Science.gov

Sample records for 12-pound solid steel

  1. Thermomechanical steels behaviors at semi-solid state

    NASA Astrophysics Data System (ADS)

    Traidi, K.; Favier, V.; Lestriez, P.; Debray, K.; Langlois, L.; Ranc, N.; Saby, M.; Mangin, P.

    2016-10-01

    Semisolid thixoforming is an intermediate process between casting and forging. The combination of the semi-solid state and globular microstructures leads to thixotropic properties of the material [1]. Thixoformingprocess presents several advantages such as energy efficiency, high production rates, smooth die filling, low shrinkage porosity, which together lead to near net shape capability and thus to fewer manufacturing steps than with classical methods. So far, there are only few applications of semisolid processing of highr melting point alloys [2]. Steel is a particularly challenging material to semi-solid process because of about 1400°C temperatures involved. Characterizing and modelling such semi-solid behaviour for steels is still challenging. The aim of the research work was to study the rheological properties of a suitable graded steel (LTT C38) designed for semi-solid processing. An experimental protocol was determined to characterize the thermomechanical behaviors and defect condition. Uniaxial tensile tests were carried out on semi-solid specimen having >0.8 solid fraction for different temperatures. The variation in both ductility and strength with temperature has been identified.

  2. SOLID STATE JOINING OF MAGNESIUM TO STEEL

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva Prasad; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    2012-06-04

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  3. XDT in Solid Rocket Propellant by Large Steel Flyer Plate

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Noda, K.; Hyodo, Y.; Nakamura, H.; Kosaka, K.; Nakayama, T.; Katayama, M.; Takeba, A.

    1999-06-01

    Several experiments of the impact explosion of solid rocket propellant on the command destruction of rocket motor have been performed by solid rocket propellants of 460 to 1000 kg impacting a steel plate of 1100mm in diameter and 100 mm in thickness. Impact velocities were varied from 130m/s to 185 m/s. Strong explosions were observed at impact velocity higher than 150 m/s to tests of solid rocket proppelant of 500 kg. The XDT(Unknown to Detonation Transition) is studied using the fracture ignition model including strain rate effect. Computational results were compared with observed blast waves and ignition delay to various impact velocities.

  4. Solid recovered fuels in the steel industry.

    PubMed

    Kepplinger, Werner L; Tappeiner, Tamara

    2012-04-01

    By using waste materials as alternative fuels in metallurgical plants it is possible to minimize the traditionally used reducing agents, such as coke, coal, oil or natural gas. Moreover, by using waste materials in the metallurgical industry it is feasible to recover these materials as far as possible. This also represents another step towards environmental protection because carbon dioxide emissions can be reduced, if the H(2) content of the waste material is greater in comparison with that of the substituted fuel and the effects of global warming can therefore be reduced. In the present article various solid recovered fuels and their applications in the metallurgical industry are detailed.

  5. Management of solid wastes in the iron and steel industry

    SciTech Connect

    El-Gohary, F.; El-khouly, M.S.

    1983-03-01

    Wastes from a local iron and steel factory operations are agglomeration of iron ore and sintering, pig iron manufacture, steel making, rolling mill operations, and pickling. Liquid slag, produced in the blast furnace, is granulated in water and used as a concrete additive. Other wastes are directed separately to sedimentation tanks. The settleable solids are reused, and the treated effluents are pumped to a cooling tower for recycling. As a result of the new manufacturing expansion, existing waste treatment facilities are not adequate, and it was found necessary to provide additional treatment techniques. Departmental, as well as composite wastes were treated using plain sedimentation, centrifugal sedimentation, or chemical coagulation, or a combination of these methods. The results obtained showed that the use of the hydrocyclone for solid-liquid separation is much more efficient than plain sedimentation. When this process was followed by coagulation, very promising results were obtained. The use of pickling liquor as a coagulant gave comparable results with alum and ferric chloride.

  6. Solidification and solid state transformations of austenitic stainless steel welds

    SciTech Connect

    Brooks, J A; Williams, J C; Thompson, A W

    1982-05-01

    The microstructure of austenitic stainless steel welds can contain a large variety of ferrite morphologies. It was originally thought that many of these morphologies were direct products of solidification. Subsequently, detailed work on castings suggested the structures can solidify either as ferrite or austenite. However, when solidification occurs by ferrite, a large fraction of the ferrite transforms to austenite during cooling via a diffusion controlled transformation. It was also shown by Arata et al that welds in a 304L alloy solidified 70-80% as primary ferrite, a large fraction of which also transformed to austenite upon cooling. More recently it was suggested that the cooling rates in welds were sufficiently high that diffusionless transformations were responsible for several commonly observed ferrite morphologies. However, other workers have suggested that even in welds, delta ..-->.. ..gamma.. transformations are diffusion controlled. A variety of ferrite morphologies have more recently been characterized by Moisio and coworkers and by David. The purpose of this paper is to provide further understanding of the evaluation of the various weld microstructures which are related to both the solidification behavior and the subsequent solid state transformations. To accomplish this, both TEM and STEM (Scanning Transmission Electron Microscopy) techniques were employed.

  7. Liquid-Solid Reactions and Microstructure of SiC-5120 Steel Composite Brake Material

    NASA Astrophysics Data System (ADS)

    Li, Jingyang; Ru, Hongqiang; Yang, Hong; Liu, Yinong

    2012-02-01

    This study investigated solid-liquid reactions between SiC preform and molten 5120 steel during infiltration casting of SiC-steel composite for heavy duty brake applications. The reactions between SiC and the molten steel resulted in the formation of three distinctive microstructural regions, including the α 1-Fe(Si)-graphite region, the pearlite region, and the ferrite-pearlite region. The phase structures were identified by means of X-ray diffraction, X-ray energy dispersive spectrometry, and metallographic examination. These observations reveal that SiC was decomposed via reactions with the molten steel. The diffusion of C and Si into the molten steel and selective solidification led to the formation of different regions with varied C and Si contents. The microstructures produced during the solidification sequence are identified to be the ferrite-pearlite → pearlite → α 1-Fe(Si) + graphite and cementite.

  8. Characterization of welded HP 9-4-30 steel for the advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Watt, George William

    1990-01-01

    Solid rocket motor case materials must be high-strength, high-toughness, weldable alloys. The Advanced Solid Rocket Motor (ASRM) cases currently being developed will be made from a 9Ni-4Co quench and temper steel called HP 9-4-30. These ultra high-strength steels must be carefully processed to give a very clean material and a fine grained microstructure, which insures excellent ductility and toughness. The HP 9-4-30 steels are vacuum arc remelted and carbon deoxidized to give the cleanliness required. The ASRM case material will be formed into rings and then welded together to form the case segments. Welding is the desired joining technique because it results in a lower weight than other joining techniques. The mechanical and corrosion properties of the weld region material were fully studied.

  9. Development of microstructure in high-alloy steel K390 using semi-solid forming

    NASA Astrophysics Data System (ADS)

    Opatova, K.; Aisman, D.; Rubesova, K.; Ibrahim, K.; Jenicek, S.

    2016-03-01

    Semi-solid processing of light alloys, namely aluminium and magnesium alloys, is a widely known and well-established process. By contrast, processing of powder steels which have high levels of alloying elements is a rather new subject of research. Thixoforming of high-alloy steels entails a number of technical difficulties. If these are overcome, the method can offer a variety of benefits. First of all, the final product shape and the desired mechanical properties can be obtained using a single forming operation. Semi-solid forming can produce unusual powder steel microstructures unattainable by any other route. Generally, the microstructures, which are normally found in thixoformed steels, consist of large fractions of globular or polygonal particles of metastable austenite embedded in a carbide network. An example is the X210Cr12 steel which is often used for semi-solid processing experiments. A disadvantage of the normal microstructure configuration is the brittleness of the carbide network, in which cracks initiate and propagate, causing low energy fractures. However, there is a newly-developed mini-thixoforming route which produces microstructures with an inverted configuration. Here, the material chosen for this purpose was K390 steel, in which the content of alloying elements is up to 24%. Its microstructure which was obtained by mini- thixoforming did not contain polyhedral austenite grains but hard carbides embedded in a ductile austenitic matrix. This provided the material with improved toughness. The spaces between the austenite grains were filled with a eutectic in which chromium, molybdenum and cobalt were distributed uniformly. After the processing parameters were optimized, complexshaped demonstration products were manufactured by this route. These products showed an extraordinary compressive strength and high wear resistance, thanks to the hardness of their microstructure constituents, predominantly the carbides.

  10. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin

    2013-12-01

    Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry.

  11. Relative Armor Penetration of Jacketed Lead, Solid Copper, Solid Brass, and Steel Core Bullets

    DTIC Science & Technology

    2012-11-30

    19a. NAME OF RESPONSIBLE PERSON Michael Courtney a. REPORT unclassified b . ABSTRACT unclassified c. THIS PAGE unclassified Same as Report (SAR...1 + (v/V50) b ). As described previously (Haight et al., 2012) the analysis method employed here differs from MIL-STD-662F, which is designed only...Übeyli, Mustafa, R. Orhan Yıldırım, and Bilgehan Ögel. On the comparison of the ballistic performance of steel and laminated composite armors. Materials & design 28, no. 4 (2007): 1257-1262. 4

  12. Dilatometric technique for evaluation of the kinetics of solid-state transformation of maraging steel

    SciTech Connect

    Viswanathan, U.K.; Kutty, T.R.G.; Ganguly, C.

    1993-12-01

    Solid-state transformation kinetics of a 350 grad commercial maraging steel were investigated using a nonisothermal dilatometric technique. Two solid-state reactions -- namely, precipitation of intermetallic phases from supersaturated martensite and reversion of martensite to austenite -- were identified. Determination was made of the temperatures at which the rates of these reactions reached a maximum at different heating rates. The kinetics of the individual reactions in terms of activation energy were analyzed by simplified procedures based on the Kissinger equation. An estimated activation energy of 145 {+-} 4 kJ/mol for the precipitation of intermetallic phase was in good agreement with reported results based on the isothermal hardness measurement technique. Martensite to austenite reversion was associated with an activation energy of 224 {+-} 4 kJ/mol, which is very close to the activation energy for diffusion of substitutional elements in ferrite. Results were supplemented with microstructural analysis.

  13. Semi-solid processing of high-chromium tool steel to obtain microstructures without carbide network

    NASA Astrophysics Data System (ADS)

    Jirková, H.; Aišman, D.; Rubešová, K.; Opatová, K.; Mašek, B.

    2017-02-01

    Treatment of high-alloy tool steels that involves transition to the semi-solid state can transform the sharp-edged primary carbides which usually form during solidification. These carbides severely impair toughness and are virtually impossible to eliminate by conventional treatment routes. Upon classical semi-solid processing which dissolves these carbides, the resulting microstructure consists of polyhedral and super-saturated austenite embedded in lamellar austenite-carbide network. This type of microstructure reflects in the mechanical properties, predominantly in material behaviour under tensile loading. Such a network, however, can be removed by appropriate thermomechanical treatment. In the present experiment, various procedures involving heating to the semi-solid state were tested on X210Cr12 tool steel. The feedstock was heated to the temperature range of 1220 – 1280 °C. The heating was followed by procedures involving either water quenching to the forming temperature, room temperature or temperature from the range from 500 °C to 1000 °C followed by reheating to the forming temperature. It was found that the development of the lamellar network strongly depends on the temperature of heating to semi-solid state. Thermomechanical treatment produced microstructures in which the matrix consisted of a mixture of polyhedral austenite grains and the M-A constituent. In addition, the initial lamellar eutectic network was partially or even completely melted and substituted with a mixture of very fine recrystallized austenite grains and precipitates of chromium carbides. Some fine M7C3 carbides were present in the austenitic-martensitic matrix as well. When appropriate processing parameters were chosen, very good mechanical properties were obtained, among them a hardness of 860 HV10.

  14. Experimental Investigations And Numerical Modelling of 210CR12 Steel in Semi-Solid State

    SciTech Connect

    Maciol, Piotr; Jakubowicz, Aleksandra; Wladislaw, Stanislaw; Zalecki, Wladyslaw; Kuziak, Roman

    2011-05-04

    Experimental investigation, including hot compression and simple closed die filling was performed. Temperature range of tests was between 1225 deg. C and 1320 deg. C. Temperature selection was adequate with liquid fraction between 20 and 60%, which is typical for thixoforming processes. In the die filling test, steel dies with ceramic layer was used (highly refractory air-setting mortar JM 3300 manufactured by Thermal Ceramics). Experiments were carried out on the Gleeble 3800 physical simulator with MCU unit. In the paper, methodology of experimental investigation is described. Dependency of forming forces on temperature and forming velocities is analysed. Obtained results are discussed. The second part of the paper concerns numerical modelling of semi-solid forming. Numerical models for both sets of test were developed. Structural and Computational Fluid Dynamics models are compared. Initial works in microstructural modelling of 210CR12 steel behaviour are described. Lattice Boltzman Method model for thixotropic flows is introduced. Microscale and macroscale models were integrated into multiscale simulation of semi-solid forming. Some fundamental issues related to multiscale modelling of thixoforming are discussed.

