Science.gov

Sample records for 12-phase ac arc

  1. Spectrographic analysis of bismuth-tin eutectic alloys by spark-ignited low-voltage ac-arc excitation

    NASA Technical Reports Server (NTRS)

    Huff, E. A.; Kulpa, S. J.

    1969-01-01

    Spectrographic method determines individual stainless steel components in molten bismuth-42 w/o tin eutectic to determine the solubility of Type 304 stainless steels. It utilizes the high sensitivity and precision of the spark-ignited, low-voltage ac-arc excitation of samples rendered homogeneous by dissolution.

  2. High-Speed Visualization of Evaporation Phenomena from Tungsten Based Electrode in Multi-Phase AC Arc

    NASA Astrophysics Data System (ADS)

    Tanaka, Manabu; Hashizume, Taro; Imatsuji, Tomoyuki; Nawata, Yushi; Watanabe, Takayuki

    2015-09-01

    A multi-phase AC arc has been developed for applications in various fields of engineering because it possesses unique advantages such as high energy efficiency. However, understanding of fundamental phenomena in the multi-phase AC arc is still insufficient for practical use. Purpose of this study is to investigate electrode erosion mechanism by high-speed visualization of the electrode metal vapor in the arc. Results indicated that the electrode mainly evaporated at anodic period, leading to the arc constriction. Moreover, evaporation of W electrode with 2wt% La2O3 at the anodic period was much higher than that with 2wt% ThO2. This can be explained by different properties of these oxide additives. Evaporation of the oxide additive resulted in the arc constriction, which accelerated the evaporation of W electrode. Therefore, addition of La2O3 with lower melting and boiling point than ThO2 lead to stronger arc constriction, resulting in severer evaporation of W electrode.

  3. Deep HST/ACS Photometry of an Arc of Young Stars in the Southern Halo of M82

    NASA Astrophysics Data System (ADS)

    Suwannajak, Chutipong

    2016-01-01

    We present deep HST/ACS photometry of an arclike, overdense region of stars in the southern halo of M82, located approximately 5 kpc from its disk. This arc feature was originally identified about a decade ago. The early ground-based studies suggested that it contains young stars with ages and metallicities similar to those that formed in the tidal tails between M81, M82, and NGC3077 during their interactions. The arc is clearly presented in the spatial distribution of stars in our field with significantly higher stellar density than the background M82 halo stars. The location of the tip of the red giant branch (RGB) reveals the arc to have a similar distance to M81 and M82, therefore confirming that it belongs to this interacting system. Combining our data with those from the ACS Nearby Galaxy Survey Treasury (ANGST), we construct a color-magnitude diagram (CMD) for the arc. A sequence of young stars is clearly presented on its CMD. This young main sequence is not seen in other parts of the M82 halo. Single-metallicity isochrones are used to derive the age of the young stars in the arc. We confirm that these stars exhibit ages consistent with young stars found in the HI bridges between M81, M82 and NGC3077. Furthermore, the mean metallicity of the RGB stars is also derived from their metallicity distribution function and found to be similar to that found in the HI bridges.

  4. Sub-micrometer particles produced by a low-powered AC electric arc in liquids.

    PubMed

    Jaworski, Jacek A; Fleury, Eric

    2012-01-01

    The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence. PMID:22524027

  5. Investigation of erosion mechanism of tungsten-based electrode in multiphase AC arc by high-speed visualization of electrode phenomena

    NASA Astrophysics Data System (ADS)

    Tanaka, Manabu; Hashizume, Taro; Imatsuji, Tomoyuki; Nawata, Yushi; Watanabe, Takayuki

    2016-07-01

    Electrode phenomena in a multiphase AC arc were successfully visualized using a high-speed observation system with a bandpass filter system to understand the erosion mechanisms of tungsten-based electrodes due to the droplet ejection and electrode evaporation. The obtained results indicated that both droplet ejection and electrode evaporation contributed to the electrode erosion in the multiphase AC arc. The erosion by droplet ejection mainly occurred during the cathodic period, while electrode evaporation mainly occurred during the anodic period. The rates of erosion by droplet ejection and evaporation were estimated to be 6 and 3 g/min, respectively, when the arc current was 100 A. The results of an evaluation of the possible forces acting on the electrode tip suggested that the electromagnetic force was the dominant force in the cathodic period, resulting in droplet ejection.

  6. Structures and properties of Fe-C fine particles prepared by AC arc discharge

    NASA Astrophysics Data System (ADS)

    Li, Jian; Liu, Cunye; Zhao, Baogang; Lin, Yaoqiang; Deng, Zhaojing

    1999-05-01

    Fe-C fine particles are produced by an alternating arc discharge between iron and carbon electrodes in an Ar gas atmosphere at pressures of 8, 14 and 18 kPa. The crystal structure, morphology and surface composition have been studied, respectively, by X-ray diffraction, transmission electron microscopy, selected area electron diffraction and X-ray photoelectron spectroscopy. Magnetic properties and Curie temperatures have also been determined by a vibrating sample magnetometer. Results show that the particles are of two different crystal structures, one is hexagonal FeC and the other is cubic iron. The iron particles have a multi-layered structure composed of an α-Fe core wrapped by Fe 3O 4, FeO and FeO(OH) shells. It is found that the compositions and the specific saturation magnetization of the Fe-C particles prepared in different pressures of Ar gas are not the same, but their Curie temperatures are all 580±5°C.

  7. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  8. Electric arc heater is self starting

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1966-01-01

    Remote method initiates an electric arc over a large range of gaps between two water-cooled electrodes of an arc-heated wind tunnel without disassembling the arc unit. This type of starting system can be used on both three-phase ac arc heaters and dc arc heaters.

  9. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  10. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  11. 40 CFR 76.12 - Phase I NOX compliance extension.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.12 Phase I NOX compliance extension. (a... Administrator will approve the plan and revise the Acid Rain permit governing the unit in the plan in order to... the complete petition. The Acid Rain permit governing the unit will be revised in order to...

  12. 40 CFR 76.12 - Phase I NOX compliance extension.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Phase I NOX compliance extension. 76.12 Section 76.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.12 Phase I NOX compliance extension. (a) General provisions. (1) The...

  13. 40 CFR 76.12 - Phase I NOX compliance extension.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.12 Phase I NOX compliance extension. (a... Administrator will approve the plan and revise the Acid Rain permit governing the unit in the plan in order to... the complete petition. The Acid Rain permit governing the unit will be revised in order to...

  14. 40 CFR 76.12 - Phase I NOX compliance extension.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.12 Phase I NOX compliance extension. (a... Administrator will approve the plan and revise the Acid Rain permit governing the unit in the plan in order to... the complete petition. The Acid Rain permit governing the unit will be revised in order to...

  15. 40 CFR 76.12 - Phase I NOX compliance extension.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.12 Phase I NOX compliance extension. (a... Administrator will approve the plan and revise the Acid Rain permit governing the unit in the plan in order to... the complete petition. The Acid Rain permit governing the unit will be revised in order to...

  16. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  17. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and ... is now quite weak and on meeting the undisturbed air it can rise again slightly - possibly assisting in the formation of new small cumulus ...

  18. What makes an electric welding arc perform its required function

    SciTech Connect

    Correy, T.B.

    1982-09-01

    The physics of direct current and alternating current welding arcs, the heat transfer of direct current welding arcs, the characteristics of dc welding and ac welding power supplies and recommendations for the procurement and maintenance of precision power supplies are discussed. (LCL)

  19. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  20. Weld arc simulator

    DOEpatents

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  1. Preparation of Arc Black and Carbon Nano Balloon by Arc Discharge and Their Application to a Fuel Cell

    NASA Astrophysics Data System (ADS)

    Ikeda, Takashi; Kaida, Shota; Satou, Tosiyuki; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto; Oke, Shinichiro; Ue, Hitoshi; Okawa, Takashi; Aoyagi, Nobuhiro; Shimizu, Kazuki

    2011-01-01

    Arc black (AcB) was prepared in N2 gas using the twin-torch arc discharge apparatus, and a hollow capsule with graphite layers named a carbon nano balloon (CNB) was obtained by heat treatment of the AcB in Ar gas at 2400 °C. Transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, and compressive resistivity measurement confirmed that the CNB was well graphitized. In the direct methanol fuel cell (DMFC) application of these carbon nanomaterials, catalyst metal nanoparticles were supported on the AcB, and a membrane-electrode assembly (MEA) was formed from the catalyst-supported AcB and the CNB by hotpressing them on an electrolyte film. The MEA containing the CNB resulted in a higher DMFC performance than that without the CNB, indicating that the CNB with lower compressive resistivity than the AcB works as a material for the improvement of electric conductivity in an MEA.

  2. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  3. Optical diagnostics of a gliding arc.

    PubMed

    Sun, Z W; Zhu, J J; Li, Z S; Aldén, M; Leipold, F; Salewski, M; Kusano, Y

    2013-03-11

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity. PMID:23482171

  4. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  5. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  6. [Arc welder's lung].

    PubMed

    Molinari, Luciana; Alvarez, Clarisa; Semeniuk, Guillermo B

    2010-01-01

    Pneumoconiosis of electric arc welder or siderotic pneumoconiosis was described by Doig and McLaughlin in 1936 as a lung disease caused by chronic inhalation of iron fumes in electric arc welders. We present a case report of electric arc welder siderosis associated with high levels of ferritin, without findings of iron deposit in any other organ. PMID:21163741

  7. Innovation approaches to controlling the electric regimes of electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Bikeev, R. A.; Serikov, V. A.; Ognev, A. M.; Rechkalov, A. V.; Cherednichenko, V. S.

    2015-12-01

    The processes of current passage in an ac electric arc furnace (EAF) are subjected to industrial experiments and mathematical simulation. It is shown that, when a charge is melted, arcs between charge fragments exist in series with main arc discharges, and these arcs influence the stability of the main arc discharges. The measurement of instantaneous currents and voltages allowed us to perform a real-time calculation of the electrical characteristics of a three-phase circuit and to determine the θ parameter, which characterizes the nonlinearity of the circuit segment between electrodes. Based on these studies, we created an advanced system for controlling the electric regime of EAF.

  8. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  9. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  10. Monitoring ARC services with GangliARC

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Karpenko, D.

    2012-12-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  11. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  12. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  13. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  14. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, Hillary

    1995-03-06

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  15. First NIF ARC target shot results

    NASA Astrophysics Data System (ADS)

    Chen, Hui; di Nicola, P.; Hermann, M.; Kalantar, D.; Martinez, D.; Tommasini, R.; NIF ARC Team

    2015-11-01

    The commissioning of the Advanced Radiographic Capability (ARC) laser system in the National Ignition Facility (NIF) is currently in progress. ARC laser is designed to ultimately provide eight beamlets with pulse duration adjustable from 1 to 50 ps, and energies up to 1.7 kJ per beamlet. ARC will add critical capability for the NIF facility for creating precision x-ray backlighters needed for many current NIF ICF and HED experiments. ARC can also produce MeV electrons and protons for new science experiment on NIF. In the initial set of experiments, 4 of the 8 beamlets are being commissioned up to 1 kJ per beam at 30 ps pulse length using foil and wire targets. X-ray energy distribution, spot size and pulse duration are measured using various diagnostics. This talk will describe the shot setup and results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Welding arc initiator

    DOEpatents

    Correy, Thomas B.

    1989-01-01

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

  17. Welding arc initiator

    DOEpatents

    Correy, T.B.

    1989-05-09

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  18. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  19. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  20. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  1. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  2. Filtered cathodic arc source

    SciTech Connect

    Falabella, S.; Sanders, D.M.

    1992-12-31

    Disclosed is a continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45{degrees} to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  3. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  4. Radiation of long and high power arcs

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Bauchire, J. M.; Hong, D.; Rabat, H.; Riquel, G.; Sanchez, F.; Gleizes, A.

    2015-10-01

    The operators working on electrical installations of low, medium and high voltages can be accidentally exposed to short-circuit arcs ranging from a few kA to several tens of kA. To protect them from radiation, according to the exposure limits, we need to characterize the radiation emitted by the powerful arc. Therefore, we have developed a general experimental and numerical study in order to estimate the spectral irradiance received at a given distance from the arc. The experimental part was based on a very long arc (up to 2 m) with high ac current (between 4 and 40 kA rms, duration 100 ms) using 3 kinds of metallic contacts (copper, steel and aluminium). We measured the irradiance received 10m from the axis of the arc, and integrated on 4 spectral intervals corresponding to the UV, visible, IRA  +  B and IRC. The theoretical part consisted of calculating the radiance of isothermal plasmas in mixtures of air and metal vapour, integrated over the same spectral intervals as defined in the experiments. The comparison between the theoretical and experimental results has allowed the defining of three isothermal radiation sources whose combination leads to a spectral irradiation equivalent to the experimental one. Then the calculation allowed the deduction of the spectral description of the irradiance over all the wavelength range, between 200 nm and 20 μm. The final results indicate that the influence of metal is important in the visible and UVA ranges whereas the IR radiation is due to the air plasma and surrounding hot gas and fumes.

  5. ACS Quicklook PDF products

    NASA Astrophysics Data System (ADS)

    Suchkov, Anatoly

    1999-12-01

    This report details the features of the ACS quicklook PDF products produced by the HST data pipeline. The requirements closely follow the design of paper products recommended by the Data Quality Committee, with appropriate changes required to fully support ACS.

  6. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  7. The statistical difference between bending arcs and regular polar arcs

    NASA Astrophysics Data System (ADS)

    Kullen, A.; Fear, R. C.; Milan, S. E.; Carter, J. A.; Karlsson, T.

    2015-12-01

    In this work, the Polar UVI data set by Kullen et al. (2002) of 74 polar arcs is reinvestigated, focusing on bending arcs. Bending arcs are typically faint and form (depending on interplanetary magnetic field (IMF) By direction) on the dawnside or duskside oval with the tip of the arc splitting off the dayside oval. The tip subsequently moves into the polar cap in the antisunward direction, while the arc's nightside end remains attached to the oval, eventually becoming hook-shaped. Our investigation shows that bending arcs appear on the opposite oval side from and farther sunward than most regular polar arcs. They form during By-dominated IMF conditions: typically, the IMF clock angle increases from 60 to 90° about 20 min before the arc forms. Antisunward plasma flows from the oval into the polar cap just poleward of bending arcs are seen in Super Dual Auroral Radar Network data, indicating dayside reconnection. For regular polar arcs, recently reported characteristics are confirmed in contrast to bending arcs. This includes plasma flows along the nightside oval that originate close to the initial arc location and a significant delay in the correlation between IMF By and initial arc location. In our data set, the highest correlations are found with IMF By appearing at least 1-2 h before arc formation. In summary, bending arcs are distinctly different from regular arcs and cannot be explained by existing polar arc models. Instead, these results are consistent with the formation mechanism described in Carter et al. (2015), suggesting that bending arcs are caused by dayside reconnection.

  8. ALICE—ARC integration

    NASA Astrophysics Data System (ADS)

    Anderlik, C.; Gregersen, A. R.; Kleist, J.; Peters, A.; Saiz, P.

    2008-07-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites.

  9. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  10. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  11. Arc-textured metal surfaces for high thermal emittance space radiators

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Mirtich, Michael J.; Behrend, Tracy; Hotes, Deborah; Kussmaul, Michael; Barry, Jennifer; Stidham, Curtis; Stueber, Thomas; Difilippo, Frank

    1988-01-01

    Carbon arc electrical discharges struck across the surfaces of metals such as Nb-1 percent Zr, alter the morphology to produce a high thermal emittance surface. Metal from the surface and carbon from the arc electrode vaporize during arcing, and then condense on the metal surface to produce a microscopically rough surface having a high thermal emittance. Quantitative spectral reflectance measurements from 0.33 to 15 microns were made on metal surfaces which were carbon arc treated in an inert gas environment. The resulting spectral reflectance data were then used to calculate thermal emittance as a function of temperature for various methods of arc treatment. The results of arc treatment on various metals are presented for both ac and dc arcs. Surface characterization data, including thermal emittance as a function of temperature, scanning electron microscopy, and atomic oxygen durability, are also presented. The ac arc texturing was found to increase the thermal emittance at 800 K from 0.05 to 0.70.

  12. Arc-textured metal surfaces for high thermal emittance space radiators

    SciTech Connect

    Banks, B.A.; Rutledge, S.K.; Mirtich, M.J.; Behrend, T.; Hotes, D.; Kussmaul, M.; Barry, J.; Stidham, C.; Stueber, T.; DiFilippo, F.

    1994-09-01

    Carbon arc electrical discharges struck across the surfaces of metals such as Nb-1% Zr, alter the morphology to produce a high thermal emittance surface. Metal from the surface and carbon from the arc electrode vaporize during arcing, and then condense on the metal surface to produce a microscopically rough surface having a high thermal emittance. Quantitative spectral reflectance measurements from 0.33 to 15 {mu}m were made on metal surfaces which were carbon arc treated in an inert gas environment. The resulting spectral reflectance data were then used to calculate thermal emittance as a function of temperature for various methods of arc treatment. The results of arc treatment on various metals are presented for both ac and dc arcs. Surface characterization data, including thermal emittance as a function of temperature, scanning electron microscopy, and atomic oxygen durability, are also presented. Ac arc texturing was found to increase the thermal emittance at 800 K from 0.05. to 0.70.

  13. Is the red arc a good indicator of ionosphere-magnetosphere conditions

    NASA Technical Reports Server (NTRS)

    Nagy, A. F.; Brace, L. H.; Maynard, N. C.; Hanson, W. B.

    1974-01-01

    Weak red arcs were observed on the two consecutive nights of July 12-13 and July 13-14, 1969, at Richland, Washington, whereas no red arcs were detectable on the nights preceding and following the observations. Satellite (Ogo 6) data of electron temperature and density, low-frequency ac electric field, and suprathermal electron flux corresponding to the conjugate region of Richland show no significant variations during these days. The data show elevated electron temperatures and enhanced low-frequency ac noise levels at the expected red arc position in the neighborhood of the density trough, as indicated by previous observations. The data appear to indicate that the optical criterion of red arc occurrence would lead to the conclusion of significantly different ionosphere-magnetosphere conditions during these four nights, whereas the more detailed in situ data show that the conditions were very similar.

  14. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  15. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  16. METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING

    DOEpatents

    Correy, T.B.

    1962-12-11

    A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)

  17. Optical emission spectroscopy of carbon arc for nanomaterial synthesis

    NASA Astrophysics Data System (ADS)

    Vekselman, Vladislav; Stratton, Brentley; Raitses, Yevgeny

    2015-11-01

    Arc plasma assisted synthesis of carbon nanostructures is one of the most efficient and simple production methods. In spite of a long time use of this method in materials science research and industrial applications, the role of the plasma in nucleation and growth of nanostructures is not well understood. This is due to complexity of physico-chemical processes governing the plasma nanosynthesis. The objective of this work is to characterize the atmospheric pressure arc plasma used for synthesis of various carbon nanostructures. Optical emission spectroscopy was carried out to determine the distribution of temperature and density of carbon plasma in the synthesis zone as a function of arc discharge parameters. Accurate and detailed mapping of plasma parameters elucidate the general trend governing the formation of carbon nanostructures. This work was supported by DOE contract DE-AC02-09CH11466.

  18. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  19. Arc Length Gone Global

    ERIC Educational Resources Information Center

    Boudreaux, Gregory M.; Wells, M. Scott

    2007-01-01

    Everyone with a thorough knowledge of single variable calculus knows that integration can be used to find the length of a curve on a given interval, called its arc length. Fortunately, if one endeavors to pose and solve more interesting problems than simply computing lengths of various curves, there are techniques available that do not require an…

  20. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  1. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  2. Evolution of magnetically rotating arc into large area arc plasma

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wan-Wan; Zhang, Xiao-Ning; Zha, Jun; Xia, Wei-Dong

    2015-06-01

    An arc channel tends to shrink due to its conductivity increasing with the increase of temperature. In this study, to generate large area arc plasma, we construct a magnetically rotating arc plasma generator, which mainly consists of a lanthanide tungsten cathode (13 mm in diameter), a concentric cylindrical graphite anode chamber (60 mm in diameter) and a solenoid coil for producing an axial magnet field. By controlling the cold gas flow, the magnetically rotating arc evolves from constricted mode to diffuse mode, which almost fills the whole arc chamber cross section. Results show that the diffuse arc plasma has better uniformity and stability. The formation mechanism of large area arc plasma is discussed in this paper. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005, 11475174, and 50876101) and the Science Instrument Foundation of the Chinese Academy of Sciences (Grant No. Y201162).

  3. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  4. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  5. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  6. ARC and Melting Efficiency of Plasma ARC Welds

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Nunes, A. C.; Evans, D. M.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 Aluminum. Arc efficiency was measured calorimetrically and ranged between 48% and 66% for the conditions of the welds. Arc efficiency depends in different ways on voltage and current. The voltage effect dominates. Raising voltage while reducing current increases arc efficiency. Longer, higher voltage arcs are thought to transfer a greater portion of arc power to the workpiece through shield gas convection. Melting efficiency depends upon weld pool shape as well as arc efficiency. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Increased plasma gas flow does the same thing. Higher currents are thought to raise arc pressure and depress liquid at the bottom of the weld pool. More arc power then transfers to the workpiece through increasing plasma gas convection. If the power is held constant, the reduced voltage lowers the arc efficiency, while the pool shape change increases the melting efficiency,

  7. Improvement in the Characteristics of Electric Double Layer Capacitor Using a Mixture of Arc Black and Carbon Nanoballoon

    NASA Astrophysics Data System (ADS)

    Okabe, Yuta; Izumi, Harutaka; Suda, Yoshiyuki; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki

    2013-11-01

    Carbon nanomaterials with different structures were mixed for an electric double layer capacitor (EDLC) electrode. We used two kinds of carbon nanomaterial: arc black (AcB) and a carbon nanoballoon (CNB). Arc black was synthesized by arc discharge. CNB was produced by heating the prepared AcB at 2400 °C. AcB mostly consists of an amorphous component and has a large specific surface area. On the other hand, CNB has a graphitic surface and a high conductivity. To utilize their characteristics, AcB and CNB were used as the main materials of the EDLC electrode in weight ratios of 1:1, 2:1, and 1:2. The obtained EDLC electrode was filled with 1 M H2SO4 as the electrolyte. As a result, by mixing AcB and CNB, both the power and energy densities became higher than those of AcB or CNB alone. The EDLC mixed in 1:1 weight ratio of AcB and CNB showed the highest performance, with a higher electric power density than activated carbon (AC).

  8. Synthesis of carbon nanotubes by arc discharge in open air.

    PubMed

    Paladugu, Mohan Chand; Maneesh, K; Nair, P Kesavan; Haridoss, Prathap

    2005-05-01

    In this work Carbon nanotubes have been synthesized by arc discharge in open air. A TIG welding ac/dc inverter was used as the power source for arc discharge. During each run of the arc discharge based synthesis, the anode was a low purity (approximately 85% C by weight) graphite rod. The effect of varying the atmosphere on the yield of soot of the carbon nanotube containing carbon soot has been studied. Various soots were produced, purified by oxidation and characterized to confirm formation of carbon nanotubes and their relative quality, using transmission electron microscopy, Raman spectroscopy, and XRD. It was found that the yield of soot formed on the cathode is higher when synthesis is carried out in open air than when carried out in a flowing argon atmosphere. When synthesized in open air, using a 7.2-mm-diameter graphite rod as anode, the yield of soot was around 50% by weight of the graphite consumed. Current and voltage for arcing were at identical starting values in all the experiments. This modified method does not require a controlled atmosphere as in the case of a conventional arc discharge method of synthesis and hence the cost of production may be reduced. PMID:16010933

  9. Arc jet diagnostics tests

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1989-01-01

    Two objectives were addressed during a 10 week 1988 NASA/ASEE summer faculty fellowship at the Johnson Space Center Atmospheric Reentry Materials Structures Evaluation Facility (ARMSEF). These objectives were the evaluation of mass spectrometry for the measurement of atomic and molecular species in an arc jet environment, and the determination of atomic recombination coefficients for reaction cured glass (RCG) coated high temperature surface insulation (HRSI) materials subjected to simulated reentry conditions. Evaluation of mass spectrometry for the measurement of atomic and molecular species provided some of the first measurements of point compositions in arc jet tunnel environments. A major objective of this project centered around the sampling residence time. A three staged vacuum sampling system pulled the molecules and atoms from the arc jet to a quadrupole ionization mass spectrometer in 400 milliseconds. Conditions investigated included a composition survey across the nozzle exit at 3 cm z-distance from the nozzle exit for 3 different currents. Also, a point composition survey was taken around a shock created by the presence of a blunt body.

  10. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  11. Active Subduction Beneath The Gibraltar Arc

    NASA Astrophysics Data System (ADS)

    Gutscher, M.-A.; Malod, J.; Rehault, J.-P.; Contrucci, I.; Klingelhoefer, F.; Spakman, W.; Sismar Scientific Team

    The Gibraltar region features the arcuate Betic - Rif mountain belt with outward di- rected thrusting, surrounding a zone of strong Neogene subsidence and crustal thin- ning in the Western Alboran Sea. Until now its geodynamic interpretation has re- mained controversial. The Gibraltar Arc is located at the eastern end of the Azores- Gibraltar transform, a diffuse transpressional plate boundary between the Iberian and African Plates. Attention has recently been focussed on this plate boundary, while seeking the likely source of the destructive Lisbon great earthquake (M 8.5 - 9) and tsunami of 1755. The SISMAR marine seismic survey conducted in April 2001 ac- quired over 3000 km of 360-channel seismic data with a 4.5 km long streamer and 1000 km of wide-angle data recorded by ocean bottom seismometers (OBS), com- pletely spanning the actively deforming region between the margins of Portugal and northwest Morocco. Results from this seismic survey reveal a thick chaotic sedimen- tary mass west of Gibraltar to be an actively deforming accretionary wedge, with east dipping thrust faults disrupting the seafloor and soleing out to an east dipping decolle- ment. New travel-time tomographic results image a continuous east dipping body with high seismic velocities (i.e. a cold slab of oceanic lithosphere) descending from the Atlantic domain of the Gulf of Cadiz, passing through intermediate depth (60 - 120 km) seismicity beneath the Gibraltar Arc and Western Alboran Sea, and merging with a region of deep focus earthquakes 600 - 660 km below Granada Spain. Together these provide compelling evidence for an active east dipping subduction zone. Slab rollback towards the west provides a plausible mechanism for extension and subsidence in the Alboran Sea, while the associated westward advance of the Gibraltar Arc drives com- pressional deformation in the accretionary wedge where active mud volcanoes have recently been discovered.

  12. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  13. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  14. ACS Symposium Support

    SciTech Connect

    Kenneth D. Jordan

    2010-02-20

    The funds from this DOE grant were used to help cover the travel costs of five students and postdoctoral fellows who attended a symposium on 'Hydration: From Clusters to Aqueous Solutions' held at the Fall 2007 American Chemical Society Meeting in Boston, MA, August 19-23. The Symposium was sponsored by the Physical Chemistry Division, ACS. The technical program for the meeting is available at http://phys-acs.org/fall2007.html.

  15. Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow

    SciTech Connect

    Zhao, Tian-Liang; Liu, Jing-Lin; Li, Xiao-Song; Liu, Jin-Bao; Song, Yuan-Hong; Xu, Yong; Zhu, Ai-Min

    2014-05-15

    An annular-mode gliding arc discharge powered by a 50 Hz alternating current (ac) supply was studied in a vortex flow of dry and humid air. Its temporal evolution characteristics were investigated by electrical measurement, temporally resolved imaging, and temporally resolved optical emission spectroscopic measurements. Three discharge stages of arc-ignition, arc-gliding, and arc-extinction were clearly observed in each half-cycle of the discharge. During the arc-gliding stage, the intensity of light emission from the arc root at the cathode was remarkably higher than that at other areas. The spectral intensity of N{sub 2}(C{sup 3}Π{sub u}−B{sup 3}Π{sub g}) during the arc-ignition stage was much higher than that during the arc-gliding stage, which was contrary to the temporal evolutions of spectral intensities for N{sub 2}{sup +}(B{sup 2}Σ{sub u}{sup +}−X{sup 2}Σ{sub g}{sup +}) and OH(A{sup 2}Σ{sup +}−X{sup 2}Π{sub i}). Temporally resolved vibrational and rotational temperatures of N{sub 2} were also presented and decreased with increasing the water vapor content.

  16. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  17. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  18. TAMA. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, H.

    1994-06-03

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  19. Of Eggs and Arcs

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Thomas, P. C.; Helfenstein, P.; Tiscareno, M. S.; Hedman, M. M.; Agarwal, M.

    2012-10-01

    New scenarios for the origins of Saturn’s rings/interior moons have directed scientific attention to the region just exterior to Saturn’s main rings. Four satellites (Aegaeon = Ae; Anthe = An; Methone = Me; Pallene = Pa) discovered by the Cassini mission on either side of Mimas’s orbit perhaps comprise a distinct class of ring-moon. They are tiny (R = 0.3-2.5 km); three (AeAnMe) are trapped in co-rotation resonances with Mimas and reside within ring-arcs; and at least two (MePa) have remarkably regular shapes. Images with pixel scales as fine as 27 m taken in May 2012 reveal Methone to be ovoid within 10 m (from sub-pixel limb detection) and devoid of any craters (>130 m) across its 9 km2 of surface; Pallene and even tiny Aegaeon have similar appearances in lesser-quality images. Numerical simulations demonstrate that particles comprising the surrounding ring-arcs populate the same resonances as their embedded moons; escape speeds from the moons are < 0.5 m/s, smaller than the 2 m/s that dynamically characterize the resonant well. We investigate the gentle transfer of particles back and forth between the ring-arcs and any embedded bodies. In this environment, the moons’ shapes are smooth equipotentials; electrostatic effects may also determine how grains settle to surfaces. Considering these shapes to represent equipotential surfaces for rotating, tidally distorted, homogeneous bodies, we infer mean satellite densities of 250+/-60 (Pa), 310+/-30 (Me), and 540+/-120 (Ae) kg m-3. About half of Methone’s leading hemisphere is covered by a sharply bounded, lemon-shaped, relatively dark region, having a form reminiscent of Mimas’s thermal anomaly (Howett et al. 2011). Its (601 nm) albedo is 13% lower than the bounding brighter material. An irregularly shaped, even-darker (by 4%) blotch straddles the apex of the moon’s motion. Impacts with circum-planetary meteoroids and plasma are likely responsible for these features.

  20. Laser Assisted Plasma Arc Welding

    SciTech Connect

    FUERSCHBACH,PHILLIP W.

    1999-10-05

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  1. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  2. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  3. An arc-sequencing algorithm for intensity modulated arc therapy

    SciTech Connect

    Shepard, D. M.; Cao, D.; Afghan, M. K. N.; Earl, M. A.

    2007-02-15

    Intensity modulated arc therapy (IMAT) is an intensity modulated radiation therapy delivery technique originally proposed as an alternative to tomotherapy. IMAT uses a series of overlapping arcs to deliver optimized intensity patterns from each beam direction. The full potential of IMAT has gone largely unrealized due in part to a lack of robust and commercially available inverse planning tools. To address this, we have implemented an IMAT arc-sequencing algorithm that translates optimized intensity maps into deliverable IMAT plans. The sequencing algorithm uses simulated annealing to simultaneously optimize the aperture shapes and weights throughout each arc. The sequencer enforces the delivery constraints while minimizing the discrepancies between the optimized and sequenced intensity maps. The performance of the algorithm has been tested for ten patient cases (3 prostate, 3 brain, 2 head-and-neck, 1 lung, and 1 pancreas). Seven coplanar IMAT plans were created using an average of 4.6 arcs and 685 monitor units. Additionally, three noncoplanar plans were created using an average of 16 arcs and 498 monitor units. The results demonstrate that the arc sequencer can provide efficient and highly conformal IMAT plans. An average sequencing time of approximately 20 min was observed.

  4. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  5. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  6. Arc spot grouping: An entanglement of arc spot cells

    SciTech Connect

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  7. Ionospheric composition in SAR-arcs. [Stable Auroral Red Arcs

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Schunk, R. W.; Banks, P. M.

    1976-01-01

    Theoretical ion and electron density profiles in the SAR-arc region are calculated using a model of the ionosphere based on the coupled continuity, momentum, and energy equations for O(+), NO(+), and O2(+). It is found that an increase in the reaction O(+) + N2 yields NO(+) + N, which results from enhanced N2 vibrational excitation due to the high electron temperatures found in SAR arcs, can cause a reduction in F-region electron densities by up to a factor of two. The increase in the O(+) + N2 reaction rate is shown to result in a marked change in the ion composition in SAR arcs, with NO(+) being an important ion up to altitudes of about 350 km at night. Since observed electron-density depressions in SAR arcs generally vary between factors of two and seven, it is concluded that the increase in the O(+) + N2 reaction rate cannot account for these depressions by itself.

  8. Arc spot grouping: An entanglement of arc spot cells

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-01

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  9. The ALMA Regional Centers (ARC)

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Hibbard, J.; Okumura, S. K.; Braatz, J.

    2011-04-01

    ALMA is an international facility, a partnership between Europe, East Asia, and North America, in cooperation with the Republic of Chile. As such, ALMA will serve a worldwide community of astronomers. To interface with the geographically distributed user community, the partners have established three ALMA Regional Centers, or ARCs. The ARCs provide the primary gateway to ALMA for the user community. The ARCs are staffed by scientists with expertise in radio astronomy and interferometry, and their purpose is to work with the community of astronomers to maximize the scientific productivity of the telescope.

  10. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  11. AC solar cell

    SciTech Connect

    Schutten, H.P.; Benjamin, J.A.; Lade, R.W.

    1986-03-18

    An AC solar cell is described comprising: a pair of PN junction type solar cells connected in antiparallel between a pair of main terminals; and means for electrically directing light alternatingly without mechanical movement on the PN junctions to generate an alternating potential across the main terminals.

  12. AC 67 Launch Video

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Live footage of the Unmanned Atlas Centaur (AC) 67 launch is presented on March 26, 1987 at the WESH television station in Florida. Lightning is shown after 49 seconds into the flight. The vehicle is totally destroyed due to a cloud-to-ground lightning flash.

  13. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  14. Characterization of degradation fragments released by arc-induced ablation of polymers in air

    NASA Astrophysics Data System (ADS)

    Aminlashgari, Nina; Becerra, Marley; Hakkarainen, Minna

    2016-02-01

    Polymers exposed to high intensity arc plasmas release material in a process called arc-induced ablation. In order to investigate the degradation fragments released due to this process, two different polymeric materials, poly(oxymethylene) copolymer (POM-C) and poly(methyl methacrylate) (PMMA), were exposed to a transient, high-power arc plasma in air. A small fraction of the ablated material drifting away from the arcing volume was deposited on a fixed glass substrate during the total duration of a 2 kA ac current semicycle. In addition, another fraction of the released material was deposited on a second moving substrate to obtain a time-resolved streak ‘image’ of the arc-induced ablation process. For the first time, mass spectra of degradation fragments produced by arc-induced ablation were obtained from the material deposited on the substrates by using laser desorption ionization time-of-flight mass spectrometry (LDI-ToF-MS). It was found that oligomers with mean molecular weight ranging between 400 and 600 Da were released from the surface of the studied polymers. The obtained spectra suggest that the detected degradation fragments of POM could be released by random chain scission of the polymer backbone. In turn, random chain scission and splitting-off the side groups are suggested as the main chemical mechanism leading to the release of PMMA fragments under arc-induced ablation.

  15. Percussive arc welding apparatus

    DOEpatents

    Hollar, Jr., Donald L.

    2002-01-01

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  16. Arc of opportunity.

