Fernando; del Rio, Marcela

    2016-01-01

    Psoriasis and atopic dermatitis are chronic and relapsing inflammatory diseases of the skin affecting a large number of patients worldwide. Psoriasis is characterized by a T helper type 1 and/or T helper type 17 immunological response, whereas acute atopic dermatitis lesions exhibit T helper type 2-dominant inflammation. Current single gene and signaling pathways-based models of inflammatory skin diseases are incomplete. Previous work allowed us to model psoriasis in skin-humanized mice through proper combinations of inflammatory cell components and disruption of barrier function. Herein, we describe and characterize an animal model for atopic dermatitis using similar bioengineered-based approaches, by intradermal injection of human T helper type 2 lymphocytes in regenerated human skin after partial removal of stratum corneum. In this work, we have extensively compared this model with the previous and an improved version of the psoriasis model, in which T helper type 1 and/or T helper type 17 lymphocytes replace exogenous cytokines. Comparative expression analyses revealed marked differences in specific epidermal proliferation and differentiation markers and immune-related molecules, including antimicrobial peptides. Likewise, the composition of the dermal inflammatory infiltrate presented important differences. The availability of accurate and reliable animal models for these diseases will contribute to the understanding of the pathogenesis and provide valuable tools for drug development and testing. PMID:26763433

  14. Progression of mouse skin carcinogenesis is associated with increased ERα levels and is repressed by a dominant negative form of ERα.

    PubMed

    Logotheti, Stella; Papaevangeliou, Dimitra; Michalopoulos, Ioannis; Sideridou, Maria; Tsimaratou, Katerina; Christodoulou, Ioannis; Pyrillou, Katerina; Gorgoulis, Vassilis; Vlahopoulos, Spiros; Zoumpourlis, Vassilis

    2012-01-01

    Estrogen receptors (ER), namely ERα and ERβ, are hormone-activated transcription factors with an important role in carcinogenesis. In the present study, we aimed at elucidating the implication of ERα in skin cancer, using chemically-induced mouse skin tumours, as well as cell lines representing distinct stages of mouse skin oncogenesis. First, using immunohistochemical staining we showed that ERα is markedly increased in aggressive mouse skin tumours in vivo as compared to the papilloma tumours, whereas ERβ levels are low and become even lower in the aggressive spindle tumours of carcinogen-treated mice. Then, using the multistage mouse skin carcinogenesis model, we showed that ERα gradually increases during promotion and progression stages of mouse skin carcinogenesis, peaking at the most aggressive stage, whereas ERβ levels only slightly change throughout skin carcinogenesis. Stable transfection of the aggressive, spindle CarB cells with a dominant negative form of ERα (dnERα) resulted in reduced ERα levels and reduced binding to estrogen responsive elements (ERE)-containing sequences. We characterized two highly conserved EREs on the mouse ERα promoter through which dnERα decreased endogenous ERα levels. The dnERα-transfected CarB cells presented altered protein levels of cytoskeletal and cell adhesion molecules, slower growth rate and impaired anchorage-independent growth in vitro, whereas they gave smaller tumours with extended latency period of tumour onset in vivo. Our findings suggest an implication of ERα in the aggressiveness of spindle mouse skin cancer cells, possibly through regulation of genes affecting cell shape and adhesion, and they also provide hints for the effective targeting of spindle cancer cells by dnERα. PMID:22870269

  15. In vivo formation and persistence of DNA and protein adducts in mouse and rat skin exposed to (+/-)benzo(a)pyrene-4,5-oxide

    SciTech Connect

    Rojas, M.; Alexandrov, K.

    1986-02-01

    The objective of the present study was to compare DNA and protein adduct formation of benzo(a)pyrene-4,5-oxide (BPO) in vivo and to determine the persistence of the adducts in both mouse and rat epidermis. (+/-)BPO at a dose of 100 nmol/mouse and 200 nmol/rat was topically applied to male Swiss mice and Wistar rats. Three hours after application, there was 3-fold less binding of BPO to mouse epidermal DNA than to rat epidermal DNA; inversely, the amount of BPO bound to mouse skin protein was 3.6 times higher than in rat skin protein. One and three weeks after application of BPO, persistence of 17-20% of the initial amount of BPO-DNA adducts and 2-4% of initial amount of BPO bound to protein was detected in both mouse and rat skin epidermis. H.p.l.c. analysis of the enzymatic hydrolysates of DNA from mouse and rat epidermis 3 h after application of BPO showed five distinct products: one early-eluting, two BPO-deoxyguanosine (dGuo) (ratio 1.5:1) and two BPO-deoxyadenosine (dAdo) adducts (ratio 2:1). The ratio of the total modified dGuo to the total modified dAdo was 2:1. The amount of total BPO-dGuo and BPO-dAdo adducts was 3.5 times greater in rat than in mouse epidermis. Persistence of the major BPO-dAdo adduct was observed in mouse and rat epidermal DNA, and 1 and 3 weeks after topical application of BPO there was a 6-fold greater amount of the persisting BPO-dAdo adduct in rat skin epidermis than in mouse skin epidermis (4.1 and 0.66 pmol/mg DNA, respectively). Minor amounts of the BPO-dGuo were found to persist in rat skin epidermis DNA.

  16. Recovery of Aging-Related Size Increase of Skin Epithelial Cells: In vivo Mouse and In vitro Human Study

    PubMed Central

    Sokolov, Igor; Guz, Natali V.; Iyer, Swaminathan; Hewitt, Amy; Sokolov, Nina A.; Erlichman, Joseph S.; Woodworth, Craig D.

    2015-01-01

    The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment). An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8). A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20–40% for cells of older passage (6–8 passages) whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin. PMID:25807526

  17. Evaluation of carcinogenic effect of jute batching oil (JBO-P) fractions following topical application to mouse skin.

    PubMed

    Agarwal, R; Shukla, Y; Kumar, S; Mehrotra, N K

    1988-01-01

    Jute batching oil (JBO-P), a mineral oil fraction used in the processing of jute fibers, was, as reported in our earlier studies, found to be tumorigenic following repeated topical application to mouse skin. In the present investigation an attempt has been made to identify the carcinogenic constituents of this oil. The JBO was fractionated into (1) PAH free fraction, (2) fraction containing two- and three-ring PAHs and (3) more than three-ring PAH fractions by an enrichment procedure. These three JBO fractions along with unfractionated and reconstituted oil were then subjected to the in vivo assay of complete carcinogenic activity of JBO-P and its fractions following its topical application to mouse skin. The results showed that only unfractionated and reconstituted JBO-P samples per se were able to produce benign skin tumours, while all the other three fractions, i.e. PAH-free fraction, two- and three-ring PAH-containing fraction and more than three-ring PAH-containing fraction failed to produce tumours up to 40 weeks after application. In an extended study, mice belonging to the groups exposed to various fractions of JBO were promoted with 12-O-tetradecanoyl phorbol-13-acetate (TPA), a potent skin tumour promoter, for the two stage initiation-promotion protocol for skin carcinogenesis. After 14 weeks of promotion with TPA, all the surviving animals exposed to the fraction having more than three-ring PAHs developed benign tumours on their backs, while the other two fractions failed to do so.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Overlapping loss of heterozygosity by mitotic recombination on mouse chromosome 7F1-ter in skin carcinogenesis.

    PubMed Central

    Bianchi, A B; Navone, N M; Aldaz, C M; Conti, C J

    1991-01-01

    A significant role for mouse chromosome 7 abnormalities during chemically induced skin carcinogenesis has been advanced based on previous cytogenetic and molecular studies. To determine the frequency of allelic losses at different loci of chromosome 7 in skin tumors induced in the outbred SENCAR mouse stock by a two-stage initiation-promotion protocol, we compared the constitutional and tumor genotypes of premalignant papillomas and squamous cell carcinomas for loss of heterozygosity at different informative loci. In a previous study, these tumors had been analyzed for their allelic composition at the Harvey ras-1 (Ha-ras-1) locus and it was found that 39% of squamous cell carcinomas had lost the normal Ha-ras-1 allele exhibiting 3 or 2 copies of the mutated counterpart or gene amplification. In the present study, by combining Southern blot and polymerase chain reaction fragment length polymorphism analyses, we detected complete loss of heterozygosity at the beta-globin (Hbb) locus, distal to Ha-ras-1, in 15 of 20 (75%) skin carcinomas. In addition, 5 of 5 informative cases attained homozygosity at the int-2 locus, 27 centimorgans distal to Hbb. Polymerase chain reaction analysis of DNA extracted from papillomas devoid of stromal contamination by fluorescence-activated sorting of single cell dispersions immunolabeled with anti-keratin 13 antibody revealed loss of heterozygosity at the Hbb locus, demonstrating that this event occurs during premalignant stages of tumor development. Interestingly, loss of heterozygosity was only detected in late-stage lesions exhibiting a high degree of dysplasia and areas of microinvasion. Analysis of allelic ratios by densitometric scanning of tumors that had become homozygous at Hbb but retained heterozygosis at Ha-ras-1 indicated mitotic recombination as the mechanism underlying loss of heterozygosity on mouse chromosome 7 during chemically induced skin carcinogenesis. These findings are consistent with the presence of a putative

  19. Effects of skin-derived precursors on wound healing of denervated skin in a nude mouse model.

    PubMed

    Shu, Bin; Xie, Ju-Lin; Xu, Ying-Bin; Lai, Wen; Huang, Yong; Mao, Ren-Xiang; Liu, Xu-Sheng; Qi, Shao-Hai

    2015-01-01

    Denervated skin could result in impaired healing of wounds, such as decubitus ulcers and diabetic foot ulcers. Other studies indicated that cutaneous fiber density is reduced after inner nerve transection and that neuropeptide level depletes after denervation, leading to reduced cell proliferation around the wound and thus wound healing problems. Recent studies have revealed that skin-derived precursors (SKPs), which form a neural crest-related stem cell population in the dermis of skin, participate in cutaneous nerve regeneration. We hypothesized that injecting SKPs into denervated wound promotes healing. A bilateral denervation wound model was established followed by SKP transplantation. The wound healing rate was determined at 7, 14, and 21 d after injury. Cell proliferation activity during wound healing was analyzed by proliferating cell nuclear antigen immunohistochemistry (IHC). Nerve fiber density was measured by S-100 IHC. The contents of nerve growth factor, substance P, and calcitonin gene-related peptide were examined by enzyme-linked immunosorbent assay. The rate of epithelization in the SKP-treated group was faster than that in the control group. Wound cell proliferation and nerve fiber density were obviously higher in the SKP-treated group than in the control group. In addition, the content of neuropeptides was higher in the SKP-treated group than in the control group during wound healing. In conclusion, SKPs can promote denervated wound healing through cell proliferation and nerve fiber regeneration, and can facilitate the release of neuropeptides.

  20. Effects of skin-derived precursors on wound healing of denervated skin in a nude mouse model

    PubMed Central

    Shu, Bin; Xie, Ju-Lin; Xu, Ying-Bin; Lai, Wen; Huang, Yong; Mao, Ren-Xiang; Liu, Xu-Sheng; Qi, Shao-Hai

    2015-01-01

    Denervated skin could result in impaired healing of wounds, such as decubitus ulcers and diabetic foot ulcers. Other studies indicated that cutaneous fiber density is reduced after inner nerve transection and that neuropeptide level depletes after denervation, leading to reduced cell proliferation around the wound and thus wound healing problems. Recent studies have revealed that skin-derived precursors (SKPs), which form a neural crest-related stem cell population in the dermis of skin, participate in cutaneous nerve regeneration. We hypothesized that injecting SKPs into denervated wound promotes healing. A bilateral denervation wound model was established followed by SKP transplantation. The wound healing rate was determined at 7, 14, and 21 d after injury. Cell proliferation activity during wound healing was analyzed by proliferating cell nuclear antigen immunohistochemistry (IHC). Nerve fiber density was measured by S-100 IHC. The contents of nerve growth factor, substance P, and calcitonin gene-related peptide were examined by enzyme-linked immunosorbent assay. The rate of epithelization in the SKP-treated group was faster than that in the control group. Wound cell proliferation and nerve fiber density were obviously higher in the SKP-treated group than in the control group. In addition, the content of neuropeptides was higher in the SKP-treated group than in the control group during wound healing. In conclusion, SKPs can promote denervated wound healing through cell proliferation and nerve fiber regeneration, and can facilitate the release of neuropeptides. PMID:26045771

  1. Severe combined immunodeficiency mouse and human psoriatic skin chimeras. Validation of a new animal model.

    PubMed Central

    Nickoloff, B. J.; Kunkel, S. L.; Burdick, M.; Strieter, R. M.

    1995-01-01

    Research into the cause and pathophysiological mechanisms underlying expression of psoriatric skin lesions has been hampered by lack of an appropriate animal model for this common and enigmatic cutaneous disease. These studies characterize normal skin, pre-psoriatic skin, and psoriatic plaque skin samples transplanted onto severe combined immunodeficiency mice. In this report we document that 1), normal, prepsoriatic, and psoriatic plaque keratome skin samples can be transplanted onto severe combined immunodeficiency mice reliably with high rates of graft survival (> 85%) and with reproducible changes consistently observed over prolonged periods of engraftment; 2), after transplantation, by clinical assessment and routine light microscopy, normal skin remained essentially normal whereas pre-psoriatic skin became thicker, and psoriatic plaque skin retained its characteristic plaque-type elevation and scale; 3), by using a panel of antibodies and immunohistochemical analysis, the overall phenotype of human cell types (including immunocytes) that persisted in the transplanted skin was remarkably similar to the immunophenotype of pretransplanted skin samples; 4), clearly recognized interface zones between human and murine skin within the epidermal and dermal compartments could be identified by routine microscopy and immunostaining, with focal areas of chimerism; and 5), elevated interleukin 8 cytokine levels were present in transplanted pre-psoriatic and psoriatic plaque skin samples. We conclude that there are many similarities between pre- and post-transplanted human samples of normal and psoriatic skin that are grafted onto severe combined immunodeficiency mice. Thus, we propose that this new animal model is appropriate for additional mechanistic-type studies designed to reveal the underlying genetic/etiological abnormality, as well as better illuminate the pathophysiological basis, for this important skin disease. Images Figure 1 Figure 2 Figure 3 PMID:7887440

  2. FATAL KERATOMAS DUE TO DEEP HOMOGRAFTS OF THE BENIGN PAPILLOMAS OF TARRED MOUSE SKIN

    PubMed Central

    Rous, Peyton; Allen, Raymond A.

    1958-01-01

    enlarging, fluid-filled cyst forms, with walls that are bare except where a stalked or cauliflower papilloma exists, projecting inwards. At last the cyst ruptures and a second dissecting cyst forms, also devoid of papilloma tissue; or else the overlying skin undergoes pressure necrosis, the cyst fluid escapes through a rent, and fatal infection ensues. All gradations exist between Type A and Type C. The cancers derivative from both exhibit a marked disability,—though invasive they are almost or quite unable to extend along bare connective tissue. The papillomas that are possessed of this faculty spread beyond them along the cyst wall, and kill the host through their unceasing activity. In collateral work a papilloma was transplanted that was found protruding from the external auditory canal of a mouse which had received an intramuscular injection of methylcholanthrene many months previously. The tumor is now in its 5th generation, after 15 months. The growths it forms are of Type A. All of the papillomas are functioning tumors, with their own cells as the functioning product. Their papilliferous shape, when on the skin, is due solely to inability of their cells to gain space in other ways. Intrinsically they are keratomas. The papillomas do well after transfer to deep situations because the growth of their cells is indirectly promoted, through favoring local conditions. No direct promotion takes place like that when the cells of prostatic and mammary tumors are stimulated to multiply by hormones. Doubtless many agents act in both ways, that is to say by dual promotion. PMID:13481256

  3. Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation

    NASA Technical Reports Server (NTRS)

    Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

    1996-01-01

    Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

  4. Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse.

    PubMed

    Dillon, Lloye M; Hida, Aline; Garcia, Sofia; Prolla, Tomas A; Moraes, Carlos T

    2012-01-01

    Pharmacological agents, such as bezafibrate, that activate peroxisome proliferator-activated receptors (PPARs) and PPAR γ coactivator-1α (PGC-1α) pathways have been shown to improve mitochondrial function and energy metabolism. The mitochondrial DNA (mtDNA) mutator mouse is a mouse model of aging that harbors a proofreading-deficient mtDNA polymerase γ. These mice develop many features of premature aging including hair loss, anemia, osteoporosis, sarcopenia and decreased lifespan. They also have increased mtDNA mutations and marked mitochondrial dysfunction. We found that mutator mice treated with bezafibrate for 8-months had delayed hair loss and improved skin and spleen aging-like phenotypes. Although we observed an increase in markers of fatty acid oxidation in these tissues, we did not detect a generalized increase in mitochondrial markers. On the other hand, there were no improvements in muscle function or lifespan of the mutator mouse, which we attributed to the rodent-specific hepatomegaly associated with fibrate treatment. These results showed that despite its secondary effects in rodent's liver, bezafibrate was able to improve some of the aging phenotypes in the mutator mouse. Because the associated hepatomegaly is not observed in primates, long-term bezafibrate treatment in humans could have beneficial effects on tissues undergoing chronic bioenergetic-related degeneration.

  5. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Pang, Yongjiang; Ku, Geng; Stoica, George; Wang, Lihong V.

    2003-10-01

    Three-dimensional laser-induced photoacoustic tomography, also referred to as optoacoustic tomography, is developed to image animal brain structures noninvasively with the skin and skull intact. This imaging modality combines the advantages of optical contrast and ultrasonic resolution. The distribution of optical absorption in a mouse brain is imaged successfully. The intrinsic optical contrast reveals not only blood vessels but also other detailed brain structures, such as the cerebellum, hippocampus, and ventriculi lateralis. The spatial resolution is primarily diffraction limited by the received photoacoustic waves. Imaged structures of the brain at different depths match the corresponding histological pictures well.

  6. Light Fractionation Significantly Increases the Efficacy of Photodynamic Therapy Using BF-200 ALA in Normal Mouse Skin

    PubMed Central

    de Bruijn, Henriëtte S.; Brooks, Sander; van der Ploeg-van den Heuvel, Angélique; ten Hagen, Timo L. M.; de Haas, Ellen R. M.; Robinson, Dominic J.

    2016-01-01

    Background Light fractionation significantly increases the efficacy of 5-aminolevulinic acid (ALA) based photodynamic therapy (PDT) using the nano-emulsion based gel formulation BF-200. PDT using BF-200 ALA has recently been clinically approved and is under investigation in several phase III trials for the treatment of actinic keratosis. This study is the first to compare BF-200 ALA with ALA in preclinical models. Results In hairless mouse skin there is no difference in the temporal and spatial distribution of protoporphyrin IX determined by superficial imaging and fluorescence microscopy in frozen sections. In the skin-fold chamber model, BF-200 ALA leads to more PpIX fluorescence at depth in the skin compared to ALA suggesting an enhanced penetration of BF-200 ALA. Light fractionated PDT after BF-200 ALA application results in significantly more visual skin damage following PDT compared to a single illumination. Both ALA formulations show the same visual skin damage, rate of photobleaching and change in vascular volume immediately after PDT. Fluorescence immunohistochemical imaging shows loss of VE-cadherin in the vasculature at day 1 post PDT which is greater after BF-200 ALA compared to ALA and more profound after light fractionation compared to a single illumination. Discussion The present study illustrates the clinical potential of light fractionated PDT using BF-200 ALA for enhancing PDT efficacy in (pre-) malignant skin conditions such as basal cell carcinoma and vulval intraepithelial neoplasia and its application in other lesion such as cervical intraepithelial neoplasia and oral squamous cell carcinoma where current approaches have limited efficacy. PMID:26872051

  7. Myeloid Cell Isolation from Mouse Skin and Draining Lymph Node Following Intradermal Immunization with Live Attenuated Plasmodium Sporozoites.

    PubMed

    Mac-Daniel, Laura; Buckwalter, Matthew R; Gueirard, Pascale; Ménard, Robert

    2016-01-01

    Malaria infection begins when the sporozoite stage of Plasmodium is inoculated into the skin of a mammalian host through a mosquito bite. The highly motile parasite not only reaches the liver to invade hepatocytes and transform into erythrocyte-infective form. It also migrates into the skin and to the proximal lymph node draining the injection site, where it can be recognized and degraded by resident and/or recruited myeloid cells. Intravital imaging reported the early recruitment of brightly fluorescent Lys-GFP positive leukocytes in the skin and the interactions between sporozoites and CD11c(+) cells in the draining lymph node. We present here an efficient procedure to recover, identify and enumerate the myeloid cell subsets that are recruited to the mouse skin and draining lymph node following intradermal injection of immunizing doses of sporozoites in a murine model. Phenotypic characterization using multi-parametric flow cytometry provides a reliable assay to assess early dynamic cellular changes during inflammatory response to Plasmodium infection. PMID:27286053

  8. Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model

    PubMed Central

    Chin, Lee; Korpela, Elina; Kim, Anthony; Yohan, Darren; Niu, Carolyn; Wilson, Brian C.; Liu, Stanley K.

    2016-01-01

    Acute skin toxicities from ionizing radiation (IR) are a common side effect from therapeutic courses of external beam radiation therapy (RT) and negatively impact patient quality of life and long term survival. Advances in the understanding of the biological pathways associated with normal tissue toxicities have allowed for the development of interventional drugs, however, current response studies are limited by a lack of quantitative metrics for assessing the severity of skin reactions. Here we present a diffuse optical spectroscopic (DOS) approach that provides quantitative optical biomarkers of skin response to radiation. We describe the instrumentation design of the DOS system as well as the inversion algorithm for extracting the optical parameters. Finally, to demonstrate clinical utility, we present representative data from a pre-clinical mouse model of radiation induced erythema and compare the results with a commonly employed visual scoring. The described DOS method offers an objective, high through-put evaluation of skin toxicity via functional response that is translatable to the clinical setting. PMID:27284926

  9. An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations

    PubMed Central

    Caulin, Carlos; Nguyen, Thao; Lang, Gene A.; Goepfert, Thea M.; Brinkley, Bill R.; Cai, Wei-Wen; Lozano, Guillermina; Roop, Dennis R.

    2007-01-01

    Mutations in ras and p53 are the most prevalent mutations found in human nonmelanoma skin cancers. Although some p53 mutations cause a loss of function, most result in expression of altered forms of p53, which may exhibit gain-of-function properties. Therefore, understanding the consequences of acquiring p53 gain-of-function versus loss-of-function mutations is critical for the generation of effective therapies for tumors harboring p53 mutations. Here we describe an inducible mouse model in which skin tumor formation is initiated by activation of an endogenous K-rasG12D allele. Using this model we compared the consequences of activating the p53 gain-of-function mutation p53R172H and of deleting the p53 gene. Activation of the p53R172H allele resulted in increased skin tumor formation, accelerated tumor progression, and induction of metastasis compared with deletion of p53. Consistent with these observations, the p53R172H tumors exhibited aneuploidy associated with centrosome amplification, which may underlie the mechanism by which p53R172H exerts its oncogenic properties. These results clearly demonstrate that p53 gain-of-function mutations confer poorer prognosis than loss of p53 during skin carcinogenesis and have important implications for the future design of therapies for tumors that exhibit p53 gain-of-function mutations. PMID:17607363

  10. p53-independent apoptosis in UV-irradiated mouse skin: possible inhibition by 50 Hz magnetic fields.

    PubMed

    Kumlin, Timo; Heikkinen, Päivi; Kosma, Veli-Matti; Alhonen, Leena; Jänne, Juhani; Juutilainen, Jukka

    2002-06-01

    Our recent results suggest that 50 Hz magnetic fields (MF) enhance ultraviolet (UV)-induced tumorigenesis in mouse skin. The aim of the present experiment was to study suppression of apoptosis as a possible mechanism for MF effects on skin tumorigenesis. Another aim was to test the importance of a UV and MF exposure schedule, particularly the role of MF exposure prior to UV irradiation. Female mice were exposed to a UV dose of 2 human MED and to 100 microT MF of 50 Hz, using the following exposure schedules: group 1 sham MF 24 h, UV 1 h, sham MF 24 h; group 2 sham MF 24 h, UV 1 h, MF 24 h; group 3 MF 24 h, UV 1 h, MF 24 h. Lamps emitting simulated solar radiation (SSR) were used for UV irradiation. Skin samples were analysed for apoptosis, expression of the p53 gene, activity of the enzyme ornithine decarboxylase (ODC) and polyamine concentrations. A significantly (p = 0.017) lower number of apoptotic cells was measured in group 2 compared to group 1. A similar but not statistically significant (p = 0.064) decrease was also detected in group 3. No p53 expression was detected in any sample. The levels of ODC and putrescine did not differ significantly between the UV-only and UV and MF-exposed groups. Spermidine and spermine levels were significantly (p = 0.014 and 0.014, respectively) lower in group 3 than in group 1, but no decrease was observed in group 2. Our findings suggest that SSR induces p53-independent apoptosis in mouse skin and that the apoptotic response may be inhibited by exposure to MF. The exposure schedule did not alter the MF effect. The results do not support a causal role for polyamines in MF effects on apoptosis.

  11. Resveratrol and Black Tea Polyphenol Combination Synergistically Suppress Mouse Skin Tumors Growth by Inhibition of Activated MAPKs and p53

    PubMed Central

    George, Jasmine; Singh, Madhulika; Srivastava, Amit Kumar; Bhui, Kulpreet; Roy, Preeti; Chaturvedi, Pranav Kumar; Shukla, Yogeshwer

    2011-01-01

    Cancer chemoprevention by natural dietary agents has received considerable importance because of their cost-effectiveness and wide safety margin. However, single agent intervention has failed to bring the expected outcome in clinical trials; therefore, combinations of chemopreventive agents are gaining increasing popularity. The present study aims to evaluate the combinatorial chemopreventive effects of resveratrol and black tea polyphenol (BTP) in suppressing two-stage mouse skin carcinogenesis induced by DMBA and TPA. Resveratrol/BTP alone treatment decreased tumor incidence by ∼67% and ∼75%, while combination of both at low doses synergistically decreased tumor incidence even more significantly by ∼89% (p<0.01). This combination also significantly regressed tumor volume and number (p<0.01). Mechanistic studies revealed that this combinatorial inhibition was associated with decreased expression of phosphorylated mitogen-activated protein kinase family proteins: extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, p38 and increased in total p53 and phospho p53 (Ser 15) in skin tissue/tumor. Treatment with combinations of resveratrol and BTP also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, our results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemoprevention using dietary agents will be more beneficial against cancer. This promising combination should be examined in therapeutic trials of skin and possibly other cancers. PMID:21887248

  12. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo.

    PubMed

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-01

    Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  13. DOSE-RESPONSE STUDIES OF SODIUM ARSENITE IN THE SKIN OF K6/ODC TRANSGENIC MOUSE

    EPA Science Inventory

    It has previously been observed that chronic exposure to inorganic arsenic and/or its metabolites increase(s) tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, gene expression profiles w...

  14. Berteroin present in cruciferous vegetables exerts potent anti-inflammatory properties in murine macrophages and mouse skin.

    PubMed

    Jung, Yoo Jin; Jung, Jae In; Cho, Han Jin; Choi, Myung-Sook; Sung, Mi-Kyung; Yu, Rina; Kang, Young-Hee; Park, Jung Han Yoon

    2014-11-11

    Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent.

  15. Time course of lewisite-induced skin lesions and inflammatory response in the SKH-1 hairless mouse model.

    PubMed

    Nguon, Nina; Cléry-Barraud, Cécile; Vallet, Virginie; Elbakdouri, Nacéra; Wartelle, Julien; Mouret, Stéphane; Bertoni, Marine; Dorandeu, Frédéric; Boudry, Isabelle

    2014-01-01

    Data on the toxicity of lewisite (L), a vesicant chemical warfare agent, are scarce and conflicting, and the use of the specific antidote is not without drawbacks. This study was designed to evaluate if the SKH-1 hairless mouse model was suitable to study the L-induced skin injuries. We studied the progression of lesions following exposure to L vapors for 21 days using paraclinical parameters (color, transepidermal water loss (TEWL), and biomechanical measurements), histological assessments, and biochemical indexes of inflammation. Some data were also obtained over 27 weeks. The development of lesions was similar to that reported in other models. The TEWL parameter appeared to be the most appropriate index to follow their progression. Histological analysis showed inflammatory cell infiltration and microvesications at day 1 and a complete wound closure by day 21. Biochemical studies indicated a deregulation of the levels of several cytokines and receptors involved in inflammation. An increase in the quantity of pro-matrix metalloproteinases 2 and 9 was shown as observed in other models. This suggests that the SKH-1 mouse model is relevant for the investigation of the physiopathological process of skin lesions induced by L and to screen new treatment candidates. PMID:24635178

  16. Studies on the relationship between epidermal cell turnover kinetics and permeability of hairless mouse skin

    SciTech Connect

    Han, S.R.

    1988-01-01

    The primary aim of this study was to develop non-invasive, physical means to quantitatively assess the epidermal turnover kinetics and barrier properties of the skin and relate these to the cutaneous irritation which results from ultraviolet light irradiation and mold thermal burns. After systematically injecting radiolabeled glycine, the appearance of radioactivity at the skin's surface indicated the transit time of radiolabeled cells through the skin. By plotting the data as the cumulative specific activity against time and then fitting them with a third order polynomial equation, it is possible to estimate the turnover time of the stratum corneum. The skin turnover was coordinated with non-invasive transepidermal water loss (TEWL) studies determined with an evaporimeter. In vitro diffusion studies of the permeability of hydrocortisone through UVB irradiated and thermally burned skin were also performed. The studies indicated that irritated skin offers a relatively low diffusional resistance to hydrocortisone. Depending on the severity of the trauma, the increases in hydrocortisone's permeability coefficient through irritated skin ranged from a low of about 2 times normal to a high of about 210 times normal. Trauma-induced changes in hydrocortisone permeability parallel changes in TEWL, proving that the barrier deficient state resulting from rapid epidermal turnover is a general phenomenon.

  17. Suppressive Effect of Dietary Fucoidan on Proinflammatory Immune Response and MMP-1 Expression in UVB-Irradiated Mouse Skin.

    PubMed

    Maruyama, Hiroko; Tamauchi, Hidekazu; Kawakami, Fumitaka; Yoshinaga, Keiko; Nakano, Takahisa

    2015-10-01

    It is well known that ultraviolet B irradiation leads to dermal inflammation. In this study, we found that Mekabu fucoidan suppressed edema, decreased the thickness of the prickle cell layer, and decreased matrix metalloproteinase 1 in the skin of mice irradiated with ultraviolet B. Moreover, we found that the mean level of interferon gamma of Mekabu fucoidan-treated, ultraviolet B-irradiated mice (approximately 2.2 ng/mL) was not significantly different from that in normal mice (approximately 2.5 ng/mL). In contrast, a significant decrease in the mean level of interferon gamma (approximately 1.3 ng/mL) in ultraviolet B-irradiated control mice was observed compared with that in Mekabu fucoidan-treated, ultraviolet B-irradiated mice. The mean thickness of the prickle cell layer in the skin of Mekabu fucoidan-treated, ultraviolet B-irradiated mice was less than that in the ultraviolet B-irradiated control mice. Metalloproteinase 1 activity was significantly higher in the skin of ultraviolet B-irradiated mice than in the skin of untreated, nonirradiated normal mice. Metalloproteinase 1 in the skin of ultraviolet B-irradiated, Mekabu fucoidan- or L(+)-ascorbic acid (vitamin C)-treated mice was significantly lower than that in the ultraviolet B-irradiated control mice. Mitigation of the morphological changes in Mekabu fucoidan-treated mice was correlated with a decrease in metalloproteinase 1 levels. These data indicate that Mekabu fucoidan is an effective suppressor of inflammation in an ultraviolet B-irradiated mouse model.

  18. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. PMID:27425619

  19. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes.

    PubMed

    Mishra, Sakshi; Tewari, Prachi; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2016-11-01

    Among food contaminants, mycotoxins are toxic to both human and animal health. Our prior studies suggest that Deoxynivalenol (DON), a mycotoxin, behaves as a tumor promoter by inducing edema, hyperplasia, ODC activity and activation of MAPK's in mouse skin. In this study, topical application of DON, 336 and 672 nmol significantly enhanced ROS levels, DNA damage and apoptosis with concomitant downregulation of Ki-67, cyclin D, cyclin E, cyclin A and cyclin-dependent kinases (CDK4 and CDK2) thereby resulting in tumor initiation in mouse skin. Further, the elucidation of molecular mechanisms of tumor initiation by DON (0.42-3.37 nmol/ml) in HaCaT keratinocytes, revealed (i) enhanced ROS generation with cell cycle phase arrest in G0/G1 phase, (ii) increase in levels of 8-OxoG (6-24 hr) and γH2AX protein, (iii) significant enhancement in oxidative stress marker enzymes LPO, GSH, GR with concomitant decrease in antioxidant enzymes catalase, GPx, GST, SOD and mitochondrial membrane potential after DON (1.68 nmol) treatment, (iv) suppression of Nrf2 translocation to nucleus, enhanced phosphorylation with subsequent activation ERK1/2, p38 and JNK MAPK's following DON (1.68 nmol) treatment, (v) overexpression of c-jun, c-fos proteins, upregulation of Bax along with downregulation of Bcl-2 proteins, (vi) increase in cytochrome-c, caspase-9, caspase-3 and poly ADP ribose polymerase levels leads to apoptosis. Pretreatment of superoxide dismutase, mannitol and ethanol to HaCaT cells resulted in significant reduction in ROS levels and apoptosis indicating the role of superoxide and hydroxyl radicals in DON induced apoptosis as an early event and skin tumor initiation as a late event. PMID:27389473

  20. Effect of menthol and related terpenes on the percutaneous absorption of propranolol across excised hairless mouse skin.

    PubMed

    Kunta, J R; Goskonda, V R; Brotherton, H O; Khan, M A; Reddy, I K

    1997-12-01

    The potential use of terpenes/terpenoids as penetration enhancers in the transdermal delivery of propranolol hydrochloride (PL) was investigated. PL was chosen for the reasons of its extensive first-pass metabolism and short elimination half-life. The terpenes studied included L-menthol, (+)-limonene, (+/-)-linalool, and carvacrol at 1%, 5%, and 10% w/v concentrations. The diffusion of PL across excised hairless mouse skin was determined using side-by-side diffusion cells. Flux, permeability coefficient (Pm), and lag time (tL) were calculated. PL showed comparable lag times with menthol at all three concentration levels. At a 1% level of carvacrol, PL exhibited a 2.4- and 2.2-fold increase in lag time compared with 5 and 10% levels of enhancer, respectively. In the presence of limonene, PL had shown maximum lag time (between 3.0 and 3.3 h) at all three levels. In the case of linalool, the lag times for PL with 5 and 10% levels of enhancer were 7.0- and 5.2-fold less compared with 1% level. A significant (p < 0.05) concentration effect was observed only with linalool. Hydrogel-based patches were formulated with or without menthol as enhancer. Release profiles from the hydrogel formulations obeyed zero-order kinetics. The permeability of propranolol was significantly higher (p < 0.05) from the test patch than the control (no enhancer) patch across the mouse skin. The mechanism of permeation enhancement of menthol could involve its distribution preferentially into the intercellular spaces of stratum corneum and the possible reversible disruption of the intercellular lipid domain. The results suggest the potential use of menthol as effective penetration enhancer in the delivery of significant amounts of PL through skin. PMID:9423148

  1. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes.

    PubMed

    Mishra, Sakshi; Tewari, Prachi; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2016-11-01

    Among food contaminants, mycotoxins are toxic to both human and animal health. Our prior studies suggest that Deoxynivalenol (DON), a mycotoxin, behaves as a tumor promoter by inducing edema, hyperplasia, ODC activity and activation of MAPK's in mouse skin. In this study, topical application of DON, 336 and 672 nmol significantly enhanced ROS levels, DNA damage and apoptosis with concomitant downregulation of Ki-67, cyclin D, cyclin E, cyclin A and cyclin-dependent kinases (CDK4 and CDK2) thereby resulting in tumor initiation in mouse skin. Further, the elucidation of molecular mechanisms of tumor initiation by DON (0.42-3.37 nmol/ml) in HaCaT keratinocytes, revealed (i) enhanced ROS generation with cell cycle phase arrest in G0/G1 phase, (ii) increase in levels of 8-OxoG (6-24 hr) and γH2AX protein, (iii) significant enhancement in oxidative stress marker enzymes LPO, GSH, GR with concomitant decrease in antioxidant enzymes catalase, GPx, GST, SOD and mitochondrial membrane potential after DON (1.68 nmol) treatment, (iv) suppression of Nrf2 translocation to nucleus, enhanced phosphorylation with subsequent activation ERK1/2, p38 and JNK MAPK's following DON (1.68 nmol) treatment, (v) overexpression of c-jun, c-fos proteins, upregulation of Bax along with downregulation of Bcl-2 proteins, (vi) increase in cytochrome-c, caspase-9, caspase-3 and poly ADP ribose polymerase levels leads to apoptosis. Pretreatment of superoxide dismutase, mannitol and ethanol to HaCaT cells resulted in significant reduction in ROS levels and apoptosis indicating the role of superoxide and hydroxyl radicals in DON induced apoptosis as an early event and skin tumor initiation as a late event.

  2. A Novel Nude Mouse Model of Hypertrophic Scarring Using Scratched Full Thickness Human Skin Grafts

    PubMed Central

    Alrobaiea, Saad M.; Ding, Jie; Ma, Zengshuan; Tredget, Edward E.

    2016-01-01

    Objective: Hypertrophic scar (HTS) is a dermal form of fibroproliferative disorder that develops following deep skin injury. HTS can cause deformities, functional disabilities, and aesthetic disfigurements. The pathophysiology of HTS is not understood due to, in part, the lack of an ideal animal model. We hypothesize that human skin with deep dermal wounds grafted onto athymic nude mice will develop a scar similar to HTS. Our aim is to develop a representative animal model of human HTS. Approach: Thirty-six nude mice were grafted with full thickness human skin with deep dermal scratch wound before or 2 weeks after grafting or without scratch. The scratch on the human skin grafts was made using a specially designed jig that creates a wound >0.6 mm in depth. The xenografts were morphologically analyzed by digital photography. Mice were euthanized at 1, 2, and 3 months postoperatively for histology and immunohistochemistry analysis. Results: The mice developed raised and firm scars in the scratched xenografts with more contraction, increased infiltration of macrophage, and myofibroblasts compared to the xenografts without deep dermal scratch wound. Scar thickness and collagen bundle orientation and morphology resembled HTS. The fibrotic scars in the wounded human skin were morphologically and histologically similar to HTS, and human skin epithelial cells persisted in the remodeling tissues for 1 year postengraftment. Innovation and Conclusions: Deep dermal injury in human skin retains its profibrotic nature after transplantation, affording a novel model for the assessment of therapies for the treatment of human fibroproliferative disorders of the skin. PMID:27366591

  3. Effects of Intense Pulsed Light on Tissue Vascularity and Wound Healing: A Study with Mouse Island Skin Flap Model

    PubMed Central

    Cao Minh, Trinh; Xuan Hai, Do; Thi Ngoc, Pham

    2015-01-01

    Intense pulsed light (IPL) has been used extensively in aesthetic and cosmetic dermatology. To test whether IPL could change the tissue vascularity and improve wound healing, mice were separated into 4 groups. Mice in Group I were not treated with IPL, whereas, dorsal skins of mice in Groups II, III, and IV were treated with 35 J/cm2, 25 J/cm2, and 15 J/cm2 IPL, respectively. After 2 weeks, dorsal island skin flaps were raised, based on the left deep circumflex iliac vessels as pedicles; then, survival rate was assessed. Flaps in Group IV (treated with lowest dose of IPL) have a survival rate significantly higher than other groups. Counting blood vessels did not demonstrate any significant differences; however, vessel dilation was found in this group. The results show that IPL at the therapeutic doses which are usually applied to humans is harmful to mouse dorsal skin and did not enhance wound healing, whereas, IPL at much lower dose could improve wound healing. The possible mechanism is the dilation of tissue vasculature thanks to the electromagnetic character of IPL. Another mechanism could be the heat-shock protein production. PMID:25722887

  4. Effects of intense pulsed light on tissue vascularity and wound healing: a study with mouse island skin flap model.

    PubMed

    Cao Minh, Trinh; Xuan Hai, Do; Thi Ngoc, Pham

    2015-01-01

    Intense pulsed light (IPL) has been used extensively in aesthetic and cosmetic dermatology. To test whether IPL could change the tissue vascularity and improve wound healing, mice were separated into 4 groups. Mice in Group I were not treated with IPL, whereas, dorsal skins of mice in Groups II, III, and IV were treated with 35 J/cm(2), 25 J/cm(2), and 15 J/cm(2) IPL, respectively. After 2 weeks, dorsal island skin flaps were raised, based on the left deep circumflex iliac vessels as pedicles; then, survival rate was assessed. Flaps in Group IV (treated with lowest dose of IPL) have a survival rate significantly higher than other groups. Counting blood vessels did not demonstrate any significant differences; however, vessel dilation was found in this group. The results show that IPL at the therapeutic doses which are usually applied to humans is harmful to mouse dorsal skin and did not enhance wound healing, whereas, IPL at much lower dose could improve wound healing. The possible mechanism is the dilation of tissue vasculature thanks to the electromagnetic character of IPL. Another mechanism could be the heat-shock protein production.

  5. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis.

    PubMed

    Dahlhoff, Maik; Schäfer, Matthias; Muzumdar, Sukalp; Rose, Christian; Schneider, Marlon R

    2015-11-01

    The epidermal growth factor receptor (EGFR) plays a key role in skin inflammation, wound healing, and carcinogenesis. Less is known about the functions of the structurally related receptor ERBB3 (HER3) in the skin. We assessed the requirement of ERBB3 for skin homeostasis, wound healing, and tumorigenesis by crossing mice carrying a conditional Erbb3 allele with animals expressing cre under the control of the keratin 5 promoter. Erbb3(del) mice, lacking ERBB3 specifically in keratinocytes, showed no obvious abnormalities. The EGFR was upregulated in Erbb3(del) skin, possibly compensating the loss of ERBB3. Nonetheless, healing of full-thickness excisional wounds was negatively affected by ERBB3 deficiency. To analyze the function of ERBB3 during tumorigenesis, we employed the established DMBA/TPA multi-stage chemical carcinogenesis protocol. Erbb3(del) mice remained free of papillomas for a longer time and had significantly reduced tumor burden compared to control littermates. Tumor cell proliferation was considerably reduced in Erbb3(del) mice, and loss of ERBB3 also impaired keratinocyte proliferation after a single application of TPA. In human skin tumor samples, upregulated ERBB3 expression was observed in squamous cell carcinoma, condyloma, and malignant melanoma. Thus, we conclude that ERBB3, while dispensable for the development and the homeostasis of the epidermis and its appendages, is required for proper wound healing and for the progression of skin tumors during multi-stage chemical carcinogenesis in mice. ERBB3 may also be important for human skin cancer progression. The latter effects most probably reflect a key role for ERBB3 in increasing cell proliferation after stimuli as wounding or carcinogenesis.

  6. Protection against induction of mouse skin papillomas with low and high risk of conversion to malignancy by green tea polyphenols.

    PubMed

    Katiyar, S K; Mohan, R R; Agarwal, R; Mukhtar, H

    1997-03-01

    We earlier showed that a polyphenolic fraction isolated from green tea (GTP) affords protection against tumor promotion and tumor progression in SENCAR mouse skin. The present study was designed to further evaluate the protective effect of GTP against the induction and subsequent progression of papillomas to squamous cell carcinomas (SCCs) in experimental protocols where papillomas were developed with a low or high probability of their malignant conversion. Topical application of GTP (6 mg/animal) 30 min prior to that of 12-O-tetradecanoylphorbol-13-acetate (TPA) either once a week for 5 weeks (high risk TPA protocol) or once a week for 20 weeks (low risk TPA protocol) or mezerein (MEZ) twice a week for 20 weeks (high risk MEZ protocol) in 7,12-dimethylbenz[a]anthracene (DMBA)-initiated mouse skin resulted in significant protection against skin tumor promotion in terms of tumor incidence (32-60%), multiplicity (49-63%) and tumor volume/mouse (73-90%) at the termination of the experiment at 20 weeks. In three separate malignant progression experiments when papilloma yield in DMBA-initiated and TPA or MEZ promoted low and high risk protocols was stabilized at 20 weeks, animals were divided into two subgroups. These animals were either topically treated twice weekly with acetone (0.2 ml/animal, spontaneous malignant conversion group) or with GTP (6 mg/animal in 0.2 ml acetone) for an additional period of 31 weeks. During these treatment regimens, all suspected carcinomas were recorded and each one was verified histopathologically either at the time when tumor-bearing mouse died/moribund or at the termination of the experiment at 51 weeks. GTP resulted in significant protection against the malignant conversion of papillomas to SCC in all the protocols employed. At the termination of the experiment at 51 weeks, these protective effects were evident in terms of mice with carcinomas (35-41%), carcinomas per mouse (47-55%) and percent malignant conversion of papillomas to

  7. Early changes produced in mouse skin by the application of three middle distillates.

    PubMed

    Grasso, P; Sharratt, M; Ingram, A J

    1988-01-01

    It has been reported by the American Petroleum Institute (API) that dermal applications of certain middle distillates of mineral oils can result in high incidences of skin tumours in mice. This was unexpected as the polycyclic aromatic hydrocarbon (PAH) levels in these were below detection limits. To examine the possible role of tissue injury in the induction of tumours, the skin reactions produced by thrice weekly applications of three middle distillates similar to those tested by the API were examined grossly and histopathologically at intervals up to 6 weeks. Various reference materials and oils were used as controls. Preliminary histological examination showed that severe skin damage was present from week 1 onwards in mice treated with the three middle distillates, two of them producing epidermal loss and ulceration. Marked epidermal hyperplasia was produced by all three middle distillates. These findings support the view that regenerative epidermal hyperplasia due to repeated severe skin damage may have exerted a powerful promotional effect in the production of the skin tumours by middle distillates in the API study. PMID:3180034

  8. Skin-Derived Mesenchymal Stem Cells Help Restore Function to Ovaries in a Premature Ovarian Failure Mouse Model

    PubMed Central

    Lai, Dongmei; Wang, Fangyuan; Dong, Zhangli; Zhang, Qiuwan

    2014-01-01

    Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs) and male skin-derived mesenchymal stem cells (M-SMSCs) from red fluorescence protein (RFP) transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH) antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health. PMID:24879098

  9. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model.

    PubMed

    Lai, Dongmei; Wang, Fangyuan; Dong, Zhangli; Zhang, Qiuwan

    2014-01-01

    Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs) and male skin-derived mesenchymal stem cells (M-SMSCs) from red fluorescence protein (RFP) transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH) antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health. PMID:24879098

  10. Protein Tyrosine Kinase 6 Regulates UVB-Induced Signaling and Tumorigenesis in Mouse Skin.

    PubMed

    Chastkofsky, Michael I; Bie, Wenjun; Ball-Kell, Susan M; He, Yu-Ying; Tyner, Angela L

    2015-10-01

    Protein tyrosine kinase 6 (PTK6, also called BRK) is an intracellular tyrosine kinase expressed in the epithelial linings of the gastrointestinal tract and the skin, where it is expressed in nondividing differentiated cells. We found that PTK6 expression increases in the epidermis following UVB treatment. To evaluate the roles of PTK6 in the skin following UVB-induced damage, we exposed back skin of Ptk6 +/+ and Ptk6 -/- SENCAR mice to incremental doses of UVB for 30 weeks. Wild-type mice were more sensitive to UVB and exhibited increased inflammation and greater activation of signal transducer and activator of transcription-3 (STAT3) than Ptk6-/- mice. Disruption of Ptk6 did not have an impact on proliferation, although PTK6 was expressed and activated in basal epithelial cells in wild-type mice following UVB treatment. However, wild-type mice exhibited shortened tumor latency and increased tumor load compared with Ptk6-/- mice, and STAT3 activation was increased in these tumors. PTK6 activation was detected in UVB-induced tumors, and this correlated with increased activating phosphorylation of focal adhesion kinase (FAK) and breast cancer anti-estrogen resistance 1 (BCAR1). Activation of PTK6 was also detected in human squamous cell carcinomas of the skin. Although PTK6 has roles in normal differentiation, it also contributes to UVB-induced injury and tumorigenesis in vivo. PMID:25938342

  11. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin

    PubMed Central

    Bewick, Guy S.; Banks, Robert W.

    2016-01-01

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. PMID:27077818

  12. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin.

    PubMed

    Bewick, Guy S; Banks, Robert W

    2016-01-01

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. PMID:27077818

  13. Inhibitory effect of topical application of a green tea polyphenol fraction on tumor initiation and promotion in mouse skin.

    PubMed

    Huang, M T; Ho, C T; Wang, Z Y; Ferraro, T; Finnegan-Olive, T; Lou, Y R; Mitchell, J M; Laskin, J D; Newmark, H; Yang, C S

    1992-06-01

    A green tea polyphenol fraction was evaluated for its ability to inhibit tumor initiation by polycyclic aromatic hydrocarbons and tumor promotion by a phorbol ester in the skin of CD-1 mice. Topical application of the green tea polyphenol fraction inhibited benzo[a]pyrene- and 7,12-dimethylbenz[a]-anthracene-induced tumor initiation as well as 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion. Topical application of the green tea polyphenol fraction also inhibited TPA-induced inflammation, ornithine decarboxylase activity, hyperplasia and hydrogen peroxide formation. Studies with individual polyphenolic compounds in green tea indicated that topical application of (-)-epigallocatechin gallate, (-)-epigallocatechin and (-)-epicatechin gallate inhibited TPA-induced inflammation in mouse epidermis.

  14. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    SciTech Connect

    Gerecke, Donald R. Chen Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Y.-C.; Tong Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2009-01-15

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal-epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine-cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors.

  15. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    PubMed Central

    Gerecke, Donald R.; Chen, Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Yoke-Chen; Tong, Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2011-01-01

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal–epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine–cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors. PMID:18955075

  16. Alterations in the expression of uvomorulin and Na+,K(+)-adenosine triphosphatase during mouse skin tumor progression.

    PubMed Central

    Ruggeri, B.; Caamano, J.; Slaga, T. J.; Conti, C. J.; Nelson, W. J.; Klein-Szanto, A. J.