  15. Brazing of Stainless Steel to Yttria-Stabilized Zirconia Using Gold-Based Brazes for Solid Oxide Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Asthana, R.

    2007-01-01

    Two gold-base active metal brazes (gold-ABA and gold-ABA-V) were evaluated for oxidation resistance to 850 C, and used to join yttria-stabilized zirconia (YSZ) to a corrosion-resistant ferritic stainless steel for possible use in solid oxide fuel cells. Thermogravimetric analysis and optical microscopy and scanning electron microscopy coupled with energy-dispersive spectroscopy were used to evaluate the braze oxidation behavior, and microstructure and composition of the YSZ/braze/steel joints. Both gold-ABA and gold-ABA-V exhibited nearly linear oxidation kinetics at 850 C, with gold-ABA-V showing faster oxidation than gold-ABA. Both brazes produced metallurgically sound YSZ/steel joints due to chemical interactions of Ti and V with the YSZ and steel substrates.

  16. Thermophysical Properties of a Chromium Nickel Molybdenum Steel in the Solid and Liquid Phases

    NASA Astrophysics Data System (ADS)

    Wilthan, B.; Reschab, H.; Tanzer, R.; Schützenhöfer, W.; Pottlacher, Gernot

    2008-02-01

    Numerical simulation of vacuum arc re-melting, pressurized or protective electro-slag re-melting, and ingot casting have become quite important in the metal industry. However, a major drawback of these simulation techniques is the lack of accurate thermophysical properties for temperatures above 1,500 K. Heat capacity, heat of fusion, density, and thermal conductivity are important input parameters for the heat transfer equation. Since, direct measurements of thermal conductivity of alloys in the liquid state are almost impossible, its estimation from electrical conductivity using the Wiedemann Franz law is very useful. The afore-mentioned thermophysical properties of several steels are investigated within the context of an ongoing project. Here, we present a full set of thermophysical data for the chromium nickel molybdenum steel meeting the standard DIN 1.4435 (X2CrNiMo18-14-3); these values will be used by our partner to simulate various re-melting and solidification processes. Wire-shaped samples of the steel are resistively volume-heated, as part of a fast capacitor discharge circuit. Time-resolved measurements with sub-μs resolution of current through the specimen are performed with a Pearson probe. The voltage drop across the specimen is measured with knife-edge contacts and ohmic voltage dividers, the temperature of the sample with a pyrometer, and the volumetric expansion of the wire with a fast acting CCD camera. These measurements enable the heat of fusion, the heat capacity, and the electrical resistivity to be determined as a function of temperature in the solid and liquid phases. The thermal conductivity and thermal diffusivity are estimated via the Wiedemann Franz law.

  17. Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Lee, Young-Su; Kim, Dong-Ik

    2016-09-01

    To ensure the best performance of solid oxide fuel cell metallic interconnects, the Fe-22 wt.% Cr ferritic stainless steels with various La contents (0.006-0.6 wt.%) and Cu addition (1.57 wt.%), are developed. Long-term isothermal oxidation behavior of these steels is investigated in air at 800 °C, for 2700 h. Chemistry, morphology, and microstructure of the thermally grown oxide scale are examined using XPS, SEM-EDX, and XRD techniques. Broadly, all the steels show a double layer consisting of an inner Cr2O3 and outer (Mn, Cr)3O4. Distinctly, in the La-added steels, binary oxides of Cr, Mn and Ti are found at the oxide scale surface together with (Mn, Cr)3O4. Furthermore, all La-varied steels possess the metallic Fe protrusions along with discontinuous (Mn, Cr)3O4 spinel zones at the oxide scale/metal interface and isolated precipitates of Ti-oxides in the underlying matrix. Increase of La content to 0.6 wt.% is detrimental to the oxidation resistance. For the Cu-added steel, Cu is found to segregate strongly at the oxide scale/metal interface which inhibits the ingress of oxygen thereby suppressing the subscale formation of (Mn, Cr)3O4. Thus, Cu addition to the Fe-22Cr ferritic stainless steels benefits the oxidation resistance.

  18. Brazing of Stainless Steels to Yttria Stabilized Zirconia (YSZ) for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Shpargel, Tarah P.; Needham, Robert J.; Singh, M.; Kung, Steven C.

    2005-01-01

    Recently, there has been a great deal of interest in research, development, and commercialization of solid oxide fuel cells. Joining and sealing are critical issues that will need to be addressed before SOFC's can truly perform as expected. Ceramics and metals can be difficult to join together, especially when the joint must withstand up to 900 C operating temperature of the SOFC's. The goal of the present study is to find the most suitable braze material for joining of yttria stabilized zirconia (YSZ) to stainless steels. A number of commercially available braze materials TiCuSil, TiCuNi, Copper-ABA, Gold-ABA, and Gold-ABA-V have been evaluated. The oxidation behavior of the braze materials and steel substrates in air was also examined through thermogravimetric analysis. The microstructure and composition of the brazed regions have been examined by optical and scanning electron microscopy and EDS analysis. Effect of braze composition and processing conditions on the interfacial microstructure and composition of the joint regions will be presented.

  19. Thermal Diffusivity and Thermal Conductivity of Five Different Steel Alloys in the Solid and Liquid Phases

    NASA Astrophysics Data System (ADS)

    Wilthan, B.; Schützenhöfer, W.; Pottlacher, G.

    2015-08-01

    The need for characterization of thermophysical properties of steel and nickel-based alloys was addressed in the FFG-Bridge Project 810999 in cooperation with a partner from industry, Böhler Edelstahl GmbH & Co KG. To optimize numerical simulations of production processes, such as remelting or plastic deformation, additional, and more accurate data were necessary for the alloys under investigation. With a fast ohmic pulse heating circuit system, the temperature-dependent specific electrical resistivity, density, and specific heat capacity for a set of five high alloyed steels were measured. Hence, using the Wiedemann-Franz law with a Lorenz number of , the thermal diffusivity and thermal conductivity could be calculated for the solid and liquid phases up to temperatures of 2500 K. This experimental approach is limited by the following requirements for the specimens: they have to be electrically conducting, the melting point has to be high enough for the implemented pyrometric temperature measurement, and one has to be able to draw wires of the material. The latter restriction is technologically challenging with some of the materials being very brittle. For all samples, electrical and temperature signals are recorded and a fast shadowgraph method is used to measure the volume expansion. For each material under investigation, a set of data including the chemical composition, the density at room temperature, solidus and liquidus temperatures, and the change of enthalpy, resistivity, density, thermal conductivity, and thermal diffusivity as a function of temperature is reported.

  20. Corrosion behavior of stainless steel in solid oxide fuel cell simulated gaseous environment

    SciTech Connect

    Ziomek-Moroz, M.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Matthes, Steven A.; Bullard, Sophie J.; Dunning, John S.; Alman, David E.; Wilson, Rick D.; Singh, P.

    2003-01-01

    Significant progress in reducing the operating temperature of solid oxide fuel cells (SOFC) from {approx}1000 C to {approx} 750 C may permit the replacement of currently used ceramic interconnects by metallic interconnects in planar SOFCs (PSOFC). The use of metallic interconnects will result in a substantial cost reduction of PSOFCs. The interconnects operate in severe gaseous environments, in which one side of the interconnect can be exposed to hydrogen and the other side to air or oxygen at temperatures up to 800 C. Similar environmental conditions can exist in devices used for separating hydrogen from CO after reforming methane and steam. Type 304 stainless steel was selected for this base line study aimed at understanding corrosion processes in dual gas environments. This paper discusses the oxidation resistance of 304 stainless steel exposed to a dual environment gas at 800 C. The dual environment consisted of air on one side of the specimen and 1% hydrogen in nitrogen on the other side. The surface characterization techniques used in this study were optical and scanning electron microscopy, as well as various x-ray techniques.

  1. A review of semi-solid aluminium-steel joining processes

    NASA Astrophysics Data System (ADS)

    Obeidi, Muhannad; McCarthy, Éanna; Brabazon, Dermot

    2016-10-01

    The semi-solid metal (SSM) forming process can be applied to achieve near net shape forming of metal alloys, and provides superior component properties compared to those achievable with conventional casting methods. The technique, also commonly called thixoforming, relies on achieving a spheroidal microstructure within the metal alloy so that its fluidity can be adjusted to achieve a controlled laminar filling of the die. Despite the better quality and the higher mechanical properties of an SSM product, thixoforming still represents only 1% of the total aluminium production, which can be explained by the higher premium cost of the processing equipment compared to conventional die casting. The method has also proven successful as a joining method, for joining similar and dissimilar materials. This paper reviews semisolid forming as a forming method and as a joining method, in particular the joining of dissimilar materials such as stainless steel to aluminium.

  2. Manganese-Cobalt Mixed Spinel Oxides as Surface Modifiers for Stainless Steel Interconnects of Solid Oxide Fuel Cells

    SciTech Connect

    Xia, Gordon; Yang, Z Gary; Stevenson, Jeffry W.

    2006-11-06

    Ferritic stainless steels are promising candidates for interconnect applications in low- and mid-temperature solid oxide fuel cells (SOFCs). A couple of issues however remain for the particular application, including the chromium poisoning due to chromia evaporation, and long-term surface and electrical stability of the scale grown on these steels. Application of a manganese colbaltite spinel protection layer on the steels appears to be an effective approach to solve the issues. For an optimized performance, Mn{sub 1+x}Co{sub 2-x}O{sub 4} (-1 {le} x {le} 2) spinels were investigated against properties relative for protection coating applications on ferritic SOFC interconnects. Overall it appears that the spinels with x around 0.5 demonstrate a good CTE match to ceramic cell components, a relative high electrical conductivity, and a good thermal stability up to 1,250 C. This was confirmed by a long-term test on the Mn{sub 1.5}Co{sub 1.5}O{sub 4} protection layer that was thermally grown on Crofer22 APU, indicating the spinel protection layer not only significantly decreased the contact resistance between a LSF cathode and the stainless steel interconnects, but also inhibited the sub-scale growth on the stainless steels.

  3. Adsorptive behavior and solid-phase microextraction of bare stainless steel sample loop in high performance liquid chromatography.

    PubMed

    Zhang, Wenpeng; Zhang, Zixin; Meng, Jiawei; Zhou, Wei; Chen, Zilin

    2014-10-24

    In this work, we interestingly happened to observe the adsorption of stainless steel sample loop of HPLC. The adsorptive behaviors of the stainless steel loop toward different kinds of compounds were studied, including polycyclic aromatic hydrocarbons (PAHs), halogeno benzenes, aniline derivatives, benzoic acid derivatives, phenols, benzoic acid ethyl ester, benzaldehyde, 1-phenyl-ethanone and phenethyl alcohol. The adsorptive mechanism was probably related to hydrophobic interaction, electron-rich element-metal interaction and hydrogen bond. Universal adsorption of stainless steels was also testified. Inspired by its strong adsorptive capability, bare stainless steel loop was developed as a modification-free in-tube device for solid-phase microextraction (SPME), which served as both the substrate and sorbent and possessed ultra-high strength and stability. Great extraction efficiency toward PAHs was obtained by stainless steel loop without any modification, with enrichment factors of 651-834. By connecting the stainless steel loop onto a six-port valve, an online SPME-HPLC system was set up and an SPME-HPLC method has been validated for determination of PAHs. The method has exceptionally low limits of detection of 0.2-2pg/mL, which is significantly lower than that of reported methods with different kinds of sorbents. Wide linear range (0.5-500 and 2-1000pg/mL), good linearity (R(2)≥0.9987) and good reproducibility (RSD≤2.9%) were also obtained. The proposed method has been applied to determine PAHs in environmental samples. Good recoveries were obtained, ranging from 88.5% to 93.8%.

  4. Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guan-Guang; Wang, Chong-Min; Nie, Zimin; Templeton, Joshua; Stevenson, Jeffry W.; Singh, Prabhakar

    As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, both bare AISI441 and AISI441 coated with (Mn,Co) 3O 4 protection layers were studied in terms of its metallurgical characteristics, oxidation behavior, and electrical performance. The addition of minor alloying elements, in particular Nb, led to formation of Laves phases both inside grains and along grain boundaries. In particular, the Laves phase which precipitated out along grain boundaries during exposure at intermediate SOFC operating temperatures was found to be rich in both Nb and Si. The capture of Si in the Laves phase minimized the Si activity in the alloy matrix and prevented formation of an insulating silica layer at the scale/metal interface, resulting in a reduction in area-specific electrical resistance (ASR). However, the relatively high oxidation rate of the steel, which leads to increasing ASR over time, and the need to prevent volatilization of chromium from the steel necessitates the application of a conductive protection layer on the steel. In particular, the application of a Mn 1.5Co 1.5O 4 spinel protection layer substantially improved the electrical performance of the 441 by reducing the oxidation rate.