    PubMed

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia. PMID:21878026

  17. ARC syndrome in preterm baby.

    PubMed

    Elmeery, A; Lanka, K; Cummings, J

    2013-10-01

    A preterm female infant born of 32 weeks gestational age was presenting with musculoskeletal abnormalities, and cholestasis that later on resolved. Later on, she developed renal tubular acidosis (RTA), poor weight gain, unexplained intermittent fever and recurrent spontaneous bleeding episodes. ARC is an acronym that stands for arthrogryposis, renal dysfunction and cholestasis. ARC syndrome is a rare disorder that is difficult to diagnose and is associated with poor outcomes. We present a case of ARC syndrome in an infant with a history of failure to thrive, early cholestasis and RTA. There are many unique features about this case that should add to our understanding of this genetic condition. To our knowledge this is the first identified case of ARC syndrome in a preterm infant. Although the specific mutation found in our patient has not been reported previously, the type and location of this mutation is consistent with our genetic understanding of this disorder. PMID:24071963

  18. Arc detector uses fiber optics

    NASA Technical Reports Server (NTRS)

    Finnegan, E. J.; Leech, R. A.

    1979-01-01

    Arc detector for protecting high-power microwave klystron oscillators uses fiber optics connected to remote solid-state light-sensing circuits. Detector is more reliable, smaller, and sensitive than other systems that locate detector in waveguide.

  19. Arc-heater performance research

    NASA Technical Reports Server (NTRS)

    Shepard, Charles E.; Durgapal, Prabha

    1994-01-01

    The tasks performed can be divided into the following categories: an analysis of the electric arc phenomena, especially near the electrodes; a parametric study of arcjet performance by means of a computer code (ARCFLO) and verification with experimental data where possible; the development of a data acquisition system to collect the above experimental data using Ames arc-jets; and a study of the critical components (electrodes and constrictor disks) and suggestions of how to improve their performance.

  20. Heat transfer in GTA welding arcs

    NASA Astrophysics Data System (ADS)

    Huft, Nathan J.

    Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry

  1. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  2. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    PubMed

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution. PMID:20545181

  3. Dosimetric and delivery characterizations of full-arc and half-arc volumetric-modulated arc therapy for maxillary cancer.

    PubMed

    Miura, Hideharu; Fujiwara, Masayuki; Tanooka, Masao; Doi, Hiroshi; Inoue, Hiroyuki; Takada, Yasuhiro; Kamikonya, Norihiko; Hirota, Shozo

    2012-09-01

    We compared the efficiency and accuracy of full-arc and half-arc volumetric-modulated arc therapy (VMAT) delivery for maxillary cancer. Plans for gantry rotation angles of 360° and 180° (full-arc and half-arc VMAT) were created for six maxillary cancer cases with the Monaco treatment planning system, and delivered using an Elekta Synergy linear accelerator. Full-arc and half-arc VMAT were compared with regard to homogeneity index (HI), conformity index (CI), mean dose to normal brain, total monitor units (MU), delivery times, root mean square (r.m.s.) gantry accelerations (°/s(2)), and r.m.s. gantry angle errors (°). The half-arc VMAT plans achieved comparable HI and CI to the full-arc plans. Mean doses to the normal brain and brainstem with the half-arc VMAT plans were on average 16% and 17% lower than those with the full-arc VMAT plans. For other organs at risk (OARs), no significant DVH differences were observed between plans. Half-arc VMAT resulted in 11% less total MU and 20% shorter delivery time than the full-arc VMAT, while r.m.s. gantry acceleration and r.m.s. gantry angle error during half-arc VMAT delivery were 30% and 23% less than those during full-arc VMAT delivery, respectively. Furthermore, the half-arc VMAT plans were comparable with the full-arc plans regarding dose homogeneity and conformity in maxillary cancer, and provided a statistical decrease in mean dose to OAR, total MU, delivery time and gantry angle error. Half-arc VMAT plans may be a suitable treatment option in radiotherapy for maxillary cancer. PMID:22843367

  4. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  5. Arc-cathode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Heberlein, J.

    1992-01-01

    Insufficient electrode life and uncertainties in that life are major problems hampering the development in many plasma application areas which make use of plasma torches, arc heaters, and arc jet thrusters. In spite of a considerable amount of work published dealing with arc-cathode phenomena, our present understanding is still incomplete because different physical phenomena dominate for different combinations of experimental parameters. The objective of our present research project is to gain a better understanding of the behavior of arc-cathode surface interaction over a wide range of parameters, and furthermore to develop guidelines for better thermal design of the electrode and the selection of materials. This report will present the research results and progress obtained on the arc-cathode interaction studies at the University of Minnesota. It includes results which have been obtained under programs other than the NASA funded program. Some of the results have been submitted in an informal interim progress report, and all of the results have been presented in a seminar during a visit to the NASA Lewis Research Center on October 16, 1992.

  6. Numerical parameter constraints for accurate PIC-DSMC simulation of breakdown from arc initiation to stable arcs

    NASA Astrophysics Data System (ADS)

    Moore, Christopher; Hopkins, Matthew; Moore, Stan; Boerner, Jeremiah; Cartwright, Keith

    2015-09-01

    Simulation of breakdown is important for understanding and designing a variety of applications such as mitigating undesirable discharge events. Such simulations need to be accurate through early time arc initiation to late time stable arc behavior. Here we examine constraints on the timestep and mesh size required for arc simulations using the particle-in-cell (PIC) method with direct simulation Monte Carlo (DMSC) collisions. Accurate simulation of electron avalanche across a fixed voltage drop and constant neutral density (reduced field of 1000 Td) was found to require a timestep ~ 1/100 of the mean time between collisions and a mesh size ~ 1/25 the mean free path. These constraints are much smaller than the typical PIC-DSMC requirements for timestep and mesh size. Both constraints are related to the fact that charged particles are accelerated by the external field. Thus gradients in the electron energy distribution function can exist at scales smaller than the mean free path and these must be resolved by the mesh size for accurate collision rates. Additionally, the timestep must be small enough that the particle energy change due to the fields be small in order to capture gradients in the cross sections versus energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  7. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  8. Subduction initiation at relic arcs

    NASA Astrophysics Data System (ADS)

    Leng, Wei; Gurnis, Michael

    2015-09-01

    Although plate tectonics is well established, how a new subduction zone initiates remains controversial. Based on plate reconstruction and recent ocean drilling within the Izu-Bonin-Mariana, we advance a new geodynamic model of subduction initiation (SI). We argue that the close juxtaposition of the nascent plate boundary with relic oceanic arcs is a key factor localizing initiation of this new subduction zone. The combination of thermal and compositional density contrasts between the overriding relic arc, and the adjacent old Pacific oceanic plate promoted spontaneous SI. We suggest that thermal rejuvenation of the overriding plate just before 50 Ma caused a reduction in overriding plate strength and an increase in the age contrast (hence buoyancy) between the two plates, leading to SI. The computational models map out a framework in which rejuvenated relic arcs are a favorable tectonic environment for promoting subduction initiation, while transform faults and passive margins are not.

  9. Flow Dynamics in Arc Welding

    SciTech Connect

    Lowke, John J.; Tanaka, Manabu

    2008-02-21

    The state of the art for numerical computations has now advanced so that the capability is within sight of calculating weld shapes for any arc current, welding gas, welding material or configuration. Inherent in these calculations is 'flow dynamics' applied to plasma flow in the arc and liquid metal flow in the weld pool. Examples of predictions which are consistent with experiment, are discussed for (1) conventional tungsten inert gas welding, (2) the effect of a fraction of a percent of sulfur in steel, which can increase weld depth by more than a factor of two through changes in the surface tension, (3) the effect of a flux, which can produce increased weld depth due to arc constriction, (4) use of aluminium instead of steel, when the much larger thermal conductivity of aluminium greatly reduces the weld depth and (5) addition of a few percent of hydrogen to argon, which markedly increases weld depth.

  10. Auroral arcs and ion outflow

    NASA Astrophysics Data System (ADS)

    Maggiolo, Romain

    2016-04-01

    This presentation provides an overwiew of the chapter "Auroral Arcs and Ion Outflow" from the AGU book "Auroral Dynamics and Space Weather" (eds Y. Zhang and L. J. Paxton). This topic covers a wide range of domains, from auroral acceleration processes, auroral arc morphology and dynamics to global magnetosphere-ionosphere coupling and atmospheric erosion. This presentation mainly focuses on the observational properties of auroral ion outflow. Recent observations about their large-scale spatial distribution and link with auroral forms will be presented. Auroral ion outflow statistical dependence on solar and geomagnetic activity and its modulation by auroral dynamics at the timescale of substorms will also be discussed.

  11. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  12. Unzipping of the volcano arc, Japan

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Smoot, N. C.; Rubin, M.

    1984-02-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin.

  13. Unzipping of the volcano arc, Japan

    USGS Publications Warehouse

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  14. Grain Refinement of AZ31 Magnesium Alloy Weldments by AC Pulsing Technique

    NASA Astrophysics Data System (ADS)

    Kishore Babu, N.; Cross, C. E.

    2012-11-01

    The current study has investigated the influence of alternating current pulsing on the structure and mechanical properties of AZ31 magnesium alloy gas tungsten arc (GTA) weldments. Autogenous full penetration bead-on-plate GTA welds were made under a variety of conditions including variable polarity (VP), variable polarity mixed (VPM), alternating current (AC), and alternating current pulsing (ACPC). AC pulsing resulted in significant refinement of weld metal when compared with the unpulsed conditions. AC pulsing leads to relatively finer and more equiaxed grain structure in GTA welds. In contrast, VP, VPM, and AC welding resulted in predominantly columnar grain structures. The reason for this grain refinement may be attributed to the periodic variations in temperature gradient and solidification rate associated with pulsing as well as weld pool oscillation observed in the ACPC welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, tensile strength, and ductility.

  15. Total Marrow Irradiation With RapidArc Volumetric Arc Therapy

    SciTech Connect

    Aydogan, Bulent; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Gwe-Ya, Kim

    2011-10-01

    Purpose: To develop a volumetric arc therapy (VMAT)-total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods and Materials: VMAT planning was performed for 6 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The organs at risk included the lungs, heart, liver, kidneys, bowels, brain, eyes, and oral cavity. The VMAT-TMI technique consisted of three plans: the head and neck, the chest, and the pelvis, each with three 330{sup o} arcs. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of {>=}12 Gy was 95%). The treatments were delivered and verified using MapCheck and ion chamber measurements. Results: The VMAT-TMI technique reported in the present study provided comparable dose distributions with respect to the fixed gantry linear accelerator intensity-modulated TMI. RapidArc planning was less subjective and easier, and, most importantly, the delivery was more efficient. RapidArc reduced the treatment delivery time to approximately 18 min from 45 min with the fixed gantry linear accelerator intensity-modulated TMI. When the prescription dose coverage was reduced to 85% from 95% and the mandible and maxillary structures were not included in the planning target volume as reported in a tomotherapy study, a considerable organ at risk dose reduction of 4.2-51% was observed. The average median dose for the lungs and lenses was reduced to 5.6 Gy from 7.2 Gy and 2.4 Gy from 4.5 Gy, respectively. Conclusion: The RapidArc VMAT technique improved the treatment planning, dose conformality, and, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.

  16. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  17. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  18. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  19. Arc track resistant polymers for space applications

    NASA Technical Reports Server (NTRS)

    Haghighat, Ross

    1995-01-01

    The properties and test methods of aorimide polymers, kapton, and fep teflon are given in table format. Graphic depiction of an atomic oxygen resistance comparison, arc track resistance set-up and arc incident vs. propagation are given.

  20. Arc restrike in the rail accelerator

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1989-01-01

    One of the causes of the degradation in rail accelerator performance is the formation of a secondary arc. Experimental evidence of arc restrike and the subsequent growth of this secondary arc is presented. A simple analytical treatment of arc restrike is developed in terms of breakdown of residual vapor atoms. It is found that after the passage of the primary arc, the bore volume contains a large number of residual neutral vapor atoms. If the density of these atoms is in excess of the critical density, then for a certain length of time the condition exists in the bore for the formation of a secondary arc. Evaporation of atoms from the bore surfaces cannot provide a sufficient number of atoms for an arc restrike. A likely source of the high residual atom density is the leakage of a portion of the ablated material that is added to the trailing edge of the primary arc.

  1. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  2. Rotating Drive for Electrical-Arc Machining

    NASA Technical Reports Server (NTRS)

    Fransen, C. D.

    1986-01-01

    Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.

  3. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  4. Arc-starting aid for GTA welding

    NASA Technical Reports Server (NTRS)

    Whiffen, E. L.

    1977-01-01

    Three-in-one handtool combining arc-gap gage, electrode tip sander, and electrode projection gate, effectively improves initiation on gas tungsten arc (GTA), automatic skate-welding machines. Device effects ease in polishing electrode tips and setting exactly initial arc gap before each weld pass.

  5. Making Conductive Polymers By Arc Tracking

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  6. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    NASA Astrophysics Data System (ADS)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-01

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H-) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H- current at higher frequency of cathode heating current.

  7. Numerical Simulation of Stationary AC Tungsten Inert Gas Welding of Aluminum Plate in Consideration of Oxide Layer Cleaning

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Tanaka, Manabu

    An unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  8. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  9. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  10. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  11. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  12. Parametric Study on Arc Behavior of Magnetically Diffused Arc

    NASA Astrophysics Data System (ADS)

    Chen, Tang; Li, Hui; Bai, Bing; Liao, Mengran; Xia, Weidong

    2016-01-01

    A model coupling the plasma with a cathode body is applied in the simulation of the diffuse state of a magnetically rotating arc. Four parametric studies are performed: on the external axial magnetic field (AMF), on the cathode shape, on the total current and on the inlet gas velocity. The numerical results show that: the cathode attachment focuses in the center of the cathode tip with zero AMF and gradually shifts off the axis with the increase of AMF; a larger cathode conical angle corresponds to a cathode arc attachment farther away off axis; the maximum values of plasma temperature increase with the total current; the plasma column in front of the cathode tip expands more severely in the axial direction, with a higher inlet speed; the cathode arc attachment shrinks towards the tip as the inlet speed increases. The various results are supposed to be explained by the joint effect of coupled cathode surface heating and plasma rotating flow. supported by National Natural Science Foundation of China (Nos. 11475174, 11035005 and 50876101)

  13. A mechanism that triggers double arcing during plasma arc cutting

    NASA Astrophysics Data System (ADS)

    Nemchinsky, Valerian

    2009-10-01

    Double arcing (DA) is a phenomenon when a transferred arc, flowing inside an electrically insulated nozzle, breaks into two separate arcs: one that connects the cathode and the nozzle and another that connects the nozzle and a work-piece. It is a commonly accepted opinion that the reason for DA is high voltage drop in the plasma inside the nozzle. However, the specific mechanism that triggers the DA development is not clear. In this paper, we propose such a mechanism. Dielectric films deposited inside the nozzle's orifice play the key role in this mechanism. These films are charged by ion current from plasma. A strong electric field is created inside the film and at the boundary of the film and clean metal of the nozzle. This gives rise to a thermo-field electron emission from the clean metal that borders the film. Emitted electrons are accelerated at the voltage drop between the nozzle and plasma. These electrons produce extra ions, which in turn move back to the film and additionally charge it. This sequence of events leads to explosive instability if the voltage drop inside the nozzle is high enough. Experiments to check the proposed mechanism are suggested.

  14. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium

    PubMed Central

    2011-01-01

    Background Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control) helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium. Results We compared the transcriptional profiles of the virulent wild-type (WT) strain (ATCC 14028s) and its isogenic arcA mutant grown under anaerobic conditions. We found that ArcA directly or indirectly regulates 392 genes (8.5% of the genome); of these, 138 genes are poorly characterized. Regulation by ArcA in S. Typhimurium is similar, but distinct from that in E. coli. Thus, genes/operons involved in core metabolic pathways (e.g., succinyl-CoA, fatty acid degradation, cytochrome oxidase complexes, flagellar biosynthesis, motility, and chemotaxis) were regulated similarly in the two organisms. However, genes/operons present in both organisms, but regulated differently by ArcA in S. Typhimurium included those coding for ethanolamine utilization, lactate transport and metabolism, and succinate dehydrogenases. Salmonella-specific genes/operons regulated by ArcA included those required for propanediol utilization, flagellar genes (mcpAC, cheV), Gifsy-1 prophage genes, and three SPI-3 genes (mgtBC, slsA, STM3784). In agreement with our microarray data, the arcA mutant was non-motile, lacked flagella, and was as virulent in mice as the WT. Additionally, we identified a set of 120 genes whose regulation was shared with the anaerobic redox regulator, Fnr. Conclusion(s) We have identified the ArcA regulon in anaerobically grown S. Typhimurium. Our results demonstrated that in S. Typhimurium, ArcA serves as a transcriptional regulator coordinating cellular metabolism, flagella biosynthesis, and

  15. The refractory painful arc syndrome.

    PubMed

    Watson, M

    1978-11-01

    Twenty-three patients with a severe refractory painful arc syndrome have been treated by excision of the outer end of the clavicle and division of the coracoacromial ligament through a deltoid-splitting approach. After a follow-up of more than six months all patients have been relieved of night pain. Six still have slight pain on movement, but the rest are symptom-free. PMID:711806

  16. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    SciTech Connect

    Zhang, H.-S.; Komvopoulos, K.

    2008-07-15

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp{sup 3}) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  17. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    PubMed

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study. PMID:18681714

  18. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  19. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  20. Physical characteristics of welding arc ignition process

    NASA Astrophysics Data System (ADS)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  1. Parsing Aleutian Arc Magma Compositions

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2011-12-01

    The first-order subdivision of Aleutian arc magma compositions is based on SiO2, and the second-order subdivision is usually based on the change of FeOt/MgO as a function of SiO2, resulting in the additional twofold subdivision into (TH) and calcalkaline (CA) magmas. However, additional robust compositional variations exist. The two most important of these are (1) variation of the calcium number [Ca#; Ca/(Na+Ca)] as a function of SiO2, and (2) the Rate of Incompatible Trace-element Enrichment (RITE) at individual volcanic centers. Additionally, the data show that the low FeOt/MgO of CA andesite and dacite is more controlled by MgO excess than FeOt depletion. The Ca# of andesites and dacites is strongly bimodal. The low-Ca# group is "calc-alkalic", while the high-Ca# group is "calcic", using Peacock (1931) criteria. A continuum of Ca#s exists, but lavas intermediate between high-Ca# and low-Ca# are much less abundant. Ca#s merge below about 55% SiO2, and have a simple normal distribution. RITE, with rare but important exceptions, is generally constant at the temporal and spatial scale of a single volcano. Among high-RITE magmas LILE, LREE, HFSE, and Th increase ~3.5-fold, and HREE increase ~2.5-fold from basalt or basaltic-andesite through andesite to dacite. There is no strong indication that RITE is silica-dependant. High-RITE magmas develop a strong negative Eu anomaly, and are qualitatively compatible with an origin primarily involving fractionation of plagioclase-dominated mineral assemblages. Low-RITE magmas, in contrast, have nearly invariant REE and HFSE, and LILE and Th increase merely 1.5-fold over the same silica range. Low-RITE magmas are not compatible with fractionation of a plagioclase-dominant mineral assemblage. Alternative qualitatively plausible explanations (needing rigorous evaluation) include fractionation of an ultramafic mineral assemblage (Alaskan-type mafic-ultramafic bodies may be a model; see USGS Prof Paper 1564); that low-RITE basaltic

  2. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect

    O'Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  3. Ac traction gets on track

    SciTech Connect

    O`Connor, L.

    1995-09-01

    This article describes inverter-based ac traction systems which give freight locomotives greater adhesion, pulling power, and braking capacity. In the 1940s, dc traction replaced the steam engine as a source of train propulsion, and it has ruled the freight transportation industry ever since. But now, high-performance ac-traction systems, with their unprecedented levels of pulling power and adhesion, are becoming increasingly common on America`s freight railroads. In thousands of miles of demonstration tests, today`s ac-traction systems have outperformed traditional dc-motor driven systems. Major railroad companies are convinced enough of the benefits of ac traction to have integrated it into their freight locomotives.

  4. ARC length control for plasma welding

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1988-01-01

    A control system to be used with a plasma arc welding apparatus is disclosed. The plasma arc welding apparatus includes a plasma arc power supply, a contactor, and an electrode assembly for moving the electrode relative to a work piece. The electrode assembly is raised or lowered by a drive motor. The present apparatus includes a plasma arc adapter connected across the power supply to measure the voltage across the plasma arc. The plasma arc adapter forms a dc output signal input to a differential amplifier. A second input is defined by an adjustable resistor connected to a dc voltage supply to permit operator control. The differential amplifier forms an output difference signal provided to an adder circuit. The adder circuit then connects with a power amplifier which forms the driving signal for the motor. In addition, the motor connects to a tachometor which forms a feedback signal delivered to the adder to provide damping, therby avoiding servo loop overshoot.

  5. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  6. Nomenclature of SLC Arc beamline components

    SciTech Connect

    Silva, J.; Weng, W.T.

    1986-04-10

    This note defines I and C formal names for beamline components in the Arc as specified in the TRANSPORT decks ARCN FINAL and ARCS FINAL of June 5, 1985. The formal name consists of three fields: the primary name, the zone and the unit number. The general principles and guidelines are explained in Reference 1. The rationale and the final resolutions of the naming conventions for the Arc are explained.

  7. One Arc PMSM for telescope tracking system

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Zhang, Zhenchao; Wang, Daxing; Hu, Wei; Zhu, Zhenlian

    2008-07-01

    This paper explores one Arc PMSM for Direct Drive Telescope tracking system. By the Arc PMSM, we can very easily manufacture one direct drive system for large telescope. Direct drive system has many advantages over more traditionally used friction and rack/pinion drive. The advantages include high stiffness, no friction, easy alignment and low maintenance. The paper discusses the design process of the Arc PMSM, especially the methods to reduce the torque ripple.

  8. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, Steven

    1995-01-01

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.

  9. Automatic Control Of Length Of Welding Arc

    NASA Technical Reports Server (NTRS)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  10. The Abundance of Large Arcs From CLASH

    NASA Astrophysics Data System (ADS)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team

    2015-01-01

    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  11. Metals purification by improved vacuum arc remelting

    DOEpatents

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  12. Electrode Evaporation Effects on Air Arc Behavior

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Chen, Degui; Li, Rui; Wu, Yi; Niu, Chunping

    2008-06-01

    A numerical study of the effects of copper and silver vapours on the air arc behavior is performed. The commercial software FLUENT is adapted and modified to develop a two-dimensional magneto-hydrodynamic (MHD) models of arc with the thermodynamic properties and transport coefficients, net emission coefficient for the radiation model of 99% ai-1% Cu, 99% air-1% Ag, and pure air, respectively. The simulation result demonstrates that vaporization of the electrode material may cool the arc center region and reduce the arc velocity. The effects of Ag vapour are stronger compared to those of Cu vapour.

  13. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia; Raitses, Yevgeny

    2016-09-01

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10‑3 s range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablation regime.

  14. Dark Halos and Substructure from Arcs & Einstein Rings

    NASA Astrophysics Data System (ADS)

    Koopmans, Leon

    2006-07-01

    The surface brightness distribution of extended gravitationally lensed arcs and Einstein rings contains super-resolved information about the lensed object, and, more excitingly, about the smooth and clumpy mass distribution of the lens galaxies. The source and lens information can non-parametrically be separated, resulting in a direct "gravitational image" of the inner mass-distribution of cosmologically-distant galaxies {Koopmans 2005; Koopmans et al. 2006 [astro-ph/0601628]}. With this goal in mind, we propose deep HST ACS-F555W/F814W and NICMOS-F160W WFC imaging of 20 new gravitational-lens systems with spatially resolved lensed sources, of the 35 new lens systems discovered by the Sloan Lens ACS Survey {Bolton et al. 2005} so far, 15 of which are being imaged in Cycle-14. Each system has been selected from the SDSS and confirmed in two time-efficient HST-ACS snapshot programs {cycle 13&14}. High-fidelity multi-color HST images are required {not delivered by the 420s snapshots} to isolate these lensed images {properly cleaned, dithered and extinction-corrected} from the lens galaxy surface brightness distribution, and apply our "gravitational maging" technique. Our sample of 35 early-type lens galaxies to date is by far the largest, still growing, and most uniformly selected. This minimizes selection biases and small-number statistics, compared to smaller, often serendipitously discovered, samples. Moreover, using the WFC provides information on the field around the lens, higher S/N and a better understood PSF, compared with the HRC, and one retains high spatial resolution through drizzling. The sample of galaxy mass distributions - determined through this method from the arcs and Einstein ring HST images - will be studied to: {i} measure the smooth mass distribution of the lens galaxies {dark and luminous mass are separated using the HST images and the stellar M/L values derived from a joint stellar-dynamical analysis of each system}; {ii} quantify

  15. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  16. Risk assessment of metal vapor arcing

    NASA Technical Reports Server (NTRS)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  17. Spinarc gas tungsten arc torch holder

    NASA Technical Reports Server (NTRS)

    Brace, D. F.; Crockett, J. L.

    1970-01-01

    Semiautomatic welding torch enables operator to control arc length, torch angle, and spring tension when welding small diameter aluminum tubing. Tungsten is preset for the weld to make arc initiation easier and to eliminate searching for the joint through a dark welding lens.

  18. Copper coating specification for the RHIC arcs

    SciTech Connect

    Blaskiewicz, M.

    2010-12-01

    Copper coating specifications for the RHIC arcs are given. Various upgrade scenarios are considered and calculations of resistive wall losses in the arcs are used to constrain the necessary quality and surface thickness of a copper coating. We find that 10 {mu}m of high purity copper will suffice.

  19. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  20. Preventing Arc Welding From Damaging Electronics

    NASA Technical Reports Server (NTRS)

    Sargent, Noel; Mareen, D.

    1988-01-01

    Shielding technique developed to protect sensitive electronic equipment from damage due to electromagnetic disturbances produced by arc welding. Established acceptable alternative in instances in which electronic equipment cannot be removed prior to arc welding. Guidelines established for open, unshielded welds. Procedure applicable to robotics or computer-aided manufacturing.

  1. Purification of tantalum by plasma arc melting

    SciTech Connect

    Dunn, P.S.; Korzekwa, D.R.

    1999-10-26

    Purification of tantalum by plasma arc melting is disclosed. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  2. Steady rotation of the Cascade arc

    USGS Publications Warehouse

    Wells, Ray E.; McCaffrey, Robert

    2013-01-01

    Displacement of the Miocene Cascade volcanic arc (northwestern North America) from the active arc is in the same sense and at nearly the same rate as the present clockwise block motions calculated from GPS velocities in a North American reference frame. Migration of the ancestral arc over the past 16 m.y. can be explained by clockwise rotation of upper-plate blocks at 1.0°/m.y. over a linear melting source moving westward 1–4.5 km/m.y. due to slab rollback. Block motion and slab rollback are in opposite directions in the northern arc, but both are westerly in the southern extensional arc, where rollback may be enhanced by proximity to the edge of the Juan de Fuca slab. Similarities between post–16 Ma arc migration, paleomagnetic rotation, and modern GPS block motions indicate that the secular block motions from decadal GPS can be used to calculate long-term strain rates and earthquake hazards. Northwest-directed Basin and Range extension of 140 km is predicted behind the southern arc since 16 Ma, and 70 km of shortening is predicted in the northern arc. The GPS rotation poles overlie a high-velocity slab of the Siletzia terrane dangling into the mantle beneath Idaho (United States), which may provide an anchor for the rotations.

  3. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Lee, Cin-Ty; Manga, Michael

    2014-05-01

    The location of volcanic arcs, relative to the trench evolves over time. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where back-arc extension dominates, migrate more slowly, if at all. Coupled with arc migration there are systematic changes in the geochemistry of magmas such as the ratio of trace elements La/Yb and 87Sr/86Sr isotopes (e.g., Haschke et al., 2002). The position of active volcanic arcs relative to the trench is controlled by the location where melt is generated in the mantle wedge, in turn controlled by the geometry of subduction, and the processes that focus rising melt. Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust and lithosphere. Thickening rate is determined by the mantle melt flux into the crust, modulated by tectonics and surface erosion. It is not steady in time, as crustal thickening progressively truncates the mantle melt column and eventually shuts it off. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop a quantitative model for arc front migration that is consistent with published arc front data, and explains why arc fronts do not move when there is extension, such

  4. Investigation of Hot Cracking Behavior in Transverse Mechanically Arc Oscillated Autogenous AA2014 T6 TIG Welds

    NASA Astrophysics Data System (ADS)

    Biradar, N. S.; Raman, R.

    2012-09-01

    Hot cracking studies on autogenous AA2014 T6 TIG welds were carried out. Significant cracking was observed during linear and circular welding test (CWT) on 4-mm-thick plates. Weld metal grain structure and amount of liquid distribution during the terminal stages of solidification were the key cause for hot cracking in aluminum welds. Square-wave AC TIG welding with transverse mechanical arc oscillation (TMAO) was employed to study the cracking behavior during linear and CWT. TMAO welds with amplitude = 0.9 mm and frequency = 0.5 Hz showed significant reduction in cracking tendency. The increase in cracking resistance in the arc-oscillated weld was attributed to grain refinement and improved weld bead morphology, which improved the weld metal ductility and uniformity, respectively, of residual tensile stresses that developed during welding. The obtained results were comparable to those of reported favorable results of electromagnetic arc oscillation.

  5. Numerical Study on Arc Plasma Behavior During Arc Commutation Process in Direct Current Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Ma, Ruiguang; Wu, Yi; Sun, Hao; Niu, Chunping; Rong, Mingzhe

    2012-02-01

    This paper focuses on the numerical investigation of arc plasma behavior during arc commutation process in a medium-voltage direct current circuit breaker (DCCB) contact system. A three-dimensional magneto-hydrodynamic (MHD) model of air arc plasma in the contact system of a DCCB is developed, based on commercial software FLUENT. Coupled electromagnetic and gas dynamic interactions are considered as usual, and a thin layer of nonlinear electrical resistance elements is used to represent the voltage drop of plasma sheath and the formation of new arc root. The distributions of pressure, temperature, gas flow and current density of arc plasma in arc region are calculated. The simulation results indicate that the pressure distribution related to the contact system has a strong effect on the arc commutation process, arising from the change of electrical conductivity in the arc root region. In DCCB contact system, the pressure of arc root region will be concentrated and higher if the space above the moving contact is enclosed, which is not good for arc root commutation. However, when the region is opened, the pressure distribution would be lower and more evenly, which is favorable for the arc root commutation.

  6. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  7. Thermoacoustic energy effects in electrical arcs.

    PubMed

    Capelli-Schellpfeffer, M; Miller, G H; Humilier, M

    1999-10-30

    Electrical arcs commonly occur in electrical injury incidents. Historically, safe work distances from an energized surface along with personal barrier protection have been employee safety strategies used to minimize electrical arc hazard exposures. Here, the two-dimensional computational simulation of an electrical arc explosion is reported using color graphics to depict the temperature and acoustic force propagation across the geometry of a hypothetical workroom during a time from 0 to 50 ms after the arc initiation. The theoretical results are compared to the experimental findings of staged tests involving a mannequin worker monitored for electrical current flow, temperature, and pressure, and reported data regarding neurologic injury thresholds. This report demonstrates a credible link between electrical explosions and the risk for pressure (acoustic) wave trauma. Our ultimate goal is to protect workers through the design and implementation of preventive strategies that properly account for all electrical arc-induced hazards, including electrical, thermal, and acoustic effects. PMID:10842616

  8. Sensor Control of Robot Arc Welding

    NASA Technical Reports Server (NTRS)

    Sias, F. R., Jr.

    1983-01-01

    The potential for using computer vision as sensory feedback for robot gas-tungsten arc welding is investigated. The basic parameters that must be controlled while directing the movement of an arc welding torch are defined. The actions of a human welder are examined to aid in determining the sensory information that would permit a robot to make reproducible high strength welds. Special constraints imposed by both robot hardware and software are considered. Several sensory modalities that would potentially improve weld quality are examined. Special emphasis is directed to the use of computer vision for controlling gas-tungsten arc welding. Vendors of available automated seam tracking arc welding systems and of computer vision systems are surveyed. An assessment is made of the state of the art and the problems that must be solved in order to apply computer vision to robot controlled arc welding on the Space Shuttle Main Engine.

  9. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1985-08-05

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  10. Low voltage arc formation in railguns

    DOEpatents

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  11. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1987-11-17

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  12. Laser assisted arc welding for aluminum alloys

    SciTech Connect

    Fuerschbach, P.W.

    2000-01-01

    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  13. Three-dimensional modeling of the plasma arc in arc welding

    SciTech Connect

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  14. Three-dimensional modeling of the plasma arc in arc welding

    NASA Astrophysics Data System (ADS)

    Xu, G.; Hu, J.; Tsai, H. L.

    2008-11-01

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  15. 3D Numerical simulation of high current vacuum arc in realistic magnetic fields considering anode evaporation

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Huang, Xiaolong; Jia, Shenli; Deng, Jie; Qian, Zhonghao; Shi, Zongqian; Schellenkens, H.; Godechot, X.

    2015-06-01

    A time-dependent 3D numerical model considering anode evaporation is developed for the high current vacuum arc (VA) under a realistic spatial magnetic field. The simulation work contains steady state 3D numerical simulation of high current VA considering anode evaporation at nine discrete moments of first half wave of 50 Hz AC current, transient numerical simulation of anode activity, and realistic spatial magnetic field calculation of commercial cup-shaped electrodes. In the simulation, contact opening and arc diffusion processes are also considered. Due to the effect of electrode slots, the simulation results of magnetic field and temperature of anode plate exhibit six leaves shape (SLS). During 6-8 ms, the strong evaporation of anode surface seriously influence the parameter distributions of VA. Ions emitted from anode penetrate into arc column and the axial velocity distribution on the anode side exhibits SLS. The ions emitted from anode surface have the same temperature with anode surface, which cool the arc plasma and lead to a relative low temperature area formed. The seriously evaporation of anode leads to the accumulation of ions near the anode, and then the current density is more uniform.

  16. The Ophiolite - Oceanic Fore-Arc Connection

    NASA Astrophysics Data System (ADS)

    Reagan, M. K.; Pearce, J. A.; Stern, R. J.; Ishizuka, O.; Petronotis, K. E.

    2014-12-01

    Miyashiro (1973, EPSL) put forward the hypothesis that many ophiolites are generated in subduction zone settings. More recently, ophiolitic sequences including MORB-like basalts underlying boninites or other subduction-related rock types have been linked to near-trench spreading during subduction infancy (e.g., Stern and Bloomer, 1992, GSA Bull.; Shervais, 2001, G-cubed; Stern et al., 2012, Lithos.). These contentions were given strong support by the results of Shinkai 6500 diving in the Izu-Bonin-Mariana (IBM) fore-arc (e.g., Reagan et al., 2010, G-cubed; Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL). Based on widely spaced dives and grab sampling at disbursed dive stops, these studies concluded that the most abundant and most submerged volcanic rocks in the IBM fore-arc are MORB-like basalts (fore-arc basalts or FAB), and that these basalts appear to be part of a crustal sequence of gabbro, dolerite, FAB, boninite, and normal arc lavas overlying depleted peridotite. This ophiolitic sequence was further postulated to make up most or all of the IBM fore-arc from Guam to Japan, with similar magmatic ages (52 Ma FAB to 45 Ma arc) north to south, reflecting a western-Pacific wide subduction initiation event. At the time of this writing, IODP Expedition 352 is about to set sail, with a principal goal of drilling the entire volcanic sequence in the Bonin fore-arc. This drilling will define the compositional gradients through the volcanic sequence associated with subduction initiation and arc infancy, and test the hypothesized oceanic fore-arc - ophiolite genetic relationship. A primary goal of this expedition is to illustrate how mantle compositions and melting processes evolved during decompression melting of asthenosphere during subduction initiation to later flux melting of depleted mantle. These insights will provide important empirical constraints for geodynamic models of subduction initiation and early arc development.