    1992-01-01

    Uvomorulin (E-cadherin), a cell adhesion molecule, and Na+,K(+)-adenosine triphosphatase (ATPase), a marker protein of the basal-lateral cell membrane domains of polarized epithelial cells, were investigated in a group of mouse skin tumors induced by a two-stage chemical carcinogenesis protocol and in cell lines derived from mouse skin papillomas and squamous cell carcinomas (SCC). Although these two markers were present in benign tumors and in nontumorigenic cell lines, the Na+,K(+)-ATPase showed an altered pattern of distribution that included the presence of enzyme not only in the basolateral domain but also on the apical domain of the cell membrane of basal and spinous cells in well-differentiated squamous cell carcinomas (SCC). In higher grade SCC, a loss of Na+,K(+)-ATPase immunoreactivity was simultaneously detected with a marginal or absent expression of uvomorulin. The more differentiated SCC and papillomas expressed less uvomorulin immunoreactivity than normal epidermal cells. Both markers were seen in tumor cell lines that produced well-differentiated SCC after subcutaneous inoculation into nude mice. Neither Na+,K(+)-ATPase nor uvomorulin could be detected in cell lines that produced high grade, poorly differentiated SCC. Northern blots confirmed the absence of uvomorulin mRNA in these highly malignant cell lines. These data indicate that progression from premalignant papilloma to low-grade SCC and subsequently to high-grade SCC is accompanied by loss of epithelial cell polarity as detected by changes in Na+,K(+)-ATPase and by decreased or absent expression of uvomorulin in tumors and cell lines characterized by an advanced malignant phenotype. Images Figure 1 Figure 2 Figure 3 PMID:1316085

  17. Inhibition of tumour promotion in mouse skin by extracts of rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), unique South African herbal teas.

    PubMed

    Marnewick, Jeanine; Joubert, Elizabeth; Joseph, Shamiel; Swanevelder, Sonja; Swart, Pieter; Gelderblom, Wentzel

    2005-06-28

    The modulating effect of ethanol/acetone (E/A) soluble fractions, prepared from methanolic extracts of processed and unprocessed rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia) as well as green (Camellia sinensis) teas was established in a two-stage mouse skin carcinogenesis assay. Topical application of the tea fractions prior to the tumour promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), on ICR mouse skin initiated with 7,12-dimethylbenz[a]anthracene (DMBA) suppressed skin tumorigenesis significantly (P<0.001) with the green tea E/A fraction exhibiting a 100% inhibition, unprocessed honeybush 90%, processed honeybush 84.2%, processed rooibos 75% and unprocessed rooibos 60%. The green tea fraction, with the highest flavanol/proanthocyanidin content, also exhibited the highest protective activity (99%) against hepatic microsomal lipid peroxidation, and completely inhibited skin tumour formation. Differences in the flavanol/proanthocyanidin and flavonol/flavone composition and/or non polyphenolic constituents are likely to be important determinants in the inhibition of tumour promotion by the herbal tea E/A fractions in mouse skin.

  18. Staphylococcus δ-toxin promotes mouse allergic skin disease by inducing mast cell degranulation

    PubMed Central

    Nakamura, Yuumi; Oscherwitz, Jon; Cease, Kemp B.; Chan, Susana M.; Muñoz-Planillo, Raul; Hasegawa, Mizuho; Villaruz, Amer E.; Cheung, Gordon Y. C.; McGavin, Martin J.; Travers, Jeffrey B.; Otto, Michael; Inohara, Naohiro; Núñez, Gabriel

    2013-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects 15 to 30% of children and ~5% of adults in industrialized countries1. Although the pathogenesis of AD is not fully understood, the disease is mediated by an abnormal immunoglobulin E (IgE) immune response in the setting of skin barrier dysfunction2. Mast cells (MCs) contribute to IgE-mediated allergic disorders including AD3. Upon activation, MCs release their membrane-bound cytosolic granules leading to the release of multiple molecules that are important in the pathogenesis of AD and host defense4. More than 90% of AD patients are colonized with Staphylococcus aureus in the lesional skin whereas most healthy individuals do not harbor the pathogen5. Several Staphylococcal exotoxins (SEs) can act as superantigens and/or antigens in models of AD6. However, the role of these SEs in disease pathogenesis remains unclear. Here, we report that culture supernatants of S. aureus contain potent MC degranulation activity. Biochemical analysis identified δ-toxin as the MC degranulation-inducing factor produced by S. aureus. MC degranulation induced by δ-toxin depended on phosphoinositide 3-kinase (PI3K) and calcium (Ca2+) influx, but unlike that mediated by IgE crosslinking, it did not require the spleen tyrosine kinase (Syk). In addition, IgE enhanced δ-toxin-induced MC degranulation in the absence of antigen. Furthermore, S. aureus isolates recovered from AD patients produced high levels of δ-toxin. Importantly, skin colonization with S. aureus, but not a mutant deficient in δ-toxin, promoted IgE and IL-4 production, as well as inflammatory skin disease. Furthermore, enhancement of IgE production and dermatitis by δ-toxin was abrogated in KitW-sh/W-sh MC-deficient mice and restored by MC reconstitution. These studies identify δ-toxin as a potent inducer of MC degranulation and suggest a mechanistic link between S. aureus colonization and allergic skin disease. PMID:24172897

  19. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    PubMed Central

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  20. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    PubMed Central

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration.

  1. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells.

    PubMed

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni; Yue, Wang; Kaihong, Ji

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  2. Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kappaB and p38 MAPK in mouse skin.

    PubMed

    Kim, Sue Ok; Chun, Kyung-Soo; Kundu, Joydeb Kumar; Surh, Young-Joon

    2004-01-01

    [6]-Gingerol, a major pungent ingredient of ginger (Zingiber officinale Roscoe, Zingiberaceae), has a wide array of pharmacologic effects. Previous studies have demonstrated that [6]-gingerol inhibits mouse skin tumor promotion and anchorage-independent growth of cultured mouse epidermal cells stimulated with epidermal growth factor. Cyclooxygenase-2 (COX-2), a key enzyme in the prostaglandin biosynthesis, has been recognized as a molecular target for many anti-inflammatory as well as chemopreventive agents. Topical application of [6]-gingerol inhibited phorbol 12-myristate 13-acetate -induced COX-2 expression. One of the essential transcription factors responsible for COX-2 induction is NF-kappaB. [6]-Gingerol suppressed NF-kappaB DNA binding activity in mouse skin. In addition, [6]-gingerol inhibited the phoshorylation of p38 mitogen-activated protein kinase which may account for its inactivation of NF-kappaB and suppression of COX-2 expression. PMID:15630166

  3. Dynamic change of histone H2AX phosphorylation independent of ATM and DNA-PK in mouse skin in situ

    SciTech Connect

    Koike, Manabu Mashino, Minako; Sugasawa, Jun; Koike, Aki

    2007-11-30

    Histone H2AX undergoes phosphorylation on Ser 139 ({gamma}-H2AX) rapidly in response to DNA double-strand breaks induced by exogenous stimuli, such as ionizing radiation. However, the endogenous phosphorylation pattern and modifier of H2AX remain unclear. Here we show that H2AX is regulated physically at the level of phosphorylation at Ser139 during a hair cycle in the mouse skin. In anagen hair follicles, {gamma}-H2AX-positive cells were observed in the outer root sheath (ORS) and hair bulb in a cycling inferior region but not in a permanent superficial region. In telogen hair follicles, {gamma}-H2AX-positive cells were only detected around the germ cell cap. In contrast, following X-irradiation, {gamma}-H2AX was observed in various cell types including the ORS cells in the permanent superficial region. Furthermore, {gamma}-H2AX-positive cells were detected in the skin of mice lacking either ATM or DNA-PK, suggesting that these kinases are not essential for phosphorylation in vivo.

  4. Highly persistent polycyclic aromatic hydrocarbon-DNA adducts in mouse skin: detection by 32P-postlabeling analysis.

    PubMed

    Randerath, E; Agrawal, H P; Reddy, M V; Randerath, K

    1983-08-01

    A 32P-postlabeling method for carcinogen-DNA adduct analysis recently developed in our laboratory was applied to skin DNA from mice treated topically with polycyclic aromatic hydrocarbons (PAHs). After application of 4 doses of 1.2 mumol each of benzo[alpha]pyrene (BP), 3-methylcholanthrene (MC) and 7,12-dimethylbenz[alpha]anthracene (DMBA), respectively, total covalent adduct binding in mouse skin DNA initially amounted to 1 adduct in 6.0 X 10(4) - 1.3 X 10(5) nucleotides. Four weeks after treatment, these levels had declined to 1 adduct in 1.4 X 10(6) - 2.7 X 10(6) nucleotides. Substantial removal of DNA adducts occurred during the first 2 weeks after carcinogen application while adducts remaining thereafter underwent little or no repair between 2 and 4 weeks after treatment. These results raise the possibility that the persistent adducts occupy specific genomic sites in quiescent cells where they may not be amenable to repair because of localized conformational alterations of DNA or shielding by associated proteins. PMID:6318965

  5. Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation.

    PubMed

    Liese, Jan; Rooijakkers, Suzan H M; van Strijp, Jos A G; Novick, Richard P; Dustin, Michael L

    2013-06-01

    Staphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN). To gain more insight into the dynamics of PMN migration and host-pathogen interactions in vivo, we used intravital two-photon (2-P) microscopy to visualize S. aureus skin infections in the mouse. Reporter S. aureus strains expressing fluorescent proteins were developed, which allowed for detection of the bacteria in vivo. By employing LysM-EGFP mice to visualize PMN, we observed the rapid appearance of PMN in the extravascular space of the dermis and their directed movement towards the focus of infection, which led to the delineation of an abscess within 1 day. Moreover, tracking of transferred labelled bone-marrow neutrophils showed that PMN localization to the site of infection is dependent on the presence of G-protein-coupled receptors on the PMN, whereas Interleukin-1 receptor was required on host cells other than PMN. Furthermore, the S. aureus complement inhibitor Ecb could block PMN accumulation at thesite of infection. Our results establish that 2-P microscopy is a powerful tool to investigate the orchestration of the immune cells, S. aureus location and gene expression in vivo on a single cell level.

  6. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol ester-stimulated mouse skin.

    PubMed

    Kim, Sue Ok; Kundu, Joydeb Kumar; Shin, Young Kee; Park, Jin-Hong; Cho, Myung-Haing; Kim, Tae-Yoon; Surh, Young-Joon

    2005-04-01

    [6]-Gingerol, a pungent ingredient of ginger (Zingiber officinale Roscoe, Zingiberaceae), has a wide array of pharmacologic effects. The present study was aimed at unraveling the molecular mechanisms underlying previously reported antitumor promoting effects of [6]-gingerol in mouse skin in vivo. One of the well-recognized molecular targets for chemoprevention is cyclooxygenase-2 (COX-2) that is abnormally upregulated in many premalignant and malignant tissues and cells. In our present study, topical application of [6]-gingerol inhibited COX-2 expression in mouse skin stimulated with a prototype tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Since the transcription factor nuclear factor-kappaB (NF-kappaB) is known to regulate COX-2 induction, we attempted to determine the effect of [6]-gingerol on TPA-induced activation of NF-kappaB. Pretreatment with [6]-gingerol resulted in a decrease in both TPA-induced DNA binding and transcriptional activities of NF-kappaB through suppression of IkappaBalpha degradation and p65 nuclear translocation. Phosphorylation of both IkappaBalpha and p65 was substantially blocked by [6]-gingerol. In addition, [6]-gingerol inhibited TPA-stimulated interaction of phospho-p65-(Ser-536) with cAMP response element binding protein-binding protein, a transcriptional coactivator of NF-kappaB. Moreover, [6]-gingerol prevented TPA-induced phosphorylation and catalytic activity of p38 mitogen-activated protein (MAP) kinase that regulates COX-2 expression in mouse skin. The p38 MAP kinase inhibitor SB203580 attenuated NF-kappaB activation and subsequent COX-2 induction in TPA-treated mouse skin. Taken together, our data suggest that [6]-gingerol inhibits TPA-induced COX-2 expression in mouse skin in vivo by blocking the p38 MAP kinase-NF-kappaB signaling pathway. PMID:15735738

  7. SKHIN/Sprd, a new genetically defined inbred hairless mouse strain for UV-induced skin carcinogenesis studies.

    PubMed

    Perez, Carlos; Parker-Thornburg, Jan; Mikulec, Carol; Kusewitt, Donna F; Fischer, Susan M; Digiovanni, John; Conti, Claudio J; Benavides, Fernando

    2012-03-01

    Strains of mice vary in their susceptibility to ultra-violet (UV) radiation-induced skin tumors. Some strains of hairless mice (homozygous for the spontaneous Hr(hr) mutation) are particularly susceptible to these tumors. The skin tumors that develop in hairless mice resemble, both at the morphologic and molecular levels, UV-induced squamous cell carcinomas (SCC) and their precursors in human. The most commonly employed hairless mice belong to the SKH1 stock. However, these mice are outbred and their genetic background is not characterized, which makes them a poor model for genetic studies. We have developed a new inbred strain from outbred SKH1 mice that we named SKHIN/Sprd (now at generation F31). In order to characterize the genetic background of this new strain, we genotyped a cohort of mice at F30 with 92 microsatellites and 140 single nucleotide polymorphisms (SNP) evenly distributed throughout the mouse genome. We also exposed SKHIN/Sprd mice to chronic UV irradiation and showed that they are as susceptible to UV-induced skin carcinogenesis as outbred SKH1 mice. In addition, we proved that, albeit with low efficiency, inbred SKHIN/Sprd mice are suitable for transgenic production by classical pronuclear microinjection. This new inbred strain will be useful for the development of transgenic and congenic strains on a hairless inbred background as well as the establishment of syngeneic tumor cell lines. These new tools can potentially help elucidate a number of features of the cutaneous response to UV irradiation in humans, including the effect of genetic background and modifier genes.

  8. Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models

    NASA Astrophysics Data System (ADS)

    Park, Jesung; Mroz, Pawel; Hamblin, Michael R.; Yaroslavsky, Anna N.

    2010-03-01

    Skin cancer is the most common form of human cancer. Its early diagnosis and timely treatment is of paramount importance for dermatology and surgical oncology. In this study, we evaluate the use of reflectance and fluorescence confocal microscopy for detecting skin cancers in an in-vivo trial with B16F10 melanoma and SCCVII squamous cell carcinoma in mice. For the experiments, the mice are anesthetized, then the tumors are infiltrated with aqueous solution of methylene blue and imaged. Reflectance images are acquired at 658 nm. Fluorescence is excited at 658 nm and registered in the range between 690 and 710 nm. After imaging, the mice are sacrificed. The tumors are excised and processed for hematoxylin and eosin histopathology, which is compared to the optical images. The results of the study indicate that in-vivo reflectance images provide valuable information on vascularization of the tumor, whereas the fluorescence images mimic the structural features seen in histopathology. Simultaneous dye-enhanced reflectance and fluorescence confocal microscopy shows promise for the detection, demarcation, and noninvasive monitoring of skin cancer development.

  9. Ultrastructural demonstration of chemical modification of melanogenesis in hairless mouse skin

    SciTech Connect

    Nishimura, M.; Gellin, G.A.; Hoshino, S.; Epstein, J.H.; Epstein, W.L.; Fukuyama, K.

    1982-02-01

    We investigated chemical and physical modifications of the genetically determined ultrastructure of melanosomes. The flank skin of hairless mice was treated with ultraviolet energy (UV) shorter than 320 nm or with a combination of a photosensitizer and UV (PUVA treatment). All melanosomes in the induced melanocytes and those in resident melanocytes in the ear skin showed eumelanogenesis, although the degree of melanin deposition differed considerably according to the induction process. Eumelanogenesis was most advanced in the resident melanocytes while PUVA-induced melanocytes showed more immature premelanosomes. We then topically applied 4-tertiary butyl catechol on the skin. The depigmenting agent caused an appearance of pheomelanosomes. The alteration in melanogenesis was seen most distinctly in premelanosomes of the PUVA-induced cells. Altered ultrastructure was also observed in matured melanosomes; this change was most apparent in the resident melanocytes. These findings indicate that cells with eumelanogenesis may undergo pheomelanogenesis. The present study demonstrated effects of chemicals on genetically determined function of melanocytes by quantitative analysis of melanosome ultrastructure.

  10. Carcinogenic and co-carcinogenic studies of thiram on mouse skin.

    PubMed

    Shukla, Y; Baqar, S M; Mehrotra, N K

    1996-03-01

    Thiram (tetramethyl thiuram disulfide), a carbamate fungicide, is used in the rubber processing industry as an accelerator and vulcanizing agent. Previous studies evaluated the tumorigenic potential of thiram in rodents, but failed to provide conclusive results. In the present study the tumorigenic potential of thiram was evaluated in Swiss albino mice by a two-stage initiation-promotion protocol and a long-term in vivo bioassay for carcinogenicity. Results revealed that following tumour initiation with thiram and promotion with 12-O-tetradecanoyl phorbol 13-acetate, skin tumours developed, mostly at the site of treatment (dorsal skin) in single and multiple dose-initiated animals. Similarly, papillomatous growths were observed on the dorsal skin of the mice initiated with a single subcarcinogenic dose of dimethylbenzanthracene and promoted with thiram. Thiram failed to provoke tumorigenesis when tested as a complete carcinogen for up to 52 wk and thereafter the study was terminated due to increased mortality. It is concluded that thiram has both tumour initiating and tumour-promoting potential in both sexes of Swiss albino mice following topical exposure at the tested dose level.

  11. Unexpected reduction of skin tumorigenesis on expression of cyclin-dependent kinase 6 in mouse epidermis.

    PubMed

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G(1) phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development.

  12. Unexpected reduction of skin tumorigenesis on expression of cyclin-dependent kinase 6 in mouse epidermis.

    PubMed

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G(1) phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development. PMID:21224071

  13. Unexpected Reduction of Skin Tumorigenesis on Expression of Cyclin-Dependent Kinase 6 in Mouse Epidermis

    PubMed Central

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L.

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G1 phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development. PMID:21224071

  14. UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin.

    PubMed

    Pal, Anu; Alam, Shamshad; Mittal, Sandeep; Arjaria, Nidhi; Shankar, Jai; Kumar, Mahadeo; Singh, Dhirendra; Pandey, Alok Kumar; Ansari, Kausar Mahmood

    2016-09-01

    UV-induced reactive oxygen species (ROS) have been implicated in photocarcinogenesis and skin aging. This is because UV-induced ROS can induce DNA damage that, if unrepaired, can lead to carcinogenesis. Sunscreens contain UV attenuators, such as organic chemical and/or physical UV filters, which can prevent all forms of damage from UV irradiation. In recent years, the effective broad-spectrum UV attenuation properties of ZnO-nanoparticles (ZnO-NPs) have made them attractive as active components in sunscreens and other personal care products. As the use of ZnO-NPs in sunscreens is on the rise, so is public concern about their safety, particularly with exposure to sunlight. Therefore, in the present study, using various experimental approaches, we investigated the possible toxic effects resulting from exposure to UVB and ZnO-NPs in primary mouse keratinocytes (PMKs) as well as in the skin of SKH-1 hairless mice. The findings of the present study demonstrated that co-exposure to UVB and ZnO-NPs: (1) translocated the ZnO-NPs into the nucleus of PMKs; (2) caused enhanced generation of ROS; (3) induced more severe DNA damage as evident by alkaline comet assay and immunocytochemistry for γ-H2AX and 8-hydroxy-2'-deoxyguanosine (8-OHdG); and (4) subsequently caused much more pronounced cell death in PMKs. Further, to elucidate the physiological relevance of these in vitro findings, SKH-1 hairless mice were topically treated with ZnO-NPs and after 30min irradiated with UVB (50mJ/cm(2)). Interestingly, we found that co-exposure of ZnO-NPs and UVB caused increased oxidative DNA damage and cell death, indicated by immunostaining for 8-OHdG and TUNEL assay in sections of exposed mouse skin. Thus, collectively, our findings suggest that UVB exposure increases ZnO-NPs-mediated oxidative stress and oxidative damage, thereby enhancing ZnO-NPs-induced cell death. PMID:27542711

  15. Tumorigenesis in athymic nude mouse skin by chemical carcinogens and ultraviolet light

    SciTech Connect

    Anderson, L.M.; Rice, J.M.

    1987-01-01

    A variety of established skin tumorigenesis protocols were tested for efficacy on athymic nu/nu mice (BALB/c background) and compared on euthymic nu/+ counterparts. Chemical carcinogens and UV light were applied to the ears of 10 mice of each sex and genotype for each group. Treatments were: 0.5 mg 7,12-dimethylbenz(a)anthracene ((DMBA) CAS: 57-97-6) to each ear; 0.125 mg DMBA to each ear, followed by 0.1 microgram 12-O-tetradecanoylphorbol-13-acetate ((TPA) CAS: 16561-29-8) twice weekly for 56 weeks; 0.2 mg N-nitroso-N-methylurea ((NMU) CAS: 684-93-5; 1% in acetone, 20 microliter) to each ear; 0.1 mg NMU to each ear weekly for 30 weeks; 0.2 mg NMU to each ear, followed by TPA twice weekly for 56 weeks; two ip doses of N-nitroso-N-ethylurea ((NEU) CAS: 759-73-9; 25 mg/kg each), followed by TPA twice weekly topically for 56 weeks; and exposure to sunlamps (250- to 400-nm emission) two or three times per week for 20 weeks, for a total dose of 3.7 X 10(5) J/m2. The chemical treatments caused mainly squamous papillomas and carcinomas, sebaceous adenomas and adenocarcinomas, and basal cell tumors, which appeared both on the skin of the ears and elsewhere. UV light caused squamous tumors, basal cell tumors, and sarcomas. Ear skin of the nu/nu mice developed significantly more squamous tumors than those of nu/+ mice after DMBA-TPA, NMU-TPA, NEU-TPA, repeated NMU, or UV light. Similar results were obtained for the skin of the heads and bodies. Even a single dose of NMU caused a few tumors on the nude, but not the euthymic, mice. A single dose of DMBA caused primarily sebaceous adenomas, distributed at random over the entire bodies. These results show that, contrary to previous reports, nude mice are sensitive to skin tumorigenesis, more so than euthymic nu/+ mice similarly exposed to diverse types of carcinogen and treatment protocols.

  16. Oncostatin M overexpression induces skin inflammation but is not required in the mouse model of imiquimod-induced psoriasis-like inflammation.

    PubMed

    Pohin, Mathilde; Guesdon, William; Mekouo, Adela Andrine Tagne; Rabeony, Hanitriniaina; Paris, Isabelle; Atanassov, Hristo; Favot, Laure; Mcheik, Jiad; Bernard, François-Xavier; Richards, Carl D; Amiaud, Jérôme; Blanchard, Frédéric; Lecron, Jean-Claude; Morel, Franck; Jégou, Jean-François

    2016-07-01

    Oncostatin M (OSM) has been reported to be overexpressed in psoriasis skin lesions and to exert proinflammatory effects in vitro on human keratinocytes. Here, we report the proinflammatory role of OSM in vivo in a mouse model of skin inflammation induced by intradermal injection of murine OSM-encoding adenovirus (AdOSM) and compare with that induced by IL-6 injection. Here, we show that OSM potently regulates the expression of genes involved in skin inflammation and epidermal differentiation in murine primary keratinocytes. In vivo, intradermal injection of AdOSM in mouse ears provoked robust skin inflammation with epidermal thickening and keratinocyte proliferation, while minimal effect was observed after AdIL-6 injection. OSM overexpression in the skin increased the expression of the S100A8/9 antimicrobial peptides, CXCL3, CCL2, CCL5, CCL20, and Th1/Th2 cytokines, in correlation with neutrophil and macrophage infiltration. In contrast, OSM downregulated the expression of epidermal differentiation genes, such as cytokeratin-10 or filaggrin. Collectively, these results support the proinflammatory role of OSM when it is overexpressed in the skin. However, OSM expression was not required in the murine model of psoriasis induced by topical application of imiquimod, as demonstrated by the inflammatory phenotype of OSM-deficient mice or wild-type mice treated with anti-OSM antibodies. PMID:27122058

  17. Effects of Food-Derived Collagen Peptides on the Expression of Keratin and Keratin-Associated Protein Genes in the Mouse Skin.

    PubMed

    Le Vu, Phuong; Takatori, Ryo; Iwamoto, Taku; Akagi, Yutaka; Satsu, Hideo; Totsuka, Mamoru; Chida, Kazuhiro; Sato, Kenji; Shimizu, Makoto

    2015-01-01

    Oral ingestion of collagen peptides (CP) has long been suggested to exert beneficial effects on the skin, but the molecular events induced by CP on the skin remain unclear. Here, we investigated the effects of oral CP administration on gene expression in hairless mouse skin and of prolyl-hydroxyproline (Pro-Hyp), a collagen-derived dipeptide, on gene expression in a coculture of mouse skin keratinocytes and fibroblasts. Using microarray analysis, we found that oral administration of CP to hairless mice for 6 weeks induced increased expression of Krtap and Krt genes in the skin. Annotation analysis using DAVID revealed that a group of the up-regulated genes, Gprc5d, Sprr2a1, Krt27 and Krtap16-7, is associated with the development of the epidermis and the hair cycle. In addition, the presence of Pro-Hyp (200 μM) induced an increase in the expression of Krtap16-7, Krtap15, Krtap14 and Krtap8-2 in keratinocytes in coculture, partially resembling the in vivo result. The Pro-Hyp-induced up-regulation of these genes was not observed when keratinocytes were cultured without fibroblasts, suggesting that the presence of fibroblasts is essential for the effects of Pro-Hyp. Our study presents new insights into the effects of CP on the skin, which might link to the hair cycle. PMID:25721900

  18. Suppression of tumor promoter-induced oxidative stress and inflammatory responses in mouse skin by a superoxide generation inhibitor 1'-acetoxychavicol acetate.

    PubMed

    Nakamura, Y; Murakami, A; Ohto, Y; Torikai, K; Tanaka, T; Ohigashi, H

    1998-11-01

    Double applications of phorbol esters trigger excessive reactive oxygen species (ROS) production in mouse skin. Previously reported data suggest that the two applications induce distinguishable biochemical events, namely, priming and activation. The former is characterized as a recruitment of inflammatory cells, such as neutrophils, by chemotactic factors to inflammatory regions and edema formation. The latter is responsible for ROS generation. Thus, inhibitory effects of 1'-acetoxychavicol acetate (ACA), previously reported to be a superoxide generation inhibitor in vitro, on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative stress and inflammatory responses in mouse skin model were examined using a double application of ACA. We demonstrated that two pretreatments and pretreatment with ACA (810 nmol) in the activation phase suppressed double TPA application-induced H2O2 formation in mouse skin. ACA exhibited no inhibitory effects on edema formation and the enhancement of myeloperoxidase activity during the first TPA treatment, whereas the anti-inflammatory agent genistein administered at the same dose inhibited both biomarkers. No inhibitory potential of ACA for TPA-induced H2O2 formation in the priming phase was confirmed. On the other hand, in the in vitro study, ACA inhibited ROS generation in differentiated HL-60 cells more strongly than did 1'-hydroxychavicol, which showed no inhibition by pretreatment in the activation phase. In addition, allopurinol did not inhibit double TPA application-induced H2O2 formation in mouse skin. These findings suggest that the NADPH oxidase system of neutrophils rather than the epithelial xanthine oxidase system is dominant for the O2--generating potential in double TPA-treated mouse skin. ACA significantly inhibited mouse epidermis thiobarbituric acid-reacting substance formation, known as an overall oxidative damage biomarker. Moreover, histological studies demonstrated that ACA inhibited double TPA treatment

  19. Inhibition of akt enhances the chemopreventive effects of topical rapamycin in mouse skin

    USGS Publications Warehouse

    Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R.; Liu, Zhonglin; Barber, Christie; Rusche, Jadrian J.; Petricoin, Emmanuel; Calvert, Valerie; Einspahr, Janine G.; Dickinson, Jesse; Stratton, Steven P.; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M.; Dong, Zigang; Alberts, David S.; Bowden, G. Timothy

    2016-01-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced non-melanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin, (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared to those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here we explored the use of topical rapamycin as a chemopreventive agent in the context of solar simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared to controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared to vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC.

  20. Delivery of hydrocortisone from liposomal suspensions to the hairless mouse skin following topical application under non-occlusive and occlusive conditions.

    PubMed

    Kim, M K; Chung, S J; Lee, M H; Shim, C K

    1998-01-01

    The in-vivo cutaneous absorption of hydrocortisone was examined following topical application of hydrocortisone-containing liposomes. The formulation was applied onto the skin (1.0 cm2) of the hairless mouse (at a dose of 0.1 mg hydrocortisone) in the presence and absence of occlusion, and temporal profiles of the drug in the skin (stratum corneum and viable skin) were monitored. Under the non-occluded condition, the drug amount in the stratum corneum and viable skin reached its maximum within 1 h, and then decreased rapidly. Gelation of the liposomes by complete dehydration of the formulation under non-occlusion, which may prevent partition of the drug into the skin, appears to be a cause of the rapid decrease. Under the occluded condition, the drug amount in the skin was sustained although it then decreased dramatically compared with that under the non-occlusion (i.e. approximately 1/22 for stratum corneum and 1/8 for viable skin at 1 h, for example). A prevention of gelation of the liposomes by occlusion appears to be a potential mechanism of the maintenance of the drug concentration in the skin. The dramatic decrease in drug content in the skin may be attributed to the reduced partition of hydrocortisone, a hydrophobic drug, from the liposomes into the hydration-maintained stratum corneum under occlusion. In both application conditions, the concentration of hydrocortisone in the hydrophilic viable skin layer was markedly lower than that in the stratum corneum, indicating that partitioning between these tissues is a primary determinant of hydrocortisone reaching viable skin tissue. The estimated penetration depth of the drug into the stratum corneum was not affected significantly by the application conditions. These results demonstrate that excessive dehydration (non-occlusion) is not desirable for the prolonged delivery of hydrocortisone from liposomes into the skin. They also indicate that either hydration of the dosed skin (occlusion) is not preferable for

  1. Study of protein modifications induced by phorbol ester tumor promoters in mouse skin

    SciTech Connect

    Nelson, K.G.

    1981-08-01

    The purpose of this study was to determine if the phorbol ester tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) induced any specific changes in mouse epidermal proteins using the high resolution technique of two-dimensional electrophoresis. To accomplish this goal of determining the specificity and possibly the stage in promotion with which these protein changes were associated, epidermal proteins were analyzed (1) after treatment of adult mouse epidermis with several weakly promoting hyperplasiogenic agents, (2) following treatment with TPA in combination with various inhibitors of tumor promotion, (3) in basal kerotinocytes isolated from adult epidermis following treatment with TPA or several weakly promoting agents, and (4) during an initiation-promotion experiment. Evidence was found which indicated that the potent tumor promoter TPA as well as the weakly promoting hyperplasiogenic agents, mezerein, ethylphenylpropiolate (EPP), and mechanical abrasion, induced similar modifications of epidermal proteins, particularly among the keratins. These keratin modifications progressed with time following treatment resulting in a keratin pattern which resembled that of newborn epidermis.

  2. In Vivo Imaging Reveals a Pioneer Wave of Monocyte Recruitment into Mouse Skin Wounds

    PubMed Central

    Rodero, Mathieu P.; Licata, Fabrice; Poupel, Lucie; Hamon, Pauline; Khosrotehrani, Kiarash; Combadiere, Christophe; Boissonnas, Alexandre

    2014-01-01

    The cells of the mononuclear phagocyte system are essential for the correct healing of adult skin wounds, but their specific functions remain ill-defined. The absence of granulation tissue immediately after skin injury makes it challenging to study the role of mononuclear phagocytes at the initiation of this inflammatory stage. To study their recruitment and migratory behavior within the wound bed, we developed a new model for real-time in vivo imaging of the wound, using transgenic mice that express green and cyan fluorescent proteins and specifically target monocytes. Within hours after the scalp injury, monocytes invaded the wound bed. The complete abrogation of this infiltration in monocyte-deficient CCR2−/− mice argues for the involvement of classical monocytes in this process. Monocyte infiltration unexpectedly occurred as early as neutrophil recruitment did and resulted from active release from the bloodstream toward the matrix through microhemorrhages rather than transendothelial migration. Monocytes randomly scouted around the wound bed, progressively slowed down, and stopped. Our approach identified and characterized a rapid and earlier than expected wave of monocyte infiltration and provides a novel framework for investigating the role of these cells during early stages of wound healing. PMID:25272047

  3. Solar-UV-signature mutation prefers TCG to CCG: extrapolative consideration from UVA1-induced mutation spectra in mouse skin.

    PubMed

    Ikehata, Hironobu; Kumagai, Jun; Ono, Tetsuya; Morita, Akimichi

    2013-08-01

    UVA1 exerts its genotoxicity on mammalian skin by producing cyclobutane pyrimidine dimers (CPDs) in DNA and preferentially inducing solar-UV-signature mutations, C → T base substitution mutations at methylated CpG-associated dipyrimidine (Py-mCpG) sites, as demonstrated previously using a 364 nm laser as a UVA1 source and lacZ-transgenic mice that utilize the transgene as a mutational reporter. In the present study, we confirmed that a broadband UVA1 source induced the same mutation profiles in mouse epidermis as the UVA1 laser, generalizing the previous result from a single 364 nm to a wider wavelength range of UVA1 (340-400 nm). Combined with our previous data on the mutation spectra induced in mouse epidermis by UVB, UVA2 and solar UVR, we proved that the solar-UV-signature mutation is commonly observed in the wavelength range from UVB to UVA, and found that UVA1 induces this mutation more preferentially than the other shorter wavelength ranges. This finding indicates that the solar-UV-signature mutation-causing CPDs, which are known to prefer Py-mCpG sites, could be produced with the energy provided by the longer wavelength region of UVR, suggesting a photochemical reaction through the excitation of pyrimidine bases to energy states that can be accomplished by absorption of even low-energy UVR. On the other hand, the lower proportions of solar-UV-signature mutations observed in the mutation spectra for UVB and solar UVR indicate that the direct photochemical reaction through excited singlet state of pyrimidine bases, which can be accomplished only by high-energy UVR, is also involved in the mutation induction at those shorter wavelengths of UVR. We also found that the solar-UV signature prefers 5'-TCG-3' to 5'-CCG-3' as mutational target sites, consistent with the fact that UVA induces CPDs selectively at thymine-containing dipyrimidine sites and that solar UVR induces them preferably at Py-mCpG sites. However, the mutation spectrum in human p53 gene from non

  4. Skin Vaccination against Cervical Cancer Associated Human Papillomavirus with a Novel Micro-Projection Array in a Mouse Model

    PubMed Central

    Corbett, Holly J.; Fernando, Germain J. P.; Chen, Xianfeng; Frazer, Ian H.; Kendall, Mark A. F.

    2010-01-01

    Background Better delivery systems are needed for routinely used vaccines, to improve vaccine uptake. Many vaccines contain alum or alum based adjuvants. Here we investigate a novel dry-coated densely-packed micro-projection array skin patch (Nanopatch™) as an alternate delivery system to intramuscular injection for delivering an alum adjuvanted human papillomavirus (HPV) vaccine (Gardasil®) commonly used as a prophylactic vaccine against cervical cancer. Methodology/Principal Findings Micro-projection arrays dry-coated with vaccine material (Gardasil®) delivered to C57BL/6 mouse ear skin released vaccine within 5 minutes. To assess vaccine immunogenicity, doses of corresponding to HPV-16 component of the vaccine between 0.43±0.084 ng and 300±120 ng (mean ± SD) were administered to mice at day 0 and day 14. A dose of 55±6.0 ng delivered intracutaneously by micro-projection array was sufficient to produce a maximal virus neutralizing serum antibody response at day 28 post vaccination. Neutralizing antibody titres were sustained out to 16 weeks post vaccination, and, for comparable doses of vaccine, somewhat higher titres were observed with intracutaneous patch delivery than with intramuscular delivery with the needle and syringe at this time point. Conclusions/Significance Use of dry micro-projection arrays (Nanopatch™) has the potential to overcome the need for a vaccine cold chain for common vaccines currently delivered by needle and syringe, and to reduce risk of needle-stick injury and vaccine avoidance due to the fear of the needle especially among children. PMID:20976136

  5. Attenuation of DMBA/croton oil induced mouse skin papilloma by Apodytes dimidiata mediated by its antioxidant and antimutagenic potential.

    PubMed

    Divya, Menon K; Salini, Sasidharan; Meera, Nair; Lincy, Lawrence; Seema, Menon; Raghavamenon, Achuthan C; Babu, Thekkekara D

    2016-09-01

    Context Considering the role of cellular oxidative stress in mutations and subsequent transformation, phytochemicals with antioxidant potential has become a primary choice as chemopreventives. Apodytes dimidiata E. Mey. Ex. Arn (Icacinaceae), a widely used plant in Zulu traditional medicine, is reported to possess antioxidant activity. Objective To investigate the chemopreventive efficacy of methanol extract of A. dimidiata leaf (AMF). Materials and methods Antimutagenic potential of AMF (25, 50 and 75 μg/plate) was evaluated by the Ames test. The ability of AMF (100 and 250 mg/kg orally) on restoration of depleted antioxidant status by sodium fluoride (NaF) was analysed on BALB/c mice. 7,12-Dimethylbenz[a]anthracene/croton oil induced mouse skin papilloma model was studied up to 20 weeks to analyse the anticarcinogenic effect of AMF (1%, 3% and 5% topically, twice weekly for 6 weeks). Phytochemicals of AMF were characterized by GC-MS. Results AMF (75 μg/plate) reverted 4-nitro-o-phenylenediamine (NPDA) induced mutations in Salmonella typhimurium strains, TA 98, 100 and 102 by 74.8%, 72.5% and 69.3%, respectively. Against sodium azide, the percentage reversion was 80.4, 71.3 and 71.3. In mice, AMF (250 mg/kg for 4 days) increased the serum superoxide dismutase (SOD) and catalase activities by 48.71% and 30.3% against the NaF-induced drop. GSH level was improved by 48.59% with a concomitant decrease in TBARS (57.67%). The skin papilloma reduction was 79.32% for 5% AMF. Squalene, dodecanoic, tetradecanoic and hexadecanoic acids are the known antioxidant and chemopreventive molecules identified by GC-MS. Discussion and conclusion Antioxidant and antimutagenic activities of AMF might have contributed to its anticarcinogenic potential.

  6. Effect of UVB on hydrolysis of alpha-tocopherol acetate to alpha-tocopherol in mouse skin.

    PubMed

    Kramer-Stickland, K; Liebler, D C

    1998-08-01

    We have assessed the hydrolysis of alpha-tocopherol acetate (alpha-TAc) to the active antioxidant alpha-tocopherol (alpha-TH) in mouse epidermis and in supernatant from epidermal homogenates. Topically administered alpha-TH prevents UVB photocarcinogenesis in C3H mice, whereas alpha-TAc does not. Hydrolysis in skin was monitored in mice treated topically with deuterium labeled alpha-TAc (d3-alpha-TAc). Epidermal samples were isolated from mice and analyzed for endogenous (d0-alpha-TAc) and d3-alpha-TH by gas chromatography-mass spectrometry. Within 24 h, the levels of d3-alpha-TH increased up to 10-fold over endogenous d0-alpha-TH levels; however, in mice irradiated with UVB prior to the application of d3-alpha-TAc, levels of d3-alpha-TH increased up to 30-40-fold over endogenous d0-alpha-TH. This enhancement of alpha-TAc hydrolysis increased with increasing UVB dose. Prior UVB exposure may increase hydrolysis of alpha-TAc by increasing epidermal esterase activity. Nonspecific esterase activity was measured in the 2000 x g supernatant from epidermis of unirradiated and irradiated mice. Alpha-napthyl acetate, a nonspecific esterase substrate, was converted to alpha-napthol in supernatants from unirradiated mice. Hydrolysis to alpha-napthol increased approximately 3-fold in supernatants from irradiated mice. Hydrolysis of alpha-TAc to alpha-TH also occurred in supernatant from unirradiated mice, and this hydrolysis increased approximately 3-fold in supernatant from irradiated animals. These data indicate that nonspecific esterase activity was increased by UVB in the skin, that alpha-TAc is converted to alpha-TH in the homogenate fraction containing nonspecific esterase, and that UVB exposure modulates the metabolism of alpha-TAc to alpha-TH in vivo.

  7. Attenuation of DMBA/croton oil induced mouse skin papilloma by Apodytes dimidiata mediated by its antioxidant and antimutagenic potential.

    PubMed

    Divya, Menon K; Salini, Sasidharan; Meera, Nair; Lincy, Lawrence; Seema, Menon; Raghavamenon, Achuthan C; Babu, Thekkekara D

    2016-09-01

    Context Considering the role of cellular oxidative stress in mutations and subsequent transformation, phytochemicals with antioxidant potential has become a primary choice as chemopreventives. Apodytes dimidiata E. Mey. Ex. Arn (Icacinaceae), a widely used plant in Zulu traditional medicine, is reported to possess antioxidant activity. Objective To investigate the chemopreventive efficacy of methanol extract of A. dimidiata leaf (AMF). Materials and methods Antimutagenic potential of AMF (25, 50 and 75 μg/plate) was evaluated by the Ames test. The ability of AMF (100 and 250 mg/kg orally) on restoration of depleted antioxidant status by sodium fluoride (NaF) was analysed on BALB/c mice. 7,12-Dimethylbenz[a]anthracene/croton oil induced mouse skin papilloma model was studied up to 20 weeks to analyse the anticarcinogenic effect of AMF (1%, 3% and 5% topically, twice weekly for 6 weeks). Phytochemicals of AMF were characterized by GC-MS. Results AMF (75 μg/plate) reverted 4-nitro-o-phenylenediamine (NPDA) induced mutations in Salmonella typhimurium strains, TA 98, 100 and 102 by 74.8%, 72.5% and 69.3%, respectively. Against sodium azide, the percentage reversion was 80.4, 71.3 and 71.3. In mice, AMF (250 mg/kg for 4 days) increased the serum superoxide dismutase (SOD) and catalase activities by 48.71% and 30.3% against the NaF-induced drop. GSH level was improved by 48.59% with a concomitant decrease in TBARS (57.67%). The skin papilloma reduction was 79.32% for 5% AMF. Squalene, dodecanoic, tetradecanoic and hexadecanoic acids are the known antioxidant and chemopreventive molecules identified by GC-MS. Discussion and conclusion Antioxidant and antimutagenic activities of AMF might have contributed to its anticarcinogenic potential. PMID:26878464

  8. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    NASA Astrophysics Data System (ADS)

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-03-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6- fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p <0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care.

  9. Systemic morphine treatment induces changes in firing patterns and responses of nociceptive afferent fibers in mouse glabrous skin.

    PubMed

    Hogan, Dale; Baker, Alyssa L; Morón, Jose A; Carlton, Susan M

    2013-11-01

    Patients receiving opioids for pain may experience decreased effectiveness of the drug and even abnormal pain sensitivity-hyperalgesia and/or allodynia. We hypothesized that peripheral nociceptor hyperexcitability contributes to opioid-induced hyperalgesia and tested this using an in vitro mouse glabrous skin-nerve preparation. Mice were injected intraperitoneally with escalating doses of morphine (5, 8, 10, 15 mg/kg) or saline every 12 hours for 48 hours and killed approximately 12 hours after the last injection. Receptive fields of nociceptors were tested for mechanical, heat, and cold sensitivity. Activity was also measured during an initial 2-minute period and during 5-minute periods between stimuli. Aberrant activity was common in fibers from morphine-treated mice but rare in saline-treated mice. Resting background activity was elevated in C-fibers from morphine-treated mice. Both C- and Aδ-fibers had afterdischarge in response to mechanical, heat, and/or cold stimulation of the skin as well as spontaneous, unevoked activity. Compared to saline, morphine treatment increased the proportion of fibers displaying polymodal rather than mechanical-only responses. A significant increase in Aδ-mechanoreceptive fibers responding to cold accounted for most of this change. In agreement with this, morphine-treated mice showed increased sensitivity in the cold tail flick test. In morphine-treated mice, aberrant activity and hyperexcitability of nociceptors could contribute to increased pain sensitivity. Importantly, this activity is likely driving central sensitization, a phenomenon contributing to abnormal sensory processing and chronic pain. If similar changes occur in human patients, aberrant nociceptor activity is likely to be interpreted as pain and could contribute to opioid-induced hyperalgesia.

  10. Increased Skin Tumor Incidence and Keratinocyte Hyper-Proliferation in a Mouse Model of Down Syndrome.

    PubMed

    Yang, Annan; Currier, Duane; Poitras, Jennifer L; Reeves, Roger H

    2016-01-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra copy of human chromosome 21 (Hsa21). People with DS display multiple clinical traits as a result of the dosage imbalance of several hundred genes. While many outcomes of trisomy are deleterious, epidemiological studies have shown a significant risk reduction for most solid tumors in DS. Reduced tumor incidence has also been demonstrated in functional studies using trisomic DS mouse models. Therefore, it was interesting to find that Ts1Rhr trisomic mice developed more papillomas than did their euploid littermates in a DMBA-TPA chemical carcinogenesis paradigm. Papillomas in Ts1Rhr mice also proliferated faster. The increased proliferation was likely caused by a stronger response of trisomy to TPA induction. Treatment with TPA caused hyperkeratosis to a greater degree in Ts1Rhr mice than in euploid, reminiscent of hyperkeratosis seen in people with DS. Cultured trisomic keratinocytes also showed increased TPA-induced proliferation compared to euploid controls. These outcomes suggest that altered gene expression in trisomy could elevate a proliferation signalling pathway. Gene expression analysis of cultured keratinocytes revealed upregulation of several trisomic and disomic genes may contribute to this hyperproliferation. The contributions of these genes to hyper-proliferation were further validated in a siRNA knockdown experiment. The unexpected findings reported here add a new aspect to our understanding of tumorigenesis with clinical implications for DS and demonstrates the complexity of the tumor repression phenotype in this frequent condition. PMID:26752700

  11. Increased Skin Tumor Incidence and Keratinocyte Hyper-Proliferation in a Mouse Model of Down Syndrome.

    PubMed

    Yang, Annan; Currier, Duane; Poitras, Jennifer L; Reeves, Roger H

    2016-01-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra copy of human chromosome 21 (Hsa21). People with DS display multiple clinical traits as a result of the dosage imbalance of several hundred genes. While many outcomes of trisomy are deleterious, epidemiological studies have shown a significant risk reduction for most solid tumors in DS. Reduced tumor incidence has also been demonstrated in functional studies using trisomic DS mouse models. Therefore, it was interesting to find that Ts1Rhr trisomic mice developed more papillomas than did their euploid littermates in a DMBA-TPA chemical carcinogenesis paradigm. Papillomas in Ts1Rhr mice also proliferated faster. The increased proliferation was likely caused by a stronger response of trisomy to TPA induction. Treatment with TPA caused hyperkeratosis to a greater degree in Ts1Rhr mice than in euploid, reminiscent of hyperkeratosis seen in people with DS. Cultured trisomic keratinocytes also showed increased TPA-induced proliferation compared to euploid controls. These outcomes suggest that altered gene expression in trisomy could elevate a proliferation signalling pathway. Gene expression analysis of cultured keratinocytes revealed upregulation of several trisomic and disomic genes may contribute to this hyperproliferation. The contributions of these genes to hyper-proliferation were further validated in a siRNA knockdown experiment. The unexpected findings reported here add a new aspect to our understanding of tumorigenesis with clinical implications for DS and demonstrates the complexity of the tumor repression phenotype in this frequent condition.

  12. Increased Skin Tumor Incidence and Keratinocyte Hyper-Proliferation in a Mouse Model of Down Syndrome

    PubMed Central

    Yang, Annan; Currier, Duane; Poitras, Jennifer L.; Reeves, Roger H.

    2016-01-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra copy of human chromosome 21 (Hsa21). People with DS display multiple clinical traits as a result of the dosage imbalance of several hundred genes. While many outcomes of trisomy are deleterious, epidemiological studies have shown a significant risk reduction for most solid tumors in DS. Reduced tumor incidence has also been demonstrated in functional studies using trisomic DS mouse models. Therefore, it was interesting to find that Ts1Rhr trisomic mice developed more papillomas than did their euploid littermates in a DMBA-TPA chemical carcinogenesis paradigm. Papillomas in Ts1Rhr mice also proliferated faster. The increased proliferation was likely caused by a stronger response of trisomy to TPA induction. Treatment with TPA caused hyperkeratosis to a greater degree in Ts1Rhr mice than in euploid, reminiscent of hyperkeratosis seen in people with DS. Cultured trisomic keratinocytes also showed increased TPA-induced proliferation compared to euploid controls. These outcomes suggest that altered gene expression in trisomy could elevate a proliferation signalling pathway. Gene expression analysis of cultured keratinocytes revealed upregulation of several trisomic and disomic genes may contribute to this hyperproliferation. The contributions of these genes to hyper-proliferation were further validated in a siRNA knockdown experiment. The unexpected findings reported here add a new aspect to our understanding of tumorigenesis with clinical implications for DS and demonstrates the complexity of the tumor repression phenotype in this frequent condition. PMID:26752700

  13. Mast cells contribute to fibrin deposition in reverse passive Arthus reaction in mouse skin.

    PubMed

    Ramos, B F; Zhang, Y; Jakschik, B A

    1992-09-01

    The activation of the clotting system is an important process during inflammation to contain the injury and initiate tissue repair. In the present study, we investigated the effect of mast cells on fibrin deposition in reverse passive Arthus reaction in mast cell-deficient WBB6F1-W/Wv(W/Wv) and control WBB6F1-(+)/+(+/+) mice, that were given 125I-labeled fibrogen intravenousty. An antibody dose-dependent increase in radioactivity was observed in the challenged skin sites. Sequential water and urea extractions characterized the radioiodinated fibrinogen derivatives present in the tissue. The radioactivity found in the various fractions of the stimulated samples from +/+ was 2-10-fold higher than that in specimens from W/Wv mice. The greatest difference was observed in the urea-insoluble pellet (cross-linked fibrin and its early degradation products). Reconstitution of W/Wv mice with mast cells augmented the response to levels similar to those in +/+ mice. Pretreatment with the antihistamine pyrilamine blocked the accumulation of 125I-labeled fibrinogen and its derivatives by approximately 70% in +/+ but not in W/Wv mice. Inhibition of leukotriene synthesis by A-63162 markedly decreased the accumulation of iodinated fibrinogen in both +/+ and W/Wv mice. The data suggest that mast cells and their vasoactive mediator histamine contribute to the exudation of clotting factors, which results in fibrin deposition and that mast cells also enhance fibrin cross-linkage.

  14. Staphylococcus aureus infection on cut wounds in the mouse skin: experimental staphylococcal botryomycosis.

    PubMed

    Akiyama, H; Kanzaki, H; Tada, J; Arata, J

    1996-03-01

    Staphylococcus aureus cells were inoculated on the cut wounds in the skin of cyclophosphamide-treated mice. Biopsy specimens were taken from three mice at 1, 3, 6, 12, 24, 36, 48 and 60 h after the inoculation and were examined by light and electron microscopies. One hour after the inoculation Staphylococcus aureus cells were seen around the cut wound and deeper into the subcutaneous tissue. By 6 h after the inoculation, Staphylococcus aureus cells formed clusters of bacterial colonies. By 36 h after the inoculation inflammatory cells, mainly polymorphonuclear leukocytes and macrophages, were seen around the clusters. Electron microscopic examination revealed fibril-like structures around the Staphylococcus aureus cells at 1 h. The Staphylococcus aureus cells were enclosed in membrane-like structures at 3 h. The membrane-like structures and the fibril-like structures were positive for Ruthenium red. By 12 h after the inoculation, the membrane-like structures increased in thickness and in electron density. Inflammatory cells were seen around but outside of the membrane-like structures at 24, 36 and 48 h. At 60 h the tissues around the membrane-like structures were degenerated and almost necrotic. These results suggest that Staphylococcus aureus cells may form biofilm in dermal or subcutaneous tissues in a neutropenic condition.