  5. Investigation of Iron-Chromium-Niobium-Titanium Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect Applications

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Wang, Chong M.; Nie, Zimin; Templeton, Joshua D.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-01

    As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, AL 441 HPTM was studied in terms of its metallurgical characteristics, oxidation behavior, and electrical performance. Minor alloying elements (Nb and Ti) captured interstitials such as C by forming carbides, stabilizing the ferritic structure and mitigating the risks of sensitization and inter-granular corrosion. Laves phases rich in Nb and Si precipitated along grain boundaries during high temperature exposure, improving the steel’s high temperature mechanical strength. The capture of Si in the Laves phase minimized the Si activity in the steel substrate and prevented formation of an insulating silica layer at the scale/metal interface. However, the relatively high oxidation rate, and thus increasing ASR over time, necessitates the application of a conductive protection layer on the steel. In particular, Mn1.5Co1.5O4 spinel protection layers drastically improved the electrical performance of the ferritic stainless steel 441, acting as barriers to chromium outward and oxygen inward diffusion.

  6. Shear-flow induced detachment of Saccharomyces cerevisiae from stainless steel: influence of yeast and solid surface properties.

    PubMed

    Guillemot, Gaëlle; Vaca-Medina, Guadalupe; Martin-Yken, Helene; Vernhet, Aude; Schmitz, Philippe; Mercier-Bonin, Muriel

    2006-05-01

    The present study focused on the shear-induced detachment of Saccharomyces cerevisiae in adhesive contact with a 316L stainless steel surface using a shear stress flow chamber, with a view to determining the respective influence of the yeast surface properties and the support characteristics. The effect of cultivation of S. cerevisiae yeast cells on their subsequent detachment from the solid surface was particularly investigated. In order to elucidate the role of stainless steel, non-metallic supports were used as control, covering a broad range of surface properties such as surface free energy and roughness: polypropylene (hydrophobic), polystyrene (mildly hydrophobic, similar to stainless steel) and glass (hydrophilic). All materials were very smooth with respect to the size of yeast. First, experiments were carried out on two types of yeast cells, just rehydrated in saline solution, a biological model widely used in the literature. The influence of the ionic strength (1.5 and 150 mM NaCl) on glass and stainless steel was evaluated. Unlike on glass, no clear evidence was found for electrostatic repulsion with stainless steel since high adhesion was observed whatever the ionic strength. A lack of correlation in adhesion results was also obtained when considering the surface physico-chemical characteristics of type I (hydrophilic) and type II (hydrophobic) rehydrated cells and those of both polymers. It was postulated that unavoidable "sticky" compounds were present on the cell wall, which could not be completely removed during the successive washings of the rehydrated cell suspension before use. This could dramatically alter the yeast surface properties and modify the adhesion strength, thus clearly demonstrating the necessity to work with yeast coming from fresh cultures. Biologically active yeast cells were then used. Once cultured, type I- and type II-yeast cells were shown to exhibit the same hydrophilic properties. Regardless of the material used, for the

  7. Research options for the development of sensors to measure the thermal state of solid steel bodies.

    SciTech Connect

    Gaspar, T.A.; Lownie, H.W. Jr.

    1983-02-01

    The purpose of the study reported here is to assist Battelle's Pcacific Northwest Laboratory (PNL) in planning a research and development program to develop temperature sensors for metal and ceramic industries. This study focuses on sensors to measure internal temperatures within bodies of hot steel. A series of literature surveys, interviews, field visits, and meetings with steel-industry organizations was conducted in seeking answers to questions posed by PNL. These questions, with responses, are summarized.

  8. Avoiding chromium transport from stainless steel interconnects into contact layers and oxygen electrodes in intermediate temperature solid oxide electrolysis stacks

    NASA Astrophysics Data System (ADS)

    Schlupp, Meike V. F.; Kim, Ji Woo; Brevet, Aude; Rado, Cyril; Couturier, Karine; Vogt, Ulrich F.; Lefebvre-Joud, Florence; Züttel, Andreas

    2014-12-01

    We investigated the ability of (La0.8Sr0.2)(Mn0.5Co0.5)O3-δ (LSMC) and La(Ni0.6Fe0.4)O3-δ (LNF) contact coatings to avoid the transport of Cr from steel interconnects to solid oxide electrolysis electrodes, especially to the anode. The transport of chromium from commercial Crofer 22 APU (ThyssenKrupp) and K41X (AISI441, Aperam Isbergues) steels through LSMC and LNF contact coatings into adjacent (La0.8Sr0.2)MnO3-δ (LSM) oxygen electrodes was investigated in an oxygen atmosphere at 700 °C. Chromium concentrations of up to 4 atom% were detected in the contact coatings after thermal treatments for 3000 h, which also lead to the presence of chromium in adjacent LSM electrodes. Introduction of a dense (Co,Mn)3O4 coating between steel and contact coating was necessary to prevent the diffusion of chromium into contact coatings and electrodes and should lead to extended stack performance and lifetime.

  9. Ordered mesoporous polymers in situ coated on a stainless steel wire for a highly sensitive solid phase microextraction fibre

    NASA Astrophysics Data System (ADS)

    Zheng, Juan; Liang, Yeru; Liu, Shuqin; Ding, Yajuan; Shen, Yong; Luan, Tiangang; Zhu, Fang; Jiang, Ruifen; Wu, Dingcai; Ouyang, Gangfeng

    2015-07-01

    Development of facile and effective methods for fabrication of high-performance solid phase microextraction (SPME) fibres remains a great challenge. Herein, a new class of ordered mesoporous polymers (OMPs) in situ coated on a stainless steel wire were successfully developed and utilized as a highly sensitive and stable SPME fibre for the first time. Because of the highly ordered mesoporous structure of its OMP coating, the π-π interactions and the dispersion forces, the OMP-coated SPME fibre exhibited much better extraction properties as compared to the commercial PDMS fibre. The findings could provide a new benchmark for preparing well-defined porous materials for the SPME application.Development of facile and effective methods for fabrication of high-performance solid phase microextraction (SPME) fibres remains a great challenge. Herein, a new class of ordered mesoporous polymers (OMPs) in situ coated on a stainless steel wire were successfully developed and utilized as a highly sensitive and stable SPME fibre for the first time. Because of the highly ordered mesoporous structure of its OMP coating, the π-π interactions and the dispersion forces, the OMP-coated SPME fibre exhibited much better extraction properties as compared to the commercial PDMS fibre. The findings could provide a new benchmark for preparing well-defined porous materials for the SPME application. Electronic supplementary information (ESI) available: Experimental details, Fig. S1-S3 and Tables S1-S3. See DOI: 10.1039/c5nr02674a

  10. Co- and Ce/Co-coated ferritic stainless steel as interconnect material for Intermediate Temperature Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Falk-Windisch, Hannes; Claquesin, Julien; Sattari, Mohammad; Svensson, Jan-Erik; Froitzheim, Jan

    2017-03-01

    Chromium species volatilization, oxide scale growth, and electrical scale resistance were studied at 650 and 750 °C for thin metallic Co- and Ce/Co-coated steels intended to be utilized as the interconnect material in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFC). Mass gain was recorded to follow oxidation kinetics, chromium evaporation was measured using the denuder technique and Area Specific Resistance (ASR) measurements were carried out on 500 h pre-exposed samples. The microstructure of thermally grown oxide scales was characterized using Scanning Electron Microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive X-Ray Analysis (EDX). The findings of this study show that a decrease in temperature not only leads to thinner oxide scales and less Cr vaporization but also to a significant change in the chemical composition of the oxide scale. Very low ASR values (below 10 mΩ cm2) were measured for both Co- and Ce/Co-coated steel at 650 and 750 °C, indicating that the observed change in the chemical composition of the Co spinel does not have any noticeable influence on the ASR. Instead it is suggested that the Cr2O3 scale is expected to be the main contributor to the ASR, even at temperatures as low as 650 °C.

  11. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks

    SciTech Connect

    Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

    2004-06-01

    The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

  12. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability

    NASA Astrophysics Data System (ADS)

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-03-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm‑2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.

  13. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    SciTech Connect

    Kubiak, Marcin Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew; Stano, Sebastian

    2015-03-10

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.

  14. The effect of temperature on chromium vaporization and oxide scale growth on interconnect steels for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Falk-Windisch, Hannes; Svensson, Jan Erik; Froitzheim, Jan

    2015-08-01

    Chromium vaporization and oxide scale growth are probably the two most important degradation mechanisms associated with the interconnect in Solid Oxide Fuel Cells (SOFCs) when Cr2O3-forming alloys are used as the interconnect material. This study examines the influence of temperature on both mechanisms. Two commercially available steels; Crofer 22 H and Sanergy HT, were isothermally exposed at 650, 750 and 850 °C in an air-3% H2O atmosphere with a high flow rate. Volatile chromium species were collected using the denuder technique. The microstructure of thermally grown oxide scales was characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX) and X-Ray Diffraction (XRD). The findings of this study show that although Cr evaporation is reduced with lower temperature, its relative importance compared to oxide scale growth is greater.

  15. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability.

    PubMed

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-03-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm(-2) at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.

  16. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability

    PubMed Central

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-01-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm−2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling. PMID:26928921

  17. Preparation of temperature sensitive molecularly imprinted polymer for solid-phase microextraction coatings on stainless steel fiber to measure ofloxacin.

    PubMed

    Zhao, Tong; Guan, Xiujuan; Tang, Wanjin; Ma, Ying; Zhang, Haixia

    2015-01-01

    A kind of new temperature sensitive molecularly imprinted polymer (MIP) with ofloxacin (OFL) as template was prepared for the coating of solid phase microextraction (SPME). Dopamine was self-polymerized on stainless steel fiber (SSF) as the SPME support followed by silanization. Then MIP was synthesized as SPME coating on the modified SSF in a capillary, with N-isopropyl acrylamide as temperature sensitive monomer and methacrylic acid as functional monomer. The synthesis could be well repeated with multiple capillaries putting in the same reaction solution. The obtained MIP fiber was evaluated in detail with different techniques and various adsorption experiments. At last the MIP fiber was used to extract the OFL in milk. Satisfied recoveries between 89.7 and 103.4% were obtained with the limit of quantification (LOQLC) of 0.04 μg mL(-1) by the method of SPME coupled with high performance of liquid chromatography (HPLC).

  18. Special Features of Fracture of a Solid-State Titanium Alloy - Nickel - Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Khazgaliev, R. G.; Mukhametrakhimov, M. Kh.; Imaev, M. F.; Shayakhmetov, R. U.; Mulyukov, R. R.

    2015-10-01

    Microstructure, nanohardness, and special features of fracture of three-phase titanium alloy and stainless steel joint through a nanostructural nickel foil are investigated. Uniformly distributed microcracks are observed in Ti2Ni and TiN3 layers joined at temperatures above T = 700°C, whereas no microcracks are observed in the TiNi layer. This suggests that the reason for microcracking is an anomalously large change in the linear expansion coefficient of the TiNi layer during austenitic-martensitic transformation. Specimens subjected to mechanical tests at T = 20°C are fractured along different layers of the material, namely, in the central part of the specimen they are fractured along the Ti2Тi/TiNi interface, whereas at the edge they are fractured along the TiNi/TiNi3 interface.

  19. Comparison of CaCO3 from Natural Sources and Artificial Carbonates as Activators of Solid-Phase Carburizing of Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    González-Angeles, A.; López-Cuevas, J.; Pitalúa-Díaz, N.

    2013-11-01

    The process of solid-phase carburizing of steel with the use of carbonates of different origin including chemical reagents, limestone and oyster shells is studied. The highest microhardness is obtained in the case of SrCO3, wheres Na2CO3 is shown to be the cheapest and most economically expedient carbonate. A good carburized layer can be obtained using a mixture of limestone and oyster shells.

  20. CO2 sequestration using accelerated gas-solid carbonation of pre-treated EAF steel-making bag house dust.

    PubMed

    El-Naas, Muftah H; El Gamal, Maisa; Hameedi, Suhaib; Mohamed, Abdel-Mohsen O

    2015-06-01

    Mineral CO2 sequestration is a promising process for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline calcium-rich dust particles collected from bag filters of electric arc furnaces (EAF) for steel making were utilized as a viable raw material for mineral CO2 sequestration. The dust particles were pre-treated through hydration, drying and screening. The pre-treated particles were then subjected to direct gas-solid carbonation reaction in a fluidized-bed reactor. The carbonated products were characterized to determine the overall sequestration capacity and the mineralogical structures. Leaching tests were also performed to measure the extracted minerals from the carbonated dust and evaluate the carbonation process on dust stabilization. The experimental results indicated that CO2 could be sequestered using the pre-treated bag house dust. The maximum sequestration of CO2 was 0.657 kg/kg of dust, based on the total calcium content. The highest degree of carbonation achieved was 42.5% and the carbonation efficiency was 69% at room temperature.