  17. Modernization of the control system and the electrical equipment of DSV vacuum arc furnaces

    NASA Astrophysics Data System (ADS)

    Dednev, A. A.; Kisselman, M. A.; Nekhamin, S. M.; Kalinin, V. I.; Koshelev, Yu. N.

    2010-06-01

    The results of modernizing one of the DSV-3.2-G1 arc furnaces at OAO Elektrostal’ Metallurgical Works are presented. New automatic control system ACS DSV-3.2 with functions of maintenance, control, and correction of the main technical parameters of vacuum arc remelting is created. The electric furnace is equipped with a modern visual control system for a heat and a unique inert gas (helium) supply system. The rod motion drive is replaced by a modern drive with frequency control of its motion velocity. New control cabinet and desk made of modern elements are mounted. Melting of a pilot series of EP-718 alloy ingots supports the high quality and reliability of the new control systems.

  18. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  19. Zircon Recycling in Arc Intrusions

    NASA Astrophysics Data System (ADS)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]<150 ppm) and thus low calculated zircon saturation temperatures (Tzrnsat). Within the Half Dome and Cathedral Peak, TzrnTi values are predominantly at or below average Tzrnsat, and there is no apparent correlation between age and TzrnTi. At temperatures appropriate for granodiorite/tonalite melt generation (at or above biotite dehydration; >825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically <200 ppm and frequently 100-150 ppm for individual large intrusions or intrusive suites). We infer from this that [Zr] in anatectic melts is probably not limited by zircon supply and is primarily controlled by melting parameters. Comparison of the data from TIS with one of these intrusions, the smaller but otherwise

  20. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  1. Theoretical analysis of ARC constriction

    SciTech Connect

    Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.

    1980-12-01

    The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)

  2. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    PubMed

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful. PMID:24405950

  3. Propagation of back-arc extension into the arc lithosphere in the southern New Hebrides volcanic arc

    NASA Astrophysics Data System (ADS)

    Patriat, M.; Collot, J.; Danyushevsky, L.; Fabre, M.; Meffre, S.; Falloon, T.; Rouillard, P.; Pelletier, B.; Roach, M.; Fournier, M.

    2015-09-01

    New geophysical data acquired during three expeditions of the R/V Southern Surveyor in the southern part of the North Fiji Basin allow us to characterize the deformation of the upper plate at the southern termination of the New Hebrides subduction zone, where it bends eastward along the Hunter Ridge. Unlike the northern end of the Tonga subduction zone, on the other side of the North Fiji Basin, the 90° bend does not correspond to the transition from a subduction zone to a transform fault, but it is due to the progressive retreat of the New Hebrides trench. The subduction trench retreat is accommodated in the upper plate by the migration toward the southwest of the New Hebrides arc and toward the south of the Hunter Ridge, so that the direction of convergence remains everywhere orthogonal to the trench. In the back-arc domain, the active deformation is characterized by propagation of the back-arc spreading ridge into the Hunter volcanic arc. The N-S spreading axis propagates southward and penetrates in the arc, where it connects to a sinistral strike-slip zone via an oblique rift. The collision of the Loyalty Ridge with the New Hebrides arc, less than two million years ago, likely initiated this deformation pattern and the fragmentation of the upper plate. In this particular geodynamic setting, with an oceanic lithosphere subducting beneath a highly sheared volcanic arc, a wide range of primitive subduction-related magmas has been produced including adakites, island arc tholeiites, back-arc basin basalts, and medium-K subduction-related lavas.

  4. The ac53, ac78, ac101, and ac103 Genes Are Newly Discovered Core Genes in the Family Baculoviridae

    PubMed Central

    Garavaglia, Matías Javier; Miele, Solange Ana Belén; Iserte, Javier Alonso; Belaich, Mariano Nicolás

    2012-01-01

    The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae. PMID:22933288

  5. Simple Equipment for Imaging AC.

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Anayama, Takayuki

    2003-01-01

    Presents an effective way to demonstrate the difference between direct current and alternating current using red and green LEDs. Describes how to make a tool that shows how an AC voltage changes with time using the afterimage effect of the LEDs. (Author/NB)

  6. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  7. Energy saving in ac generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch "on" time increases when generator is in operation.

  8. Towards a theory for Neptune's arc rings

    SciTech Connect

    Goldreich, P.; Tremaine, S.; Borderies, N.

    1986-08-01

    It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus. 15 references.

  9. Ultrasound in arc welding: a review.

    PubMed

    da Cunha, Tiago Vieira; Bohórquez, Carlos Enrique Niño

    2015-02-01

    During the last decade, the introduction of ultrasound techniques in arc welding with the intention of improving the operational performance and technical characteristics of the welding processes have been studied intensively. In this work is presented a broad review of the literature surrounding the utilization of this technique. Firstly, we discuss the use of traditional mechanical transducers to generate ultrasound in arc welding. Furthermore, we describe the various methods and their application in arc-welding processes. After, is presented a recent method of introducing ultrasonic energy in arc welding, which forms a potential alternative to the use of traditional mechanical type transducers. This method was originally developed in the late 1990s and is called arc with ultrasonic excitation of current. Here, the arc acts not only as a thermal source but also as an emission mechanism for ultrasound, acting directly on the weld pool. We presented and discussed various innovative concepts based on this method, which allows the introduction of ultrasonic energy in the arc welding without the need of any auxiliary device of welding. In addition, we also presented the variations of this method reported in the literature. Finally, we have described the respective effects attributed to the use of this method in the welding of different materials using various welding processes. PMID:25455190

  10. Initial development of the Banda Volcanic Arc

    SciTech Connect

    Hartono, H.M.S. )

    1990-06-01

    The initial development of the Banda Volcanic Arc can be determined by obtaining absolute ages of granites or volcanics, stratigraphy of the Eocene Metan Volcanics of Timor as the oldest formation containing Banda Volcanic Arc extrusives, and tectonic analysis. Banda Arc volcanism is the result of subduction of oceanic crust under the volcanic arc. The time of initial subduction is related to initial seafloor spreading between Australia and Antarctica, which is identical to geomagnetic polarity time 34 (82 mybp). Therefore, 82 mybp can be used as one of the criteria to determine the birth of the Banda Volcanic Arc. With present available time data for determining the birth of the Banda Volcanic Arc, the minimum age coincides with the age of the Metan Volcanics (Eocene, 39-56 mybp) and the maximum age coincides with initial seafloor spreading between Australia and Antarctica (82 mybp). This time span is too long. With the assumption that it needs some time to develop from transcurrent faulting to subduction and volcanism, it is proposed that the initial development of Banda Arc volcanism was during early Tertiary.

  11. Crustal recycling and the aleutian arc

    SciTech Connect

    Kay, R.W.; Kay, S.M. )

    1988-06-01

    Two types of crustal recycling transfer continental crust back into its mantle source. The first of these, upper crustal recycling, involves elements that have been fractionated by the hydrosphere-sediment system, and are subducted as a part of the oceanic crust. The subduction process (S-process) then fractionates these elements, and those not removed at shallow tectonic levels and as excess components of arc magmas are returned to the mantle. Newly determined trace element composition of Pacific oceanic sedimants are variable and mixing is necessary during the S-process, if sediment is to provide excess element in the ratios observed in Aleutian arc magmas. Only a small fraction of the total sediment subducted at the Aleutian trench is required to furnish the excess elements in Aleutian arc magmas. Ba and {sub 10}Be data indicate that this small fraction includes a contribution from the youngest subducted sediment. The second type of recycling, lower crustal recycling, involves crystal cumulates of both arc and oceanic crustal origin, and residues from crustal melting within arc crust. Unlike the silicic sediments, recycled lower crust is mafic to ultramafic in composition. Trace element analyses of xenoliths representing Aleutian arc lower crust are presented. Recycling by delamination of lower crust and attached mantle lithosphere may occur following basalt eclogite phase transformations that are facilitated by terrane suturing events that weld oceanic island arcs to the continents. The relative importance of upper and lower crustal recycling exerts a primary control on continental crustal composition.

  12. Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Kano, Ryota; Mitubori, Hironori; Iwao, Toru

    2015-11-01

    Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.

  13. Reconstruction of Late Cretaceous Magmatic Arcs in the Northern Andes: Single Versus Multiple Arc Systems

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Jaramillo, J. S.; Leon, S.; Hincapie, S.; Mejia, D.; Patino, A. M.; Vanegas, J.; Zapata, S.; Valencia, V.; Jimenez, G.; Monsalve, G.

    2014-12-01

    Although magmatic rocks are major tracers of the geological evolution of convergent margins, pre-collisional events such as subduction erosion, collisional thrusting or late collisional strike slip segmentation may difficult the recognizing of multiple arc systems and therefore the existence of paleogeographic scenarios with multiple subduction systems. New field, U-Pb geochronology and whole rock geochemistry constraints from the northwestern segment of the Central Cordillera in the states of Antioquia and Caldas (Colombia) are used to understand the nature of the Late Cretaceous arc magmatism and evaluate the existence of single or multiple Pacific and Caribbean arc systems in the growth of the Northwestern Andes. The new results integrated with additional field and published information is used to suggest the existence of at least three different magmatic arcs. (1) An Eastern Continental arc built within a well defined Permian to Triassic continental crust that record a protracted 90-70 Ma magmatic evolution, (2) a 90-80 arc formed within attenuated continental crust and associated oceanic crust, (3) 90-88 Ma arc formed over a Late Cretaceous plateau crust. The eastern arcs were formed as part of double eastern vergent subduction system, where the most outboard arc represent a fringing arc formed over detached fragments of continental crust, whereas the easternmost continental arc growth by the closure an subduction of and older and broad Triassic to Early Jurassic back-arc ocean. Its closure also end up in ophiolite emplacement. The third allochtonous oceanic arc was formed over the Caribbean plateau crust and was accreted to the continental margin in the Late Cretaceous. Ongoing paleomagnetic, deformational, gravimetric and basin analysis will be integrate to test this model and understand the complex Late Cretaceous tectonic evolution of the Northern Andes.

  14. Melting Efficiency During Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.

  15. Formation of the G-ring arc

    NASA Astrophysics Data System (ADS)

    Araujo, N. C. S.; Vieira Neto, E.; Foryta, D. W.

    2016-05-01

    Since 2004, the images obtained by Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves raising the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario that the excitation of Mimas' eccentricity could capture particles in a corotation resonance and given a possible explanation for the origin for the arcs.

  16. Modeling Multi-Arc Spraying Systems

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.

    2016-04-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  17. Modeling Multi-Arc Spraying Systems

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.

    2016-06-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  18. Electrical Arc Ignition Testing for Constellation Program

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle; Gallus, Timothy; Smith, Sarah

    2009-01-01

    NASA Johnson Space Center (JSC) Materials and Processes Branch requested that NASA JSC White Sands Test Facility (WSTF) perform testing for the Constellation Program to evaluate the hazard of electrical arc ignition of materials that could be in close proximity to batteries. Specifically, WSTF was requested to perform wire-break electrical arc tests to determine the current threshold for ignition of generic cotton woven fabric samples with a fixed voltage of 3.7 V, a common voltage for hand-held electrical devices. The wire-break test was developed during a previous test program to evaluate the hazard of electrical arc ignition inside the Extravehicular Mobility Unit [1].

  19. The Global Array of Primitve Arc Melts

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Jagoutz, O. E.

    2015-12-01

    A longstanding question concerns the nature of the melts forming in the subarc mantle and giving rise to arc magmatism. The global array of primitive arc melts (1180 volcanic rocks in 25 arcs extracted from the georoc database, calculated to be in equilibrium with mantle olivine) yields five principal melt types: calc-alkaline basalts and high-Mg andesites, tholeiitic basalts and high-Mg andesites, and shoshonitic or alkaline arc melts; many arcs have more than one type. Primitive calc-alkaline basalts occur in 11 arcs but most strikingly, 8 continental arcs (incl. Aleutians, Cascades, Japan, Mexico, Kamtschatka) have a continuous range of calc-alkaline basalts to high-Mg andesites with mostly 48-58 wt% SiO2. In each arc, these are spatially congruent, trace element patterns overlap, and major elements form a continuum. Their Ca-Mg-Si systematics suggests saturation in olivine+opx+cpx. We hence interpret the large majority of high-Mg andesites as derived from primitive calc-alkaline basalts through fractionation and reaction in the shallower mantle. Removal of anhydrous mantle phases at lower pressures increases SiO2 and H2O-contents while Mg# and Ni remain buffered to mantle values. Primitive tholeiitic basalts (Cascades, Kermadec, Marianas, Izu-Bonin, Japan, Palau, Sunda) have a much lesser subduction signal (e.g. in LILE) than the calc-alkaline suite. These tholeiites have been interpreted to form through decompression melting, but also characterize young intraoceanic arcs. In the two continental arcs with both tholeiitic and calc-alkaline primitive basalts (clearly distinct in trace patterns), there is no clear spatial segregation (Casacades, Japan). Three intraoceanic arcs (Marianas, Izu-Bonin, Tonga) have primitive tholeiitic, highly depleted high-Mg andesites (boninites) with HFSE and HREE slightly above primitive mantle values. These deviate in majors from the array formed by the basalts and calc-alkaline andesites suggesting that only these formed from a

  20. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  1. Formation of the G-ring arc

    NASA Astrophysics Data System (ADS)

    Araujo, N. C. S.; Vieira Neto, E.; Foryta, D. W.

    2016-09-01

    Since 2004, the images obtained by the Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves increasing the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario in which the excitation of Mimas's eccentricity could capture particles in a corotation resonance. This is a possible explanation for the origin of the arcs.

  2. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    NASA Astrophysics Data System (ADS)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    The overall curvature of many subduction zones is immediately apparent and the term island arc betrays the common assumption that subduction zone magmatism occurs in curved zones. This assumption can be expressed by approximating island arcs as segments of small circles on the surface of a sphere. Such treatments predict that the location of arc volcanoes is related to their vertical separation from the slab (in fact, the depth to seismicity in the slab) and require that the primary control on the locus of magmatism lies either within the subducted slab or the mantle wedge that separates the subducted and overriding lithospheric plates. The concept of curved arcs ignores longstanding observations that magmatism in many subduction systems occurs as segments of linearly arranged volcanic centres. Further evidence for this distribution comes from the close relationship between magmatism and large scale, arc-parallel fabrics in some arcs. Similarly, exposures of deep arc crust or mantle often reveal elongation of magmatic intrusions sub-parallel to the inferred trend of the arc. The Sunda Arc forms the Indonesian islands from Sumatra to Alor and provides an important test for models of volcano distribution for several reasons. First, Sunda has hosted abundant historic volcanic activity. Second, with the notable exception of Krakatau, every volcano in the arc is subaerial from base to cone and, therefore, can be readily identified where there is a suitable extent of local mapping that can be used to ground-truth satellite imagery. Third, there are significant changes in the stress regime along the length of the arc, allowing the influence of the upper plate to be evaluated by comparison of different arc segments. Finally, much of the Sunda Arc has proved difficult to accommodate in models that try to relate volcano distribution to the depth to the subducted slab. We apply an objective line-fitting protocol; the Hough Transform, to explore the distribution of volcanoes

  3. Micromachining of large area amorphous carbon membranes prepared by filtered cathodic vacuum arc technique

    NASA Astrophysics Data System (ADS)

    Liujiang, Yu; Tay, B. K.; Sheeja, D.; Fu, Y. Q.; Miao, J. M.

    2004-02-01

    Currently, there is a strong drive to make micro-electro-mechanical system (MEMS) devices from higher performance materials such as diamond-like carbon or amorphous carbon (a-C) films, due to their excellent tribological properties, low-stiction (hydrophobic) surfaces, chemical inertness and high elastic modulus, compared to that of Si. The hydrogen free a-C films prepared, by Nanyang Technological University's (NTUs) patented filtered cathodic vacuum arc (FCVA) technique, at 100 eV exhibits high fraction of tetrahedral (sp 3 bonded) carbon atoms. These films exhibit relatively high hardness, stiffness and wear resistance in addition to low friction and stiction behaviour. However, the primary problem lies in the large intrinsic compressive stress induced during the deposition process. By making use of high substrate pulse bias, we have successfully produced low stress, thick a-C films. The films were then characterised using different equipments to evaluate the stress, microstructure and morphological roughness. Large area a-C membranes, of 2 mm×2 mm in size, have also been fabricated using the low stress, thick film deposited by the above method.

  4. The ring arcs of Neptune

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1991-01-01

    After the corotation resonance with an exterior satellite proved inapplicable to the Neptune ring arc confinement, a search for other mechanisms settled on the possible influence of Neptune's magnetic field. The areas of greater optical depth around the ring are much dustier than the low optical depth regions. These particles reside in a plasma; therefore, they must carry some charge. The components of Neptune's magnetic field on the equator at the radius of the ring arcs as a function of Neptunian longitude are shown. The components are those of an offset tilted dipole model. Although the dipole model is probably not a good approximation so close to the planet, the magnitude of the field that is given is probably close to the actual value. The possible importance of the magnetic field on the smallest particles in the ring is indicated by the ratio of the magnetic field on the smallest particles in the ring is indicated by the ratio of the magnetic force to the central gravitation attraction with the field strength of B = 0.01 gauss at the ring distance. A preferred position in the orbit for magnetically perturbed particles seems to require a commensurability between the rotation of the planet and the motion of the particle in the orbit. The period of rotation is assumed to be that of the radio bursts at 16.11 hours. However, without a model for the radio emission, one cannot be absolutely sure. Jupiter's decametric radiation depends on Io's orbital position as well as the rotation, so a synodic periodicity might be appropriate. But the latter radiation is highly directed, whereas Neptune's was seen all along the spacecraft trajectory on the 16.11 hour schedule, i.e., with no shifts in phase relative to a fixed longitude on the planet. The ring orbital period is 10.536 hours which is not commensurate with the rotation period. If the 16.11 hours is interpreted as a synodic period between the rotation and a satellite motion, the closest rotation periods to 16 hours

  5. Voltage controller/current limiter for ac

    NASA Technical Reports Server (NTRS)

    Wu, T. T.

    1980-01-01

    Circuit protects ac power systems for overload failures, limits power surge and short-circuit currents to 150 percent of steady state level, regulates ac output voltage, and soft starts loads. Limiter generates dc error signal in response to line fluctuations and dumps power when overload is reached. Device is inserted between ac source and load.

  6. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX

    NASA Astrophysics Data System (ADS)

    Schnick, M.; Fuessel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.

    2011-06-01

    Current numerical models of gas metal arc welding (GMAW) are trying to combine magnetohydrodynamics (MHD) models of the arc and volume of fluid (VoF) models of metal transfer. They neglect vaporization and assume an argon atmosphere for the arc region, as it is common practice for models of gas tungsten arc welding. These models predict temperatures above 20 000 K and a temperature distribution similar to tungsten inert gas (TIG) arcs. However, current spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to TIG arcs they found a central local minimum of the radial temperature distribution. The paper presents a GMAW arc model that considers metal vapour and which is in a very good agreement with experimentally observed temperatures. Furthermore, the model is able to predict the local central minimum in the radial temperature and the radial electric current density distributions for the first time. The axially symmetric model of the welding torch, the work piece, the wire and the arc (fluid domain) implements MHD as well as turbulent mixing and thermal demixing of metal vapour in argon. The mass fraction of iron vapour obtained from the simulation shows an accumulation in the arc core and another accumulation on the fringes of the arc at 2000 to 5000 K. The demixing effects lead to very low concentrations of iron between these two regions. Sensitive analyses demonstrate the influence of the transport and radiation properties of metal vapour, and the evaporation rate relative to the wire feed. Finally the model predictions are compared with the measuring results of Zielińska et al.

  7. Vacuum arc plasma mass separator

    NASA Astrophysics Data System (ADS)

    Paperny, V. L.; Krasov, V. I.; Lebedev, N. V.; Astrakchantsev, N. V.; Chernikch, A. A.

    2015-02-01

    The propagation of a metal plasma flow in a transport system with a curvilinear magnetic field was studied experimentally. The flow was generated by a pulsed vacuum arc discharge with a composite (W+Fe) cathode. The ion energy measurements at the transport system output showed that all ion components were accelerated up to equal energies per charge unit, about 150 eV and 320 eV in the outer and inner areas of the curved plasma flow, respectively. The spatial separation of the atoms of the cathode material was measured at the system output by x-ray fluorescence spectrometry. The ions of the lighter element (Fe) were concentrated in the inner part of the cathodic plasma flow deflected by the magnetic field while the distribution of the heavy element (W) was substantially shifted toward the outer area of the flow. The maximum mass separation efficiency reached 45, the effective value being 7.7. Such a system is promising for use in plasma technology for reprocessing spent nuclear fuel, namely for the separation of the heavy radioactive fission product from nuclear waste.

  8. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  9. ATLAS DDM integration in ARC

    NASA Astrophysics Data System (ADS)

    Behrmann, G.; Cameron, D.; Ellert, M.; Kleist, J.; Taga, A.

    2008-07-01

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed among heterogeneous resources in several countries and yet must present a single access point for all data stored within the centre. The middleware framework used in NDGF differs significantly from other Grids, specifically in the way that all data movement and registration is performed by services outside the worker node environment. Also, the service used for cataloging the location of data files is different from other Grids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data within NDGF.

  10. Stretched arc discharge in produced water.

    PubMed

    Cho, Y I; Wright, K C; Kim, H S; Cho, D J; Rabinovich, A; Fridman, A

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost. PMID:25638080

  11. Laboratory arc furnace features interchangeable hearths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. L.; Kruger, O. L.

    1967-01-01

    Laboratory arc furnace using rapidly interchangeable hearths gains considerable versatility in casting so that buttons or special shaped castings can be produced. It features a sight glass for observation.

  12. Magneto-plasma-dynamic arc thruster

    NASA Technical Reports Server (NTRS)

    Burkhart, J. A. (Inventor)

    1973-01-01

    The performance of a magnetoplasmadynamic arc thruster, in the 600 to 2,100 seconds specific impulse range, was improved by locating its cathode in the exhaust beam downstream of the anode and main propellant injection point.

  13. ARC syndrome: an expanding range of phenotypes

    PubMed Central

    Eastham, K; McKiernan, P; Milford, D; Ramani, P; Wyllie, J; van't, H; Lynch, S; Morris, A

    2001-01-01

    AIM—To describe the clinical phenotype in infants with ARC syndrome, the association of arthrogryposis, renal tubular acidosis, and cholestasis.
METHODS—The medical records for six patients with ARC syndrome were reviewed, presenting over 10 years to three paediatric referral centres.
RESULTS—All patients had the typical pattern of arthrogryposis. Renal Fanconi syndrome was present in all but one patient, who presented with nephrogenic diabetes insipidus. Although all patients had severe cholestasis, serum γ glutamyltransferase values were normal. Many of our patients showed dysmorphic features or ichthyosis. All had recurrent febrile illnesses, diarrhoea, and failed to thrive. Blood films revealed abnormally large platelets.
CONCLUSIONS—ARC syndrome exhibits notable clinical variability and may not be as rare as previously thought. The association of Fanconi syndrome, ichthyosis, dysmorphism, jaundice, and diarrhoea has previously been reported as a separate syndrome: our observations indicate that it is part of the ARC spectrum.

 PMID:11668108

  14. Stretched arc discharge in produced water

    NASA Astrophysics Data System (ADS)

    Cho, Y. I.; Wright, K. C.; Kim, H. S.; Cho, D. J.; Rabinovich, A.; Fridman, A.

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost.

  15. Arc voltage measurements of the hyperbaric MIG process

    SciTech Connect

    Huismann, G.; Hoffmeister, H.

    1996-12-01

    As a vital part of the MIG process, the arc controls the stability of the process, the melting of the filler wire and the base material. In order to control and describe the arc behavior, it is necessary to know the voltage- current- arc length relations, or the arc characteristics. Knowledge of arc characteristics is necessary for control of the MIG process and further automation of welding systems, in particular, at hyperbaric welding. In literature, information on arc characteristics for hyperbaric open arc pulsed process is not available so far. Therefore, in the present work, arc characteristics were measured for a pressure range of 1 to 16 bar. In measuring arc voltages and arc lengths of MIG arcs, specific problems are encountered as compared to TIG arcs where the distance between the electrode and work piece can be taken as the arc length and the ohmic voltage drop in the tungsten electrode is low. The movement of the electrode in the MIG process and the deformation of the molten wire end together with weld pool fluctuations are providing a complex system. For determining the arc characteristics certain simplifications are thus required which have been applied in this work. This paper presents a new concept on measuring arc lengths and voltages in the open MIG arc.

  16. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  17. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  18. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  19. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  20. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  1. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  2. Arc distribution during the vacuum arc remelting of Ti-6Al-4V

    SciTech Connect

    Woodside, Charles Rigel; King, Paul E.; Nordlund, Chris

    2013-01-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot–Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  3. Sensitivity of collapsed arc QA method for delivery errors in Volumetric Modulated Arc Therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    Young, Tony; Xing, Aitang; Vial, Philp; Thwaites, David; Holloway, Lois; Arumugam, Sankar

    2015-01-01

    In this paper the sensitivity of an Electronic Portal Imaging Device (EPID) to detecting introduced Volumetric Arc Therapy (VMAT) treatment errors was studied using the Collapsed Arc method. Two clinical Head and Neck (H&N) and Prostate treatment plans had gantry dependent dose and MLC errors introduced to the plans. These plans were then delivered to an Elekta Synergy Linear Accelerator EPID and compared to the original treatment planning system Collapsed Arc dose matrix. With the Collapsed Arc technique the EPID was able to detect MLC errors down to 2mm and dose errors of down to 3% depending on the treatment plan complexity and gamma tolerance used.

  4. Arc Distribution During the Vacuum Arc Remelting of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Woodside, C. Rigel; King, Paul E.; Nordlund, Chris

    2013-02-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot-Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  5. Metal Vapor Arcing Risk Assessment Tool

    NASA Technical Reports Server (NTRS)

    Hill, Monika C.; Leidecker, Henning W.

    2010-01-01

    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  6. Hybrid Laser-Arc Welding Tanks Steels

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Klimova-Korsmik, O.

    2016-04-01

    The results investigate hybrid laser-arc welding of high strength steels using design responsible metallic construction and the highest strength body of vehicles. Welds from modern high strength steels grade Hardox 400, Hardox 450, Armox 600T and AB were created. High power fiber laser LS-15 with output 15 kW and arc rectifier VDU - 1500 DC were used in the experiment. Results of the metallographic research and mechanical tests are presented.

  7. 1981N1 - A Neptune arc?

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1986-01-01

    An object in the vicinity of Neptune detected in 1981 by simultaneous stellar occultation measurements at observatories near Tucson, Arizona, was interpreted as a new Neptune satellite. A reinterpretation suggests that it may have instead been a Neptune arc similar to one observed in 1984. The 1981 object, however, did not occult the star during simultaneous observations at Flagstaff, Arizona. This result constrains possible arc geometries.

  8. Room-temperature hard coating of ultrananocrystalline diamond/nonhydrogenated amorphous carbon composite films on tungsten carbide by coaxial arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Naragino, Hiroshi; Egiza, Mohamed; Tominaga, Aki; Murasawa, Koki; Gonda, Hidenobu; Sakurai, Masatoshi; Yoshitake, Tsuyoshi

    2016-03-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite films were deposited on unheated WC containing Co by coaxial arc plasma deposition. The hardness of the film is 51.3 GPa, which is comparable with the highest values of hard a-C films deposited on nonbiased substrates. The deposited film is approximately 3 µm thick, which is one order larger than that of hard a-C films. The internal compressive stress is 4.5 GPa, which is evidently smaller than that of comparably hard a-C films. The existence of a large number of grain boundaries in the UNCD/a-C film might play a role in the release of the internal stress.

  9. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  10. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  11. Structure of an energetic narrow discrete arc

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. P.; Carlson, C. W.; Boehm, M. H.

    1990-01-01

    Particle distributions, waves, dc electric fields, and magnetic fields were measured by two sounding rockets at altitudes of 950 and 430 km through an energetic (greater than 5 keV) narrow (about 10 km) stable discrete arc. Although the payloads' magnetic footprints were separated by only 50 km, differences in the arc's structure were observed including the spatial width, peak energy, and characteristic spectra. The energetic electron precipitation included both slowly varying isotropic fluxes that formed an inverted-V energy-time signature and rapidly varying field-aligned fluxes at or below the isotropic spectral peak. The isotropic precipitation had a flux discontinuity inside the arc indicating the arc was present on a boundary between two different magnetospheric plasmas. Dispersive and nondispersive bursts of field-aligned electrons were measured throughout the arc, appearing over broad energy ranges or as monoenergetic beams. Dispersive bursts gave variable source distances less than 8000 km. Plateauing of some of the most intense bursts suggests that waves stabilized these electrons. During the lower altitude arc crossing, the field-aligned component formed a separate inverted-V energy-time signature whose peak energy was half the isotropic peak energy.

  12. Dynamics of a discrete auroral arc

    NASA Technical Reports Server (NTRS)

    Bruening, K.; Goertz, C. K.

    1986-01-01

    Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.

  13. Klystron Gun Arcing and Modulator Protection

    SciTech Connect

    Gold, S

    2004-05-04

    The demand for 500 kV and 265 amperes peak to power an X-Band klystron brings up protection issues for klystron faults and the energy dumped into the arc from the modulator. This situation is made worse when more than one klystron will be driven from a single modulator, such as the existing schemes for running two and eight klystrons. High power pulsed klystrons have traditionally be powered by line type modulators which match the driving impedance with the load impedance and therefore current limit at twice the operating current. Multiple klystrons have the added problems of a lower modulator source impedance and added stray capacitance, which converts into appreciable energy at high voltages like 500kV. SLAC has measured the energy dumped into klystron arcs in a single and dual klystron configuration at the 400 to 450 kV level and found interesting characteristics in the arc formation. The author will present measured data from klystron arcs powered from line-type modulators in several configurations. The questions arise as to how the newly designed solid-state modulators, running multiple tubes, will react to a klystron arc and how much energy will be dumped into the arc.

  14. Dynamics of a discrete auroral arc

    NASA Astrophysics Data System (ADS)

    Bruening, K.; Goertz, C. K.

    1986-06-01

    Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.

  15. Apparatus for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1991-01-01

    Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  16. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1990-01-01

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  17. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

    1990-11-13

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

  18. Recent ARC developments: Through modularity to interoperability

    NASA Astrophysics Data System (ADS)

    Smirnova, O.; Cameron, D.; Dóbé, P.; Ellert, M.; Frågåt, T.; Grønager, M.; Johansson, D.; Jönemo, J.; Kleist, J.; Kočan, M.; Konstantinov, A.; Kónya, B.; Márton, I.; Möller, S.; Mohn, B.; Nagy, Zs; Nilsen, J. K.; Ould Saada, F.; Qiang, W.; Read, A.; Rosendahl, P.; Roczei, G.; Savko, M.; Skou Andersen, M.; Stefán, P.; Szalai, F.; Taga, A.; Toor, S. Z.; Wäänänen, A.

    2010-04-01

    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  19. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, William K.

    1985-01-01

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  20. Making and breaking an Island arc: a new perspective from the Oligocene Kyushu-Palau arc

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Taylor, R. N.; Yuasa, M.; Ohara, Y.

    2010-12-01

    The Kyushu-Palau Ridge (KPR) is a 2000km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc system by a series of spreading and rift basins. In this study we present 40Ar/39Ar ages and geochemical data for new samples taken from the entire length of the Kyushu-Palau arc. As such, this data provides the first comprehensive evaluation of temporal and spatial changes that are present in an Eocene-Oligocene island arc. Kyushu-Palau arc geochemistry is evaluated alongside new data from the conjugate arc which is stranded within the IBM fore-arc. Boninitic magmatism gave way to transitional arc suites including high-Mg andesites at c. 45 Ma (Ishizuka et al., 2006). After the transitional 45-41 Ma period, a mature arc system developed through the Eocene-Oligocene time: This volcanism is now preserved as the KPR. Dating results from 33 sites indicate that the KPR was active between 25 and 43 Ma, but the majority of the exposed volcanism occurred in the final phase of this arc, between 25 and 27 Ma. Unlike the IBM, the KPR has only limited systematic along-arc trends and does not include any of the strongly HIMU lavas found to the south of Izu-Bonin. Two components found along the KPR are found to have geochemistry that suggests an origin in the supra-subduction mantle rather than from the descending ocean crust. Firstly, in the south of the arc, EM-2-like lavas are present where the West Philippine Basin was in the final stages of spreading. Secondly, EM-1-like lavas are present in a restricted section of the arc, suggesting a localised heterogeneity. Subduction flux beneath the KPR generally imparted a Pb isotope vector towards low Δ8/4 (<15) and moderate 206Pb/204Pb (>19). This is a similar trend to the Eocene/Oligocene lavas found on the eastern side of the basins which split the arc at 25Ma. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where arc magmatism occurred on pre-existing Daito Ridge crust: a

  1. Direct probing of anode arc root dynamics and voltage instability in a dc non-transferred arc plasma jet

    NASA Astrophysics Data System (ADS)

    Ghorui, S.; Tiwari, N.; Meher, K. C.; Jan, A.; Bhat, A.; Sahasrabudhe, S. N.

    2015-12-01

    The transient dynamics of the anode arc root in a dc non-transferred arc plasma torch is captured through fast photography and directly correlated with the associated voltage instability for the first time. The coexistence of multiple arc roots, the transition to a single arc root, root formation and extinction are investigated for the steady, takeover and re-strike modes of the arc. Contrary to the usual concept, the emerging plasma jet of a dc non-transferred arc plasma torch is found to carry current. An unusually long self-propelled arc plasma jet, a consequence of the phenomenon, is demonstrated.

  2. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  3. Arc distribution and motion during the vacuum arc remelting process as detected with a magnetostatic approach

    NASA Astrophysics Data System (ADS)

    Woodside, Rigel

    Currently, the temporal arc distribution across the ingot during the vacuum arc remelting (VAR) process is not a known or monitored parameter. It is has previously been shown that arcs can spatially constrict during VAR, and this constriction can lead to undesired defects in the material. Additionally, correct accounting for the heat flux, electric current flux, and mass flux into the ingot are critical to achieving realistic solidification models of the VAR process. An arc position measurement system capable of locating slow moving arcs and determining the arc distribution within an industrial VAR furnace was developed. The system is based on non-invasive magnetic field measurements and VAR specific forms of the magnetostatic Biot-Savart Law. Electromagnetic finite element modeling assists the analysis. The measurement system was installed on an industrial VAR furnace at the ATI facility in Albany, OR. Data were taken during the commercial production of titanium alloy. Although more arcs were present than could be resolved with the number of sensors applied, overall arc distribution shifts were detected. Arc distribution and motion during the final production of Ti-6Al-4V were examined. It is shown that several characteristic arc distribution modes can develop. This behavior was not apparent in the existing signals used to control the furnace, indicating the measurement system provides new information. Finally, a solidification model was used to assess the potential impact of the different arc distribution modes. It is shown the magnetohydrodynamic stirring patterns in the molten pool are affected, which results in localized variations in solidification times in particular at the side wall.

  4. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Lee, C.; Manga, M.