  15. Nitisinone improves eye and skin pigmentation defects in a mouse model of oculocutaneous albinism.

    PubMed

    Onojafe, Ighovie F; Adams, David R; Simeonov, Dimitre R; Zhang, Jun; Chan, Chi-Chao; Bernardini, Isa M; Sergeev, Yuri V; Dolinska, Monika B; Alur, Ramakrishna P; Brilliant, Murray H; Gahl, William A; Brooks, Brian P

    2011-10-01

    Mutation of the tyrosinase gene (TYR) causes oculocutaneous albinism, type 1 (OCA1), a condition characterized by reduced skin and eye melanin pigmentation and by vision loss. The retinal pigment epithelium influences postnatal visual development. Therefore, increasing ocular pigmentation in patients with OCA1 might enhance visual function. There are 2 forms of OCA1, OCA-1A and OCA-1B. Individuals with the former lack functional tyrosinase and therefore lack melanin, while individuals with the latter produce some melanin. We hypothesized that increasing plasma tyrosine concentrations using nitisinone, an FDA-approved inhibitor of tyrosine degradation, could stabilize tyrosinase and improve pigmentation in individuals with OCA1. Here, we tested this hypothesis in mice homozygous for either the Tyrc-2J null allele or the Tyrc-h allele, which model OCA-1A and OCA-1B, respectively. Only nitisinone-treated Tyrc-h/c-h mice manifested increased pigmentation in their fur and irides and had more pigmented melanosomes. High levels of tyrosine improved the stability and enzymatic function of the Tyrc-h protein and also increased overall melanin levels in melanocytes from a human with OCA-1B. These results suggest that the use of nitisinone in OCA-1B patients could improve their pigmentation and potentially ameliorate vision loss. PMID:21968110

  16. Riboflavin as adjuvant with cisplatin: study in mouse skin cancer model.

    PubMed

    Salman, Maria; Naseem, Imrana

    2015-01-01

    Cisplatin used in treatment of solid tumor induces oxidative stress which leads to hepatotoxicity and nephrotoxicity. New strategies are therefore needed to combat toxicity and optimize its therapeutic potential. Riboflavin (VitaminB2) under photoillumination works as an anti proliferative agent and induces apoptosis. These properties of riboflavin have been exploited to mitigate cisplatin induced toxicities. 9,10-dimethylbenz(a)anthracene /12-O-tetradecanoylphorbol-13-acetate  were used to induce skin tumor in Swiss albino mice. The tumor induced mice were treated with cisplatin, riboflavin as well as their combination under photo illumination. In comparison to tumor control group the cisplatin and riboflavin treated groups showed a compromised level of antioxidant enzymes, functional markers and a higher degree of lipid peroxidation. However these parameters tended towards normal in the combination treated group. The results from histopathology indicate that apoptosis was favored mode of cell death and that necrosis was reduced in combination treated groups. Our findings indicate that combination of cisplatin with riboflavin under photo illumination synergizes its anti cancer activity towards cancer cells and attenuates the cisplatin induced toxicities.

  17. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model.

    PubMed

    Chen, Szu-Hsien; Tsao, Ching-Ting; Chang, Chih-Hao; Lai, Yi-Ting; Wu, Ming-Fung; Chuang, Ching-Nan; Chou, Hung-Chia; Wang, Chih-Kuang; Hsieh, Kuo-Haung

    2013-07-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m(2)/day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing.

  18. Nonrandom duplication of the chromosome bearing a mutated Ha-ras-1 allele in mouse skin tumors

    SciTech Connect

    Bianchi, A.B.; Aldaz, C.M.; Conti, C.J. )

    1990-09-01

    The authors analyzed the normal/mutated allelic ratio of the Ha-ras-1 gene in mouse skin squamous cell carcinomas induced by initation with dimethylbenz(a)anthracene and promotion with phorbol 12-myristate 13-acetate. DNA for these studies was obtained from short-term tumor cultures (24-72 hr) to eliminate the contribution of stromal and inflammatory cells to the sample. The alelotypic analysis was performed in 25 squamous cell carcinomas by quantitative radio-analysis of the Xba I restriction fragment length polymorphism as detected by BS9, a v-Ha-ras probe, and rehybridization of the Southern blots with probes for chromosomes 7 and 9. Approximately 85% of the tumors presented overrepresentation of the mutated allele in the form of 1 normal/2 mutated (12 tumors), 0 normal/3 mutated (4 tumors), 0 normal/2 mutated (3 tumors), and gene amplification (3 tumors). No tumor was found with a 2 normal/1 mutated allelic ratio. These results support their previous cytogenetic studies, indicating that trisomy of chromosome 7 is present in themajority of these tumors show that nonrandom duplication of the chromosome carrying the mutated Ha-ras-1 allel appears to be a major mechanism by which the mutated gene is overrepresented.

  19. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model.

    PubMed

    Chen, Szu-Hsien; Tsao, Ching-Ting; Chang, Chih-Hao; Lai, Yi-Ting; Wu, Ming-Fung; Chuang, Ching-Nan; Chou, Hung-Chia; Wang, Chih-Kuang; Hsieh, Kuo-Haung

    2013-07-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m(2)/day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. PMID:23623072

  20. Overexpression of Galectin-7 in Mouse Epidermis Leads to Loss of Cell Junctions and Defective Skin Repair

    PubMed Central

    Dang, Tien; Deshayes, Frédérique; Delacour, Delphine; Pichard, Evelyne; Advedissian, Tamara; Sidhu, Sukhvinder S.; Viguier, Mireille; Magnaldo, Thierry; Poirier, Francoise

    2015-01-01

    Background The proteins of the galectin family are implicated in many cellular processes, including cell interactions, polarity, intracellular trafficking, and signal transduction. In human and mouse, galectin-7 is almost exclusively expressed in stratified epithelia, notably in the epidermis. Galectin-7 expression is also altered in several human tumors of epithelial origin. This study aimed at dissecting the consequences of galectin-7 overexpression on epidermis structure and functions in vivo. Methods We established transgenic mice specifically overexpressing galectin-7 in the basal epidermal keratinocytes and analyzed the consequences on untreated skin and after UVB irradiation or mechanical injury. Results The intercellular cohesion of the epidermis is impaired in transgenic animals, with gaps developing between adjacent keratinocytes, associated with loss of adherens junctions. The epidermal architecture is aberrant with perturbations in the multilayered cellular organisation of the tissue, and structural defects in the basement membrane. These transgenic animals displayed a reduced re-epithelialisation potential following superficial wound, due to a defective collective migration of keratinocytes. Finally, a single mild dose of UVB induced an abnormal apoptotic response in the transgenic epidermis. Conclusion These results indicate that an excess of galectin-7 leads to a destabilisation of adherens junctions associated with defects in epidermal repair. As this phenotype shares similarities with that of galectin-7 null mutant mice, we conclude that a critical level of this protein is required for maintaining proper epidermal homeostasis. This study brings new insight into the mode of action of galectins in normal and pathological situations. PMID:25741714

  1. Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin.

    PubMed

    Gannon, Hugh S; Donehower, Lawrence A; Lyle, Stephen; Jones, Stephen N

    2011-05-01

    The p53 transcription factor is activated by various types of cell stress or DNA damage and induces the expression of genes that control cell growth and inhibit tumor formation. Analysis of mice that express mutant forms of p53 suggest that inappropriate p53 activation can alter tissue homeostasis and life span, connecting p53 tumor suppressor functions with accelerated aging. However, other mouse models that display increased levels of wildtype p53 in various tissues fail to corroborate a link between p53 and aging phenotypes, possibly due to the retention of signaling pathways that negatively regulate p53 activity in these models. In this present study, we have generated mice lacking Mdm2 in the epidermis. Deletion of Mdm2, the chief negative regulator of p53, induced an aging phenotype in the skin of mice, including thinning of the epidermis, reduced wound healing, and a progressive loss of fur. These phenotypes arise due to an induction of p53-mediated senescence in epidermal stem cells and a gradual loss of epidermal stem cell function. These results reveal that activation of endogenous p53 by ablation of Mdm2 can induce accelerated aging phenotypes in mice.

  2. Spatially resolved bimodal spectroscopy for classification/evaluation of mouse skin inflammatory and pre-cancerous stages

    NASA Astrophysics Data System (ADS)

    Díaz-Ayil, Gilberto; Amouroux, Marine; Clanché, Fabien; Granjon, Yves; Blondel, Walter C. P. M.

    2009-07-01

    Spatially-resolved bimodal spectroscopy (multiple AutoFluorescence AF excitation and Diffuse Reflectance DR), was used in vivo to discriminate various healthy and precancerous skin stages in a pre-clinical model (UV-irradiated mouse): Compensatory Hyperplasia CH, Atypical Hyperplasia AH and Dysplasia D. A specific data preprocessing scheme was applied to intensity spectra (filtering, spectral correction and intensity normalization), and several sets of spectral characteristics were automatically extracted and selected based on their discrimination power, statistically tested for every pair-wise comparison of histological classes. Data reduction with Principal Components Analysis (PCA) was performed and 3 classification methods were implemented (k-NN, LDA and SVM), in order to compare diagnostic performance of each method. Diagnostic performance was studied and assessed in terms of Sensibility (Se) and Specificity (Sp) as a function of the selected features, of the combinations of 3 different inter-fibres distances and of the numbers of principal components, such that: Se and Sp ~ 100% when discriminating CH vs. others; Sp ~ 100% and Se > 95% when discriminating Healthy vs. AH or D; Sp ~ 74% and Se ~ 63% for AH vs. D.

  3. Humanized Mouse Model of Skin Inflammation Is Characterized by Disturbed Keratinocyte Differentiation and Influx of IL-17A Producing T Cells

    PubMed Central

    de Oliveira, Vivian L.; Keijsers, Romy R. M. C.; van de Kerkhof, Peter C. M.; Seyger, Marieke M. B.; Fasse, Esther; Svensson, Lars; Latta, Markus; Norsgaard, Hanne; Labuda, Tord; Hupkens, Pieter; van Erp, Piet E. J.; Joosten, Irma; Koenen, Hans J. P. M.

    2012-01-01

    Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin) inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response. As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin. In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach will gain our

  4. Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activity.

    PubMed

    Kundu, Joydeb Kumar; Shin, Young Kee; Kim, Sung Hoon; Surh, Young-Joon

    2006-07-01

    Aberrant expression of cyclooxygenase-2 (COX-2) has been implicated in tumor promotion. Resveratrol, a phytoalexin present in grapes, was reported to inhibit multistage mouse skin carcinogenesis. In the present study, we found that topically applied resveratrol significantly inhibited COX-2 expression induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Resveratrol-suppressed phosphorylation and subsequent degradation of IkappaBalpha, thereby inhibiting activation of nuclear factor-kappaB (NF-kappaB) in TPA-stimulated mouse skin. Pretreatment with resveratrol also suppressed TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) and p38 mitogen-activated protein (MAP) kinase. Resveratrol blunted TPA-induced phosphorylation of p65 and its interaction with CBP/p300, rendering NF-kappaB transcriptionally inactive. To get further insights into the molecular basis of NF-kappaB inactivation by resveratrol, we examined the role of IkappaB kinase (IKK) in mediating TPA-induced activation of NF-kappaB and COX-2 expression. TPA treatment led to rapid induction of IKK activity in mouse skin, which was abolished either by resveratrol or an IKK inhibitor Bay 11-7082. Topical application of Bay 11-7082 also abrogated TPA-induced NF-kappaB activation and COX-2 expression, supporting the involvement of IKK in TPA-induced COX-2 expression. Taken together, the above findings suggest that resveratrol targets IKK in blocking TPA-induced NF-kappaB activation and COX-2 expression in mouse skin in vivo.

  5. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog

    SciTech Connect

    Boulware, Stephen; Fields, Tammy; McIvor, Elizabeth; Powell, K. Leslie; Abel, Erika L.; Vasquez, Karen M.; MacLeod, Michael C.

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ► 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ► This dose of CEES is not overtly toxic, as assayed by histopathology. ► 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ► This supports the idea that sulfur mustards exhibit long biological half-lives.

  6. Effects of type and amount of dietary fat on mouse skin tumor promotion.

    PubMed

    Lo, H H; Locniskar, M F; Bechtel, D; Fischer, S M

    1994-01-01

    In a previous study (Cancer Res 51, 907, 1991) in which we found an inverse relationship between quantity of dietary corn oil and saturated fat, in a constant 15% fat diet, on the tumor promotion stage of skin carcinogenesis, it was not clear whether one or both types of fat played a modulatory role. The purpose of the present study therefore was to compare the effect of 1) increasing corn oil in corn oil-only diets and 2) increasing saturated fat, with a constant level of 5% corn oil, on tumor promotion. In the first study, the effects of five levels of dietary corn oil (5%, 10%, 15%, 20%, and 25%) on the incidence and rat of papilloma and carcinoma development were determined in female Sencar mice fed these diets one week after initiation with 7,12-dimethylbenz[a]anthracene and three weeks before the start of promotion with 12-O-tetradecanoylphorbol-13-acetate. A papilloma incidence of 100% was reached first in the 5% corn oil group, at 10 weeks, followed by the 10% group at 13 weeks and the 15% and 20% group at 16 weeks. The highest corn oil group achieved a 90% incidence. There were marked differences in latency of carcinoma development among the diet groups. At Week 29, the cumulative carcinoma incidence was 56% and 32%, respectively, in the 5% and 10% corn oil groups, whereas the incidence in the two highest corn oil (20% and 25%) groups was only 8% and 4%, respectively. In the second study, the effects of diets containing 5% corn oil and increasing levels of coconut oil (5%, 10%, 15%, and 20%) on the incidence and rat of papilloma and carcinoma development were determined, as described above. No significant difference in latency or incidence of papillomas or carcinomas was noted among these saturated fat diet groups. It thus appears that higher levels of dietary corn oil are associated with a reduced cancer incidence in this model system.

  7. Malignant conversion and metastasis of mouse skin tumors: a comparison of SENCAR and CD-1 mice

    SciTech Connect

    Hennings, H.; Spangler, E.F.; Shores, R.; Mitchell, P.; Devor, D.; Shamsuddin, A.K.M.; Elgjo, K.M.; Yuspa, S.H.

    1986-09-01

    The progression of papillomas to squamous cell carcinomas (malignant conversion) was studied in the skin of SENCAR and Charles River CD-1 mice, using a three-stage treatment protocol. After initiation with 7,12-dimethylbenz(a)anthracene (DMBA) (stage I) and limited promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA) (stage II), papilloma-bearing mice were treated (stage III) with either tumor initiators, such as urethane, N-methyl-N'nitro-N nitrosoguanidine (MNNG) or 4-nitroquinoline-n-oxide (R-NQO), the promoter TPA, or solvent (acetone). Similar final carcinoma yields were found in the mice treated in stage III with TPA or acetone, although carcinomas developed earlier in the TPA-treated mice. In contrast, treatment with tumor initiators in stage III increased both the rate of appearance and the final yield of carcinomas. Similar results were obtained in both SENCAR and CD-1 mice. A papilloma stage appears to be necessary for carcinoma development since elimination of TPA treatment in stage II greatly reduced the incidence of both papillomas and carcinomas in both stocks of mice. The heterogeneity of papillomas with regard to progression to carcinomas is demonstrated by the low rate of conversion of TPA-dependent papillomas and the high rate of conversion of persistent papillomas in CD-1 mice. The carcinomas that develop using the three-stage regimen vary in metastatic potential. In CD-1 mice, the frequency of metastases to lymph nodes were similar in groups treated in stage III with MNNG, urethane, 4-NQO, TPA, or acetone, but treatment with urethane substantially increased metastases to the lung. In SENCAR mice, this effect of urethane was not observed, but lymph node and lung metastases appeared too be increased by stage III treatment with MNNG.

  8. 20-Hydroxylation is the CYP-dependent and retinoid-inducible leukotriene B4 inactivation pathway in human and mouse skin cells

    PubMed Central

    Du, Liping; Yin, Huiyong; Morrow, Jason D.; Strobel, Henry W.; Keeney, Diane S.

    2009-01-01

    Metabolic inactivation of leukotriene B4 (LTB4) is an innate mechanism to resolve tissue inflammation. We studied the nine Cyp4f genes in the mouse genome, measuring cutaneous transcript levels by real-time polymerase chain reaction, and LTB4 metabolism in mouse and human skin. Transcripts arising from Cyp4f13 and 4f16 ranked most abundant, Cyp4f14, 4f17, and 4f37 ranked least abundant, and Cyp4f18 and 4f39 ranked intermediate. Those from Cyp4f15 and Cyp4f40 were highly variable or too low to measure in some animals. Retinoic acid exposure induced microsomal LTB4 hydroxylation activities in mouse and human skin cells. Two NADPH-dependent LTB4 metabolites eluted identically with 20-OH and 20-COOH LTB4 reference standards. Collision induced dissociation of the precursor ion m/z 351 confirmed that LTB4 products from CYP4F3A and human epidermal keratinocytes are identical structurally to 20-OH LTB4. We conclude 20-hydroxylation is the major CYP-dependent LTB4 inactivation pathway in skin; this retinoid-inducible metabolic pathway has capacity to modulate tissue levels of pro-inflammatory lipids. PMID:19467632

  9. 1'-Acetoxychavicol acetate, a superoxide anion generation inhibitor, potently inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in ICR mouse skin.

    PubMed

    Murakami, A; Ohura, S; Nakamura, Y; Koshimizu, K; Ohigashi, H

    1996-01-01

    The anti-tumor-promoting activity of 1'-acetoxychavicol acetate (ACA) was examined in a two-stage carcinogenesis experiment in ICR mouse skin using 7,12-dimethylbenz[a]anthracene (0.19 mumol) and 12-O-tetradecanoylphorbol-13-acetate (TPA; 1.6 nmol). Topical application of ACA (160 nmol) markedly reduced the average number of tumors per mouse and the ratio of tumor-bearing mice: inhibition ratios 90% (p < 0.001) and 42% (p < 0.005), respectively. ACA even at a dose equimolar to TPA (1.6 nmol) significantly reduced the average number of tumors per mouse: inhibitory ratio 44% (p < 0.05). ACA potently inhibited TPA-induced superoxide (O2-) generation in differentiated HL-60 cells (IC50 = 4.3 microM) and suppressed the lipid hydroperoxide formation by 42% (p < 0.001) in the ethyl linoleate autoxidation test.

  10. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse. (I) Development of a model for screening studies in skin decontamination and protection.

    PubMed

    Dorandeu, F; Taysse, L; Boudry, I; Foquin, A; Hérodin, F; Mathieu, J; Daulon, S; Cruz, C; Lallement, G

    2011-06-01

    Exposure to lethal chemical warfare agents (CWAs) is no longer only a military issue due to the terrorist threat. Among the CWAs of concern are the organophosphorus nerve agent O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX) and the vesicant sulfur mustard (SM). Although efficient means of decontamination are available, most of them lose their efficacy when decontamination is delayed after exposure of the bare skin. Alternatively, CWA skin penetration can be prevented by topical skin protectants. Active research in skin protection and decontamination is thus paramount. In vivo screening of decontaminants or skin protectants is usually time consuming and may be expensive depending on the animal species used. We were thus looking for a suitable, scientifically sound and cost-effective model, which is easy to handle. The euthymic hairless mouse Crl: SKH-1 (hr/hr) BR is widely used in some skin studies and has previously been described to be suitable for some experiments involving SM or SM analogs. To evaluate the response of this species, we studied the consequences of exposing male anaesthetized SKH-1 mice to either liquid VX or to SM, the latter being used in liquid form or as saturated vapours. Long-term effects of SM burn were also evaluated. The model was then used in the companion paper (Taysse et al.(1)).

  11. Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model

    NASA Astrophysics Data System (ADS)

    Venuganti, , Venkata Vamsi K.; Saraswathy, Manju; Dwivedi, Chandradhar; Kaushik, Radhey S.; Perumal, Omathanu P.

    2015-02-01

    The study was aimed at investigating the feasibility of using a poly (amidoamine) (PAMAM) dendrimer as a carrier for topical iontophoretic delivery of an antisense oligonucleotide (ASO). Bcl-2, an anti-apoptotic protein implicated in skin cancer, was used as the model target protein to demonstrate the topical gene silencing approach. Confocal laser scanning microscopy studies demonstrated that the iontophoretically delivered ASO-dendrimer complex can reach the viable epidermis in porcine skin. In contrast, passively delivered free or dendrimer complexed ASO was mainly localized to the stratum corneum. The cell uptake of ASO was significantly enhanced by the dendrimer complex and the complex suppressed Bcl-2 levels in the cell. In the skin cancer mouse model, the iontophoretically delivered ASO-dendrimer complex reduced the tumor volume by 45% and was consistent with the reduction in Bcl-2 protein levels. The iontophoretically delivered ASO-dendrimer complex caused significant apoptosis in skin tumor. Overall, the findings from this study demonstrate that dendrimers are promising nanocarriers for developing topical gene silencing approaches for skin diseases.The study was aimed at investigating the feasibility of using a poly (amidoamine) (PAMAM) dendrimer as a carrier for topical iontophoretic delivery of an antisense oligonucleotide (ASO). Bcl-2, an anti-apoptotic protein implicated in skin cancer, was used as the model target protein to demonstrate the topical gene silencing approach. Confocal laser scanning microscopy studies demonstrated that the iontophoretically delivered ASO-dendrimer complex can reach the viable epidermis in porcine skin. In contrast, passively delivered free or dendrimer complexed ASO was mainly localized to the stratum corneum. The cell uptake of ASO was significantly enhanced by the dendrimer complex and the complex suppressed Bcl-2 levels in the cell. In the skin cancer mouse model, the iontophoretically delivered ASO-dendrimer complex

  12. Increased susceptibility to Staphylococcus aureus colonization of the skin of the NOA mouse: a potentially useful animal model for evaluating antiseptic effects.

    PubMed

    Kondo, Taizo; Ohno, Hitoshi; Taguchi, Keisuke; Satode, Ryotaro; Kondo, Toshio; Shiomoto, Yasuhisa

    2006-01-01

    Isolation of bacteria from wet skin lesions was attempted using Naruto Research Institute Otsuka Atrichia (NOA) mice, which develop such lesions spontaneously at a high rate. As a result, Staphylococcus aureus was demonstrated to have colonized the wet skin lesions at high density. In addition, the isolated S. aureus was found to be similar to the strain of S. aureus thought to colonize the eczematous lesions seen in humans with atopic dermatitis. Furthermore, a survey of the S. aureus colonization status of NOA mice with no wet skin lesions confirmed colonization at higher density than in HR-1 mice as control, indicating that the skin of the NOA mouse has the novel characteristic of increased susceptibility to S. aureus colonization. Thus, by using changes in S. aureus counts as an index, the NOA mouse can be expected to serve as a useful animal model for evaluating the effects of topical antiseptics. The antiseptic effects of an ointment and a lotion containing chlorhexidine gluconate were confirmed using this animal model.

  13. Photoactivation of ROS Production In Situ Transiently Activates Cell Proliferation in Mouse Skin and in the Hair Follicle Stem Cell Niche Promoting Hair Growth and Wound Healing.

    PubMed

    Carrasco, Elisa; Calvo, María I; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C; Hamblin, Michael R; Juarranz, Ángeles; Espada, Jesús

    2015-11-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle (HF) cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and aging, but recent findings suggest that they can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the HF, a major reservoir of epidermal stem cells, promoting hair growth, as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism.

  14. Mouse skin tumor-initiating activity of 5-, 7-, and 12-methyl- and fluorine-substituted benz(a)anthracenes

    SciTech Connect

    Wood, A.W.; Levin, W.; Chang, R.L.; Conney, A.H.; Slaga, T.J.; O'Malley, R.F.; Newman, M.S.; Buhler, D.R.; Jerina, D.M.

    1982-09-01

    Eleven methyl- and/or fluorine-substitued benz(a)anthracenes were evaluated for tumor-initating activity on mouse skin. Outbred CD-1 and outbred Sencar mice received a single topical application of the hydrocarbons followed by twice weekly application of the tumor promoter 12-O-tetradecanoylphorbol 13-acetate for 16-26 weeks. 7, 12-DMBA was almost two orders of magnitude more active as a tumor-initator than 7- and 12-methylbenz(a)anthracene. Methyl substitution at the 7- and 7,12-positions of benz(a)anthracence was significantly more effective in the enhancement of tumorigenic activity than fluorine substitution at these positions. Although 7-fluorobenz(a)anthracene, 12-fluorobenz(a)anthracene, and 7,12-difluorobenz(a)anthracene had only 0.15, 0.26, and less than 0.005 times the tumor-initiating activity of their respective methyl-substituted derivatives, they were severalfold more active than benz(a)anthracene. 7-Fluorobenz(a)anthracene was slightly less active than 12-fluorobenz(a)anthracene, whereas 7-methylbenz(a)anthracene was about twofold more active than 12-methylbenz(a)anthracene. For 7,12-disubstituted benz(a)anthracenes, 7-methyl-12-fluorobenz(a)anthracene was more than twice as tumorigenic as 7-fluoro-12-methylbenz(a)anthracene, but each was individually more active than 7-methylbenz(a)anthracene and 12-methylbenz(a)anthracene, respectively. Both fluorinated compounds were much less active than 7,12-DMBA. Substitution of fluorine or methyl at the 5-position of 7-methylbenz(a)anthracene and substition of fluorine at the 5-position of 12-methylbenz(a)anthracene dramatically reduced their tumorigenic activity.

  15. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    SciTech Connect

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  16. Micronuclei in mouse skin cells following in vivo exposure to benzo(a)pyrene, 7,12-dimethylbenz(a)anthracene, chrysene, pyrene and urethane

    SciTech Connect

    Shuilin He ); Baker, R. )

    1991-01-01

    Detection of micronuclei (MN) in skin cells from HRA/Skh hairless mice treated with chemical or physical agents may prove informative in qualitative and quantitative studies of skin carcinogenesis. MN induction and cell survival were estimated in cytokinesis-blocked keratinocytes, cultured for 4 days in vitro, after a single topical dose of various organic compounds. Treatment with 7,12-dimethylbenz(a)anthracene (DMBA) resulted in maximal MN induction in cells removed from skin 12-24 hr after topical administration. Even in cells removed only 1 hr after DMBA treatment, a significant increase in MN was evident. However, to allow sufficient time for metabolic activation, a sampling time of 24 hr was adopted for all test substances. Dose-dependent increases in MN were observed with DMBA, benzo(a)pyrene, chrysene, and urethane. Increased numbers of micronucleated cells were detected at the lowest doses administered in the present study. Although reduced cell recovery occurred following exposure of mice to acetone, pyrene, and other chemicals, there was no evidence that cytotoxicity contributed to MN scored in keratinocytes. Moreover, the probable noncarcinogen, pyrene, failed to induce MN at doses from 2.5 {mu}g to 2.5 mg/mouse. These results show that it is possible to assess chemical exposure in skin by measuring cell survival and skin genotoxicity by measuring MN induction in cultured keratinocytes.

  17. Development of dry skin in the NOA mouse under individual housing conditions: a potentially useful animal model for evaluating moisturizing effects.

    PubMed

    Kondo, Taizo; Ohno, Hitoshi; Kondo, Toshio; Shiomoto, Yasuhisa; Momii, Akira

    2005-10-01

    In a previous study, we reported the development of grossly observable dry skin in all of the Naruto Research Institute Otsuka Atrichia (NOA) mice that were housed individually. In the present study, dermal physiological function tests were conducted and the usefulness of this dry skin model for evaluating the efficacy of topical moisturizers was assessed. As a result, we have confirmed a marked reduction in the water content of the stratum corneum in these animals. Therefore, the development of dry skin in the NOA mouse strain under individual housing conditions may be expected to serve as a useful animal model for evaluating topical moisturizers. Specifically, the water content of the stratum corneum was restored in proportion to the oil content of the ointment base used to treat the animals, and the moisturizing effects of urea were confirmed in animals treated with urea-containing ointment. In addition, when the animals that had been housed individually were returned to group housing conditions, the water content of the stratum corneum was restored, with a corresponding improvement in dry skin. This finding suggests that socio-psychological factors are involved in the etiology of dry skin in individually housed NOA mice. PMID:16365520

  18. Photosensitivity of murine skin greatly depends on the genetic background: clinically relevant dose as a new measure to replace minimal erythema dose in mouse studies.

    PubMed

    Gyöngyösi, Nóra; Lőrincz, Kende; Keszeg, András; Haluszka, Dóra; Bánvölgyi, András; Tátrai, Erika; Kárpáti, Sarolta; Wikonkál, Norbert M

    2016-07-01

    Artificial UV irradiation of murine skin is a frequently used method for testing photosensitivity, study carcinogenesis and photoprotective effects of different compounds. However, doses of UV radiation and mouse strains used in experiments vary greatly. The genetic background of mice may influence the photosensitivity as melanin content, pigmentation and hair cycle parameters are dissimilar. Doses of UV are often expressed in relation to the minimal erythema dose (MED) that was not necessarily determined for the given strain. We set out to standardize the method of measuring photosensitivity in three commonly used mouse strains, C57BL/6N, Balb/c and SKH-1. We found that MED may not be determined for some strains as erythema development in mice with diverse genotypes differs greatly. We measured the oedema response in vivo and ex vivo by using OCT. Given the strain-specific variability of erythema, we introduced Clinically Relevant Dose (CRD) as a new term to replace MED in experiments, to describe the lowest dose that triggers a perceptible skin reaction in mice. Not only the CRD but the proportion of erythema and oedema were different in strains examined. C57BL/6N mice display skin reactions at the lowest UVB dose, while SKH-1 hairless mice show changes, mostly oedema, after higher doses of UVB. The cellular composition and skin thickness were examined by histopathology. IL-1beta and IL-6 levels in skin correlated with the increasing doses of UVB. Despite the variations in the degree of erythema and oedema, no major differences in cytokine expressions were seen among various strains of mice. PMID:26910301

  19. The expression of endothelin-1 and its binding sites in mouse skin increased after ultraviolet B irradiation or local injection of tumor necrosis factor alpha.

    PubMed

    Ahn, G Y; Butt, K I; Jindo, T; Yaguchi, H; Tsuboi, R; Ogawa, H

    1998-02-01

    Endothelin (ET)-1 is a 21-amino acid peptide which has vasoconstrictor and growth regulatory activity. Recently, cultured keratinocytes have been reported to express ET-1 and its receptor when irradiated by ultraviolet (UV) B. In order to further understand the role of ET-1 in vivo during UVB-induced inflammation, we examined the localization, intensity and time course of the expression levels of ET-1 and its binding sites in UVB-exposed BALB/c mouse skin. Frozen and paraffin sections prepared from mouse skin 48 h after treatment with UVB irradiation (0.36 or 0.72 J/cm2) or after injection with tumor necrosis factor (TNF)-alpha (1.0 microgram) or interleukin (IL)-1 alpha (0.05 microgram) were incubated with monoclonal anti-ET-1 IgG and then visualized by peroxidase staining. In normal skin, faint ET-1 immunoreactivity was observed in the epidermis, pilosebaceous structures and blood vessels. Upon exposure to UVB irradiation or administration of TNF-alpha injection or IL-1 alpha injection, such immunoreactivity was found to be significantly enhanced. Subsequently, the frozen sections were incubated with 125I ET-1 for 30 min, and visualized by autoradiographic technique. In normal skin, ET-1 weakly bound to the skin, while UVB irradiation and TNF-alpha injection significantly enhanced ET-1 binding in the epidermis, pilosebaceous structures and blood vessels. Time course experiments (1, 2, 4 and 7 days) indicated that ET-1 immunoreactivity and ET-1 binding peaked 1 or 2 days after UVB irradiation or TNF-alpha injection. These results suggest that the up-regulated expression of ET-1 and its binding sites in the epidermis and pilosebaceous structures may act as an autocrine/paracrine factor during UVB-induced inflammation.

  20. Characterization of skin abnormalities in a mouse model of osteogenesis imperfecta using high resolution magnetic resonance imaging and Fourier transform infrared imaging spectroscopy.

    PubMed

    Canuto, H C; Fishbein, K W; Huang, A; Doty, S B; Herbert, R A; Peckham, J; Pleshko, N; Spencer, R G

    2012-01-01

    Evaluation of the skin phenotype in osteogenesis imperfecta (OI) typically involves biochemical measurements, such as histologic or biochemical assessment of the collagen produced from biopsy-derived dermal fibroblasts. As an alternative, the current study utilized non-invasive magnetic resonance imaging (MRI) microscopy and optical spectroscopy to define biophysical characteristics of skin in an animal model of OI. MRI of skin harvested from control, homozygous oim/oim and heterozygous oim/+ mice demonstrated several differences in anatomic and biophysical properties. Fourier transform infrared imaging spectroscopy (FT-IRIS) was used to interpret observed MRI signal characteristics in terms of chemical composition. Differences between wild-type and OI mouse skin included the appearance of a collagen-depleted lower dermal layer containing prominent hair follicles in the oim/oim mice, accounting for 55% of skin thickness in these. The MRI magnetization transfer rate was lower by 50% in this layer as compared to the upper dermis, consistent with lower collagen content. The MRI transverse relaxation time, T2, was greater by 30% in the dermis of the oim/oim mice compared to controls, consistent with a more highly hydrated collagen network. Similarly, an FT-IRIS-defined measure of collagen integrity was 30% lower in the oim/oim mice. We conclude that characterization of phenotypic differences between the skin of OI and wild-type mice by MRI and FT-IRIS is feasible, and that these techniques provide powerful complementary approaches for the analysis of the skin phenotype in animal models of disease. PMID:21845737

  1. Characterization of skin abnormalities in a mouse model of osteogenesis imperfecta using high resolution magnetic resonance imaging and Fourier transform infrared imaging spectroscopy.

    PubMed

    Canuto, H C; Fishbein, K W; Huang, A; Doty, S B; Herbert, R A; Peckham, J; Pleshko, N; Spencer, R G

    2012-01-01

    Evaluation of the skin phenotype in osteogenesis imperfecta (OI) typically involves biochemical measurements, such as histologic or biochemical assessment of the collagen produced from biopsy-derived dermal fibroblasts. As an alternative, the current study utilized non-invasive magnetic resonance imaging (MRI) microscopy and optical spectroscopy to define biophysical characteristics of skin in an animal model of OI. MRI of skin harvested from control, homozygous oim/oim and heterozygous oim/+ mice demonstrated several differences in anatomic and biophysical properties. Fourier transform infrared imaging spectroscopy (FT-IRIS) was used to interpret observed MRI signal characteristics in terms of chemical composition. Differences between wild-type and OI mouse skin included the appearance of a collagen-depleted lower dermal layer containing prominent hair follicles in the oim/oim mice, accounting for 55% of skin thickness in these. The MRI magnetization transfer rate was lower by 50% in this layer as compared to the upper dermis, consistent with lower collagen content. The MRI transverse relaxation time, T2, was greater by 30% in the dermis of the oim/oim mice compared to controls, consistent with a more highly hydrated collagen network. Similarly, an FT-IRIS-defined measure of collagen integrity was 30% lower in the oim/oim mice. We conclude that characterization of phenotypic differences between the skin of OI and wild-type mice by MRI and FT-IRIS is feasible, and that these techniques provide powerful complementary approaches for the analysis of the skin phenotype in animal models of disease.

  2. The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo.

    PubMed

    Kang, Hyun Ki; Min, Seung-Ki; Jung, Sung Youn; Jung, Kyoungsuk; Jang, Da Hyun; Kim, O Bok; Chun, Gae-Sig; Lee, Zang Hee; Min, Byung-Moo

    2011-12-01

    Although previous studies indicate that skin-derived precursors (SKPs) are multipotent dermal precursors that share similarities with neural crest stem cells (NCSCs), a shared ability for multilineage differentiation toward neural crest lineages between SKPs and NCSCs has not been fully demonstrated. Here, we report the derivation of SKPs from adult mouse skin and their directed multilineage differentiation toward neural crest lineages. Under controlled in vitro conditions, mouse SKPs were propagated and directed toward peripheral nervous system lineages such as peripheral neurons and Schwann cells, and mesenchymal lineages, such as osteogenic, chondrogenic, adipogenic, and smooth muscle cells. To ask if SKPs could generate these same lineages in vivo, a mixture of SKP-derived mesenchymal stem cells and hydroxyapatite/tricalcium phosphate was transplanted into the rat calvarial defects. Over the ensuing 4 weeks, we observed formation of osteogenic structure in the calvarial defect without any evidence of teratomas. These findings demonstrate the multipotency of adult mouse SKPs to differentiate into neural crest lineages. In addition, SKP-derived mesenchymal stem cells represent an accessible, potentially autologous source of precursor cells for tissue-engineered bone repair. PMID:21879252

  3. Overexpression of CRABPI in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid

    SciTech Connect

    Tang, X.-H.; Vivero, Marina; Gudas, Lorraine J.

    2008-01-01

    We investigated whether ectopic expression of CRABPI, a cellular retinoic acid binding protein, influenced the actions of all-trans retinoic acid (ATRA) in transgenic (TG) mice. We targeted CRABPI to the basal vs. suprabasal layers of mouse epidermis by using the keratin 14 (K14) and keratin 10 (K10) promoters, respectively. Greater CRABPI protein levels were detected in the epidermis of adult transgenic(+) mice than in transgenic(-) mice for both transgenes. In adult mouse skin CRABPI overexpression in the basal or suprabasal keratinocytes did not cause morphological abnormalities, but did result in decreased CRABPII mRNA levels. Ectopically overexpressed CRABPI in suprabasal keratinocytes, but not in basal keratinocytes, enhanced the thickening of the epidermis induced by topical ATRA treatments (10 {mu}M, 400 {mu}l for 4 days) by 1.59 {+-} 0.2-fold (p < 0.05). ATRA treatment (10 {mu}M) resulted in a 59.9 {+-} 9.8% increase (p < 0.05) in the BrdU labeling index in K10/FLAG-CRABPI TG(+) mice vs. TG(-) mice. Retinoid topical treatments reduced p27 and CYP26A1 mRNA levels in TG(+) and TG(-) mouse skin in K14 and K10/FLAG-CRABPI transgenic mice. As epidermal basal keratinocyte proliferation is stimulated by paracrine growth factors secreted by ATRA activated suprabasal keratinocytes, our results indicate that CRABPI overexpression in suprabasal keratinocytes enhances the physiological functions of ATRA.

  4. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    SciTech Connect

    Sharma, Som D.; Katiyar, Santosh K.

    2010-05-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm{sup 2}) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E{sub 2} production, proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-kappaB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  5. Effect of orally administered collagen hydrolysate on gene expression profiles in mouse skin: a DNA microarray analysis.

    PubMed

    Oba, Chisato; Ito, Kyoko; Ichikawa, Satomi; Morifuji, Masashi; Nakai, Yuji; Ishijima, Tomoko; Abe, Keiko; Kawahata, Keiko

    2015-08-01

    Dietary collagen hydrolysate has been hypothesized to improve skin barrier function. To investigate the effect of long-term collagen hydrolysate administration on the skin, we evaluated stratum corneum water content and skin elasticity in intrinsically aged mice. Female hairless mice were fed a control diet or a collagen hydrolysate-containing diet for 12 wk. Stratum corneum water content and skin elasticity were gradually decreased in chronologically aged control mice. Intake of collagen hydrolysate significantly suppressed such changes. Moreover, we used DNA microarrays to analyze gene expression in the skin of mice that had been administered collagen hydrolysate. Twelve weeks after the start of collagen intake, no significant differences appeared in the gene expression profile compared with the control group. However, 1 wk after administration, 135 genes were upregulated and 448 genes were downregulated in the collagen group. This suggests that gene changes preceded changes of barrier function and elasticity. We focused on several genes correlated with functional changes in the skin. Gene Ontology terms related to epidermal cell development were significantly enriched in upregulated genes. These skin function-related genes had properties that facilitate epidermal production and differentiation while suppressing dermal degradation. In conclusion, our results suggest that altered gene expression at the early stages after collagen administration affects skin barrier function and mechanical properties. Long-term oral intake of collagen hydrolysate improves skin dysfunction by regulating genes related to production and maintenance of skin tissue.

  6. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles

    SciTech Connect

    Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio

    2013-12-06

    Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.

  7. Acute allergic skin response as a new tool to evaluate the allergenicity of whey hydrolysates in a mouse model of orally induced cow's milk allergy.

    PubMed

    van Esch, Betty C A M; Schouten, Bastiaan; Hofman, Gerard A; van Baalen, Ton; Nijkamp, Frans P; Knippels, Léon M J; Willemsen, Linette E M; Garssen, Johan

    2010-06-01

    Hypoallergenic milk formulae are used for cow's milk allergic infants and may be a good option for infants at risk. Clinical studies have shown that the protein source or the hydrolysis methodology used may influence the effectiveness in infants stressing the importance of adequate pre-clinical testing of hypoallergenic formulae in an in vivo model of orally induced cow's milk allergy. This study was undertaken to introduce a new read-out system to measure the residual allergenicity of whey hydrolysates on both the sensitization and challenge phase of orally induced cow's milk allergy in mice. Mice were sensitized orally to whey or a partial whey hydrolysate (pWH) to measure the residual sensitizing capacity. To predict the residual allergenicity of hydrolysates, whey allergic mice were challenged in the ear with pWH, extensive whey hydrolysate or an amino acid-based formula. An acute allergic skin response (ear swelling at 1 h), whey-specific serum antibodies, and local MCP-1 concentrations were measured. In contrast to whey, oral sensitization with pWH did not result in the induction of whey-specific antibodies, although a minor residual skin response to whey was observed after challenge. Skin exposure to whey hydrolysates showed a hydrolysation dependent reduction of the acute allergic skin response in whey allergic mice. In contrast to whey, skin exposure to pWH did not enhance tissue MCP-1 levels. The acute allergic skin response in mice orally sensitized to cow's milk proteins reveals a new pre-clinical tool which might provide information about the residual sensitizing capacity of hydrolysates supporting the discussion on the use of hypoallergenic formulae in high risk children. This mouse model might be a relevant model for the screening of new hypoallergenic formulae aimed to prevent or treat cow's milk allergy.

  8. Green tea polyphenol induces caspase 14 in epidermal keratinocytes via MAPK pathways and reduces psoriasiform lesions in the flaky skin mouse model.

    PubMed

    Hsu, Stephen; Dickinson, Douglas; Borke, James; Walsh, Douglas S; Wood, Joseph; Qin, Haiyan; Winger, Julia; Pearl, Henna; Schuster, George; Bollag, Wendy B

    2007-08-01

    Psoriasiform lesions are characterized by hyperproliferation and aberrant differentiation of epidermal keratinocytes, accompanied by inflammation, leading to a disrupted skin barrier with an abnormal stratum corneum. The expression and proteolytic processing of caspase 14, a member of the caspase family which is associated with epithelial cell differentiation, planned cell death, and barrier formation, is altered in psoriatic epidermis. We recently reported that human psoriatic tissues lack normal expression of caspase 14 [J Dermatol Sci37 (2005) 61], and caspase 14 is induced by EGCG, a green tea polyphenol (GTP), in exponentially growing normal human epidermal keratinocytes (NHEK) [J Pharmacol Exp Ther315 (2005) 805]. This suggests that GTPs may have beneficial effects on psoriasiform lesions. The current study aimed to determine whether MAPK pathways are required for GTP-induced caspase 14 expression in NHEK and if GTPs can modulate the expression of pathological markers in the psoriasiform lesions that develop in the flaky skin mouse. The results indicate that the p38 and JNK MAPK pathways are required for EGCG-induced expression of caspase 14 in NHEK. Importantly, topical application of 0.5% GTPs significantly reduced the symptoms of epidermal pathology in the flaky skin mice, associated with efficient caspase 14 processing and reduction in proliferating cell nuclear antigen levels. This suggests that GTP-activated pathways may be potential targets for novel therapeutic approaches to the treatment of some psoriasiform skin disorders.

  9. Nordihydroguaiaretic Acid from Creosote Bush (Larrea tridentata) Mitigates 12-O-Tetradecanoylphorbol-13-Acetate-Induced Inflammatory and Oxidative Stress Responses of Tumor Promotion Cascade in Mouse Skin

    PubMed Central

    Rahman, Shakilur; Ansari, Rizwan Ahmed; Rehman, Hasibur; Parvez, Suhel; Raisuddin, Sheikh

    2011-01-01

    Nordihydroguaiaretic acid (NDGA) is a phenolic antioxidant found in the leaves and twigs of the evergreen desert shrub, Larrea tridentata (Sesse and Moc. ex DC) Coville (creosote bush). It has a long history of traditional medicinal use by the Native Americans and Mexicans. The modulatory effects of topically applied NDGA was studied on acute inflammatory and oxidative stress responses in mouse skin induced by stage I tumor promoting agent, 12-O-tetradecanoylphorbol-13-acetate (TPA). Double TPA treatment adversely altered many of the marker responses of stage I skin tumor promotion cascade. Pretreatment of NDGA in TPA-treated mice mitigated cutaneous lipid peroxidation and inhibited production of hydrogen peroxide. NDGA treatment also restored reduced glutathione level and activities of antioxidant enzymes. Elevated activities of myeloperoxidase, xanthine oxidase and skin edema formation in TPA-treated mice were also lowered by NDGA indicating a restrained inflammatory response. Furthermore, results of histological study demonstrated inhibitory effect of NDGA on cellular inflammatory responses. This study provides a direct evidence of antioxidative and anti-inflammatory properties of NDGA against TPA-induced cutaneous inflammation and oxidative stress corroborating its chemopreventive potential against skin cancer. PMID:19861506

  10. The role of placenta-derived mesenchymal stem cells in healing of induced full-thickness skin wound in a mouse model.

    PubMed

    Abd-Allah, Somia H; El-Shal, Amal S; Shalaby, Sally M; Abd-Elbary, Eman; Mazen, Nehad F; Abdel Kader, Rania R

    2015-09-01

    We examined the effect of placenta-derived MSCs (PDMSCs) injection intraregionally and intraperitoneally on healing of induced full thickness mice skin wounds; moreover, the mechanisms by which MSCs exert their effects were also studied. Sixty female mice were divided into three groups after induction of full thickness skin wound; untreated group, wounded mice were injected with MSCs derived from human placenta intraperitoneally or intraregionally. Skin biopsies were obtained 7 and 12 days after wound incision for histological examinations, detection of vascular endothelial growth factor (VEGF) by ELISA, and estimation of expression of mouse ICAM-1, Integrin β1, Integrin β3 genes and human albumin and GAPDH genes by reverse transcription polymerase chain reaction. Human placenta derived-MSCs treated groups showed accelerated wound healing than non-treated group. VEGF, Integrin β1, and Integrin β3 levels were significantly increased in the intraregionally and intraperitoneally treated mice as compared to non-treated group at day 7 after wound induction. ICAM-1 showed significant decrease in its expression in treated groups compared with non-treated group. Interestingly, the intraperitoneal MSCs injections showed better results than intraregional one. PDMSCs accelerate full thickness skin wound healing and the intraperitoneal MSCs injections are more effective than intraregional one. MSCs promote wound healing through release of proangiogenic factors as VEGF, increase healing promoting factors as integrin β1 and β3, and decrease proinflammatory cytokines as ICAM-1.

  11. Overexpression of constitutively active BMP-receptor-IB in mouse skin causes an ichthyosis-vulgaris-like disease.

    PubMed

    Yu, Xueyan; Espinoza-Lewis, Ramón A; Sun, Cheng; Lin, Lisong; He, Fenglei; Xiong, Wei; Yang, Jing; Wang, Alun; Chen, Yiping

    2010-12-01

    The skin is the outer layer of protection against the environment. The development and formation of the skin is regulated by several genetic cascades including the bone morphogenetic protein (BMP) signaling pathway, which has been suggested to play an important role during embryonic organ development. Several skin defects and diseases are caused by genetic mutations or disorders. Ichthyosis is a common genetic skin disorder characterized by dry scaly skin. Loss-of-function mutations in the filaggrin (FLG) gene have been identified as the cause of the ichthyosis vulgaris (IV) phenotype; however, the direct regulation of filaggrin expression in vivo is unknown. We present evidence that BMP signaling regulates filaggrin expression in the epidermis. Mice expressing a constitutively active form of BMP-receptor-IB in the developing epidermis exhibit a phenotype resembling IV in humans, including dry flaky skin, compact hyperkeratosis, and an attenuated granular layer associated with a significantly downregulated expression of filaggrin. Regulation of filaggrin expression by BMP signaling has been further confirmed by the application of exogenous BMP2 in skin explants and by a transgenic model overexpressing Noggin in the epidermis. Our results demonstrate that aberrant BMP signaling in the epidermis causes overproliferation and hyperkeratinization, leading to an IV-like skin disease.

  12. Global Gene Expression Analysis in PKCα-/- Mouse Skin Reveals Structural Changes in the Dermis and Defective Wound Granulation Tissue.

    PubMed

    Cooper, Nichola H; Balachandra, Jeya P; Hardman, Matthew J

    2015-12-01

    The skin's mechanical integrity is maintained by an organized and robust dermal extracellular matrix (ECM). Resistance to mechanical disruption hinges primarily on homeostasis of the dermal collagen fibril architecture, which is regulated, at least in part, by members of the small leucine-rich proteoglycan (SLRP) family. Here we present data linking protein kinase C alpha (PKCα) to the regulated expression of multiple ECM components including SLRPs. Global microarray profiling reveals deficiencies in ECM gene expression in PKCα-/- skin correlating with abnormal collagen fibril morphology, disorganized dermal architecture, and reduced skin strength. Detailed analysis of the skin and wounds from wild-type and PKCα-/- mice reveals a failure to upregulate collagen and other ECM components in response to injury, resulting in delayed granulation tissue deposition in PKCα-/- wounds. Thus, our data reveal a previously unappreciated role for PKCα in the regulation of ECM structure and deposition during skin wound healing.

  13. Modulations of critical cell cycle regulatory events during chemoprevention of ultraviolet B-mediated responses by resveratrol in SKH-1 hairless mouse skin.