  1. Solid-Liquid Interdiffusion Bonding of Silicon Carbide to Steel for High Temperature MEMS Sensor Packaging and Bonding

    NASA Astrophysics Data System (ADS)

    Chan, Matthew Wei-Jen

    Complex engineering systems ranging from automobile engines to geothermal wells require specialized sensors to monitor conditions such as pressure, acceleration and temperature in order to improve efficiency and monitor component lifetime in what may be high temperature, corrosive, harsh environments. Microelectromechanical systems (MEMS) have demonstrated their ability to precisely and accurately take measurements under such conditions. The systems being monitored are typically made from metals, such as steel, while the MEMS sensors used for monitoring are commonly fabricated from silicon, silicon carbide and aluminum nitride, and so there is a sizable thermal expansion mismatch between the two. For these engineering applications the direct bonding of MEMS sensors to the components being monitored is often required. This introduces several challenges, namely the development of a bond that is capable of surviving high temperature harsh environments while mitigating the thermally induced strains produced during bonding. This project investigates the development of a robust packaging and bonding process, using the gold-tin metal system and the solid-liquid interdiffusion (SLID) bonding process, to join silicon carbide substrates directly to type-316 stainless steel. The SLID process enables bonding at lower temperatures while producing a bond capable of surviving higher temperatures. Finite element analysis was performed to model the thermally induced strains generated in the bond and to understand the optimal way to design the bond. The cross-sectional composition of the bonds has been analyzed and the bond strength has been investigated using die shear testing. The effects of high temperature aging on the bond's strength and the metallurgy of the bond were studied. Additionally, loading of the bond was performed at temperatures over 415 °C, more than 100 °C, above the temperature used for bonding, with full survival of the bond, thus demonstrating the benefit of

  2. Preparation and performances of Co-Mn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application

    NASA Astrophysics Data System (ADS)

    Zhang, H. H.; Zeng, C. L.

    2014-04-01

    Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a Co-Mn alloy on a type 430 stainless steel, followed by heat treatment at 750 °C in argon and at 800 °C in air to obtain Co-Mn spinel coatings. The experimental results indicate that an adhesive and compact Co-Mn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800 °C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings.

  3. DRX-Induced Solid-State Flow and Projectile-Target Mixing During [001] Single-Crystal Tungsten Rod Penetration into Steel Targets

    NASA Astrophysics Data System (ADS)

    Pizana, Carlos; Tamoria, T. L.; Cytron, Sheldon

    2005-07-01

    Residual [001] single-crystal W penetrators have been examined by light and electron microscopy. The post-impact residual penetrators examined using energy-dispersive x-ray mapping, revealed target and penetrator mechanical mixing. Considerable intercalation activity was found to concentrate specifically within the material being eroded by DRX-assisted flow. The solid-state flow features including shear bands facilitate the mixing of the two. Peripherally along the head of the penetrator and adjacent to the shear band itself, large bands of high Ni steel appear to influence the solid-state flow of the penetrator. Residual microstructures obtained within the penetrator suggest localized melt zones due to thermal instabilities caused by the turbulent behavior in the high-pressure regime. Supported by the U.S. Army TACOM-Picatinny Arsenal.

  4. Direct measurement of solids: High temperature sensing: Phase 2, Experimental development and testing on furnace-heated steel blocks

    SciTech Connect

    Lemon, D.K.; Daly, D.S.

    1985-12-01

    Using average velocity measurements to estimate average profile temperature shows promise and merits further investigation. The current generation of electromagnetic acoustic transducers (EMATs) can transmit and detect signals in steel below the magnetic transition temperature. Techniques for calibrating ultrasonic velocity to internal temperature need further development. EMATs are inadequate ultrasonic transmitters for these applications. A high-energy, pulsed laser capable of generating more intense ultrasonic signals should be investigated as a transmitter. Recommendations are given for further work.

  5. Investigation into the diffusion and oxidation behavior of the interface between a plasma-sprayed anode and a porous steel support for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu; Liu, Meilin; Yang, Guan-Jun

    2016-08-01

    Porous metal-supported solid oxide fuel cells (SOFCs) have attracted much attention because their potential to dramatically reduce the cost while enhancing the robustness and manufacturability. In particular, 430 ferritic steel (430L) is one of the popular choice for SOFC support because of its superior performance and low cost. In this study, we investigate the oxidation and diffusion behavior of the interface between a Ni-based anode and porous 430L support exposed to a humidified (3% H2O) hydrogen atmosphere at 700 °C. The Ni-GDC (Ce0.8Gd0.2O2-δ) cermet anodes are deposited on the porous 430L support by atmospheric plasma spraying (APS). The effect of exposure time on the microstructure and phase structure of the anode and the supports is studied and the element diffusion across the support/anode interface is characterized. Results indicate that the main oxidation product of the 430L support is Cr2O3, and that Cr and Fe will diffuse to the anode and the diffusion thickness increases with the exposure time. The diffusion thickness of Cr and Fe reach about 5 and 2 μm, respectively, after 1000 h exposure. However, the element diffusion and oxidation has little influence on the area-specific resistance, indicating that the porous 430L steel and plasma sprayed Ni-GDC anode are promising for durable SOFCs.

  6. In situ hydrothermal growth of ytterbium-based metal-organic framework on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons from environmental samples.

    PubMed

    Li, Qiu-Lin; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-10-09

    In this paper, we report the use of a porous ytterbium-based metal-organic framework (Yb-MOF) coating material with good thermal stability for the headspace solid-phase microextraction (HS-SPME) of polycyclic aromatic hydrocarbons (PAHs) from environmental samples. The Yb-MOF thin films, grown in situ on stainless steel wire in solution, exhibited high selectivity and sensitivity toward PAHs. Under the optimal conditions, the novel fibers achieved large enrichment factors (130-2288), low limits of detection (0.07-1.67ngL(-1)), and wide range of linearity (10-1000ngL(-1)) for 16 PAHs in the tested samples. The novel fiber was successfully used in the analysis of PAHs in real environmental samples. These results demonstrated that Yb-MOF is a promising coating material for the SPME of PAHs at trace levels from environmental samples.

  7. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability.

    PubMed

    Mäkelä, Mikko; Watkins, Gary; Pöykiö, Risto; Nurmesniemi, Hannu; Dahl, Olli

    2012-03-15

    Industrial residue application to soil was investigated by integrating granulated blast furnace or converter steel slag with residues from the pulp and paper industry in various formulations. Specimen analysis included relevant physicochemical properties, total element concentrations (HCl+HNO3 digestion, USEPA 3051) and chemical speciation of chosen heavy metals (CH3COOH, NH2OH·HCl and H2O2+H2O2+CH3COONH4, the BCR method). Produced matrices showed liming effects comparable to commercial ground limestone and included significant quantities of soluble vital nutrients. The use of converter steel slag, however, led to significant increases in the total concentrations of Cr and V. Subsequently, total Cr was attested to occur as Cr(III) by Na2CO3+NaOH digestion followed by IC UV/VIS-PCR (USEPA 3060A). Additionally, 80.6% of the total concentration of Cr (370 mg kg(-1), d.w.) occurred in the residual fraction. However, 46.0% of the total concentration of V (2470 mg kg(-1), d.w.) occurred in the easily reduced fraction indicating potential bioavailability.

  8. Evaluation of Incoherent Interface Strength of Solid-State-Bonded Ti64/Stainless Steel Under Dynamic Impact Loading

    NASA Astrophysics Data System (ADS)

    Verma, Devendra; Singh, Jogender; Varma, Amit H.; Tomar, Vikas

    2015-08-01

    Ti/steel interfaces are produced using field-assisted sintering technology, a technique known to bring about full consolidation of materials using much lower sintering temperatures and durations. The interface thickness is verified using the energy-dispersive x-ray analysis exhibiting the extent of diffusion in interface regions. The interface mechanical strength is characterized using dynamic indentation experiments at strain rates approaching 400 s-1. The experiments were conducted on the interfaces within the spatial error tolerance of less than 3 µm. The measurements of dynamic hardness values, strain rates, and plastic-residual depths were correlated to show the relation of interface mechanical strength with the bulk-phase mechanical strength properties of Ti and steel. The Johnson-Cook model is fitted to the obtained interface normal stress-normal strain data based on the nanoimpact experiments. The coefficient of restitution in the mechanical loading and its dependence on the interface dynamic hardness and interface impact velocity validate the experimental results. The results show that interfacial properties are affected by the rate of loading and are largely dependent upon the interface structural inhomogeneity.

  9. Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications

    SciTech Connect

    Stevenson, Jeffry W.; Yang, Zhenguo; Xia, Guanguang; Nie, Zimin; Templeton, Joshua D.

    2013-06-01

    Long-term tests (>8,000 hours) indicate that AISI 441 ferritic stainless steel coated with a Mn-Co spinel protection layer is a promising candidate material system for IT-SOFC interconnect applications. While uncoated AISI 441 showed a substantial increase in area-specific electrical resistance (ASR), spinel-coated AISI 441 exhibited much lower ASR values (11-13 mOhm-cm2). Formation of an insulating silica sublayer beneath the native chromia-based scale was not observed, and the spinel coatings reduced the oxide scale growth rate and blocked outward diffusion of Cr from the alloy substrate. The structure of the scale formed under the spinel coatings during the long term tests differed from that typically observed on ferritic stainless steels after short term oxidation tests. While short term tests typically indicate a dual layer scale structure consisting of a chromia layer covered by a layer of Mn-Cr spinel, the scale grown during the long term tests consisted of a chromia matrix with discrete regions of Mn-Cr spinel distributed throughout the matrix. The presence of Ti in the chromia scale matrix and/or the presence of regions of Mn-Cr spinel within the scale may have increased the scale electrical conductivity, which would explain the fact that the observed ASR in the tests was lower than would be expected if the scale consisted of pure chromia.

  10. Solid-state flow, mechanical alloying, and melt-related phenomena for [001] single-crystal tungsten ballistic rod penetrators interacting with steel targets

    NASA Astrophysics Data System (ADS)

    Pizana, Carlos

    This research program consists of a detailed microstructural investigation of in-target, single-crystal [001], clad (with Inconel 718) and unclad, W long-rod, ballistic penetrators. The rods were shot into rolled homogeneous armor (RHA) steel targets approximately 76 mm in thickness at impact velocities ranging from 1100 m/s to 1350 m/s. A comprehensive microstructural overview of the penetration process was obtained from this investigation. Solid-state flow/erosion, solid-state target/rod mixing as well as influencing factors such as strain rate, penetration performance, cladding interference and the interaction between target and projectile were emphasized. Some of the microstructural features observed, including deformation twins, cleaving, adiabatic shear bands and DRX support an overall solid-state penetration process. Furthermore they provide for a unifying perspective for the applicability of the hydrodynamic paradigm (DOP ≈ l∘rp/rt ) and earlier mechanistic erosion approaches. DRX and grain growth within adiabatic shear bands observed at specific high strain/strain-rate zones within the rods suggest that the projectile erodes by means of these microstructures in a solid-state form. This erosion process contributes to the performance of the rod by either allowing optimum flow of rod material which would increase penetration depth, or by maximizing rod material consumption which would reduce it. Since flow and/or erosion are also necessary in the target for perforation to occur, it is not surprising that the erosion process in the target was observed to mirror the one in the projectile. That is both target and projectile developed erosion zones with DRX facilitating the extreme deformation via dense overlapping shear band formation. Mechanical alloying and/or mixing of the target (steel) and rod (W, or W-Inconel 718) was also observed and investigated. Selective etching techniques as well as energy-dispersive x-ray mapping revealed unambiguous evidence of

  11. Articles comprising ferritic stainless steels

    SciTech Connect

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  12. Noise-reduction effectiveness of resilient rail fasteners on steel solid web stringer elevated structures. Volume 1. Final report

    SciTech Connect

    Nelson, J.T.; Wilson, G.P.

    1989-03-01

    Under the sponsorship of the Urban Mass Transportation Administration's Technical Assistance program, the New York City Transit Authority (NYCTA) studies the noise-reduction effectiveness of various resilient rail fasteners for steel elevated structures. The study included field and laboratory tests, and limited theoretical modeling to identify and optimize those characteristics most effective in reducing noise, while meeting criteria for rail stability. Top-plate bending resonance in the 500-700 Hz frequency range may be a significant factor in reducing the vibration-isolation effectiveness of resilient rail fasteners. The standing-wave elastomer resonance (thickness mode) of resilient fasteners does not appear to be significant to wayside noise reduction at 500 Hz or lower frequencies for the type of fasteners considered.

  13. Development of a solid-phase microextraction fiber by chemical binding of polymeric ionic liquid on a silica coated stainless steel wire.