    2012-12-01

    The position of active volcanism relative to the trench in arcs depends on melt focusing processes within the mantle wedge and the geometric parameters of subduction. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where backarc extension dominates, exhibit a more stationary front in time relative to the trench. In addition, crustal indices of magmatism as measured by the ratio of trace elements La/Yb or isotopes 87}Sr/{86Sr covary with arc front migration (e.g., Haschke et al., 2002). Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust. Thickening proceeds through intrusive as well as extrusive volcanism, modulated by tectonics and surface erosion. Migration rate is set by the mantle melt flux into the crust, which decreases as thickening occurs. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop an analytic model of this process that produces migration rates consistent with published data and explains arc fronts that do not move (dominated by extension, such as in the case of intra-oceanic arcs). We present new geochemical and age data from the Peninsular Ranges Batholith that are also consistent with

  5. Towards Understanding the Sunda and Banda Arcs

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2014-12-01

    The present change from oceanic subduction beneath the Sunda Arc to arc-continent collision east of Sumba is merely the latest stage in a complex collision history that began more than 20 million years ago. Understanding present-day tectonics requires restoring the pre-collisional margins and unravelling the history of the entire Sunda-Banda Arc, not just a segment centred on Sumba. Seismic tomography displays a single folded slab beneath the Banda Arc around which mantle has flowed. Above this is a wide actively deforming zone of complex geology. Australian crust was first added to the Sunda margin in the Cretaceous. Early Miocene closure of the oceanic gap north of Australia led to further additions of continental crust during collision of the Sula Spur. Few microcontinental fragments were sliced from New Guinea as commonly interpreted. Most are parts of the Sula Spur fragmented by extension and strike-slip faulting during development of subduction zones and rollback into the Banda embayment. Many metamorphic 'basement' rocks are significantly younger than expected. They were metamorphosed during multiple episodes of extension which also exhumed the sub-lithospheric mantle, melted the deep continental crust, created new ocean basins, and dispersed continental crust throughout the inner and outer arc, and forearc, so that in places Australian crust is colliding with Australian crust. Thus, many of the arc volcanoes are built on continental not oceanic crust, and sediment eroded from recently emergent islands is compositionally different to subducted sediment that contributed to arc magmas. The published literature is inadequate. New fieldwork and data are required, particularly in remote areas, with integration of information from a variety of sources (e.g. industry seismic and multibeam bathymetry, remotely acquired imagery) and sub-disciplines (e.g. geochronology, geochemistry, seismology, modelling). No single methodology can provide a complete solution.

  6. Episodicity in back-arc tectonic regimes

    NASA Astrophysics Data System (ADS)

    Clark, Stuart R.; Stegman, Dave; Müller, R. Dietmar

    2008-12-01

    The evolution of back-arc basins is tied to the development of the dynamics of the subduction system they are a part of. We present a study of back-arc basins and model their development by implementing 3D time-dependant computer models of subduction including an overriding plate. We define three types of episodicity: pseudo-, quasi- and hyper-episodicity, and find evidence of these in nature. Observations of back-arc basin ages, histories of spreading, quiescence and compression in the overriding plate give us an understanding of the time-development of these subduction zones and back-arc basins. Across the globe today, a number of trenches are advancing—the Izu-Bonin Trench, the Mariana Trench, the Japan Trench, the Java-Sunda Trench and the central portion of the Peru-Chile Trench (the Andes subduction zone). The Izu-Bonin, Mariana and Japan all have established back-arc basins, while the others have documented episodes of spreading, quiescence, compression or a combination of these. The combination of advancing and retreating trench motion places these subduction zones in the category of hyper-episodicity. Quasi-episodicity, in which the back-arc shifts between phases of rifting, spreading and quiescence, is the dominant form of episodic back-arc development in the present. We find this type of episodicity in models for which the system is dynamically consistent—that we have allowed the subducting plate's velocity to be determined by the sinking slabs' buoyancy. Quasi- and hyper-episodicity are only found in subduction zones with relatively high subducting plate velocities, between 6 and 9 cm/year. Finally, those subduction zones for which the subducting plate is moving slowly, such as in the Mediterranean or the Scotia Sea, experience only pseudo-episodicity, where the spreading moves linearly towards the trench but often does so in discrete ridge-jump events.

  7. Gas Metal Arc Welding and Flux-Cored Arc Welding. Teacher Edition. Second Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; Gregory, Mike

    These instructional materials are designed to improve instruction in Gas Metal Arc Welding (GMAW) and Flux-Cored Arc Welding (FCAW). The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and…

  8. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. PMID:26558995

  9. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    SciTech Connect

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  10. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    SciTech Connect

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-15

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a 'ring' shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  11. Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation

    NASA Astrophysics Data System (ADS)

    Zhong, Jianying; Guo, Yujing; Zhang, Hao

    2016-03-01

    The preliminary design of an arc chamber in the 550 kV SF6 circuit breaker was proposed in accordance with the technical requirements and design experience. The structural optimization was carried out according to the no-load flow field simulation results and verified by no-load pressure measurement. Based on load simulation results such as temperature field variation at the arc area and the tendency of post arc current under different recovery voltage, the second optimal design was completed and its correctness was certificated by a breaking test. Results demonstrate that the interrupting capacity of an arc chamber can be evaluated by the comparison of the gas medium recovery speed and post arc current growth rate.

  12. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  13. Wet melting along the Tonga Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Cooper, L. B.; Plank, T.; Arculus, R. J.; Hauri, E. H.; Hall, P.

    2010-12-01

    Melting in the mantle at convergent margins is driven by water from the subducting slab. Previous work has found a strong role for water-fluxed melting from correlations between the concentration of water in the mantle source, (H2O)o, and the extent of melting beneath backarcs, Fba. Here we explore how wet melting beneath the Lau Backarc Basin relates to that beneath the Tonga Arc, Farc, by providing the first systematic study of water contents in Tonga arc magmas. We have measured volatiles and major and trace elements in melt inclusions, glasses, and whole rocks obtained from recently sampled submarine and subaerial Tonga arc volcanoes. The compositions are varied and range mostly between andesite and basalt/boninite, and least-degassed water contents range from 2 to 5 wt%. We estimate (H2O)o and Farc independently by combining pressure (P) and temperature (T) estimates from an olivine-orthopyroxene-melt thermobarometer with a wet melting productivity model. When P, T, and (H2O)o are known, Farc is uniquely constrained. Results for the volcanoes in the Tonga Arc are bimodal with respect to T: volcanoes located near active backarc spreading centers reflect cooler melting (~1275°C) than those located far from active spreading centers (~1365°C). The cooler primary T’s may result from removal of the heat of fusion during prior melting beneath the Lau backarc, Fba. In the northern portion of the arc, the warmest primary T’s may be due to proximity to the Samoan mantle plume. Farc varies non-systematically along-strike, indicating that Fba is the primary driver of along-arc variability in primary melt compositions. Farc can also be used to calculate the TiO2 concentration of the arc mantle source, (TiO2)o (a proxy for source depletion), which varies monotonically along the Tonga Arc. Arc volcanoes adjacent to the Southern Lau Rifts and Valu Fa Ridge melt mantle with a fertile N-MORB TiO2, while those adjacent to the northern extent of the Eastern Lau Spreading

  14. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: A composite(?), bimodal, oceanic, fringing arc

    USGS Publications Warehouse

    Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.

    2011-01-01

    The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.

  15. BROADBAND PHOTOMETRY OF 105 GIANT ARCS: REDSHIFT CONSTRAINTS AND IMPLICATIONS FOR GIANT ARC STATISTICS

    SciTech Connect

    Bayliss, Matthew B.

    2012-01-10

    We measure the photometric properties of 105 giant arcs that were identified in systematic searches for galaxy-cluster-scale strong lenses in the Second Red-Sequence Cluster Survey and the Sloan Digital Sky Survey. The cluster lenses span 0.2 < z{sub l} < 1.2 in redshift, with a median z-bar{sub l}=0.58. Using broadband color criteria we sort the entire arc sample into redshift bins based on u-g and g-r colors, and also r-z colors for the {approx}90% of arcs that have z-band data. This analysis yields broad redshift constraints with 71{sup +5}{sub -4%} of the arcs at z {>=} 1.0, 64{sup +6}{sub -4%} at z {>=} 1.4, 56{sup +5}{sub -4%} at z {>=} 1.9, and 21{sup +4}{sub -2%} at z {>=} 2.7. The remaining 29{sup +03}{sub -5%} have z < 1. The inferred median redshift is z-bar{sub s}= 2.0{+-}0.1, in good agreement with a previous determination from a smaller sample of brighter arcs (g {approx}< 22.5). This agreement confirms that z{sub s} = 2.0 {+-} 0.1 is the typical redshift for giant arcs with g {approx}< 24 that are produced by cluster-scale strong lenses and that there is no evidence for strong evolution in the redshift distribution of arcs over a wide range of g-band magnitudes (20 {<=} g {<=}24). Establishing that half of all giant arcs are at z {approx}> 2 contributes significantly toward relieving the tension between the number of arcs observed and the number expected in a {Lambda}CDM cosmology, but there is considerable evidence to suggest that a discrepancy persists. Additionally, this work confirms that forthcoming large samples of giant arcs will supply the observational community with many magnified galaxies at z {approx}> 2.

  16. Gas Arcs in Comet Hyakutake: Revisited

    NASA Astrophysics Data System (ADS)

    Combi, M. R.; Harris, W. M.; Kabin, K.

    2000-10-01

    The recent break-up of the nucleus of Comet LINEAR S4 demonstrates that fragmentation is an important cometary process and that it is not a rare phenomenon. Comet Hyakutake (1996 B2) underwent an outburst of gas production on March 21, 1996. Subsequent to the outburst, fragments, or condensations as they have been called, were observed moving tailward from the position of the nucleus. Arc-shaped structures were seen in images of gas species (OH, CN and C2) providing clear evidence of production of gas from cometary nucleus debris also tailward of the nucleus. We have already (Harris et al. 1997, Science 277, 676) described observations taken with the WIYN telescope consisting of a 6-hour time sequence of images on March 26, 1996 of CN and dust continuum and a single OH image showing that the arc, and by inference it's source, was generally moving tailward with the visible condensations. The entire OH arc was reproduced using a kinetic Direct Simulation Monte Carlo (DSMC) calculation for water and all its photodissociation products. DSMC is suited to this physical environment that is in transition from fluid conditions in the inner coma to free-expansion in the outer coma. Our model asuming a string of fragments within the apex of the arc (i.e., the intersection of the arc and the tailward sun-comet line) reproduced the arc. Here we present a more extensive parameter study of the arc using DSMC and a solution of the standard perfect-fluid Euler equations. We find that a secondary source just behind the apex of the arc can reproduce the OH arc, but the location of the source must be much closer to the apex than indicated by solutions of the Navier-Stokes equations (NSE) (Rodionov et al. 1998, Icarus 136, 232). We find that we must use unrealistically large collision cross sections to reproduce the NSE results, and that the NSE results are not substantially different from a simpler Euler equation approach. This work has been supported by NASA Planetary Atmospheres

  17. Physics of arcing, and implications to sputter deposition

    SciTech Connect

    Anders, Andre

    2005-03-15

    Arc and glow discharges are defined based on their cathode processes. Arcs are characterized by collective electron emission, which can be stationary with hot cathodes (thermionic arcs), or non-stationary with cold cathodes (cathodic arcs). A brief review on cathodic arc properties serves as the starting point to better understand arcing phenomena in sputtering. Although arcing occurs in both metal and reactive sputtering, it is more of an issue in the reactive case. Arcing occurs if sufficiently high field strength leads to thermal runaway of an electron emission site. The role of insulating layers and surface potential adjustment through current leakage is highlighted. In the situation of magnetron sputtering with ''racetrack'', the need for a model with two spatial dimensions is shown. In many cases, arcing is initiated by breakdown of dielectric layers and inclusions. It is most efficiently prevented if formation and excessive charge-up of dielectric layers and inclusions can be avoided.

  18. Ac electrode diagnostics in ac-operated metal halide lamps

    NASA Astrophysics Data System (ADS)

    Luijks, G. M. J. F.; van Esveld, H. A.; Nijdam, S.; Weerdesteijn, P. A. M.

    2008-07-01

    A diagnostic technique is presented to determine the electrode work function in ac-operated metal halide lamps. The heart of the experimental set-up is a high-speed photodiode array detector, which is able to follow real-time variations of electrode tip temperature and near-electrode plasma emissions in ac-operated experimental YAG lamps, enabling discrimination between the anode and cathode effects. Electrode tip temperature ripples have been measured for 100 Hz square wave operation and simulated with an existing electrode model. By using the electrode work function as main fit parameter for the simulations it is found that the measured cooling effect of the electrode tip in a NaTlDy-iodide lamp is caused by a gas-phase emitter effect of Dy. It is concluded that Dy coverage of the electrode tip causes an effective work function reduction of 0.3 eV at 100 Hz square wave operation, considerably less than the 1.0 eV reduction measured earlier for dc operation.

  19. Emissions of chromium (VI) from arc welding.

    PubMed

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used. PMID:17355086

  20. Welding torch with arc light reflector

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1986-01-01

    A welding torch arc light reflector is disclosed for welding torches having optical viewing systems. A schematic of a welding torch having an internal coaxial viewing system consisting of a lens which focuses the field of view of the weld scene of the workpiece onto the end of the fiberoptic bundle is provided. The transmitted image of the fiberoptic bundle is provided to a camera lens which focuses it onto a TV sensor array for transmission. To improve the parity of the image of the monitoring system, an arc light reflector is shown fitted to the end of the torch housing or gas cup. The arc light reflector has an internal conical section portion which is polished to serve as a mirror which reflects the bright arc light back onto the darker areas of the weld area and thereby provides a more detailed image for the monitoring system. The novelty of the invention lies in the use of an arc light reflector on welding torches having optical viewing systems.

  1. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, W.K.

    1983-12-16

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  2. 'LTE-diffusion approximation' for arc calculations

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.; Tanaka, M.

    2006-08-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on De/W, where De is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode.

  3. Electric Arc and Electrochemical Surface Texturing Technologies

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.

    1997-01-01

    Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.

  4. Vertical Arc for ILC Low Emittance Transport

    SciTech Connect

    Tenenbaum, P.; Woodley, M.; /SLAC

    2005-06-07

    The design and parameters of a vertical arc for the ILC Low Emittance Transport (LET) are reviewed. A 1 TeV CM ILC which relies upon 30 MV/m accelerating cavities with a packing fraction of 65% will require almost 48 km of main linac, which suggests that the total site length including BDS and bunch compressors will be on the order of 53 km. If built in a laser-straight tunnel with the low-energy ends near the surface, and assuming a perfectly spherical ''cue ball'' planetary surface with radius 6370 km, the collider halls will necessarily be 55 meters below grade, as shown in the top plot of Figure 1. Such depths would demand extensive use of deep tunneling, which would potentially drive up the cost and difficulty of ILC construction. An alternate solution is to use discrete vertical arcs at a few locations to allow a ''piecewise straight'' construction in which the depth of the tunnel below grade does not vary by more than a few meters. This approach is shown schematically in the bottom plot of Figure 1. In this Note we consider the issues for a design with one such vertical arc at the 250 GeV/c point (ie, midway down the linac for 1 TeV CM), and a second arc at the entrance to the BDS (ie, the entire BDS lies in one plane, with vertical arcs at each end).

  5. EDITORIAL Metal vapour in atmospheric-pressure arcs Metal vapour in atmospheric-pressure arcs

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.

    2010-11-01

    Metal vapour has a significant, and in some cases dominant, influence in many applications of atmospheric-pressure plasmas, including arc welding, circuit interruption and mineral processing. While the influence of metal vapour has long been recognized, it is only recently that diagnostic and computational tools have been sufficiently well-developed to allow this influence to be more thoroughly examined and understood. Some unexpected findings have resulted: for example, that the presence of metal vapour in gas-metal arc welding leads to local minima in the temperature and current density in the centre of the arc. It has become clear that the presence of metal vapour, as well as having intrinsic scientific interest, plays an important role in determining the values of critical parameters in industrial applications, such as the weld penetration in arc welding and the extinction time in circuit breakers. In gas-tungsten arc welding, metal vapour concentrations are formed by evaporation of the weld pool, and are relatively low, typically at most a few per cent. Moreover, the convective flow of the plasma near the weld pool tends to direct the metal vapour plume radially outwards. In gas-metal arc welding, in contrast, metal vapour concentrations can reach over 50%. In this case, the metal vapour is produced mainly by evaporation of the wire electrode, and the strong downwards convective flow below the electrode concentrates the metal vapour in the central region of the arc. The very different metal concentrations and distributions in the two welding processes mean that the metal vapour has markedly different influences on the arc. In gas-tungsten arc welding, the current density distribution is broadened near the weld pool by the influence of the metal vapour on the electrical conductivity of the plasma, and the arc voltage is decreased. In contrast, in gas-metal arc welding, the arc centre is cooled by increased radiative emission and the arc voltage is increased. In

  6. The IMF dependence of the local time of transpolar arcs

    NASA Astrophysics Data System (ADS)

    Fear, R.; Milan, S. E.

    2011-12-01

    Transpolar arcs or polar cap arcs are auroral features which are observed within the polar cap. They occur predominantly during intervals of northward IMF (Berkey et al., 1976). There is mixed evidence for IMF BY control of the local time at which the arcs initially form; Gussenhoven (1982) found that polar cap arcs formed preferentially post-midnight when BY < 0 (evaluated over 1 or 2 hours preceding the start of the arc) and pre-midnight when BY > 0, whereas Valladares et al (1991) found no clear dependency. The only previous statistical study of globally-imaged transpolar arcs (Kullen et al., 2002) found differing results for moving and non-moving arcs, concluding that three different models were required to identify (i) moving arcs, (ii) stationary arcs near the dawn/dusk portion of the main oval, and (iii) stationary arcs in the midnight sector. In this presentation, we show the results of a statistical study of 131 transpolar arcs observed by the FUV cameras on the IMAGE satellite between June 2000 and September 2005. We find that arcs tend to form following the same dependency on BY as identified by Gussenhoven (1982), whether moving or not. We find that the correlation between the magnetic local time at which the arc forms and the IMF BY component is relatively weak if the IMF is only averaged over the hour preceding the arc formation, but becomes stronger if the IMF is evaluated between 1 and 4 hours before the arc first forms. This is consistent with the timescale that is expected for newly-opened magnetospheric flux to reach the magnetotail plasma sheet (Dungey, 1961; Milan et al., 2007), and is therefore consistent with the suggestion that transpolar arcs map to the plasma sheet. We suggest that the similar dependence of stationary and moving arcs on the IMF BY component might imply that it is possible to explain both types of arc in terms of a single mechanism.

  7. The AC photovoltaic module is here!

    NASA Astrophysics Data System (ADS)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  8. Along-arc and inter-arc variations in volcanic gas CO2/S signature

    NASA Astrophysics Data System (ADS)

    Aiuppa, Alessandro; Robidoux, Philippe; Fischer, Tobias

    2015-04-01

    Improving the current estimates of the global volcanic arc CO2 output requires a more accurate knowledge of the volcanic gas CO2/S ratio signature of each individual arc segment. This, when multiplied by sulphur (S) productivity of each arc segment (derived by either studies on melt inclusions or UV-based gas measurements), could in principle yield the individual arc CO2 output and, by summation, the global arc CO2 output. Unfortunately, the process is complicated, among others, by the limited volcanic gas dataset we have available, particularly for poorly explored, but potentially highly productive arc segments (Indonesia, Papua New Guinea, etc). We here review the currently available dataset of CO2/S ratios in the volcanic gas literature, and combine this with novel gas observations (partially obtained using the currently expanding DCO-DECADE Multi-GAS network) to provide experimental evidence for the existence of substantial variations in volcanic gas chemistry along individual arc segments, and from one arc segment to another. In Central America [1], for instance, we identify distinct volcanic gas CO2/S (molar) ratio signatures for magmatic volatiles in Nicaragua (~3), Costa Rica (~0.5-1.0) and El Salvador (~1.0), which we ascribe to variable extents of sedimentary carbon addition to a MORB-type (Costa Rica-like) mantle wedge. Globally, volcanic gas CO2/S ratios are typically found to be low (~1.0) in arc segments (e.g., Japan, Kuril-Kamchatka, Chile) where small amount of limestones enter the slab; whilst larger slab/crustal carbon contributions typically correspond to higher CO2/S ratio signatures for gases of other arcs, such as Indonesia (~4.0) or Italy (6 to 9). We find that CO2/S ratios of arc gases positively correlate with Ba/La and U/Th ratios in the corresponding magmas, these trace-element ratios being thought as petrological proxies for the addition slab-fluids to the magma generation zone. This relation implies a dominant slab-derivation of carbon

  9. Study on Expansion Process of EDM Arc Plasma

    NASA Astrophysics Data System (ADS)

    Natsu, Wataru; Shimoyamada, Mayumi; Kunieda, Masanori

    In order to understand the phenomena of electrical discharge machining (EDM), the characteristics of transition arc plasma in EDM were investigated. The arc plasma was directly observed with a high speed video camera. In addition, to learn more about arc plasma expansion, plasma temperature was measured by spectroscopy. The arc plasma temperature was obtained by measuring the radiant fluxes of two different wavelengths from the arc plasma and applying the line pair method. Furthermore, a new expansion model for EDM arc plasma was proposed based on the observations, and validated by comparing experimental and computed results of the discharge crater.

  10. The discharge mechanism of the high-temperature arc

    NASA Technical Reports Server (NTRS)

    Busz-Peuckert, G.; Finkelnburg, W.

    1984-01-01

    The mechanism of the high temperature Ar arc is interpreted considering those essential points in which it deviates from the known arcs based on earlier measurements and experiments. The following points are discussed individually: the charge carrier balance, the energy balance, the volt amp characteristics, and the difference between high temperature arcs in Ar and N. Besides the volt amp characteristic of a 10 mm long arc in Ar between 10 and 200 amp, the anode fall, cathode fall, and arc gradient were obtained with the aid of probes. The difference between Ar and N arcs are attributed to variations of the heat conditions and electrical conditions at different temperatures of the gas.

  11. Plasma arc heated secondary combustion chamber

    SciTech Connect

    Haun, R.; Paulson, B.; Schlienger, M.; Goerz, D.; Kerns, J.; Vernazza, J.

    1995-02-01

    This paper describes a secondary combustion chamber (SCC) for hazardous waste treatment systems that uses a plasma arc torch as the heat source. Developed under a cooperative research and development agreement (CRADA) between Retech, Inc. and Lawrence Livermore National Laboratory (LLNL), the unit is intended primarily to handle the off-gas from a Plasma Arc Centrifugal Treatment (PACT) system. ft is designed to heat the effluent gas which may contain volatile organic compounds, and maintain the gas temperature above 1000 C for two seconds or more. The benefits of using a plasma arc gas heater are described in comparison to a conventional fossil fuel heated SCC. Thermal design considerations are discussed. Analysis and experimental results are presented to show the effectiveness in destroying hazardous compounds and reducing the total volume of gaseous emissions.

  12. APPARATUS AND METHOD FOR ARC WELDING

    DOEpatents

    Noland, R.A.; Stone, C.C.

    1960-05-10

    An apparatus and method are given for forming a welding arc which is rotated by a magnetic field very rapidly about an annular electrode so that a weld is produced simultaneously over all points of an annular or closed path. This invention inhibits outgassing from the jacket of a fuel slug which is being welded by adjusting the pressure throughout the welding cycle to establish a balance between the gas pressure within the jacket and that of the atmosphere surrounding the jacket. Furthermore, an improved control of the magnetic field producing rotation of the welding arc is disclosed whereby this rotation is prevented from splashing about the metal being welded as the welding arc makes it molten.

  13. Dynamic Discharge Arc Driver. [computerized simulation

    NASA Technical Reports Server (NTRS)

    Dannenberg, R. E.; Slapnicar, P. I.

    1975-01-01

    A computer program using nonlinear RLC circuit analysis was developed to accurately model the electrical discharge performance of the Ames 1-MJ energy storage and arc-driver system. Solutions of circuit parameters are compared with experimental circuit data and related to shock speed measurements. Computer analysis led to the concept of a Dynamic Discharge Arc Driver (DDAD) capable of increasing the range of operation of shock-driven facilities. Utilization of mass addition of the driver gas offers a unique means of improving driver performance. Mass addition acts to increase the arc resistance, which results in better electrical circuit damping with more efficient Joule heating, producing stronger shock waves. Preliminary tests resulted in an increase in shock Mach number from 34 to 39 in air at an initial pressure of 2.5 torr.

  14. Photoelectric detection electric arc in energetic arrangements

    NASA Astrophysics Data System (ADS)

    Leks, Jan

    2001-08-01

    The evolution of photoelectric converter, fiber optics and integrated circuits, in particular optic detectors, increases area of applying of the industrial measuring and control systems that used IR detectors. One of the more important is optic detection of electric arc in industrial energetic arrangements. That kind of detection is sure, easy to apply in existing industrial apparatus a d it is cheaper than another way of detection. Additionally optic detection of electric arc is safety for attendance persons and may work on computer system. The article presents an example of circuit with semiconductor IR photoelectric detector to detection of electric arc and points at the most important questions which should be taken into consideration in designing instruments like described one.

  15. Magnesium isotope geochemistry in arc volcanism

    PubMed Central

    Teng, Fang-Zhen; Hu, Yan

    2016-01-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from −0.25 to −0.10, in contrast to the narrow range that characterizes the mantle (−0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid−mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  16. Nonlinear identification of the total baroreflex arc.

    PubMed

    Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru; Mukkamala, Ramakrishna

    2015-12-15

    The total baroreflex arc [the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP)] is known to exhibit nonlinear behaviors. However, few studies have quantitatively characterized its nonlinear dynamics. The aim of this study was to develop a nonlinear model of the sympathetically mediated total arc without assuming any model form. Normal rats were studied under anesthesia. The vagal and aortic depressor nerves were sectioned, the carotid sinus regions were isolated and attached to a servo-controlled piston pump, and the AP and sympathetic nerve activity (SNA) were measured. CSP was perturbed using a Gaussian white noise signal. A second-order Volterra model was developed by applying nonparametric identification to the measurements. The second-order kernel was mainly diagonal, but the diagonal differed in shape from the first-order kernel. Hence, a reduced second-order model was similarly developed comprising a linear dynamic system in parallel with a squaring system in cascade with a slower linear dynamic system. This "Uryson" model predicted AP changes 12% better (P < 0.01) than a linear model in response to new Gaussian white noise CSP. The model also predicted nonlinear behaviors, including thresholding and mean responses to CSP changes about the mean. Models of the neural arc (the system relating CSP to SNA) and peripheral arc (the system relating SNA to AP) were likewise developed and tested. However, these models of subsystems of the total arc showed approximately linear behaviors. In conclusion, the validated nonlinear model of the total arc revealed that the system takes on an Uryson structure. PMID:26354845

  17. Magnesium isotope geochemistry in arc volcanism.

    PubMed

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-28

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  18. Magnesium isotope geochemistry in arc volcanism

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from ‑0.25 to ‑0.10, in contrast to the narrow range that characterizes the mantle (‑0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid‑mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  19. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  20. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  1. Single event AC - DC electrospraying

    NASA Astrophysics Data System (ADS)

    Stachewicz, U.; Dijksman, J. F.; Marijnissen, J. C. M.

    2008-12-01

    Electrospraying is an innovative method to deposit very small amounts of, for example, biofluids (far less than 1 p1) that include DNA or protein molecules. An electric potential is applied between a nozzle filled with liquid and a counter electrode placed at 1-2 millimeter distance from the nozzle. In our set-up we use an AC field superposed on a DC field to control the droplet generation process. Our approach is to create single events of electrospraying triggered by one single AC pulse. During this pulse, the equilibrium meniscus (determined by surface tension, static pressure and the DC field) of the liquid changes rapidly into a cone and subsequently into a jet formed at the cone apex. Next, the jet breaks-up into fine droplets and the spraying stops. The meniscus returns to its equilibrium shape again. So far we obtained a stable and reproducible single event process for ethanol and ethylene glycol with water using glass pipettes. The results will be used to generate droplets on demand in a controlled way and deposit them on a pre-defined place on the substrate.

  2. Ion source based on the cathodic arc

    DOEpatents

    Sanders, D.M.; Falabella, S.

    1994-02-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated, is described. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles. 3 figures.

  3. Barriers to flashover discharge arcs on Teflon

    NASA Technical Reports Server (NTRS)

    Gossland, M.; Balmain, K. G.

    1982-01-01

    The effect of various barriers (empty gap, copper, Mylar, and nickel mesh) on the probability of simultaneous arc discharging of two physically separated pieces of electron-beam-charged Teflon was studied. For the empty gap barrier, it was found that simultaneous discharges rarely occur when the separation between the samples is greater than approximately 0.4 times the length of their common edge when this length is of the order of 1 cm. Evidence suggests that electromagnetic fields play a larger role than electrons in influencing the occurrence of simultaneous arc discharges.

  4. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  5. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering Avco-Everett Research Lab., Everett, MA )

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

  6. Grain refinement control in TIG arc welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  7. Arc jet tests of metallic TPS materials.

    NASA Technical Reports Server (NTRS)

    Centolanzi, F. J.; Zimmerman, N. B.; Probst, H. B.; Lowell, C. E.

    1971-01-01

    Seven thoria dispersed nickel base alloys and one cobalt base alloy, candidates for the Metallic Thermal Protection System for the Space Shuttle Vehicle, were tested simultaneously in an arc jet at a nominal test temperature of 1366 deg K (2000 deg F) and pressure of 0.01 atmospheres. The degradation of the materials after 50 one half-hour cycles in the arc jet simulating Space Shuttle entry conditions was determined utilizing techniques including X-ray diffraction, metallography, and electron beam microprobe.

  8. Ion source based on the cathodic arc

    DOEpatents

    Sanders, David M.; Falabella, Steven

    1994-01-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  9. Electric-arc steam plasma generator

    NASA Astrophysics Data System (ADS)

    Anshakov, A. S.; Urbakh, E. K.; Radko, S. I.; Urbakh, A. E.; Faleev, V. A.

    2015-01-01

    Investigation results on the arc plasmatorch for water-steam heating are presented. The construction arrangement of steam plasma generator with copper electrodes of the stepped geometry was firstly implemented. The energy characteristics of plasmatorch and erosion of electrodes reflect the features of their behavior at arc glow in the plasma-forming environment of steam. The results of numerical study of the thermal state of the composite copper-steel electrodes had a significant influence on optimization of anode water-cooling aimed at improvement of its operation life.

  10. Geochemical differences between along-arc and across-arc volcanics in west-central Nicaragua

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Freundt, Armin; Wörner, Gerhard; Kutterolf, Steffen

    2012-04-01

    The La Paz Centro - Malpaisillo Lineament (LPML) in west-central Nicaragua is a north-south striking, 20 km long chain of maars and cinder cones, which intersects the northwest-southeast striking main volcanic front. A tectonic control of LPML volcanism is likely but only evident for the Malpaisillo fissure at the northern end of the LPML. Previous work demonstrated geochemical variations implying changes in mantle-source composition (i.e., added slab components) along the Central American Volcanic Arc at spatial scales of some 10's of kilometers. Our study of the LPML shows that minor but systematic changes also occur across the arc within 20 km distance. Variations in trace element ratios such as Zr/Nb, Ba/Th, Ba/La, Th/Zr, U/La and La/Yb along the LPML, i.e. across the volcanic front indicate little change in the degree of partial melting but an increase particularly in the hemipelagic sediment component in the mantle source from the fore arc towards the arc front, followed by a decrease behind the arc. Interestingly, the slab component is most prominent just in front of the arc. About 60 km southeast of the LPML, the Nejapa-Miraflores volcanic and tectonic lineament, which marks a 20 km north-south offset in the arc, differs substantially from the LPML. There is a wide scatter in incompatible trace element ratios indicating a heterogeneous mantle source at small spatial scales (c. 1 km). This mantle heterogeneity may represent vertical rather than across-arc variations and is probably related to the arc offset, because in the absence of such offset at the LPML mantle source conditions vary much less but more systematically.

  11. Physical volcanology of the submarine Mariana and Volcano Arcs

    NASA Astrophysics Data System (ADS)

    Bloomer, Sherman H.; Stern, Robert J.; Smoot, N. Christian

    1989-05-01

    Narrow-beam maps, selected dredge samplings, and surveys of the Mariana and Volcano Arcs identify 42 submarine volcanos. Observed activity and sample characteristics indicate 22 of these to be active or dormant. Edifices in the Volcano Arc are larger than most of the Mariana Arc edifices, more irregularly shaped with numerous subsidiary cones, and regularly spaced at 50 70 km. Volcanos in the Mariana Arc tend to be simple cones. Sets of individual cones and volcanic ridges are elongate parallel to the trend of the arc or at 110° counterclockwise from that trend, suggesting a strong fault control on the distribution of arc magmas. Volcanos in the Mariana Arc are generally developed west of the frontal arc ridge, on rifted frontal arc crust or new back-arc basin crust. Volcanos in the central Mariana Arc are usually subaerial, large (> 500 km3), and spaced about 50 70 km apart. Those in the northern and southern Marianas are largely submarine, closer together, and generally less than 500 km3 in volume. There is a shoaling of the arc basement around Iwo Jima, accompanied by the appearance of incompatible-element enriched lavas with alkalic affinities. The larger volcanic edifices must reflect either a higher magma supply rate or a greater age for the larger volcanos. If the magma supply (estimated at 10 20 km3/km of arc per million years at 18° N) has been relatively constant along the Mariana Arc, we can infer a possible evolutionary sequence for arc volcanos from small, irregularly spaced edifices to large (over 1000 km3) edifices spaced at 50 70 km. The volcano distribution and basal depths are consistent with the hypothesis of back-arc propagation into the Volcano Arc.

  12. Arcing Model of a Disconnector and its Effect on VFTO

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Wang, Na; Xu, Jianyuan

    2013-07-01

    In the computational process of very fast transient over-voltage (VFTO), it is essential to find an accurate model for a gas insulated substation. The arcing model of the disconnector is particularly important. The general arcing model is not able to give a good description of the arc development process. In this paper, based on the physical process of arcing and existing arc models (the exponential time-varying resistance model and the segmental arcing models), a dynamic arcing model is proposed, which is divided into two stages before and after the zero crossing. The dynamic arcing model combines hyperbola time-varying resistance and the Mayr model to describe the dynamic process of arcing. The present paper creates an arc model blockset upon the Matlab/Simulink software platform. Moreover for a specific 1100 kV station, VFTO is simulated in detail based on different arcing models. It is demonstrated that the dynamic arcing model can describe the physical arc process precisely and is useful for improving the accuracy of VFTO simulations.

  13. Mandibular Reconstruction Based on the Concept of Double Arc Reconstruction.

    PubMed

    Sarukawa, Shunji; Noguchi, Tadahide; Kamochi, Hideaki; Sunaga, Ataru; Uda, Hirokazu; Nishino, Hiroshi; Sugawara, Yasushi

    2015-09-01

    The natural mandible has 2 arcs, the marginal arc and the occlusal arc. The marginal arc is situated along the lower margin of the mandible and affects the contour of the lower third of the face. The occlusal arc is situated along the dental arc and affects the stability of prosthodontics. The gap between these 2 arcs widens in the molar area. Our developed concept of "double arc reconstruction" involves making these 2 arcs for the reconstructed mandible. For the double-barrel fibula reconstruction, 2 bone segments are used to make both arcs. For reconstructions using the iliac crest, the double arc is made by inclination of the top of the bone graft toward the lingual side. Ten patients underwent double arc reconstruction: 2 underwent reconstruction with the double-barrel fibula, and 8 underwent reconstruction with the iliac crest. Four patients had a removable denture prosthesis, 1 had an osseointegrated dental implant, and 5 did not require further prosthodontic treatment. The shape of the reconstructed mandible after double arc reconstruction resembles the native mandible, and masticatory function is good with the use of a dental implant or removable denture prosthesis, or even without prosthodontics. PMID:26335321

  14. The effect of plasma on solar cell array arc characteristics

    NASA Technical Reports Server (NTRS)

    Snyder, D. B.; Tyree, E.

    1984-01-01

    The influence from the ambient plasma on the arc characteristics of a negatively biased solar cell array was investigated. The arc characteristics examined were the peak current during an arc, the decay time as the arc terminates, and the charge lost during the arc. These arc characteristics were examined in a nitrogen plasma with charge densities ranging from 15,000 to 45,000 cu cm. Background gas pressures ranged from 8x1,000,000 to 6x100,000 torr. Over these ranges of parameters no significant effect on the arc characteristics were seen. Arc characteristics were also examined for three gas species: helium, nitrogen and argon. The helium arcs have higher peak currents and shorter decay times than nitrogen and argon arcs. There are slight differences in the arc characteristics between nitrogen and argon. These differences may be caused by the differences in mass of the respective species. Also, evidence is presented for an electron emission mechanism appearing as a precursor to solar array arcs. Occassionally the plasma generator could be turned off, and currents could still be detected in the vacuum system. When these currents are presented, arcs may occur.