    PubMed

    Reagan-Shaw, Shannon; Afaq, Farrukh; Aziz, Moammir Hasan; Ahmad, Nihal

    2004-07-01

    Multiple exposures to solar ultraviolet (UV) radiation cause critical damages that may lead to the development of several cutaneous disorders including skin cancer, the most frequently diagnosed malignancy in the USA. Therefore, efforts are needed to: (i) study the mechanism(s) of UV-mediated cutaneous damages, and (ii) design novel approaches for the management of skin cancer. 'Chemoprevention' via plant-based agents may be a useful approach for the management of neoplasia. Here, we evaluated the involvement of cell cycle regulatory molecules during resveratrol-mediated protection from multiple exposures of UVB (180 mJ/cm(2); on alternate days x 7 exposures) radiations in the SKH-1 hairless mouse skin. Resveratrol was topically applied on the skin of SKH-1 hairless mice at a dose of 10 micromol/mouse (in 0.2 ml acetone; 30 min prior to each UVB exposure). Studies were performed at 24 h following the last UVB exposure. Topical application of resveratrol resulted in significant decrease in UVB-induced bi-fold skin thickness, hyperplasia, and infiltration of leukocytes. The data from immunoblot and/or immunohistochemical analyses revealed that multiple exposure to UVB radiations causes significant upregulation in: (i) proliferating cell nuclear antigen (PCNA), a marker of cellular proliferation, and (ii) cyclin-dependent kinase (cdk)-2, -4 and -6, cyclin-D1, and cyclin-D2. Resveratrol treatment resulted in significant downregulation in UV-mediated increases in these critical cell cycle regulatory proteins. An interesting observation of this study was that resveratrol treatment resulted in a further stimulation of UVB-mediated increases in cyclin kinase inhibitor WAF1/p21 and tumor suppressor p53. Further, resveratrol was also found to cause significant decreases in UVB-mediated upregulation of: (i) the mitogen-activated protein kinase kinase, and (ii) the 42 kDa isotype of mitogen-activated protein kinase (MAPK). Thus, our data suggested that the antiproliferative

  14. Camphor Induces Proliferative and Anti-senescence Activities in Human Primary Dermal Fibroblasts and Inhibits UV-Induced Wrinkle Formation in Mouse Skin.

    PubMed

    Tran, Thao Anh; Ho, Manh Tin; Song, Yeon Woo; Cho, Moonjae; Cho, Somi Kim

    2015-12-01

    Camphor ((1R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one), a bicyclic monoterpene, is one of the major constituents of essential oils from various herbs such as rosemary, lavender, and sage. In this study, we investigated the beneficial effects of camphor as a botanical ingredient in cosmetics. Camphor induced the proliferation of human primary dermal fibroblasts in a dose-dependent manner via the PI3K/AKT and ERK signaling pathways. Camphor attenuated the elevation of senescence associated with β-galactosidase (SA-β-gal) activity. Elastase activity decreased, while the total amount of collagen increased, in a dose- and time-dependent manner in human primary dermal fibroblasts treated with camphor. Camphor induced the expression of collagen IA, collagen IIIA, collagen IVA, and elastin in human primary dermal fibroblasts. In addition, posttreatment with 26 and 52 mM camphor for 2 weeks led to a significant reduction in the expression of MMP1 but increases in the expression of collagen IA, IIIA, and elastin in mouse skin exposed to UV for 4 weeks. These posttreatments also reduced the depths of the epidermis and subcutaneous fat layer in UV-exposed mouse skin. Taken together, these findings suggest camphor to be a potent wound healing and antiwrinkle agent with considerable potential for use in cosmeceuticals. PMID:26458283

  15. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    PubMed

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells.

  16. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    PubMed

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells. PMID:22363217

  17. Daily intake of Jeju groundwater improves the skin condition of the model mouse for human atopic dermatitis.

    PubMed

    Tanaka, Akane; Jung, Kyungsook; Matsuda, Akira; Jang, Hyosun; Kajiwara, Naoki; Amagai, Yosuke; Oida, Kumiko; Ahn, Ginnae; Ohmori, Keitaro; Kang, Kyung-goo; Matsuda, Hiroshi

    2013-03-01

    Drinking water is an important nutrient for human health. The mineral ingredients included in drinking water may affect the physical condition of people. Various kinds of natural water are in circulation as bottled water in developed countries; however, its influence on clinical conditions of patients with certain diseases has not been fully evaluated. In this study, effects of the natural groundwater from Jeju Island on clinical symptoms and skin barrier function in atopic dermatitis (AD) were evaluated. NC/Tnd mice, a model for human AD, with moderate to severe dermatitis were used. Mice were given different natural groundwater or tap water for 8 weeks from 4 weeks of age. Clinical skin severity scores were recorded every week. Scratching analysis and measurement of transepidermal water loss were performed every other week. The pathological condition of the dorsal skin was evaluated histologically. Real-time polymerase chain reaction analysis was performed for cytokine expression in the affected skin. The epidermal hyperplasia and allergic inflammation were reduced in atopic mice supplied with Jeju groundwater when compared to those supplied with tap water or other kinds of natural groundwater. The increase in scratching behavior with the aggravation of clinical severity of dermatitis was favorably controlled. Moreover, transepidermal water loss that reflects skin barrier function was recovered. The early inflammation and hypersensitivity in the atopic skin was alleviated in mice supplied with Jeju groundwater, suggesting its profitable potential on the daily care of patients with skin troubles including AD.

  18. Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the Epstein-Barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis.

    PubMed

    Kapadia, Govind J; Azuine, Magnus A; Tokuda, Harukuni; Takasaki, Midori; Mukainaka, Teruo; Konoshima, Takao; Nishino, Hoyoku

    2002-06-01

    Resveratrol, sesamol, sesame oil and sunflower oil are known natural dietary components with intrinsic cancer chemopreventive potentials. As a part of our study of dietary constituents as potential cancer chemopreventive agents, we have assessed the anti-cancer potentials of these products in the promotion stage of cancer development employing the in vitro Epstein-Barr virus early antigen activation assay induced by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). Further, we studied the activities of these compounds in the brine shrimp cytotoxicity assay as well as on the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging bioassay with a view to comparing some of the mechanisms of their anti-cancer activity. Finally, we compared the observed chemoprotective capabilities of the four products in the in vivo 7,12 dimethylbenz(a)anthracene initiated and TPA-promoted mouse skin two-stage carcinogenesis protocols. All the products tested showed a profound inhibitory effect on the Epstein-Barr virus early antigen induction using Raji cells. Comparatively, sesame oil was the most potent followed by sesamol and then resveratrol. Only sesamol and resveratrol showed a remarkable cytotoxic activity in the brine shrimp lethality assays as well as profound free radical scavenging activity in the DPPH bioassay. In both test systems, sesamol exhibited a more remarkable activity than resveratrol while sesame oil and sunflower oil did not exhibit any appreciable activity even at the highest concentrations tested (4000 microg ml(-1) ). In our in vivo assay at a 50-fold molar ratio to TPA, sesamol offered 50% reduction in mouse skin papillomas at 20 weeks after promotion with TPA. Under an identical molar ratio to TPA, resveratrol offered a 60% reduction in the papillomas in mouse at 20 weeks. Thus sesamol seems to be an almost equally potent chemopreventive agent. Sesame oil and sunflower oil offered 20 and 40% protection, respectively, in the mouse

  19. Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the Epstein-Barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis.

    PubMed

    Kapadia, Govind J; Azuine, Magnus A; Tokuda, Harukuni; Takasaki, Midori; Mukainaka, Teruo; Konoshima, Takao; Nishino, Hoyoku

    2002-06-01

    Resveratrol, sesamol, sesame oil and sunflower oil are known natural dietary components with intrinsic cancer chemopreventive potentials. As a part of our study of dietary constituents as potential cancer chemopreventive agents, we have assessed the anti-cancer potentials of these products in the promotion stage of cancer development employing the in vitro Epstein-Barr virus early antigen activation assay induced by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). Further, we studied the activities of these compounds in the brine shrimp cytotoxicity assay as well as on the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging bioassay with a view to comparing some of the mechanisms of their anti-cancer activity. Finally, we compared the observed chemoprotective capabilities of the four products in the in vivo 7,12 dimethylbenz(a)anthracene initiated and TPA-promoted mouse skin two-stage carcinogenesis protocols. All the products tested showed a profound inhibitory effect on the Epstein-Barr virus early antigen induction using Raji cells. Comparatively, sesame oil was the most potent followed by sesamol and then resveratrol. Only sesamol and resveratrol showed a remarkable cytotoxic activity in the brine shrimp lethality assays as well as profound free radical scavenging activity in the DPPH bioassay. In both test systems, sesamol exhibited a more remarkable activity than resveratrol while sesame oil and sunflower oil did not exhibit any appreciable activity even at the highest concentrations tested (4000 microg ml(-1) ). In our in vivo assay at a 50-fold molar ratio to TPA, sesamol offered 50% reduction in mouse skin papillomas at 20 weeks after promotion with TPA. Under an identical molar ratio to TPA, resveratrol offered a 60% reduction in the papillomas in mouse at 20 weeks. Thus sesamol seems to be an almost equally potent chemopreventive agent. Sesame oil and sunflower oil offered 20 and 40% protection, respectively, in the mouse

  20. The risk of hydroquinone and sunscreen over-absorption via photodamaged skin is not greater in senescent skin as compared to young skin: nude mouse as an animal model.

    PubMed

    Hung, Chi-Feng; Chen, Wei-Yu; Aljuffali, Ibrahim A; Shih, Hui-Chi; Fang, Jia-You

    2014-08-25

    Intrinsic aging and photoaging modify skin structure and components, which subsequently change percutaneous absorption of topically applied permeants. The purpose of this study was to systematically evaluate drug/sunscreen permeation via young and senescent skin irradiated by ultraviolet (UV) light. Both young and senescent nude mice were subjected to UVA (10 J/cm(2)) and/or UVB radiation (175 mJ/cm(2)). Physiological parameters, immunohistology, and immunoblotting were employed to examine the aged skin. Hydroquinone and sunscreen permeation was determined by in vitro Franz cell. In vivo skin absorption was documented using a hydrophilic dye, rhodamine 123 (log P=-0.4), as a permeant. UVA exposure induced cyclooxygenase (COX)-2 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) upregulation. Epidermal tight junction (TJ) were degraded by UVA. UVB increased transepidermal water loss (TEWL) from 13 to 24 g/m(2)/h. Hyperplasia and inflammation, but not loss of TJ, were also observed in UVB-treated skin. UVA+UVB- and UVA-irradiated skin demonstrated similar changes in histology and biomarkers. UVA+UVB or UVA exposure increased hydroquinone flux five-fold. A negligible alteration of hydroquinone permeation was shown with UVB exposure. Hydroquinone exhibited a lower penetration through senescent skin than young skin. Both UVA and UVB produced enhancement of oxybenzone flux and skin uptake. However, the amount of increase was less than that of hydroquinone delivery. Photoaging did not augment skin absorption of sunscreens with higher lipophilicity, including avobenzone and ZnO. Exposure to UVA generally increased follicular entrance of these permeants, which showed two- to three-fold greater follicular uptake compared to the untreated group. Photoaging had less impact on drug/sunscreen absorption with more lipophilic permeants. Percutaneous absorption did not increase in skin subjected to both intrinsic and extrinsic aging.

  1. Low levels of glutathione are sufficient for survival of keratinocytes after UV irradiation and for healing of mouse skin wounds.

    PubMed

    Telorack, Michèle; Abplanalp, Jeannette; Werner, Sabine

    2016-08-01

    Reduced levels of the cellular antioxidant glutathione are associated with premature skin aging, cancer and impaired wound healing, but the in vivo functions of glutathione in the skin remain largely unknown. Therefore, we analyzed mice lacking the modifier subunit of the glutamate cysteine ligase (Gclm), the enzyme that catalyzes the rate-limiting step of glutathione biosynthesis. Glutathione levels in the skin of these mice were reduced by 70 %. However, neither skin development and homeostasis, nor UVA- or UVB-induced apoptosis in the epidermis were affected. Histomorphometric analysis of excisional wounds did not reveal wound healing abnormalities in young Gclm-deficient mice, while the area of hyperproliferative epithelium as well as keratinocyte proliferation were affected in aged mice. These findings suggest that low levels of glutathione are sufficient for wound repair in young mice, but become rate-limiting upon aging.

  2. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment to mouse skin prevents UVB-induced infiltration of leukocytes, depletion of antigen-presenting cells, and oxidative stress.

    PubMed

    Katiyar, S K; Mukhtar, H

    2001-05-01

    Ultraviolet (UV) radiation-induced infiltrating leukocytes, depletion of antigen-presenting cells, and oxidative stress in the skin play an important role in the induction of immune suppression and photocarcinogenesis. Earlier we have shown that topical application of polyphenols from green tea or its major chemopreventive constituent (-)-epigallocatechin-3-gallate (EGCG) prevents UV-B-induced immunosuppression in mice. To define the mechanism of prevention, we found that topical application of EGCG (3 mg/mouse/3 cm(2) of skin area) to C3H/HeN mice before a single dose of UV-B (90 mJ/cm(2)) exposure inhibited UV-B-induced infiltration of leukocytes, specifically the CD11b+ cell type, and myeloperoxidase activity, a marker of tissue infiltration of leukocytes. EGCG treatment was also found to prevent UV-B-induced depletion in the number of antigen-presenting cells when immunohistochemically detected as class II MHC+ Ia+ cells. UV-B-induced infiltrating cell production of H2O2 and nitric oxide (NO) was determined as a marker of oxidative stress. We found that pretreatment of EGCG decreased the number of UV-B-induced increases in H2O2-producing cells and inducible nitric oxide synthase-expressing cells and the production of H2O2 and NO in both epidermis and dermis at a UV-B-irradiated site. Together, these data suggest that prevention of UV-B-induced infiltrating leukocytes, antigen-presenting cells, and oxidative stress by EGCG treatment of mouse skin may be associated with the prevention of UV-B-induced immunosuppression and photocarcinogenesis.

  3. Hesperidin methyl chalcone inhibits oxidative stress and inflammation in a mouse model of ultraviolet B irradiation-induced skin damage.

    PubMed

    Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Caviglione, Carla V; Vignoli, Josiane A; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia

    2015-07-01

    Hesperidin methyl chalcone (HMC) is a safe flavonoid used to treat chronic venous diseases, but its effects and mechanisms on UVB irradiation-induced inflammation and oxidative stress have never been described in vivo. Thus, the purpose of this study was to evaluate the effects of systemic administration of HMC in skin oxidative stress and inflammation induced by UVB irradiation. To induce skin damage, hairless mice were exposed to an acute UVB irradiation dose of 4.14 J/cm(2), and the dorsal skin samples were collected to evaluate oxidative stress and inflammatory response. The intraperitoneal treatment with HMC at the dose of 300 mg/kg inhibited UVB irradiation-induced skin edema, neutrophil recruitment, and matrix metalloproteinase-9 activity. HMC also protected the skin from UVB irradiation-induced oxidative stress by maintaining ferric reducing antioxidant power (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging ability and antioxidant levels (reduced glutathione and catalase). Corroborating, HMC inhibited UVB irradiation-induced superoxide anion generation and gp91phox (NADPH oxidase subunit) mRNA expression. Furthermore, the antioxidant effect of HMC resulted in lower production of inflammatory mediators, including lipid hydroperoxides and a wide range of cytokines. Taken together, these results unveil a novel applicability of HMC in the treatment of UVB irradiation-induced skin inflammation and oxidative stress.

  4. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing

    PubMed Central

    Carrasco, Elisa; Calvo, María I.; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C.; Hamblin, Michael R.; Juarranz, Ángeles; Espada, Jesús

    2015-01-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and ageing, but recent findings suggest that can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the hair follicle, a major reservoir of epidermal stem cells, promoting hair growth as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism. PMID:26134949

  5. In Vivo Spectrum of UVC-induced Mutation in Mouse Skin Epidermis May Reflect the Cytosine Deamination Propensity of Cyclobutane Pyrimidine Dimers.

    PubMed

    Ikehata, Hironobu; Mori, Toshio; Yamamoto, Masayuki

    2015-11-01

    Although ultraviolet radiation (UVR) has a genotoxicity for inducing skin cancers, the skin may tolerate UVC component because the epidermal layer prevents this short wavelength range from passing through. Here, UVC genotoxicity for mouse skin was evaluated in terms of DNA damage formation and mutagenicity. UVC induced UVR photolesions and mutations remarkably in the epidermis but poorly in the dermis, confirming the barrier ability of the epidermis against shorter UVR wavelengths. Moreover, the epidermis itself responded to UVC mutagenicity with mutation induction suppression, which suppressed the mutant frequencies to a remarkably low, constant level regardless of UVC dose. The mutation spectrum observed in UVC-exposed epidermis showed a predominance of UV-signature mutation, which occurred frequently in 5'-TCG-3', 5'-TCA-3' and 5'-CCA-3' contexts. Especially, for the former two contexts, the mutations recurred at several sites with more remarkable recurrences at the 5'-TCG-3' sites. Comparison of the UVC mutation spectrum with those observed in longer UVR wavelength ranges led us to a mechanism that explains why the sequence context preference of UV-signature mutation changes according to the wavelength, which is based on the difference in the mCpG preference of cyclobutane pyrimidine dimer (CPD) formation among UVR ranges and the sequence context-dependent cytosine deamination propensity of CPD.

  6. Antibacterial activity and therapeutic efficacy of Fl-P(R)P(R)P(L)-5, a cationic amphiphilic polyproline helix, in a mouse model of staphylococcal skin infection.

    PubMed

    Thangamani, Shankar; Nepal, Manish; Chmielewski, Jean; Seleem, Mohamed N

    2015-01-01

    The antibacterial activities and therapeutic efficacy of the cationic, unnatural proline-rich peptide Fl-P(R)P(R)P(L)-5 were evaluated against multidrug-resistant Staphylococcus aureus in a mouse model of skin infection. Fl-P(R)P(R)P(L)-5 showed potent activity against all clinical isolates of S. aureus tested, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA, respectively). Fl-P(R)P(R)P(L)-5 was also superior in clearing established in vitro biofilms of S. aureus and Staphylococcus epidermidis, compared with the established antimicrobials mupirocin and vancomycin. Additionally, topical treatment of an MRSA-infected wound with Fl-P(R)P(R)P(L)-5 enhanced wound closure and significantly reduced bacterial load. Finally, 0.5% Fl-P(R)P(R)P(L)-5 significantly reduced the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in wounds induced by MRSA skin infection. In conclusion, the results of this study suggest the potential application of Fl-P(R)P(R)P(L)-5 in the treatment of staphylococcal skin infections.

  7. Antibacterial activity and therapeutic efficacy of Fl-PRPRPL-5, a cationic amphiphilic polyproline helix, in a mouse model of staphylococcal skin infection

    PubMed Central

    Thangamani, Shankar; Nepal, Manish; Chmielewski, Jean; Seleem, Mohamed N

    2015-01-01

    The antibacterial activities and therapeutic efficacy of the cationic, unnatural proline-rich peptide Fl-PRPRPL-5 were evaluated against multidrug-resistant Staphylococcus aureus in a mouse model of skin infection. Fl-PRPRPL-5 showed potent activity against all clinical isolates of S. aureus tested, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA, respectively). Fl-PRPRPL-5 was also superior in clearing established in vitro biofilms of S. aureus and Staphylococcus epidermidis, compared with the established antimicrobials mupirocin and vancomycin. Additionally, topical treatment of an MRSA-infected wound with Fl-PRPRPL-5 enhanced wound closure and significantly reduced bacterial load. Finally, 0.5% Fl-PRPRPL-5 significantly reduced the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in wounds induced by MRSA skin infection. In conclusion, the results of this study suggest the potential application of Fl-PRPRPL-5 in the treatment of staphylococcal skin infections. PMID:26543355

  8. A Herbal Formula, Atofreellage, Ameliorates Atopic Dermatitis-Like Skin Lesions in an NC/Nga Mouse Model.

    PubMed

    Kim, Won-Yong; Kim, Hyeong-Geug; Lee, Hye-Won; Lee, Jin-Seok; Im, Hwi-Jin; Kim, Hyo-Seon; Lee, Sung-Bae; Son, Chang-Gue

    2015-01-01

    We evaluated the anti-atopic dermatitis (AD) effect of Atofreellage (AF), a herbal formula composed of 10 medicinal plants. AD was induced on the dorsal skin areas of NC/Nga mice (male, seven weeks old) by daily application of 2,4-dinitrochlorobenzene (DNCB) for five weeks. After three weeks of DNCB application, 200 μL of AF (0, 25, 50 or 100 mg/mL) was applied to the skin lesions. Histological findings, blood cell populations, serum levels of immunoglobulin E (IgE), histamine, pro-inflammatory cytokines, and inflammatory signaling in the skin tissue, and T-helper cell type 2 (Th₂)-related cytokines in splenocytes were analyzed. Histopathological findings showed AF treatment notably attenuated the thickness of dorsal skin, and eosinophil infiltration. AF treatment (especially 100 mg/mL) also demonstrably ameliorated the blood cell population abnormalities, as the notable elevation of serum concentrations of IgE, histamine, TNF-α, IL-6 and IL-1β were remarkably normalized by AF treatment. Western blot analysis evidenced the apparent normalization of inflammatory signals (ERK, p38 MAP kinase, JNK, and NF-κB) in the skin tissue. Additionally, AF treatment notably attenuated the activation of Th₂-dominant cytokines (IL-13, IL-4, and IL-5) in Con A-treated splenocytes in an ex vivo assay. In conclusion, this study provides experimental evidence for the clinical relevance of Atofreellage. PMID:26712731

  9. The effects of Origanum hypericifolium essential oil application and ultraviolet B irradiation on mouse skin: An ultrastructural study.

    PubMed

    Ili, Pinar

    2016-07-01

    Exposure to UV radiation can cause histopathological and ultrastructural changes in the skin. Origanum hypericifolium, an endemic Turkish plant,essential oil is mainly composed of monoterpenes. The effects of undiluted O. hypericifolium oil on the ultrastructural characteristics of the UVB-irradiated dorsal skin of mice were investigated using transmission electron microscopy. The BALB/c mice were shaved of dorsal hair and randomly housed into 4 groups: 1: control; 2: UVB-irradiated; 3: oil applied; and 4: oil applied and UVB-irradiated. The oil was applied topically to the dorsal skins of the mice on alternate days for 1week prior to UVB exposure. The skins were irradiated for a total dose of 3.5J/cm(2). The sections were stained with hematoxylin and eosin, semithin sections were stained with toluidine blue and ultrathin sections were contrasted with uranyl acetate/lead citrate. There were histopathological changes such as parakeratosis and squamous hyperplasia in the epidermal cell layers (Groups 3 and 4). There were also ultrastructural changes including lacunae formations throughout the stratum corneum layer (Groups 2, 3, and 4), enlargement of intercellular spaces (Groups 2 and 3), reduced desmosomes, narrow and elongated interdigitations, shortened, relatively indistinct and electron dense intermediate keratin filament bundles (Group 3). There were various sizes of cytoplasmic and perinucleolar vacuoles (Groups 3 and 4) and apoptotic bodies phagocytized by keratinocytes (Group 4). I conclude that undiluted oil has side-effects and the potential to inflict injury to the skin. The oil does not ameliorate the negative effects of UVB on epidermal skin cells.

  10. The effects of Origanum hypericifolium essential oil application and ultraviolet B irradiation on mouse skin: An ultrastructural study.

    PubMed

    Ili, Pinar

    2016-07-01

    Exposure to UV radiation can cause histopathological and ultrastructural changes in the skin. Origanum hypericifolium, an endemic Turkish plant,essential oil is mainly composed of monoterpenes. The effects of undiluted O. hypericifolium oil on the ultrastructural characteristics of the UVB-irradiated dorsal skin of mice were investigated using transmission electron microscopy. The BALB/c mice were shaved of dorsal hair and randomly housed into 4 groups: 1: control; 2: UVB-irradiated; 3: oil applied; and 4: oil applied and UVB-irradiated. The oil was applied topically to the dorsal skins of the mice on alternate days for 1week prior to UVB exposure. The skins were irradiated for a total dose of 3.5J/cm(2). The sections were stained with hematoxylin and eosin, semithin sections were stained with toluidine blue and ultrathin sections were contrasted with uranyl acetate/lead citrate. There were histopathological changes such as parakeratosis and squamous hyperplasia in the epidermal cell layers (Groups 3 and 4). There were also ultrastructural changes including lacunae formations throughout the stratum corneum layer (Groups 2, 3, and 4), enlargement of intercellular spaces (Groups 2 and 3), reduced desmosomes, narrow and elongated interdigitations, shortened, relatively indistinct and electron dense intermediate keratin filament bundles (Group 3). There were various sizes of cytoplasmic and perinucleolar vacuoles (Groups 3 and 4) and apoptotic bodies phagocytized by keratinocytes (Group 4). I conclude that undiluted oil has side-effects and the potential to inflict injury to the skin. The oil does not ameliorate the negative effects of UVB on epidermal skin cells. PMID:27156161

  11. Simulated solar light-induced p53 mutagenesis in SKH-1 mouse skin: a dose-response assessment.

    PubMed

    Verkler, Tracie L; Delongchamp, Robert R; Miller, Barbara J; Webb, Peggy J; Howard, Paul C; Parsons, Barbara L

    2008-08-01

    Sunlight and ultraviolet-induced mutation of the p53 gene is a frequent, possibly obligate step in skin cancer development, making quantitative measurement of p53 mutation an ideal biomarker for sunlight-induced skin carcinogenesis. To understand how the appearance of p53 mutation relates to skin tumor development, SKH-1 hairless mice were exposed 5 d per week to one of four different doses of simulated solar light (SSL; 0, 6.85, 13.70, 20.55 mJ x CIE/cm(2)) previously characterized for their tumorigenic potential. Allele-specific competitive blocker-PCR (ACB-PCR) was used to measure levels of p53 codon 270 CGT to TGT mutation within DNA isolated from dorsal skin of exposed mice. For each dose, p53 mutant fraction (MF) was measured after 4, 16, and 28 wk of exposure. Significant dose- and time-dependent increases in p53 MF were identified. All p53 MF measurements were integrated by relating the observed p53 MF to the cumulative dose of SSL. The increase in the logarithm of p53 MF was described by the linear function: log(10) MF = alpha + 0.0016 x d, where alpha is the spontaneous log(10) MF after a particular time point and d is the dose of SSL in mJ x CIE/cm(2). The p53 MF induced in nontumor bearing skin by 28 wk of exposure at the high dose of SSL was significantly lower than that found in skin tumors induced by approximately 32 wk of exposure to the same dose of SSL. p53 MF showed a strong negative correlation with tumor latency, suggesting this quantitative biomarker has the potential to predict tumorigenicity. PMID:18314877

  12. Ultrasonic Stimulation of Mouse Skin Reverses the Healing Delays in Diabetes and Aging by Activation of Rac1.

    PubMed

    Roper, James A; Williamson, Rosalind C; Bally, Blandine; Cowell, Christopher A M; Brooks, Rebecca; Stephens, Phil; Harrison, Andrew J; Bass, Mark D

    2015-11-01

    Chronic skin-healing defects are one of the leading challenges to lifelong well-being, affecting 2-5% of populations. Chronic wound formation is linked to age and diabetes and frequently leads to major limb amputation. Here we identify a strategy to reverse fibroblast senescence and improve healing rates. In healthy skin, fibronectin activates Rac1 in fibroblasts, causing migration into the wound bed, and driving wound contraction. We discover that mechanical stimulation of the skin with ultrasound can overturn healing defects by activating a calcium/CamKinaseII/Tiam1/Rac1 pathway that substitutes for fibronectin-dependent signaling and promotes fibroblast migration. Treatment of diabetic and aged mice recruits fibroblasts to the wound bed and reduces healing times by 30%, restoring healing rates to those observed in young, healthy animals. Ultrasound treatment is equally effective in rescuing the healing defects of animals lacking fibronectin receptors, and can be blocked by pharmacological inhibition of the CamKinaseII pathway. Finally, we discover that the migration defects of fibroblasts from human venous leg ulcer patients can be reversed by ultrasound, demonstrating that the approach is applicable to human chronic samples. By demonstrating that this alternative Rac1 pathway can substitute for that normally operating in the skin, we identify future opportunities for management of chronic wounds.

  13. Effects of systemic indomethacin, meclizine, and BW755C on chronic ultraviolet B-induced effects in hairless mouse skin.

    PubMed

    Kochevar, I E; Moran, M; Lyon, N; Flotte, T; Siebert, E; Gange, R W

    1993-02-01

    Chronic exposure of hairless mice to ultraviolet B (UVB) radiation is associated with inflammation as well as an altered macromolecular composition of the dermis. This study was designed to determine whether or not various systemic anti-inflammatory agents inhibit chronic UVB-induced changes in the macromolecular content of the dermis and, if so, whether each agent had the same or different effects. The agents and doses were chosen for their ability to inhibit the changes induced by a single exposure to UVB radiation (increased vasopermeability, neutrophil accumulation, and skin-fold thickness). Indomethacin, a cyclooxygenase inhibitor, and meclizine, an H1 histamine receptor antagonist, were administered from slow-release pellets. BW755C, a combined cyclooxygenase and lipoxygenase inhibitor, was administered intraperitoneally 30 min prior to UVB exposure. Animals were exposed to UVB three times per week for 20-26 weeks or were unirradiated. The elastin, glycosaminoglycan and collagen content of the skin were determined by measuring the desmosine, uronic acid, and hydroxyproline levels, respectively. The amount of each macromolecule per area of skin increased after chronic UVB exposure. The increase in desmosine was inhibited by indomethacin; the increase in hydroxyproline was inhibited by meclizine and BW755C. None of the agents inhibited the uronic acid increase. These results suggest that chronic inflammation contributes to the dermal changes seen in chronically UVB-exposed skin and that different inflammatory mediators are involved in the increases observed in elastin, glycosaminoglycans, and collagen. PMID:8429241

  14. Ultrasonic stimulation of mouse skin reverses the healing delays in diabetes and aging by activation of Rac1

    PubMed Central

    Roper, James A; Williamson, Rosalind C; Bally, Blandine; Cowell, Christopher AM; Brooks, Rebecca; Stephens, Phil; Harrison, Andrew J; Bass, Mark D

    2015-01-01

    Chronic skin healing defects are one of the leading challenges to lifelong wellbeing, affecting 2-5% of populations. Chronic wound formation is linked to age and diabetes and frequently leads to major limb amputation. Here we identify a strategy to reverse fibroblast senescence and improve healing rates. In healthy skin, fibronectin activates Rac1 in fibroblasts, causing migration into the wound bed and driving wound contraction. We discover that mechanical stimulation of skin with ultrasound can overturn healing defects by activating a calcium/CamKinaseII/Tiam1/Rac1 pathway that substitutes for fibronectin-dependent signaling and promotes fibroblast migration. Treatment of diabetic and aged mice recruits fibroblasts to the wound bed and reduces healing times by 30%, restoring healing rates to those observed in young, healthy animals. Ultrasound treatment is equally effective in rescuing the healing defects of animals lacking fibronectin receptors, and can be blocked by pharmacological inhibition of the CamKinaseII pathway. Finally, we discover that the migration defects of fibroblasts from human venous leg ulcer patients can be reversed by ultrasound, demonstrating that the approach is applicable to human chronic samples. By demonstrating that this alternative Rac1 pathway can substitute for that normally operating in skin, we identify future opportunities for management of chronic wounds. PMID:26079528

  15. Fibre optic confocal imaging (FOCI) of keratinocytes, blood vessels and nerves in hairless mouse skin in vivo

    PubMed Central

    BUSSAU, L. J.; VO, L. T.; DELANEY, P. M.; PAPWORTH, G. D.; BARKLA, D. H.; KING, R. G.

    1998-01-01

    Fibre optic confocal imaging (FOCI) enabled subsurface fluorescence microscopy of the skin of hairless mice in vivo. Application of acridine orange enabled imaging of the layers of the epidermis. The corneocytes of the stratum corneum, the keratinocytes in the basal layers and redundant hair follicles were visualised at depths greater than 100 μm. Cellular and nuclear membranes of keratinocytes of the skin were visualised by the use of acridine orange and DIOC5(3). Imaging of the skin after injection of FITC-dextran revealed an extensive network of blood vessels with a size range up to 20 μm. Blood cells could be seen moving through dermal vessels and the blood circulation through the dermal vascular bed was video-taped. The fluorescent dye 4-di-2-ASP showed the presence of nerves fibres around the hair follicles and subsurface blood vessels. Comparison was made between images obtained in vivo using FOCI and in vitro scanning electron microscopy and conventional histology. FOCI offers the potential to study dynamic events in vivo, such as blood flow, skin growth, nerve regeneration and many pathological processes, in ways which have not previously been possible. PMID:9643419

  16. Dietary histidine increases mouse skin urocanic acid levels and enhances UVB-induced immune suppression of contact hypersensitivity.

    PubMed

    Reilly, S K; De Fabo, E C

    1991-04-01

    Urocanic Acid (UCA) exists in mammalian skin primarily as the trans isomer and is photoisomerized to cis UCA upon UVB absorption. Our previous studies indicated that the photoisomerization of UCA is the initiating event in UBV-induced suppression of cell-mediated immunity (tUCA----cUCA----immune suppression). The purpose of this study was to verify the role of UCA in UV-induced immune suppression of contact hypersensitivity (CHS) in BALB/c mice. Since UCA is a metabolite of the amino acid L-histidine, we reasoned that increased dietary levels of histidine should raise skin tUCA levels. If skin tUCA is the UVB photoreceptor for immune suppression, this increase should enhance UV-induced suppression of CHS. HPLC analysis of skin from BALB/c mice given a histidine-rich diet (10%) showed that the total amount of UCA is significantly higher in these animals than in mice fed a normal diet. Further, levels of suppression of CHS of 3% and 49% in control fed mice, induced by 4.8 and 7.2 kJ/m2 UVB were significantly increased to 21% and 71% respectively in histidine-fed animals at these same UVB doses. These findings provide additional support for the UCA model for immune suppression, and provide the first evidence that UV-induced immune suppression can be enhanced by a dietary component, L-histidine. PMID:1857737

  17. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  18. Differential Plasma Glycoproteome of p19ARF Skin Cancer Mouse Model Using the Corra Label-Free LC-MS Proteomics Platform

    PubMed Central

    Letarte, Simon; Brusniak, Mi-Youn; Campbell, David; Eddes, James; Kemp, Christopher J.; Lau, Hollis; Mueller, Lukas; Schmidt, Alexander; Shannon, Paul; Kelly-Spratt, Karen S.; Vitek, Olga; Zhang, Hui; Aebersold, Ruedi; Watts, Julian D.

    2010-01-01

    A proof-of-concept demonstration of the use of label-free quantitative glycoproteomics for biomarker discovery workflow is presented here, using a mouse model for skin cancer as an example. Blood plasma was collected from 10 control mice, and 10 mice having a mutation in the p19ARF gene, conferring them high propensity to develop skin cancer after carcinogen exposure. We enriched for N-glycosylated plasma proteins, ultimately generating deglycosylated forms of the modified tryptic peptides for liquid chromatography mass spectrometry (LC-MS) analyses. LC-MS runs for each sample were then performed with a view to identifying proteins that were differentially abundant between the two mouse populations. We then used a recently developed computational framework, Corra, to perform peak picking and alignment, and to compute the statistical significance of any observed changes in individual peptide abundances. Once determined, the most discriminating peptide features were then fragmented and identified by tandem mass spectrometry with the use of inclusion lists. We next assessed the identified proteins to see if there were sets of proteins indicative of specific biological processes that correlate with the presence of disease, and specifically cancer, according to their functional annotations. As expected for such sick animals, many of the proteins identified were related to host immune response. However, a significant number of proteins also directly associated with processes linked to cancer development, including proteins related to the cell cycle, localisation, trasport, and cell death. Additional analysis of the same samples in profiling mode, and in triplicate, confirmed that replicate MS analysis of the same plasma sample generated less variation than that observed between plasma samples from different individuals, demonstrating that the reproducibility of the LC-MS platform was sufficient for this application. These results thus show that an LC-MS-based workflow

  19. MicroRNA-21a-5p Functions on the Regulation of Melanogenesis by Targeting Sox5 in Mouse Skin Melanocytes.

    PubMed

    Wang, Pengchao; Zhao, Yuanyuan; Fan, Ruiwen; Chen, Tianzhi; Dong, Changsheng

    2016-01-01

    MicroRNAs (miRNAs) play an important role in regulating almost all biological processes. miRNAs bind to the 3' untranslated region (UTR) of mRNAs by sequence matching. In a previous study, we demonstrated that miR-21 was differently expressed in alpaca skin with different hair color. However, the molecular and cellular mechanisms for miR-21 to regulate the coat color are not yet completely understood. In this study, we transfected miR-21a-5p into mouse melanocytes and demonstrated its function on melanogenesis of miR-21a-5p by targeting Sox5, which inhibits melanogenesis in mouse melanocytes. The results suggested that miR-21a-5p targeted Sox5 gene based on the binding site in 3' UTR of Sox5 and overexpression of miR-21a-5p significantly down-regulated Sox5 mRNA and protein expression. Meanwhile, mRNA and protein expression of microphthalmia transcription factor (MITF) and Tyrosinase (TYR) were up-regulated, which subsequently make the melanin production in melanocytes increased. The results suggest that miR-21a-5p regulates melanogenesis via MITF by targeting Sox5. PMID:27347933

  20. MicroRNA-21a-5p Functions on the Regulation of Melanogenesis by Targeting Sox5 in Mouse Skin Melanocytes

    PubMed Central

    Wang, Pengchao; Zhao, Yuanyuan; Fan, Ruiwen; Chen, Tianzhi; Dong, Changsheng

    2016-01-01

    MicroRNAs (miRNAs) play an important role in regulating almost all biological processes. miRNAs bind to the 3′ untranslated region (UTR) of mRNAs by sequence matching. In a previous study, we demonstrated that miR-21 was differently expressed in alpaca skin with different hair color. However, the molecular and cellular mechanisms for miR-21 to regulate the coat color are not yet completely understood. In this study, we transfected miR-21a-5p into mouse melanocytes and demonstrated its function on melanogenesis of miR-21a-5p by targeting Sox5, which inhibits melanogenesis in mouse melanocytes. The results suggested that miR-21a-5p targeted Sox5 gene based on the binding site in 3′ UTR of Sox5 and overexpression of miR-21a-5p significantly down-regulated Sox5 mRNA and protein expression. Meanwhile, mRNA and protein expression of microphthalmia transcription factor (MITF) and Tyrosinase (TYR) were up-regulated, which subsequently make the melanin production in melanocytes increased. The results suggest that miR-21a-5p regulates melanogenesis via MITF by targeting Sox5. PMID:27347933

  1. Retinoic acid promotes the proliferation of primordial germ cell-like cells differentiated from mouse skin-derived stem cells in vitro.

    PubMed

    Tan, Hui; Wang, Jun-Jie; Cheng, Shun-Feng; Ge, Wei; Sun, Yuan-Chao; Sun, Xiao-Feng; Sun, Rui; Li, Lan; Li, Bo; Shen, Wei

    2016-02-01

    Skin-derived stem cells (SDSCs) have the potential to differentiate into gametes and are a potential resource for research and clinical applications. Sufficient amount of primordial germ cells (PGCs) is an important requirement for successful differentiation of SDSCs into gametes in vitro. Retinoic acid (RA), a vitamin A-derived small lipophilic molecule, promotes the growth of PGCs in vivo; however, the role of RA on the proliferation of PGC-like cells (PGCLCs) derived from SDSCs remains unknown. In this study, SDSCs were induced to differentiate into the embryoid body and cocultured with mouse fibroblasts to form PGCLCs. The proliferation of PGCLCs with the presence of various concentrations of RA was investigated in vitro. Immunofluorescence labeling showed that the 5-Bromo-2-deoxyUridine-positive ratio of PGCLCs was increased after the cells were treated with 5-μM RA, and flow cytometry results showed that the number of cells in the S phase was increased significantly. The messenger RNA expression levels of cell cycle-related genes, CCND1 and CDK2, were also increased. Furthermore, RA effectively promoted the external proliferation of endogenous PGCs when 11.5-days postcoitum fetal mouse genital ridges were cultured in vitro. In conclusion, 5-μM RA promoted the proliferation of SDSCs-derived PGCLCs and endogenous PGCs. Our study will provide a valuable model system for studying the differentiation of stem cells into gametes in vitro.

  2. In-vivo and label-free imaging of cellular and tissue structures in mouse ear skin by using second- and third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Eung Jang; Kim, Boram; Ahn, Hong-Gyu; Park, Seung-Han; Cheong, Eunji; Lee, Sangyoup

    2015-02-01

    A video-rate multimodal microscope, which can obtain second- and third- harmonic generation (SHG and THG) images simultaneously, is developed for investigating cellular and tissue structures in mouse ear skin. By utilizing in-vivo video-rate epi-detected SHG and THG microscopy, we successfully demonstrate that combined images of subcutaneous cellular components and peripheral nerve fibers, together with the collagen fiber, in the mouse ear pinna can be obtained without employing fluorescent probes. We also show that the flow of red blood cells and the diameter change of arteriole-like blood vessels can be visualized with femtosecond laser pulses with a wavelength of 1036 nm. In particular, the epi-THG contrast images of the blood-vessel walls display clearly the difference between the arteriole-like and the venule capillary-like blood-vessel types. We should emphasize that our newly-developed microscope system has a unique feature in that it can produce simultaneous in-vivo label-free SHG and THG images in contrast to the conventional confocal and two-photon microscopes.

  3. Inhibition of phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate-caused inflammatory responses in SENCAR mouse skin by black tea polyphenols.

    PubMed

    Katiyar, S K; Mukhtar, H

    1997-10-01

    Over the past 10 years many studies from several laboratories defined anticarcinogenic and anti-inflammatory effects of tea, a widely consumed beverage by the human population. Much of such work has been conducted with green tea or its polyphenolic constituents. Regarding black tea, studies have shown that its water extract affords protection against tumor promotion caused by chemical carcinogens or ultraviolet B radiation in murine skin carcinogenesis models. Several studies have shown that topical application of chemical tumor promoters to murine skin results in the induction of epidermal edema, hyperplasia and ornithine decarboxylase (ODC) and cyclo-oxygenase activities, and interleukin-1 alpha (IL-1alpha) and ODC mRNA expression. In this study, we assessed whether topical application of polyphenols isolated from black tea leaves (hereafter referred to as BTP) mainly consisting of theaflavine gallates and (-)-epigallocatechin-3-gallate, inhibits phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)-caused induction of these markers of inflammatory responses in murine skin. Topical application of BTP (6 mg in 0.2 ml acetone/animal) 30 min prior to TPA application on to the mouse skin resulted in significant inhibition against TPA-caused induction of epidermal edema (40%, P < 0.01), hyperplasia (57%, P < 0.005), leukocytes infiltration (50%), and induction of epidermal ODC (57%) and pro-inflammatory cytokine IL-1alpha mRNA expression (69%). Pre-application of BTP to that of TPA also resulted in significant inhibition of TPA-caused induction of epidermal ODC (23-73%, P < 0.005-0.0001), and cyclo-oxygenase, in terms of prostaglandins metabolites formation (38-65%, P < 0.01-0.0005), enzyme activities. Our data indicate that the inhibition of TPA-caused changes in these markers of inflammatory responses in murine skin by BTP may be one of the possible mechanisms of chemopreventive effects associated with black tea against tumorigenesis. The results

  4. Dual Effects of Bisphosphonates on Ectopic Skin and Vascular Soft Tissue Mineralization versus Bone Microarchitecture in a Mouse Model of Generalized Arterial Calcification of Infancy.

    PubMed

    Li, Qiaoli; Kingman, Joshua; Sundberg, John P; Levine, Michael A; Uitto, Jouni

    2016-01-01

    Generalized arterial calcification of infancy is an intractable ectopic mineralization disorder caused by mutations in the ENPP1 gene, resulting in reduced plasma inorganic pyrophosphate (PPi) levels. We previously characterized the Enpp1(asj) mutant mouse as a model of generalized arterial calcification of infancy, and we have now explored the potential efficacy of bisphosphonates, nonhydrolyzable PPi analogs, in preventing ectopic mineralization in these mice. The mice were maintained on either basic diet (control) or diets containing etidronate or alendronate in three different concentrations (experimental). Considering low bioavailability of bisphosphonates when administered orally, subsequent studies tested the mice with subcutaneous injections of etidronate. The treatments were initiated at 4 weeks of age, and the degree of mineralization was assessed at 12 weeks of age by quantitation of calcium deposits in the muzzle skin containing dermal sheath of vibrissae and in aorta. We found that bisphosphonate treatments significantly reduced mineralization in skin and aorta. These changes in treated mice were accompanied with restoration of their bone microarchitecture, determined by microcomputed tomography. The inhibitory capacity of bisphosphonates, with mechanistic implications, was confirmed in a cell-based mineralization assay in vitro. Collectively, these results suggest that bisphosphonate treatment may be beneficial by a dual effect for preventing ectopic soft tissue mineralization while correcting decreased bone mineralization in generalized arterial calcification of infancy caused by ENPP1 mutations.

  5. Autofluorescence imaging device for real-time detection and tracking of pathogenic bacteria in a mouse skin wound model: preclinical feasibility studies

    NASA Astrophysics Data System (ADS)

    Wu, Yichao Charlie; Kulbatski, Iris; Medeiros, Philip J.; Maeda, Azusa; Bu, Jiachuan; Xu, Lizhen; Chen, Yonghong; DaCosta, Ralph S.

    2014-08-01

    Bacterial infection significantly impedes wound healing. Clinical diagnosis of wound infections is subjective and suboptimal, in part because bacteria are invisible to the naked eye during clinical examination. Moreover, bacterial infection can be present in asymptomatic patients, leading to missed opportunities for diagnosis and treatment. We developed a prototype handheld autofluorescence (AF) imaging device (Portable Real-time Optical Detection, Identification and Guidance for Intervention-PRODIGI) to noninvasively visualize and measure bacterial load in wounds in real time. We conducted preclinical pilot studies in an established nude mouse skin wound model inoculated with bioluminescent Staphylococcus aureus bacteria. We tested the feasibility of longitudinal AF imaging for in vivo visualization of bacterial load in skin wounds, validated by bioluminescence imaging. We showed that bacteria (S. aureus), occult to standard examination, can be visualized in wounds using PRODIGI. We also detected quantitative changes in wound bacterial load over time based on the antibiotic treatment and the correlation of bacterial AF intensity with bacterial load. AF imaging of wounds offers a safe, noninvasive method for visualizing the presence, location, and extent of bacteria as well as measuring relative changes in bacterial load in wounds in real time.

  6. Inhibition of DNA and protein synthesis in UV-irradiated mouse skin by 2-difluoromethylornithine, methylglyoxal bis(guanylhydrazone), and their combination

    SciTech Connect

    Kaepyaho, K.; Lauharanta, J.; Jaenne, J.

    1983-08-01

    Exposure of mouse skin to UVB irradiation greatly enhanced the biosynthesis and accumulation of putrescine and spermidine before or concomitantly with stimulation of epidermal macromolecular (DNA and protein) synthesis. Topical treatment of UV-exposed skin with 2 inhibitors of polyamine biosynthesis, 2-difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) (MGBG) prevented the enhanced epidermal accumulation of polyamines, especially spermidine, and also inhibited the incorporation of radioactive precursors into DNA and protein. When applied in combination, these 2 antimetabolites of polyamines produced an inhibition of macromolecular synthesis that was at least additive: (/sup 3/H)thymidine incorporation decreased by 80% and (/sup 14/C)leucine incorporation by 44% as compared with the UVB-irradiated control mice. A slight decrease in the ratio of (/sup 3/H)histidine/(/sup 14/C)leucine incorporation indicated that protein synthesis of the differentiating cell layers was also affected by the inhibitors. The effects of the combined DFMO and MGBG treatment were partially reversed by concomitant topical application of spermidine.

  7. Dual Effects of Bisphosphonates on Ectopic Skin and Vascular Soft Tissue Mineralization versus Bone Microarchitecture in a Mouse Model of Generalized Arterial Calcification of Infancy

    PubMed Central

    Li, Qiaoli; Kingman, Joshua; Sundberg, John P.; Levine, Michael A.; Uitto, Jouni

    2015-01-01

    Generalized arterial calcification of infancy (GACI) is an intractable ectopic mineralization disorder caused by mutations in the ENPP1 gene resulting in reduced plasma inorganic pyrophosphate levels. We previously characterized the Enpp1asj mutant mouse as a model of GACI, and we have now explored the potential efficacy of bisphosphonates, non-hydrolyzable PPi analogs, in preventing ectopic mineralization in these mice. These mice were maintained on either basic diet (control) or diets containing etidronate or alendronate in three different concentrations (experimental). Considering low bioavailability of bisphosphonates when administered orally, subsequent studies tested the mice with subcutaneous injections of etidronate. The treatments were initiated at 4 weeks of age, and the degree of mineralization was assessed at 12 weeks of age by quantitation of calcium deposits in the muzzle skin containing dermal sheath of vibrissae and in aorta. We found that bisphosphonate treatments significantly reduced mineralization in skin and aorta. These changes in treated mice were accompanied with restoration of their bone microarchitecture, determined bymicrocomputed tomography. The inhibitory capacity of bisphosphonates, with mechanistic implications, was confirmed in a cell-based mineralization assay in vitro. Collectively, these results suggest that bisphosphonate treatment may be beneficial by a dual effect for preventing ectopic soft tissue mineralization while correcting decreased bone mineralization in GACI caused by ENPP1 mutations. PMID:26763447

  8. Citrinin-generated reactive oxygen species cause cell cycle arrest leading to apoptosis via the intrinsic mitochondrial pathway in mouse skin.

    PubMed

    Kumar, Rahul; Dwivedi, Premendra D; Dhawan, Alok; Das, Mukul; Ansari, Kausar M

    2011-08-01

    The mycotoxin, citrinin (CTN), is a contaminant of various food and feed materials. Several in vivo and in vitro studies have demonstrated that CTN has broad toxicity spectra; however, dermal toxicity is not known. In the present investigation, dermal exposure to CTN was undertaken to study oxidative stress, DNA damage, cell cycle arrest, and apoptosis in mouse skin. A single topical application of CTN caused significant change in oxidative stress markers, such as lipid peroxidation, protein carbonyl content, glutathione (GSH) content, and antioxidant enzymes in a dose-dependent (25-100 μg/mouse) and time-dependent (12-72 h) manner. Single topical application of CTN (50 μg/mouse) for 12-72 h caused significant enhancement in (1) reactive oxygen species (ROS); (2) cell cycle arrest at the G0/G1 phase (30-71%) and G2/M phase (56-65%) along with the induction of apoptosis (3.6-27%); (3) expression of p53, p21/waf1; (4) Bax/Bcl₂ ratio and cytochome c release; and (5) activities of caspase 9 (22-46%) and 3 (42-54%) as well as increased poly(ADP-ribose) polymerase cleavage. It was also observed that pretreatment with bio-antioxidants viz butylated hydroxyanisole (55 μmol/100 μl), quercetin (10 μmol/100 μl), or α-tocopherol (40 μmol/100 μl) resulted in decreases of ROS generation, arrest in the G0/G1 phase of the cell cycle, and apoptosis. These data confirm the involvement of ROS in apoptosis and suggest that these bio-antioxidants may be useful in the prevention of CTN-induced dermal toxicity.