    PubMed

    Pang, Long; Liu, Jing-Fu

    2012-03-23

    A novel approach was developed for the fabrication of solid-phase microextraction (SPME) fiber by coating stainless steel fiber with a polymeric ionic liquid (PIL) through covalent bond. The stainless steel fiber was sequentially coated with a gold film by replacement reaction between Fe and Au when immerged in chloroauric acid, assembled with a monolayer of 3-(mercaptopropyl) triethoxysilane on the gold layer through the Au-S bond, and coated with a silica layer by the hydrolysis and polycondensation reaction of the surface-bonded siloxane moieties and the active silicate solution. Then, 1-vinyl-3-(3-triethoxysilylpropyl)-4,5-dihydroimidazolium chloride ionic liquid was anchored on the silica layer by covalent bond, and the PIL film was further formed by free radical copolymerization between 1-vinyl-3-(3-triethoxysilylpropyl)-4,5-dihydroimidazdium and vinyl-substituted imidazolium with azobisisobutyronitrile (AIBN) as initiator. Parameters influencing the preparation of PIL fiber were optimized, and the developed SPME fiber has a coating thickness of ~20 μm with good thermal stability and long lifetime. The performance of the PIL fiber was evaluated by analysis of polycyclic aromatic hydrocarbons (PAHs) in water samples. The developed PIL fiber showed good linearity between 0.5 and 20 μg l(-1) with regression coefficient in the range of 0.963-0.999, detection limit ranging from 0.05 to 0.25 μg l(-1), and relative standard deviation of 9.2-29% (n=7). This developed PIL fiber exhibited comparable analytical performance to commercial 7 μm thickness PDMS fiber in the extraction of PAHs. The spiked recoveries for three real water samples at 0.5-5 μg l(-1) levels were 49.6-111% for the PIL fiber and 40.8-103% for the commercial PDMS fiber.

  14. Catalytic coatings on steel for low-temperature propane prereforming to solid oxide fuel cell (SOFC) application.

    PubMed

    Alphonse, Pierre; Ansart, Florence

    2009-08-15

    Catalyst layers (4-20 microm) of rhodium (1 wt%) supported on alumina, titania, and ceria-zirconia (Ce(0.5)Zr(0.5)O(2)) were coated on stainless-steel corrugated sheets by dip-coating in very stable colloidal dispersions of nanoparticles in water. Catalytic performances were studied for low-temperature (< or = 500 degrees C) steam reforming of propane at a steam to carbon ratio equal to 3 and low contact time (approximately 0.01 s). The best catalytic activity for propane steam reforming was observed for titania and ceria-zirconia supports for which propane conversion started at 250 degrees C and was more than three times better at 350 degrees C than conversion measured on alumina catalyst. For all catalysts a first-order kinetics was found with respect to propane at 500 degrees C. Addition of PEG 2000 in titania and ceria-zirconia sols eliminated the film cracking observed without additive with these supports. Besides, the PEG addition strongly expanded the porosity of the layers, so that full catalytic efficiency was maintained when the thickness of the ceria-zirconia and titania films was increased.

  15. Comment on "Origin of low-temperature shoulder internal friction peak of Snoek-Köster peak in a medium carbon high alloyed steel" by Lu et al. [Solid State Communications 195 (2014) 31

    NASA Astrophysics Data System (ADS)

    Hoyos, J. J.; Mari, D.

    2016-01-01

    We want to discuss the interpretation of low-temperature shoulder internal friction peak of Snoek-Köster peak (LTS-SK). Lu et al. (2015) [1] attributed it to the interaction between the carbon atoms and twin boundaries in martensite. Nevertheless, the decrease of the amplitude of LTS-SK peak due to carbon segregation is correlated with the interstitial carbon content in solid solution in martensite (Hoyos et al., 2015 [2]). Therefore, this peak can also be attributed to the presence of an internal friction athermal background, which is proportional to the concentration of interstitial carbon in solid solution (Tkalcec et al., 2015 [2,3]). In addition, they used an alloyed steel, in which ε carbide precipitated above of the LTS-SK peak temperature. As this behavior cannot be generalized for carbon and high alloyed steels, the carbide precipitates could made an additional contribution to the internal friction.

  16. Mn1.4Co1.4Cu0.2O4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications

    NASA Astrophysics Data System (ADS)

    Chen, Guoyi; Xin, Xianshuang; Luo, Ting; Liu, Leimin; Zhou, Yuchun; Yuan, Chun; Lin, Chucheng; Zhan, Zhongliang; Wang, Shaorong

    2015-03-01

    In an attempt to reduce the oxidation and Cr evaporation rates of solid oxide fuel cells (SOFCs), Mn1.4Co1.4Cu0.2O4 spinel coating is developed on the Crofer22 APU ferritic stainless steel substrate by a powder reduction technique. Doping of Cu into Mn-Co spinels improves electrical conductivity as well as thermal expansion match with the Crofer22 APU interconnect. Good adhesion between the coating and the alloy substrate is achieved by the reactive sintering process using the reduced powders. Long-term isothermal oxidation experiment and area specific resistance (ASR) measurement are investigated. The ASR is less than 4 mΩ cm2 even though the coated alloy undergoes oxidation at 800 °C for 530 h and four thermal cycles from 800 °C to room temperature. The Mn1.4Co1.4Cu0.2O4 spinel coatings demonstrate excellent anti-oxidation performance and long-term stability. It exhibits a promising prospect for the practical application of SOFC alloy interconnect.

  17. Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Hosseini, N.; Abbasi, M. H.; Karimzadeh, F.; Choi, G. M.

    2015-01-01

    To protect solid oxide fuel cells (SOFCs) from chromium poisoning and to improve area specific resistance (ASR), Cu1.3Mn1.7O4 is thermally grown on AISI 430 ferritic stainless steel. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy equipped with energy dispersive spectroscopy (FESEM-EDS) and 4-probe ASR tests. The results show that the coating not only decreases the ASR considerably, but also acts as a barrier to mitigate the sub-scale growth and to prevent chromium migration through the coating and the cathode. The EDS analysis reveals that a mixed spinel region is formed between the coating and oxide scale after 500 h oxidation at 750 °C causing a noticeable decrease in oxygen diffusivity through this layer and subsequent decline in sub-scale growth rate. The ASR of uncoated sample is measured to be 63.5 mΩ cm2 after 500 h oxidation, while the Cu1.3Mn1.7O4 spinel coated sample shows a value of 19.3 mΩ cm2 representing ∼70% reduction compared to the uncoated sample. It is proposed that the high electrical conductivity of Cu1.3Mn1.7O4 (140 S cm-1), reduction of oxide scale growth, and good bonding between the coating and substrate contribute to the substantial ASR reduction for the coated sample.

  18. Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls.

    PubMed

    Wu, Ye-Yu; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2014-03-21

    Metal-organic frameworks (MOFs) have received considerable attention as novel sorbents for sample preparation due to their fascinating structures and functionalities such as large surface area, good thermal stability, and uniform structured nanoscale cavities. Here, we report the application of a thermal and solvent stable MOF MIL-88B with nanosized bipyramidal cages and large surface area for solid-phase microextraction (SPME) of polychlorinated biphenyls (PCBs). Novel MIL-88B coated fiber was fabricated via an in situ hydrothermal growth of MIL-88B film on etched stainless steel fiber. The MIL-88B coated fiber gave large enhancement factors (757-2243), low detection limits (0.45-1.32ngL(-1)), and good linearity (5-200ngL(-1)) for PCBs. The relative standard deviation (RSD) for six replicate extractions of PCBs at 100ngL(-1) on MIL-88B coated fiber ranged from 4.2% to 8.7%. The recoveries for spiked PCBs (10ngL(-1)) in water and soil samples were in the range of 79.7-103.2%. Besides, the MIL-88B coated fiber was stable enough for 150 extraction cycles without significant loss of extraction efficiency. The developed method was successfully applied to the determination of PCBs in water samples and soil samples.

  19. Graphene oxide based sol-gel stainless steel fiber for the headspace solid-phase microextraction of organophosphate ester flame retardants in water samples.

    PubMed

    Jin, Tingting; Cheng, Jing; Cai, Cuicui; Cheng, Min; Wu, Shiju; Zhou, Hongbin

    2016-07-29

    In this paper, graphene oxide was coated onto a stainless steel wire through sol-gel technique and it was used as a solid phase microextraction (SPME) fiber. The prepared fiber was characterized by scanning electron microscopy (SEM), which displayed that the fiber had crinkled surface and porous structure The application of the fiber was evaluated through the headspace SPME of nine organophosphate ester flame retardants (OPFRs) with different characteristics in water samples followed by gas chromatography and nitrogen-phosphorous detector (GC/NPD). The major factors influencing the extraction efficiency, including the extraction and desorption conditions, were studied and optimized. Under the optimum conditions, the proposed method was evaluated, and applied to the analysis of organophosphate ester flame retardants in real environmental water samples. The results demonstrated the HS-SPME method based on GO sol-gel fiber had good linearity (R>0.9928), and limits of detection (1.4-135.6ngL(-1)), high repeatability (RSD<9.8%) and good recovery (76.4-112.4%). The GO based sol-gel fiber displayed bigger extraction capability than the commercial PDMS fiber and the pure sol-gel fiber for both polar and apolar organophosphate esters, especially for the OPFRs containing benzene rings.

  20. Solid-phase microextraction of phthalate esters from aqueous media by electrophoretically deposited TiO₂ nanoparticles on a stainless steel fiber.

    PubMed

    Banitaba, Mohammad Hossein; Davarani, Saied Saeed Hosseiny; Pourahadi, Ahmad

    2013-03-29

    A novel SPME fiber was prepared by electrophoretic deposition of titanium dioxide nanoparticles (nano-TiO2) on a stainless steel wire. It was used in the direct immersion solid-phase microextraction (DI-SPME) of four phthalate esters from aqueous samples prior to gas chromatographic (GC) analysis. The effects of various parameters on the efficiency of the SPME process such as the mode of extraction, extraction temperature, film thickness of the SPME fiber, salt content, extraction time and stirring rate were investigated. The comparison of the fiber with another homemade poly(3,4-ethylenedioxythiophene)-TiO2 (PEDOT-TiO2) nanocomposite fiber and a commercial polydimethylsiloxane (PDMS) fiber showed the better extraction efficiency of the nano-TiO2 fiber for phthalate esters. Under optimized conditions, the limit of detection (LOD) for the phthalate esters varied between 0.05 and 0.12μgL(-1). The inter-day and intra-day relative standard deviations for various phthalate esters at 10μgL(-1) concentration level (n=6) using a single fiber were 6.6-7.5% and 8.3-11.1%, respectively. The fiber to fiber repeatabilities (n=4), expressed as relative standard deviation (RSD%), were between 8.9% and 10.2% at 10μgL(-1) concentration level. The linear ranges varied between 0.5 and 1000μgL(-1). The method was successfully applied to the analysis of the bottled mineral water sample with recoveries from 86 to 107%.

  1. In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues.

    PubMed

    Cui, Xiao-Yan; Gu, Zhi-Yuan; Jiang, Dong-Qing; Li, Yan; Wang, He-Fang; Yan, Xiu-Ping

    2009-12-01

    Metal-organic frameworks (MOFs) have received great attention due to their fascinating structures and intriguing potential applications in various fields. Herein, we report the first example of the utilization of MOFs for solid-phase microextraction (SPME). MOF-199 with unique pores and open metal sites (Lewis acid sites) was employed as the coating for SPME fiber to extract volatile and harmful benzene homologues. The SPME fiber was fabricated by in situ hydrothermal growth of thin MOF-199 films on etched stainless steel wire. The MOF-199-coated fiber not only offered large enhancement factors from 19,613 (benzene) to 110,860 (p-xylene), but also exhibited wide linearity with 3 orders of magnitude for the tested benzene homologues. The limits of detection for the benzene homologues were 8.3-23.3 ng L(-1). The relative standard deviation (RSD) for six replicate extractions using one SPME fiber ranged from 2.0% to 7.7%. The fiber-to-fiber reproducibility for three parallel prepared fibers was 3.5%-9.4% (RSD). Indoor air samples were analyzed for the benzene homologues using the SPME with the MOF-199-coated fiber in combination with gas chromatography-flame ionization detection. The recoveries for the spiked benzene homologues in the collected indoor air samples were in the range of 87%-106%. The high affinity of the MOF-199-coated fiber to benzene homologues resulted from the combined effects of the large surface area and the unique porous structure of the MOF-199, the pi-pi interactions of the aromatic rings of the analytes with the framework 1,3,5-benzenetricarboxylic acid molecules, and the pi-complexation of the electron-rich analytes to the Lewis acid sites in the pores of MOF-199.

  2. Growth of cedar-like Au nanoparticles coating on an etched stainless steel wire and its application for selective solid-phase microextraction.

    PubMed

    Zhang, Yida; Yang, Yaoxia; Li, Yi; Zhang, Min; Wang, Xuemei; Du, Xinzhen

    2015-05-30

    A novel cedar-like Au nanoparticles (AuNPs) coating was fabricated on an etched stainless steel (SS) wire by direct chemical deposition and used as an efficient and unbreakable solid phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent growth of AuNPs in chloroauric acid solution. As a result, the uniform cedar-like AuNPs coating with larger surface area was tightly attached to the etched SS wire substrate. The AuNPs coated etched SS fiber (AuNPs/SS) was examined for SPME of ultraviolet (UV) filters, phthalate esters and aromatic hydrocarbons coupled to high-performance liquid chromatography with UV detection. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some aromatic hydrocarbons. Influential parameters of extraction and desorption time, temperature, stirring rate and ionic strength were investigated and optimized. The limits of detection ranged from 0.008 μg L(-1) to 0.037 μg L(-1). The single fiber repeatability varied from 3.90% to 4.50% and the fiber-to-fiber reproducibility ranged from 5.15% to 6.87%. The recovery of aromatic hydrocarbons in real water samples spiked at 2.0 μg L(-1) and 20 μg L(-1) ranged from 94.38% to 106.2% with the relative standard deviations below 6.44%. Furthermore the growth of the cedar-like AuNPs coating can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and withstands at least 200 extraction and desorption replicates.