  15. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    SciTech Connect

    Kim, Keun Su

    2009-03-23

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field.

  16. Baseline tests for arc melter vitrification of INEL buried wastes. Volume II: Baseline test data appendices

    SciTech Connect

    Oden, L.L.; O`Conner, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  17. Automated Variable-Polarity Plasma-Arc Welding

    NASA Technical Reports Server (NTRS)

    Numes, A. C., Jr.; Bayless, E. O., Jr.; Jones, S. C., III; Munafo, P.; Munafo, A.; Biddle, A.; Wilson, W.

    1984-01-01

    Variable-polarity plasma-arc methods produces better welds at lower cost than gas-shielded tungsten-arc welding in assemblies. Weld porosity very low and costs of joint preparation, depeaking, inspection, and weld repair minimized.

  18. Arc-shock interaction inside a supersonic nozzle

    SciTech Connect

    Fang, M.T.C.; Kwan, S.; Hall, W.

    1996-02-01

    Arcs burning in supersonic nozzles have wide technical applications. They are commonly used in high-voltage circuit breakers, arc heaters, and arc plasma processing systems. The present investigation is aimed at an understanding of the arc behavior inside a modern high-voltage puffer circuit breaker where a high pressure necessary for the generation of a gas blast is produced by the compression of a piston inside the puffer chamber. Flow separation in the thermal layer between the high-temperature arc core and cold flow generates large vortices which deform the shape of the arc core. For the current range investigated, the center of the shock is not sensitive to the current, but is moved upstream relative to that without the arc. The computed features of the interaction are in agreement with the experimental observations of [2] and [3]. The arcing gas is SF{sub 6}.

  19. Optical Arc-Length Sensor For TIG Welding

    NASA Technical Reports Server (NTRS)

    Smith, Matthew A.

    1990-01-01

    Proposed subsystem of tungsten/inert-gas (TIG) welding system measures length of welding arc optically. Viewed by video camera, in one of three alternative optical configurations. Length of arc measured instead of inferred from voltage.

  20. DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-01-01

    A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.

  1. Cheaper Custom Shielding Cups For Arc Welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1992-01-01

    New way of making special-purpose shielding cups for gas/tungsten arc welding from hobby ceramic greatly reduces cost. Pattern machined in plastic. Plaster-of-paris mold made, and liquid ceramic poured into mold. Cost 90 percent less than cup machined from lava rock.

  2. Position Statements of the Arc. 1992 Edition.

    ERIC Educational Resources Information Center

    Arc, Arlington, TX.

    This monograph presents 15 position statements of The Arc, a national organization for persons with mental retardation. A preamble presents the organization's Mission Statement. Principles and assumptions stressing the uniqueness of all people and the importance of a sense of control over one's destiny are listed. The position statements are then…

  3. Arc spraying solderable tabs to glass

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1981-01-01

    Tabs suitable for electrical or mechanical connections in solar cells and integrated circuits are made by spraying technique. Solder wets copper, copper bonds to aluminum, and aluminum adheres to glass. Arc spraying is automated and integrated with encapsulation, eliminating hand tabbing, improving reliability, and reducing cost.

  4. Clinical Applications of Volumetric Modulated Arc Therapy

    SciTech Connect

    Matuszak, Martha M.; Yan Di; Grills, Inga; Martinez, Alvaro

    2010-06-01

    Purpose: To present treatment planning case studies for several treatment sites for which volumetric modulated arc therapy (VMAT) could have a positive impact; and to share an initial clinical experience with VMAT for stereotactic body radiotherapy (SBRT). Methods and Materials: Four case studies are presented to show the potential benefit of VMAT compared with conformal and intensity-modulated radiotherapy (IMRT) techniques in pediatric cancer, bone marrow-sparing whole-abdominopelvic irradiation (WAPI), and SBRT of the lung and spine. Details of clinical implementation of VMAT for SBRT are presented. The VMAT plans are compared with conventional techniques in terms of dosimetric quality and delivery efficiency. Results: Volumetric modulated arc therapy reduced the treatment time of spine SBRT by 37% and improved isodose conformality. Conformal and VMAT techniques for lung SBRT had similar dosimetric quality, but VMAT had improved target coverage and took 59% less time to deliver, although monitor units were increased by 5%. In a complex pediatric pelvic example, VMAT reduced treatment time by 78% and monitor units by 25% compared with IMRT. A double-isocenter VMAT technique for WAPI can spare bone marrow while maintaining good delivery efficiency. Conclusions: Volumetric modulated arc therapy is a new technology that may benefit different patient populations, including pediatric cancer patients and those undergoing concurrent chemotherapy and WAPI. Volumetric modulated arc therapy has been used and shown to be beneficial for significantly improving delivery efficiency of lung and spine SBRT.

  5. Signal Analysis of Gas Tungsten Arc Welds

    NASA Technical Reports Server (NTRS)

    Eagar, T. W.

    1985-01-01

    Gas tungsten arc welding is a process in which the input parameters such as current, voltage and travel speed, can be easily controlled and/or monitored. However, weld quality is not solely a function of these parameters. An adaptive method of observing weld quality is desired to improve weld quality assurance. The use of dynamic electrical properties of the welding arc as a weld quality monitor was studied. The electrical properties of the arc are characterized by the current voltage transfer function. The hardware and software necessary to collect the data at a maximum rate of 45 kHz and to allow the off-line processing of this data are tested. The optimum input current waveform is determined. Bead-on-plate welds to observe such characteristics of the weld as the fundamental frequency of the puddle are studied. Future work is planned to observe changes of the arc response with changes in joint geometry, base metal chemistry, and shielding gas composition are discussed.

  6. Neural-Network Modeling Of Arc Welding

    NASA Technical Reports Server (NTRS)

    Anderson, Kristinn; Barnett, Robert J.; Springfield, James F.; Cook, George E.; Strauss, Alvin M.; Bjorgvinsson, Jon B.

    1994-01-01

    Artificial neural networks considered for use in monitoring and controlling gas/tungsten arc-welding processes. Relatively simple network, using 4 welding equipment parameters as inputs, estimates 2 critical weld-bead paramaters within 5 percent. Advantage is computational efficiency.

  7. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  8. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGESBeta

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  9. Gas tungsten arc welder with electrode grinder

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  10. CW arc-lamp-pumped alexandrite lasers

    SciTech Connect

    Samelson, H.; Walling, J.C.; Wernikowski, T.; Harter, D.J.

    1988-06-01

    The performance characteristics of arc-lamp- (Xe and Hg) pumped, CW alexandrite lasers are described in detail. The modes of operation considered are free running, tuned, and repetitively Q-switched. The experimental arrangement and apparatus are also outlined. The experimental results are discussed in terms of a steady-state model, and the areas of agreement and difficulty are pointed out.

  11. Arc tracking of cables for space applications

    NASA Technical Reports Server (NTRS)

    Koenig, D.; Frontzek, F. R.; Hanson, J.; Reher, H. J.; Judd, M. D.; Bryant, D.

    1995-01-01

    The main objective of this study is to develop a new test method that is suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecrafts. This paper reports the purpose, test conditions, test specimen, test procedure, and test acceptance criteria of seven different (200-250 mm long) cables.

  12. Arc Welding Dictionary 3. Project HIRE.

    ERIC Educational Resources Information Center

    Gardner, David C.; And Others

    Designed as supplemental material to on-going instruction in the vocational program, this third of three picture dictionary booklets in the Arc Welding series is intended to assist the learning handicapped student to master the core vocabulary taught in the trade. Intended for individual or small group instruction with minimal supervision, this…

  13. Monochromatic imaging of cathodic arc plasma

    SciTech Connect

    Kinrot, U.; Goldsmith, S.; Boxman, R.L.

    1996-02-01

    Vacuum arc deposition (VAD) is an increasingly studied and applied technology that offers potential advantages such as high deposition rates, low deposition temperatures, and good adhesion. In the cathodic vacuum arc, minute hot areas on the cathode surface (``cathode spots``) emit highly ionized metallic plasma jets. Deposition of the cathode material is formed by placing a substrate in the plasma stream. Ceramic thin films such as TiN, SnO{sub 2}, and TiO{sub 2} can be deposited using VAD in the presence of a reactive gas. Plasma parameters such as the density of the various ionic components, ionic kinetic energy, electron temperature, and ion-excited state population densities, all have an important role in the film growth mechanism in VAD and largely affect the film characteristics (structure, morphology, stoichiometry, adhesion, uniformity, thickness, etc.). In the case of ceramic films, the interaction between the expanding plasma and the ambient gas is very important, but poorly understood. Here, monochromatic imaging is presented as a powerful tool for plasma diagnostics, and specifically for the investigation of cathodic vacuum arc plasma. Two-dimensional (2-D) monochromatic images in the visible region of an aluminum cathodic arc burning in helium background gas are presented. Inversion of Abel`s integral enables a reconstruction of the spatial distribution of the plasma emission coefficient. The qualitative and sometimes quantitative nature of the interaction between the expanding plasma and the ambient gas can be visualized with this technique.

  14. Portable machine welding head automatically controls arc

    NASA Technical Reports Server (NTRS)

    Oleksiak, C. E.; Robb, M. A.

    1967-01-01

    Portable weld tool makes weld repairs out-of-station and on the side opposite the original weld. It provides full automatic control of the arc voltage, current, wire feed, and electrode travel speed in all welding attitudes. The device is readily adaptable to commercially available straight polarity dc weld packs.

  15. Arc Welding Dictionary 1. Project HIRE.

    ERIC Educational Resources Information Center

    Gardner, David C.; And Others

    Designed as supplemental material to on-going instruction in the vocational program, this first of three picture dictionary booklets in the Arc Welding series is intended to assist the learning handicapped student to master the core vocabulary taught in the trade. Intended for individual or small group instruction with minimal supervision, this…

  16. Arc Welding Dictionary 2. Project HIRE.

    ERIC Educational Resources Information Center

    Gardner, David C.; And Others

    Designed as supplemental material to on-going instruction in the vocational program, this second of three picture dictionary booklets in the Arc Welding series is intended to assist the learning handicapped student to master the core vocabulary taught in the trade. Intended for individual or small group instruction with minimal supervision, this…

  17. Rejuvenating Allen's Arc with the Geometric Mean.

    ERIC Educational Resources Information Center

    Phillips, William A.

    1994-01-01

    Contends that, despite ongoing criticism, Allen's arc elasticity formula remains entrenched in the microeconomics principles curriculum. Reviews the evolution and continuing scrutiny of the formula. Argues that the use of the geometric mean offers pedagogical advantages over the traditional arithmetic mean approach. (CFR)

  18. The multiphoton AC Stark effect

    NASA Astrophysics Data System (ADS)

    Rudolph, T. G.; Ficek, Z.; Freedhoff, H. S.

    1998-02-01

    We study the interaction of a two-level atom with two intense lasers: a strong laser of Rabi frequency 2Ω on resonance with the atomic transition, and a weaker laser detuned by 2Ω/n, i.e. by a subharmonic of the Rabi frequency of the first. The second laser "dresses" the dressed states created by the first in an n-photon process. We calculate the energy levels and eigenstates of this "doubly-dressed" atom, and find a new phenomenon: the splitting of the energy levels due to an n-photon coupling between them, resulting in a multiphoton AC Stark effect. We illustrate this effect in the fluorescence spectrum, and show that the spectrum contains triplets at the subharmonic as well as harmonic resonance frequencies with a clear dependence on the order n of the resonance and the ratio α of the Rabi frequencies of the lasers

  19. Protection of superconducting AC windings

    SciTech Connect

    Verhaege, T.; Agnoux, C.; Tavergnier, J.P. ); Lacaze, A. ); Collet, M. )

    1992-01-01

    Recent progresses on multifilamentary wires open new prospects of 50-60 Hz applications for superconductivity. The problem of AC windings protection is more critical than that of DC windings, because of high current densities, and of high matrix resistivity: one should not allow the quenched wire to carry it nominal current for longer than a few milliseconds, otherwise permanent damage could occur. After a quench initiation, the protection system therefore has to switch off or drastically reduce the current very rapidly. In this paper, the authors propose various schemes, applicable when the conductor is made of several wires: active protection involves an ultra-rapid quench detection. It is based on the measurement of the current passing through the central resistive wire, and/or of unbalanced currents in the different superconducting wires. About 20 milliseconds after detection, a fast circuit-breaker switched off the current. A complementary passive protection is provided by the resistance developing during normal phase propagation.

  20. Diffuse degassing through magmatic arc crust (Invited)

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Ingebritsen, S.

    2013-12-01

    The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these

  1. Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc

    NASA Astrophysics Data System (ADS)

    Cao, Wenrong; Paterson, Scott; Saleeby, Jason; Zalunardo, Sean

    2016-03-01

    Quantifying crustal deformation is important for evaluating mass balance, material transfer, and the interplay between tectonism and magmatism in continental arcs. We present a dataset of >650 finite strain analyses compiled from published works and our own studies with associated structural, geochronologic, and geobarometric information in central and southern Sierra Nevada, California, to quantify the arc crust deformation. Our results show that Mesozoic tectonism results in 65% arc-perpendicular bulk crust shortening under a more or less plane strain condition. Mesozoic arc magmatism replaced ∼80% of this actively deforming arc crust with plutons requiring significantly greater crustal thickening. We suggest that by ∼85 Ma, the arc crust thickness was ∼80 km with a 30-km-thick arc root, resulting in a ∼5 km elevation. Most tectonic shortening and magma emplacement must be accommodated by downward displacements of crustal materials into growing crustal roots at the estimated downward transfer rate of 2-13 km/Myr. The downward transfer of crustal materials must occur in active magma channels, or in "escape channels" in between solidified plutons that decrease in size with time and depth resulting in an increase in the intensity of constrictional strain with depth. We argue that both tectonism and magmatism control the thickness of the crust and surface elevation with slight modification by surface erosion. The downward transported crustal materials initially fertilize the MASH zone thus enhancing to the generation of additional magmas. As the crustal root grows it may potentially pinch out and cool the mantle wedge and thus cause reduction of arc magmatism.

  2. Arc-Jet Power Supply And Starting Circuit

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.

    1988-01-01

    Power efficiency high, current regulated, and starting automatic. New circuit for starting arc jets and controlling them in steady operation capable of high power efficiency and constructed in lightweight form. Feedback control system keeps arc-jet current nearly constant, once arc struck by starting pulse. Circuit made of commercially available components. Design capable of high power efficiency.

  3. Theory of the arc discharge in air blast breakers

    SciTech Connect

    Vogel, H.F.

    1980-08-01

    The complete set of equations obtaining in the arc's length element are given. The arc length is determined when the external circuit equations are closed by an expression for the arc inductance as a function of the radius and length, in addition to our relationships for the radius and voltage gradients.

  4. Dry and wet arc track propagation resistance testing

    NASA Technical Reports Server (NTRS)

    Beach, Rex

    1995-01-01

    The wet arc-propagation resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical environment. Results of an arc-propagation test may vary slightly due to the method of arc initiation; therefore a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc by dripping salt water over pre-damaged wires which creates a conductive path between the wires. The power supply, test current, circuit resistances, and other variables are optimized for testing 20 guage wires. The use of other wire sizes may require modifications to the test variables. The dry arc-propagation resistance test for wire insulation also provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment. In service, electrical arcs may originate form a variety of factors including insulation deterioration, faulty installation, and chafing. Here too, a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc with a vibrating blade. The test also evaluates the ability of the insulation to prevent further arc-propagation when the electrical arc is re-energized.

  5. Process characteristics of fibre-laser-assisted plasma arc welding

    NASA Astrophysics Data System (ADS)

    Mahrle, A.; Schnick, M.; Rose, S.; Demuth, C.; Beyer, E.; Füssel, U.

    2011-08-01

    Experimental and theoretical investigations on fibre-laser-assisted plasma arc welding (LAPW) were performed. Welding experiments were carried out on aluminium and steel sheets. In the case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In the case of aluminium welding, a sharp decline in arc voltage and stabilization and guiding of the anodic arc root was observed whereas in steel welding the arc voltage was slightly increased after the laser beam was switched on. However, significant improvement of the melting efficiency with the combined action of plasma arc and laser beam was achieved for both types of material. Theoretical results of additional numerical simulations of the arc behaviour suggest that the properties of the arc plasma are mainly influenced not by a direct interaction with the laser radiation but by the laser-induced evaporation of metal. Arc stabilization with increased current densities is predicted for moderate rates of evaporated metal only whereas metal vapour rates above a certain threshold causes a destabilization of the arc and reduced current densities along the arc axis.

  6. Oceanic, island arc, and back-arc remnants into eastern Kamchatka accretionary complexes

    SciTech Connect

    Fedorchuk, A.V.; Vishnevskaya, V.S.; Izvekov, I.N. )

    1990-06-01

    The Kamchatsky Mts. accretionary complex in the Eastern Kamchatka orogenic belt was studied for identification of the oceanic and suprasubduction components into accretionary wedges. That complex is divided into two tectonic units. The Lower unit is formed sedimentary and tectonic melanges containing arc-related components (Late Senonian volcaniclastics and boninitic gabbro) and oceanic fragments (Fe-Ti-tholeiites, ocean island basalts, and pelagic sediments of Valanginian to Turonian age). The Upper unit consists of ductile deformed oceanic cumulates from troctolites to Fe-Ti-gabbro, 151 to 172 Ma, which are intruded MORB-like diabases with suprasubduction characteristics, 122 to 141 Ma, and are overlain by basalts similar to latter. The Lower and Upper units are separated by a SW-dipping thrust, which is related by an ophiolitoclastic olistostrome of Late Campanian to Early Maestrichtian age. Both units are covered by Paleocene authoclastic deposits. They are all thrusted over the early Neogene island arc complex, 16 to 20 Ma. The Lower unit of the Kamchatsky Mys accretionary complex was originated in a shear zone between a Late Cretaceous island arc and an Early Cretaceous oceanic plate. The Upper unit represents a Jurassic oceanic remnant that formed a basement of Early Cretaceous back-arc or fore-arc basin. Both units were superposed in the latest Cretaceous. The Kamchatsky Mys accretionary complex was emplaced into the Eastern Kamchatka orogenic belt during late Neogene by collision of the early Neogene island arc.

  7. Numerical investigation of the double-arcing phenomenon in a cutting arc torch

    SciTech Connect

    Mancinelli, B. R.; Minotti, F. O.; Kelly, H.; Prevosto, L.

    2014-07-14

    A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron–ion recombination, and ion–ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7 × 10{sup 4} A/s.

  8. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T,; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2005-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. To be discussed are: 1.Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debuy lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. 5. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Prevention sustained discharges during testing. 6. Real array or structure samples versus idealized samples. 7. Validity of LEO tests for GEO samples. 8. Extracting arc threshold information from arc rate versus voltage tests. 9. Snapover and current collection at positive sample bias. Glows at positive bias. Kapon (R) pyrolisis. 10. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 11. Testing for Paschen discharge threshold. Testing for dielectric breakdown thresholds. Testing for tether arcing. 12. Testing in very dense plasmas (ie thruster plumes). 13. Arc mitigation strategies. Charging mitigation strategies. Models. 14. Analysis of test results

  9. Shielded Metal Arc Welding and Carbon Arc Cutting--Air. Teacher Edition [and] Student Edition [and] Student Workbook. Third Edition.

    ERIC Educational Resources Information Center

    Harper, Eddie; Knapp, John

    This document contains the teacher and student texts and student workbook for a secondary-level course in shielded metal arc welding (SMAW) and carbon arc cutting that consists of units on the following topics: SMAW safety; SMAW equipment, applications, and techniques; hardfacing; and carbon arc cutting--air. The teacher edition includes the…

  10. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    SciTech Connect

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  11. Spectroscopic measurement of temperatures in pulsed TIG welding arcs

    NASA Astrophysics Data System (ADS)

    Ma, Shuiliang; Gao, Hongming; Zheng, Senmu; Wu, Lin

    2011-10-01

    Time resolved plasma temperatures in a pulsed tungsten-inert-gas (TIG) welding arc have been measured using optical emission spectroscopy. The peak and base pulse-averaged plasma temperatures both decrease with time after the arc ignition, and the plasma temperature decreases during the peak pulse period and increases during the base pulse period when the arc reaches the steady state. The decrease in the plasma temperature is associated with the increase in the cathode surface temperature and the decrease in the arc voltage and vice versa. The importance of the cathode surface temperature on the arc properties has been discussed.

  12. Polar cap arcs: Sun-aligned or cusp-aligned?

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Zhang, Qinghe; Xing, Zanyang

    2016-08-01

    Polar cap arcs are often called sun-aligned arcs. Satellite observations reveal that polar cap arcs join together at the cusp and are actually cusp aligned. Strong ionospheric plasma velocity shears, thus field aligned currents, were associated with polar arcs and they were likely caused by Kelvin-Helmholtz waves around the low-latitude magnetopause under a northward IMF Bz. The magnetic field lines around the magnetopause join together in the cusp region so are the field aligned currents and particle precipitation. This explains why polar arcs are cusp aligned.

  13. Effects of arcing due to spacecraft charging on spacecraft survival

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Sanders, N. L.; Ellen, J. M., Jr.; Inouye, G. T.

    1978-01-01

    A quantitative assessment of the hazard associated with spacecraft charging and arcing on spacecraft systems is presented. A literature survey on arc discharge thresholds and characteristics was done and gaps in the data and requirements for additional experiments were identified. Calculations of coupling of arc discharges into typical spacecraft systems were made and the susceptibility of typical spacecraft to disruption by arc discharges was investigated. Design guidelines and recommended practices to reduce or eliminate the threat of malfunction and failures due to spacecraft charging/arcing were summarized.

  14. Driven Motion and Instability of an Atmospheric Pressure Arc

    SciTech Connect

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  15. Detailed seismic attenuation structure beneath Hokkaido, northeastern Japan: Arc-arc collision process, arc magmatism, and seismotectonics

    NASA Astrophysics Data System (ADS)

    Kita, Saeko; Nakajima, Junichi; Hasegawa, Akira; Okada, Tomomi; Katsumata, Kei; Asano, Youichi; Kimura, Takeshi

    2014-08-01

    In this study, we imaged a detailed seismic attenuation structure (frequency-independent Q-1) beneath Hokkaido, Japan, by merging waveform data from a dense permanent seismic network with those from a very dense temporary network. Corner frequency of each event used for t* estimation was determined by the S coda wave spectral ratio method. The seismic attenuation (Qp-1) structure is clearly imaged at depths down to about 120 km. For the fore-arc side of Hokkaido, high-Qp zones are imaged at depths of 10 to 80 km in the crust and mantle wedge above the Pacific slab. Low-Qp zones are clearly imaged in the mantle wedge beneath the back-arc areas of eastern and southern Hokkaido. These low-Qp zones, extending from deeper regions, extend to the Moho beneath volcanoes, the locations of which are consistent with those of seismic low-velocity regions. These results suggest that the mantle wedge upwelling flow occurs beneath Hokkaido, except in the area where there is a gap in the volcano chain. In contrast, an inhomogeneous seismic attenuation structure is clearly imaged beneath the Hokkaido corner. A broad low-Qp zone is located at depths of 0-60 km to the west of the Hidaka main thrust. The location almost corresponds to that of the seismic low-velocity zone in the collision zone. The fault planes of the 1970 M6.7 and 1982 M7.1 earthquakes are located at the edges of this broad low-Qp zone. Observations in this study indicate that our findings contribute to understanding the detailed arc-arc collision process, magmatism, and seismotectonics beneath Hokkaido.

  16. Cloud Arcs in the Western Pacific

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Small cumulus clouds in this natural-color view from the Multi-angle Imaging SpectroRadiometer have formed a distinctive series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the interior of each arc.

    The interior clouds are thicker and likely to be more convectively active than the other clouds, causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and continues to spread out as it begins to sink back to the surface. This pushes any existing small cumulus clouds away from the central region of convection.

    As the air sinks, it also warms, preventing other small clouds from forming, so that the regions just inside the arcs are kept clear. At the arcs, the horizontal flow of sinking air is now quite weak and on meeting the undisturbed air it can rise again slightly -- possibly assisting in the formation of new small cumulus clouds. Although examples of the continuity of air, in which every rising air motion must be compensated by a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events form a quasi-periodic pattern, probably also requires a relatively uncommon combination of wind, temperature and humidity conditions for it to occur.

    The image was acquired by MISR's nadir camera on March 11, 2002, and is centered west of the Marshall Islands. Enewetak Atoll is discernible through thin cloud as the turquoise band near the right-hand edge of the image.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 11863, and covers an area of about 380

  17. Dual Torch Plasma Arc Furnace for Medical Waste Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Kikuchi, M.; Li, Heping; Iwao, T.; Inaba, T.

    2007-12-01

    In this paper, characteristics of a dual torch plasma arc used for hazardous waste treatment and operated at atmospheric pressure are studied, and also compared with those of the multi-torch plasma arc and the single torch plasma arc. The dual torch plasma arc is generated between the cathode and anode with argon as the working gas. The temperature distributions of the plasma arc are measured using a spectroscope and line pair method with the assumption of local thermodynamic equilibrium (LTE) for the DC arc current I = 100 A and argon flow rate Q = 15 slpm. The measurements show that the temperatures of the dual torch arc plasma in the regions near the cathode, the anode and the center point are 10,000 K, 11,000 K and 9,000 K, respectively. And the high temperature region of the multi torch plasma arc is of double or much wider size than that of a conventional dual torch plasma arc and single plasma torch. Based on the preceding studies, a dual torch plasma arc furnace is developed in this study. The measured gas temperature at the center region of the argon arc is about 11,000 K for the case of I = 200 A and Q = 30 slpm operated in atmosphere.

  18. Series and parallel arc-fault circuit interrupter tests.

    SciTech Connect

    Johnson, Jay; Fresquez, Armando J.; Gudgel, Bob; Meares, Andrew

    2013-07-01

    While the 2011 National Electrical Code%C2%AE (NEC) only requires series arc-fault protection, some arc-fault circuit interrupter (AFCI) manufacturers are designing products to detect and mitigate both series and parallel arc-faults. Sandia National Laboratories (SNL) has extensively investigated the electrical differences of series and parallel arc-faults and has offered possible classification and mitigation solutions. As part of this effort, Sandia National Laboratories has collaborated with MidNite Solar to create and test a 24-string combiner box with an AFCI which detects, differentiates, and de-energizes series and parallel arc-faults. In the case of the MidNite AFCI prototype, series arc-faults are mitigated by opening the PV strings, whereas parallel arc-faults are mitigated by shorting the array. A range of different experimental series and parallel arc-fault tests with the MidNite combiner box were performed at the Distributed Energy Technologies Laboratory (DETL) at SNL in Albuquerque, NM. In all the tests, the prototype de-energized the arc-faults in the time period required by the arc-fault circuit interrupt testing standard, UL 1699B. The experimental tests confirm series and parallel arc-faults can be successfully mitigated with a combiner box-integrated solution.

  19. The African Health Profession Regulatory Collaborative (ARC) at two years

    PubMed Central

    McCarthy, Carey F; Zuber, Alexandra; Kelley, Maureen A; Verani, Andre R; Riley, Patricia L

    2016-01-01

    Background The African Health Profession Regulatory Collaborative (ARC) for nurses and midwives was created in response to the increasing reliance on shifting HIV tasks to nurses and midwives without the necessary regulation supporting this enhanced professional role. ARC Approach The ARC initiative comprises regional meetings, technical assistance, and regulatory improvement grants which enhance HIV service delivery by nurses and midwives, and systematic evaluation of project impact. Results Eight of 11 countries funded by ARC advanced a full stage in regulatory capacity during their 1-year project period. Countries in ARC also demonstrated increased capacity in project management and proposal writing. Discussion The progress of country teams thus far suggests ARC is a successful model for regulation strengthening and capacity building, as well as presenting a novel approach for sustainability and country ownership. The ARC platform has been a successful vehicle for regional harmonisation of updated regulations and promises to help facilitate the enhancement of HIV service delivery by nurses and midwives. PMID:27066113

  20. AB136. Arthrogryposis, renal dysfunction, cholestasis (ARC) syndrome

    PubMed Central

    Oanh, Bui Kim; Hoa, Nguyen Pham Anh

    2015-01-01

    Background ARC (arthrogryposis, renal dysfunction, cholestasis) is a clinical syndrome with multisystem disorder, the major presentations are arthrogryposis, renal tubular dysfunction and cholestasis. It is a rare autosomal recessive syndrome which is caused by mutations in VPS33B gene on chromosome 15q26.1. ARC is a rare syndrome. Until now, there haven’t had any reports on ARC syndrome in Vietnam. Objective Describle clinical, laboratory characteristics and follow up ARC patients. Methods The retrospective description. Results and conclusions In the time 1/2012-2/2014, at National Hospital of Pediatrics, we detected eight ARC cases. The major clinical signs: arthrogryposis, renal tubular dysfunction, cholestasis. Some other disorders: ichthyosis, failure to thrive, recurrent fever, diarrhea… mutations in VPS33B. The ARC patients have high mortality, inability to cure. The next pregnancy of woman, who have had ARC baby should be followed up and consulted carefully.

  1. SAR arcs we have seen: Evidence for variability in stable auroral red arcs

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Baumgardner, Jeffrey; Wroten, Joei

    2016-01-01

    Since 1987, an all-sky airglow imaging system has operated from a site at the Millstone Hill/Haystack Observatory in Westford, MA. During the ~2.5 solar cycles from 1987 to 2014, many studies using all-sky images, in conjunction with incoherent scatter radar and satellite data, described subauroral, ionospheric disturbances observed during individual geomagnetic storms. The most prominent storm time optical feature from a subauroral site is a stable auroral red (SAR) arc. The standard use of a SAR arc's position is to locate the ionospheric footprint of the narrow plasmapause-ring current interaction region where heat conduction from the inner magnetosphere excites emission within the F layer trough. When mapped from an emission altitude of 400 km to the geomagnetic equatorial plane, SAR arcs from Millstone Hill give the location of the plasmapause at radial distances between 2 to 4.5 Earth radii. A total of 314 SAR arcs have been observed during the 27 years of imaging at Millstone Hill. We find no single morphology for all SAR arcs, but rather patterns that occasionally depart from stability in space and time. We have classified these into five categories: longevity, multiplicity, zonal structure, latitudinal inhomogeneity, and tilt with respect to geomagnetic coordinates. In each case, the implications for the inner magnetosphere sources that drive SAR arcs are explored. While individual SAR arc variability characteristics have been noted in previous studies, here we describe for the first time all five types from the same site—an aspect not yet addressed in either magnetosphere or ionosphere modeling studies.

  2. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  3. Lithium Isotopic Composition of Aleutian Arc Magmas

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Park, Y.; Liu, X.; Kay, S. M.; Kay, R. W.

    2012-12-01

    The lithium isotopic compositions of inputs to subduction zones can be highly variable. For example, altered oceanic crust is isotopically heavy (δ7Li = 4 to 22, Chan et al., 1996; Bouman et al., 2004) due to uptake of seawater Li (32). Sea floor sediments can have highly variable compositions, ranging from isotopically heavy pelagic sediments (6 to 14) to isotopically light terrigneous clays (-1.5 to 5), derived from highly weathered continental crust (Chan et al., 2006). Despite this variability in inputs, arc outputs (magmatic rocks) typically have mantle-like δ7Li (e.g., 2 to 6; Tomascak et al., 2002; Walker et al., 2009). To explore the behavior of lithium and its isotopes in arcs, we have analyzed [Li] and δ7Li in 48 lavas and plutons from the Aleutian island arc, which span the temporal (0 to 38 Ma), geographical (165-184oW) and compositional variations (SiO2 = 46-70 wt.%) seen in this arc. Previous studies have indicated a systematic geographic change in lava chemistry related to changing sediment composition along the arc (terrigneous in the east, pelagic in the west, e.g., Kay and Kay, 1994; Yogodinski et al., 2010), as well as temporal changes that may also reflect changes in sedimentary input (Kay and Kay, 1994), and we wished to determine if Li isotopes also reflect such changes. Lithium concentration [Li] shows a generally positive correlation with SiO2, consistent with the expected incompatible behavior of Li during magmatic differentiation. Intrusive rocks (all from the Adak region) show more scatter than lavas on this plot, suggesting the influence of cumulate processes. The δ7Li of the rocks span an immense range from -1 to +29, well outside the values considered typical for the MORB-source mantle (e.g., 2-6). However, the majority of the samples (28 out of 48) have δ7Li falling within the range of typical mantle values. There is a general tendency for the lavas (all but one are <2 Ma) to have slightly lower δ7Li than intrusions (which range

  4. Hybrid Arc Cell Studies: Status Report

    SciTech Connect

    Berg J. S.

    2012-09-28

    I report on the status, at the end of FY12, of the studies of an arc cell for a hybrid synchrotron accelerating from 375 GeV/c to 750 GeV/c in momentum. Garren produced a complete lattice that gives a good outline of the structure of a hybrid synchrotron lattice. It is, however, lacking in some details: it does not maintain a constant time of flight, it lacks chromaticity correction, its cell structure is not ideal for removing aberrations from chromaticity correction, and it probably needs more space between magnets. I have begun studying cell structures for the arc cells to optimize the lattice performance and cost. I present some preliminary results for two magnets per half cell. I then discuss difficulties encountered, some preliminary attempts at resolving them, and the future plans for this work.

  5. Update on plasma arc centrifugal treatment

    SciTech Connect

    Haun, R.E.; Paulson, W.S.; Eschenbach, R.C.

    1996-12-31

    Over the last eight years, Retech has developed a plasma-powered system for destroying organics and stabilizing metal oxides in a non-leaching slag. The system, termed Plasma Arc Centrifugal Treatment (PACT), can handle a variety of waste streams such as contaminated soils, sludges, ion-exchange resins, incinerator bottom and fly-ash and drummed waste among others. This paper will review recent commercial applications of the technology. Three Plasma Arc Centrifugal Treatment systems having an eight-foot diameter centrifuge (PACT-8) are in the construction phase. One will be used in the Lockheed Environmental Systems and Technologies (LESAT) system for remediating Pit 9 at the Idaho National Engineering Lab (INEL). A second unit will be located at the Retech plant in Ukiah, California. The third unit will be located at a site in Munster, Germany.

  6. Electrical Safety and Arc Flash Protections

    SciTech Connect

    R. Camp

    2008-03-04

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  7. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor); Kincaid, Russell W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  8. Submerged arc welding of heavy plate

    NASA Technical Reports Server (NTRS)

    Wilson, R. A.

    1972-01-01

    The submerged arc process is particularly suitable for heavy plate welding because of its ability to combine very high deposit rates along with excellent quality. It does these things without the smoke and spatter often accompanying other processes. It is available today in several forms that are pointed to the fabricators of heavy sections with long, short or round about welds. Tandem arc full automatic equipment is particularly suitable for those long heavy welds where speed and deposit rate are of the first order. An attachment called long stick-out which makes use of the IR drop on long electrode extensions can be included on this equipment to increase deposition rates 50% or more.