  9. Gene targeting at the mouse cytokeratin 10 locus: severe skin fragility and changes of cytokeratin expression in the epidermis

    PubMed Central

    1996-01-01

    Bullous congenital ichthyosiform erythroderma (BCIE) is a dominantly inherited blistering skin disorder caused by point mutations in the suprabasal cytokeratins 1 or 10. Targeting the murine cytokeratin 10 gene in ES cells resulted in mice with different phenotypes in the homozygotes and heterozygotes; both of which exhibit similarities to specific clinical characteristics of BCIE. Homozygotes suffered from severe skin fragility and died shortly after birth. Heterozygotes were apparently unaffected at birth, but developed hyperkeratosis with age. In both genotypes, aggregation of cytokeratin intermediate filaments, changes in cytokeratin expression, and alterations in the program of epidermal differentiation were observed. In addition we demonstrate, for the first time, the existence of the murine equivalent of human cytokeratin 16. PMID:8603923

  10. Transgenic overexpression of transforming growth factor alpha bypasses the need for c-Ha-ras mutations in mouse skin tumorigenesis.

    PubMed Central

    Vassar, R; Hutton, M E; Fuchs, E

    1992-01-01

    The induction of skin papillomas in mice can be divided into two different stages. Chemical initiation frequently elicits mutations in the Ha-ras gene, leading to the constitutive activation of ras. The second step, promotion, involves repetitive topical application of phorbol esters or wounding, leading to epidermal hyperproliferation and papilloma formation. We have found that overexpression of transforming growth factor alpha (TGF-alpha) in the basal epidermal layer of transgenic mice yielded papillomas directly upon wounding or 12-O-tetradecanoylphorbol-13-acetate treatment without the need for an initiator. Moreover, papillomas from TGF-alpha mice did not exhibit mutations in the Ha-ras gene. Interestingly, TGF-alpha acted synergistically with 12-O-tetradecanoylphorbol-13-acetate to enhance epidermal hyperproliferation. Our results demonstrate a central role for TGF-alpha overexpression in tumorigenesis and provide an important animal model for the study of skin tumorigenesis. Images PMID:1406654

  11. Enhanced regenerative healing efficacy of a highly skin-permeable growth factor nanocomplex in a full-thickness excisional mouse wound model

    PubMed Central

    Bae, Il-Hong; Park, Jin Woo; Kim, Dae-Yong

    2014-01-01

    Exogenous administration of growth factors has potential benefits in wound healing; however, limited percutaneous absorption, inconsistent efficacy, and the need for high doses have hampered successful clinical use. To overcome these restrictions, we focused on the development of a topical formulation composed of highly skin-permeable multimeric nanocomplex of growth factors. In the present study, we fused low-molecular-weight protamine (LMWP) with epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-I), and platelet-derived growth factor A ligand (PDGF-A) (producing recombinant [r]LMWP-EGF, rLMWP-IGF-I, and rLMWP-PDGF-A, respectively) via genetic modification. Then, we used in vitro cell proliferation studies to assess the biological activity and the benefits of the combination. The LMWP-conjugated growth factors were complexed with low-molecular-weight heparin (LMWH) and formulated with Poloxamer 188 as a delivery vehicle. After confirming the enhanced skin permeability, in vivo studies were performed to assess whether the LMWP-conjugated growth factor nanocomplex formulations accelerated the healing of full-thickness wounds in mice. The LMWP-conjugated growth factors were biologically equivalent to their native forms, and their combination induced greater fibroblast proliferation. rLMWP-EGF showed significantly enhanced permeability and cumulative permeation, and the rates for rLMWP-IGF-I and rLMWP-PDGF-A, across excised mouse skin, were 124% and 164% higher, respectively, than for the native forms. The LMWP-fused growth factors resulted in formation of nanocomplexes (23.51±1.12 nm in diameter) in combination with LMWH. Topical delivery of growth factors fused with LMWP accelerated wound re-epithelialization significantly, accompanied by the formation of healthy granulation tissue within 9 days compared with a free–growth factor complex or vehicle. Thus, the LMWP-conjugated growth factor nanocomplex can induce rapid, comprehensive healing and may

  12. Selective inhibition of JNK with a peptide inhibitor attenuates pain hypersensitivity and tumor growth in a mouse skin cancer pain model.

    PubMed

    Gao, Yong-Jing; Cheng, Jen-Kun; Zeng, Qing; Xu, Zhen-Zhong; Decosterd, Isabelle; Xu, Xiaoyin; Ji, Ru-Rong

    2009-09-01

    Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (<5 days) and reached a peak in 2 weeks, and was characterized by mechanical allodynia and heat hyperalgesia. Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain. PMID:19445931

  13. An EPR method for estimating activity of antioxidants in mouse skin using an anthralin-derived radical model.

    PubMed

    Kawai, Sayo; Matsumoto, Ken-Ichiro; Utsumi, Hideo

    2010-03-01

    Inhibitory effects of intravenously or orally administered antioxidants on the anthralin-derived radical generated in skin (mainly in the epidermis) of living mice by ultraviolet-A (UVA) irradiation were estimated. Anthralin was applied to the dorsal skin of living mice and the mice were then exposed to UVA. The EPR signal intensity in skin tissue strips obtained from mice after anthralin-UVA treatment was measured by an X-band EPR spectrometer. Several common antioxidants such as ascorbate, glutathione and Trolox (a vitamin E analogue) intravenously administered to mice reduced anthralin-derived radical generation. Trolox showed the most prolonged and powerful effect. Intravenous injection of a clinically used cerebral neuroprotective drug, Edarabone (Radicut), also showed depletion for the anthralin-derived radical. Oral administration of a commercialized nutritional supplement (a cocktail of 17 herbals and vitamins) also attenuated the anthralin-derived radical. The anthralin-UVA treatment model for antioxidant activity in the epidermis is a potentially feasible method to estimate activity of antioxidants in the body.

  14. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma. PMID:27203461

  15. Beta-radiation-induced resistance to MNNG initiation of papilloma but not carcinoma formation in mouse skin

    SciTech Connect

    Mitchel, R.E.; Gragtmans, N.J.; Morrison, D.P. )

    1990-02-01

    We have shown previously that the risk of tumor initiation, promotion, and progression in animals initiated with alkylating agents can be drastically altered by hyperthermia treatments. We show here that ionizing radiation can also alter the risk of tumor initiation by alkylating agents. Using a two-step skin tumorigenesis protocol in female SENCAR mice (initiation by MNNG, promotion with TPA), we exposed the dorsal skin of the mice to various doses of 90Sr/90Y beta radiation near the time of initiation. The radiation produced a dose-dependent reduction in the number of papillomas which appeared after TPA promotion, with about a 20% reduction in animals receiving 0.5 Gy surface dose just before initiation, about 50% reduction after 2.5 Gy, and greater than 80% at doses above 5 Gy. A dose of 2.5 Gy in animals initiated with DMBA produced no significant reduction. One skin hyperthermia treatment along with radiation in MNNG-initiated animals partially blocked the protective effect of radiation and increased the papilloma frequency. Radiation (2.5 Gy) given either 6 days before or after MNNG initiation was less effective but still reduced papilloma frequency about 20%. In sharp contrast to the marked reduction in papilloma formation, these same animals showed no change in carcinoma frequency with any of the doses or schedules of beta radiation. MNNG initiation alone produced three types of initiated cells. One type, produced in low yield, was promotion-independent with a high probability of progression to a carcinoma and appeared unaffected by the radiation. A second type, produced in intermediate yield, was promotion-dependent and also had a high progression probability, but was likewise unaffected by the radiation. The third and most abundant type was promotion-dependent with a very low progression probability.

  16. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma.

  17. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin

    PubMed Central

    Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu

    2015-01-01

    Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage. PMID:26537189

  18. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin.

    PubMed

    Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu

    2015-11-01

    Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.

  19. Formation of protoporphyrin IX in mouse skin after topical application of 5-aminolevulinic acid and its methyl esther

    NASA Astrophysics Data System (ADS)

    Sorensen, Roar; Juzenas, Petras; Iani, Vladimir; Moan, Johan

    1999-02-01

    Normal skin of nude mice (Balb/c) was treated topically with 5-aminolevulinic acid (ALA) and its methyl ester (ALA-Me) for 24 hours. Approximately 0.1 gram of freshly prepared cream was applied to a spot of 1 cm2 on the flank of the mice, which was then covered with a transparent dressing. The ALA induced protoporphyrin IX (PpIX) was studied by means of a noninvasive fiber-optic fluorescence probe connected to a luminescence spectrometer. The excitation wavelength was 407 nm, and the emission wavelength was 637 nm. For the first hour a slight lag in PpIX production was observed for the mice treated with ALA-Me compared to the mice treated with ALA. After approximately 12 hours the ALA and the ALA-Me treated mice showed the same PpIX fluorescence intensity. From 12 hours until 24 hours the PpIX fluorescence intensity decreased for both treatment modalities, even though ALA and ALA-Me were continuously present. At 24 hours ALA-Me-treated mice had less than half the amount of PpIX in their skin compared with ALA- treated mice.

  20. Clearance of protoporphyrin IX from mouse skin after topical application of 5-aminolevulinic acid and its methyl ester

    NASA Astrophysics Data System (ADS)

    Juzenas, Petras; Sorensen, Roar; Iani, Vladimir; Moan, Johan

    1999-02-01

    The clearance of protoporphyrin IX (PpIX) from the skin of hairless BALB/c mice after topical application of 5- aminolevulinic acid (ALA) and its methyl ester (ALA-Me) was investigated. Creams containing 2 or 20% of ALA or ALA-Me were topically applied on spots of approximately 1 cm2 for 12 hours. The PpIX fluorescence was detected by the means of a Perkin Elmer LS50B luminescence spectrometer equipped with a fiber-optic probe. The emission spectrum was identical with that of cell-bound PpIX. After 12 hours application of ALA and ALA-Me similar amounts of PpIX were found. After creme removal the ALA-induced PpIX fluorescence decayed with a half-life of about 20 hours (20% ALA cream). The ALA-Me-induced PpIX was faster cleared from the skin than ALA-induced PpIX, and had a half-life of about 7 hours (20% ALA-Me cream).

  1. Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma

    PubMed Central

    Ali, Huma; Dixit, Savita; Ali, Daoud; Alqahtani, Saeed M; Alkahtani, Saad; Alarifi, Saud

    2015-01-01

    Stigmasterol (99.9% pure) was isolated from Azadirachta indica and its chemopreventive effect on 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin cancer was investigated in Swiss albino mice. Skin tumors were induced by topical application of DMBA and promoted by croton oil. To assess the chemopreventive potential of stigmasterol, it was orally administered at a concentration of 200 mg/kg and 400 mg/kg three times weekly for 16 weeks. Reduction in tumor size and cumulative number of papillomas were seen as a result of treatment with stigmasterol. The average latency period was significantly increased as compared with the carcinogen-treated control. Stigmasterol induced a significant decrease in the activity of serum enzymes, such as aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and bilirubin as compared with the control. Stigmasterol significantly increased glutathione, superoxide dismutase, and catalase as compared with the control. Elevated levels of lipid peroxide and DNA damage in the control group were significantly inhibited by administration of stigmasterol. From the present study, it can be inferred that stigmasterol has chemopreventive activity in an experimental model of cancer. This chemopreventive activity may be linked to the oxidative stress of stigmasterol. The antigenotoxic properties of stigmasterol are also likely to contribute to its chemopreventive action. PMID:26060396

  2. The excimer lamp induces cutaneous nerve degeneration and reduces scratching in a dry-skin mouse model.

    PubMed

    Kamo, Atsuko; Tominaga, Mitsutoshi; Kamata, Yayoi; Kaneda, Kazuyuki; Ko, Kyi C; Matsuda, Hironori; Kimura, Utako; Ogawa, Hideoki; Takamori, Kenji

    2014-12-01

    Epidermal hyperinnervation, which is thought to underlie intractable pruritus, has been observed in patients with atopic dermatitis (AD). The epidermal expression of axonal guidance molecules has been reported to regulate epidermal hyperinnervation. Previously, we showed that the excimer lamp has antihyperinnervative effects in nonpruritic dry-skin model mice, although epidermal expression of axonal guidance molecules was unchanged. Therefore, we investigated the antipruritic effects of excimer lamp irradiation and its mechanism of action. A single irradiation of AD model mice significantly inhibited itch-related behavior 1 day later, following improvement in the dermatitis score. In addition, irradiation of nerve fibers formed by cultured dorsal root ganglion neurons increased bleb formation and decreased nerve fiber expression of nicotinamide mononucleotide adenylyl transferase 2, suggesting degenerative changes in these fibers. We also analyzed whether attaching a cutoff excimer filter (COF) to the lamp, thus decreasing cytotoxic wavelengths, altered hyperinnervation and the production of cyclobutane pyrimidine dimer (CPD), a DNA damage marker, in dry-skin model mice. Irradiation with COF decreased CPD production in keratinocytes, as well as having an antihyperinnervative effect, indicating that the antipruritic effects of excimer lamp irradiation with COF are due to induction of epidermal nerve degeneration and reduced DNA damage. PMID:24940652

  3. Identification of an mtDNA mutation hot spot in UV-induced mouse skin tumors producing altered cellular biochemistry.

    PubMed

    Jandova, Jana; Eshaghian, Alex; Shi, Mingjian; Li, Meiling; King, Lloyd E; Janda, Jaroslav; Sligh, James E

    2012-02-01

    There is increasing awareness of the role of mtDNA alterations in the development of cancer, as mtDNA point mutations are found at high frequency in a variety of human tumors. To determine the biological effects of mtDNA mutations in UV-induced skin tumors, hairless mice were irradiated to produce tumors, and the tumor mtDNAs were screened for single-nucleotide changes using temperature gradient capillary electrophoresis (TGCE), followed by direct sequencing. A mutation hot spot (9821insA) in the mitochondrially encoded tRNA arginine (mt-Tr) locus (tRNA(Arg)) was discovered in approximately one-third of premalignant and malignant skin tumors. To determine the functional relevance of this particular mutation in vitro, cybrid cell lines containing different mt-Tr (tRNA(Arg)) alleles were generated. The resulting cybrid cell lines contained the same nuclear genotype and differed only in their mtDNAs. The biochemical analysis of the cybrids revealed that the mutant haplotype is associated with diminished levels of complex I protein (CI), resulting in lower levels of baseline oxygen consumption and lower cellular adenosine triphosphate (ATP) production. We hypothesize that this specific mtDNA mutation alters cellular biochemistry, supporting the development of keratinocyte neoplasia.

  4. The excimer lamp induces cutaneous nerve degeneration and reduces scratching in a dry-skin mouse model.

    PubMed

    Kamo, Atsuko; Tominaga, Mitsutoshi; Kamata, Yayoi; Kaneda, Kazuyuki; Ko, Kyi C; Matsuda, Hironori; Kimura, Utako; Ogawa, Hideoki; Takamori, Kenji

    2014-12-01

    Epidermal hyperinnervation, which is thought to underlie intractable pruritus, has been observed in patients with atopic dermatitis (AD). The epidermal expression of axonal guidance molecules has been reported to regulate epidermal hyperinnervation. Previously, we showed that the excimer lamp has antihyperinnervative effects in nonpruritic dry-skin model mice, although epidermal expression of axonal guidance molecules was unchanged. Therefore, we investigated the antipruritic effects of excimer lamp irradiation and its mechanism of action. A single irradiation of AD model mice significantly inhibited itch-related behavior 1 day later, following improvement in the dermatitis score. In addition, irradiation of nerve fibers formed by cultured dorsal root ganglion neurons increased bleb formation and decreased nerve fiber expression of nicotinamide mononucleotide adenylyl transferase 2, suggesting degenerative changes in these fibers. We also analyzed whether attaching a cutoff excimer filter (COF) to the lamp, thus decreasing cytotoxic wavelengths, altered hyperinnervation and the production of cyclobutane pyrimidine dimer (CPD), a DNA damage marker, in dry-skin model mice. Irradiation with COF decreased CPD production in keratinocytes, as well as having an antihyperinnervative effect, indicating that the antipruritic effects of excimer lamp irradiation with COF are due to induction of epidermal nerve degeneration and reduced DNA damage.

  5. The heparan sulphate deficient Hspg2 exon 3 null mouse displays reduced deposition of TGF-β1 in skin compared to C57BL/6 wild type mice.

    PubMed

    Shu, Cindy; Smith, Susan M; Melrose, James

    2016-06-01

    This was an observational study where we examined the role of perlecan HS on the deposition of TGF-β1 in C57BL/6 and Hspg2(∆3-/∆3-) perlecan exon 3 null mouse skin. Despite its obvious importance in skin repair and tissue homeostasis no definitive studies have immunolocalised TGF-β1 in skin in WT or Hspg2(∆3-/∆3-) perlecan exon 3 null mice. Vertical parasagittal murine dorsal skin from 3, 6 and 12 week old C57BL/6 and Hspg2(∆3-/∆3-) mice were fixed in neutral buffered formalin, paraffin embedded and 4 μm sections stained with Mayers haematoxylin and eosin (H & E). TGF-β1 was immunolocalised using a rabbit polyclonal antibody, heat retrieval and the Envision NovaRED detection system. Immunolocalisation of TGF-β1 differed markedly in C57BL/6 and Hspg2(∆3-/∆3-) mouse skin, ablation of exon 3 of Hspg2 resulted in a very severe reduction in the deposition of TGF-β1 in skin 3-12 weeks postnatally. The reduced deposition of TGF-β1 observed in the present study would be expected to impact detrimentally on the remodelling and healing capacity of skin in mutant mice compounding on the poor wound-healing properties already reported for perlecan exon 3 null mice due to an inability to signal with FGF-2 and promote angiogenic repair processes. TGF-β1 also has cell mediated effects in tissue homeostasis and matrix stabilisation a reduction in TGF-β1 deposition would therefore be expected to detrimentally impact on skin homeostasis in the perlecan mutant mice.

  6. Response of mouse skin to tattooing: use of SKH-1 mice as a surrogate model for human tattooing

    SciTech Connect

    Gopee, Neera V.; Cui, Yanyan; Olson, Greg; Warbritton, Alan R.; Miller, Barbara J.; Couch, Letha H.; Wamer, Wayne G.; Howard, Paul C. . E-mail: PHoward@nctr.fda.gov

    2005-12-01

    Tattooing is a popular cosmetic practice involving more than 45 million US citizens. Since the toxicology of tattoo inks and pigments used to formulate tattoo inks has not been reported, we studied the immunological impact of tattooing and determined recovery time from this trauma. SKH-1 hairless mice were tattooed using commercial tattoo inks or suspensions of titanium dioxide, cadmium sulfide, or iron oxide, and sacrificed at 0.5, 1, 3, 4, 7, or 14 days post-tattooing. Histological evaluation revealed dermal hemorrhage at 0.5 and 1 day. Acute inflammation and epidermal necrosis were initiated at 0.5 day decreasing in incidence by day 14. Dermal necrosis and epidermal hyperplasia were prominent by day 3, reducing in severity by day 14. Chronic active inflammation persisted in all tattooed mice from day 3 to 14 post-tattooing. Inguinal and axillary lymph nodes were pigmented, the inguinal being most reactive as evidenced by lymphoid hyperplasia and polymorphonuclear infiltration. Cutaneous nuclear protein concentrations of nuclear factor-kappa B were elevated between 0.5 and 4 days. Inflammatory and proliferative biomarkers, cyclooxygenase-1, cyclooxygenase-2, and ornithine decarboxylase protein levels were elevated between 0.5 and 4 days in the skin and decreased to control levels by day 14. Interleukin-1 beta and interleukin-10 were elevated in the lymph nodes but suppressed in the tattooed skin, with maximal suppression occurring between days 0.5 and 4. These data demonstrate that mice substantially recover from the tattooing insult by 14 days, leaving behind pigment in the dermis and the regional lymph nodes. The response seen in mice is similar to acute injury seen in humans, suggesting that the murine model might be a suitable surrogate for investigating the toxicological and phototoxicological properties of ingredients used in tattooing.

  7. Phototumorigenesis studies of 5-methoxypsoralen in bergamot oil: evaluation and modification of risk of human use in an albino mouse skin model.

    PubMed

    Young, A R; Walker, S L; Kinley, J S; Plastow, S R; Averbeck, D; Morlière, P; Dubertret, L

    1990-11-01

    The skin of the female hairless albino mouse (Skh 1) was used to study the enhancement of solar simulated radiation (SSR) tumorigenesis by 5-methoxypsoralen (5-MOP) in model perfumes that contain bergamot oil. This work was done in association with yeast mutagenicity studies and human skin phototoxicity studies. Analyses of time-to-onset of tumour observation with 5-MOP at 0, 5, 15 and 50 ppm show a highly significant 5-MOP dose effect and the data indicate that 5-MOP has phototumorigenic potential even at 5 ppm. The addition of 0.5% UVB and 0.5% UVA sunscreens significantly reduces the tumorigenicity associated with the vehicle (i.e. 5-MOP at 0 ppm) and 5-MOP at all concentrations. Pairwise comparisons of 5-MOP (at 5 or 15 ppm) plus sunscreens with vehicle plus sunscreens show that the sunscreens afford total protection at the lower 5-MOP concentrations. Additional studies show that a 5-6 h delay between 5-MOP application and SSR exposure defers the time-to-onset of tumours as does intermittent 5-MOP and SSR treatment. A comparison of 5-MOP at 50 ppm in bergamot oil with 5-MOP at 50 ppm prepared from pure 5-MOP crystals shows identical results, indicating that the active phototumorigenic agent in bergamot oil is 5-MOP and not other related compounds, which may be present at greater concentrations. Analyses of tumour histology at death show, in general, similar patterns of malignancy for all groups. Thus although it is possible to delay tumorigenesis by various strategies, the tumours that eventually develop are just as likely to be malignant, if not more so, when compared with non-delayed groups.

  8. Vitamin D for combination photodynamic therapy of skin cancer in individuals with vitamin D deficiency: Insights from a preclinical study in a mouse model of squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Anand, Sanjay; Thomas, Erik; Hasan, Tayyaba; Maytin, Edward V.

    2016-03-01

    Combination photodynamic therapy (cPDT) in which vitamin D (VD) is given prior to aminolevulinate, a precursor (pro-drug) for protoporphyrin IX (PpIX), is an approach developed in our laboratory. We previously showed that 1α,25- dihydroxyvitamin D3 (calcitriol), given prior to PDT, enhances accumulation of PpIX and improves cell death post-PDT in a mouse skin cancer model. However, since calcitriol poses a risk for hypercalcemia, we replaced systemic calcitriol with oral cholecalciferol (D3), administered as a high (tenfold, "10K") diet over a ten-day period. Here, we ask whether VD deficiency might alter the response to cPDT. Nude mice were fed a VD-deficient diet for at least 4 weeks ("deficient"); controls were fed a normal 1,000 IU/kg diet ("1K"). Human A431 cells were implanted subcutaneously and mice were switched to the 10K diet or continued on their baseline diets (controls). In other experiments, mice received a human equivalent dose of 50,000 IU D3 by oral gavage, to simulate administration of a single, high-dose VD pill. At various times, tumors were harvested and serum was collected to measure levels of VD metabolic intermediates. A significant increase in PpIX levels and in the expression of differentiation and proliferation markers in tumor tissue was observed after VD supplementation of both the deficient and 1K mice. Further results describing mechanistic details of PpIX enhancement through alteration of heme- and VD-metabolic enzyme levels will be presented. Based on these results, a clinical study using oral vitamin D prior to PDT for human skin cancer should be performed.

  9. NTP technical report on the one-year initiation/promotion study of o-benzyl-p-chlorophenol (Cas No. 120-32-1) in Swiss (CD-1 (trade name)) mice (mouse skin study). Technical report series

    SciTech Connect

    1995-05-01

    Toxicology and carcinogenicity studies were conducted by dermal administration of o-benzyl-p-chlorophenol to groups of 50 Swiss (CD-1) mice of each sex to study its effect as an initiator, promoter, and complete carcinogen. Under the conditions of the 1-year mouse skin initiation/promotion study in Swiss (CD-1) mice, o-benzyl-p-chlorophenolwas a cutaneous irritant and a weak skin tumor promoter relative to strong promoters such as 12-O-tetradecanoylp horbol-12-acetate. o-Benzyl-p-chlorophenol has no activity as an initiator or as a completecarcinogen.

  10. Ischemic tissue injury in the dorsal skinfold chamber of the mouse: a skin flap model to investigate acute persistent ischemia.

    PubMed

    Harder, Yves; Schmauss, Daniel; Wettstein, Reto; Egaña, José T; Weiss, Fabian; Weinzierl, Andrea; Schuldt, Anna; Machens, Hans-Günther; Menger, Michael D; Rezaeian, Farid

    2014-11-17

    Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.

  11. Mouse skin tumor initiation-promotion and complete carcinogenesis bioassays: mechanisms and biological activities of emission samples.

    PubMed Central

    Nesnow, S; Triplett, L L; Slaga, T J

    1983-01-01

    Extracts of soots obtained from various sources were applied to the skin of mice in an effort to identify carcinogens in these mixtures and to link these materials to the etiology of human cancer. Samples of coal chimney soot, coke oven materials, industrial carbon black, oil shale soot, and gasoline vehicle exhaust materials have been examined by this method. The studies reported here have been constructed to compare the carcinogenic and tumorigenic potency of extracts from various particulate emissions: coke ovens, diesel and gasoline vehicles and a roofing tar pot. Automobile emission samples were obtained by collecting the diluted and cooled exhaust on Teflon-coated glass fiber filters. Coke oven and roofing tar samples were particulate emission samples collected by impaction and filtration. The organic components associated with each of the particles were extracted with dichloromethane and dermally applied to SENCAR mice. All agents were applied as tumor initiators by using a five-dose protocol. Selected extracts were also applied as complete carcinogens and as tumor promotors. Statistical analyses of the resulting tumor data were performed by using nonlinear Poisson and probit models. The results from these experiments provide a suitable data base for comparative potency estimation of complex mixtures. PMID:6825618

  12. Copper utilization in cultured skin fibroblasts of the mottled mouse, an animal model for Menkes' kinky hair syndrome.

    PubMed

    Packman, S; Chin, P; O'Toole, C

    1984-01-01

    An animal model for Menkes' kinky hair syndrome is provided by mice mutant at the X-linked mottled locus. Two mechanisms have been invoked to explain disease manifestations in mottled and in kinky hair syndrome: relative tissue copper deficiencies and corresponding reductions in cuproenzyme activities; or defective intracellular copper utilization, with impaired intracellular translocation to cuproenzymes or to copper-dependent processes. We addressed the second possibility through measurements of soluble superoxide dismutase (SOD-1) in cytosol extracts of confluent mottled (blotchy) cultured skin fibroblasts. At comparable intracellular copper concentrations over a broad range, SOD-1 specific activities in the mutant cells were not distinguishable from those in controls, or, in some instances, were actually higher. These data suggest that the excess copper anomalously sequestered in a cell expressing the mutation remains available for binding to a cytosolic cuproenzyme. When taken together with data in other systems, the results are consistent with the thesis that the basic lesion in blotchy may primarily affect copper transport or delivery to specific copper transport systems.

  13. Drug and vehicle deposition from topical applications: localization of minoxidil within skin strata of the hairless mouse.

    PubMed

    Tsai, J C; Weiner, N; Flynn, G L; Ferry, J J

    1994-01-01

    The cutaneous bioavailability of topical 2% minoxidil solution was verified in live hairless mice. Minoxidil and propylene glycol deposition on the skin surface, epidermis and dermis from the single-dose in vivo study were compared with the results from previous in vitro studies. A distinct difference is apparent in the epidermis where the in vitro values are 11-22 times higher than the in vivo values for minoxidil and 8-16 times higher for propylene glycol. The differences were not as great in the dermis. Percutaneous absorption of the drug appeared to be a very small fraction of the applied dose. Similarly shaped stratum corneum and plasma concentration profiles and the relatively constant dermal profiles of minoxidil and propylene glycol open the possibility of transappendageal routes being involved in percutaneous absorption. The greater amount of drug and vehicle found in the dermis from in vitro studies can be explained by the absence of dermal clearance. The overestimation in the amount of drug found in the epidermis in vitro may also be attributable to poor dermal clearance. On the whole, the study raises questions about the use of in vitro tissue dispositions for bioavailability assessment and bioequivalence demonstration. PMID:8054208

  14. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse.

    PubMed

    Suzuki, Maasa; Ebara, Satomi; Koike, Taro; Tonomura, Sotatsu; Kumamoto, Kenzo

    2012-01-01

    Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4-54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10-32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1-3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement.

  15. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin

    PubMed Central

    Jang, Mooseok; Ruan, Haowen; Vellekoop, Ivo M.; Judkewitz, Benjamin; Chung, Euiheon; Yang, Changhuei

    2014-01-01

    Light scattering in biological tissue significantly limits the accessible depth for localized optical interrogation and deep-tissue optical imaging. This challenge can be overcome by exploiting the time-reversal property of optical phase conjugation (OPC) to reverse multiple scattering events or suppress turbidity. However, in living tissue, scatterers are highly movable and the movement can disrupt time-reversal symmetry when there is a latency in the OPC playback. In this paper, we show that the motion-induced degradation of the OPC turbidity-suppression effect through a dynamic scattering medium shares the same decorrelation time constant as that determined from speckle intensity autocorrelation – a popular conventional measure of scatterer movement. We investigated this decorrelation characteristic time through a 1.5-mm-thick dorsal skin flap of a living mouse and found that it ranges from 50 ms to 2.5 s depending on the level of immobilization. This study provides information on relevant time scales for applying OPC to living tissues. PMID:25657876

  16. Transport behavior of hairless mouse skin during constant current DC iontophoresis, part 2: iontophoresis of nonionic molecules with cotransport of polystyrene sulfonate oligomers.

    PubMed

    Liddell, Mark R; Li, S Kevin; Higuchi, William I

    2011-07-01

    The purpose of this study was to characterize changes that occur in the iontophoretic transport of nonionic probe permeants in hairless mouse skin epidermal membrane from the anode to cathode when polystyrene sulfonate (PSS) oligomers are cotransported from the cathode to anode. The experiments were conducted with trace levels of the nonionic probe permeants: urea, mannitol, and raffinose. In order to systematically assess changes that occur as a result of having PSS in the cathodal chamber, the steady-state transport parameters of the membrane and the experimental permeability coefficients of the probe permeants were determined and compared with results obtained from earlier baseline experiments where both the cathodal and anodal chamber media were phosphate buffered saline. In addition, the physicochemical properties of the PSS solutions were determined including the solution viscosity and conductance as well as the mobilities of individual PSS oligomers. The effective pore radii of the transport pathways were calculated using a theoretical expression based on simultaneous diffusion and electroosmosis. Compared with the baseline results, the calculated radii were found to have increased up to around twofold and the iontophoretic fluxes of the probe permeants increased by as much sixfold.

  17. Fractionation of a tumor-initiating UV dose introduces DNA damage-retaining cells in hairless mouse skin and renders subsequent TPA-promoted tumors non-regressing.

    PubMed

    van de Glind, Gerline; Rebel, Heggert; van Kempen, Marika; Tensen, Kees; de Gruijl, Frank

    2016-02-16

    Sunburns and especially sub-sunburn chronic UV exposure are associated with increased risk of squamous cell carcinomas (SCCs). Here we focus on a possible difference in tumor initiation from a single severe-sunburn dose (on day 1, 21 hairless mice) and from an equal dose fractionated into very low sub-sunburn doses not causing any (growth-promoting) epidermal hyperplasia (40 days daily exposure, n=20). From day 47 all mice received 12-O-Tetradecanoylphorbol-13-acetate (TPA) applications (2x/wk) for 20 weeks to promote tumor development within the lifetime of the animals. After the sub-sunburn regimen sparse DNA damage-retaining basal cells (quiescent stem cells, QSCs) remained in the non-hyperplastic epidermis. These cells were forced to divide by TPA. After discontinuation of TPA tumors regressed and disappeared in the 'sunburn group' but persisted and grew in the 'sub-sunburn group' (0.06 vs 2.50 SCCs and precursors ≥4 mm/mouse after 280 days, p=0.03). As the tumors carried no mutations in p53, H/K/N-Ras and Notch1/2, these 'usual suspects' were not involved in the UV-driven tumor initiation. Although we could not selectively eliminate QSCs (unknown phenotype) to establish causality, our data suggest that forcing specifically DNA damage-retaining QSCs to divide--with high mutagenic risk--gives rise to persisting (mainly 'in situ') skin carcinomas. PMID:26797757

  18. Dietary lipid varying in corn and coconut oil influences protein kinase C in phorbol ester-treated mouse skin.

    PubMed

    Mouat, M F; Locniskar, M F

    1998-01-01

    An earlier study indicated that increased levels of corn oil in the diet resulted in decreased tumor yield after promotion by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate in Sencar mouse epidermis (J Leyton, ML Lee, M Locniskar, MA Belury, TJ Slaga, et al. Cancer Res 51, 907-915, 1991). In the present study we investigated whether corn oil diets could alter the subcellular distribution and activity of protein kinase C (PKC), which is part of an important signaling pathway in carcinogenesis. We used three 15% (wt/wt) fat semipurified diets containing three ratios of corn oil to coconut oil: 1.0%:14.0% (Diet L), 7.9%:7.1% (Diet M), and 15.0%:0.0% (Diet H). The translocation to the membrane fraction of epidermal PKC by 12-O-tetradecanoylphorbol-13-acetate was decreased as the corn oil content of the diet was increased, and this correlates with the decrease in tumor yield. The translocation to the membrane fraction of specific isoforms of PKC was affected by increased dietary corn oil: the largest decreases were in cytosolic PKC-alpha and -beta, and the smallest change was in PKC-epsilon. The other isoforms, PKC-delta and -zeta, were unaffected. The major constituent of corn oil is linoleic acid, which did not affect the binding of phorbol ester to PKC, which suggests that inhibition of such binding was not responsible for the effects of increased dietary corn oil. Products of linoleic acid metabolism, i.e., arachidonic acid and 13-hydroxyoctadecadienoic acid, also did not affect the binding of phorbol ester to PKC. Thus the results of these studies suggest that the subcellular distributions of PKC and its isoforms can be modulated by dietary lipids.

  19. The selective PAC1 receptor agonist maxadilan inhibits neurogenic vasodilation and edema formation in the mouse skin.

    PubMed

    Banki, E; Hajna, Zs; Kemeny, A; Botz, B; Nagy, P; Bolcskei, K; Toth, G; Reglodi, D; Helyes, Zs

    2014-10-01

    We have earlier shown that PACAP-38 decreases neurogenic inflammation. However, there were no data on its receptorial mechanism and the involvement of its PAC1 and VPAC1/2 receptors (PAC1R, VPAC1/2R) in this inhibitory effect. Neurogenic inflammation in the mouse ear was induced by topical application of the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor activator mustard oil (MO). Consequent neurogenic edema, vasodilation and plasma leakage were assessed by measuring ear thickness with engineer's micrometer, detecting tissue perfusion by laser Doppler scanning and Evans blue or indocyanine green extravasation by intravital videomicroscopy or fluorescence imaging, respectively. Myeloperoxidase activity, an indicator of neutrophil infiltration, was measured from the ear homogenates with spectrophotometry. The selective PAC1R agonist maxadilan, the VPAC1/2R agonist vasoactive intestinal polypeptide (VIP) or the vehicle were administered i.p. 15 min before MO. Substance P (SP) concentration of the ear was assessed by radioimmunoassay. Maxadilan significantly diminished MO-induced neurogenic edema, increase of vascular permeability and vasodilation. These inhibitory effects of maxadilan may be partially due to the decreased substance P (SP) levels. In contrast, inhibitory effect of VIP on ear swelling was moderate, without any effect on MO-induced plasma leakage or SP release, however, activation of VPAC1/2R inhibited the increased microcirculation caused by the early arteriolar vasodilation. Neither the PAC1R, nor the VPAC1/2R agonist influenced the MO-evoked increase in tissue myeloperoxidase activity. These results clearly show that PAC1R activation inhibits acute neurogenic arterial vasodilation and plasma protein leakage from the venules, while VPAC1/2R stimulation is only involved in the attenuation of vasodilation.

  20. Bromelain nanoparticles protect against 7,12-dimethylbenz[a]anthracene induced skin carcinogenesis in mouse model.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya B; Shukla, Yogeshwer; Chaudhari, Bhushan; Kumar, Pradeep; Gupta, Kailash C

    2015-04-01

    Conventional cancer chemotherapy leads to severe side effects, which limits its use. Nanoparticles (NPs) based delivery systems offer an effective alternative. Several evidences highlight the importance of Bromelain (BL), a proteolytic enzyme, as an anti-tumor agent which however has been limited due to the requirement of high doses at the tumor site. Therefore, we illustrate the development of BL loaded poly (lactic-co-glycolic acid) NPs that show enhanced anti-tumor effects compared to free BL. The formulated NPs with a mean particle size of 130.4 ± 8.81 nm exhibited sustained release of BL. Subsequent investigation revealed enhanced anti-tumor ability of NPs in 2-stage skin tumorigenesis mice model. Reduction in average number of tumors (∼ 2.3 folds), delay in tumorigenesis (∼ 2 weeks), percent tumorigenesis (∼ 4 folds), and percent mortality rate as well as a reduction in the average tumor volume (∼ 2.5 folds) in mice as compared to free BL were observed. The NPs were found to be superior in exerting chemopreventive effects over chemotherapeutic effects at 10 fold reduced dose than free BL, validated by the enhanced ability of NPs (∼ 1.8 folds) to protect the DNA from induced damage. The effects were also supported by histopathological evaluations. NPs were also capable of modulating the expression of pro-apoptotic (P53, Bax) and anti-apoptotic (Bcl2) proteins. Therefore, our findings demonstrate that developed NPs formulation could be used to improve the efficacy of chemotherapy by exerting chemo-preventive effects against induced carcinogenesis at lower dosages. PMID:25619920

  1. Dose-response of chronic ultraviolet exposure on epidermal forward scattering-absorption in SK-1 hairless mouse skin.

    PubMed

    Menter, J M; Agin, P P; Sayre, R M; Willis, I

    1992-05-01

    This work provides a dose-response model of UV-induced epidermal-stratum corneum thickening induced by irradiation at wavelength lambda. This model assumes that photobiochemical reaction(s) can give rise to hyperplasia in a manner which is predictable from a simple photochemical kinetic scheme. In this work, we derive an equation which predicts an approximately linear relationship between the logarithm of the increase in optical skin thickening measured at 320 nm (delta OD320) and total cumulative dose (DT) seen by the target cells in or near the basal layer. For each excitation wavelength lambda, the slope R(lambda) of the log delta OD320 vs DT plot is proportional to epsilon(lambda) phi rx, where epsilon(lambda) is the extinction coefficient for the target chromophore at excitation wavelength, and phi rx is the quantum yield for the photochemical reaction(s) leading to hyperplasia. Our data previously obtained from irradiation of SK-1 hairless mice with "monochromatic" UV wavebands at 280, 290, 300, 307 and 313 nm (Menter et al., 1988, Photochem. Photobiol. 47, 225-260.) and data from Sterenborg and van der Leun at 254 and 313 nm (1988, Photodermatology 5, 71-82) are in good agreement with this model, except for 254 and 280 nm excitation, which are greatly attenuated by epidermis-stratum corneum. For excitation at the latter wavelengths, "dark" regressive processes successfully compete with the "light" reaction(s) which lead to (pre)cancerous lesion. This difficulty notwithstanding, the "intrinsic" action spectrum for hyperplasia derived from these measurements indicates that the target chromophore preferentially absorbs in the UV-C region.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. RNA-Seq Analysis of the Host Response to Staphylococcus aureus Skin and Soft Tissue Infection in a Mouse Model

    PubMed Central

    Brady, Rebecca A.; Bruno, Vincent M.; Burns, Drusilla L.

    2015-01-01

    Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTI), which are primarily self-limiting. We conducted a comprehensive analysis of the host transcriptome during a S. aureus SSTI to provide insight on the protective mechanisms that thwart these infections. We utilized a murine SSTI model in which one ear is epicutaneously challenged while the other is not. We then harvested these infected and uninfected ears, as well as ears from naïve mice, at one, four, and seven days post-challenge, and performed RNA sequencing (RNA-seq) using the Illumina platform. RNA-seq data demonstrated a robust response at the site of infection. Comparison of gene expression profiles between infected ears and the non-infected ears of challenged mice defined the local response to infection, while comparisons of expression profiles of non-infected ears from challenged mice to ears of naïve mice revealed changes in gene expression levels away from the site indicative of a systemic response. Over 1000 genes exhibited increased expression locally at all tested time points. The local response was more robust than the systemic response. Through evaluation of the RNA-seq data using the Upstream Regulator Analytic as part of the Ingenuity Pathway Analysis software package, we found that changes in the activation and inhibition of regulatory pathways happen first locally, and lag behind systemically. The activated pathways are highly similar at all three time points during SSTI, suggesting a stable global response over time. Transcript increases and pathway activation involve pro- and anti-inflammatory mediators, chemotaxis, cell signaling, keratins, and TH1/TH17 cytokines. Transcript decreases and pathway inhibition demonstrate that metabolic genes and anti-inflammatory pathways are repressed. These data provide insight on the host responses that may aid in resolution of this self-limited S. aureus infection, and may shed light on potential immune correlates of

  3. Bromelain nanoparticles protect against 7,12-dimethylbenz[a]anthracene induced skin carcinogenesis in mouse model.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya B; Shukla, Yogeshwer; Chaudhari, Bhushan; Kumar, Pradeep; Gupta, Kailash C

    2015-04-01

    Conventional cancer chemotherapy leads to severe side effects, which limits its use. Nanoparticles (NPs) based delivery systems offer an effective alternative. Several evidences highlight the importance of Bromelain (BL), a proteolytic enzyme, as an anti-tumor agent which however has been limited due to the requirement of high doses at the tumor site. Therefore, we illustrate the development of BL loaded poly (lactic-co-glycolic acid) NPs that show enhanced anti-tumor effects compared to free BL. The formulated NPs with a mean particle size of 130.4 ± 8.81 nm exhibited sustained release of BL. Subsequent investigation revealed enhanced anti-tumor ability of NPs in 2-stage skin tumorigenesis mice model. Reduction in average number of tumors (∼ 2.3 folds), delay in tumorigenesis (∼ 2 weeks), percent tumorigenesis (∼ 4 folds), and percent mortality rate as well as a reduction in the average tumor volume (∼ 2.5 folds) in mice as compared to free BL were observed. The NPs were found to be superior in exerting chemopreventive effects over chemotherapeutic effects at 10 fold reduced dose than free BL, validated by the enhanced ability of NPs (∼ 1.8 folds) to protect the DNA from induced damage. The effects were also supported by histopathological evaluations. NPs were also capable of modulating the expression of pro-apoptotic (P53, Bax) and anti-apoptotic (Bcl2) proteins. Therefore, our findings demonstrate that developed NPs formulation could be used to improve the efficacy of chemotherapy by exerting chemo-preventive effects against induced carcinogenesis at lower dosages.

  4. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    SciTech Connect

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2011-06-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT{sup TM}). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000 {mu}M) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-{beta}-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.

  5. Polycyclic aromatic hydrocarbons as skin carcinogens: Comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse

    SciTech Connect

    Siddens, Lisbeth K.; Larkin, Andrew; Krueger, Sharon K.; Bradfield, Christopher A.; Waters, Katrina M.; Tilton, Susan C.; Pereira, Cliff B.; Löhr, Christiane V.; Arlt, Volker M.; Phillips, David H.; Williams, David E.; and others

    2012-11-01

    The polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), was compared to dibenzo[def,p]chrysene (DBC) and combinations of three environmental PAH mixtures (coal tar, diesel particulate and cigarette smoke condensate) using a two stage, FVB/N mouse skin tumor model. DBC (4 nmol) was most potent, reaching 100% tumor incidence with a shorter latency to tumor formation, less than 20 weeks of 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion compared to all other treatments. Multiplicity was 4 times greater than BaP (400 nmol). Both PAHs produced primarily papillomas followed by squamous cell carcinoma and carcinoma in situ. Diesel particulate extract (1 mg SRM 1650b; mix 1) did not differ from toluene controls and failed to elicit a carcinogenic response. Addition of coal tar extract (1 mg SRM 1597a; mix 2) produced a response similar to BaP. Further addition of 2 mg of cigarette smoke condensate (mix 3) did not alter the response with mix 2. PAH-DNA adducts measured in epidermis 12 h post initiation and analyzed by {sup 32}P post‐labeling, did not correlate with tumor incidence. PAH‐dependent alteration in transcriptome of skin 12 h post initiation was assessed by microarray. Principal component analysis (sum of all treatments) of the 922 significantly altered genes (p < 0.05), showed DBC and BaP to cluster distinct from PAH mixtures and each other. BaP and mixtures up-regulated phase 1 and phase 2 metabolizing enzymes while DBC did not. The carcinogenicity with DBC and two of the mixtures was much greater than would be predicted based on published Relative Potency Factors (RPFs). -- Highlights: ► Dibenzo[def,p]chrysene (DBC), 3 PAH mixtures, benzo[a]pyrene (BaP) were compared. ► DBC and 2 PAH mixtures were more potent than Relative Potency Factor estimates. ► Transcriptome profiles 12 hours post initiation were analyzed by microarray. ► Principle components analysis of alterations revealed treatment-based clustering. ► DBC gave a unique

  6. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse

    SciTech Connect

    Siddens, Lisbeth K.; Bunde, Kristi L.; Harper, Tod A.; McQuistan, Tammie J.; Löhr, Christiane V.; Bramer, Lisa M.; Waters, Katrina M.; Tilton, Susan C.; Krueger, Sharon K.; and others

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.

  7. I. Embryonal vasculature formation recapitulated in transgenic mammary tumor spheroids implanted pseudo-orthotopicly into mouse dorsal skin fold: the organoblasts concept

    PubMed Central

    Witkiewicz, Halina

    2013-01-01

    Inadequate understanding of cancer biology is a problem. This work focused on cellular mechanisms of tumor vascularization. According to earlier studies, the tumor vasculature derives from host endothelial cells (angiogenesis) or their precursors of bone marrow origin circulating in the blood (neo-vasculogenesis) unlike in embryos. In this study, we observed the neo-vasculature form in multiple ways from local precursor cells. Recapitulation of primitive as well as advanced embryonal stages of vasculature formation followed co-implantation of avascular ( in vitro cultured) N202 breast tumor spheroids and homologous tissue grafts into mouse dorsal skin chambers. Ultrastructural and immunocytochemical analysis of tissue sections exposed the interactions between the tumor and the graft tissue stem cells. It revealed details of vasculature morphogenesis not seen before in either tumors or embryos. A gradual increase in complexity of the vascular morphogenesis at the tumor site reflected a range of steps in ontogenic evolution of the differentiating cells. Malignant- and surgical injury repair-related tissue growth prompted local cells to initiate extramedullar erythropoiesis and vascular patterning. The new findings included: interdependence between the extramedullar hematopoiesis and assembly of new vessels (both from the locally differentiating precursors); nucleo-cytoplasmic conversion (karyolysis) as the mechanism of erythroblast enucleation; the role of megakaryocytes and platelets in vascular pattern formation before emergence of endothelial cells; lineage relationships between hematopoietic and endothelial cells; the role of extracellular calmyrin in tissue morphogenesis; and calmyrite, a new ultrastructural entity associated with anaerobic energy metabolism. The central role of the extramedullar erythropoiesis in the formation of new vasculature (blood and vessels) emerged here as part of the tissue building process including the lymphatic system and nerves

  8. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929).

    PubMed

    Siddiqui, Maqsood A; Saquib, Quaiser; Ahamed, Maqusood; Farshori, Nida N; Ahmad, Javed; Wahab, Rizwan; Khan, Shams T; Alhadlaq, Hisham A; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Pant, Aditya B

    2015-01-01

    The present investigation was aimed to study the cytotoxicity, oxidative stress, and genotoxicity induced by molybdenum nanoparticles (Mo-NPs) in mouse skin fibroblast cells (L929). Cells were exposed to different concentrations (1-100 μg/ml) of Mo-NPs (size 40 nm) for 24 and 48 h. After the exposure, different cytotoxicity assays (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide, MTT; neutral red uptake, NRU; and cellular morphology) and oxidative stress markers (lipid peroxidation, LPO; glutathione, GSH; and catalase) were studied. Further, Mo-NPs-induced intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage were also studied. L929 cells treated with Mo-NPs showed a concentration- and time-dependent decrease in cell viability and a loss of the normal cell morphology. The percentage cell viability was recorded as 25%, 42%, and 58% by MTT assay and 24%, 46%, and 56% by NRU assay at 25, 50, and 100 μg/ml of Mo-NPs, respectively after 48 h exposure. Furthermore, the cells showed a significant induction of oxidative stress. This was confirmed by the increase in LPO and ROS generation, as well as the decrease in the GSH and catalase levels. The decrease in MMP also confirms the impaired mitochondrial membrane. The cell cycle analysis and comet assay data revealed that Mo-NPs induced G2/M arrest and DNA damage in a concentration-dependent manner. Our results demonstrated, for the first time, Mo-NPs induced cytotoxicity, oxidative stress and genotoxicity in L929 cells. Thus, data suggest the potential hazardous nature of Mo-NPs.

  9. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: implications for cellular mechanisms of metastasis

    PubMed Central

    Witkiewicz, Halina

    2013-01-01

    Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular) spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes), megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar to the vasculogenic

  10. Skin Dictionary

    MedlinePlus

    ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ...

  11. Sagging Skin

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  12. Skin Diseases: Skin Health and Skin Diseases

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Skin Health and Skin Diseases Past Issues / Fall 2008 Table of Contents ... acne to wrinkles Did you know that your skin is the largest organ of your body? It ...

  13. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    PubMed

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana

    2016-05-01

    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment.

  14. Fluorescence photobleaching of ALA and ALA-heptyl ester induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: a comparison of two light sources and different illumination schemes.

    PubMed

    Pudroma, Xiao; Juzeniene, Asta; Ma, Li-Wei; Iani, Vladimir; Moan, Johan

    2011-01-01

    This study investigated photobleaching of protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) and ALA-heptyl ester during superficial photodynamic therapy (PDT) in normal skin of the female BALB/c-nu/nu athymic mouse. We examined the effects of two light sources (laser and broadband lamp) and two different illumination schemes (fractionated light and continuous irradiation) on the kinetics of photobleaching. Our results show that light exposure (0-30 minutes, 10 mW/cm2) of wavelengths of approximately 420 nm (blue light) and 635 nm (red light) induced time-dependent PpIX photobleaching for mouse skin of 2% ALA and ALA-heptyl ester. Blue light (10 mW/cm2) caused more rapid PpIX photobleaching than did red light (100 mW/cm2), which is attributed to stronger absorption at 407 nm than at 632 nm for PpIX. In the case of light fractionation, fractionated light induced faster photobleaching compared with continuous light exposure after topical application of 2% ALA and ALA-heptyl ester in vivo. These have been suggested to allow reoxygenation of the irradiated tissue, with a consequent enhancement of singlet oxygen production in the second and subsequent fractions.