  3. Metal-organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples.

    PubMed

    Shang, Hai-Bo; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2014-08-29

    Effective solid-phase microextraction (SPME) of polar phenols from water samples is usually difficult due to the strong interaction between polar phenols and aqueous matrix. Here, we report the fabrication of a metal-organic framework UiO-66 coated stainless steel fiber via physical adhesion for the SPME of polar phenols (phenol, o-cresol, p-cresol, 2,6-dimethylphenol, 2,4-dichlorophenol and 2,6-dichlorophenol) in water samples before gas chromatographic separation with flame ionic detection. Headspace SPME of 10mL sample solution with the fabricated UiO-66 coated fiber gave the enhancement factors of 160 (phenol) - 3769 (2,4-dichlorophenol), and the linear ranges of 1-1000μgL(-1) (2,6-dimethylphenol, 2,4-dichlorophenol and 2,6-dichlorophenol), 1-500μgL(-1) (o-cresol and p-cresol) and 5-500μgL(-1) (phenol). The detection limits ranged from 0.11μgL(-1) (2,6-dimethylphenol) to 1.23μgL(-1) (phenol). The precision (relative standard deviations, RSDs) for six replicate determinations of the analytes at 100μgL(-1) using a single UiO-66 coated fiber ranged from 2.8% to 6.2%. The fiber-to-fiber reproducibility (RSDs) for three parallel UiO-66 coated fibers varied from 5.9% to 10%. The recoveries obtained by spiking 5μgL(-1) of the phenols in the water samples ranged from 80% to 115%.

  4. Y0.08Sr0.88TiO3-CeO2 composite as a diffusion barrier layer for stainless-steel supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Kun Joong; Kim, Sun Jae; Choi, Gyeong Man

    2016-03-01

    A new diffusion barrier layer (DBL) is proposed for solid oxide fuel cells (SOFCs) supported on stainless-steel where DBL prevents inter-diffusion of atoms between anode and stainless steel (STS) support during fabrication and operation of STS-supported SOFCs. Half cells consisting of dense yttria-stabilized zirconia (YSZ) electrolyte, porous Ni-YSZ anode layer, and ferritic STS support, with or without Y0.08Sr0.88TiO3-CeO2 (YST-CeO2) composite DBL, are prepared by tape casting and co-firing at 1250 and 1350 °C, respectively, in reducing (H2) atmosphere. The porous YST-CeO2 layer (t ∼ 60 μm) blocks inter-diffusion of Fe and Ni, and captures the evaporated Cr during cell fabrication (1350 °C). The cell with DBL and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode achieved a maximum power density of ∼220 mW cm-2 which is stable at 700 °C. In order to further improve the power performance, Ni coarsening in anode during co-firing must be prevented or alternative anode which is resistive to coarsening is suggested. This study demonstrates that the new YST-CeO2 layer is a promising as a DBL for stainless-steel-supported SOFCs fabricated with co-firing process.

  5. Gas-Solid Interactions During Nonisothermal Heat Treatment of a High-Strength CrMnCN Austenitic Steel Powder: Influence of Atmospheric Conditions and Heating Rate on the Densification Behavior

    NASA Astrophysics Data System (ADS)

    Krasokha, Nikolaj; Weber, Sebastian; Huth, Stephan; Zumsande, Kathrin; Theisen, Werner

    2012-11-01

    This work deals with gas-solid interactions between a high-alloyed steel powder and the surrounding atmosphere during continuous heating. It is motivated by the recently developed corrosion-resistant CrMnCN austenitic cast steels. Here, powder metallurgical processing would be desirable to manufacture highly homogeneous parts and/or novel corrosion-resistant metal-matrix composites. However, the successful use of this new production route calls for a comprehensive investigation of interactions between the sintering atmosphere and the metallic powder to prevent undesirable changes to the chemical composition, e.g., degassing of nitrogen or evaporation of manganese. In this study, dilatometric measurements combined with residual gas analysis, high-temperature X-ray diffraction (XRD) measurements, and thermodynamic equilibrium calculations provided detailed information about the influence of different atmospheric conditions on the microstructure, constitution, and densification behavior of a gas-atomized CrMnCN steel powder during continuous heating. Intensive desorption of nitrogen led to the conclusion that a vacuum atmosphere is not suitable for powder metallurgical (PM) processing. Exposure to an N2-containing atmosphere resulted in the formation of nitrides and lattice expansion. Experimental findings have shown that the N content can be controlled by the nitrogen partial pressure. Furthermore, the reduction of surface oxides because of a carbothermal reaction at elevated temperatures and the resulting enhancement of the powder's densification behavior are discussed in this work.

  6. A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey.

    PubMed

    Ghiasvand, Alireza; Dowlatshah, Samira; Nouraei, Nadia; Heidari, Nahid; Yazdankhah, Fatemeh

    2015-08-07

    A mechanically hard and cohesive porous fiber, with large surface area, for more strong attachment of the coating was provided by platinizing a stainless steel wire. Then, the platinized stainless steel fiber was coated with a multiwalled carbon nanotube/polyaniline (MWCNT/PANI) nanocomposite using electrophoretic deposition (EPD) method and applied for the extraction of thymol and carvacrol with direct-immersion solid-phase microextraction (DI-SPME) method followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV) quantification. To provide a larger coarse surface for the tightened attachment of coating on the fiber, a stainless steel wire was platinized using a suitable optimized EPD method. Different experimental parameters were studied and the optimal conditions were obtained as: pH of the sample solution: 2; extraction time: 60min; salt content in the sample solution: 1% w/v NaNO3; desorption time: 60min; type and volume of the desorption solvent: acetonitrile, 100μL. Under the optimized conditions, limits of detection (LODs) were 0.6 and 0.8μgmL(-1) for thymol and carvacrol, respectively. Linear dynamic range (LDR) for the calibration curves of both analytes were 1-80μgmL(-1). Relative standard deviation (RSD%, n=6) was 6.8 for thymol and 12.7 for carvacrol. The proposed fiber was successfully applied for the recovery and determination of thymol and carvacrol in thyme, savory, and honey samples.

  7. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  8. Gold-functionalized stainless-steel wire and tube for fiber-in-tube solid-phase microextraction coupled to high-performance liquid chromatography for the determination of polycyclic aromatic hydrocarbons.

    PubMed

    Bu, Yanan; Feng, Juanjuan; Sun, Min; Zhou, Changli; Luo, Chuannan

    2016-03-01

    A fiber-in-tube solid-phase microextraction device based on a gold-functionalized stainless-steel wire and tube was developed and characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. In combination with high-performance liquid chromatography, it was evaluated using six polycyclic aromatic hydrocarbons as model analytes. Important parameters including sampling rate, sample volume, organic solvent content and desorption time were investigated. Under optimized conditions, an online analysis method was established. The linearity was in the range of 0.15-50 μg/L with correlation coefficients ranging from 0.9989 to 0.9999, and limits of detection ranged from 0.05 to 0.1 μg/L. The method was applied to determine model analytes in mosquito-repellent incense ash and river water samples, with recoveries in the range of 85-120%.

  9. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    NAWCADPAX/TR-2009/ 12 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders 19 February 2009...MARYLAND NAWCADPAX/TR-2009/ 12 19 February 2009 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders...Prescribed by ANSI Std. Z39-18 NAWCADPAX/TR-2009/ 12 ii SUMMARY Five high strength and four stainless steels have been studied, identifying their

  10. Recycling steel automatically -- through resource recovery

    SciTech Connect

    Crawford, G.L.

    1996-12-31

    More than three-fourths of the operating resource recovery plants magnetically separate steel cans and other discarded steel items either pre- or post-combustion. This last year, 121 resource recovery facilities combusted about 14% of the solid waste for communities across the US. Automatic recycling of steel clearly reduces the post-combustion material that is landfilled and heightens the facilities environmental performance through tangible recycling achievement. Even though about one out of every six steel cans is recycled automatically through resource recovery, not many people are aware of automatic recycling of steel cans through resource recovery. How many people know that their local resource recovery plant is insuring that virtually all of their food, beverage and general purpose cans--including paint and aerosol--are being recycled so easily and efficiently? Magnetic separation at resource recovery facilities is a fundamentally simple and desirable method of diverting what would otherwise be relegated as solid waste to the landfill. It should be recognized as an increasingly important and valued part of the resource recovery and steel industries overall recycling efforts. This paper will provide the latest information on steel recycled automatically from resource recovery facilities within the total context of all recycling accomplished annually by the steel industry. Most important, recommendations are provided for building public awareness of the automatic steel recycling contribution made so solidly by resource recovery facilities.

  11. STEFINS: a steel freezing integral simulation program

    SciTech Connect

    Frank, M.V.

    1980-09-01

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included.

  12. Recycling steel automatically - through resource recovery

    SciTech Connect

    Foley, W.J.

    1997-12-01

    Last year, more than 55 percent of all steel cans were recycled. But no matter how effective the local recycling programs may be, some steel cans and other steel products are overlooked and appear in MSW. This missed steel fraction is automatically recycled by resource recovery facilities through magnetic separation. More than three-fourths of the operating resource recovery plants magnetically separate steel cans and other discarded steel items either pre- or post-combustion. Recovering ferrous scrap clearly reduces the post-combustion material that is landfilled and heightens the facilities` environmental performance. Both the resource recovery and steel industries must heighten public awareness of the benefits of automatic steel recycling. Magnetic separation at resource recovery facilities is a simple method of diverting what would otherwise be relegated as solid waste to the landfill. It should be recognized as an increasingly important and valued part of the resource recovery and steel industries` overall recycling efforts. This paper will discuss the status of steel can recycling in the United States, describe how recovered ferrous is beneficiated before recycling by the steel industry, and make recommendations for heightening awareness of the steel recycling contribution made by resource recovery facilities.

  13. 76 FR 73589 - Galvanized Steel Wire From the People's Republic of China: Amended Preliminary Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... investigation covers galvanized steel wire which is a cold-drawn carbon quality steel product in coils, of solid... International Trade Administration Galvanized Steel Wire From the People's Republic of China: Amended... than fair value in the antidumping investigation of galvanized steel wire from the People's Republic...

  14. A Virtual Steel Sculpture for Structural Engineering Education: Development and Initial Findings

    ERIC Educational Resources Information Center

    Dib, Hazar Nicholas; Adamo-Villani, Nicoletta

    2016-01-01

    We describe the development and evaluation of a virtual steel sculpture for engineering education. A good connection design requires the engineer to have a solid understanding of the mechanics and steel behavior. To help students better understand various connection types, many schools have acquired steel sculptures. A steel sculpture is a…

  15. Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection.

    PubMed

    Mirzajani, Roya; Kardani, Fatemeh

    2016-04-15

    A molecularly imprinted polymer (MIP) fiber on stainless steel wire using ciprofloxacin template with a mild template removal condition was synthetized and evaluated for fiber solid phase microextraction (SPME) of fluoroquinolones (FQs) from biological fluids and pharmaceutical samples, followed by high performance liquid chromatography analysis with UV detection (HPLC-UV). The developed MIP fiber exhibited high selectivity for the analytes in complex matrices. The coating of the fibers were inspected using fourier transform infrared spectrophotometry, thermogaravimetric analysis, energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The fiber shows high thermal stability (up to 300°C), good reproducibility and long lifetime. The composite coating did not swell in organic solvents nor did it strip off from the substrate. It was also highly stable and extremely adherent to the surface of the stainless steel fiber. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some FQs. The effective parameters influencing the microextraction efficiency such as pH, extraction time, desorption condition, and stirring rate were investigated. Under optimized conditions, the limits of detection of the four FQs ranged from 0.023-0.033 μg L(-1) (S/N=5) and the calibration graphs were linear in the concentration range from 0.1-40 μg L(-1), the inter-day and intraday relative standard deviations (RSD) for various FQs at three different concentration level (n=5) using a single fiber were 1.1-4.4% and the fiber to fiber RSD% (n=5) was 4.3-6.7% at 5 μg L(-1) of each anlyetes. The method was successfully applied for quantification of FQs in real samples including serum, plasma and tablet formulation with the recoveries between 97 to 102%.