  9. Macular degeneration in an arc welder.

    PubMed

    Kim, Eun A; Kim, Byung-Gyu; Yi, Cheol-Ho; Kim, Il Gon; Chae, Chang-Ho; Kang, Seong-Kyu

    2007-04-01

    A male welder who had been working in an industrial machine plant for more than 20 years experienced acute intense pain in his left eye with continuous lacrimation while performing arc welding in 1997. Later in 1997, at the age of 39 yr, macular edema was found in his left eye. He was diagnosed with macular degeneration (MD) of the left eye in 2002, and with right eye MD in 2004. Radiation in the visible and near infrared (IR) spectra penetrates the eye and is absorbed by the retina, possibly causing thermal or photochemical damage. Such retinal damage may be permanent and, therefore, sight-threatening. The young age and history of an acute painful eye injury are not consistent with age related macular degeneration (AMD) but rather is likely maculopathy caused by welding arc exposure. PMID:17485886

  10. Filtered cathodic arc deposition apparatus and method

    DOEpatents

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  11. Mantle structure and seismotectonics of the Sunda and Banda arcs

    NASA Astrophysics Data System (ADS)

    Puspito, Nanang T.; Shimazaki, Kunihiko

    1995-12-01

    We have examined the mantle structure and seismotectonic features of the Sunda and Banda arcs, Indonesia, based on the P-wave tomographic images, focal mechanism solutions, gravity anomaly and heat-flow data. On the basis of slab morphology and seismicity, we can divide the arcs into three parts, the Western Sunda, Eastern Sunda, and Banda arc. The slab-like tomographic image penetrates to a depth of about 500 km below the Western Sunda arc where seismicity does not exceed a depth of 250 km. In the Eastern Sunda arc, where a seismic gap exists between 300 and 500 km depths, the slab appears to be continuous and to penetrate into the lower mantle. Beneath the Banda arc, with seismicity down to a depth of about 650 km, the slab dips gently and does not appear to penetrate into the lower mantle. The positive gravity anomaly shows a systematic pattern, namely, the anomaly along the Eastern Sunda arc is larger than that in the Western Sunda and the Banda arcs. Along the back-arc side of the Sunda and Banda arcs, the heat flow decreases from the west to the east. Seismic strain release from the shallow earthquakes calculated from the CMT solutions show the strain axes to be oblique to the structural trends. The CMT solutions show that the Eastern Sunda arc is characterized by normal earthquakes along the trench and back-arc thrusting earthquakes north of the volcanic line. In the Western Sunda and the Eastern Sunda arcs, earthquakes of the down-dip extension type dominate the slab down to a depth of 200 km while down-dip compression earthquakes occur below 500 km depth. In the Banda arc, deep earthquakes show down-dip extension to a depth of 500 km; below this depth the state of stress is not clearly defined.

  12. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  13. TPS: From Arc-Jet to Flight

    NASA Technical Reports Server (NTRS)

    Buslog, Stanley A.

    2004-01-01

    This slide presentation reviews the testing of thermal protection system materials. All space vehicles that reenter Earth's atmosphere from either LEO or from Lunar/Mars missions require thermal protection system (TPS) materials. These TPS materials requires ground test facilities that simulate the aerothermodynamic environments experienced by reentry. The existing arc-jet facility requires expansion to combine convective and radiation heating and to test the capability to protect with the CO2 atmosphere that will be encountered for Martian entry.

  14. Glassification of electric arc furnace dust

    SciTech Connect

    Ek, R.B. ); Schlobohm, J.E. )

    1993-04-01

    The Glassification process is a unique system that treats hazardous materials such as electric arc furnace dust, slag, spent refractories, etc, and produces an inert, nontoxic marketable commodity. A wide variety of end products include: colored glasses; glass-ceramics that resemble natural rocks used for architectural purposes and decorative articles; roofing granules; abrasive grit; brick and tile colorants; and fillers. This paper describes the process.

  15. Remote electrical arc suppression by laser filamentation.

    PubMed

    Schubert, Elise; Mongin, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-11-01

    We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, that relies on the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation. PMID:26561133

  16. Power Supply For 25-Watt Arc Lamp

    NASA Technical Reports Server (NTRS)

    Leighty, B. D.

    1985-01-01

    Dual-voltage circuitry both strikes and maintains arc. New power supply designed (and several units already in use) that replaces relay/choke combination with solid-state starter. New power supply consists of two main sections. First section (low voltage power supply section) is 84-volt directcurrent supply. Second section (high-voltage starter circuit) is CockroftWalton voltage multiplier. Used as light sources for schlieren, shadowgraph, and other flow-visualization techniques.

  17. HPF Implementation of ARC3D

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Yan, Jerry

    1999-01-01

    We present an HPF (High Performance Fortran) implementation of ARC3D code along with the profiling and performance data on SGI Origin 2000. Advantages and limitations of HPF as a parallel programming language for CFD applications are discussed. For achieving good performance results we used the data distributions optimized for implementation of implicit and explicit operators of the solver and boundary conditions. We compare the results with MPI and directive based implementations.

  18. Surface breakdown igniter for mercury arc devices

    DOEpatents

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  19. Recent advances in vacuum arc ion sources

    SciTech Connect

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Oks, E.M.

    1995-07-01

    Intense beams of metal ions can be formed from a vacuum arc ion source. Broadbeam extraction is convenient, and the time-averaged ion beam current delivered downstream can readily be in the tens of milliamperes range. The vacuum arc ion source has for these reasons found good application for metallurgical surface modification--it provides relatively simple and inexpensive access to high dose metal ion implantation. Several important source developments have been demonstrated recently, including very broad beam operation, macroparticle removal, charge state enhancement, and formation of gaseous beams. The authors have made a very broad beam source embodiment with beam formation electrodes 50 cm in diameter, producing a beam of width {approximately}35 cm for a nominal beam area of {approximately}1,000 cm{sup 2}, and a pulsed Ti beam current of about 7 A was formed at a mean ion energy of {approximately}100 keV. Separately, they`ve developed high efficiency macroparticle-removing magnetic filters and incorporated such a filter into a vacuum arc ion source so as to form macroparticle-free ion beams. Jointly with researchers at the High Current Electronics Institute at Tomsk, Russia, and the Gesellschaft fuer Schwerionenforschung at Darmstadt, Germany, they`ve developed a compact technique for increasing the charge states of ions produced in the vacuum arc plasma and thus providing a simple means of increasing the ion energy at fixed extractor voltage. Finally, operation with mixed metal and gaseous ion species has been demonstrated. Here, they briefly review the operation of vacuum marc ion sources and the typical beam and implantation parameters that can be obtained, and describe these source advances and their bearing on metal ion implantation applications.

  20. Arc Casting Intermetallic Alloy (Materials Preparation Center)

    SciTech Connect

    2010-01-01

    Arc casting of intermetallic (La-Ni-Sn) AB5 alloy used for metal hydride hydrogen storage. Upon solidification the Sn is partially rejected and increases in concentration in the remaining liquid. Upon completing solidification there is a great deal of internal stress in the ingot. As the ingot cools further the stress is relieved. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  1. Adaptive Gas Metal Arc (GMA) Welder

    NASA Astrophysics Data System (ADS)

    Nachev, G.; Petkov, B.; Blagoev, L.; Tsankarski, I.

    1984-02-01

    Unlike NC machine-tools, where the tool path is primary and the product shape results from it, in arc welding the product is primary, and the welder - human or robot - has to contend with poor fitups, bad preparations, inexact positionning etc. All this means one thing - adaptivity. The axtent to which this is reasonable is discussed, and then a research project, conducted at IICR with the aim to create an adaptive GMA robot, is presented.

  2. Multi-colour detection of gravitational arcs

    NASA Astrophysics Data System (ADS)

    Maturi, Matteo; Mizera, Sebastian; Seidel, Gregor

    2014-07-01

    Strong gravitational lensing provides fundamental insights into the understanding of the dark matter distribution in massive galaxies, galaxy clusters, and the background cosmology. Despite their importance, few gravitational arcs have been discovered so far. The urge for more complete, large samples and unbiased methods of selecting candidates increases. Several methods for the automatic detection of arcs have been proposed in the literature, but large amounts of spurious detections retrieved by these methods force observers to visually inspect thousands of candidates per square degree to clean the samples. This approach is largely subjective and requires a huge amount of checking by eye, especially considering the actual and upcoming wide-field surveys, which will cover thousands of square degrees. In this paper we study the statistical properties of the colours of gravitational arcs detected in the 37 deg2 of the CFHTLS-Archive-Research Survey (CARS). Most of them lie in a relatively small region of the (g' - r', r' - i') colour-colour diagram. To explain this property, we provide a model that includes the lensing optical depth expected in a ΛCDM cosmology that, in combination with the sources' redshift distribution of a given survey, in our case CARS, peaks for sources at redshift z ~ 1. By furthermore modelling the colours derived from the spectral energy distribution of the galaxies that dominate the population at that redshift, the model reproduces the observed colours well. By taking advantage of the colour selection suggested by both data and model, we automatically detected 24 objects out of 90 detected by eye checking. Compared with the single-band arcfinder, this multi-band filtering returns a sample complete to 83% and a contamination reduced by a factor of ~6.5. New gravitational arc candidates are also proposed.

  3. Iron isotopic evidence for convective resurfacing of recycled arc-front mantle beneath back-arc basins

    NASA Astrophysics Data System (ADS)

    Nebel, O.; Arculus, R. J.; Sossi, P. A.; Jenner, F. E.; Whan, T. H. E.

    2013-11-01

    observations suggest sub-arc convective flow transports melt-exhausted and metasomatized wedge mantle into deeper mantle regions. Reciprocally, asthenospheric, fertile mantle may supply back-arc ridges distal to the trench by shallow, lateral mantle ingress, insinuating initial wedge mantle depletion in its back-arc region. Here we show that light Fe isotope compositions of the Central Lau Spreading Centre located in the Lau back-arc basin on the farside of the Tonga-Kermadec arc are indicative for derivation from a modified arc-front mantle with elemental and Nd-isotopic memory of former slab fluid addition. We propose that this shallow wedge material has been transported from the sub-arc mantle to the back-arc either convectively or in a buoyant diapir. This implies that melt-depleted mantle in subduction zones is, at least in parts, recycled in a resurfacing loop. This can explain the depletion in back-arc regions, and the progressively depleted nature of island arc sources in maturing arc systems.

  4. Plasma magmavication of soils by nontransferred arc

    SciTech Connect

    Mayne, P.W.; Burns, S.E.; Circeo, L.J.

    2000-05-01

    Electrical plasma arcs create very high temperatures (T > 4,000 C) that can be specifically directed for the in-place melting of soils. This overview presents a summary of the basic features and capabilities of plasma torches having a nontransferred type of arc for the in situ vitrification of soils. Laboratory chamber experiments using 100 kW and 240 kW plasma systems and full-scale field trials using a 1 MW portable system have successfully melted a variety of soil types, including sands, silts, and clays. Within five minutes' exposure to the arc, a core region of magma forms within the soil matrix that expands radially outward and upward as the torch is pulled out vertically. Several days afterwards, the molten zone cools to form an artificial igneous rock similar to obsidian, basalt, or granite. The size of the vitrified mass is proportional to the electrical power demand. The plasma torch has a configuration similar to a flamethrower and will therefore be amenable to placement down boreholes for purposes of in situ ground modification and subsurface remediation.

  5. Spiraling Fermi arcs in Weyl materials

    NASA Astrophysics Data System (ADS)

    Li, Songci; Andreev, Anton

    In Weyl materials the valence and conduction electron bands touch at an even number of isolated points in the Brillouin zone. In the vicinity of these points the electron dispersion is linear and may be described by the massless Dirac equation. This results in nontrivial topology of Berry connection curvature. One of its consequences is the existence of peculiar surface electron states whose Fermi surfaces form arcs connecting projections of the Weyl points onto the surface plane. Band bending near the boundary of the crystal also produces surface states. We show that in Weyl materials band bending near the crystal surface gives rise to spiral structure of energy surfaces of arc states. The corresponding Fermi surface has the shape of a spiral that winds about the projection of the Weyl point onto the surface plane. The direction of the winding is determined by the helicity of the Weyl point and the sign of the band bending potential. For close valleys arc state morphology may be understood in terms of avoided crossing of oppositely winding spirals. This work is supported by the U.S. Department of Energy Office of Science, Basic Energy Sciences under Award Number DE-FG02-07ER46452.

  6. Arc melter demonstration baseline test results

    SciTech Connect

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process.

  7. Ion charge state fluctuations in vacuum arcs

    SciTech Connect

    Anders, Andre; Fukuda, Kentaro; Yushkov, Georgy Yu

    2004-12-14

    Ion charge state distributions of cathodic vacuum arcs have been investigated using a modified time-of-flight method. Experiments have been done in double gate and burst gate mode, allowing us to study both systematic and stochastic changes of ion charge state distributions with a time resolution down to 100 ns. In the double gate method, two ion charge spectra are recorded with a well-defined time between measurements. The elements Mg, Bi, and Cu were selected for tests, representing metals of very different properties. For all elements it was found that large stochastic changes occur even at the limit of resolution. This is in agreement with fast changing arc properties observed elsewhere. Correlation of results for short times between measurements was found but it is argued that this is due to velocity mixing rather than due to cathode processes. The burst mode of time-of-flight measurements revealed the systematic time evolution of ion charge states within a single arc discharge, as opposed to previous measurements that relied on data averaged over many pulses. The technique shows the decay of the mean ion charge state as well as the level of material-dependent fluctuations.

  8. Development of a process for high capacity-arc heater production of silicon

    NASA Technical Reports Server (NTRS)

    Reed, W. H.; Meyer, T. N.; Fey, M. G.; Harvey, F. J.; Arcella, F. G.

    1978-01-01

    The realization of low cost, electric power from large-area silicon, photovoltaic arrays will depend on the development of new methods for large capacity production of solar grade (SG) silicon with a cost of less than $10 per kilogram by 1986 (established Department of Energy goal). The objective of the program is to develop a method to produce SG silicon in large quantities based on the high temperature-sodium reduction of silicon tetrachloride (SiCl4) to yield molten silicon and the coproduct salt vapor (NaCl). Commercial ac electric arc heaters will be utilized to provide a hyper-heated mixture of argon and hydrogen which will furnish the required process energy. The reactor is designed for a nominal silicon flow rate of 45 kg/hr. Analyses and designs have been conducted to evaluate the process and complete the initial design of the experimental verification unit.

  9. Evaluation of the graphite electrode arc melter for processing heterogeneous waste

    SciTech Connect

    O'Connor, William K.; Turner, Paul C.; Soelberg, N.R.; Anderson, G.L.

    1996-01-01

    The U.S. Bureau of Mines (USBM) conducted a series of 4 demonstration melting tests in a 3-phase AC graphite electrode arc furnace at its Albany Research Center (ALRC) thermal treatment facility in Albany, Oregon (now part of the U.S. Department of Energy, DOE). The scope of these tests provides a unique opportunity to evaluate a single melting technology regarding its applicability to the treatment of several different heterogeneous mixed wastes. The current system can continuously process combustible-bearing wastes at feedrates to 682 kg/h (1,500 lb/h), continuously tap slag or glass, and intermittently tap metal products, and includes a close-coupled thermal oxidizer and air pollution control system (APCS). The 4 demonstration melting tests were conducted in cooperation with the American Society of Mechanical Engineers (ASME), the Idaho National Engineering Laboratory (INEL), and the Westinghouse Hanford Company (WHC).

  10. Improvement of Weld Characteristics by Laser-Arc Double-Sided Welding Compared to Single Arc Welding

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Zhang, Kezhao; Hu, Xue; Yang, Yuhe; Chen, Yanbin; Wu, Yichao

    2015-11-01

    The single arc welding and laser-arc double-sided welding (LADSW) processes are investigated by virtue of test welds. The impacts of the laser beam during the LADSW process on the weld characteristics are studied from weld geometry, crystal morphology, and the mechanical properties of the joints. Compared with the single arc welding, the LADSW process improves the energy density and reduces the range of arc action, which together leads to a doubling of weld penetration depth. When penetrated by the laser beam, the liquid metal of the arc welding pool experiences severe fluctuations, leading to a finer grain size in the range of 17-26 μm in the LADSW weld, a reduction of nearly 63% compared to the grains in the single arc weld. The tensile strength and elongation-to-failure of the LADSW weld were increased by nearly 10 and 100% over the single arc welding, respectively.

  11. Stud arc welding in a magnetic field - Investigation of the influences on the arc motion

    NASA Astrophysics Data System (ADS)

    Hartz-Behrend, K.; Marqués, J. L.; Forster, G.; Jenicek, A.; Müller, M.; Cramer, H.; Jilg, A.; Soyer, H.; Schein, J.

    2014-11-01

    Stud arc welding is widely used in the construction industry. For welding of studs with a diameter larger than 14 mm a ceramic ferrule is usually necessary in order to protect the weld pool. Disadvantages of using such a ferrule are that more metal is molten than necessary for a high quality welded joint and that the ferrule is a consumable generally thrown away after the welding operation. Investigations show that the ferrule can be omitted when the welding is carried out in a radially symmetric magnetic field within a shielding gas atmosphere. Due to the Lorentz force the arc is laterally shifted so that a very uniform and controlled melting of the stud contact surface as well as of the work piece can be achieved. In this paper a simplified physical model is presented describing how the parameters welding current, flux density of the magnetic field, radius of the arc and mass density of the shielding gas influence the velocity of the arc motion. The resulting equation is subsequently verified by comparing it to optical measurements of the arc motion. The proposed model can be used to optimize the required field distribution for the magnetic field stud welding process.

  12. A study of arc force, pool depression and weld penetration during gas tungsten arc welding

    SciTech Connect

    Rokhlin, S.I.; Guu, A.C. . Dept. of Welding Engineering)

    1993-08-01

    Weld pool depression, arc force, weld penetration, and their interrelations have been studied as a function of welding current. Pool depression and welding arc force have been measured simultaneously using a recently developed technique. The authors found quadratic dependence of arc force on current, confirming similar findings in previous studies. Pool depression is essentially zero below a threshold level of current (200 A in this experiment) and then increases quadratically with current. A perfectly linear relation between arc force and pool depression was found in the current range from 200 to 350 A, with pool depression onset at about 0.35 g force (0.34 [center dot] 10[sup [minus]2]N). The total surface tension and gravitational forces were calculated, from the measured surface topography, and found to be about five times that required to balance the arc force at 300 A. Thus electromagnetic and hydrodynamic forces must be taken into account to explain the measured levels of pool depression. The relation between weld penetration and pool depression for different welding currents has been established. Three distinct regimes of weld penetration on weld current were found.

  13. Review of crustal seismicity in the Aleutian Arc and implications for arc deformation

    NASA Astrophysics Data System (ADS)

    Ruppert, Natalia A.; Kozyreva, Natalia P.; Hansen, Roger A.

    2012-02-01

    Central and eastern Aleutian Arc is characterized by oblique convergence between the subducting Pacific and overriding Bering Plates. This results in westward arc translation and formation of rotating crustal blocks in the forearc. In 2006-2010 several moderate, shallow crustal earthquakes (up to magnitude 6.7) occurred in the region. These events are located about 150 km away from the trench, on the volcanic axis, and have either strike-slip (west of 174°W) or normal (east of 174°W) faulting mechanisms. We improve aftershock locations by applying precise relocation methods to aid in identifying preferred fault planes. We also review similar earthquakes that occurred prior to 2006. For the central Aleutian Arc we conclude that, while some of these events occurred along the boundaries of the rotating blocks, the majority are left-lateral strike-slip events on NW- to N-oriented fault planes in the unrotated Bering massif. These manifest Riedel shearing in response slip partitioning due to the oblique convergence. Normal faulting events in eastern Aleutian Arc reflect along-arc extension.

  14. Tevatron optics measurements using an AC dipole

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is a device to study beam optics of hadron synchrotrons. It can produce sustained large amplitude oscillations with virtually no emittance growth. A vertical AC dipole for the Tevatron is recently implemented and a maximum oscillation amplitude of 2{sigma} (4{sigma}) at 980 GeV (150 GeV) is achieved [1]. When such large oscillations are measured with the BPM system of the Tevatron (20 {micro}m resolution), not only linear but even nonlinear optics can be directly measured. This paper shows how to measure {beta} function using an AC dipole and the result is compared to the other measurement. The paper also shows a test to detect optics changes when small changes are made in the Tevatron. Since an AC dipole is nondestructive, it allows frequent measurements of the optics which is necessary for such an test.

  15. The AC-120: The advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Duran, David; Griffin, Ernest; Mendoza, Saul; Nguyen, Son; Pickett, Tim; Noernberg, Clemm

    1993-01-01

    The main objective of this design was to fulfill a need for a new airplane to replace the aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and Boeing 737-100 airplanes. After researching the future aircraft market, conducting extensive trade studies, and analysis on different configurations, the AC-120 Advanced Commercial Transport final design was achieved. The AC-120's main design features include the incorporation of a three lifting surface configuration which is powered by two turboprop engines. The AC-120 is an economically sensitive aircraft which meets the new FM Stage Three noise requirements, and has lower NO(x) emissions than current turbofan powered airplanes. The AC-120 also improves on its contemporaries in passenger comfort, manufacturing, and operating cost.

  16. New ACS Guidelines Approved by CPT

    NASA Astrophysics Data System (ADS)

    Polik, William F.; Larive, Cynthia K.

    2008-04-01

    The American Chemical Society (ACS) Guidelines for Bachelor's Degree Programs have been revised in 2008 by the Committee on Professional Training (CPT) to reflect changes that are occurring in the chemistry profession and chemistry education. The goals of these changes are to promote modern and innovative chemistry curricula, encourage pedagogical innovation that enhances student learning and success, define faculty and infrastructure attributes of excellent chemistry programs, and streamline the procedures for program approval and review by ACS. The curriculum guidelines for an ACS-certified bachelor's degree are described in terms of foundation coursework, in-depth coursework, and laboratory requirements. Chemistry departments are encouraged to develop degree tracks to target emerging areas of interest within chemistry. The importance of developing student skills and regular program self-evaluation is emphasized. Finally, the procedures for approving and reviewing chemistry programs by ACS are summarized.

  17. Volumetric modulated arc radiotherapy for esophageal cancer

    SciTech Connect

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Syam Kumar, S.A.; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-04-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V{sub 20Gy} and V{sub 30Gy} dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D{sub 35%} of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V{sub 10Gy} and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans.

  18. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10–20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  19. The plasma wave environment of an auroral arc. II - ULF waves on an auroral arc boundary

    NASA Technical Reports Server (NTRS)

    Gelpi, C. G.; Bering, E. A.

    1984-01-01

    On March 9, 1978, a sounding rocket launched from Poker Flat, Alaska, at 2200 LT, made a four-component measurement of a 0.5 Hz hydromagnetic wave as the payload crossed the poleward boundary of a quiet homogeneous auroral arc. An energy flux of about 10 to the -6th W/sq m was observed propagating upward with a left-handed polarization within the arc, and a flux 6 times greater was observed propagating downward with a right-handed polarization on the arc boundary. The waves were identified as shear mode Alfven waves. Various models for the source of the free energy are discussed with the conclusion that the most likely production mechanism was either the electromagnetic or electrostatic Kelvin-Helmholtz instability.

  20. Observations of the conjugate SAR arcs of September 28-30, 1967. [subauroral red arcs

    NASA Technical Reports Server (NTRS)

    Reed, E. I.; Blamont, J. E.

    1974-01-01

    Stable subauroral red arcs (SAR arcs) were observed in both the northern and southern hemispheres on Sept. 28 to 30, 1967. For each pass the universal time and the longitude of the spacecraft as it crossed the magnetic equator are given. The SAR arc was noted to be worldwide in its extent and located on the same L shell in the northern and southern hemispheres. It appeared near L equals 3, moved equatorward to L equals 2.4, and later moved to, or reformed, near L equals 2.9. Its intensities were variable over the nearly two days of observations and, apparently influenced by the composition of the lower thermosphere, averaged 60 per cent greater in the northern hemisphere.

  1. Seismic Velocity and Attenuation Tomography of the Tonga Arc and Lau Back-arc Basin

    NASA Astrophysics Data System (ADS)

    Wei, S. S.; Zha, Y.; Wiens, D. A.; Webb, S. C.

    2014-12-01

    We apply various techniques to analyze seismic data from the 2009 - 2010 Ridge2000 Lau Spreading Center project to investigate the distribution of partial melt beneath the Tonga arc and Lau back-arc basin. The shear wave velocity structure is jointly inverted from the phase velocities of teleseismic and ambient-noise Rayleigh waves, as the former is inverted using the two-plane-wave method with finite-frequency kernels, and the latter is obtained from cross-correlation in frequency domain. Additionally, we determine the 3D attenuation structure from t* measurements of P and S waves from local earthquakes. In order to avoid the trade-off between t* and corner frequency, we analyze the spectral ratio of S coda to independently constrain the fc for each event. The QP and QS structures are inverted separately, and QP/QS is jointly inverted from QP and t*(S). Tomographic results show strong signals of low velocity and high attenuation within the upper 100-km of the mantle beneath the back-arc basin, suggesting perhaps the lowest shear velocity (VSV = 3.5 km/s) and highest seismic attenuation (QP < 35 and QS < 25) known in the mantle. These anomalies require not only the abnormally high temperature but also the existence of partial melt. The inferred partial melt aligns with the spreading centers at shallow depths, but shift westwards away from the slab, implying a passive decompression melting process governed by the mantle wedge flow pattern. The Tonga volcanic arc does not display as strong of velocity or attenuation anomalies as the spreading centers, suggesting less magmatism associate with the arc compared to the back-arc.

  2. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  3. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  4. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  5. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  6. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  7. Recombination Kinetics in the Afterglow of a High-Pressure Arc

    NASA Astrophysics Data System (ADS)

    Gleizes, Alain

    2000-10-01

    Modern high-voltage circuit-breakers are filled up with SF6 gas at a pressure of several atmospheres. AC current interruption occurs after current zero during a short phase of a few microseconds characterized by a fast cooling of the arc plasma due to convection and turbulence produced by overpressure effects. During this quenching phase the electrical conductance of the plasma and thus the electron number density must decrease rapidly in order to create a dielectric medium between the contacts capable to withstand the recovery voltage. We present first a kinetics study based on thermal equilibrium and on the previous knowledge of the temperature evolution, showing that the electrons disappear mainly by three mechanisms: three-body recombination at high temperature; dissociative recombination and dissociative attachment at intermediate and low temperature. A second study, coupling chemical kinetics and a two-dimension hydrodynamic modeling, has been performed in two conditions: thermal equilibrium and two-temperature plasma. The results show that departures from equilibrium remain weak, because in particular of the recombination of the electrons with S2+ ions. Finally, we will present the study of an SF6 and SF6-N2 arc plasma recombination in the presence of impurities. The theoretical prediction of the by-product formation has been compared with some experimental results obtained by gas chromatography, demonstrating the role of oxygen and carbon in the recombining plasma.

  8. Formation of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films in Vacuum Using Coaxial Arc Plasma Gun

    NASA Astrophysics Data System (ADS)

    Hanada, Kenji; Yoshida, Tomohiro; Nakagawa, You; Yoshitake, Tsuyoshi

    2010-12-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite films were grown in vacuum using a coaxial arc plasma gun. From the X-ray diffraction measurement, the UNCD crystallite size was estimated to be 1.6 nm. This size is dramatically reduced from that (2.3 nm) of UNCD/hydrogenated amorphous carbon (a-C:H) composite films grown in a hydrogen atmosphere. The sp3/(sp3 + sp2) value, which was estimated from the X-ray photoemission spectrum, was also reduced to be 41%. A reason for it might be the reduction in the UNCD crystallite size. From the near-edge X-ray absorption fine-structure (NEXAFS) spectrum, it was found that the π*C=C and π*C≡C bonds are preferentially formed instead of the σ*C-H bonds in the UNCD/a-C:H films. Since the extremely small UNCD crystallites (1.6 nm) correspond to the nuclei of diamond, we consider that UNCD crystallite formation should be due predominantly to nucleation. The supersaturated condition required for nucleation is expected to be realized in the deposition using the coaxial arc plasma gun.

  9. ArcCN-Runoff: An ArcGIS tool for generating curve number and runoff maps

    USGS Publications Warehouse

    Zhan, X.; Huang, M.-L.

    2004-01-01

    The development and the application of ArcCN-Runoff tool, an extension of ESRI@ ArcGIS software, are reported. This tool can be applied to determine curve numbers and to calculate runoff or infiltration for a rainfall event in a watershed. Implementation of GIS techniques such as dissolving, intersecting, and a curve-number reference table improve efficiency. Technical processing time may be reduced from days, if not weeks, to hours for producing spatially varied curve number and runoff maps. An application example for a watershed in Lyon County and Osage County, Kansas, USA, is presented. ?? 2004 Elsevier Ltd. All rights reserved.

  10. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada

    USGS Publications Warehouse

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.

    1989-01-01

    The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled

  11. Corrosion Behavior of Pulsed Gas Tungsten Arc Weldments in Power Plant Carbon Steel

    NASA Astrophysics Data System (ADS)

    Kumaresh Babu, S. P.; Natarajan, S.

    2007-10-01

    Welding plays an essential role in fabrication of components such as boiler drum, pipe work, heat exchangers, etc., used in power plants. Gas tungsten arc welding (GTAW) is mainly used for welding of boiler components. Pulsed GTAW is another process widely used where high quality and precision welds are required. In all arc-welding processes, the intense heat produced by the arc and the associated local heating and cooling lead to varied corrosion behavior and several metallurgical phase changes. Since the occurrence of corrosion is due to electrochemical potential gradient developed in the adjacent site of a weld metal, it is proposed to study the effects of welding on the corrosion behavior of these steels. This paper describes the experimental work carried out to evaluate and compare corrosion and its inhibition in SA 516 Gr.70 carbon steel by pulsed GTAW process in HCl medium at 0.1, 0.5, and 1.0 M concentrations. The parent metal, weld metal and heat affected zone are chosen as regions of exposure for the study made at room temperature (R.T.) and at 100 °C. Electrochemical polarization techniques such as Tafel line extrapolation (Tafel), linear polarization resistance (LPR), and ac impedance method have been used to measure the corrosion current. The role of hexamine and mixed inhibitor (thiourea + hexamine in 0.5 M HCl), each at 100 ppm concentration is studied in these experiments. Microstructural observation, surface characterization, and morphology using SEM and XRD studies have been made on samples exposed at 100 °C in order to highlight the nature and extent of film formation.

  12. The dependence of transpolar arc location on IMF By: a comparison of two large transpolar arc datasets

    NASA Astrophysics Data System (ADS)

    Kullen, Anita; Fear, Rob; Milan, Steve

    2014-05-01

    It is well-known that transpolar arc occurrence and motion depends strongly on the interplanetary magnetic field (IMF). The dawn-duskward motion of these arcs is strongly controlled by the IMF By component. Fear and Milan (2012) showed that not only the transpolar arc motion but also the dawn-duskward displacement of the original nightside connection point depends on the direction of IMF By. The best correlations between IMF By and location of transpolar arc nighside connection point was found for a 3-4 hour time delay between these. The results of their study are here reinvestigated using a similar dataset by Kullen et al. (2002) covering another time period. The analysis of the results shows several interesting features. It confirms many of the statistical results in the Fear and Milan (2012) study. However, the best correlation between IMF By and transpolar arc location is found to be with IMF conditions 1-2 hours before the arc occurs. Furthermore, one class of transpolar arcs (bending arcs, splitting from dawn- or dusk oval side around 21 and 3 UT) shows no correlation with IMF By at all. This indicates, bending arcs may form in a different way. A possible connection between bending transpolar arcs and dayside flux transfer events is investigated with help of ionospheric plasma flow patterns using SuperDARN data.

  13. Optical arc sensor using energy harvesting power source

    NASA Astrophysics Data System (ADS)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  14. Rapid mapping tool : an ArcMap extension /

    SciTech Connect

    Linger, S. P.; Rich, P. M.; Walther, D.; Witkowski, M. S.; Jones, M. A.; Khalsa, H. S.

    2002-01-01

    Cartographic production laboratories produce large volumes of maps for diverse customers. Turnaround time and consistency are key concerns. The Rapid Mapping Tool is an ArcMap based tool that enables rapid creation of maps to meet customer needs. This tool was constructed using VB/VBA, ArcObjects, and ArcGIS templates. The core capability of ArcMap is extended for custom map production by storing specifications associated with a map or template in a companion XML document. These specifications include settings and preferences used to create custom maps. The tool was developed as a component of an enterprise GIS, which enables spatial data management and delivery using ArcSDE, ArcIMS, Oracle, and a web-based request tracking system.

  15. Preliminary study of a wall stabilized constructed arc

    NASA Technical Reports Server (NTRS)

    Graves, R. A.; Wells, W. L.

    1973-01-01

    An iterative, implicit, finite-difference numerical technique is described which is suitable for obtaining solutions to the governing equations for a gas flowing in an axially symmetric constricted-arc heater. The method is shown to provide adequate solutions for three cases of simple pipe flows found in the literature, and for flow in a constricted-arc heater by direct comparison with experimental data. The comparison with arc-heater data includes static pressure, arc voltage, and wall heat flux, all as a function of axial location, and a radial temperature profile at one axial station. The arc-heater data were taken with air as the test gas at a heater inlet pressure approximately 0.40 atm and two flow rates of 2.2 and 4.8 g/sec. The arc currents investigated were between 377 and 584 amperes.

  16. Arc Flash Boundary Calculations Using Computer Software Tools

    SciTech Connect

    Gibbs, M.D.

    2005-01-07

    Arc Flash Protection boundary calculations have become easier to perform with the availability of personal computer software. These programs incorporate arc flash protection boundary formulas for different voltage and current levels, calculate the bolted fault current at each bus, and use built in time-current coordination curves to determine the clearing time of protective devices in the system. Results of the arc flash protection boundary calculations can be presented in several different forms--as an annotation to the one-line diagram, as a table of arc flash protection boundary distances, and as printed placards to be attached to the appropriate equipment. Basic arc flash protection boundary principles are presented in this paper along with several helpful suggestions for performing arc flash protection boundary calculations.

  17. Experimental AC (Asphalt Concrete) overlays of PCC pavement

    NASA Astrophysics Data System (ADS)

    Smith, R. D.

    1983-11-01

    A series of experimental asphalt concrete (AC) overlays was constructed over an existing distressed portland cement concrete pavement on Interstate 80 near Boca, California. The experimental overlays included rubberized dense-graded AC, rubberized open-graded AC, a rubber flush coat interlayer, dense-graded AC with short polyester fibers and Bituthene interlayer strips. The report presents a description and discussion of AC mix batching, construction observations, laboratory testing, overlay covering, and initial performance evaluation.

  18. A sonic flow equation for electric arc jets

    NASA Technical Reports Server (NTRS)

    Shepard, Charles E.; Milos, Frank S.; Taunk, Jaswinder S.

    1993-01-01

    The relationship between total enthalpy and the flow parameters of two types of electric arc jets is discussed. A simple equation for the supersonic arc jet, based on ARCFLO code calculations for mass-average total enthalpy, is presented in terms of a sonic flow parameter. At enthalpies greater than about 25 MJ/kg, this equation shows better agreement with experimental arc jet data than a previous equation.

  19. The Detection and Statistics of Giant Arcs behind CLASH Clusters

    NASA Astrophysics Data System (ADS)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Seitz, Stella; Zitrin, Adi; Merten, Julian; Maoz, Dani; Frye, Brenda; Umetsu, Keiichi; Zheng, Wei; Bradley, Larry; Vega, Jesus; Koekemoer, Anton

    2016-02-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift zs = 1.9 with 33% of the detected arcs having zs > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c-M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations.

  20. Stabilization of vacuum arc remelting of steels and alloys

    NASA Astrophysics Data System (ADS)

    Belyanchikov, L. N.

    2012-12-01

    The main cause of the electrode mass melting rate oscillations during vacuum arc remelting (VAR) of steels and alloys is shown to be the displacement of an arc into zones with different metallic vapor pressures. For the remelting process to be stabilized, the arc space length should be controlled as a function of the electrode melting rate and the shrinkage defects in cast electrodes should be removed by high-temperature gasostatic treatment.

  1. Analysis of optical perturbations of the SLC arcs

    SciTech Connect

    Weng, W.T.; Sands, M.