  15. Influence of application time and formulation reapplication on the delivery of minoxidil through hairless mouse skin as measured in Franz diffusion cells.

    PubMed

    Tsai, J C; Flynn, G L; Weiner, N; Ferry, J J

    1994-01-01

    Relationships are drawn between the extent of topical delivery of test compounds in solution and the period of residence of their formulation on the skin. The studies were performed using in vitro diffusion cell techniques and a test formulation containing 2% 3H-minoxidil dissolved in 60% ethanol, 20% water and 20% 14C-propylene glycol. The permeation of propylene glycol was effectively halted upon cleansing the skin surface; the skin had very little reservoir capacity for this substance. However, the rate of delivery of minoxidil was only slowed but not stopped upon cleansing. The suggestion here is that a reservoir of minoxidil is formed in the skin which is capable of sustaining an appreciable input of drug even after the skin's surface is scrupulously cleaned. Assay of epidermal concentrations of these species not only confirms the existence of the minoxidil reservoir but also shows that the degree of its tissue concentration is proportional to the time of residence of the formulation on the skin surface. Reapplication of blank vehicle to the cleansed surface had little to no effect on the permeation of the minoxidil and was similarly without effect on that of propylene glycol. While it comes as no surprise that formulation residence time is an important variable in topical delivery, this study demonstrates the complexities of quantitative dependencies of delivery on residence time. PMID:8054209

  16. Tattooing of skin results in transportation and light-induced decomposition of tattoo pigments--a first quantification in vivo using a mouse model.

    PubMed

    Engel, Eva; Vasold, Rudolf; Santarelli, Francesco; Maisch, Tim; Gopee, Neera V; Howard, Paul C; Landthaler, Michael; Bäumler, Wolfgang

    2010-01-01

    Millions of people are tattooed with inks that contain azo pigments. The pigments contained in tattoo inks are manufactured for other uses with no established history of safe use in humans and are injected into the skin at high densities (2.5 mg/cm(2)). Tattoo pigments disseminate after tattooing throughout the human body and although some may photodecompose at the injection site by solar or laser light exposure, the extent of transport or photodecomposition under in vivo conditions remains currently unknown. We investigated the transport and photodecomposition of the widely used tattoo Pigment Red 22 (PR 22) following tattooing into SKH-1 mice. The pigment was extracted quantitatively at different times after tattooing. One day after tattooing, the pigment concentration was 186 microg/cm(2) skin. After 42 days, the amount of PR 22 in the skin has decreased by about 32% of the initial value. Exposure of the tattooed skin, 42 days after tattooing, to laser light reduced the amount of PR 22 by about 51% as compared to skin not exposed to laser light. A part of this reduction is as a result of photodecomposition of PR 22 as shown by the detection of corresponding hazardous aromatic amines. Irradiation with solar radiation simulator for 32 days caused a pigment reduction of about 60% and we again assume pigment decomposition in the skin. This study is the first quantitative estimate of the amount of tattoo pigments transported from the skin into the body or decomposed by solar or laser radiation. PMID:19703227

  17. Morphological classification of nuchal skin in human fetuses with trisomy 21, 18, and 13 at 12-18 weeks and in a trisomy 16 mouse.

    PubMed

    von Kaisenberg, C S; Krenn, V; Ludwig, M; Nicolaides, K H; Brand-Saberi, B

    1998-02-01

    An increase in the nuchal translucency that can be detected at 10-14 weeks of gestation by ultrasound forms the basis for a screening test for chromosomal abnormality. Several mechanisms leading to this increase in skin thickness have been proposed, including changes of the extracellular matrix, cardiac defects and abnormalities of the large vessels. This study examines the composition of the extracellular matrix of the skin in gestational age-matched fetuses with trisomy 21, 18 and 13 from 12-18 weeks. Immunohistochemistry was applied with monoclonal and polyclonal antibodies against collagen type I, III, IV, V and VI and against laminin and fibronectin. Collagen type VI gene expression was further studied by in situ hybridization to detect differences in expression patterns of COL6A1, COL6A3 and COL1A1 between normal fetuses and those with trisomy 21. The ultrastructure of tissue samples was studied by transmission electron microscopy (TEM) and additionally by immunogold TEM. Further, we examined the morphology of the skin in an animal model for Down's syndrome, the murine trisomy 16, by light and TEM. The dermis of trisomy 21 fetuses was richer in collagen type VI than that of normal fetuses and other trisomies, and COL6A1, located on chromosome 21, was expressed in a wider area than COL6A3, which is located on chromosome 2. Collagen type I was less abundant in the skin of trisomy 18 fetuses, while the skin of all three trisomies contained a dense network of collagen type III and V in comparison with normal fetuses. Collagen type IV, of which two genes are located on chromosome 13, was expressed in the basement membranes of the skin in all fetuses and additionally in the dermal fibroblasts only of trisomy 13 fetuses. Likewise, laminin was present in all basement membranes of normal and trisomic fetuses as well as in dermal fibroblasts of fetuses with trisomy 18. LAMA1 and LAMA3 genes are located on chromosome 18. Dermal cysts were found in the skin of trisomy 18

  18. Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model.

    PubMed

    Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N

    2015-01-01

    The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections.

  19. Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model

    PubMed Central

    Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N.

    2015-01-01

    The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections. PMID:26536129

  20. Anti-wrinkle effects of Sargassum muticum ethyl acetate fraction on ultraviolet B-irradiated hairless mouse skin and mechanistic evaluation in the human HaCaT keratinocyte cell line

    PubMed Central

    Song, Jae Hyoung; Piao, Mei Jing; Han, Xia; Kang, Kyoung Ah; Kang, Hee Kyoung; Yoon, Weon Jong; Ko, Mi Hee; Lee, Nam Ho; Lee, Mi Young; Chae, Sungwook; Hyun, Jin Won

    2016-01-01

    The present study investigated the photoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)-induced skin damage and photoaging in a mouse model. HR-1 strain hairless male mice were divided into three groups: An untreated control group, a UVB-irradiated vehicle group and a UVB-irradiated SME group. The UVB-irradiated mice in the SME group were orally administered with SME (100 mg/kg body weight in 0.1 ml water per day) and then exposed to radiation at a dose of 60–120 mJ/cm2. Wrinkle formation and skin damage were evaluated by analysis of skin replicas, epidermal thickness and collagen fiber integrity in the dermal connective tissue. The mechanism underlying the action of SME was also investigated in the human HaCaT keratinocyte cell line following exposure of the cells to UVB at a dose of 30 mJ/cm2. The protein expression levels and activity of matrix metalloproteinase-1 (MMP-1), and the binding of activator protein-1 (AP-1) to the MMP-1 promoter were assessed in the HaCaT cells using western blot analysis, an MMP-1 fluorescent assay and a chromatin immune-precipitation assay, respectively. The results showed that the mean length and depth of the wrinkles in the UVB-exposed hairless mice were significantly improved by oral administration of SME, which also prevented the increase in epidermal thickness triggered by UVB irradiation. Furthermore, a marked increase in collagen bundle formation was observed in the UVB-treated mice with SME administration. SME pretreatment also significantly inhibited the UVB-induced upregulation in the expression and activity of MMP-1 in the cultured HaCaT keratinocytes, and the UVB-enhanced association of AP-1 with the MMP-1 promoter. These results suggested that SME may be useful as an anti-photoaging resource for the skin. PMID:27573915

  1. Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin.

    PubMed

    Vayalil, Praveen K; Elmets, Craig A; Katiyar, Santosh K

    2003-05-01

    The use of botanical supplements has received immense interest in recent years to protect human skin from adverse biological effects of solar ultraviolet (UV) radiation. The polyphenols from green tea are one of them and have been shown to prevent photocarcinogenesis in animal models but their mechanism of photoprotection is not well understood. To determine the mechanism of photoprotection in in vivo mouse model, topical treatment of polyphenols from green tea (GTP) or its most chemopreventive constituent (-)-epigallocatechin-3-gallate (EGCG) (1 mg/cm(2) skin area) in hydrophilic ointment USP before single (180 mJ/cm(2)) or multiple UVB exposures (180 mJ/cm(2), daily for 10 days) resulted in significant prevention of UVB-induced depletion of antioxidant enzymes such as glutathione peroxidase (78-100%, P < 0.005-0.001), catalase (51-92%, P < 0.001) and glutathione level (87-100%, P < 0.005). Treatment of EGCG or GTP also inhibited UVB-induced oxidative stress when measured in terms of lipid peroxidation (76-95%, P < 0.001), and protein oxidation (67-75%, P > 0.001). Further, to delineate the inhibition of UVB-induced oxidative stress with cell signaling pathways, treatment of EGCG to mouse skin resulted in marked inhibition of a single UVB irradiation-induced phosphorylation of ERK1/2 (16-95%), JNK (46-100%) and p38 (100%) proteins of MAPK family in a time-dependent manner. Identical photoprotective effects of EGCG or GTP were also observed against multiple UVB irradiation-induced phosphorylation of the proteins of MAPK family in vivo mouse skin. Photoprotective efficacy of GTP given in drinking water (d.w.) (0.2%, w/v) was also determined and compared with that of topical treatment of EGCG and GTP. Treatment of GTP in d.w. also significantly prevented single or multiple UVB irradiation-induced depletion of antioxidant enzymes (44-61%, P < 0.01-0.001), oxidative stress (33-71%, P < 0.01) and phosphorylation of ERK1/2, JNK and p38 proteins of MAPK family but the

  2. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse.

    PubMed

    Siddens, Lisbeth K; Bunde, Kristi L; Harper, Tod A; McQuistan, Tammie J; Löhr, Christiane V; Bramer, Lisa M; Waters, Katrina M; Tilton, Susan C; Krueger, Sharon K; Williams, David E; Baird, William M

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. PMID:26049101

  3. Preparation of studies on antibody production against food allergens in mice and effect of flavonoids in simultaneous injection into mouse skin.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We had tried to evaluate antibody production against food allergens in mouse models. Some food allergens, which were beta-lactoglobulin, ovalbumin, and peanut allergen Ara h 1, were used as immunoges in this experiment. Under the same conditions these allergens were immunized as emulsion with freund...

  4. GENE EXPRESSION PROFILING OF MOUSE SKIN AND PAPILLOMAS FOLLOWING CHRONIC EXPOSURE TO MONOMETHYLARSONOUS ACID IN K6/ODC TRANSGENIC MICE

    EPA Science Inventory

    Methylarsonous acid [MMA(III)], a common metabolite of inorganic arsenic metabolism, increases tumor frequency in the skin of K6/ODC transgenic mice following a chronic exposure. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcin...

  5. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2015-01-25

    We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development.

  6. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse (II): effects of some currently used skin decontaminants (RSDL and Fuller's earth) against liquid sulphur mustard and VX exposure.

    PubMed

    Taysse, L; Dorandeu, F; Daulon, S; Foquin, A; Perrier, N; Lallement, G; Breton, P

    2011-06-01

    Using the hairless mouse screening model presented in the companion paper(1) the aim of this study was to assess two skin decontaminating systems: Fuller's earth (FE) and Reactive Skin Decontamination Lotion (RSDL) against two extremely toxic chemical warfare agents that represent a special percutaneous hazard, sulphur mustard (SM) and O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX). Five minutes after being exposed on the back to either 2 µL of neat sulphur mustard or 50 µg.kg(-1) of diluted VX, mice were decontaminated. Both systems were able to reduce blisters 3 days after SM exposure. However, RSDL was found to be more efficient than FE in reducing the necrosis of the epidermis and erosion. In the case of VX exposure, RSDL, whatever the ratio of decontaminant to toxicant used (RSDL 10, 20, 50), was not able to sufficiently prevent the inhibition of plasma cholinesterases taken as a surrogate marker of exposure and toxicity. Only FE reduced significantly the ChE inhibition. Some of these observations are different from our previous results obtained in domestic swine and these changes are thus discussed in the perspective of using SKH-1 hairless mice for the initial in vivo screening of decontaminants. PMID:20534641

  7. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents.

    PubMed

    Tiwari, Prakash; Gupta, Krishna P

    2014-07-15

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulation of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. PMID:24792773

  8. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2015-01-25

    We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development. PMID:25478867

  9. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse (II): effects of some currently used skin decontaminants (RSDL and Fuller's earth) against liquid sulphur mustard and VX exposure.

    PubMed

    Taysse, L; Dorandeu, F; Daulon, S; Foquin, A; Perrier, N; Lallement, G; Breton, P

    2011-06-01

    Using the hairless mouse screening model presented in the companion paper(1) the aim of this study was to assess two skin decontaminating systems: Fuller's earth (FE) and Reactive Skin Decontamination Lotion (RSDL) against two extremely toxic chemical warfare agents that represent a special percutaneous hazard, sulphur mustard (SM) and O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX). Five minutes after being exposed on the back to either 2 µL of neat sulphur mustard or 50 µg.kg(-1) of diluted VX, mice were decontaminated. Both systems were able to reduce blisters 3 days after SM exposure. However, RSDL was found to be more efficient than FE in reducing the necrosis of the epidermis and erosion. In the case of VX exposure, RSDL, whatever the ratio of decontaminant to toxicant used (RSDL 10, 20, 50), was not able to sufficiently prevent the inhibition of plasma cholinesterases taken as a surrogate marker of exposure and toxicity. Only FE reduced significantly the ChE inhibition. Some of these observations are different from our previous results obtained in domestic swine and these changes are thus discussed in the perspective of using SKH-1 hairless mice for the initial in vivo screening of decontaminants.

  10. Comparative Carcinogenicity for Mouse-Skin of Smoke Condensates Prepared from Cigarettes Made from the Same Tobacco Cured by Two Processes

    PubMed Central

    Roe, F. J. C.; Clack, J. C.; Bishop, D.; Peto, R.

    1970-01-01

    Bright tobacco grown in Mexico was either flue-cured and redried (FC) or air-cured and bulk-fermented (AC). Both FC and AC were made into cigarettes standardized for draw resistance. FC and AC cigarettes were smoked under similar conditions in a smoking machine (one 2-second 25 ml. puff per minute down to a 20 mm. butt length). Condensates were kept at 0-4° C. until applied to the skin of mice. Three groups of 400 female Swiss mice were treated as follows: Group 1— thrice weekly application of 60 mg. FC in 0.25 ml. acetone to the clipped dorsal skin: Group 2— similar treatment with AC; Group 3—thrice weekly application of 0.25 ml. acetone only. Chemical analysis of the 2 tobaccos and 2 condensates revealed only small differences in composition and it is noteworthy that the concentration of reducing sugars was almost as high as in the AC tobacco as in the FC tobacco. The risk of development of skin tumours, particularly malignant skin tumours, was higher in FC-treated mice than in AC-treated mice (p < 0.01), but the difference may have been due to the use of equal weights of condensates rather than the use of extracts from equal numbers of cigarettes, since the AC cigarettes produced more condensate. The rates of detection of pulmonary tumours also varied between groups (p < 0.01) but this does not necessarily imply that the incidence rates of pulmonary tumours varied. There was no evidence that the detection or incidence rates of any other neoplasms, including malignant lymphoma, were affected by treatment with either of the condensates. PMID:5428608

  11. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management.

  12. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management. PMID:26655363

  13. UVB exposure enhanced benzanthrone-induced inflammatory responses in SKH-1 mouse skin by activating the expression of COX-2 and iNOS through MAP kinases/NF-κB/AP-1 signalling pathways.

    PubMed

    Abbas, Sabiya; Alam, Shamshad; Pal, Anu; Kumar, Mahadeo; Singh, Dhirendra; Ansari, Kausar Mahmood

    2016-10-01

    This study was conducted to explore the role of UVB on benzanthrone (BA)-induced skin inflammation and its mechanism/s. SKH-1 hairless mice were topically exposed with BA (25 and 50 mg/kg b.wt) either alone or along with UVB (50 mJ/cm(2)) for 24 h and estimation of ROS, histopathological analysis, myeloperoxidase (MPO) activity, mast cell staining, immunohistochemistry for COX-2 and iNOS as well as western blotting for MAPKs, p-NF-κB, c-jun, c-fos COX-2 and iNOS were carried out. Enhanced ROS generation, increased epidermal thickness, mast cell number, MPO activity, enhanced expression of COX-2 and iNOS, MAPKs, c-jun, c-fos, NF-κB were found in BA either alone or when followed by UVB treatment, compared to the control groups. Expression of COX-2, iNOS and phosphorylation of ERK1/2 were found to be more enhanced in BA and UVB- exposed group compared to BA and UVB only group, while phosphorylation of JNK1/2, p38, NF-κB and expression of c-jun and c-fos were comparable with BA and UVB only groups. In summary, we suggest that UVB exposure enhanced BA-induced SKH-1 skin inflammation possibly via oxidative stress-mediated activation of MAPKs-NF-κB/AP-1 signalling, which subsequently increased the expression of COX-2 and iNOS and led to inflammation in SKH-1 mouse skin.

  14. Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53+/- or Rb1+/- backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling.

    PubMed

    Almeida, Madson Q; Muchow, Michael; Boikos, Sosipatros; Bauer, Andrew J; Griffin, Kurt J; Tsang, Kit Man; Cheadle, Chris; Watkins, Tonya; Wen, Feng; Starost, Matthew F; Bossis, Ioannis; Nesterova, Maria; Stratakis, Constantine A

    2010-04-15

    PRKAR1A inactivation leads to dysregulated cAMP signaling and Carney complex (CNC) in humans, a syndrome associated with skin, endocrine and other tumors. The CNC phenotype is not easily explained by the ubiquitous cAMP signaling defect; furthermore, Prkar1a(+/-) mice did not develop skin and other CNC tumors. To identify whether a Prkar1a defect is truly a generic but weak tumorigenic signal that depends on tissue-specific or other factors, we investigated Prkar1a(+/-) mice when bred within the Rb1(+/-) or Trp53(+/-) backgrounds, or treated with a two-step skin carcinogenesis protocol. Prkar1a(+/-) Trp53(+/-) mice developed more sarcomas than Trp53(+/-) mice (P < 0.05) and Prkar1a(+/-) Rb1(+/-) mice grew more (and larger) pituitary and thyroid tumors than Rb1(+/-) mice. All mice with double heterozygosity had significantly reduced life-spans compared with their single-heterozygous counterparts. Prkar1a(+/-) mice also developed more papillomas than wild-type animals. A whole-genome transcriptome profiling of tumors produced by all three models identified Wnt signaling as the main pathway activated by abnormal cAMP signaling, along with cell cycle abnormalities; all changes were confirmed by qRT-PCR array and immunohistochemistry. siRNA down-regulation of Ctnnb1, E2f1 or Cdk4 inhibited proliferation of human adrenal cells bearing a PRKAR1A-inactivating mutation and Prkar1a(+/-) mouse embryonic fibroblasts and arrested both cell lines at the G0/G1 phase of the cell cycle. In conclusion, Prkar1a haploinsufficiency is a relatively weak tumorigenic signal that can act synergistically with other tumor suppressor gene defects or chemicals to induce tumors, mostly through Wnt-signaling activation and cell cycle dysregulation, consistent with studies in human neoplasms carrying PRKAR1A defects.

  15. Pattern of inflammatory response to Loxosceles intermedia venom in distinct mouse strains: a key element to understand skin lesions and dermonecrosis by poisoning.

    PubMed

    Ribeiro, M F; Oliveira, F L; Monteiro-Machado, M; Cardoso, P F; Guilarducci-Ferraz, V V C; Melo, P A; Souza, C M V; Calil-Elias, S

    2015-03-01

    Envenomation caused by spiders Loxosceles induce intense dermonecrosis at the bite site and systemic disease. In this work we described the hyaluronidase and collagenase activities in vitro of the Loxosceles intermedia venom, but no phospholipase A2 activity. In vivo, we evaluated the effect of L. intermedia venom used different strain of mice, C57BL/6, BALB/c and Swiss. All mice developed paw edema after venom injection, persistent for 24 h in BALB/c and C57BL/6 mice. Histopathological analysis of the skin after venom injection revealed vascular congestion in Swiss mice and an inflammatory reaction in BALB/c and C57BL/6 mice. The mobilization of inflammatory cells from bone marrow, spleen and blood was investigated. Typical innate immune response with mobilization of myeloid cells and cytotoxic CD8 T lymphocytes was observed in C57BL/6 mice. In contrast, typical acquired/humoral immune response was observed in BALB/c mice, with preferential involvement of conventional B lymphocytes and CD4 T helper cells. The skin inflammation associated to mobilization of inflammatory cells indicated that mice models are strongly recommended to investigate specific cell types involved with immune response to the envenomation and mechanisms to inhibit skin lesions.

  16. Caffeic Acid Inhibits UVB-induced Inflammation and Photocarcinogenesis Through Activation of Peroxisome Proliferator-activated Receptor-γ in Mouse Skin.

    PubMed

    Balupillai, Agilan; Prasad, Rajendra N; Ramasamy, Karthikeyan; Muthusamy, Ganesan; Shanmugham, Mohana; Govindasamy, Kanimozhi; Gunaseelan, Srithar

    2015-11-01

    In this study, the effect of caffeic acid (CA) on both acute and chronic UVB-irradiation-induced inflammation and photocarcinogenesis was investigated in Swiss albino mice. Animals were exposed to 180 mJ cm(-2) of UVB once daily for 10 consecutive days and thrice weekly for 30 weeks for acute and chronic study respectively. UVB exposure for 10 consecutive days showed edema formation, increased lipid peroxidation and decreased antioxidant status with activation of inflammatory molecules such as TNF-α, IL-6, COX-2 and NF-κB. However, CA (15 mg per kg.b.wt.) administration before each UVB exposure decreased lipid peroxidation, inflammatory markers expression and enhanced antioxidant status probably through the activation of peroxisome proliferator-activated receptors (PPARγ) in the mice skin. PPARγ is considered a potential target for photochemoprevention because it inhibits UVB-mediated inflammatory responses. In this study, UVB exposure for 30 weeks caused squamous cell carcinoma and upregulation of iNOS, VEGF and TGF-β and downregulation of p53 and tumor incidence in the mice skin. Both topical (CAT) and intraperitoneal (CAIP) treatment before each UVB exposure downregulates iNOS, VEGF, TGF-β, upregulates p53 and reduces tumors multiplicity in the mice skin. Thus, CA offers protection against UVB-induced photocarcinogenesis probably through activation of anti-inflammatory transcription factor PPARγ in the mice.

  17. Induction of inflammatory cell infiltration and necrosis in normal mouse skin by the combined treatment of tumor necrosis factor and lithium chloride.

    PubMed Central

    Beyaert, R.; De Potter, C.; Vanhaesebroeck, B.; Van Roy, F.; Fiers, W.

    1991-01-01

    Previously we reported that lithium chloride (LiCl) potentiates tumor necrosis factor (TNF)-mediated cytotoxicity in vitro and in vivo. Here, using a murine normal skin model, it is shown that a subcutaneous injection of TNF plus LiCl induces acute dermal and subcutaneous inflammation and necrosis. Histology showed a marked initial dermal and subcutaneous neutrophil infiltrate by approximately 2 hours, followed by a predominantly mononuclear infiltrate by 24 hours, which remained present for several days. Tumor necrosis factor or LiCl alone induced negligible inflammation, disappearing after 6 hours; furthermore there was never necrosis or ulceration of the overlying skin in case of single-agent application. In vitro studies showed that the combination of TNF and LiCl, but not either agent alone, was directly cytotoxic to fibroblastic cells of murine skin. No inflammatory infiltration was visible in tumors treated intratumorally or perilesionally with TNF plus LiCl, although the latter treatment resulted in a perilesional leukocyte infiltration. Furthermore the combination of TNF and LiCl had no effect on macrophage cytotoxicity to L929 tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:1848044

  18. Skin Cancer

    MedlinePlus

    ... are specialized skin cells that produce pigment called melanin. The melanin pigment produced by melanocytes gives skin its color. ... absorbing and scattering the energy. People with more melanin have darker skin and better protection from UV ...

  19. Skin Conditions

    MedlinePlus

    Your skin is your body's largest organ. It covers and protects your body. Your skin Holds body fluids in, preventing dehydration Keeps harmful ... it Anything that irritates, clogs, or inflames your skin can cause symptoms such as redness, swelling, burning, ...

  20. Polyamines and nonmelanoma skin cancer

    SciTech Connect

    Gilmour, Susan K.

    2007-11-01

    Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer.

  1. 32P-postlabeling and HPLC separation of DNA adducts formed by diesel exhaust extracts in vitro and in mouse skin and lung after topical treatment.

    PubMed

    Savela, K; King, L; Gallagher, J; Lewtas, J

    1995-09-01

    Diesel exhaust extracts contain many carcinogenic compounds which have been shown to form polycyclic aromatic hydrocarbon (PAH)- and nitrated PAH-DNA adducts in rodent skin and lung. The aim of this study was to characterize by 32P-postlabeling, TLC and HPLC the primary postlabeled PAH-DNA adduct(s) formed in vitro and in vivo by diesel extracts. The diesel particle extracts had known concentrations of benzo[a]pyrene, benzo[b,j,k]-fluoranthenes (B[b,j,k]F) and chrysene. DNA adducts were analyzed in calf thymus DNA incubated in vitro with PAHs activated by S9 mix and in skin and lung DNA from topically treated mice. The main diesel-derived DNA adduct formed in vitro and in vivo did not co-migrate on HPLC and large TLC plates with (+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti BPDE)-, B[b]F-,B[j]F-,B[k]F-or chrysene-DNA adduct standards. By co-chromatography DNA adducts formed by chrysene from both in vitro and in vivo samples were identified. Nissan diesel extract containing higher PAH concentrations than Volkswagen automobile extract formed skin DNA adducts that co-migrated with chrysene- and anti BPDE- DNA-derived adducts. We conclude that the use of a highly sensitive 32P-postlabeling method combined with HPLC improves the identification of PAH adducts formed by complex mixtures such as diesel exhaust extracts.

  2. 32P-postlabeling and HPLC separation of DNA adducts formed by diesel exhaust extracts in vitro and in mouse skin and lung after topical treatment.

    PubMed

    Savela, K; King, L; Gallagher, J; Lewtas, J

    1995-09-01

    Diesel exhaust extracts contain many carcinogenic compounds which have been shown to form polycyclic aromatic hydrocarbon (PAH)- and nitrated PAH-DNA adducts in rodent skin and lung. The aim of this study was to characterize by 32P-postlabeling, TLC and HPLC the primary postlabeled PAH-DNA adduct(s) formed in vitro and in vivo by diesel extracts. The diesel particle extracts had known concentrations of benzo[a]pyrene, benzo[b,j,k]-fluoranthenes (B[b,j,k]F) and chrysene. DNA adducts were analyzed in calf thymus DNA incubated in vitro with PAHs activated by S9 mix and in skin and lung DNA from topically treated mice. The main diesel-derived DNA adduct formed in vitro and in vivo did not co-migrate on HPLC and large TLC plates with (+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti BPDE)-, B[b]F-,B[j]F-,B[k]F-or chrysene-DNA adduct standards. By co-chromatography DNA adducts formed by chrysene from both in vitro and in vivo samples were identified. Nissan diesel extract containing higher PAH concentrations than Volkswagen automobile extract formed skin DNA adducts that co-migrated with chrysene- and anti BPDE- DNA-derived adducts. We conclude that the use of a highly sensitive 32P-postlabeling method combined with HPLC improves the identification of PAH adducts formed by complex mixtures such as diesel exhaust extracts. PMID:7554058

  3. Anti-wrinkle effects of Sargassum muticum ethyl acetate fraction on ultraviolet B-irradiated hairless mouse skin and mechanistic evaluation in the human HaCaT keratinocyte cell line.

    PubMed

    Song, Jae Hyoung; Piao, Mei Jing; Han, Xia; Kang, Kyoung Ah; Kang, Hee Kyoung; Yoon, Weon Jong; Ko, Mi Hee; Lee, Nam Ho; Lee, Mi Young; Chae, Sungwook; Hyun, Jin Won

    2016-10-01

    The present study investigated the photoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)‑induced skin damage and photoaging in a mouse model. HR‑1 strain hairless male mice were divided into three groups: An untreated control group, a UVB‑irradiated vehicle group and a UVB‑irradiated SME group. The UVB‑irradiated mice in the SME group were orally administered with SME (100 mg/kg body weight in 0.1 ml water per day) and then exposed to radiation at a dose of 60‑120 mJ/cm2. Wrinkle formation and skin damage were evaluated by analysis of skin replicas, epidermal thickness and collagen fiber integrity in the dermal connective tissue. The mechanism underlying the action of SME was also investigated in the human HaCaT keratinocyte cell line following exposure of the cells to UVB at a dose of 30 mJ/cm2. The protein expression levels and activity of matrix metalloproteinase‑1 (MMP‑1), and the binding of activator protein‑1 (AP‑1) to the MMP‑1 promoter were assessed in the HaCaT cells using western blot analysis, an MMP‑1 fluorescent assay and a chromatin immune‑precipitation assay, respectively. The results showed that the mean length and depth of the wrinkles in the UVB‑exposed hairless mice were significantly improved by oral administration of SME, which also prevented the increase in epidermal thickness triggered by UVB irradiation. Furthermore, a marked increase in collagen bundle formation was observed in the UVB‑treated mice with SME administration. SME pretreatment also significantly inhibited the UVB‑induced upregulation in the expression and activity of MMP‑1 in the cultured HaCaT keratinocytes, and the UVB‑enhanced association of AP‑1 with the MMP‑1 promoter. These results suggested that SME may be useful as an anti-photoaging resource for the skin. PMID:27573915

  4. Cytochrome b5 null mouse: a new model for studying inherited skin disorders and the role of unsaturated fatty acids in normal homeostasis.

    PubMed

    Finn, Robert D; McLaughlin, Lesley A; Hughes, Catherine; Song, Chengli; Henderson, Colin J; Roland Wolf, C

    2011-06-01

    Microsomal cytochrome b (5) is a ubiquitous, 15.2 kDa haemoprotein implicated in a number of cellular processes such as fatty acid desaturation, drug metabolism, steroid hormone biosynthesis and methaemoglobin reduction. As a consequence of these functions this protein has been considered essential for life. Most of the ascribed functions of cytochrome b (5), however, stem from in vitro studies and for this reason we have carried out a germline deletion of this enzyme. We have unexpectedly found that cytochrome b (5) null mice were viable and fertile, with pups being born at expected Mendelian ratios. However, a number of intriguing phenotypes were identified, including altered drug metabolism, methaemoglobinemia and disrupted steroid hormone homeostasis. In addition to these previously identified roles for this protein, cytochrome b (5) null mice displayed skin defects closely resembling those observed in autosomal recessive congenital ichthyosis and retardation of neonatal development, indicating that this protein, possibly as a consequence of its role in the de novo biosynthesis of unsaturated fatty acids, plays a central role in skin development and neonatal nutrition. Results from fatty acid profile analysis of several tissues suggest that cytochrome b (5) plays a role controlling saturated/unsaturated homeostasis. These data demonstrate that regional concentrations of unsaturated fatty acids are controlled by endogenous metabolic pathways and not by diet alone.

  5. Lupeol induces p53 and cyclin-B-mediated G2/M arrest and targets apoptosis through activation of caspase in mouse skin

    SciTech Connect

    Nigam, Nidhi Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer

    2009-04-03

    Lupeol, present in fruits and medicinal plants, is a biologically active compound that has been shown to have various pharmacological properties in experimental studies. In the present study, we demonstrated the modulatory effect of lupeol on 7,12-dimethylbenz[a]anthracene (DMBA)-induced alterations on cell proliferation in the skin of Swiss albino mice. Lupeol treatment showed significant (p < 0.05) preventive effects with marked inhibition at 48, 72, and 96 h against DMBA-mediated neoplastic events. Cell-cycle analysis showed that lupeol-induced G2/M-phase arrest (16-37%) until 72 h, and these inhibitory effects were mediated through inhibition of the cyclin-B-regulated signaling pathway involving p53, p21/WAF1, cdc25C, cdc2, and cyclin-B gene expression. Further lupeol-induced apoptosis was observed, as shown by an increased sub-G1 peak (28%) at 96 h, with upregulation of bax and caspase-3 genes and downregulation of anti-apoptotic bcl-2 and survivin genes. Thus, our results indicate that lupeol has novel anti-proliferative and apoptotic potential that may be helpful in designing strategies to fight skin cancer.

  6. Effect of treatment in fractionated schedules with the combination of x-irradiation and six cytotoxic drugs on the RIF-1 tumor and normal mouse skin

    SciTech Connect

    Lelieveld, P.; Scoles, M.A.; Brown, J.M.; Phil, D.; Kallman, R.F.

    1985-01-01

    RIF-1 tumors, implanted syngeneically in the gastrocnemius muscles of the right hind legs of C3H/Km mice, were treated either with X ray alone, drug alone, or drug and X ray combined. The drugs tested were bleomycin, BCNU, cis-diamminedichloro platinum, adriamycin, cyclophosphamide, and actinomycin-D. All drugs were administered either in the maximum tolerated dose or a dose that causes minimal tumor growth delay. Both drugs and X rays were administered either as a single dose or in five daily fractions. In addition to the single modality controls, seven different schedules of combined modalities were tested. Tumors were measured periodically after treatment in order that the day at which each tumor reached 4 times its initial cross-sectional area, i.e., its size at the time of treatment, could be determined. The effect of treatment on tumors was based upon excess growth delay (GD), i.e., T400% (treated)-T400% (untreated control). Treatment effects for the same combined modality schedules were also determined for normal skin, using the early skin reaction as an endpoint. Dose effect factors (DEF) were computed for all combined modality schedules and were based upon calculated radiation dose equivalents. We also calculated supra-additivity ratios, SR/sub I/ and SR/sub II/, therapeutic gain factors and adjusted therapeutic gain factors. The only drugs to produce significant supra-additivity with X rays were cis-Pt and cyclo.

  7. Skin Biomes.

    PubMed

    Fyhrquist, N; Salava, A; Auvinen, P; Lauerma, A

    2016-05-01

    The cutaneous microbiome has been investigated broadly in recent years and some traditional perspectives are beginning to change. A diverse microbiome exists on human skin and has a potential to influence pathogenic microbes and modulate the course of skin disorders, e.g. atopic dermatitis. In addition to the known dysfunctions in barrier function of the skin and immunologic disturbances, evidence is rising that frequent skin disorders, e.g. atopic dermatitis, might be connected to a dysbiosis of the microbial community and changes in the skin microbiome. As a future perspective, examining the skin microbiome could be seen as a potential new diagnostic and therapeutic target in inflammatory skin disorders.

  8. Trypanosoma cruzi: in vivo evaluation of iron in skin employing X-ray fluorescence (XRF) in mouse strains that differ in their susceptibility to infection.

    PubMed

    Estevam, Marcelo; Appoloni, Carlos Roberto; Malvezi, Aparecida Donizette; Tatakihara, Vera Lúcia Hideko; Panis, Carolina; Cecchini, Rubens; Rizzo, Luiz Vicente; Pinge-Filho, Phileno

    2012-04-01

    Trypanosoma cruzi, the causative agent of Chagas' disease (CD), is a substantial public health concern in Latin America. Laboratory mice inoculated with T. cruzi have served as important animal models of acute CD. Host hypoferremic responses occur during T. cruzi infection; therefore, it has been hypothesized that T. cruzi requires iron for optimal growth in host cells and, unlike extracellular pathogens, may benefit from host hypoferremic responses. Recent technological improvements of X-ray fluorescence are useful for diagnostics or monitoring in biomedical applications. The goal of our study was to determine whether the iron availabilities in Swiss and C57BL/6 mice differ during the acute phase of T. cruzi infection and whether the availability correlates with oxidative stress in the susceptible and resistant phenotypes identified in these mice. Our results showed that the decrease in iron levels in the skin of resistant infected mice correlated with the increase in oxidative stress associated with anemia and the reduction in parasite burden.

  9. Enhancement of tumor responsiveness to aminolevulinate-photodynamic therapy (ALA-PDT) using differentiation-promoting agents in mouse models of skin carcinoma

    NASA Astrophysics Data System (ADS)

    Anand, Sanjay; Honari, Golara; Paliwal, Akshat; Hasan, Tayyaba; Maytin, Edward V.

    2009-06-01

    Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is an emerging treatment for cancers. ALA, given as a prodrug, selectively accumulates and is metabolized in cancer cells to form protoporphyrin IX (PpIX). Targeted local irradiation with light induces cell death. Since the efficacy of ALA-PDT for large or deep tumors is currently limited, we are developing a new approach that combines differentiation-inducing agents with ALA-PDT to improve the clinical response. Here, we tested this new combination paradigm in the following two models of skin carcinoma in mice: 1) tumors generated by topical application of chemical carcinogens (DMBA-TPA); 2) human SCC cells (A431) implanted subcutaneously. To achieve a differentiated state of the tumors, pretreatment with a low concentration of methotrexate (MTX) or Vitamin D (Vit D) was administered for 72 h prior to exposure to ALA. Confocal images of histological sections were captured and digitally analyzed to determine relative PpIX levels. PpIX in the tumors was also monitored by real-time in vivo fluorescence dosimetry. In both models, a significant increase in levels of PpIX was observed following pretreatment with MTX or Vit D, as compared to no-pretreatment controls. This enhancing effect was observed at very low, non-cytotoxic concentrations, and was highly specific to cancer cells as compared to normal cells. These results suggest that use of differentiating agents such as MTX or Vit D, as a short-term combination therapy given prior to ALA-PDT, can increase the production of PpIX photosensitizer and enhance the therapeutic response of skin cancers.

  10. HDAC inhibitor SAHA normalizes the levels of VLCFAs in human skin fibroblasts from X-ALD patients and downregulates the expression of proinflammatory cytokines in Abcd1/2-silenced mouse astrocytes.

    PubMed

    Singh, Jaspreet; Khan, Mushfiquddin; Singh, Inderjit

    2011-11-01

    X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). The consistent metabolic abnormality in all forms of X-ALD is an inherited defect in the peroxisomal β-oxidation of very long chain FAs (VLCFAs >C22:0) and the resultant pathognomic accumulation of VLCFA. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of a potent histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA) in inducing the expression of ABCD2 [adrenoleukodystrophy-related protein (ALDRP)], and normalizing the peroxisomal β-oxidation, as well as the saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and monounsaturated VLCFA (C26:1), was also reduced by SAHA treatment. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes, we also examined the effects of SAHA in VLCFA-induced inflammatory response. SAHA treatment decreased the inflammatory response as expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. These observations indicate that SAHA corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be an ideal drug candidate to be tested for X-ALD therapy in humans.

  11. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents

    SciTech Connect

    Tiwari, Prakash; Gupta, Krishna P.

    2014-07-15

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulation of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. - Highlights: • DMBA modulates miR-203 and its regulator before and after the onset of tumors. • Suppression of miR-203 and p16 could be the result of gene promoter methylation. • BA, NA or CAG prevents the effects of DMBA. • Combination of BA, NA or CAG is more effective in preventing the DMBA modulations.

  12. Inhibitory effect(s) of polymeric black tea polyphenols on the formation of B(a)P-derived DNA adducts in mouse skin.

    PubMed

    Krishnan, Rajesh; Maru, Girish B

    2005-01-01

    The biological activities and chemopreventive properties of green tea polyphenols have been demonstrated, while similar information regarding newly formed major polymeric polyphenols in black tea are not available. Cancer chemoprevention may be achieved by the inhibition of any stage of carcinogenesis. In the present study, we investigated the anti-initiating effects of five polymeric black tea polyphenol (PBP) fractions, by determining their effects on the formation of [3H]-B(a)P-derived DNA adducts as well as the activity of cytochrome P-450 isozymes CYP 1A1 and 1A2 in vitro employing rat liver microsomes. PBP 1-3 inhibited both the microsome catalyzed [3H]-B(a)P-derived DNA adduct formation as well as the activity of CYP 1A1 and 1A2 as assessed by the decreased formation of resorufin from the respective substrates. Further investigation revealed that topical pretreatment(s) of mice with PBP 1-5 (200 mug/day x 4) resulted in a significant decrease in the levels of single topical B(a)P (1 mg/mouse) - induced DNA adducts in epidermal DNA determined by employing 32P-post labeling analysis. Overall, our results suggest that black tea-derived PBPs have one of the chemopreventive properties shown by monomeric green tea polyphenols.

  13. Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53+/− or Rb1+/− backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling

    PubMed Central

    Almeida, Madson Q.; Muchow, Michael; Boikos, Sosipatros; Bauer, Andrew J.; Griffin, Kurt J.; Tsang, Kit Man; Cheadle, Chris; Watkins, Tonya; Wen, Feng; Starost, Matthew F.; Bossis, Ioannis; Nesterova, Maria; Stratakis, Constantine A.

    2010-01-01

    PRKAR1A inactivation leads to dysregulated cAMP signaling and Carney complex (CNC) in humans, a syndrome associated with skin, endocrine and other tumors. The CNC phenotype is not easily explained by the ubiquitous cAMP signaling defect; furthermore, Prkar1a+/− mice did not develop skin and other CNC tumors. To identify whether a Prkar1a defect is truly a generic but weak tumorigenic signal that depends on tissue-specific or other factors, we investigated Prkar1a+/− mice when bred within the Rb1+/− or Trp53+/− backgrounds, or treated with a two-step skin carcinogenesis protocol. Prkar1a+/− Trp53+/− mice developed more sarcomas than Trp53+/− mice (P < 0.05) and Prkar1a+/− Rb1+/− mice grew more (and larger) pituitary and thyroid tumors than Rb1+/− mice. All mice with double heterozygosity had significantly reduced life-spans compared with their single-heterozygous counterparts. Prkar1a+/− mice also developed more papillomas than wild-type animals. A whole-genome transcriptome profiling of tumors produced by all three models identified Wnt signaling as the main pathway activated by abnormal cAMP signaling, along with cell cycle abnormalities; all changes were confirmed by qRT–PCR array and immunohistochemistry. siRNA down-regulation of Ctnnb1, E2f1 or Cdk4 inhibited proliferation of human adrenal cells bearing a PRKAR1A-inactivating mutation and Prkar1a+/− mouse embryonic fibroblasts and arrested both cell lines at the G0/G1 phase of the cell cycle. In conclusion, Prkar1a haploinsufficiency is a relatively weak tumorigenic signal that can act synergistically with other tumor suppressor gene defects or chemicals to induce tumors, mostly through Wnt-signaling activation and cell cycle dysregulation, consistent with studies in human neoplasms carrying PRKAR1A defects. PMID:20080939

  14. Keloid-derived, plasma/fibrin-based skin equivalents generate de novo dermal and epidermal pathology of keloid fibrosis in a mouse model.

    PubMed

    Lee, Yun-Shain; Hsu, Tim; Chiu, Wei-Chih; Sarkozy, Heidi; Kulber, David A; Choi, Aaron; Kim, Elliot W; Benya, Paul D; Tuan, Tai-Lan

    2016-03-01

    Keloids are wounding-induced tumor-like human scars. Unclear etiology and lack of animal models to reveal disease mechanisms and invent therapies deepen the grievous health and psychosocial state of vulnerable individuals. Epitomizing the injury-repair environment which triggers and fosters keloid formation and essential dermal/epidermal interactions in disease development, the novel animal model was established by implanting porous polyethylene ring-supported plasma/fibrin-based epidermal-dermal skin constructs on the dorsum of athymic NU/J mice. The implants were stable to 18 weeks, contained abundant human cells, and remodeled to yield scar architecture characteristic of keloid fibrosis compared with normal implants and clinical specimens: (1) macroscopic convex or nodular scar morphology; (2) morphogenesis and accumulation of large collagen bundles from collagen-null initial constructs; (3) epidermal hyperplasia, aberrant epidermal-dermal patency, and features of EMT; (4) increased vasculature, macrophage influx, and aggregation; and (5) temporal-spatial increased collagen-inducing PAI-1 and its interactive partner uPAR expression. Development of such pathology in the NU/J host suggests that T-cell participation is less important at this stage than at keloid initiation. These accessible implants also healed secondary excisional wounds, enabling clinically relevant contemporaneous wounding and treatment strategies, and evaluation. The model provides a robust platform for studying keloid formation and testing knowledge-based therapies. PMID:26683740

  15. Skin Complications

    MedlinePlus

    ... drugs that can help clear up this condition. Day-to-Day Skin Care See our tips for daily skin ... Risk? Diagnosis Lower Your Risk Risk Test Alert Day Prediabetes My Health Advisor Tools to Know Your ...

  16. Skin Aging

    MedlinePlus

    ... too. Sunlight is a major cause of skin aging. You can protect yourself by staying out of ... person has smoked. Many products claim to revitalize aging skin or reduce wrinkles, but the Food and ...

  17. Skin tears.

    PubMed

    Baranoski, S

    2001-08-01

    Skin tears are a serious, painful problem for older patients. Find out how your staff can recognize patients at risk, what they can do to prevent skin tears, and how to manage them effectively if they occur.

  18. Skin Pigment

    MedlinePlus

    ... Professional Version Pigment Disorders Overview of Skin Pigment Albinism Vitiligo Hyperpigmentation Melasma Melanin is the brown pigment ... dark-skinned people produce the most. People with albinism have little or no melanin and thus their ...

  19. Inhibition by ajoene of skin-tumor promotion in mice.

    PubMed

    Nishikawa, Tomoaki; Yamada, Norihiko; Hattori, Atsuhiko; Fukuda, Hiroyuki; Fujino, Tsuchiyoshi

    2002-10-01

    Ajoene, a major compound containing sulfur in oil-macerated garlic products, inhibited in a two-stage carcinogenesis test on mouse skin. Treatment with ajoene suppressed skin tumor formation, depending on the amount. In particular, the group treated with 250 microg of ajoene had only 4.9% the number of tumors per mouse compared with the control group at 18 weeks.

  20. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    SciTech Connect

    Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  1. Undergraduate Laboratory Module on Skin Diffusion

    ERIC Educational Resources Information Center

    Norman, James J.; Andrews, Samantha N.; Prausnitz, Mark R.

    2011-01-01

    To introduce students to an application of chemical engineering directly related to human health, we developed an experiment for the unit operations laboratory at Georgia Tech examining diffusion across cadaver skin in the context of transdermal drug delivery. In this laboratory module, students prepare mouse skin samples, set up diffusion cells…

  2. Sensitive skin.

    PubMed

    Misery, L; Loser, K; Ständer, S

    2016-02-01

    Sensitive skin is a clinical condition defined by the self-reported facial presence of different sensory perceptions, including tightness, stinging, burning, tingling, pain and pruritus. Sensitive skin may occur in individuals with normal skin, with skin barrier disturbance, or as a part of the symptoms associated with facial dermatoses such as rosacea, atopic dermatitis and psoriasis. Although experimental studies are still pending, the symptoms of sensitive skin suggest the involvement of cutaneous nerve fibres and neuronal, as well as epidermal, thermochannels. Many individuals with sensitive skin report worsening symptoms due to environmental factors. It is thought that this might be attributed to the thermochannel TRPV1, as it typically responds to exogenous, endogenous, physical and chemical stimuli. Barrier disruptions and immune mechanisms may also be involved. This review summarizes current knowledge on the epidemiology, potential mechanisms, clinics and therapy of sensitive skin. PMID:26805416

  3. Skin findings in newborns

    MedlinePlus

    Newborn skin characteristics; Infant skin characteristics; Neonatal care - skin ... the first few weeks of the baby's life. Newborn skin will vary, depending on the length of the pregnancy. Premature infants have thin, transparent skin. The skin of a ...

  4. Oily skin

    MedlinePlus

    ... keep your skin clean using warm water and soap, or a soapless cleanser. Clean your face with astringent pads if frequent face washing causes irritation. Use only water-based or oil-free cosmetics if you have oily skin. Your ...

  5. Periostin in skin tissue and skin-related diseases.

    PubMed

    Yamaguchi, Yukie

    2014-06-01

    Extracellular matrix (ECM) is not only involved in the maintenance of normal physiological tissue but also in interactions with other ECM components, tissue remodeling, and modulating immune responses. The skin provides a distinctive environment characterized by rich fibroblasts producing various ECM proteins, epithelial-mesenchymal interactions, and immune responses induced by external stimuli. Recently, periostin-a matricellular protein-has been highlighted for its pivotal functions in the skin. Analysis of periostin null mice has revealed that periostin contributes to collagen fibrillogenesis, collagen cross-linking, and the formation of ECM meshwork via interactions with other ECM components. Periostin expression is enhanced by mechanical stress or skin injury; this is indicative of the physiologically protective functions of periostin, which promotes wound repair by acting on keratinocytes and fibroblasts. Along with its physiological functions, periostin plays pathogenic roles in skin fibrosis and chronic allergic inflammation. In systemic sclerosis (SSc) patients, periostin levels reflect the severity of skin fibrosis. Periostin null mice have shown reduced skin fibrosis in a bleomycin-induced SSc mouse model, indicating a key role of periostin in fibrosis. Moreover, in atopic dermatitis (AD), attenuated AD phenotype has been observed in periostin null mice in a house dust mite extract-induced AD mouse model. Th2 cytokine-induced periostin acts on keratinocytes to produce inflammatory cytokines that further enhance the Th2 response, thereby sustaining and amplifying chronic allergic inflammation. Thus, periostin is deeply involved in the pathogenesis of AD and other inflammation-related disorders affecting the skin. Understanding the dynamic actions of periostin would be key to dissecting pathogenesis of skin-related diseases and to developing novel therapeutic strategies.

  6. Skin graft

    MedlinePlus

    ... caused a large amount of skin loss Burns Cosmetic reasons or reconstructive surgeries where there has been ... Smoking increases your chance of problems such as slow healing. Ask your doctor or nurse for help ...

  7. Your Skin

    MedlinePlus

    ... Butterflies? Read This Chloe & Nurb Meet The Brain (Movie) Quiz: Do You Need a Flu Shot? Got ... For Kids For Parents MORE ON THIS TOPIC Movie: Skin Acne Myths Blisters, Calluses, and Corns Fungal ...

  8. Skin Infections

    MedlinePlus

    ... nearby What to Do Teach kids not to pop, pick at, or scratch pimples, pus-filled infections, ... Your Skin Abscess Impetigo Ringworm Cellulitis Should I Pop My Pimple? Tips for Taking Care of Your ...

  9. Skin Cancer

    MedlinePlus

    ... States. The two most common types are basal cell cancer and squamous cell cancer. They usually form on the head, face, ... If not treated, some types of skin cancer cells can spread to other tissues and organs. Treatments ...