  16. Stainless steel-supported solid oxide fuel cell with La0.2Sr0.8Ti0.9Ni0.1O3-δ/yttria-stabilized zirconia composite anode

    NASA Astrophysics Data System (ADS)

    Dayaghi, Amir Masoud; Kim, Kun Joong; Kim, Sunwoong; Park, Juahn; Kim, Sun Jae; Park, Byung Hyun; Choi, Gyeong Man

    2016-08-01

    A metal-supported solid oxide fuel cell (MS-SOFC) is fabricated by co-firing stainless steel (STS) support with a new reduction-resistant oxide-anode and yttria-stabilized zirconia electrolyte. La and Ni co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-δ, LSTN) which shows Ni exsolution capability is composited with Y0.16Zr0.84O2-δ (YSZ) electrolyte to form a new LSTN-YSZ anode. A cermet layer composed of STS and YSZ (STS-YSZ) is inserted between a porous STS support and a new LSTN-YSZ composite anode for stable contact. With La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode and Ce0.8Gd0.2O2-δ (GDC) interlayer coated on top of co-fired half-cell, YSZ/LSTN-YSZ/STS-YSZ/STS, a newly designed and fabricated cell achieved maximum power density of 185 mW cm-2 at 650 °C. This power density is an improvement over many conventional co-fired MS-SOFCs that use a Ni-cermet anode.

  17. Covalent Bonding of Metal-Organic Framework-5/Graphene Oxide Hybrid Composite to Stainless Steel Fiber for Solid-Phase Microextraction of Triazole Fungicides from Fruit and Vegetable Samples.

    PubMed

    Zhang, Shuaihua; Yang, Qian; Wang, Wenchang; Wang, Chun; Wang, Zhi

    2016-04-06

    A hybrid material of the zinc-based metal-organic framework-5 and graphene oxide (metal-organic framework-5/graphene oxide) was prepared as a novel fiber coating material for solid-phase microextraction (SPME). The SPME fibers were fabricated by covalent bonding via chemical cross-linking between the coating material metal-organic framework-5/graphene oxide and stainless steel wire. The prepared fiber was used for the extraction of five triazole fungicides from fruit and vegetable samples. Gas chromatography coupled with microelectron capture detector (GC-μECD) was used for quantification. The developed method gave a low limit of detection (0.05-1.58 ng g(-1)) and good linearity (0.17-100 ng g(-1)) for the determination of the triazole fungicides in fruit and vegetable samples. The relative standard deviations (RSDs) for five replicate extractions of the triazole fungicides ranged from 3.7 to 8.9%. The method recoveries for spiked fungicides (5, 20, and 50 ng g(-1)) in grape, apple, cucumber, celery cabbage, pear, cabbage, and tomato samples were in the range of 85.6-105.8% with the RSDs ranging from 3.6 to 11.4%, respectively, depending on both the analytes and samples. The metal-organic framework-5/graphene oxide coated fiber was stable enough for 120 extraction cycles without a significant loss of extraction efficiency. The method was suitable for the determination of triazole fungicides in fruit and vegetable samples.

  18. Reaction Between MnO-SiO2-FeO Solid Oxide and Solid Steel Deoxidized by Si and Mn During Heat Treatment at 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-song; Kim, Kyung-Ho; Kim, Sun-Joong; Li, Jing-she; Ueda, Shigeru; Gao, Xu; Shibata, Hiroyuki; Kitamura, Shin-ya

    2015-08-01

    A new method using a confocal scanning laser microscope for melting oxide at 1673 K (1400 °C) to produce a diffusion couple, which consists of oxide and an iron-based alloy, has been developed for the investigation of a solid-state reaction between them. It is important to obtain good contact between the Fe-Mn-Si alloy and MnO-SiO2-FeO oxide before the diffusion experiment to observe diffusion of elements between them at 1473 K (1200 °C). In this system, the melting point of the oxides is higher than the temperature where the reaction would be observed. The pretreatment involving melting oxide at 1673 K (1400 °C) to obtain good contact with the alloy was carried out using a new method. The effect of the pretreatment at 1673 K (1400 °C) on the diffusion experiment at 1473 K (1200 °C) was minimized by this new method. The effect of diffusion of oxygen on the solid-state reaction between the Fe-Mn-Si alloy and MnO-SiO2-FeO oxide at 1473 K (1200 °C) was observed clearly and showed good agreement with Wagner's model of internal oxidation of metal.

  19. Solids Accumulation Scouting Studies

    SciTech Connect

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  20. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-11-01

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs-1, high temperature rise rate of 600 Kμs-1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength.

  1. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel

    PubMed Central

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-01-01

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs−1, high temperature rise rate of 600 Kμs−1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength. PMID:27892460

  2. Electrodeposition of self-assembled poly(3,4-ethylenedioxythiophene) @gold nanoparticles on stainless steel wires for the headspace solid-phase microextraction and gas chromatographic determination of several polycyclic aromatic hydrocarbons.

    PubMed

    Yang, Liu; Zhang, Jie; Zhao, Faqiong; Zeng, Baizhao

    2016-11-04

    In this work, a novel poly(3,4-ethylenedioxythiophene)@Au nanoparticles (PEDOT@AuNPs) hybrid coating was prepared and characterized. Firstly, the monomer 3,4-ethylenedioxythiophene was self-assembled on AuNPs, and then electropolymerization was performed on a stainless steel wire by cyclic voltammetry. The obtained PEDOT@AuNPs coating was rough and showed cauliflower-like micro-structure with thickness of ∼40μm. It displayed high thermal stability (up to 330°C) and mechanical stability and could be used for at least 160 times of solid phase microextraction (SPME) without decrease of extraction performance. The coating exhibited high extraction capacity for some environmental pollutants (e.g. naphthalene, 2-methylnaphthalene, acenaphthene, fluorene and phenathrene) due to the hydrophobic interaction between the analytes and PEDOT and the additional physicochemical affinity between polycyclic aromatic hydrocarbons and AuNPs. Through coupling with GC detection, good linearity (correlation coefficients higher than 0.9894), wide linear range (0.01-100μgL(-1)), low limits of detection (2.5-25ngL(-1)) were achieved for these analytes. The reproducibility (defined as RSD) was 1.1-4.0% and 5.8-9.9% for single fiber (n=5) and fiber-to-fiber (n=5), respectively. The SPME-GC method was successfully applied for the determination of three real samples, and the recoveries for standards added were 89.9-106% for lake water, 95.7-112% for rain water and 93.2-109% for soil saturated water, respectively.

  3. Steel Rattler

    NASA Astrophysics Data System (ADS)

    Trudo, Robert A.; Stotts, Larry G.

    1997-07-01

    Steel Rattler is a multi-phased project to determine the feasibility of using commercial off-the-shelf components in an advanced acoustic/seismic unattended ground sensor. This project is supported by the Defense Intelligence Agency through Sandia National Laboratories as the lead development agency. Steel Rattler uses advanced acoustic and seismic detection algorithms to categorize and identify various heavy vehicles down to the number of cylinders in the engine. This detection is accomplished with the capabilities of new, high-speed digital signal processors which analyze both acoustic and seismic data. The resulting analysis is compared against an onboard library of known vehicles and a statistical match is determined. An integrated thermal imager is also employed to capture digital thermal images for subsequent compression and transmission. Information acquired by Steel Rattler in the field is transmitted in small packets by a built-in low-power satellite communication system. The ground station receivers distribute the coded information to multiple analysis sites where the information is reassembled into coherent messages and images.

  4. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect

    McCormick, W.A.

    1998-09-29

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  5. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  6. DISTRIBUTION OF ELEMENTS IN THE ALPHA AND GAMMA PHASES OF CHROME-NICKEL STEELS WITH TWO-PHASE STRUCTURE.

    DTIC Science & Technology

    PHASE STUDIES), *NICKEL ALLOYS), (*STEEL, (*CHROMIUM ALLOYS, CZECHOSLOVAKIA, PHASE DIAGRAMS, HEAT OF SOLUTION, SOLID SOLUTIONS, X RAY SPECTROSCOPY, MANGANESE ALLOYS, MOLYBDENUM ALLOYS, AUSTENITE, IRON , CRYSTAL STRUCTURE .

  7. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  8. Clean Steel: Advancing the State of the Art (TRP 0003)

    SciTech Connect

    Sridhar Seetharaman; Alan W. Cramb

    2004-05-19

    This project had 3 objectives: (1) to determine the kinetic factors governing inclusion removal from liquid steels at a slag metal interface; (2) to develop a methodology to enable steels of less than 1 ppm total oxygen to be produced with an average inclusion diameter of less than 5 {micro}m; and, (3) to determine the slag-metal interface conditions necessary for ultra clean steels. In objectives 1, and 3, the major finding was that dissolution rates of solid particles in slags were found to be significant in both ladle and tundish slags and must be included in a model to predict steel cleanliness. The work towards objective 2 indicated that liquid steel temperature was a very significant factor in our understanding of clean steel potential and that undercooled steels equilibrated with low oxygen potential inert gases have the potential to be significantly cleaner than current steels. Other work indicated that solidification front velocity could be used to push particles to produce clean steels and that reoxidation must be severely curtailed to allow the potential for clean steels to be realized.

  9. Diffusion bonding between ODS ferritic steel and F82H steel for fusion applications

    NASA Astrophysics Data System (ADS)

    Noh, Sanghoon; Kim, Byungjun; Kasada, Ryuta; Kimura, Akihiko

    2012-07-01

    Diffusion bonding techniques were employed to join high Cr oxide dispersion strengthened (ODS) ferritic steel (Fe-15Cr-2W-0.2Ti-0.35Y2O3) and F82H steel under uni-axial hydrostatic pressure using a high vacuum hot press, and the microstructure and mechanical properties of the joints were investigated. The dissimilar joints were bonded by solid-state diffusion bonding (SSDB) and liquid phase diffusion bonding (LPDB). After bonding process, heat treatments were conducted to utilize the phase transformation of F82H steel for recovering the martensitic structure. Tensile tests with miniaturized specimens were carried out to investigate and compare the bonding strengths of each joint. Microstructure was observed for the bonding interface, and fracture mode was investigated after the tensile tests. LPDB joint of interfacial F82H steel fully recovered to martensite phase by post-joining heat treatments, while SSDB joint had ferrite phases at the interface even after heat treatment, which is considered to be due to decarburization of F82H steel during the bonding process. Therefore it is considered that the insert material plays a role as diffusion barrier of carbon during LPDB process. Microstructure observations and tensile tests of the joints revealed that the LPDB joints possess suitable tensile properties which are comparable to that of F82H steel. This indicates that LPDB is more promising method to bond ODS-FS and F82H steel than SSDB.

  10. Welding Rustproof Steels

    NASA Technical Reports Server (NTRS)

    Hoffmann, W

    1929-01-01

    The following experimental results will perhaps increase the knowledge of the process of welding rustproof steels. The experiments were made with two chrome-steel sheets and with two chrome-steel-nickel sheets having the composition shown in Table I.

  11. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  12. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  13. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  14. Methods of forming steel

    DOEpatents

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  15. The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.

    ERIC Educational Resources Information Center

    Long, Gary J.; Leighly, H. P., Jr.

    1982-01-01

    Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)

  16. X-ray attenuation properties of stainless steel (u)

    SciTech Connect

    Wang, Lily L; Berry, Phillip C

    2009-01-01

    Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

  17. Complex Nano-Scale Structures for Unprecedented Properties in Steels

    DOE PAGES

    Caballero, Francisca G.; Poplawsky, Jonathan D.; Yen, Hung Wei; ...

    2016-11-01

    Processing bulk nanoscrystalline materials for structural applications still poses a rather large challenge, particularly in achieving an industrially viable process. In this context, recent work has proved that complex nanoscale steel structures can be formed by solid reaction at low temperatures. These nanocrystalline bainitic steels present the highest strength ever recorded, unprecedented ductility, fatigue on par with commercial bearing steels and exceptional rolling-sliding wear performances. In this paper, a description of the characteristics and significance of these remarkable structures in the context of the atomic mechanism of transformation is provided.

  18. Maraging Steel Machining Improvements

    DTIC Science & Technology

    2007-04-23

    APR 2007 2. REPORT TYPE Technical, Success Story 3. DATES COVERED 01-12-2006 to 23-04-2007 4. TITLE AND SUBTITLE Maraging Steel Machining...consumers of cobalt-strengthened maraging steel . An increase in production requires them to reduce the machining time of certain operations producing... maraging steel ; Success Stories 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 1 18. NUMBER OF PAGES 1 19a. NAME OF RESPONSIBLE

  19. Welding irradiated stainless steel

    SciTech Connect

    Kanne, W.R. Jr.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-12-31

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials.

  20. Mössbauer and XRD study of Al-Sn linished steel bimetal alloy

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Silva, L. da; Stichleutner, S.; El-Sharif, M.; Homonnay, Z.; Klencsár, Z.; Sziráki, L.; Chisholm, C. U.; Lak, B.