    1987-01-01

    This paper establishes the analytical framework in solving optical pertubations in a transport line in general and the SLC Arc specifically. The Formulation presented here is applicable to any transport system in a straightforward way. The equations of motion of a perturbed betatron function and dispersion function are presented. Sources of field errors for the SLC Arc system are discussed. Magnitudes of pertubations to the optical functions for the SLC Arc are estimated. (JDH)

  2. Physics of arcing, and implications to sputter deposition

    SciTech Connect

    Anders, Andre

    2003-12-15

    Arcing is a well-known, unwanted discharge regime observed on the surface of sputtering targets. The discharge voltage breaks down to less than 50 V while the current jumps to elevated levels. Arcing is unwanted because it prevents uniform deposition and creates particulates. The issue of arcing has been dealt with by target surface conditioning and by using modern power supplies that have arc suppression incorporated. With increasing quality requirements in terms of uniformity of coatings, and absence of particulates, especially for electrochromic and other advanced coatings applications, the issue of arcing warrants a closer examination with the goal to find other, physics-based, and hopefully better approaches of arcing prevention. From a physics point of view, the onset of arcing is nothing else than the transition of the discharge to a cathodic arc mode, which is characterized by the ignition of non-stationary arc spots. Arc spots operate by a sequence of microexplosions, enabling explosive electron emission, as opposed to secondary electron emission. Arc spots and their fragments have a size distribution in the micrometer and sub-micrometer range, and a characteristic time distribution that has components shorter than microseconds. Understanding the ignition conditions of arc spots are of central physical interest. Spot ignition is associated with electric field enhancement, which can be of geometric nature (roughness,particles), or chemical nature (e.g. oxide formation) and related local accumulation of surface charge. Therefore, it is clear that these issues are of particular concern when operating with high-density plasmas, such as in high-power pulsed sputtering, and when using reactive sputter gases.

  3. Commissioning of Volumetric Modulated Arc Therapy (VMAT)

    SciTech Connect

    Bedford, James L. Warrington, Alan P.

    2009-02-01

    Purpose: Volumetric modulated arc therapy (VMAT) involves the simultaneous use of dynamic multileaf collimator (DMLC) techniques and gantry arcing; appropriate quality assurance is therefore required. This article describes the development and implementation of procedures for commissioning VMAT on a commercial linear accelerator (Elekta PreciseBeam VMAT with MLCi and Beam Modulator heads). Materials and Methods: Tests for beam flatness and symmetry at the variable dose rates required for VMAT were performed. Multileaf collimator (MLC) calibration was investigated using dynamic prescriptions. The cumulative dose delivered by a sliding window aperture was measured and compared with calculated values. Rotational accuracy was evaluated using dynamic prescriptions which required accurate correlated motion of both gantry and MLC leaves. Finally, measured and calculated dose distributions for complete VMAT treatment plans were compared and evaluated. Results: Beam symmetry was found to be better than 3% down to dose rates of 75 MU/min. MLC calibration provided continuity of dose at match planes of better than 4%, which was comparable to interleaf leakage effects. Integrated sliding window doses were within 3% of those calculated. Tests for rotational accuracy showed uniformity of peripheral dose mostly within {+-}4% of local control point dose, or approximately {+-}0.2% of total central dose. A two-arc prostate case showed an absolute dose difference between calculations and measurements of less than 3%, with gamma (3% and 3 mm) of better than 95%. Conclusions: VMAT has been successfully commissioned and has been introduced into clinical use. The Elekta DMLC has also been shown to be suitable for sliding window delivery.

  4. Treatment planning for volumetric modulated arc therapy

    SciTech Connect

    Bedford, James L.

    2009-11-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a specific type of intensity-modulated radiation therapy (IMRT) in which the gantry speed, multileaf collimator (MLC) leaf position, and dose rate vary continuously during delivery. A treatment planning system for VMAT is presented. Methods: Arc control points are created uniformly throughout one or more arcs. An iterative least-squares algorithm is used to generate a fluence profile at every control point. The control points are then grouped and all of the control points in a given group are used to approximate the fluence profiles. A direct-aperture optimization is then used to improve the solution, taking into account the allowed range of leaf motion of the MLC. Dose is calculated using a fast convolution algorithm and the motion between control points is approximated by 100 interpolated dose calculation points. The method has been applied to five cases, consisting of lung, rectum, prostate and seminal vesicles, prostate and pelvic lymph nodes, and head and neck. The resulting plans have been compared with segmental (step-and-shoot) IMRT and delivered and verified on an Elekta Synergy to ensure practicality. Results: For the lung, prostate and seminal vesicles, and rectum cases, VMAT provides a plan of similar quality to segmental IMRT but with faster delivery by up to a factor of 4. For the prostate and pelvic nodes and head-and-neck cases, the critical structure doses are reduced with VMAT, both of these cases having a longer delivery time than IMRT. The plans in general verify successfully, although the agreement between planned and measured doses is not very close for the more complex cases, particularly the head-and-neck case. Conclusions: Depending upon the emphasis in the treatment planning, VMAT provides treatment plans which are higher in quality and/or faster to deliver than IMRT. The scheme described has been successfully introduced into clinical use.

  5. A New Survey for Giant Arcs

    SciTech Connect

    Hennawi, Joseph F.; Gladders, Michael D.; Oguri, Masamune; Dalal, Neal; Koester, Benjamin; Natarajan, Priyamvada; Strauss, Michael A.; Inada, Naohisa; Kayo, Issha; Lin, Huan; Lampeitl, Hubert; Annis, James; Bahcall, Neta A.; Schneider, Donald P.

    2006-11-15

    We report on the first results of an imaging survey to detect strong gravitational lensing targeting the richest clusters selected from the photometric data of the Sloan Digital Sky Survey (SDSS) with follow-up deep imaging observations from the Wisconsin Indiana Yale NOAO (WIYN) 3.5m telescope and the University of Hawaii 88-inch telescope (UH88). The clusters are selected from an area of 8000 deg{sup 2} using the Red Cluster Sequence technique and span the redshift range 0.1 {approx}< z {approx}< 0.6, corresponding to a comoving cosmological volume of {approx} 2Gpc{sup 3}. Our imaging survey thus targets a volume more than an order of magnitude larger than any previous search. A total of 240 clusters were imaged of which 141 had sub-arcsecond image quality. Our survey has uncovered 16 new lensing clusters with definite giant arcs, an additional 12 systems for which the lensing interpretation is very likely, and 9 possible lenses which contain shorter arclets or candidate arcs which are less certain and will require further observations to confirm their lensing origin. The number of new cluster lenses detected in this survey is likely > 30. Among these new systems are several of the most dramatic examples of strong gravitational lensing ever discovered with multiple bright arcs at large angular separation. These will likely become 'poster-child' gravitational lenses similar to Abell 1689 and CL0024+1654. The new lenses discovered in this survey will enable future systematic studies of the statistics of strong lensing and its implications for cosmology and our structure formation paradigm.

  6. ac and dc percolative conductivity of magnetite-cellulose acetate composites

    SciTech Connect

    Chiteme, C.; McLachlan, D. S.; Sauti, G.

    2007-03-01

    ac and dc conductivity results for a percolating system, which consists of a conducting powder (magnetite) combined with an 'insulating' powder (cellulose acetate), are presented. Impedance and modulus spectra are obtained in a percolation system. The temperature dependence of the resistivity of the cellulose acetate is such that at 170 deg. C, it is essentially a conductor at frequencies below 0.059{+-}0.002 Hz, and a dielectric above. The percolation parameters, from the dc conductivity measured at 25 and 170 deg. C, are determined and discussed in relation to the ac results. The experimental results scale as a function of composition, temperature, and frequency. An interesting result is the correlation observed between the scaling parameter (f{sub ce}), obtained from a scaling of the ac measurements, and the peak frequency (f{sub cp}) of the arcs, obtained from impedance spectra, above the critical volume fraction. Scaling at 170 deg. C is not as good as at 25 deg. C, probably indicating a breakdown in scaling at the higher temperature. The modulus plots show the presence of two materials: a conducting phase dominated by the cellulose acetate and the isolated conducting clusters below the critical volume fraction {phi}{sub c}, as well as the interconnected conducting clusters above {phi}{sub c}. These results are confirmed by computer simulations using the two exponent phenomenological percolation equation. These results emphasize the need to analyze ac conductivity results in terms of both impedance and modulus spectra in order to get more insight into the behavior of composite materials.

  7. Mineralogical characteristics of electric arc furnace dusts

    NASA Astrophysics Data System (ADS)

    Hagni, Ann M.; Hagni, Richard D.; Demars, Christelle

    1991-04-01

    Reflected light microscopy can contribute important information regarding the mineralogy, mineral abundance, internal textures, sizes and shapes of particles in electric arc furnace (EAF) dusts. Scanning electron microscopy-energy dispersive spectroscopy and electron microprobe analysis are useful to determine the chemical compositions of the specific mineral grains in the dust particles. Furthermore, the mineralogical reactions that have taken place during the pyro-metallurgical treatment of EAF dusts and the mineralogy and textural character of those treated dust samples can be directly observed by reflected light microscopy. Such studies are useful in monitoring the efficiency of experimental pyrometallurgical treatment of EAF dusts which are designed to render them nonhazardous.

  8. Entropy in an Arc Plasma Source

    SciTech Connect

    Kaminska, A.; Dudeck, M

    2008-03-19

    The entropy properties in a D.C. argon arc plasma source are studied. The local thermodynamical entropy relations are established for a set of uniform sub-systems (Ar, Ar{sup +}, e) in order to deduce the entropy balance equation in presence of dissipative effects and in the case of a thermal non equilibrium. Phenomenological linear laws are deduced in near equilibrium situation. The flow parameters inside the plasma source are calculated by a Navier-Stokes fluid description taking into account a thermal local non equilibrium. The entropy function is calculated in the plasma source using the values of the local variables obtained from the numerical code.

  9. Plasma Arc Welding: How it Works

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur

    2004-01-01

    The physical principles of PAW from basic arcs to keyholing to variable polarity are outlined. A very brief account of the physics of PAW with an eye to the needs of a welder is presented. Understanding is usually (but not always) superior to handbooks and is required (unless dumb luck intervenes) for innovation. And, in any case, all welders by nature desire to know. A bit of history of the rise and fall of the Variable Polarity (VP) PA process in fabrication of the Space Shuttle External Tank is included.

  10. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, Herschel B.; Einerson, Carolyn J.; Watkins, Arthur D.

    1989-01-01

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  11. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  12. Partial Arc Curvilinear Direct Drive Servomotor

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong (Inventor)

    2014-01-01

    A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.

  13. Hazards from High Intensity Lamps and Arcs

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.

    1970-01-01

    The principal occupational health problem generally associated with high intensity arc lamps results from exposure of the eye and skin to ultraviolet radiation. Occasionally, the chorioretinal burns are of concern. The eye is generally more susceptible than the skin to injury from high intensity optical radiation sources whether ultraviolet, visible or infrared. Recent developments in technology have shown that some high intensity optical radiation sources which have output parameters greatly different from those encountered in the natural environment present a serious chorioretinal burn hazard.

  14. Sensing the gas metal arc welding process

    NASA Technical Reports Server (NTRS)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  15. The ATLAS ARC backend to HPC

    NASA Astrophysics Data System (ADS)

    Haug, S.; Hostettler, M.; Sciacca, F. G.; Weber, M.

    2015-12-01

    The current distributed computing resources used for simulating and processing collision data collected by ATLAS and the other LHC experiments are largely based on dedicated x86 Linux clusters. Access to resources, job control and software provisioning mechanisms are quite different from the common concept of self-contained HPC applications run by particular users on specific HPC systems. We report on the development and the usage in ATLAS of a SSH backend to the Advanced Resource Connector (ARC) middleware to enable HPC compliant access and on the corresponding software provisioning mechanisms.

  16. ArcView Coal Evaluation User's Guide

    USGS Publications Warehouse

    Watson, William

    2007-01-01

    Purpose: The objective of the ArcView Coal Evaluation (ACE) is to estimate the amount and location of coal available to be mined by various coal mining technologies, based on the geologic coverages developed in the National Coal Resource Assessment (NCRA) which are the starting coverages used in the Geographic Information Systems (GIS) evaluation of coal resources. The ACE Users Guide provides many examples of how to apply technical limits based upon mining technology. The methods, which are iterative for any given mining technology, should transfer directly by mining technology to other coal beds.

  17. Orienting Arc Lamps for Longest Life

    NASA Technical Reports Server (NTRS)

    Kiss, J.

    1985-01-01

    Temperature distribution strongly affects performance. Tests on floodlights for Space Shuttle payload bay show useful life of metal halide dc arc lamp prolonged by mounting "anode down" and wiring for maximum heat conduction away from electrodes. Anode-down configuration, anode and cathode temperatures stabilize at 333 degrees and 313 degrees C, respectively, after 1 hour of operation. Temperatures both below limit for quartz-to-metal seals, and lamps able to withstand a 2,000-hour life test with satisfactory light output at end.

  18. Arcing in LEO - Does the Whole Array Discharge?

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry

    2005-01-01

    The conventional wisdom about solar array arcing in LEO is that only the parts the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.

  19. Arc lamp power supply using a voltage multiplier

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.

    1988-01-01

    A power supply is provided for an arc discharge lamp which includes a relatively low voltage high current power supply section and a high voltage starter circuit. The low voltage section includes a transformer, rectifier, variable resistor and a bank of capacitors, while the starter circuit comprises several diodes and capacitors connected as a Cockcroft-Walton multiplier. The starting circuit is effectively bypassed when the lamp arc is established and serves to automatically provide a high starting voltage to re-strike the lamp arc if the arc is extinguished by a power interruption.

  20. Developmental DSP4 effects on cortical Arc expression.

    PubMed

    Sanders, Jeff

    2016-04-01

    Activity Regulated Cytoskeleton Associated Protein (Arc) is an immediate early gene that is critical to brain plasticity. In this study, norepinephrine's regulation of Arc expression was examined during different stages of postnatal development. Rats were injected with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a selective noradrenergic neurotoxin, during preadolescence (PND 0 or 13), adolescence (PND 23 or 48) or adulthood (PND 60). After each DSP4 treatment, brains were harvested later in development and Arc mRNA levels analyzed with in situ hybridization. Rats lesioned with DSP4 during preadolescence showed no differences in Arc level compared to saline treated controls. In contrast, adolescence was a time of changing Arc mRNA response to DSP4. Rats lesioned during early adolescence showed Arc expression increases, while rats lesioned during late adolescence showed dramatic Arc expression decreases. Decreases in Arc level caused by late adolescent DSP4 were similar to those found in lesioned adults. These findings highlight a qualitatively different regulation of Arc expression by norepinephrine according to developmental stage, and indicate that mature regulation is not intact until late adolescence. These data point to important developmental differences in norepinephrine's regulation of brain plasticity. These differences may underlie contrasting psychotropic responses in children and adolescents compared to adults. PMID:26946107

  1. Arcing in LEO: Does the Whole Array Discharge?

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry

    2005-01-01

    The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.

  2. A satellite system synthesis model for orbital arc allotment optimization

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.

    1987-01-01

    A mixed integer programming formulation of a satellite system synthesis problem if presented, which is referred to as the arc allotment problem (AAP). Each satellite administration is to be allotted a weighted-length segment of the geostationary orbital arc within which its satellites may be positioned at any longitudes. The objective function maximizes the length of the unweighted arc segment allotted to every administration, subject to single-entry co-channel interference restrictions and constraints imposed by the visible arc for each administration. Useful relationships between special cases of AAP and another satellite synthesis problem are established. Solutions to two example problems are presented.

  3. Investigations on the radially free full circle arc

    NASA Astrophysics Data System (ADS)

    Tiller, W.

    1981-07-01

    The hypothesis that the steady state of a magnetically deflected arc is determined by the equilibrium of the thermodynamic and the magnetohydrodynamic forces is experimentally investigated. An argon arc, burning between two horizontal plane-parallel, insulating plates, bent circularly by its own and an external magnetic field, provided the well-defined conditions by giving a stationary, radially free, full circle arc for the experimental investigation. The local temperature distributions in the arc cross-section were detected spectroscopically as functions of the arc current and the arc radius or curvature. The mass flow field in the arc was determined using basic equations of conservation of energy, mass, and charge, and the known transport parameters of argon at atmospheric pressure. The results represented as a stream line graph, show a symmetric quadruple whirl instead of the expected double whirl, suggested to be due to experimental conditions. The equilibrium of heating and cooling mechanisms inside a curved arc and the relative motion of mass and arc were demonstrated. Experimental and theoretical data are in good agreement.

  4. F-layer polar-cap arcs. Master's thesis

    SciTech Connect

    Fite, D.D.

    1987-09-01

    Two types of ionospheric anomalies were discovered recently in the polar cap: patches and arcs. Polar-cap arcs are the focus of this study, which seeks correlation between arcs and total election content (TEC) enhancements and amplitude scintillation effects. Simultaneous optical and radio-frequency measurements were taken at Thule AFB and Qanaaq, Greenland, using the All-Sky Imaging Photometer (ASIP) and a specially equipped Global Positioning System (GPS) receiver. Arcs were discovered to produce significant, rapidly varying TEC increases, and small but measurable amplitude scintillation.

  5. Mantle Melting as a Function of Water Content in Arcs

    NASA Astrophysics Data System (ADS)

    Kelley, K. A.; Plank, T.; Newman, S.; Stolper, E.; Grove, T. L.; Parman, S.; Hauri, E.

    2003-12-01

    Subduction zone magmas are characterized by high concentrations of dissolved H2O, presumably derived from the subducted plate and ultimately responsible for melt generation in this tectonic setting. Almost ten years ago, Stolper and Newman (EPSL, 1994) illustrated a linear relationship between the concentration of water (H2Oo) and the fraction of melting (F) in the mantle beneath the Mariana back-arc. Here we report new major element and volatile data for olivine-hosted melt inclusions from the Mariana Islands to test this relationship for melting beneath an arc. Basaltic melt inclusions from the Mariana arc have water contents (2.3-6.1 wt% H2O) significantly higher than all basaltic glasses or melt inclusions from the Mariana back-arc (0.2-2.2 wt% H2O). We use TiO2 as a proxy for F, after correcting for crystal fractionation, and evaluate the Ti source composition with a model based on Ti/Y variations in mid-ocean ridge basalts (MORBs). Each calculated F thus represents the amount of mantle melting for a single melting episode. Even after accounting for mantle depletion, the TiO2 concentrations in Mariana arc magmas record higher extents of mantle melting (F = 10-30%) than recorded in back-arc magmas (F = 5-24%). As a whole, the Mariana arc broadly extends the linear H2Oo-F array defined by the back-arc, although in detail the islands show important differences. Two islands from the Mariana arc (Guguan and Pagan) define a H2Oo-F slope similar to the Mariana back-arc, suggesting similar mantle potential temperature beneath the arc and back-arc ( ˜1360 +/- 20° C). Melts from Agrigan island, however, indicate a steeper slope suggestive both of cooler mantle beneath Agrigan and of along-strike thermal variations beneath the Mariana Islands. Both the arc and back-arc arrays project to finite F at zero water in the mantle, providing evidence for decompression melting in both settings. These relationships may be extended globally to other back-arc and arc systems

  6. Community Structure Comparisons of Hydrothermal Vent Microbial Mats Along the Mariana Arc and Back-arc

    NASA Astrophysics Data System (ADS)

    Hager, K. W.; Fullerton, H.; Moyer, C. L.

    2015-12-01

    Hydrothermal vents along the Mariana Arc and back-arc represent a hotspot of microbial diversity that has not yet been fully recognized. The Mariana Arc and back-arc contain hydrothermal vents with varied vent effluent chemistry and temperature, which translates to diverse community composition. We have focused on iron-rich sites where the dominant primary producers are iron oxidizing bacteria. Because microbes from these environments have proven elusive in culturing efforts, we performed culture independent analysis among different microbial communities found at these hydrothermal vents. Terminal-restriction fragment length polymorphism (T-RFLP) and Illumina sequencing of small subunit ribosomal gene amplicons were used to characterize community members and identify samples for shotgun metagenomics. Used in combination, these methods will better elucidate the composition and characteristics of the bacterial communities at these hydrothermal vent systems. The overarching goal of this study is to evaluate and compare taxonomic and metabolic diversity among different communities of microbial mats. We compared communities collected on a fine scale to analyze the bacterial community based on gross mat morphology, geography, and nearby vent effluent chemistry. Taxa richness and evenness are compared with rarefaction curves to visualize diversity. As well as providing a survey of diversity this study also presents a juxtaposition of three methods in which ribosomal small subunit diversity is compared with T-RFLP, next generation amplicon sequencing, and metagenomic shotgun sequencing.

  7. A Neuronal Activity-Dependent Dual Function Chromatin-Modifying Complex Regulates Arc Expression1,2,3

    PubMed Central

    Oey, Nicodemus E.; Leung, How Wing; Ezhilarasan, Rajaram; Zhou, Lei; Beuerman, Roger W.; VanDongen, Hendrika M.A.

    2015-01-01

    Abstract Chromatin modification is an important epigenetic mechanism underlying neuroplasticity. Histone methylation and acetylation have both been shown to modulate gene expression, but the machinery responsible for mediating these changes in neurons has remained elusive. Here we identify a chromatin-modifying complex containing the histone demethylase PHF8 and the acetyltransferase TIP60 as a key regulator of the activity-induced expression of Arc, an important mediator of synaptic plasticity. Clinically, mutations in PHF8 cause X-linked mental retardation while TIP60 has been implicated in the pathogenesis of Alzheimer’s disease. Within minutes of increased synaptic activity, this dual function complex is rapidly recruited to the Arc promoter, where it specifically counteracts the transcriptionally repressive histone mark H3K9me2 to facilitate the formation of the transcriptionally permissive H3K9acS10P, thereby favoring transcriptional activation. Consequently, gain-of-function of the PHF8−TIP60 complex in primary rat hippocampal neurons has a positive effect on early activity-induced Arc gene expression, whereas interfering with the function of this complex abrogates it. A global proteomics screen revealed that the majority of common interactors of PHF8 and TIP60 were involved in mRNA processing, including PSF, an important molecule involved in neuronal gene regulation. Finally, we proceeded to show, using super-resolution microscopy, that PHF8 and TIP60 interact at the single molecule level with PSF, thereby situating this chromatin modifying complex at the crossroads of transcriptional activation. These findings point toward a mechanism by which an epigenetic pathway can regulate neuronal activity-dependent gene transcription, which has implications in the development of novel therapeutics for disorders of learning and memory. PMID:26464965

  8. A Detailed Geochemical Study of Island Arc Crust: The Talkeetna Arc Section, South-central Alaska

    NASA Astrophysics Data System (ADS)

    Greene, A. R.; Debari, S. M.; Kelemen, P. B.; Clift, P. D.; Blusztajn, J.

    2002-12-01

    The Talkeetna arc section in south-central Alaska is recognized as the exposed upper mantle and crust of an accreted, Late Triassic to Middle Jurassic island arc. Detailed geochemical studies of layered gabbronorite from the middle and lower crust of this arc and a diverse suite of volcanic and plutonic rocks from the middle and upper crust provide crucial data for understanding arc magma evolution. We also present new data on parental magma compositions for the arc. The deepest level of the arc section consists of residual mantle and ultramafic cumulates adjacent to garnet gabbro and basal gabbronorite interlayered with pyroxenite. The middle crust is primarily layered gabbronorite, ranging from anorthosite to pyroxenite in composition, and is the most widespread plutonic lithology. The upper mid crust is a heterogenous assemblage of dioritic to tonalitic rocks mixed with gabbro and intruded by abundant mafic dikes and chilled pillows. The upper crust of the arc is comprised of volcanic rocks of the Talkeetna Formation ranging from basalt to rhyolite. Most of these volcanic rocks have evolved compositions (<5% MgO, Mg# <60) and overlap the composition of intermediate to felsic plutonic rocks (<3.5% MgO, Mg# <45). However, several chilled mafic rocks and one basalt have primitive characteristics (>8% MgO, Mg# >60). Ion microprobe analyses of clinopyroxene in mid-crustal layered gabbronorites have parallel REE patterns with positive-sloping LREE segments (La/Sm(N)=0.05-0.17; mean 0.11) and flat HREE segments (5-25xchondrite; mean 10xchondrite). Liquids in REE equilibrium with the clinopyroxene in these gabbronorite cumulates were calculated in order to constrain parental magmas. These calculated liquids(La/Sm(N)=0.77-1.83; mean 1.26) all fall within the range of dike and volcanic rock(La/Sm(N)=0.78-2.12; mean 1.23) compositions. However, three lavas out of the 44 we have analyzed show strong HREE depletion, which is not observed in any of the liquid compositions

  9. Arc segmentation and seismicity in the Solomon Islands arc, SW Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Chu; Frohlich, Cliff; Taylor, Frederick W.; Burr, George; van Ufford, Andrew Quarles

    2011-07-01

    This paper evaluates neotectonic segmentation in the Solomon Islands forearc, and considers how it relates to regional tectonic evolution and the extent of ruptures of large megathrust earthquakes. We first consider regional geomorphology and Quaternary vertical displacements, especially uplifted coral reef terraces. Then we consider geographic seismicity patterns, aftershock areas and vertical displacements for large earthquakes, focal mechanisms, and along-arc variations in seismic moment release to evaluate the relationship between neotectonically defined segments and seismicity. Notably, one major limitation of using seismicity to evaluate arc segmentation is the matter of accurately defining earthquake rupture zones. For example, shoreline uplifts associated with the 1 April 2007 M w 8.1 Western Solomons earthquake indicate that the along-arc extent of rupture was about 50 km smaller than the aftershock area. Thus if we had relied on aftershocks alone to identify the 2007 rupture zone, as we do for most historical earthquakes, we would have missed the rupture's relationship to a major morphologic feature. In many cases, the imprecision of defining rupture zones without surface deformation data may be largely responsible for the poor mismatches to neotectonic boundaries. However, when a precise paleoseismic vertical deformation history is absent, aftershocks are often the best available tool for inferring rupture geometries. Altogether we identify 16 segments in the Solomon Islands. These comprise three major tectonic regimes or supersegments that correspond respectively to the forearc areas of Guadalcanal-Makira, the New Georgia island group, and Bougainville Islands. Subduction of the young and relatively shallow and buoyant Woodlark Basin and spreading system distinguishes the central New Georgia supersegment from the two neighboring supersegments. The physiographic expression of the San Cristobal trench is largely absent, but bathymetric mapping of the

  10. Cyclotron and linac production of Ac-225.

    PubMed

    Melville, Graeme; Allen, Barry J

    2009-04-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. The reduction of radium by photonuclear transmutation by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) has been investigated. A linac dose of 2800 Gy produced about 2.4 MBq (64 microCi) of Ra-225, which decays to Ac-225 and can then be used for 'Targeted Alpha Therapy' (TAT) of cancer. This result, while consistent with theoretical calculations, is far too low to be of practical use unless much larger quantities of radium are irradiated. The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. This paper investigates the possibility of producing of Ac-225 in commercial quantities, which could potentially reduce obsolete radioactive material and displace the need for expensive importation of Ac-225 from the USA and Russia in the years ahead. Scaled up production of Ac-225 could theoretically be achieved by the use of a high current cyclotron or linac. Production specifications are determined for a linac in terms of current, pulse length and frequency, as well as an examination of other factors such as radiation issues and radionuclei separation. Yields are compared with those calculated for the Australian National Cyclotron in Sydney. PMID:19135381

  11. Development of X-Shape Filtered Arc Deposition Apparatus for Thick ta-C Film Coating

    NASA Astrophysics Data System (ADS)

    Hikokasa, Hiroki; Iwasaki, Yasuhiro; Takikawa, Hirofumi; Sakakibara, Tateki; Hasegawa, Hiroshi; Tsuji, Nobuhiro

    Novel X-shape filtered arc deposition (X-FAD) apparatus is specially designed and newly developed for thick hydrogen-free tetrahedral amorphous-carbon (ta-C) film coating on superhard alloy (or cemented carbide) substrate. The apparatus has a graphite cathode for deposition of hydrogen-free diamond-like carbon (DLC; ta-C and amorphous carbon: a-C) film and a chromium (Cr) cathode for deposition of Cr layer. The filter duct shapes a composed form of a T-shape filter (T-FAD) for DLC film and a crank-shape filter (Crank FAD) for Cr film. Both carbon plasma beam and Cr plasma beam finally pass through a common plasma duct and scanner part, and go forward to the substrate. It is known that the adhesion of ta-C film to the superhard alloy is not good and the employment of binding interlayer between ta-C film and superhard alloy is one of the solutions. In this paper, using X-FAD, thick ta-C film was prepared on the superhard alloy. Principal results were as follows. (1) Crank FAD remarkably worked to prepare droplet-free Cr film. (2) Cr single layer did not work as appropriate biding interlayer between superhard alloy and ta-C. (3) Multi interlayer composed of Cr, a-C, and functionally graded DLC (a-C to ta-C), worked as a good biding interlayer for ta-C film on superhard alloy with thickness of more than 1 μm.

  12. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea

    NASA Astrophysics Data System (ADS)

    Ishizuka, Osamu; Taylor, Rex N.; Yuasa, Makoto; Ohara, Yasuhiko

    2011-05-01

    The Kyushu-Palau Ridge (KPR) is a 2600 km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc by a series of spreading and rift basins. We present 40Ar/39Ar ages and geochemical data for the entire length of the Kyushu-Palau arc as well as for the conjugate arc which is stranded within the IBM fore arc. New 40Ar/39Ar ages indicate that the KPR was active between 25 and 48 Ma, but the majority of the exposed volcanism occurred in the final phase, between 25 and 28 Ma. Rifting of the Kyushu-Palau arc to form the Shikoku and Parece Vela basins occurred simultaneously along the length of the arc (circa 25 Ma), and at a similar distance from the trench. Unlike the IBM, the KPR has only limited systematic along-arc geochemical trends. Two geochemical components within the KPR indicate an origin in the suprasubduction mantle. First, EM-1-like lavas are identified in a restricted section of the arc, suggesting a localized heterogeneity. Second, EM-2-like arc volcanoes formed on juvenile West Philippine Basin crust, potentially reflecting ingress of mantle from the then active EM-2 province which lies in the west. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where the arc developed on preexisting Cretaceous Daito Ridge crust. The geochemical characteristics at this intersection likely result from the involvement of sub-Daito Ridge lithospheric mantle. Subduction flux beneath the KPR generally matches post-45 Ma Eocene/Oligocene lavas in the IBM fore arc, involving fluids and melts derived from altered igneous crust.

  13. Constraints on the Origins of Along-Arc and Cross-Arc Chemical Variations in Arc Volcanic systems Derived from Global Systematics of Fluid-Mobile Elements

    NASA Astrophysics Data System (ADS)

    Ryan, Jeffrey

    2014-05-01

    The fluid-mobile element (FME) "clan" (B, Cs, As, Sb; conditionally Pb, Rb, Ba, Li, N, I: Leeman 1996; Noll et al 1996; Bebout et al 1999; Savov et al 2005) comprises a chemically disparate suite of trace elements that have in common evidence for low T°/low P mobility from subducting materials in H2O-dominated fluid species. The FME are highly variable in volcanic arc lavas, showing marked along-arc and across arc changes in nearly all of the arc volcanic systems that have been examined. Globally, along-arc variability of the FME can be explained as source mixing, with most arcs defining arrays between two predominant sources: the first a strongly FME-enriched endmember, showing enrichment patterns consistent with those observed in subduction-related serpentinites (Savov et al 2005; Hattori and Guillot 2007), and the second an FME-poor source with signatures for other large-ion lithophile elements (LIL) consistent with subducted slab (predominantly subducted sediment) derivation. The mantle is a negligible contributor to FME systematics in those arcs where the inferred thermal structures are cool at relatively shallow (30-40 km) depths (e.g., Syracuse, et al 2011). However, in the relatively few arcs that show hotter thermal structures at shallow depths, the FME-enriched component is absent, and the mixing components are the mantle and the FME-poor, LIL enriched component observed in all arcs. Regular across-arc declines in enrichments of boron and other FME are a diagnostic feature in volcanic arcs globally. B abundance and isotope systematics for across-arc transects point to a) anomalously high B and B isotope signals near the volcanic front, often some of the highest signatures in the arc, suggesting locally higher inputs of the FME-enriched endmember to mantle sources at that point along the volcanic front. These enrichments, as well as the positioning of the widest volcanic cross-chains, are often linked to physical phenomena (seamount or fracture zone

  14. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  15. Analysis of Effects of the Arc Voltage on Arc Discharges in a Cathode Ion Source of Neutral Beam Injector

    NASA Astrophysics Data System (ADS)

    Chen, Yuqian; Hu, Chundong; Xie, Yahong

    2016-04-01

    A hot cathode bucket ion source is used for the EAST (experimental advanced superconducting tokamak) neutral beam injector. The thermal electrons emitted from the surface of the cathode are extracted and accelerated by the electric field formed by the arc voltage, which is applied between the arc chamber of the ion source and the cathode. This paper analyzes the effects of arc voltage on the arc discharge in a hot cathode high current ion source. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB101000) and National Natural Science Foundation of China (No. 11405207)

  16. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1990-07-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. The work performed to date in the analysis of channel gas side materials has served to identify and clarify the respective environments to which the various materials are subjected and identified a performance ranking of materials. For high voltage intercathode gaps, which show the most severe wear, the materials rank in the order from best to worst: W, Mo, 90WCu, 97W2Fe1Ni, 75WCu, and Cr. We have shown data which indicates that lifetime is sensitive to gap voltage. Therefore for conditions under which iron oxide addition maintains low voltage intercathode gaps 75WCu becomes an excellent cathode material.

  17. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1991-04-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. Two phenomena that can effect the analysis of slag leakage current have been investigated and found significant. These are: (1) transverse current along the slag layer in the insulator walls of an MHD duct, and (2) electrode surface voltage drops. Both tend to reduce the value inferred for average plasma conductivity and increase the value inferred for axial leakage current. These two effects in combination are potentially capable of explaining the high leakage inferred. Corrosion on the water side of metal MHD duct wall elements has been examined in CDIF and Mark 7 generators. It appears to be controllable by adjusting the pH of the water and/or by controlling the dissolved oxygen content.

  18. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J.; Pollina, R.J.

    1990-04-27

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues: sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. The detailed correlation and analysis of data obtained from nearly all of the CDIF tests performed since 1986 has shown that the apparent leakage current flowing through the slag on the channel walls depends upon channel operating parameters in an unexpected way. A comprehensive report of the results obtained to date and a first attempt at their interpretation has been prepared and a copy is attached. The second activity has concerned the examination of electrodes (platinum anodes/tungsten cathodes) by SEM and EDX techniques to determine the nature of the surface degradation. Results of these examinations are reported.

  19. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, Richard J.; Pollina, Richard J.

    1990-04-01

    The objective of this task is to study the corrosion and arc erosion of magnetohydrodynamic (MHD) materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues: sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. The detailed correlation and analysis of data obtained from nearly all of the tests performed since 1986 has shown that the apparent leakage current flowing through the slag on the channel walls depends upon channel operating parameters in an unexpected way. A comprehensive report of the results obtained to date and a first attempt at their interpretation has been prepared and a copy is attached. The second activity has concerned the examination of electrodes (platinum anodes/tungsten cathodes) by scanning electron microscopy and energy dispersive x ray spectroscopy of the surface degradation. Results of these examinations are reported.

  20. Tertiary geothermal events around the Japan Arc

    NASA Astrophysics Data System (ADS)

    Itoh, Yasuto

    1991-11-01

    The thermal history through the late Tertiary around the Japan Arc is described by analyzing a number of geological data obtained from boreholes. Based on an empirical model of time-temperature-coalification, the burial history and coal ranks in a deep offshore borehole (MITI Tottori-Oki) reveal that the western part of the Sea of Japan was subjected to remarkable thermal events around middle Miocene and Quaternary times, during which voluminous igneous rocks erupted within Southwest Japan. Considering the tectonic context around the Japan Arc, it is most probable that the thermal event in the middle Miocene was brought about by the extensive continental rifting and formation of the Sea of Japan. The area of higher Quaternary temperatures in the upper mantle, which has been delineated through heat-flow measurements, coincides with the distribution of the contemporaneous alkaline volcanics, suggesting that the characteristic intra-plate volcanism and the latest thermal event can be related to the regional influx of hot asthenosphere beneath Southwest Japan.