  10. Skin Cancer

    MedlinePlus

    ... exposure to ultraviolet light, which is found in sunlight and in lights used in tanning salons. What ... the safe-sun guidelines. 1. Avoid the sun. Sunlight damages your skin. The sun is strongest during ...

  11. Skin Cancer

    MedlinePlus

    ... Review. 17 Wu S, Han J, Laden F, Qureshi AA. Long-term ultraviolet flux, other potential risk factors, ... MR, Shive ML, Chren MM, Han J, Qureshi AA, Linos E. Indoor tanning and non-melanoma skin ...

  12. Hyperelastic skin

    MedlinePlus

    ... is most often seen in people who have Ehlers-Danlos syndrome. People with this disorder have very elastic skin. ... any member of your family been diagnosed with Ehlers-Danlos syndrome? What other symptoms are present? Alternative Names India ...

  13. Skin - clammy

    MedlinePlus

    ... of clammy skin include: Anxiety attack Heart attack Heat exhaustion Internal bleeding Low blood oxygen levels Sepsis (body-wide infection) Severe allergic reaction (anaphylaxis) Severe pain Shock (low blood pressure)

  14. Senescent Skin

    PubMed Central

    Kushniruk, William

    1974-01-01

    The cutaneous surface is continually influenced by aging and environmental factors. A longer life span is accompanied by an increase in the frequency of problems associated with aging skin. Although most of these changes and lesions are not life threatening, the premalignant lesions must be recognized and treated. The common aging and actinic skin changes are discussed and appropriate management is described. ImagesFig. 1Fig. 2Fig. 3Fig. 4 PMID:20469067

  15. Neuromodulators for Aging Skin

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  16. A skin-inspired organic digital mechanoreceptor.

    PubMed

    Tee, Benjamin C-K; Chortos, Alex; Berndt, Andre; Nguyen, Amanda Kim; Tom, Ariane; McGuire, Allister; Lin, Ziliang Carter; Tien, Kevin; Bae, Won-Gyu; Wang, Huiliang; Mei, Ping; Chou, Ho-Hsiu; Cui, Bianxiao; Deisseroth, Karl; Ng, Tse Nga; Bao, Zhenan

    2015-10-16

    Human skin relies on cutaneous receptors that output digital signals for tactile sensing in which the intensity of stimulation is converted to a series of voltage pulses. We present a power-efficient skin-inspired mechanoreceptor with a flexible organic transistor circuit that transduces pressure into digital frequency signals directly. The output frequency ranges between 0 and 200 hertz, with a sublinear response to increasing force stimuli that mimics slow-adapting skin mechanoreceptors. The output of the sensors was further used to stimulate optogenetically engineered mouse somatosensory neurons of mouse cortex in vitro, achieving stimulated pulses in accordance with pressure levels. This work represents a step toward the design and use of large-area organic electronic skins with neural-integrated touch feedback for replacement limbs. PMID:26472906

  17. A skin-inspired organic digital mechanoreceptor

    NASA Astrophysics Data System (ADS)

    Tee, Benjamin C.-K.; Chortos, Alex; Berndt, Andre; Nguyen, Amanda Kim; Tom, Ariane; McGuire, Allister; Lin, Ziliang Carter; Tien, Kevin; Bae, Won-Gyu; Wang, Huiliang; Mei, Ping; Chou, Ho-Hsiu; Cui, Bianxiao; Deisseroth, Karl; Ng, Tse Nga; Bao, Zhenan

    2015-10-01

    Human skin relies on cutaneous receptors that output digital signals for tactile sensing in which the intensity of stimulation is converted to a series of voltage pulses. We present a power-efficient skin-inspired mechanoreceptor with a flexible organic transistor circuit that transduces pressure into digital frequency signals directly. The output frequency ranges between 0 and 200 hertz, with a sublinear response to increasing force stimuli that mimics slow-adapting skin mechanoreceptors. The output of the sensors was further used to stimulate optogenetically engineered mouse somatosensory neurons of mouse cortex in vitro, achieving stimulated pulses in accordance with pressure levels. This work represents a step toward the design and use of large-area organic electronic skins with neural-integrated touch feedback for replacement limbs.

  18. Green tea and skin--anticarcinogenic effects.

    PubMed

    Mukhtar, H; Katiyar, S K; Agarwal, R

    1994-01-01

    Because of its special aroma, green tea is a popular beverage consumed by some human populations worldwide. In recent years, many laboratory studies have shown that in a variety of animal tumor bioassay systems the administration of green tea, specifically the polyphenolic fraction isolated from green tea leaves (green tea polyphenols), affords protection against cancer induction. In mouse skin tumor bioassay systems, topical application of green tea polyphenols to skin has been shown to result in protection against a) 3-methylcholanthrene-induced skin tumorigenicity, b) 7,12-dimethylbenz(a)anthracene (DMBA)-induced skin tumor initiation, c) 12-O-tetradecanoylphorbol-13-acetate and other tumor promoters caused tumor promotion in DMBA-initiated skin, and d) benzoyl peroxide- and 4-nitroquinoline N-oxide caused enhanced malignant progression of nonmalignant lesions. Green tea extract has also been shown to cause partial regression of established skin papillomas in mouse. Similarly, chronic oral feeding of green tea polyphenols or water extract of green tea has also been shown to result in the protection against both chemical carcinogen- and ultraviolet B radiation-induced skin tumorigenicity. Collectively these data suggest that green tea possesses significant chemopreventive effect against each stage of carcinogenesis, and that it may be useful against inflammatory responses associated with the exposure of skin to chemical tumor promoters as well as to solar radiation. Available data regarding the mechanism by which green tea affords these diversified effects is discussed.

  19. How to Check Your Skin for Skin Cancer

    MedlinePlus

    ... Home Cancer Types Skin Cancer Skin Cancer Patient Skin Cancer Treatment Melanoma Treatment Merkel Cell Carcinoma Treatment Skin Cancer Prevention Skin Cancer Screening Health Professional Skin Cancer Treatment Melanoma Treatment Merkel Cell Carcinoma Treatment Skin Cancer ...

  20. Of flaky tails and itchy skin.

    PubMed

    Vercelli, Donata

    2009-05-01

    A new study defines the flaky tail mouse as a model for human atopic dermatitis caused by a null mutation in the gene encoding filaggrin, a key component of the epidermal barrier. Research in these mice will help explain how a disrupted barrier contributes to the pathogenesis of atopic dermatitis and to asthma arising in the context of atopic skin disease. PMID:19399034

  1. Cutaneous skin tag

    MedlinePlus

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  2. TSLP is differentially regulated by vitamin D3 and cytokines in human skin

    PubMed Central

    Landheer, Janneke; Giovannone, Barbara; Sadekova, Svetlana; Tjabringa, Sandra; Hofstra, Claudia; Dechering, Koen; Bruijnzeel-Koomen, Carla; Chang, Charlie; Ying, Yu; de Waal Malefyt, Rene; Hijnen, DirkJan; Knol, Edward

    2015-01-01

    Thymic stromal lymphopoietin (TSLP) plays an important role in allergic diseases and is highly expressed in keratinocytes in human lesional atopic dermatitis (AD) skin. In nonlesional AD skin TSLP expression can be induced by applying house dust mite allergen onto the skin in the atopy patch test. Several studies have demonstrated that the induction of TSLP expression in mouse skin does not only lead to AD-like inflammation of the skin, but also predisposes to severe inflammation of the airways. In mice, TSLP expression can be induced by application of the 1,25-dihydroxyvitamin D3 (VD3) analogue calcipotriol and results in the development of eczema-like lesions. The objective is to investigate the effect of VD3 (calcitriol) or calcipotriol on TSLP expression in normal human skin and skin from AD patients. Using multiple ex vivo experimental setups, the effects of calci(po)triol on TSLP expression by normal human skin, and skin from AD patients were investigated and compared to effects of calcipotriol on mouse and non-human primates (NHP) skin. No induction of TSLP expression (mRNA or protein) was observed in human keratinocytes, normal human skin, nonlesional AD skin, or NHP skin samples after stimulation with calcipotriol or topical application of calcitriol. The biological activity of calci(po)triol in human skin samples was demonstrated by the increased expression of the VD3-responsive Cyp24a1 gene. TSLP expression was induced by cytokines (IL-4, IL-13, and TNF-α) in skin samples from all three species. In contrast to the findings in human and NHP, a consistent increase in TSLP expression was confirmed in mouse skin biopsies after stimulation with calcipotriol. VD3 failed to induce expression of TSLP in human or monkey skin in contrast to mouse, implicating careful extrapolation of this often-used mouse model to AD patients. PMID:25866638

  3. Skin Keratins.

    PubMed

    Wang, Fengrong; Zieman, Abigail; Coulombe, Pierre A

    2016-01-01

    Keratins comprise the type I and type II intermediate filament-forming proteins and occur primarily in epithelial cells. They are encoded by 54 evolutionarily conserved genes (28 type I, 26 type II) and regulated in a pairwise and tissue type-, differentiation-, and context-dependent manner. Keratins serve multiple homeostatic and stress-enhanced mechanical and nonmechanical functions in epithelia, including the maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis. These functions are tightly regulated by posttranslational modifications as well as keratin-associated proteins. Genetically determined alterations in keratin-coding sequences underlie highly penetrant and rare disorders whose pathophysiology reflects cell fragility and/or altered tissue homeostasis. Moreover, keratin mutation or misregulation represents risk factors or genetic modifiers for several acute and chronic diseases. This chapter focuses on keratins that are expressed in skin epithelia, and details a number of basic protocols and assays that have proven useful for analyses being carried out in skin.

  4. Skin Keratins

    PubMed Central

    Wang, Fengrong; Zieman, Abigail; Coulombe, Pierre A.

    2016-01-01

    Keratins comprise the type I and type II intermediate filament-forming proteins and occur primarily in epithelial cells. They are encoded by 54 evolutionarily conserved genes (28 type I, 26 type II) and regulated in a pairwise and tissue type-, differentiation-, and context-dependent manner. Keratins serve multiple homeostatic and stress-enhanced mechanical and nonmechanical functions in epithelia, including the maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis. These functions are tightly regulated by posttranslational modifications as well as keratin-associated proteins. Genetically determined alterations in keratin-coding sequences underlie highly penetrant and rare disorders whose pathophysiology reflects cell fragility and/or altered tissue homeostasis. Moreover, keratin mutation or misregulation represents risk factors or genetic modifiers for several acute and chronic diseases. This chapter focuses on keratins that are expressed in skin epithelia, and details a number of basic protocols and assays that have proven useful for analyses being carried out in skin. PMID:26795476

  5. The alpha/beta carboxy-terminal domains of p63 are required for skin and limb development. New insights from the Brdm2 mouse which is not a complete p63 knockout but expresses p63 gamma-like proteins.

    PubMed

    Wolff, S; Talos, F; Palacios, G; Beyer, U; Dobbelstein, M; Moll, U M

    2009-08-01

    p63, an ancestral transcription factor of the p53 family, has three C-terminal isoforms whose relative in vivo functions are elusive. The p63 gene is essential for skin and limb development, as vividly shown by two independent global knockout mouse models. Both strains, although constructed differently, have identical and severe phenotypes, characterized by absent epidermis and hindlimbs and only rudimentary forelimbs at birth. Here we show that mice from one model, Brdm2, express normal levels of truncated p63 proteins that contain the DNA binding and oligomerization domain but lack the long carboxy-terminal SAM (sterile alpha-motif) and post-SAM domains that are specific for the alpha and beta isoforms. As such, transcriptionally active p63 proteins from Brdm2 mice resemble the naturally occurring p63gamma isoforms, which of all the p63 isoforms most closely resemble p53. Thus, Brdm2 mice are p63alpha/beta isoform-specific knockout mice, gaining unexpected new importance. Our studies identify that p63alpha/beta but not p63gamma are absolutely required for proper skin and limb development.

  6. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    PubMed

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  7. Application and detection of (14)c-hd in two mouse models.

    PubMed

    Logan, Thomas P; Shutz, Michael; Schulz, Susan M; Railer, Roy; Ricketts, Karen M; Casillas, Robert P

    2002-01-01

    The CD1-haired mouse and the SKH-hairless mouse are two animal models that have been used to evaluate sulfur mustard (HD) exposure and protection in our laboratory. In a recent study we observed that a substance P inhibitor protected the haired mouse ear against an HD solution, but the same drug was not successful in protecting the hairless mouse against HD vapor. This experiment prompted us to compare HD exposures between these models. We determined the (14)C content in the skin after exposures to HD containing (14)C-HD. Rate curves were generated for applications of (1) HD in methylene chloride to the haired mouse ear; (2) HD in methylene chloride to the hairless mouse dorsal skin; and (3) saturated HD vapor to the hairless mouse dorsal skin for 6 min. The curves showed a reduction in (14)C disintegrations per min in animals euthanized 0 to 2 h postexposure. The largest percentage of decrease of (14)C content in skin occurred within 30 min of HD challenge for all exposures. An 8-mm skin-punch biopsy and a 14-mm annular skin section surrounding the region of the 8-mm skin punch were taken from the hairless mouse dorsal skin exposed to HD in methylene chloride. The ratio of the (14)C content in the 8-mm skin punch to that in the surrounding 14-mm annular skin section was 7.3, demonstrating that the HD application spreads beyond the initially biopsied site. A concentration/time value of 6.3 mug/cm(2)/min was determined by counting skin (14)C disintegrations per minute in animals euthanized immediately after exposure to saturated HD vapor. Determinations of the amount of HD showed that similar quantities of HD, 0.4 mg, were detected on each model. These results contribute to a better quantitative understanding of HD application in the haired and hairless mouse models.

  8. Skin (Pressure) Sores

    MedlinePlus

    ... Topic Skin dryness Next Topic Sleep problems Skin (pressure) sores A skin or pressure sore develops when the blood supply to an ... is bedridden or always in a wheelchair puts pressure on the same places much of the time. ...

  9. Layers of the Skin

    MedlinePlus

    ... produce the skin coloring or pigment known as melanin, which gives skin its tan or brown color ... Sun exposure causes melanocytes to increase production of melanin in order to protect the skin from damaging ...

  10. Learning about Skin Cancer

    MedlinePlus

    ... have red or blond hair and blue or light-colored eyes - although anyone can get skin cancer. Skin cancer is related to lifetime exposure to UV radiation, therefore most skin cancers appear after age ...

  11. Scalded skin syndrome

    MedlinePlus

    Ritter disease; Staphylococcal scalded skin syndrome (SSS) ... Scalded skin syndrome (SSS) is caused by infection with certain strains of Staphylococcus bacteria. The bacteria produce a toxin that causes the skin ...

  12. Skin Cancer Treatment

    MedlinePlus

    ... Skin Cancer Skin color and being exposed to sunlight can increase the risk of nonmelanoma skin cancer ... carcinoma include the following: Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) ...

  13. Stages of Skin Cancer

    MedlinePlus

    ... Skin Cancer Skin color and being exposed to sunlight can increase the risk of nonmelanoma skin cancer ... carcinoma include the following: Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) ...

  14. Dry Skin (Xerosis)

    MedlinePlus

    ... skin, which may bleed if severe. Chapped or cracked lips. When dry skin cracks, germs can get ... cause the skin to become dry, raw, and cracked. Swimming : Some pools have high levels of chlorine, ...

  15. Basal cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. This type of skin ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  16. Skin Cancer Foundation

    MedlinePlus

    ... Cancer Infographics Children For Your Eyes Clothing Shade Sunscreen Sunburn Seal of Recommendation Are You at Risk? ... Defense The Mini Skin Cancer Prevention Handbook A "Sunscreen Gene"? Skin Cancer Facts & Statistics The Skin Cancer ...

  17. The influence of cosmetics on the properties of skin autofluorescence

    NASA Astrophysics Data System (ADS)

    Tamošiūnas, M.; Bertulytė, I.; Rečiūnaitė, I.; Jakštys, B.; Šatkauskienė, I.; Čepurnienė, K.

    2014-10-01

    The aim of this study was to estimate the changes of autofluorescence and sensitized fluorescence under the effect of cosmetics. We used a method of fluorescence spectroscopy in vivo and examined the mouse skin covering the tumour. Analysis of fluorescence spectral changes was made after differentiation of the cosmetics according to its effects: i) inducing temporary changes of skin autofluorescence after absorbtion into skin (lipsticks, face powders, body lotions, mascaras); ii) permanently changing the fluorescence of the skin (collagen containing products). Cosmetics have been shown to be optically active and capable to alter the fluorescence of exogenously accumulated photosensitizers and endogenous tissue fluorophores.

  18. Periplogenin induces necroptotic cell death through oxidative stress in HaCaT cells and ameliorates skin lesions in the TPA- and IMQ-induced psoriasis-like mouse models.

    PubMed

    Zhang, Wen-Jing; Song, Zhen-Bo; Bao, Yong-Li; Li, Wen-Liang; Yang, Xiao-Guang; Wang, Qi; Yu, Chun-Lei; Sun, Lu-Guo; Huang, Yan-Xin; Li, Yu-Xin

    2016-04-01

    Psoriasis is a multifactorial skin disease that inconveniences many patients. Considering the side effects and drug resistance of the current therapy, it is urgent to discover more effective and safer anti-psoriatic drugs. In the present study, we screened over 250 traditional Chinese medicine compounds for their ability to inhibit the cell viability of cultured human HaCaT keratinocytes, a psoriasis-relevant in vitro model, and found that periplogenin was highly effective. Mechanistic studies revealed that apoptosis and autophagy were not induced by periplogenin in HaCaT cells. However, periplogenin caused PI to permeate into cells, increased lactate LDH release and rapidly increased the number of necrotic cells. Additionally, the typical characteristics of necrosis were observed in the periplogenin-treated HaCaT cells. Notably, the necroptosis inhibitor Nec-1 and NSA were able to rescue the cells from necrotic cell death, supporting that necroptosis was involved in periplogenin-induced cell death. Furthermore, the ROS levels were elevated in the periplogenin-treated cells, NAC (an antioxidant) and Nec-1 could inhibit the ROS levels, and NAC could attenuate necroptotic cell death, indicating that the periplogenin-induced necroptotic cell death was mediated by oxidative stress. More importantly, in the murine models of TPA-induced epidermal hyperplasia and IMQ-induced skin inflammation, topical administration of periplogenin ameliorated skin lesions and inflammation. In sum, our results indicate, for the first time, that periplogenin is a naturally occurring compound with potent anti-psoriatic effects in vitro and in vivo, making it a promising candidate for future drug research. PMID:26850986

  19. Periplogenin induces necroptotic cell death through oxidative stress in HaCaT cells and ameliorates skin lesions in the TPA- and IMQ-induced psoriasis-like mouse models.

    PubMed

    Zhang, Wen-Jing; Song, Zhen-Bo; Bao, Yong-Li; Li, Wen-Liang; Yang, Xiao-Guang; Wang, Qi; Yu, Chun-Lei; Sun, Lu-Guo; Huang, Yan-Xin; Li, Yu-Xin

    2016-04-01

    Psoriasis is a multifactorial skin disease that inconveniences many patients. Considering the side effects and drug resistance of the current therapy, it is urgent to discover more effective and safer anti-psoriatic drugs. In the present study, we screened over 250 traditional Chinese medicine compounds for their ability to inhibit the cell viability of cultured human HaCaT keratinocytes, a psoriasis-relevant in vitro model, and found that periplogenin was highly effective. Mechanistic studies revealed that apoptosis and autophagy were not induced by periplogenin in HaCaT cells. However, periplogenin caused PI to permeate into cells, increased lactate LDH release and rapidly increased the number of necrotic cells. Additionally, the typical characteristics of necrosis were observed in the periplogenin-treated HaCaT cells. Notably, the necroptosis inhibitor Nec-1 and NSA were able to rescue the cells from necrotic cell death, supporting that necroptosis was involved in periplogenin-induced cell death. Furthermore, the ROS levels were elevated in the periplogenin-treated cells, NAC (an antioxidant) and Nec-1 could inhibit the ROS levels, and NAC could attenuate necroptotic cell death, indicating that the periplogenin-induced necroptotic cell death was mediated by oxidative stress. More importantly, in the murine models of TPA-induced epidermal hyperplasia and IMQ-induced skin inflammation, topical administration of periplogenin ameliorated skin lesions and inflammation. In sum, our results indicate, for the first time, that periplogenin is a naturally occurring compound with potent anti-psoriatic effects in vitro and in vivo, making it a promising candidate for future drug research.

  20. Genetic heterogeneity of skin microvasculature.

    PubMed

    Liu, Fang; Smith, Jason; Zhang, Zhen; Cole, Richard; Herron, Bruce J

    2010-04-15

    Angiogenesis, the formation of new blood vessels from existing vasculature, is a complex process that is essential for normal embryonic development. Current models for experimental evaluation of angiogenesis often use tissue from large vessels like the aorta and umbilical vein, which are phenotypically distinct from microvasculature. We demonstrate that the utilization of skin to measure microvascular angiogenesis in embryonic and adult tissues is an efficient way to quantify microvasculature angiogenesis. We validate this approach and demonstrate its added value by showing significant differences in angiogenesis in monogenic and polygenic mouse models. We discovered that the pattern of angiogenic response among inbred mouse strains in this ex vivo assay differs from the strain distributions of previous in vivo angiogenesis assays. The difference between the ex vivo and in vivo assays may be related to systemic factors present in whole animals. Expression analysis of cultured skin biopsies from strains of mice with opposing angiogenic response was performed to identify pathways that contribute to differential angiogenic response. Increased expression of negative regulators of angiogenesis in C57Bl/6J mice was associated with lower growth rates.

  1. Stem cells of the skin epithelium

    PubMed Central

    Alonso, Laura; Fuchs, Elaine

    2003-01-01

    Tissue stem cells form the cellular base for organ homeostasis and repair. Stem cells have the unusual ability to renew themselves over the lifetime of the organ while producing daughter cells that differentiate into one or multiple lineages. Difficult to identify and characterize in any tissue, these cells are nonetheless hotly pursued because they hold the potential promise of therapeutic reprogramming to grow human tissue in vitro, for the treatment of human disease. The mammalian skin epithelium exhibits remarkable turnover, punctuated by periods of even more rapid production after injury due to burn or wounding. The stem cells responsible for supplying this tissue with cellular substrate are not yet easily distinguishable from neighboring cells. However, in recent years a significant body of work has begun to characterize the skin epithelial stem cells, both in tissue culture and in mouse and human skin. Some epithelial cells cultured from skin exhibit prodigious proliferative potential; in fact, for >20 years now, cultured human skin has been used as a source of new skin to engraft onto damaged areas of burn patients, representing one of the first therapeutic uses of stem cells. Cell fate choices, including both self-renewal and differentiation, are crucial biological features of stem cells that are still poorly understood. Skin epithelial stem cells represent a ripe target for research into the fundamental mechanisms underlying these important processes. PMID:12913119

  2. Chemically induced skin carcinogenesis: Updates in experimental models (Review)

    PubMed Central

    NEAGU, MONICA; CARUNTU, CONSTANTIN; CONSTANTIN, CAROLINA; BODA, DANIEL; ZURAC, SABINA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands-on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro-inflammatory cytokines, and simultaneous inflammation sustained by pro-inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  3. Allergy testing - skin

    MedlinePlus

    Patch tests - allergy; Scratch tests - allergy; Skin tests - allergy; RAST test ... There are three common methods of allergy skin testing. The skin prick test involves: Placing a small amount of substances that may be causing your symptoms on the skin, most often ...

  4. A subset of gamma delta T-cell receptor-positive cells produce T-helper type-2 cytokines and regulate mouse skin graft rejection following portal venous pretransplant preimmunization.

    PubMed Central

    Gorczynski, R M; Chen, Z; Hoang, Y; Rossi-Bergman, B

    1996-01-01

    C3H/HeJ mice received B10.BR skin grafts following portal or lateral tail vein infusion of irradiated B10.BR spleen cells. Thereafter mice were injected with anti-alpha beta or anti-gamma delta T-cell receptor (TCR) monoclonal antibody (mAb). Anti-gamma delta TCR mAb abolished the increased graft survival afforded by portal venous (p.v.) immunization, and reversed the bias towards expression of mRNA for type-2 cytokines [interleukin-4 (IL-4), IL-10] seen in lymphoid tissue of p.v.-immunized mice. When gamma delta TCR+ and alpha beta TCR+ cells were isolated from the intestinal epithelial compartment (IEL), liver or Peyer's Patch (PP) of p.v.-immunized mice, the gamma delta TCR+ cells were found to be enriched in cells producing type-2 cytokines on rechallenge with irradiated B10.BR cells in vitro. gamma delta TCR+ cells from p.v.-immunized mice were further expanded in vitro with anti-CD3 and cytokines (combined IL-2 and IL-4). Following expansion these cells were capable of adoptively transferring increased B10.BR skin graft survival to naive mice, and continued to show a bias in type-2 cytokine synthesis after allostimulation in vitro. When gamma delta TCR chain expression was assessed in cells taken from p.v.-immunized mice, or in cells expanded in culture, our data suggest that p.v. immunization leads to oligoclonal, not polyclonal, expansion of those gamma delta TCR+ cells involved in inhibition of graft rejection. Images Figure 2 Figure 3 Figure 4 PMID:8778022

  5. Human papillomaviruses and skin cancer.

    PubMed

    Smola, Sigrun

    2014-01-01

    Human papillomaviruses (HPVs) infect squamous epithelia and can induce hyperproliferative lesions. More than 120 different HPV types have been characterized and classified into five different genera. While mucosal high-risk HPVs have a well-established causal role in anogenital carcinogenesis, the biology of cutaneous HPVs is less well understood. The clinical relevance of genus beta-PV infection has clearly been demonstrated in patients suffering from epidermodysplasia verruciformis (EV), a rare inherited disease associated with ahigh rate of skin cancer. In the normal population genus beta-PV are suspected to have an etiologic role in skin carcinogenesis as well but this is still controversially discussed. Their oncogenic potency has been investigated in mouse models and in vitro. In 2009, the International Agency for Research on Cancer (IARC) classified the genus beta HPV types 5 and 8 as "possible carcinogenic" biological agents (group 2B) in EV disease. This chapter will give an overview on the knowns and unknowns of infections with genus beta-PV and discuss their potential impact on skin carcinogenesis in the general population.

  6. Sensitivity of mouse Skh:HR-2 to ultraviolet radiation: melanocyte inactivation

    SciTech Connect

    Warren, R.; Gardner, P.A.; Reed, J.C.

    1987-03-01

    The hairless mouse, Skh:HR-2, was exposed to doses of ultraviolet (UV) radiation known to induce skin pigmentation. Three parameters associated with perturbations in skin pigmentation were monitored following UV exposure. These include spectroscopy (skin darkness), histology (melanocyte density), and biochemistry (melanin). Within 90 min of UV exposure, the skin became lighter. This was associated with a reduction of quantifiable melanin and the inactivation of epidermal melanocytes.

  7. Estrogens and aging skin

    PubMed Central

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity. Its protective function becomes compromised and aging is associated with impaired wound healing, hair loss, pigmentary changes and skin cancer.   Skin aging can be significantly delayed by the administration of estrogen. This paper reviews estrogen effects on human skin and the mechanisms by which estrogens can alleviate the changes due to aging. The relevance of estrogen replacement, selective estrogen receptor modulators (SERMs) and phytoestrogens as therapies for diminishing skin aging is highlighted. Understanding estrogen signaling in skin will provide a basis for interventions in aging pathologies. PMID:24194966

  8. Viral Skin Diseases.

    PubMed

    Ramdass, Priya; Mullick, Sahil; Farber, Harold F

    2015-12-01

    In the vast world of skin diseases, viral skin disorders account for a significant percentage. Most viral skin diseases present with an exanthem (skin rash) and, oftentimes, an accompanying enanthem (lesions involving the mucosal membrane). In this article, the various viral skin diseases are explored, including viral childhood exanthems (measles, rubella, erythema infectiosum, and roseola), herpes viruses (herpes simplex virus, varicella zoster virus, Kaposi sarcoma herpes virus, viral zoonotic infections [orf, monkeypox, ebola, smallpox]), and several other viral skin diseases, such as human papilloma virus, hand, foot, and mouth disease, molluscum contagiosum, and Gianotti-Crosti syndrome.

  9. [Sarcoidosis of the skin].

    PubMed

    Suga, Y; Ogawa, H

    1994-06-01

    Sarcoidosis is characterized by formation of epithelioid-cell tubercules, without caseation, of the affected organ systems. The mediastinum, peripheral lymph nodes and eyes, in addition to the skin, are most frequently affected. Between 10% and 30% of patients with systemic sarcoidosis in Japan have skin lesions. Skin sarcoidosis is morphologically classified into three basic groups, erythema nodosum, scar sarcoidosis and skin sarcoid. Skin sarcoid is characterized by specific cutaneous lesions of sarcoidosis, and may take nodular, plaque, angiolupoid, subcutaneous and some other forms. Clinical manifestations of the cutaneous lesions are usually asymptomatic and polymorphous. Skin biopsy is, however, often highly useful for confirming a diagnosis of sarcoidosis.

  10. Viral Skin Diseases.

    PubMed

    Ramdass, Priya; Mullick, Sahil; Farber, Harold F

    2015-12-01

    In the vast world of skin diseases, viral skin disorders account for a significant percentage. Most viral skin diseases present with an exanthem (skin rash) and, oftentimes, an accompanying enanthem (lesions involving the mucosal membrane). In this article, the various viral skin diseases are explored, including viral childhood exanthems (measles, rubella, erythema infectiosum, and roseola), herpes viruses (herpes simplex virus, varicella zoster virus, Kaposi sarcoma herpes virus, viral zoonotic infections [orf, monkeypox, ebola, smallpox]), and several other viral skin diseases, such as human papilloma virus, hand, foot, and mouth disease, molluscum contagiosum, and Gianotti-Crosti syndrome. PMID:26612372

  11. Microarray analysis of microRNA expression in mouse fetus at 13.5 and 14.5 days post-coitum in ear and back skin tissues.

    PubMed

    Torres, Leda; Juárez, Ulises; García, Laura; Miranda-Ríos, Juan; Frias, Sara

    2016-09-01

    There is no information regarding the role of microRNAs in the development of the external ear in mammals. The purpose of this study was to determine the stage-specific expression of microRNA during external ear development in mice under normal conditions. GeneChip miRNA 3.0 arrays by Affymetrix were used to obtain miRNA expression profiles from mice fetal pinnae and back skin tissues at 13.5 days-post-coitum (dpc) and 14.5 dpc. Biological triplicates for each tissue were analyzed; one litter represents one biological replica, each litter had 16 fetuses on average. The results were analyzed with Affymetrix's Transcriptome Analysis Console software to identify differentially expressed miRNAs. The inquiry showed significant differential expression of 25 miRNAs at 13.5 dpc and 31 at 14.5 dpc, some of these miRNAs were predicted to target genes implicated in external ear development. One example is mmu-miR-10a whose low expression in pinnae is known to impact ear development by modulating Hoxa1 mRNA levels Garzon et al. (2006), Gavalas et al. (1998) [1], [2]. Other findings like the upregulation of mmu-miR-200c and mmu-miR-205 in the pinnae tissues of healthy mice are in agreement with what has been reported in human patients with microtia, in which down regulation of both miRNAs has been found Li et al. (2013) [3]. This study uncovered a spatiotemporal pattern of miRNA expression in the external ear, which results from continuous transcriptional changes during normal development of body structures. All microarray data are available at the Gene Expression Omnibus (GEO) at NCBI under accession number GSE64945. PMID:27408816

  12. Microarray analysis of microRNA expression in mouse fetus at 13.5 and 14.5 days post-coitum in ear and back skin tissues.

    PubMed

    Torres, Leda; Juárez, Ulises; García, Laura; Miranda-Ríos, Juan; Frias, Sara

    2016-09-01

    There is no information regarding the role of microRNAs in the development of the external ear in mammals. The purpose of this study was to determine the stage-specific expression of microRNA during external ear development in mice under normal conditions. GeneChip miRNA 3.0 arrays by Affymetrix were used to obtain miRNA expression profiles from mice fetal pinnae and back skin tissues at 13.5 days-post-coitum (dpc) and 14.5 dpc. Biological triplicates for each tissue were analyzed; one litter represents one biological replica, each litter had 16 fetuses on average. The results were analyzed with Affymetrix's Transcriptome Analysis Console software to identify differentially expressed miRNAs. The inquiry showed significant differential expression of 25 miRNAs at 13.5 dpc and 31 at 14.5 dpc, some of these miRNAs were predicted to target genes implicated in external ear development. One example is mmu-miR-10a whose low expression in pinnae is known to impact ear development by modulating Hoxa1 mRNA levels Garzon et al. (2006), Gavalas et al. (1998) [1], [2]. Other findings like the upregulation of mmu-miR-200c and mmu-miR-205 in the pinnae tissues of healthy mice are in agreement with what has been reported in human patients with microtia, in which down regulation of both miRNAs has been found Li et al. (2013) [3]. This study uncovered a spatiotemporal pattern of miRNA expression in the external ear, which results from continuous transcriptional changes during normal development of body structures. All microarray data are available at the Gene Expression Omnibus (GEO) at NCBI under accession number GSE64945.

  13. Scaly Skin (Ichthyosis Vulgaris)

    MedlinePlus

    ... should improve by restoring moisture (hydration) to the skin. Creams and ointments are better moisturizers than lotions, and ... Physician May Prescribe To treat the dry, scaly skin of ichthyosis ... cream or lotion containing the following: Prescription-strength alpha- ...

  14. Skin Pigmentation Disorders

    MedlinePlus

    ... skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or unhealthy, it affects melanin production. Some pigmentation disorders affect just patches of ...

  15. PPD skin test

    MedlinePlus

    Chernecky CC, Berger BJ. Mantoux skin test (PPD test, purified protein derivative test, Tb test, tuberculin skin test, TST, tuberculosis test) - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . ...

  16. Components of skin

    MedlinePlus Videos and Cool Tools

    ... skin layers from the outside environment and contains cells that make keratin, a substance that waterproofs and strengthens the skin. The epidermis also has cells that contain melanin, the dark pigment that gives ...

  17. Squamous cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. The earliest form of ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  18. Examine Your Skin

    MedlinePlus

    ... In Memory Melanoma Info Melanoma Facts Melanoma Prevention Sunscreen Suggestions Examine Your Skin Newly Diagnosed? Understanding Your ... UPDATED: February 5, 2015 Melanoma Facts Melanoma Prevention Sunscreen Suggestions Examine Your Skin Newly Diagnosed? Understanding Your ...

  19. Skin color - patchy

    MedlinePlus

    ... Injury Exposure to radiation (such as from the sun) Exposure to heavy metals Changes in hormone levels Exposure ... example, lighter-skinned people are more sensitive to sun exposure and damage, which raises the risk of skin ...

  20. Fungal Skin Infections

    MedlinePlus

    ... Fungal Skin Infections Overview of Fungal Skin Infections Candidiasis Overview of Dermatophytoses (Ringworm, Tinea) Athlete's Foot Jock ... are caused by yeasts (such as Candida —see Candidiasis ) or dermatophytes, such as Epidermophyton, Microsporum, and Trichophyton ( ...

  1. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study.

    PubMed

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-08-07

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia.

  2. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study

    PubMed Central

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-01-01

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia. PMID:26262633

  3. The preventive effect of linalool on acute and chronic UVB-mediated skin carcinogenesis in Swiss albino mice.

    PubMed

    Gunaseelan, Srithar; Balupillai, Agilan; Govindasamy, Kanimozhi; Muthusamy, Ganesan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Prasad, N Rajendra

    2016-07-01

    In this study, we evaluated the role of linalool in acute ultraviolet-B (UVB; 280-320 nm) radiation-induced inflammation and chronic UVB-mediated photocarcinogenesis in mouse skin. Acute UVB-irradiation (180 mJ cm(-2)) causes hyperplasia, edema formation, lipid peroxidation, antioxidant depletion, and overexpression of cyclooxygenase-2 (COX-2) and ornithine decarboxylase (ODC) in mouse skin. Topical or intraperitoneal (i.p.) treatment of linalool prevented acute UVB-induced hyperplasia, edema formation, lipid peroxidation, and antioxidant depletion in mouse skin. Further, linalool treatment prevented UVB-induced overexpression of COX-2 and ODC in mouse skin. In the chronic study, mice were subjected to UVB-exposure thrice weekly for 30 weeks. Chronic UVB-exposure induced tumor incidence and expression of proliferative markers such as NF-κB, TNF-α, IL-6, COX-2, VEGF, TGF-β1, Bcl-2 and mutated p53 in mouse skin. Treatment with linalool before each UVB-exposure significantly prevented the expression of these proliferative markers and subsequently decreased the tumor incidence in mice skin. Histopathological studies confirmed the development of dysplasia and squamous cell carcinoma (SCC) in the chronic UVB-exposed mouse skin; and this was prevented by both topical and i.p. linalool treatment. Therefore, linalool may be considered as a photochemopreventive agent against UVB radiation induced skin carcinogenesis.

  4. Automatic Skin Color Beautification

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Wei; Huang, Da-Yuan; Fuh, Chiou-Shann

    In this paper, we propose an automatic skin beautification framework based on color-temperature-insensitive skin-color detection. To polish selected skin region, we apply bilateral filter to smooth the facial flaw. Last, we use Poisson image cloning to integrate the beautified parts into the original input. Experimental results show that the proposed method can be applied in varied light source environment. In addition, this method can naturally beautify the portrait skin.

  5. Psychoneuroimmunology and the Skin.

    PubMed

    Honeyman, Juan F

    2016-08-23

    The nervous, immune, endocrine and integumentary systems are closely related and interact in a number of normal and pathological conditions. Nervous system mediators may bring about direct changes to the skin or may induce the release of immunological or hormonal mediators that cause pathological changes to the skin. This article reviews the psychological mechanisms involved in the development of skin diseases.

  6. Biology of Skin Color.

    ERIC Educational Resources Information Center

    Corcos, Alain

    1983-01-01

    Information from scientific journals on the biology of skin color is discussed. Major areas addressed include: (1) biology of melanin, melanocytes, and melanosomes; (2) melanosome and human diversity; (3) genetics of skin color; and (4) skin color, geography, and natural selection. (JN)

  7. Skin self-exam

    MedlinePlus

    Skin cancer - self-exam; Melanoma - self-exam; Basal cell cancer - self-exam; Squamous cell - self-exam; Skin mole - self-exam ... Experts do not agree on whether or not skin self-exams should be performed. So there is ...

  8. [Dermatology and skin color].

    PubMed

    Petit, Antoine

    2010-09-01

    Melanin is the pigment that is responsible for skin, hair and eye colours. Genetics and sun exposure are the two key factors that determine skin pigmentation. In dermatology, skin colours is significant, not only for semiology and diagnosis, but also for epidemiology and wounds healing.

  9. Anyone Can Get Skin Cancer

    Cancer.gov

    No matter if your skin is light, dark, or somewhere in between, everyone is at risk for skin cancer. Learn what skin cancer looks like, how to find it early, and how to lower the chance of skin cancer.

  10. Multistage skin tumor promotion: involvement of a protein kinase

    SciTech Connect

    Mamrack, M.; Slaga, T. J.

    1980-01-01

    Current information suggests that chemical carcinogenesis is a multistep process with one of the best studied models in this regard being the two-stage carcinogenesis system using mouse skin. The effects of several carcinogens and tumor promoters in various sequences of application were studied to examine the nature of the process. The actions of several tumor inhibitors were compared. (ACR)

  11. Pursuing prosthetic electronic skin.

    PubMed

    Chortos, Alex; Liu, Jia; Bao, Zhenan

    2016-09-01

    Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals. PMID:27376685

  12. [Skin diseases and obesity].

    PubMed

    Guerra-Segovia, Carolina; Ocampo-Candiani, Jorge

    2015-01-01

    Obesity is a public health problem worldwide. It predominates in industrialized countries; however, it is prevalent in all nations. It is defined as a condition of excess adipose tissue and is the result of changes in lifestyle, excessive consumption of energy-dense foods with poor nutritional value, physical inactivity and the reduction of open space where one can practice a sport. Although obesity is associated with multiple diseases, it is important to stress that the metabolic changes caused by it affect skin physiology and play a predisposing factor for the development of skin diseases. Very little has been studied on the impact of obesity on the skin. The purpose of this article is to review the most frequently skin diseases in obesity. Some skin pathologies in obesity are caused by changes in skin physiology, others are related to insulin resistance or constitute an exacerbating factor for dermatitis. This article covers the clinical features of obesity related skin disease and its management.

  13. Pursuing prosthetic electronic skin

    NASA Astrophysics Data System (ADS)

    Chortos, Alex; Liu, Jia; Bao, Zhenan

    2016-09-01

    Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

  14. IMQ Induced K14-VEGF Mouse: A Stable and Long-Term Mouse Model of Psoriasis-Like Inflammation.

    PubMed

    Wang, Xuguo; Sun, Jun; Hu, JinHong

    2015-01-01

    An imiquimod (IMQ) induced wild type (WT) mouse can mimic some features of psoriasis, such as thickened skin, abnormal keratinocyte-related proteins, infiltration of inflammatory cells and pro-inflammatory cytokines. This model is a prevalent model that is widely used in the study of psoriasis. However, skin inflammation decreases during the eighth day when IMQ is given to WT mice, which may result in false results when evaluating the pharmacodynamics effects of a drug. To extend the timeliness and inherit the advantages of this model, we applied IMQ to the skin of 8-week-old homozygous K14-VEGF mice to investigate whether IMQ can prolong mice ear inflammation. In our experiments, we found that, compared to the IMQ induced WT mice model, the IMQ induced K14-VEGF mice have serious skin inflammation, even on the fourteenth day. We also evaluated the stability of skin inflammation at days 8, 10, and 13, and the inflammatory situation remained stable in the skin. This research intends to improve the existing model, and we hypothesize that the IMQ induced K14-VEGF mouse will become a practical mouse model in psoriasis research. PMID:26691862

  15. Skin mirrors human aging.

    PubMed

    Nikolakis, Georgios; Makrantonaki, Evgenia; Zouboulis, Christos C

    2013-12-01

    Abstract Aged skin exhibits disturbed lipid barrier, angiogenesis, production of sweat, immune functions, and calcitriol synthesis as well as the tendency towards development of certain benign or malignant diseases. These complex biological processes comprise endogenous and exogenous factors. Ethnicity also markedly influences the phenotype of skin aging. The theories of cellular senescence, telomere shortening and decreased proliferative capacity, mitochondrial DNA single mutations, the inflammation theory, and the free radical theory try to explain the biological background of the global aging process, which is mirrored in the skin. The development of advanced glycation end-products and the declining hormonal levels are major factors influencing intrinsic aging. Chronic photodamage of the skin is the prime factor leading to extrinsic skin aging. The deterioration of important skin functions, due to intrinsic and extrinsic aging, leads to clinical manifestations, which mirror several internal age-associated diseases such as diabetes, arterial hypertension and malignancies.

  16. Skin care and incontinence

    MedlinePlus

    Incontinence - skin care; Incontinence - pressure sore; Incontinence - pressure ulcer ... redness, peeling, irritation, and yeast infections likely. Bedsores ( pressure sores ) may also develop if the person: Has ...

  17. Bacterial Skin Infections.

    PubMed

    Ibrahim, Fadi; Khan, Tariq; Pujalte, George G A

    2015-12-01

    Skin and soft tissue infections account for 0.5% of outpatient visits to primary care. Skin and soft tissue infections can usually be managed in an outpatient setting. However, there are certain circumstances as discussed in this article that require more urgent care or inpatient management. Primary care providers should be able to diagnose, manage, and provide appropriate follow-up care for these frequently seen skin infections. This article provides family physicians with a comprehensive review of the assessment and management of common bacterial skin infections. PMID:26612370

  18. Bacterial Skin Infections.

    PubMed

    Ibrahim, Fadi; Khan, Tariq; Pujalte, George G A

    2015-12-01

    Skin and soft tissue infections account for 0.5% of outpatient visits to primary care. Skin and soft tissue infections can usually be managed in an outpatient setting. However, there are certain circumstances as discussed in this article that require more urgent care or inpatient management. Primary care providers should be able to diagnose, manage, and provide appropriate follow-up care for these frequently seen skin infections. This article provides family physicians with a comprehensive review of the assessment and management of common bacterial skin infections.

  19. Green tea polyphenolic antioxidants and skin photoprotection (Review).

    PubMed

    Katiyar, S K; Elmets, C A

    2001-06-01

    Green tea is consumed as a popular beverage worldwide particularly in Asian countries like China, Korea, Japan and India. It contains polyphenolic compounds also known as epicatechins, which are antioxidant in nature. Many laboratories have shown that topical treatment or oral consumption of green tea polyphenols inhibits chemical carcinogen- or ultraviolet radiation-induced skin tumorigenesis in different animal models. Studies have shown that green tea extract also possesses anti-inflammatory activity. These anti-inflammatory and anti-carcinogenic properties of green tea are due to their polyphenolic constituents present therein. The major and most chemopreventive constituent in green tea responsible for these biochemical or pharmacological effects is (-)-epigallocatechin-3-gallate (EGCG). Understanding the molecular mechanisms of these effects of green tea is a subject of investigation in many laboratories. Treatment of green tea polyphenols to skin has been shown to modulate the biochemical pathways involved in inflammatory responses, cell proliferation and responses of chemical tumor promoters as well as ultraviolet (UV) light-induced inflammatory markers of skin inflammation. Topical treatment with EGCG on mouse skin also results in prevention of UVB-induced immunosuppression, and oxidative stress. The protective effects of green tea treatment on human skin either topically or consumed orally against UV light-induced inflammatory or carcinogenic responses are not well understood. Based on documented extensive beneficial effects of green tea on mouse skin models and very little in human skin, many pharmaceutical and cosmetic companies are supplementing their skin care products with green tea extracts. Therefore, the focus of this communication is to review and analyze the photoprotective effects of green tea polyphenols to skin.

  20. Visualization of plasmid delivery to keratinocytes in mouse and human epidermis

    PubMed Central

    González-González, Emilio; Kim, Yeu-Chun; Speaker, Tycho J.; Hickerson, Robyn P.; Spitler, Ryan; Birchall, James C.; Lara, Maria Fernanda; Hu, Rong-hua; Liang, Yanhua; Kirkiles-Smith, Nancy; Prausnitz, Mark R.; Milstone, Leonard M.; Contag, Christopher H.; Kaspar, Roger L.

    2011-01-01

    The accessibility of skin makes it an ideal target organ for nucleic acid-based therapeutics; however, effective patient-friendly delivery remains a major obstacle to clinical utility. A variety of limited and inefficient methods of delivering nucleic acids to keratinocytes have been demonstrated; further advances will require well-characterized reagents, rapid noninvasive assays of delivery, and well-developed skin model systems. Using intravital fluorescence and bioluminescence imaging and a standard set of reporter plasmids we demonstrate transfection of cells in mouse and human xenograft skin using intradermal injection and two microneedle array delivery systems. Reporter gene expression could be detected in individual keratinocytes, in real-time, in both mouse skin as well as human skin xenografts. These studies revealed that non-invasive intravital imaging can be used as a guide for developing gene delivery tools, establishing a benchmark for comparative testing of nucleic acid skin delivery technologies. PMID:22355673

  1. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis. PMID:25961580

  2. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis.

  3. About Skin: Your Body's Largest Organ

    MedlinePlus

    ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ...

  4. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  5. Transgenic mouse model of cutaneous adnexal tumors

    PubMed Central

    Kito, Yusuke; Saigo, Chiemi; Atsushi, Kurabayashi; Mutsuo, Furihata; Tamotsu, Takeuchi

    2014-01-01

    TMEM207 was first characterized as being an important molecule for the invasion activity of gastric signet-ring cell carcinoma cells. In order to unravel the pathological properties of TMEM207, we generated several transgenic mouse lines, designated C57BL/6-Tg (ITF-TMEM207), in which murine TMEM207 was ectopically expressed under a truncated (by ~200 bp) proximal promoter of the murine intestinal trefoil factor (ITF) gene (also known as Tff3). Unexpectedly, a C57BL/6-Tg (ITF-TMEM207) mouse line exhibited a high incidence of spontaneous intradermal tumors with histopathological features that resembled those of various human cutaneous adnexal tumors. These tumors were found in ~14% female and 13% of male 6- to 12-month-old mice. TMEM207 immunoreactivity was found in hair follicle bulge cells in non-tumorous skin, as well as in cutaneous adnexal tumors of the transgenic mouse. The ITF-TMEM207 construct in this line appeared to be inserted to a major satellite repeat sequence at chromosome 2, in which no definite coding molecule was found. In addition, we also observed cutaneous adnexal tumors in three other C57BL/6-Tg (ITF-TMEM207) transgenic mouse lines. We believe that the C57BL/6-Tg (ITF-TMEM207) mouse might be a useful model to understand human cutaneous adnexal tumors. PMID:25305140

  6. Quantification of quantum dot murine skin penetration with UVR barrier impairment

    PubMed Central

    Mortensen, Luke J.; Jatana, Samreen; Gelein, Robert; De Benedetto, Anna; De Mesy Bentley, Karen L.; Beck, Lisa; Elder, Alison; DeLouise, Lisa A.

    2013-01-01

    Ultraviolet radiation (UVR) skin exposure is a common exogenous insult that can alter skin barrier and immune functions. With the growing presence of nanoparticles (NPs) in consumer goods and technological applications the potential for NPs to contact UVR exposed skin is increasing. Therefore it is important to understand the effect of UVR on NP skin penetration and potential for systemic translocation. Previous studies qualitatively showed that UVR skin exposure can increase the penetration of NPs below the stratum corneum. In the present work, an in vivo mouse model was used to quantitatively examine the skin penetration of carboxylated (CdSe/ZnS, core/shell) quantum dots (QDs) through intact and UVR barrier disrupted murine skin by organ Cd mass analysis. Transepidermal water loss was used to measure the magnitude of the skin barrier defect as a function of dose and time post UVR exposure. QDs were applied to mice 3-4 days post UVR exposure at the peak of the skin barrier disruption. Our results reveal unexpected trends that suggest these negative charged QDs can penetrate barrier intact skin and that penetration and systemic transport depends on the QD application time post UVR exposure. The effect of UVR on skin resident dendritic cells and their role in the systemic translocation of these QDs are described. Our results suggest that NP skin penetration and translocation may depend on the specific barrier insult and the inflammatory status of the skin. PMID:23078247

  7. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  8. Skin Diseases: Skin and Sun—Not a good mix

    MedlinePlus

    ... Current Issue Past Issues Skin Diseases Skin and Sun —Not a good mix Past Issues / Fall 2008 ... turn Javascript on. Good skin care begins with sun safety. Whether it is something as simple as ...

  9. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    PubMed

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  10. Skin Problems in Construction

    MedlinePlus

    ... 3 Keep skin clean Wash with soap and clean water if your skin comes in contact with hazardous ... caustics like wet cement. DO NOT use the water in the bucket used to clean your tools. DO NOT use hand sanitizers. Wash ...

  11. Biothermomechanics of skin tissues

    NASA Astrophysics Data System (ADS)

    Xu, F.; Lu, T. J.; Seffen, K. A.

    Biothermomechanics of skin is highly interdisciplinary involving bioheat transfer, burn damage, biomechanics and neurophysiology. During heating, thermally induced mechanical stress arises due to the thermal denaturation of collagen, resulting in macroscale shrinkage. Thus, the strain, stress, temperature and thermal pain/damage are highly correlated; in other words, the problem is fully coupled. The aim of this study is to develop a computational approach to examine the heat transfer process and the heat-induced mechanical response, so that the differences among the clinically applied heating modalities can be quantified. Exact solutions for temperature, thermal damage and thermal stress for a single-layer skin model were first derived for different boundary conditions. For multilayer models, numerical simulations using the finite difference method (FDM) and finite element method (FEM) were used to analyze the temperature, burn damage and thermal stress distributions in the skin tissue. The results showed that the thermomechanical behavior of skin tissue is very complex: blood perfusion has little effect on thermal damage but large influence on skin temperature distribution, which, in turn, influences significantly the resulting thermal stress field; the stratum corneum layer, although very thin, has a large effect on the thermomechanical behavior of skin, suggesting that it should be properly accounted for in the modeling of skin thermal stresses; the stress caused by non-uniform temperature distribution in the skin may also contribute to the thermal pain sensation.

  12. Skin cancer prevention.

    PubMed

    Kornek, Thomas; Augustin, Matthias

    2013-04-01

    Prevention signifies the avoidance of diseases. It also includes the early detection of diseases and taking measures to avoid worsening of an existing disease. Prevention is divided into primary, secondary and tertiary prevention. The prevention of skin cancer is particularly important due to the rising incidence of skin cancer in recent years. In Germany, 195.000 new cases of skin cancer, including non melanoma skin cancer and melanoma are occurring. Therefore, skin cancer is among the most common cancer diseases. Primary prevention comprises the reduction of skin cancer risk behavior, including education about the danger of UV exposure and the right way of dealing with natural and artificial UV radiation. The implementation of a systematic skin cancer screening in Germany contributes to secondary prevention. First data from the initial project in Schleswig-Holstein, Germany's most northern state, indicate for the first time that the incidence and mortality of melanoma can be reduced by secondary prevention. For tertiary prevention, the national associations recommend a risk-adapted, evidence-based follow-up for all types of skin cancer. From the perspectives of the payers and from the patients, prevention is assessed positively. Prevention can contribute to a reduction of disease burden.

  13. N-Nicotinoyl dopamine, a novel niacinamide derivative, retains high antioxidant activity and inhibits skin pigmentation.

    PubMed

    Kim, Bora; Kim, Jin Eun; Lee, Su Min; Lee, Soung-Hoon; Lee, Jin Won; Kim, Myung Kyoo; Lee, Kye Jong; Kim, Hyuk; Lee, Joo Dong; Choi, Kang-Yell

    2011-11-01

    We synthesized a novel derivative of a well-known skin-lightening compound niacinamide, N-nicotinoyl dopamine (NND). NND did not show inhibitory effects of tyrosinase and melanin synthesis in B16F10 mouse melanoma cells. However, NND retains high antioxidant activity without affecting viability of cells. In a reconstructed skin model, topical applications of 0.05% and 0.1% NND induced skin lightening and decreased melanin production without affecting the viability and morphology of melanocytes and overall tissue histology. Moreover, no evidence for skin irritation or sensitization was observed when 0.1% NND emulsion was applied onto the skin of 52 volunteers. The effect of NND on skin lightening was further revealed by pigmented spot analyses of human clinical trial. Overall, NND treatment may be a useful trial for skin lightening and treating pigmentary disorders.

  14. Diversification and Specialization of Touch Receptors in Skin

    PubMed Central

    Owens, David M.; Lumpkin, Ellen A.

    2014-01-01

    Our skin is the furthest outpost of the nervous system and a primary sensor for harmful and innocuous external stimuli. As a multifunctional sensory organ, the skin manifests a diverse and highly specialized array of mechanosensitive neurons with complex terminals, or end organs, which are able to discriminate different sensory stimuli and encode this information for appropriate central processing. Historically, the basis for this diversity of sensory specializations has been poorly understood. In addition, the relationship between cutaneous mechanosensory afferents and resident skin cells, including keratinocytes, Merkel cells, and Schwann cells, during the development and function of tactile receptors has been poorly defined. In this article, we will discuss conserved tactile end organs in the epidermis and hair follicles, with a focus on recent advances in our understanding that have emerged from studies of mouse hairy skin. PMID:24890830

  15. Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Yang, Hongqin; Zhang, Xiaoman; Li, Zhifang; Xu, Shufei

    2011-04-01

    Multiphoton microscopy was employed for monitoring the structure changes of mouse dermis collagen in the intrinsic- or the extrinsic-age-related processes in vivo. The characteristics of textures in different aging skins were uncovered by fast Fourier transform in which the orientation index and bundle packing of collagen were quantitatively analyzed. Some significant differences in collagen-related changes are found in different aging skins, which can be good indicators for the statuses of aging skins. The results are valuable to the study of aging skin and also of interest to biomedical photonics.

  16. Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin.

    PubMed

    Demaria, Marco; Desprez, Pierre Yves; Campisi, Judith; Velarde, Michael C

    2015-07-01

    Human and mouse skin accumulate senescent cells in both the epidermis and dermis during aging. When chronically present, senescent cells are thought to enhance the age-dependent deterioration of the skin during extrinsic and intrinsic aging. However, when transiently present, senescent cells promote optimal wound healing. Here, we review recent studies on how senescent cells and the senescence-associated secretory phenotype contribute to different physiological and pathophysiological conditions in the skin with a focus on some of the cell autonomous and non-autonomous functions of senescent cells in the context of skin aging and wound healing.

  17. Archaea on human skin.

    PubMed

    Probst, Alexander J; Auerbach, Anna K; Moissl-Eichinger, Christine

    2013-01-01

    The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin.

  18. Skin and antioxidants.

    PubMed

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  19. The aging skin.

    PubMed

    Bergfeld, W F

    1997-01-01

    In the past, sun exposure has been an integral part of the American life style. Along with increased leisure time, outdoor recreational sports, and sun bathing has come greater exposure to the sun. The cumulative effects of unprotected sun exposure coupled with the changes in the ozone layer have resulted in a large photodamaged population and an epidemic of the most dangerous skin cancer, malignant melanoma. Photodamage begins early, with a child's first unprotected sun exposure. Clinical studies show that 50% of an individual's ultraviolet light exposure occurs before the age of 18 years. This damage from acute and chronic ultraviolet light exposure has produced the explosion of skin cancers. Over the next 4 years, it is expected that skin cancer will become the most common type of cancer, and malignant melanoma will become the leading cause of death from skin cancer. This growing hazard to the public has profound medical and psychological ramifications. This paper will focus on prevention, identification, evaluation and treatment of photodamage to skin, as well as skin cancer. Special emphasis will be given to the National Skin Cancer Prevention Education Program.

  20. Environment and the skin

    PubMed Central

    Suskind, Raymond R.

    1977-01-01

    The skin is an important interface between man and his environment; it is an important portal of entry for hazardous agents and a vulnerable target tissue as well. It is a uniquely accessible model system for detecting hazards and for studying mechanisms of a wide variety of biologic funcitons. Environmental causes of skin reactions comprise a vast array of physical, chemical and biological agents. To appreciate the role of the skin as an interface with man's environment, it is necessary to understand the multiple adaptive mechanisms, and the defenses of the skin against the environmental stresses. The skin is endowed with a versatile group of defenses against penetration, fluid loss from the body, thermal stress, solar radiation, physical trauma and microbial agents. Patterns of adverse response range in quality and intensity from uncomplicated itching to metastatic neoplasia. Environmental problems comprise a large segment of disabling skin disease. Although critical epidemiologic data is limited, cutaneous illnesses comprise a significant segment of occupational disease. This represents a significant loss in productivity and a major cause of disability. The most serious research needs include the development of surveillance systems for identifying skin hazards and determining frequency of environmental skin disease; the development of new models for studying cutaneous penetration; the elucidation of the mechanisms of nonallergic inflammatory reactions (primary irritation) and of the accommodation phenomenon; the development of more sensitive models for predicting adverse responses to marginal irritants; the utilization of modern skills of immunobiology and immunochemistry to elucidate mechanisms of allergic responses; the launching of epidemiologic studies to determine the long term effects of PCBs and associated compounds such as dioxins; and the expansion of research in the mechanisms of skin cancer in relation to susceptibility, genetic and metabolic

  1. Thermal Skin fabrication technology

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1972-01-01

    Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.

  2. Ultrasound skin tightening.

    PubMed

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting.

  3. Animal models of skin disease for drug discovery

    PubMed Central

    Avci, Pinar; Sadasivam, Magesh; Gupta, Asheesh; De Melo, Wanessa CMA; Huang, Ying-Ying; Yin, Rui; Rakkiyappan, Chandran; Kumar, Raj; Otufowora, Ayodeji; Nyame, Theodore; Hamblin, Michael R

    2013-01-01

    Introduction Discovery of novel drugs, treatments, and testing of consumer products in the field of dermatology is a multi-billion dollar business. Due to the distressing nature of many dermatological diseases, and the enormous consumer demand for products to reverse the effects of skin photodamage, aging, and hair loss, this is a very active field. Areas covered In this paper, we will cover the use of animal models that have been reported to recapitulate to a greater or lesser extent the features of human dermatological disease. There has been a remarkable increase in the number and variety of transgenic mouse models in recent years, and the basic strategy for constructing them is outlined. Expert opinion Inflammatory and autoimmune skin diseases are all represented by a range of mouse models both transgenic and normal. Skin cancer is mainly studied in mice and fish. Wound healing is studied in a wider range of animal species, and skin infections such as acne and leprosy also have been studied in animal models. Moving to the more consumer-oriented area of dermatology, there are models for studying the harmful effect of sunlight on the skin, and testing of sunscreens, and several different animal models of hair loss or alopecia. PMID:23293893

  4. Photodynamic therapy improves the ultraviolet-irradiated hairless mice skin

    NASA Astrophysics Data System (ADS)

    Jorge, Ana Elisa S.; Hamblin, Michael R.; Parizotto, Nivaldo A.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Chronic exposure to ultraviolet (UV) sunlight causes premature skin aging. In light of this fact, photodynamic therapy (PDT) is an emerging modality for treating cancer and other skin conditions, however its response on photoaged skin has not been fully illustrated by means of histopathology. For this reason, the aim of this study was analyze whether PDT can play a role on a mouse model of photoaging. Hence, SKH-1 hairless mice were randomly allocated in two groups, UV and UV/PDT. The mice were daily exposed to an UV light source (280-400 nm: peak at 350 nm) for 8 weeks followed by a single PDT session using 20% 5-aminolevulinic acid (ALA) topically. After the proper photosensitizer accumulation within the tissue, a non-coherent red (635 nm) light was performed and, after 14 days, skin samples were excised and processed for light microscopy, and their sections were stained with hematoxylin-eosin (HE) and Masson's Trichrome. As a result, we observed a substantial epidermal thickening and an improvement in dermal collagen density by deposition of new collagen fibers on UV/PDT group. These findings strongly indicate epidermal and dermal restoration, and consequently skin restoration. In conclusion, this study provides suitable evidences that PDT improves the UV-irradiated hairless mice skin, supporting this technique as an efficient treatment for photoaged skin.

  5. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure.

    PubMed

    Wiig, Helge; Schröder, Agnes; Neuhofer, Wolfgang; Jantsch, Jonathan; Kopp, Christoph; Karlsen, Tine V; Boschmann, Michael; Goss, Jennifer; Bry, Maija; Rakova, Natalia; Dahlmann, Anke; Brenner, Sven; Tenstad, Olav; Nurmi, Harri; Mervaala, Eero; Wagner, Hubertus; Beck, Franz-Xaver; Müller, Dominik N; Kerjaschki, Dontscho; Luft, Friedrich C; Harrison, David G; Alitalo, Kari; Titze, Jens

    2013-07-01

    The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function. PMID:23722907

  6. Effect of liposomes and niosomes on skin permeation of enoxacin.

    PubMed

    Fang, J Y; Hong, C T; Chiu, W T; Wang, Y Y

    2001-05-21

    The skin permeation and partitioning of a fluorinated quinolone antibacterial agent, enoxacin, in liposomes and niosomes, after topical application, were elucidated in the present study. In vitro percutaneous absorption experiments were performed on nude mouse skin with Franz diffusion cells. The influence of vesicles on the physicochemical property and stability of the formulations were measured. The enhanced delivery across the skin of liposome and niosome encapsulated enoxacin had been observed after selecting the appropriate formulations. The optimized formulations could also reserve a large amount of enoxacin in the skin. A significant relationship between skin permeation and the cumulative amount of enoxacin in the skin was observed. Both permeation enhancer effect and direct vesicle fusion with stratum corneum may contribute to the permeation of enoxacin across skin. Formulation with niosomes demonstrated a higher stability after 48 h incubation compared to liposomes. The inclusion of cholesterol improved the stability of enoxacin liposomes according to the results from encapsulation and turbidity. However, adding negative charges reduced the stability of niosomes. The ability of liposomes and niosomes to modulate drug delivery without significant toxicity makes the two vesicles useful to formulate topical enoxacin.

  7. Nevirapine bioactivation and covalent binding in the skin.

    PubMed

    Sharma, Amy M; Klarskov, Klaus; Uetrecht, Jack

    2013-03-18

    Nevirapine (NVP) treatment is associated with serious skin rashes that appear to be immune-mediated. We previously developed a rat model of this skin rash that is immune-mediated and is very similar to the rash in humans. Treatment of rats with the major NVP metabolite, 12-OH-NVP, also caused the rash. Most idiosyncratic drug reactions are caused by reactive metabolites; 12-OH-NVP forms a benzylic sulfate, which was detected in the blood of animals treated with NVP or 12-OH-NVP. This sulfate is presumably formed in the liver; however, the skin also has significant sulfotransferase activity. In this study, we used a serum against NVP to detect covalent binding in the skin of rats. There was a large artifact band in immunoblots of whole skin homogenates that interfered with detection of covalent binding; however, when the skin was separated into dermal and epidermal fractions, covalent binding was clearly present in the epidermis, which is also the location of sulfotransferases. In contrast to rats, treatment of mice with NVP did not result in covalent binding in the skin or skin rash. Although the reaction of 12-OH-NVP sulfate with nucleophiles such as glutathione is slow, incubation of this sulfate with homogenized human and rat skin led to extensive covalent binding. Incubations of 12-OH-NVP with the soluble fraction from a 9,000g centrifugation (S9) of rat or human skin homogenate in the presence of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) produced extensive covalent binding, but no covalent binding was detected with mouse skin S9, which suggests that the reason mice do not develop a rash is that they lack the required sulfotransferase. This is the first study to report covalent binding of NVP to rat and human skin. These data provide strong evidence that covalent binding of NVP in the skin is due to 12-OH-NVP sulfate, which is likely responsible for NVP-induced skin rash. Sulfation may represent a bioactivation pathway for other drugs that cause a skin rash

  8. Skin Diseases: Cross-section of human skin

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  9. Chromophores in human skin

    NASA Astrophysics Data System (ADS)

    Young, Antony R.

    1997-05-01

    Human skin, especially the epidermis, contains several major solar ultraviolet-radiation- (UVR-) absorbing endogenous chromophores including DNA, urocanic acid, amino acids, melanins and their precursors and metabolites. The lack of solubility of melanins prevents their absorption spectra being defined by routine techniques. Indirect spectroscopic methods show that their spectral properties depend on the stimulus for melanogenesis. The photochemical consequences of UVR absorption by some epidermal chromophores are relatively well understood whereas we lack a detailed understanding of the consequent photobiological and clinical responses. Skin action spectroscopy is not a reliable way of relating a photobiological outcome to a specific chromophore but is important for UVR hazard assessment. Exogenous chromophores may be administered to the skin in combination with UVR exposure for therapeutic benefit, or as sunscreens for the prevention of sunburn and possibly skin cancer.

  10. Skin Conditions during Pregnancy

    MedlinePlus

    ... during pregnancy? • What is pruritic urticarial papules and plaques of pregnancy (PUPPP)? • What is prurigo of pregnancy? • ... itchy skin. What is pruritic urticarial papules and plaques of pregnancy (PUPPP)? In this condition, small, red ...

  11. Skin Care and Aging

    MedlinePlus

    ... Age Spots and Skin Tags Click for more information Age spots, once called "liver spots," are flat, brown ... surface. They are a common occurrence as people age, especially for women. They are ... options, specific conditions, and related issues. ...

  12. Skin Cancer Prevention

    MedlinePlus

    ... Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training at NCI (Intramural) ... is the body’s largest organ . It protects against heat, sunlight, injury, and infection . Skin also helps control ...

  13. An elastic second skin

    NASA Astrophysics Data System (ADS)

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert

    2016-08-01

    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

  14. Skin tumors on squirrels

    USGS Publications Warehouse

    Herman, C.M.; Reilly, J.R.

    1955-01-01

    Skin tumors having the gross appearance of previously reported fibromas are reported on gray squirrels from N. Y., Md., Va., N. C., and W. Va. and from a fox squirrel from W. Va. and a porcupine from Pa.

  15. Genetics and skin aging

    PubMed Central

    Makrantonaki, Evgenia; Bekou, Vassiliki; Zouboulis, Christos C.

    2012-01-01

    Skin aging is a complex process and underlies multiple influences with the probable involvement of heritable and various environmental factors. Several theories have been conducted regarding the pathomechanisms of aged skin, however fundamental mechanisms still remain poorly understood. This article addresses the influence of genetics on skin aging and in particular deals with the differences observed in ethnic populations and between both genders. Recent studies indicate that male and female aged skin differs as far as the type, the consistency and the sensitivity to external factors is concerned. The same has been also documented between elderly people of different origin. Consequently, the aging process taking place in both genders and in diverse ethnic groups should be examined separately and products specialized to each population should be developed in order to satisfy the special needs. PMID:23467395

  16. Dry Skin (Xerosis)

    MedlinePlus

    ... by medical conditions, such as atopic dermatitis and malnutrition. Dry skin develops due to a decrease in ... Diabetes Hypothyroidism Down syndrome Liver or kidney disease Malnutrition HIV/AIDS Lymphoma Signs and Symptoms The most ...

  17. Skin Cancer Screening

    MedlinePlus

    ... the body's largest organ . It protects against heat, sunlight, injury, and infection . Skin also helps control body ... cancer risk factors include: Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) ...

  18. Healthy Skin Matters

    MedlinePlus

    ... don’t offer a safe alternative to natural sunlight. Exposure to ultraviolet (UV ) (uhl-truh-VYE-uh- ... the exposure comes from tanning beds or natural sunlight. This damage increases the risk of skin cancer ...

  19. [Skin-picking disorder].

    PubMed

    Niemeier, V; Peters, E; Gieler, U

    2015-10-01

    The disorder is characterized by compulsive repetitive skin-picking (SP), resulting in skin lesions. The patients must have undertaken several attempts to reduce or stop SP. The disorder must have led to clinically significant limitations in social, professional, or other important areas of life. The symptoms cannot be better explained by another emotional disorder or any other dermatological disease. In the new DSM-V, skin-picking disorder has been included in the diagnostic system as an independent disorder and describes the self-injury of the skin by picking or scratching with an underlying emotional disorder. SP is classified among the impulse-control disorders and is, thus, differentiated from compulsive disorders as such. There are often emotional comorbidities. In cases of pronounced psychosocial limitation, interdisciplinary cooperation with a psychotherapist and/or psychiatrist is indicated. PMID:26391325

  20. Aging changes in skin

    MedlinePlus

    ... sun exposure with areas that are protected from sunlight. Natural pigments seem to provide some protection against ... Exposures to industrial and household chemicals Indoor heating Sunlight can cause: Loss of elasticity (elastosis) Noncancerous skin ...

  1. Tuberculin Skin Testing

    MedlinePlus

    ... perpendicular to the long axis). How Are TST Reactions Interpreted? Skin test interpretation depends on two factors: ... among high-risk groups. What Are False-Positive Reactions? Some persons may react to the TST even ...

  2. An elastic second skin.

    PubMed

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G; Sakamoto, Fernanda H; Gilchrest, Barbara A; Anderson, R Rox; Langer, Robert

    2016-08-01

    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings. PMID:27159017

  3. Bleeding into the skin

    MedlinePlus

    ... under the tissue in larger flat areas (called purpura ), or in a very large bruised area (called ... in the newborn) Aging skin (ecchymosis) Idiopathic thrombocytopenic purpura (petechiae and purpura) Henoch-Schonlein purpura (purpura) Leukemia ( ...

  4. Skin lesion KOH exam

    MedlinePlus

    ... is present. The fungus may be related to ringworm , athlete's foot , jock itch , or another fungal infection. ... foot Candida infection of the skin Jock itch Ringworm Tinea corporis Update Date 4/14/2015 Updated ...

  5. Skin or nail culture

    MedlinePlus

    Mucosal culture; Culture - skin; Culture - mucosal; Nail culture; Culture - fingernail; Fingernail culture ... to prevent pain. A small sample of a fingernail or toenail may be taken. The sample is ...

  6. Skin, Hair, and Nails

    MedlinePlus

    ... special types of cells: Melanocytes produce melanin, the pigment that gives skin its color. All people have ... the epidermis). Hair also contains a yellow-red pigment; people who have blonde or red hair have ...

  7. Skin lesion of blastomycosis

    MedlinePlus

    ... in: Africa Canada Central and southeastern United States India Israel Saudi Arabia A person gets infected by ... is diagnosed by identifying the fungus in a culture taken from a skin lesion. This usually requires ...

  8. Nicotinamide and the skin.

    PubMed

    Chen, Andrew C; Damian, Diona L

    2014-08-01

    Nicotinamide, an amide form of vitamin B3, boosts cellular energy and regulates poly-ADP-ribose-polymerase 1, an enzyme with important roles in DNA repair and the expression of inflammatory cytokines. Nicotinamide shows promise for the treatment of a wide range of dermatological conditions, including autoimmune blistering disorders, acne, rosacea, ageing skin and atopic dermatitis. In particular, recent studies have also shown it to be a potential agent for reducing actinic keratoses and preventing skin cancers.

  9. Nicotinamide and the skin.

    PubMed

    Chen, Andrew C; Damian, Diona L

    2014-08-01

    Nicotinamide, an amide form of vitamin B3, boosts cellular energy and regulates poly-ADP-ribose-polymerase 1, an enzyme with important roles in DNA repair and the expression of inflammatory cytokines. Nicotinamide shows promise for the treatment of a wide range of dermatological conditions, including autoimmune blistering disorders, acne, rosacea, ageing skin and atopic dermatitis. In particular, recent studies have also shown it to be a potential agent for reducing actinic keratoses and preventing skin cancers. PMID:24635573

  10. [Improvement of skin moisture and skin texture with urea therapy].

    PubMed

    Puschmann, M; Gogoll, K

    1989-01-01

    A significant increase in skin moisture and an improvement in skin smoothness after application of a urea-containing cream was noticed in a large number of volunteers with healthy skin and in neurodermitis patients compared with untreated skin and with vehicle. The effect was shown after one application (short-term test) as well as after repeated application (long-term test). Regular application of preparation containing urea increases the moisture of a the skin and improves the skin's smoothness compared with its previous condition, with untreated skin, and with placebo preparations. PMID:2807927

  11. Ultraflexible organic photonic skin.

    PubMed

    Yokota, Tomoyuki; Zalar, Peter; Kaltenbrunner, Martin; Jinno, Hiroaki; Matsuhisa, Naoji; Kitanosako, Hiroki; Tachibana, Yutaro; Yukita, Wakako; Koizumi, Mari; Someya, Takao

    2016-04-01

    Thin-film electronics intimately laminated onto the skin imperceptibly equip the human body with electronic components for health-monitoring and information technologies. When electronic devices are worn, the mechanical flexibility and/or stretchability of thin-film devices helps to minimize the stress and discomfort associated with wear because of their conformability and softness. For industrial applications, it is important to fabricate wearable devices using processing methods that maximize throughput and minimize cost. We demonstrate ultraflexible and conformable three-color, highly efficient polymer light-emitting diodes (PLEDs) and organic photodetectors (OPDs) to realize optoelectronic skins (oe-skins) that introduce multiple electronic functionalities such as sensing and displays on the surface of human skin. The total thickness of the devices, including the substrate and encapsulation layer, is only 3 μm, which is one order of magnitude thinner than the epidermal layer of human skin. By integrating green and red PLEDs with OPDs, we fabricate an ultraflexible reflective pulse oximeter. The device unobtrusively measures the oxygen concentration of blood when laminated on a finger. On-skin seven-segment digital displays and color indicators can visualize data directly on the body. PMID:27152354

  12. Pregnancy and Skin

    PubMed Central

    Vora, Rita V.; Gupta, Rajat; Mehta, Malay J.; Chaudhari, Arvind H.; Pilani, Abhishek P.; Patel, Nidhi

    2014-01-01

    Pregnancy is associated with complex of endocrinological, immunological, metabolic, and vascular changes that may influence the skin and other organs in various ways. Pregnancy is a period in which more than 90% women have significant and complex skin changes that may have great impact on the woman's life. The dermatoses of pregnancy represent a heterogeneous group of skin diseases related to pregnancy and/or the postpartum period. The dermatoses of pregnancy can be classified into the following three groups: Physiologic skin changes in pregnancy, pre-existing dermatoses affected by pregnancy, and specific dermatoses of pregnancy. Though most of these skin dermatoses are benign and resolve in postpartum period, a few can risk fetal life and require antenatal surveillance. Most of the dermatoses of pregnancy can be treated conservatively but a few require intervention in the form of termination of pregnancy. Correct diagnosis is essential for the treatment of these disorders. This article discusses the current knowledge of various skin changes during pregnancy and the evaluation of the patient with pregnancy dermatoses with special emphasis on clinical features, diagnostic tests, maternal and fetal prognosis, therapy, and management. PMID:25657937

  13. Ultraflexible organic photonic skin.

    PubMed

    Yokota, Tomoyuki; Zalar, Peter; Kaltenbrunner, Martin; Jinno, Hiroaki; Matsuhisa, Naoji; Kitanosako, Hiroki; Tachibana, Yutaro; Yukita, Wakako; Koizumi, Mari; Someya, Takao

    2016-04-01

    Thin-film electronics intimately laminated onto the skin imperceptibly equip the human body with electronic components for health-monitoring and information technologies. When electronic devices are worn, the mechanical flexibility and/or stretchability of thin-film devices helps to minimize the stress and discomfort associated with wear because of their conformability and softness. For industrial applications, it is important to fabricate wearable devices using processing methods that maximize throughput and minimize cost. We demonstrate ultraflexible and conformable three-color, highly efficient polymer light-emitting diodes (PLEDs) and organic photodetectors (OPDs) to realize optoelectronic skins (oe-skins) that introduce multiple electronic functionalities such as sensing and displays on the surface of human skin. The total thickness of the devices, including the substrate and encapsulation layer, is only 3 μm, which is one order of magnitude thinner than the epidermal layer of human skin. By integrating green and red PLEDs with OPDs, we fabricate an ultraflexible reflective pulse oximeter. The device unobtrusively measures the oxygen concentration of blood when laminated on a finger. On-skin seven-segment digital displays and color indicators can visualize data directly on the body.

  14. Ultraflexible organic photonic skin

    PubMed Central

    Yokota, Tomoyuki; Zalar, Peter; Kaltenbrunner, Martin; Jinno, Hiroaki; Matsuhisa, Naoji; Kitanosako, Hiroki; Tachibana, Yutaro; Yukita, Wakako; Koizumi, Mari; Someya, Takao

    2016-01-01

    Thin-film electronics intimately laminated onto the skin imperceptibly equip the human body with electronic components for health-monitoring and information technologies. When electronic devices are worn, the mechanical flexibility and/or stretchability of thin-film devices helps to minimize the stress and discomfort associated with wear because of their conformability and softness. For industrial applications, it is important to fabricate wearable devices using processing methods that maximize throughput and minimize cost. We demonstrate ultraflexible and conformable three-color, highly efficient polymer light-emitting diodes (PLEDs) and organic photodetectors (OPDs) to realize optoelectronic skins (oe-skins) that introduce multiple electronic functionalities such as sensing and displays on the surface of human skin. The total thickness of the devices, including the substrate and encapsulation layer, is only 3 μm, which is one order of magnitude thinner than the epidermal layer of human skin. By integrating green and red PLEDs with OPDs, we fabricate an ultraflexible reflective pulse oximeter. The device unobtrusively measures the oxygen concentration of blood when laminated on a finger. On-skin seven-segment digital displays and color indicators can visualize data directly on the body. PMID:27152354

  15. DCP-LA Exerts an Antiaging Action on the Skin.

    PubMed

    Nishizaki, Tomoyuki

    2016-01-01

    The present study assessed the possibility for the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) as an antiaging compound for the skin by assaying senescence-associated β-galactosidase (SA-β-Gal), a biomarker of senescence and cell viability. The nitric oxide (NO) donor sodium nitroprusside (SNP) increased in SA-β-Gal-positive cells in cultured human fibroblasts and mouse keratinocytes, and DCP-LA significantly inhibited the effect of SNP. Moreover, SNP induced cell death in cultured mouse keratinocytes, and DCP-LA significantly prevented NO stress-induced death of keratinocytes. Taken together, these results indicate that DCP-LA exerts an antiaging action on the skin. PMID:27310436

  16. DCP-LA Exerts an Antiaging Action on the Skin.

    PubMed

    Nishizaki, Tomoyuki

    2016-01-01

    The present study assessed the possibility for the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) as an antiaging compound for the skin by assaying senescence-associated β-galactosidase (SA-β-Gal), a biomarker of senescence and cell viability. The nitric oxide (NO) donor sodium nitroprusside (SNP) increased in SA-β-Gal-positive cells in cultured human fibroblasts and mouse keratinocytes, and DCP-LA significantly inhibited the effect of SNP. Moreover, SNP induced cell death in cultured mouse keratinocytes, and DCP-LA significantly prevented NO stress-induced death of keratinocytes. Taken together, these results indicate that DCP-LA exerts an antiaging action on the skin.

  17. Skin flaps and grafts - self-care

    MedlinePlus

    ... Free flap - self-care; Skin autografting - self-care; Pressure ulcer skin flap self-care; Burns skin flap self- ... skin infection Surgery for skin cancer Venous ulcers , pressure ulcers , or diabetic ulcers that DO NOT heal After ...

  18. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    PubMed

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  19. A pharmacokinetic study of a topical anesthetic (EMLA® ) in mouse soft tissue laceration.

    PubMed

    Al-Musawi, Alaa; Matar, Kamal; Kombian, Samuel B; Andersson, Lars

    2012-12-01

    The use of topical anesthesia instead of injection of local anesthetics for managing soft tissue lacerations in the emergency situations may be a relief for both patients and surgeons. Topical anesthesia in the form of a cream eutectic mixture of local anesthetics (EMLA®) containing 2.5% lidocaine and 2.5% prilocaine has been reported as an efficient anesthetic on skin before venipuncture anesthesia and as an alternative to injection anesthesia in some minor surgery situations. The aim of this study was to compare the pharmacokinetics of EMLA® when applied in a laceration with topical skin application in the mouse. A total of 120 Albino Laboratory-bred strain mouse (BALB-c) male mice were divided into three groups with regard to application mode of EMLA®. Group A: with laceration, 48 mice; Group B: on intact shaved skin, 48 mice; Group C: control group (24 mice) with same procedures but without application of EMLA®. Blood levels were collected at 0, 10, 20, 30, 45, 60, 75, and 90 min post-EMLA® application. Plasma sample analysis was carried out by employing liquid chromatography coupled with tandem mass spectrometric (LC-MS/MS) method, and the pharmacokinetic analysis of the mouse plasma samples was estimated by standard non-compartmental methods. The pharmacokinetic parameters of lidocaine and prilocaine were significantly altered following EMLA® application to lacerated mouse skin in contrast to intact skin. The absorption of lidocaine and prilocaine was rapid following application of EMLA® to lacerated and intact mouse skin. Maximum drug plasma concentration (C(max) ) and area under the drug plasma concentration-time curve (AUC) values of lidocaine were significantly increased by 448.6% and 161.5%, respectively, following application of EMLA to lacerated mouse skin in comparison with intact mouse skin. Similarly, prilocaine's C(max) and AUC values were also increased by 384% and 265.7%, respectively, following EMLA application to lacerated mouse skin, in

  20. Formaldehyde and skin tumorigenesis in Sencar mice

    SciTech Connect

    Iversen, O.H.

    1988-01-01

    Previous experiments involving topical applications of formaldehyde on hairless mouse skin were repeated with SENCAR mice, which are bred for maximum sensitivity to chemical tumorigenesis. Most experimental groups consisted of 32 mice. Topical skin applications of either 100 ..mu..l acetone of about 200 ..mu..l 4% formaldehyde in water twice weekly, resulted in two tumor-bearing animals, each with one small, benign papilloma. A group of 96 mice, treated once with 51.2 ..mu..g DMBA in acetone, developed a total of 107 tumors in 40 tumor-bearing animals. Thus, DMBA is a strong, complete tumorigen also in SENCAR mice. Animals given 51.2 ..mu..g DMBA first and then treated twice weekly with 1% formaldehyde developed a total of 30 tumors in 8 tumor-bearing animals, whereas mice given 51.2 ..mu..g DMBA first, followed by twice weekly treatment with 4% formaldehyde, developed 51 tumors in 15 animals. When two widely accepted, statistical methods were used, there was no significant difference between the groups treated once with DMBA alone and that treated once with DMBA followed by 4% formaldehyde. The results in SENCAR mice confirm that formaldehyde has no skin tumorigenic or carcinogenic potency of its own. It seems doubtful whether it may act as a very weak enhancer of DMBA-induced tumorigenesis, but it has no significant influence on DMBA-induced carcinogenesis.

  1. Mammalian skin cell biology: at the interface between laboratory and clinic.

    PubMed

    Watt, Fiona M

    2014-11-21

    Mammalian skin research represents the convergence of three complementary disciplines: cell biology, mouse genetics, and dermatology. The skin provides a paradigm for current research in cell adhesion, inflammation, and tissue stem cells. Here, I discuss recent insights into the cell biology of skin. Single-cell analysis has revealed that human epidermal stem cells are heterogeneous and differentiate in response to multiple extrinsic signals. Live-cell imaging, optogenetics, and cell ablation experiments show skin cells to be remarkably dynamic. High-throughput, genome-wide approaches have yielded unprecedented insights into the circuitry that controls epidermal stem cell fate. Last, integrative biological analysis of human skin disorders has revealed unexpected functions for elements of the skin that were previously considered purely structural.

  2. Increased in vivo skin penetration of quantum dots with UVR and in vitro quantum dot cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mortensen, Luke; Zheng, Hong; Faulknor, Renea; De Benedetto, Anna; Beck, Lisa; DeLouise, Lisa A.

    2009-02-01

    The growing presence of quantum dots (QD) in a variety of biological, medical, and electronics applications means an increased risk of human exposure in manufacturing, research, and consumer use. However, very few studies have investigated the susceptibility of skin to penetration of QD - the most common exposure route- and the results of those that exist are conflicting. This suggests that a technique allowing determination of skin barrier status and prediction of skin permeability to QD would be of crucial interest as recent findings have provided evidence of in vitro cytotoxicity and long-term in vivo retention in the body for most QD surface chemistries. Our research focuses on barrier status of the skin (intact and with ultraviolet radiation induced barrier defect) and its impact on QD skin penetration. These model studies are particularly relevant to the common application condition of NP containing sunscreen and SPF cosmetics to UV exposed skin. Herein we present our initial efforts to develop an in vivo model of nanoparticle skin penetration using the SKH-1 hairless mouse with transepidermal water loss (TEWL) to evaluate skin barrier status and determine its ability to predict QD penetration. Our results show that ultraviolet radiation increases both TEWL and skin penetration of QD. Additionally, we demonstrate cytotoxic potential of QD to skin cells using a metastatic melanoma cell line. Our research suggests future work in specific targeting of nanoparticles, to prevent or enhance penetration. This knowledge will be used to develop powerful therapeutic agents, decreased penetration cosmetic nanoparticles, and precise skin cancer imaging modalities.

  3. Effect of phorbol esters on guniea pig skin in vivo.

    PubMed

    Bourin, M C; Delescluse, C; Fürstenberger, G; Marks, F; Schweizer, J; Klein-Szanto, A J; Prunieras, M

    1982-01-01

    When topically applied to guniea pig ear skin the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced inflammation and epidermal hyperproliferation which could be inhibited by indomethacin. This inhibition could be reversed both by prostaglandins E and F. Five minutes after TPA treatment an increase in the level of prostaglandin E but not of prostaglandin F was observed in the epidermis. The non-promoting phorbol ester 4-O-methyl-TPA also stimulated epidermal cell proliferation but this stimulation was not inhibited by indomethacin. The above results are in agreement with those already reported in the mouse system with these two compounds. Ornithine decarboxylase (ODC) activity has been evaluated in the epidermis of guniea pig ear after topical application of 20 nmol of TPA. No increase was noted. This is in contrast with the well documented activation of ODC in mouse skin treated with TPA. Since TPA acts as a promoter in the mouse whereas both croton oil and TPA have no promoting action in the guinea pig, the above result supports the view that ODC activationis related to promotion, and provides a possible explanation for the resistance of this animal species to promotion. This resistance is further documented by the fact that no "dark cells" were found in guinea pig ear skin.

  4. Spiritual and religious aspects of skin and skin disorders.

    PubMed

    Shenefelt, Philip D; Shenefelt, Debrah A

    2014-01-01

    Skin and skin disorders have had spiritual aspects since ancient times. Skin, hair, and nails are visible to self and others, and touchable by self and others. The skin is a major sensory organ. Skin also expresses emotions detectable by others through pallor, coldness, "goose bumps", redness, warmth, or sweating. Spiritual and religious significances of skin are revealed through how much of the skin has been and continues to be covered with what types of coverings, scalp and beard hair cutting, shaving and styling, skin, nail, and hair coloring and decorating, tattooing, and intentional scarring of skin. Persons with visible skin disorders have often been stigmatized or even treated as outcasts. Shamans and other spiritual and religious healers have brought about healing of skin disorders through spiritual means. Spiritual and religious interactions with various skin disorders such as psoriasis, leprosy, and vitiligo are discussed. Religious aspects of skin and skin diseases are evaluated for several major religions, with a special focus on Judaism, both conventional and kabbalistic. PMID:25120377

  5. Spiritual and religious aspects of skin and skin disorders

    PubMed Central

    Shenefelt, Philip D; Shenefelt, Debrah A

    2014-01-01

    Skin and skin disorders have had spiritual aspects since ancient times. Skin, hair, and nails are visible to self and others, and touchable by self and others. The skin is a major sensory organ. Skin also expresses emotions detectable by others through pallor, coldness, “goose bumps”, redness, warmth, or sweating. Spiritual and religious significances of skin are revealed through how much of the skin has been and continues to be covered with what types of coverings, scalp and beard hair cutting, shaving and styling, skin, nail, and hair coloring and decorating, tattooing, and intentional scarring of skin. Persons with visible skin disorders have often been stigmatized or even treated as outcasts. Shamans and other spiritual and religious healers have brought about healing of skin disorders through spiritual means. Spiritual and religious interactions with various skin disorders such as psoriasis, leprosy, and vitiligo are discussed. Religious aspects of skin and skin diseases are evaluated for several major religions, with a special focus on Judaism, both conventional and kabbalistic. PMID:25120377

  6. In vivo stepwise multi-photon activation fluorescence imaging of melanin in human skin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Gu, Zetong; Abbas, Saleh; Lowe, Jared; Sierra, Heidy; Rajadhyaksha, Milind; DiMarzio, Charles

    2014-03-01

    The stepwise multi-photon activated fluorescence (SMPAF) of melanin is a low cost and reliable method of detecting melanin because the activation and excitation can be a continuous-wave (CW) mode near infrared (NIR) laser. Our previous work has demonstrated the melanin SMPAF images in sepia melanin, mouse hair, and mouse skin. In this study, we show the feasibility of using SMPAF to detect melanin in vivo. in vivo melanin SMPAF images of normal skin and benign nevus are demonstrated. SMPAF images add specificity for melanin detection than MPFM images and CRM images. Melanin SMPAF is a promising technology to enable early detection of melanoma for dermatologists.

  7. The MOUSE Squad

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  8. Sprayed skin turbine component

    DOEpatents

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  9. Skin friction balance

    NASA Technical Reports Server (NTRS)

    Ping, Tcheng (Inventor); Supplee, Frank H., Jr. (Inventor)

    1989-01-01

    A skin friction balance uses a parallel linkage mechanism to avoid inaccuracies in skin friction measurement attributable to off-center normal forces. The parallel linkage mechanism includes a stationary plate mounted in a cage, and an upper and lower movable plate which are linked to each other and to the stationary plate throught three vertical links. Flexure pivots are provided for pivotally connecting the links and the plates. A sensing element connected to the upper plate moves in response to skin friction, and the lower plate moves in the opposite direction of the upper plate. A force motor maintains a null position of the sensing element by exerting a restoring force in response to a signal generated by a linear variable differential transformer (LVDT).

  10. Environment and the skin

    SciTech Connect

    Suskind, R.R. )

    1990-03-01

    The skin is an important organ of defense adaptation and a portal of entry for xenobiotics. It is vulnerable to physical, chemical, and biologic agents and capable of expressing responses to these agents in a variety of pathologic patterns. These patterns are characterized by morphologic and functional features which are elicited by careful examination and test procedures. Cutaneous cancer may result from exposure to nonionizing as well as ionizing radiation, to specific identifiable chemical hazards, and may be enhanced by trauma. Cutaneous hazards of chemical sources are largely found in the workplace and among consumer products, including drugs and toilet goods. Environmental skin diseases and injuries are preventable. Prior to use assessment for safety and for possible risks from exposure to an agent, product, or process is of primary importance in the prevention and control of environmental skin disease and injury.

  11. Imaging the skin.

    PubMed

    Aspres, Nicholas; Egerton, Ian B; Lim, Adrian C; Shumack, Stephen P

    2003-02-01

    Since the discovery of X-rays, the use of imaging technology has continued to play an important role in medicine. Technological advancements have led to the development of various imaging modalities, most of which have been used to image organs deep within the human body. More recently, attention has focused on the application of imaging technology for evaluation of the skin. A variety of techniques are currently being used to examine the skin and these include specialized photography, surface microscopy, ultrasound, laser Doppler perfusion imaging, confocal microscopy, and magnetic resonance imaging. These modalities can provide information that can assist in the management of skin problems. Although many of these techniques are still undergoing research, they are showing promise as useful clinical tools in dermatology.

  12. Relative potency estimation for synthetic petroleum skin carcinogens.

    PubMed Central

    Holland, J M; Wolf, D A; Clark, B R

    1981-01-01

    A procedure for quantitative analysis of skin carcinogenesis data, for the purpose of establishing carcinogenic potency, has been applied to observations obtained from C3H mice exposed continuously to synthetic and natural petroleums. The importance of total polynuclear aromatic (PNA) content to the skin carcinogenic activity of the crude materials was also examined. Of three synthetic petroleums evaluated, all were shown capable of inducing skin neoplasms within a two-year exposure period. Under comparable exposure conditions a composite sample of five natural petroleums was noncarcinogenic. Comparison of the distributions of times to initial skin neoplasm versus dose rate, for groups exposed to synthetic fossil liquids and the reference skin carcinogen, benzo(a)pyrene, provided estimates of relative carcinotenic potency for the synthetic petroleums ranging from 1/500 to 1/1400 the potency of benzo(a)pyrene. The carcinogenic activity of a chemically isolated PNA fraction versus the crude from which it was derived suggested that this fraction was responsible for the carcinogenic activity of these synthetic petroleums in mouse skin. PMID:7238444

  13. Bioglass Activated Skin Tissue Engineering Constructs for Wound Healing.

    PubMed

    Yu, Hongfei; Peng, Jinliang; Xu, Yuhong; Chang, Jiang; Li, Haiyan

    2016-01-13

    Wound healing is a complicated process, and fibroblast is a major cell type that participates in the process. Recent studies have shown that bioglass (BG) can stimulate fibroblasts to secrete a multitude of growth factors that are critical for wound healing. Therefore, we hypothesize that BG can stimulate fibroblasts to have a higher bioactivity by secreting more bioactive growth factors and proteins as compared to untreated fibroblasts, and we aim to construct a bioactive skin tissue engineering graft for wound healing by using BG activated fibroblast sheet. Thus, the effects of BG on fibroblast behaviors were studied, and the bioactive skin tissue engineering grafts containing BG activated fibroblasts were applied to repair the full skin lesions on nude mouse. Results showed that BG stimulated fibroblasts to express some critical growth factors and important proteins including vascular endothelial growth factor, basic fibroblast growth factor, epidermal growth factor, collagen I, and fibronectin. In vivo results revealed that fibroblasts in the bioactive skin tissue engineering grafts migrated into wound bed, and the migration ability of fibroblasts was stimulated by BG. In addition, the bioactive BG activated fibroblast skin tissue engineering grafts could largely increase the blood vessel formation, enhance the production of collagen I, and stimulate the differentiation of fibroblasts into myofibroblasts in the wound site, which would finally accelerate wound healing. This study demonstrates that the BG activated skin tissue engineering grafts contain more critical growth factors and extracellular matrix proteins that are beneficial for wound healing as compared to untreated fibroblast cell sheets.

  14. Limitations of skin protection.

    PubMed

    Schliemann, Sibylle

    2007-01-01

    Skin protection products and gloves are essential constituents of personal protective equipment at workplaces, which can be used in a complementary way, each offering particular benefits and disadvantages. In many workplace situations, both measures are being used either in an alternating or in a combined manner, typically in professions with exposures to mild irritants and a high wet-work load, such as hairdressers, healthcare workers or employees in the food-processing industry. Skin protection creams can be used to reduce unnecessarily long glove usage in order to reduce occlusion-related effects on the skin barrier. Whenever rotating machines are used, these products are the only option due to safety regulations. However, some particular requirements can be postulated for skin-protective products claimed especially to be used in combination with gloves. Reduction of glove-induced perspiration, of stratum corneum swelling, and postocclusive barrier impairment are intended attributes of such products, which have been already successfully implemented in some commercially available products. On the other hand it has to be proven that the ingredients do not interfere with the glove material, neither in the way of degrading the material, thus making it permeable for harmful substances, nor by enhancing the potential release of rubber allergens. Examples out of the literature are reviewed showing that skin products can exhibit unpredictable effects on the allergen release of rubber materials, if not thoroughly tested for this purpose beforehand. Some raw materials should be avoided in protection products, though they are of established value when used in afterwork emollients to accelerate barrier recovery. Usage of moisturizers, in contrast to special barrier products, at the workplace together or even under gloves is therefore judged critically, although selected products showed beneficial effects in particular experimental settings. Another future option is the

  15. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  16. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  17. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  18. Skin tears: prevention and treatment.

    PubMed

    Wick, Jeannette Y; Zanni, Guido R

    2008-07-01

    While skin tears are common among the elderly in general, and residents of long-term care facilities in particular, there has been limited research into their treatment. Many facilities voluntarily track skin tears, and some states require facilities to report these events. Risk factors include age, xerosis (abnormal eye, skin, or mouth dryness), need for help in activities of daily living, presence of senile purpura, visual impairment, and poor nutrition. Plans to prevent skin tears that employ skin sleeves, padded side rails, gentle skin cleansers, moisturizing lotions, as well as staff education, can decrease by half the number of skin tears incurred in a long-term care facility. Although the treatment process seems simple, it is time consuming and can be painful for the patient. Residents with dementia or agitation often try to remove bulky dressings used to cover skin tears. Dressing changes may injure the fragile wound via skin stripping.

  19. Ocular Albinism Type 1 Regulates Melanogenesis in Mouse Melanocytes

    PubMed Central

    Chen, Tianzhi; Wang, Haidong; Liu, Yu; Zhao, Bingling; Zhao, Yuanyuan; Fan, Ruiwen; Wang, Pengchao; Dong, Changsheng

    2016-01-01

    To investigate whether ocular albinism type 1 (OA1) is differentially expressed in the skin of mice with different coat colors and to determine its correlation with coat color establishment in mouse, the expression patterns and tissue distribution characterization of OA1 in the skin of mice with different coat colors were qualitatively and quantitatively analyzed by real-time quantitative PCR (qRT-PCR), immunofluorescence staining and Western blot. The qRT-PCR analysis revealed that OA1 mRNA was expressed in all mice skin samples tested, with the highest expression level in brown skin, a moderate expression level in black skin and the lowest expression level in gray skin. Positive OA1 protein bands were also detected in all skin samples by Western blot analysis. The relative expression levels of OA1 protein in both black and brown skin were significantly higher than that in gray skin, but there was no significant difference between black and brown mice. Immunofluorescence assays revealed that OA1 was mainly expressed in the hair follicle matrix, the inner and outer root sheath in the skin tissues with different coat colors. To get further insight into the important role of OA1 in the melanocytes’ pigmentation, we transfected the OA1 into mouse melanocytes and then detected the relative expression levels of pigmentation-related gene. Simultaneously, we tested the melanin content of melanocytes. As a result, the overexpression of OA1 significantly increased the expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TRP1) and premelanosome protein (PMEL). However, the tyrosinase-related protein 2 (TRP2) level was attenuated. By contrast, the level of glycoprotein non-metastatic melanoma protein b (GPNMB) was unaffected by OA1 overexpression. Furthermore, we observed a significant increase in melanin content in mouse melanocyte transfected OA1. Therefore, we propose that OA1 may participate in the

  20. Study of surfactant-skin interactions by skin impedance measurements.

    PubMed

    Lu, Guojin; Moore, David J

    2012-02-01

    The stratum corneum (SC) plays a very critical physiological role as skin barrier in regulating water loss through the skin and protects the body from a wide range of physical and chemical exogenous insults. Surfactant-containing formulations can induce skin damage and irritation owing to surfactant absorption and penetration. It is generally accepted that reduction in skin barrier properties occurs only after surfactants have penetrated/permeated into the skin barrier. To mitigate the harshness of surfactant-based cleansing products, penetration/permeation of surfactants should be reduced. Skin impedance measurements have been taken in vitro on porcine skin using vertical Franz diffusion cells to investigate the impact of surfactants, temperature and pH on skin barrier integrity. These skin impedance results demonstrate excellent correlation with other published methods for assessing skin damage and irritation from different surfactant chemistry, concentration, pH, time of exposure and temperature. This study demonstrates that skin impedance can be utilized as a routine approach to screen surfactant-containing formulations for their propensity to compromise the skin barrier and hence likely lead to skin irritation. PMID:21923733