  1. Anode arc motion in high power arcjets

    NASA Technical Reports Server (NTRS)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.; Mankins, J. S.

    1992-01-01

    The long-term operational lifetime of most medium to high power arcjets is currently limited by the rapid deterioration of the arcjet electrodes. To a large extent, the rate of this deterioration is related to the motion of the arc discharge on the electrode surfaces. This paper details a series of experiments aimed at studying the temporal behavior of dc arcs on a water-cooled radially-segmented 30 kW class arcjet anode. The experimental anode used for these tests was made of copper, and was divided into four equivalent radial segments which were electrically isolated with aluminum oxide gaskets. The current carried by each segment was measured independently using four calibrated resistive shunts, and was analyzed by digital computer. The tests were limited to nitrogen propellant over a current range of 100-250 A dc. Results show that for the range of total currents considered here, the current distribution in the segmented arcjet anode is generally asymmetric, exhibiting random fluctuations over a wide range of frequencies.

  2. Cathodic ARC surface cleaning prior to brazing

    SciTech Connect

    Dave, V. R.; Hollis, K. J.; Castro, R. G.; Smith, F. M.; Javernick, D. A.

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  3. Modeling of thermal plasma arc technology FY 1994 report

    SciTech Connect

    Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

    1995-03-01

    The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces.

  4. ac propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  5. ACS Data Handbook v.6.0

    NASA Astrophysics Data System (ADS)

    Gonzaga, S.; et al.

    2011-03-01

    ACS was designed to provide a deep, wide-field survey capability from the visible to near-IR using the Wide Field Camera (WFC), high resolution imaging from the near-UV to near-IR with the now-defunct High Resolution Camera (HRC), and solar-blind far-UV imaging using the Solar Blind Camera (SBC). The discovery efficiency of ACS's Wide Field Channel (i.e., the product of WFC's field of view and throughput) is 10 times greater than that of WFPC2. The failure of ACS's CCD electronics in January 2007 brought a temporary halt to CCD imaging until Servicing Mission 4 in May 2009, when WFC functionality was restored. Unfortunately, the high-resolution optical imaging capability of HRC was not recovered.

  6. AC loss in superconducting tapes and cables

    NASA Astrophysics Data System (ADS)

    Oomen, Marijn Pieter

    High-temperature superconductors are developed for use in power-transmission cables, transformers and motors. The alternating magnetic field in these devices causes AC loss, which is a critical factor in the design. The study focuses on multi-filament Bi-2223/Ag tapes exposed to a 50-Hz magnetic field at 77 K. The AC loss is measured with magnetic, electric and calorimetric methods. The results are compared to theoretical predictions based mainly on the Critical-State Model. The loss in high- temperature superconductors is affected by their characteristic properties: increased flux creep, high aspect ratio and inhomogeneties. Filament intergrowths and a low matrix resistivity cause a high coupling-current loss especially when the filaments are fully coupled. When the wide side of the tape is parallel to the external magnetic field, the filaments are decoupled by twisting. In a perpendicular field the filaments can be decoupled only by combining a short twist pitch with a transverse resistivity much higher than that of silver. The arrangement of the inner filaments determines the transverse resistivity. Ceramic barriers around the filaments cause partial decoupling in perpendicular magnetic fields at power frequencies. The resultant decrease in AC loss is greater than the accompanying decrease in critical current. With direct transport current in alternating magnetic field, the transport-current loss is well described with a new model for the dynamic resistance. The Critical- State Model describes well the magnetisation and total AC loss in parallel magnetic fields, at transport currents up to 0.7 times the critical current. When tapes are stacked face-to-face in a winding, the AC-loss density in perpendicular fields is greatly decreased due to the mutual shielding of the tapes. Coupling currents between the tapes in a cable cause an extra AC loss, which is reduced by a careful cable design. The total AC loss in complex devices with many tapes is generally well

  7. Brazilian Angiostrongylus cantonensis haplotypes, ac8 and ac9, have two different biological and morphological profiles

    PubMed Central

    Monte, Tainá CC; Gentile, Rosana; Garcia, Juberlan; Mota, Ester; Santos, Jeannie N; Maldonado, Arnaldo

    2014-01-01

    Angiostrongylus cantonensis is the etiologic agent of eosinophilic meningoencephalitis in humans. Cases have been recorded in many parts of the world, including Brazil. The aim of this study was to compare the differences in the biology and morphology of two different Brazilian haplotypes of A. : ac8 and ac9. A significantly larger number of L1 larvae eliminated in the faeces of rodents at the beginning of the patent period was observed for ac9 haplotype and compared to the total of L1 larvae eliminated, there was a significant difference between the two haplotypes. The ac9 haplotype showed a significant difference in the proportion of female and male specimens (0.6:1), but the same was not observed for ac8 (1.2:1). The morphometric analysis showed that male and female specimens isolated from ac8 haplotype were significantly larger with respect to body length, oesophagus length, spicule length (male) and distance from the anus to the rear end (female) compared to specimens from ac9. The morphological analysis by light microscopy showed little variation in the level of bifurcations at the lateral rays in the right lobe of the copulatory bursa between the two haplotypes. The biological, morphological and morphometric variations observed between the two haplotypes agree with the observed variation at the molecular level using the cytochrome oxidase subunit I marker and reinforce the possible influence of geographical isolation on the development of these haplotypes. PMID:25591110

  8. Alternating current-driven non-thermal arc plasma torch working with air medium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ni, Guohua; Lin, Qifu; Li, Lei; Cheng, Cheng; Chen, Longwei; Shen, Jie; Lan, Yan; Meng, Yuedong

    2013-11-01

    This work is devoted to the investigation of the discharge characteristics of high-frequency alternating current (ac) plasma torch working with air medium using electrical and spectroscopic techniques. A simple structure and compact ac plasma torch associated with a resonance power supply allows the generation of low power discharges (lower than 1 kW) with high voltage and low current. The discharge shows a negative resistance characteristic, and its curve shifts up with gas flow increased. The effects of power on the emission intensity of NO (A 2Σ+ → X 2Π), OH (A 2Σ → X 2Π, 0-0), N2(C 3Πu → B 3Πg), Hα and O (3p^{5}P \\to 3S^{5}S_{2}^{0}) and their spatial distributions in plasma jet axial direction were investigated. It has been found that the emission intensities of NO, OH, N2, Hα and O rise with an increase in power dissipation. With increasing axial distances of plasma jet from nozzle exit, the emission intensity of OH increases and then decreases, while the emission intensities of other species decrease sharply. The vibrational temperature is much higher than the gas temperature, which demonstrates the ac-driven arc discharge deviation from thermal equilibrium plasma.

  9. Hard coating of ultrananocrystalline diamond/nonhydrogenated amorphous carbon composite films on cemented tungsten carbide by coaxial arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Naragino, Hiroshi; Egiza, Mohamed; Tominaga, Aki; Murasawa, Koki; Gonda, Hidenobu; Sakurai, Masatoshi; Yoshitake, Tsuyoshi

    2016-08-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were deposited on cemented carbide containing Co by coaxial arc plasma deposition. With decreasing substrate temperature, the hardness was enhanced accompanied by an enhancement in the sp3/(sp2 + sp3). Energy-dispersive X-ray and secondary ion mass spectrometry spectroscopic measurements exhibited that the diffusion of Co atoms from the substrates into the films hardly occurs. The film deposited at room temperature exhibited the maximum hardness of 51.3 GPa and Young's modulus of 520.2 GPa, which evidently indicates that graphitization induced by Co in the WC substrates, and thermal deformation from sp3 to sp2 bonding are suppressed. The hard UNCD/a-C films can be deposited at a thickness of approximately 3 μm, which is an order larger than that of comparably hard a-C films. The internal compressive stress of the 51.3-GPa film is 4.5 GPa, which is evidently smaller than that of comparably hard a-C films. This is a reason for the thick deposition. The presence of a large number of grain boundaries in the film, which is a structural specific to UNCD/a-C films, might play a role in releasing the internal stress of the films.

  10. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.

    PubMed

    McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming

    2016-01-01

    The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx. PMID:26672449

  11. Variable-Polarity Plasma Arc Welding Of Alloy 2219

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1989-01-01

    Report presents results of study of variable-polarity plasma arc (VPPA) welding of aluminum alloy 2219. Consists of two parts: Examination of effects of microsegregation and transient weld stress on macrosegregation in weld pool and, electrical characterization of straight- and reverse-polarity portions of arc cycle.

  12. College Students' Technology Arc: A Model for Understanding Progress

    ERIC Educational Resources Information Center

    Langer, Arthur; Knefelkamp, L. Lee

    2008-01-01

    This article introduces the Student Technology Arc, a model that evaluates college students 'technology literacy, or how they operate within an education system influenced by new technologies. Student progress is monitored through the Arc's 5 interdependent stages, which reflect growing technological maturity through levels of increasing cognitive…

  13. Improving the Mach number capabilities of arc driven shock tubes

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; Santiago, J.; I, L.

    1980-01-01

    New systematic trends in one of the performance parameters of pressure loaded arc driven shock tubes have been determined. For a given configuration, the Mach number increases with the cube root of capacitor energy; however, the initial driver gas pressure is relatively unimportant. A qualitative model based on the assumption of Joule-preheating by the arc discharge is discussed.

  14. 29 CFR 1910.254 - Arc welding and cutting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Arc welding and cutting. 1910.254 Section 1910.254 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.254 Arc welding and cutting. (a) General—(1) Equipment...

  15. TILTING ELECTRIC ARC FURNACE USED TO MELT BRONZE IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING ELECTRIC ARC FURNACE USED TO MELT BRONZE IN THE BRASS FOUNDRY BY MEANS OF AN ARC CREATED BETWEEN TWO HORIZONTAL ELECTRODES. WHEN MELTED, THE FURNACE TILTS, FILLING MOBILE LADLES FROM THE SPOUT. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  16. ARC: An Alternative Teaching Strategy for Developmental Reading.

    ERIC Educational Resources Information Center

    Sinagra, Marsha D.; Lopez, Kathryn

    The Associate, Read and Connect (ARC) method is an instructional reading technique which employs cognitive mapping, or networking, to provide developmental reading students with a strategy for effectively dealing with college-level materials. ARC, based on the ability to utilize prior knowledge of a given subject matter, teaches students to…

  17. ARC: An Alternative Teaching Strategy for Developmental Reading.

    ERIC Educational Resources Information Center

    Sinagra, Marsha D.; Lopez, Kathryn

    1990-01-01

    Describes ARC (Associate=Prereading, Read=Guided Reading, Connect=After Reading), an instructional reading technique employing cognitive mapping or networking, based on the ability of students to utilize prior knowledge and assimilate new material. Describes the ARC procedure, provides a rationale for the technique, and reports observed results.…

  18. Experimental investigation of megawatt dc arc heating of nitrogen

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Campbell, J. P.

    1966-01-01

    Four types of arc heaters, each with the capability of providing arc power levels in excess of 1 megawatt in nitrogen, were tested over a range of power levels and nitrogen flow rates to determine their value as heaters for hypersonic tunnels. The data derived should be useful in the design of high energy heaters for various industrial processes.

  19. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Safety, 49 CFR part 192, Minimum Federal Safety Standards for Gas Pipelines, shall apply. (3) When a... 29 Labor 8 2011-07-01 2011-07-01 false Arc welding and cutting. 1926.351 Section 1926.351 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Welding and Cutting § 1926.351 Arc welding...

  20. 29 CFR 1915.56 - Arc welding and cutting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Arc welding and cutting. 1915.56 Section 1915.56 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.56 Arc welding and cutting. The provisions of this section shall apply to ship...

  1. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Safety, 49 CFR part 192, Minimum Federal Safety Standards for Gas Pipelines, shall apply. (3) When a... 29 Labor 8 2012-07-01 2012-07-01 false Arc welding and cutting. 1926.351 Section 1926.351 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Welding and Cutting § 1926.351 Arc welding...

  2. 29 CFR 1915.56 - Arc welding and cutting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Arc welding and cutting. 1915.56 Section 1915.56 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.56 Arc welding and cutting. The provisions of this section shall apply to ship...

  3. 29 CFR 1915.56 - Arc welding and cutting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Arc welding and cutting. 1915.56 Section 1915.56 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.56 Arc welding and cutting. The provisions of this section shall apply to ship...

  4. 29 CFR 1915.56 - Arc welding and cutting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Arc welding and cutting. 1915.56 Section 1915.56 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.56 Arc welding and cutting. The provisions of this section shall apply to ship...

  5. Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…

  6. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Arc welding and cutting. 1926.351 Section 1926.351 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Welding and Cutting § 1926.351 Arc welding and cutting. (a) Manual electrode...

  7. Model-observation comparison study of multiple polar cap arcs

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Valladares, C. E.; Sojka, J. J.; Schunk, R. W.; Crain, D. J.

    1996-01-01

    A quantitative model-observation comparison of multiple polar cap arcs has been conducted by using a time-dependent theoretical model of polar cap arcs. In particular, the electrodynamical features of multiple polar cap arcs with various spacings are simulated and the results are compared with the images obtained from the All-Sky Intensified Photometer at Qaanaaq. The results show that the observed and simulated arcs are quite similar, both spatially and temporally. The results support the theory proposed by Zhu et al. [1993a, 1994b] that the structure of polar cap arcs is mainly determined by the magnetosphere-ionosphere (M-I) coupling processes and that the spacing of multiple polar cap arcs is closely related to the hardness of the primary magnetospheric precipitation. It is found that for the multiple polar cap arcs with both narrow and wide spacings, the associated field-aligned currents are mainly closed by Pedersen currents. It is also found that a hard precipitation can lead to a highly structured secondary arc because of the nonlinear M-I coupling processes.

  8. Applying the ARCS Motivation Model in Technological and Vocational Education

    ERIC Educational Resources Information Center

    Liao, Hung-Chang; Wang, Ya-huei

    2008-01-01

    This paper describes the incorporation of Keller's ARCS (Attention, Relevance, Confidence, and Satisfaction) motivation model into traditional classroom instruction-learning process. Viewing that technological and vocational students have low confidence and motivation in learning, the authors applied the ARCS motivation model not only in the…

  9. Arc Jet Testing of Thermal Protection Materials: 3 Case Studies

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Conley, Joe

    2015-01-01

    Arc jet testing is used to simulate entry to test thermal protection materials. This paper discusses the usefulness of arc jet testing for 3 cases. Case 1 is MSL and PICA, Case 2 is Advanced TUFROC, and Case 3 is conformable ablators.

  10. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  11. Ion flux from the cathode region of a vacuum arc

    SciTech Connect

    Kutzner, J. )

    1989-10-01

    This paper reviews the properties of the ion flux generated in the vacuum arc. The structure and distribution of mass erosion from individual cathode spots and the characteristics of current carriers from the cathode region at moderate arc currents are described. The main theories concerning ion acceleration in cathode spots are discussed.

  12. The loss of material from the cathode of metal arcs

    NASA Technical Reports Server (NTRS)

    Seeliger, R.; Wulfhekel, H.

    1985-01-01

    A study was made of the effect of arc length, cathode thickness, current strength, gas pressure and the chemical nature of the cathode material and filling gases upon the material loss from Cu, Fe, and Ag cathodes in arcs. The results show that the analysis of the phenomenon is complex and the energy balance is difficult to formulate.

  13. An Integrated Calculation Method to Predict Arc Behavior

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Chen, Degui

    The precision of magnetic field calculation is crucial to predict the arc behavior using magnetohydrodynamic (MHD) model. A integrated calculation method is proposed to couple the calculation of magnetic field and fluid dynamics based on the commercial software ANSYS and FLUENT, which especially benefits to take into account the existence of the ferromagnetic parts. An example concerning air arc is presented using the method.

  14. Long-Lived Electrode For Arc Welding In Vacuum

    NASA Technical Reports Server (NTRS)

    Weeks, Jack L.; Poorman, Richard M.

    1992-01-01

    Improved electrode for gas/tungsten arc welding in vacuum essentially hollow cylinder along which inert gas flows. Interior of cylinder provides large surface area for emission of electrons to form welding arc. Flow of pressurized inert gas inhibits vaporization of hot electrode material. Both features combine to reduce erosion of electrode. Electrode lasts considerably longer in vacuum than conventional electrode.

  15. Petrographic and Geochemical Investigation of Andesitic Arc Volcanism: Mount Kerinci, Sunda Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Tully, M.; Saunders, K.; Troll, V. R.; Jolis, E.; Muir, D. D.; Deegan, F. M.; Budd, D. A.; Astbury, R.; Bromiley, G. D.

    2014-12-01

    Present knowledge of the chain of dominantly andesitic volcanoes, which span the Sumatran portion of the Sunda Arc is extremely limited. Previous studies have focused on Toba and Krakatau, although over 13 further volcanic edifices are known. Several recent explosive eruptions in Sumatra such as that of Mt. Sinabung, 2014, have highlighted the potential hazard that these volcanoes pose to the local and regional communities. Mount Kerinci, is one of the most active of the volcanoes in this region, yet little is known about the petrogenesis of the magma by which it is fed. Kerinci is located approximately mid-way between Toba in the North and Krakatau in the south. Along arc variations are observed in the major, minor and trace elements of whole rock analyses. However, bulk rock approaches produce an average chemical composition for a sample, potentially masking important chemical signatures. In-situ micro-analytical analysis of individual components of samples such as melt inclusions, crystals and groundmass provides chemical signatures of individual components allowing the evolution of volcanic centres to be deciphered in considerably more detail. Examination of whole rock chemistry indicates its location may be key to unravelling the petrogenesis of the arc as significant chemical changes occur between Kerinci and Kaba, 250 km to the south. Kerinci samples are dominantly porphyritic with large crystals of plagioclase, pyroxene and Fe-Ti oxides, rare olivine crystals are observed. Plagioclase and pyroxene crystals are chemically zoned and host melt inclusions. Multiple plagioclase populations are observed. A combination of in-situ micro-analysis techniques will be used to characterise the chemical composition of melt inclusions and crystals. These data can be used along with extant geothermobarometric models to help determine the magma source, storage conditions and composition of the evolving melt. Integration of the findings from this study with existing data for

  16. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    SciTech Connect

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  17. Miniature Arcs for Synthesis of Carbon Nanotubes in Microgravity

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2006-01-01

    Although many methods are available for producing single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. In the carbon arc, SWNTs are catalytically synthesized by rapidly evaporating a graphite anode impregnated with NiN metal catalyst from which the nanotubes grow in an inert atmosphere. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow has a large effect on the growth and morphology of the SWNTs. To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was developed to synthesize SWNTs in a microgravity environment substantially free from these strong convective flows. The reactor was operated for either 2.2 or 5 seconds during free-fall in the drop towers at the NASA Glenn Research Center. Two apparatus designs differing mainly in their production rate and power capacity were investigated. The first consisted of a miniaturized carbon arc employing a 1 mm diameter graphite anode and powered by a 0.54 F capacitor bank charged to 65 V. The second, larger apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 amps at 30 volts to the arc for the duration of a 5 second drop. Initial results indicated that transient heating is a very large effect in the short-duration drop tower carbon arcs, and thermal equilibrium of the arc plasma, buffer gas, and apparatus was not attained during the short microgravity periods. In addition, removal of the buoyant convection by the microgravity now allowed clear observation of large jets of evaporated carbon vapor streaming from the anode and mixing with the inert buffer gas. The initial mixing of these jets with the cold buffer gas combined with the thermal transient made it difficult to establish a uniform high temperature

  18. Numerical modeling of arc plasma generator for chemical laser applications

    NASA Astrophysics Data System (ADS)

    Sagar, Vidya; Ravikant, Chhaya; Singhal, Gaurav; Mittal, Alok P.

    2012-05-01

    The results of the numerical modeling of arc discharge phenomenon relevant to hydrogen fluoride/deuterium fluoride (HF/DF) laser applications are given. The overall mechanics of arc discharge phenomena on the basis of numerical modeling employing the commercial code COMSOL is discussed. The equations for a 2D axisymmetric, weakly compressible, laminar flow with heat transfer and the coupled hydrodynamic and electromagnetic equations are solved using the SIMPLE algorithm. The variations in the material properties, temperature, and velocity due to the generated arc are studied. A comparison of the results obtained with those from the studies available in the literature validates the computational data. Since each designed plasma arc tunnel is unique in itself and specific in application, this would enable one to alter arc discharge parameters to optimize a specific laser.

  19. Applicability of moire deflection tomography for diagnosing arc plasmas

    SciTech Connect

    Chen Yunyun; Song Yang; He Anzhi; Li Zhenhua

    2009-01-20

    The argon arc plasma whose central temperature, 1.90x10{sup 4} K, is used as a practical example for an experiment to research the applicability of moire deflection tomography in arc plasma flow-field diagnosis. The experimental result indicates that moire deflection of the measured argon arc plasma is very small, even smaller than that of a common flame with the maximal temperature of nearly 1.80x10{sup 3} K. The refractive-index gradient in moire deflection tomography mainly contributes to the temperature gradient in essence when the probe wavelength and pressure are certain in plasma diagnosis. The applicable temperature ranges of moire deflection tomography in the argon arc plasma diagnosis are given with the probe wavelength 532 nm at 1 atm in certain measuring error requirements. In a word, the applicable temperature range of moire deflection tomography for arc plasma diagnosis is intimately related to the probe wavelength and the practical measuring requirements.

  20. High efficiency infrared antireflection coatings (ARCs) for space optics

    NASA Astrophysics Data System (ADS)

    Nagendra, C. L.; Thutupalli, G. K. M.; Mohan, S.

    1989-05-01

    The development of non-quarter-wave IR ARCs for the Ge optics of space electrooptic hardware is described. A novel design-optimization method is applied in which the geometrical thicknesses of the ARC layers are calculated analytically (as explained by Nagendra, 1987). Two ARCs are developed: a three-layer system (ThF4/Ge/ThF4) for use at 7-12 microns and a two-layer system (CdTe/CdSe) for 14-16 microns. The ARCs are deposited in a vacuum-evaporation facility and subjected to optical and durability testing. The results are presented in graphs, and it is demonstrated that the ARCs are durable and transparent over the desired wavelength range and have spectral transmittance characteristics in good agreement with the theoretically predicted values.

  1. Luminosity variations in several parallel auroral arcs before auroral breakup

    NASA Astrophysics Data System (ADS)

    Safargaleev, V.; Lyatsky, W.; Tagirov, V.

    1997-08-01

    Variation of the luminosity in two parallel auroral arcs before auroral breakup has been studied by using digitised TV-data with high temporal and spatial resolution. The intervals when a new arc appears near already existing one were chosen for analysis. It is shown, for all cases, that the appearance of a new arc is accompanied by fading or disappearance of another arc. We have named these events out-of-phase events, OP. Another type of luminosity variation is characterised by almost simultaneous enhancement of intensity in the both arcs (in-phase event, IP). The characteristic time of IP events is 10-20 s, whereas OP events last about one minute. Sometimes out-of-phase events begin as IP events. The possible mechanisms for OP and IP events are discussed.

  2. Evaluation of pyrolysis and arc tracking on candidate wire insulation designs for space applications

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Hrovat, Kenneth

    1994-01-01

    The ability of wire insulation materials and constructions to resist arc tracking was determined and the damage caused by initial arcing and restrike events was assessed. Results of arc tracking tests on various insulation constructions are presented in view-graph format. Arc tracking tests conducted on Champlain, Filotex, and Teledyne Thermatics indicate the Filotex is least likely to arc track. Arc tracking occurs more readily in air than it does in vacuum.

  3. [Study on the arc spectral information for welding quality diagnosis].

    PubMed

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality. PMID:19455806

  4. Thermocapillary and arc phenomena in stainless steel welding

    SciTech Connect

    Pierce, S.W.; Olson, D.L.; Burgardt, P.

    1999-02-01

    This investigation characterized the effects of power level and Gaussian heat source size on thermocapillary-induced weld shape and estimated the relative influence of various possible arc phenomena in determining weld shape. Welds made with the CTAW process were compared with similar ones made with a conduction-mode EBW process and the differences were related to arc effects. Evidence of thermocapillary flow was readily apparent in both the GTA welds and the conduction-mode EB welds and was qualitatively similar in both. The similarity between the results obtained with the two processes serves to demonstrate that thermocapillary convection is the dominant factor in heat-to-heat weld shape variability. However, a similar one-to-one correspondence between welds produced with the two processes does not exist. Especially at high power, the EB welds showed stronger thermocapillary convection than the GTA welds. One important arc factor that limits thermocapillary flow in ar welds appears to be an increase in arc size with arc length and arc current. A non-Gaussian arc power distribution in GTAW seems to be most important in limiting the fluid flow. Apparently, the arc power distribution is more nearly rectangular in shape for an argon gas arc. At higher currents, above 200 A, plasma shear force may also be an important contributor to weld shape development. The conduction-mode EB welds demonstrate that thermocapillary flow reversal probably does not occur in welds made with a simple Gaussian heat source. The complex shape behavior is likely a result of an arc effect such as plasma shear.

  5. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2007-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. Discussed herein are neutral gas conditions, plasma densities and uniformity, vacuum chamber sizes, sample sizes and Debye lengths, biasing samples versus self-generated voltages, floating samples versus grounded samples, test electrical conditions, arc detection, preventing sustained discharges during testing, real samples versus idealized samples, validity of LEO tests for GEO samples, extracting arc threshold information from arc rate versus voltage tests, snapover, current collection, and glows at positive sample bias, Kapton pyrolysis, thresholds for trigger arcs, sustained arcs, dielectric breakdown and Paschen discharge, tether arcing and testing in very dense plasmas (i.e. thruster plumes), arc mitigation strategies, charging mitigation strategies, models, and analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.

  6. Signal analysis of voltage noise in welding arcs. [gas tungsten arc welding

    NASA Technical Reports Server (NTRS)

    Elis, E.; Eagar, T. W.

    1982-01-01

    Gas tungsten arc welds were made on low alloy steel plates to which intentional defects (discontinuities) were imposed. Disruption of shielding gas, welding over surface films, and tack welds produce changes in what is otherwise a relatively uniform voltage signal. The arc voltage was 15 volts + or - 2 volts with 300 mV ripple noise from the power supply. Changes in this steady noise voltage varied from 50 mV to less than one millivolt depending on the severity and the type of change experienced. In some instances the changes were easily detected by analysis of the signal in real time, while in other cases the signal had to transformed to the frequency domain in order to detect the changes. Discontinuities as small as 1.5 mm in length were detected. The ultimate sensitivity and reproducibility of the technique is still being investigated.

  7. Hydrothermal treatment of electric arc furnace dust.

    PubMed

    Yu, Bing-Sheng; Wang, Yuh-Ruey; Chang, Tien-Chin

    2011-06-15

    In this study, ZnO crystals were fabricated from electric arc furnace dust (EAFD) after alkaline leaching, purification and hydrothermal treatment. The effects of temperature, duration, pH, and solid/liquid ratio on ZnO crystal morphology and size were investigated. Results show a high reaction temperature capable of accelerating the dissolution of ZnO precursor, expediting the growth of 1D ZnO, and increasing the L/D ratio in the temperature range of 100-200°C. ZnO crystals with high purity can also be obtained, using the one-step hydrothermal treatment with a baffle that depends on the different solubility of zincite and franklinite in the hydrothermal conditions. PMID:21497436

  8. Airborne Advanced Reconfigurable Computer System (ARCS)

    NASA Technical Reports Server (NTRS)

    Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.

    1976-01-01

    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.

  9. Hydrogen mitigation in submerged arc welding

    NASA Astrophysics Data System (ADS)

    Klimowicz, Steven

    With the role of hydrogen in weld metal well understood in its relation to cold cracking, there has been a push to produce welds with lower and lower diffusible hydrogen contents. The push for lower diffusible hydrogen contents has placed pressure on consumables manufactures to create consumables that can achieve the requirements for lower diffusible hydrogen content. Currently EM12K flux is produced so that it can achieve below 4 ml of diffusible hydrogen for every 100g of weld metal deposited (ml/100g) for submerged arc welding (SAW). The recent trend for industry is to preferentially achieve diffusible hydrogen contents below 3 ml/100g. Making it necessary to find a way to modify the flux to achieve a lower diffusible hydrogen content for the welds it produces. To achieve this goal a two phase plan was developed. The first phase was to characterize the entire welding system for hydrogen. Since the goal of the project is hydrogen mitigation, any amount of hydrogen that could be reduced is helpful and therefore must first be discovered. Sources of hydrogen may be found by analyzing the welding wire and base metal, as well as breaking the flux down into its components and production steps. The wire was analyzed for total hydrogen content as was the base metal. The flux and its components were analyzed using differential thermal analysis-simultaneous thermal analysis (DTA-STA) and later vacuum degassing for moisture content. The analysis of the wire showed that the copper coating on the wire was the largest contributor of hydrogen. There was lubricant present on the wire surface as well, but it did not contribute as much as the copper coating. It was found that a simple low temperature baking of the wire was enough to remove the lubricant and coating moisture. The base metal was found to have a similar total hydrogen content to that of the wire. The breakdown of the flux and production process for moisture content analysis revealed that the production process

  10. Electrical Arc Ignition Testing of Spacesuit Materials

    NASA Technical Reports Server (NTRS)

    Smith, Sarah; Gallus, Tim; Tapia, Susana; Ball, Elizabeth; Beeson, Harold

    2006-01-01

    A viewgraph presentation on electrical arc ignition testing of spacesuit materials is shown. The topics include: 1) Background; 2) Test Objectives; 3) Test Sample Materials; 4) Test Methods; 5) Scratch Test Objectives; 6) Cotton Scratch Test Video; 7) Scratch Test Results; 8) Entire Date Plot; 9) Closeup Data Plot; 10) Scratch Test Problems; 11) Poke Test Objectives; 12) Poke Test Results; 13) Poke Test Problems; 14) Wire-break Test Objectives; 15) Cotton Wire-Break Test Video; 16) High Speed Cotton Wire-break Test Video; 17) Typical Data Plot; 18) Closeup Data Plot; 19) Wire-break Test Results; 20) Wire-break Tests vs. Scratch Tests; 21) Urethane-coated Nylon; and 22) Moleskin.

  11. The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, J.; Yan, J. D.; Fang, M. T. C.

    2016-08-01

    The present work (part II) forms the second part of an investigation into the behaviour of SF6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (di/dt) before current zero and a voltage ramp (dV/dt) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures (P 0) and two values of di/dt for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0, rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed.

  12. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition [and] Student Edition [and] Student Workbook. Second Edition.

    ERIC Educational Resources Information Center

    Harper, Eddie; Knapp, John

    This packet of instructional materials for a gas tungsten arc welding (GTAW) and plasma arc cutting course is comprised of a teacher edition, student edition, and student workbook. The teacher edition consists of introductory pages and teacher pages. Introductory pages include training and competency profile, state duty/task crosswalk,…

  13. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  14. AC electric trapping of neutral atoms

    NASA Astrophysics Data System (ADS)

    Marian, Adela; Schlunk, Sophie; Schoellkopf, Wieland; Meijer, Gerard

    2008-05-01

    We have demonstrated trapping of ultracold ground-state ^87Rb atoms in a macroscopic ac electric trap [1]. Trapping by ac electric fields has been previously achieved for polar molecules [2], as well as Sr atoms on a chip [3], and recently for Rb atoms in a three-phase electric trap [4]. Similar to trapping of ions in a Paul trap, three-dimensional confinement in an ac electric trap is obtained by switching between two saddle-point configurations of the electric field. For the first time, this dynamic confinement is directly visualized with absorption images taken at different phases of the ac switching cycle. Stable electric trapping is observed in a narrow range of switching frequencies around 60 Hz, in agreement with trajectory calculations. In a typical experiment, about 3 x 10^5 Rb atoms are trapped with lifetimes on the order of 9 s and trap depths of about 10 μK. Additionally, we show that the atoms can be used to sensitively probe the electric fields in the trap by imaging the cloud while the fields are still on. References: 1. S. Schlunk et al., PRL 98, 223002 (2007) 2. H. L. Bethlem et al., PRA 74, 063403 (2006) 3. T. Kishimoto et al., PRL 96, 123001 (2006) 4. T. Rieger et al., PRL 99, 063001 (2007)

  15. Ac-dc converter firing error detection

    SciTech Connect

    Gould, O.L.

    1996-07-15

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal.

  16. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  17. AC magnetic susceptibility of Bi2223-system

    NASA Astrophysics Data System (ADS)

    Kimishima, Y.; Inagaki, K.; Tanabe, K.; Nagata, N.; Ichiyanagi, Y.

    1998-01-01

    The AC magnetic susceptibilities χ AC of a Bi2223 sintered sample were measured by the Hartshorn bridge method. The linear AC χ' 0 showed the two-steps behavior at T C1 and T C2, where T C1 > T C2. The χ'0-data between T C1 and T C2 has no H AC-dependence and agreed well with those of powder specimen, and they can be regarded as the intragrain magnetic susceptibility. Below the inter-grain transition temperature T C2 the χ″ 0 showed a positive peak. The temperature dependence of χ' 0 and χ″ 0 were analyzed by the Bean's critical-state model. As a result, the temperature dependence of critical current density J C ∝ (1 - T/T C2) β was obtained with β = 2.3-2.6. The non-linear χ' 2 and χ″ 2 below T C2 resemble the behaviors derived from the Bean model, but the negative divergence of χ' 2 may show the evidence of d-wave paring in the present Bi2223-system.

  18. 76 FR 65633 - RIN 1904-AC43

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... FR 56678 (September 14, 2011) to make available and invite comments on the framework document for... Part 430 RIN 1904-AC43 Energy Conservation Program: Framework Document for General Service Fluorescent... general service fluorescent lamps and incandescent reflector lamps energy conservation standards in...

  19. ACS Task Force Frames Recommendations on Education.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1984

    1984-01-01

    Discusses findings and recommendations of an American Chemical Society (ACS) task force study on the status of chemical education in the United States. Recommendations relate to national concerns; all educational levels; elementary, secondary, university, college, and two-year college chemistry and science; chemistry careers; and industry and…

  20. The 2013 Crete (Hellenic Arc) Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Karakostas, V. G.; Papadimitriou, E. E.; Vallianatos, F.

    2014-12-01

    The western Hellenic Arc is a well known place of active interplate deformation, where the convergence motion vector is perpendicular to the subduction front. On 12 October 2013 this area was hit by a strong (Mw=6.7) earthquake, occurred on a thrust fault onto the coupled part of the overriding and descending plates, with the compression axis being oriented in the direction of plate convergence. This was the first strong (M>6.0) event to have occurred onto this segment of the descending slab, which has accommodated the largest (M8.3) known earthquake in the Mediterranean area, and to be recorded by the Hellenic Unified Seismological Network (HUSN) that has been considerably improved in the last five years. The first 2-days relocated seismicity shows activation of the upper part of the descending slab, downdip of the plate interface and forming a relatively narrow aftershock area on map view. The less densely visited by aftershocks area, where the main shock is also encompassed, is considered as the high-slip area along the downdip portion of the subducting plane. Dense concentration of the intraslab aftershocks are probably due to the increase of static stress generated by the main shock. A spectacular feature of the aftershock activity concerns the lateral extension of the slipped area, which appears very sharply defined. This provides evidence on localized coupling and aseismically creeping areas, explaining the low coupling ratio in the Hellenic Arc, as it derives from comparison between relative plate motion and seismic energy release. Elucidating the issue of how far the associated large-slip zone might be extended along the plate interface during the main rupture is crucial in assessing future earthquake hazards from subduction events in the study area. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project.