    2016-12-01

    Aluminium alloy free CS1 type steel (0.06 wt% C, 0.45 wt% Mn) and samples of cold roll bonded steel bimetal alloys (MAS15 and MAS16) were fabricated and investigated by X-ray diffraction (XRD), 57Fe conversion electron Mössbauer spectroscopy (CEMS) at room temperature. XRD has revealed only the existence of the alpha iron solid solution (steel) phase in the steel only sample, while identified steel and metallic Al and Sn constituent phases in the bimetallic alloys. 57Fe Mössbauer spectroscopy revealed the presence of 4 % secondary iron-bearing phase attributed mainly to iron oxide/ oxyhydroxides (ferrihydrite) besides the steel matrix on the surface of the steel sample. A significant difference between the occurrences of the secondary phase of differently prepared bimetal alloys found in their 57Fe CEM spectra allowed to identify the main phase of debris as different iron oxide/ oxyhydroxides.

  1. Coated 4340 Steel

    DTIC Science & Technology

    2013-08-26

    the effects of three coating systems on the mechanical property, fatigue, and...defined striations or striations-like features were formed in air, Figure A-13(b). On the other hand, intergranular cracking and formation of brittle...steel, in air. Their respective effects on the fatigue resistance of bare 4340 steel were similar in both of the employed environments, air and

  2. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  3. EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, BUFFALO PLANT. VIEW LOOKING SOUTHWEST FROM ROLL SHOP. 8" BAR MILL DESIGNED AND BUILT BY DONNER STEEL CO. (PREDECESSOR OF REPUBLIC), 1919-1920. FOR DESCRIPTION OF ORIGINAL MILL SEE "IRON AGE", 116\\4 (23 JULY 1925): 201-204. - LTV Steel, 8-inch Bar Mill, Buffalo Plant, Buffalo, Erie County, NY

  4. Friction Stir & Ultrasonic Solid State Joining Magnesium

    SciTech Connect

    Grant, Glenn J.; Hovanski, Yuri; Santella, M. L.

    2009-12-30

    Solid state joining between automotive sheet steel and magnesium alloys was investigated. Both friction stir welding and ultrasonic welding were utilized to study the potential for creating structural bonds between these dissimilar materials. A detailed investigation into the joint characteristics was undertaken including an evaluation of joint strength, microstructure, chemical structures, and alloy formation.

  5. Galvanised steel to aluminium joining by laser and GTAW processes

    SciTech Connect

    Sierra, G.; Peyre, P.; Deschaux Beaume, F. Stuart, D.; Fras, G.

    2008-12-15

    A new means of assembling galvanised steel to aluminium involving a reaction between solid steel and liquid aluminium was developed, using laser and gas tungsten arc welding (GTAW) processes. A direct aluminium melting strategy was investigated with the laser process, whereas an aluminium-induced melting by steel heating and heat conduction through the steel was carried out with the GTAW process. The interfaces generated during the interaction were mainly composed of a 2-40 {mu}m thick intermetallic reaction layers. The linear strength of the assemblies can be as high as 250 N/mm and 190 N/mm for the assemblies produced respectively by laser and GTAW processes. The corresponding failures were located in the fusion zone of aluminium (laser assemblies), or in the reaction layer (GTAW assemblies)

  6. Damascus steel ledeburite class

    NASA Astrophysics Data System (ADS)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  7. 122. Goshen Creek Viaduct. This steel girder viaduct, built in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. Goshen Creek Viaduct. This steel girder viaduct, built in 1949, is the only viaduct with solid, stone-faced, concrete reinforced piers. View facing north-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  8. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  9. Solid lubricants

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1991-01-01

    The state of knowledge of solid lubricants is reviewed. The results of research on solid lubricants from the 1940's to the present are presented from a historical perspective. Emphasis is placed largely, but not exclusively, on work performed at NASA Lewis Research Center with a natural focus on aerospace applications. However, because of the generic nature of the research, the information presented in this review is applicable to most areas where solid lubricant technology is useful.

  10. Solid lubricants

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1993-01-01

    The state of knowledge of solid lubricants is reviewed. The results of research on solid lubricants from the 1940's to the present are presented from a historical perspective. Emphasis is placed largely, but not exclusively, on work performed at NASA Lewis Research Center with a natural focus on aerospace applications. However, because of the generic nature of the research, the information presented in this review is applicable to most areas where solid lubricant technology is useful.

  11. Cobalt free maraging steel

    SciTech Connect

    Floreen, S.

    1984-04-17

    The subject invention is directed to ferrous-base alloys, particularly to a cobalt-free maraging steel of novel chemistry characterized by a desired combination of strength and toughness, notwithstanding that cobalt is non-essential.

  12. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  13. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  14. Oxidation Potentials in Iron and Steel Making

    NASA Astrophysics Data System (ADS)

    Matousek, J. W.

    2013-11-01

    The state of oxidation of a pyrometallurgical process given by the partial pressure of oxygen and the temperature (the oxidation potential) is one of the important properties monitored and controlled in the smelting and refining of iron and the nonferrous metals. Solid electrolyte sensors based on ZrO2 and a reference electrode such as Cr/Cr2O3 to measure the oxygen pressure found early application in the steel industry, followed soon after in copper, nickel, lead, and zinc smelting. Similar devices are installed in automobile postcombustion/exhaust trains as part of emission control systems. The current discussion reviews this technology as applied in the primary steps of iron and steel making and refining.

  15. Abnormal grain growth in Eurofer-97 steel in the ferrite phase field

    NASA Astrophysics Data System (ADS)

    Oliveira, V. B.; Sandim, H. R. Z.; Raabe, D.

    2017-03-01

    Reduced-activation ferritic-martensitic (RAFM) Eurofer-97 steel is a candidate material for structural applications in future fusion reactors. Depending on the amount of prior cold rolling strain and annealing temperature, important solid-state softening reactions such as recovery, recrystallization, and grain growth occur. Eurofer-97 steel was cold rolled up to 70, 80 and 90% reductions in thickness and annealed in the ferrite phase field (below ≈ 800 °C). Changes in microstructure, micro-, and mesotexture were followed by orientation mappings provided by electron backscatter diffraction (EBSD). Eurofer-97 steel undergoes abnormal grain growth above 650 °C and this solid-state reaction seems to be closely related to the high mobility of a few special grain boundaries that overcome pinning effects caused by fine particles. This solid-state reaction promotes important changes in the microstructure and microtexture of this steel. Abnormal grain growth kinetics for each condition was determined by means of quantitative metallography.

  16. Joining Steel Armor - Intermix

    DTIC Science & Technology

    1979-03-01

    TARADCOM a d ki Lk A el B~ 0el RWET0 TECHNICAL REPORT NO. 12311 JOINING STEEL ARMOR - INTERMIX March 1979 U U * S* ’ "U .by B. . A.SCEV * U...authorized documents. O "if TECHNICAL REPORT NO. 12311 JOINING STEEL ARMOR - INTERMIX BY B. A. SCHEVO March 1979 AMS: 3197..6D.4329 TARADCOM ARMOR AND...Intermix Process ...... ........ 3 Test Procedures - Intermix Armor ........ ......... 4 Mock Hull ................. ..................... 5 Results

  17. Life after Steel

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  18. Ferrium M54 Steel

    DTIC Science & Technology

    2015-03-18

    15 to 18% (reference 1). Beyond this range the alloy becomes more noble than steel and loses its sacrificial protection property . Therefore, Zn-14...for a 7075-T651 aluminum alloy , which was subjected to biaxial fatigue loading in 3.5% NaCl solution (reference 27). NAWCADPAX/TIM-2014/292...Edition, Properties and Selection: Iron, Steels, and High- Performance Alloys , ASM International, 1990, p. 395. 8. G. L. Spencer and D. J. Duquette

  19. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in ODS Steel MA956

    DTIC Science & Technology

    2013-06-01

    8  Figure 5.  (a) Residual stress profiles for the FSW of AA 5083. From Peel [15]. (b) The residual stress profile across PM2000, an ODS steel ...solid state technique for joining ODS steels (Figure 2). FSW does not melt the base metal, and preserves many mechanical and microstructural properties...been performed by Baker [5] and Han [12] for fine-grained ODS steels subjected to a variety of FSW conditions. Fine grained material has a grain

  20. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  1. Effect of Structural Heterogeneity on In Situ Deformation of Dissimilar Weld Between Ferritic and Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Santosh, R.; Das, S. K.; Das, G.; Mahato, B.; Korody, J.; Kumar, S.; Singh, P. K.

    2015-08-01

    Low-alloy steel and 304LN austenitic stainless steel were welded using two types of buttering material, namely 309L stainless steel and IN 182. Weld metals were 308L stainless steel and IN 182, respectively, for two different joints. Cross-sectional microstructure of welded assemblies was investigated. Microhardness profile was determined perpendicular to fusion boundary. In situ tensile test was performed in scanning electron microscope keeping low-alloy steel-buttering material interface at the center of gage length. Adjacent to fusion boundary, low-alloy steel exhibited carbon-depleted region and coarsening of matrix grains. Between coarse grain and base material structure, low-alloy steel contained fine grain ferrite-pearlite aggregate. Adjacent to fusion boundary, buttering material consisted of Type-I and Type-II boundaries. Within buttering material close to fusion boundary, thin cluster of martensite was formed. Fusion boundary between buttering material-weld metal and weld metal-304LN stainless steel revealed unmixed zone. All joints failed within buttering material during in situ tensile testing. The fracture location was different for various joints with respect to fusion boundary, depending on variation in local microstructure. Highest bond strength with adequate ductility was obtained for the joint produced with 309L stainless steel-buttering material. High strength of this weld might be attributed to better extent of solid solution strengthening by alloying elements, diffused from low-alloy steel to buttering material.

  2. Preparation, characterization, and applications of a novel solid-phase microextraction fiber by sol-gel technology on the surface of stainless steel wire for determination of poly cyclic aromatic hydrocarbons in aquatic environmental samples.

    PubMed

    Es-haghi, Ali; Hosseininasab, Valiallah; Bagheri, Habib

    2014-02-27

    A novel solid-phase microextraction(SPME) fiber was prepared using sol-gel technology with ethoxylated nonylphenol as a fiber coating material. The fiber was employed to develop a headspace SPME-GC-MS method suitable for quantification of 13 polycyclic aromatic hydrocarbons (PAHs) in water samples. Surface characteristics of the fibers were inspected by energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The SEM measurements showed the presence of highly porous nano-sized particles in the coating. Important parameters affecting the extraction efficiency such as extraction temperature and time, desorption conditions as well as ionic strength have been evaluated and optimized. In the next step, the validation of the new method have been performed, finding it to be specific in the trace analysis of PAHs, with the limit of detection (LOD) ranging from 0.01 to 0.5 μg L(-1) and the linear range from the respective LOD to 200 μg L(-1) with RSD amounting to less than 8%. The thermal stability of the fibers was investigated as well and they were found to be durable at 280°C for 345 min. Furthermore, the proposed method was successfully applied for quantification of PAHs in real water samples.

  3. Solid consistency

    NASA Astrophysics Data System (ADS)

    Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad; Noreña, Jorge

    2017-03-01

    We argue that isotropic scalar fluctuations in solid inflation are adiabatic in the super-horizon limit. During the solid phase this adiabatic mode has peculiar features: constant energy-density slices and comoving slices do not coincide, and their curvatures, parameterized respectively by ζ and Script R, both evolve in time. The existence of this adiabatic mode implies that Maldacena's squeezed limit consistency relation holds after angular average over the long mode. The correlation functions of a long-wavelength spherical scalar mode with several short scalar or tensor modes is fixed by the scaling behavior of the correlators of short modes, independently of the solid inflation action or dynamics of reheating.

  4. Superclean steel development

    SciTech Connect

    Richman, R.H.; McNaughton, W.P. )

    1989-12-01

    The Electric Power Research Institute has actively encouraged and sponsored a number of research projects to develop a superclean 3.5NiCrMoV steel for low pressure turbine rotors. Such steel is highly resistant to temper embrittlement and will thus facilitate increased efficiency in electricity generation through the use of higher operating temperatures and improvements in design. The objective of this interim report was to integrate the results that have been generated to date worldwide in the pursuit of superclean steel. The report contains detailed findings that enable the interested utility to evaluate how the results affect utility decision making. A companion document has been written to summarize the findings from this technical report. The results indicate that steels with impurity contents typical of the superclean specification can be manufactured for production rotors with properties that equal or exceed those for conventional 3.5NiCrMoV rotors in every detail. Of particular interest are the results that the superclean steels appear to be virtually resistant to temper embrittlement to a temperature of 500 {degrees}C. 109 refs., 51 figs., 9 tabs.

  5. Trends in steel technology. [Dual phase and HSLA steels

    SciTech Connect

    Not Available

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants. (FS)

  6. Continuous steel production and apparatus

    DOEpatents

    Peaslee, Kent D.; Peter, Jorg J.; Robertson, David G. C.; Thomas, Brian G.; Zhang, Lifeng

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  7. Investigation of aluminum-steel joint formed by explosion welding

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.; Volgyi, B.; Sikari-Nagl, I.

    2015-04-01

    Explosion welding is a solid state welding process that is used for the metallurgical joining of metals. Explosion cladding can be used to join a wide variety of dissimilar or similar metals [1]. This process uses the controlled detonation of explosives to accelerate one or both of the constituent metals into each other in such a manner as to cause the collision to fuse them together [2]. In this study, bonding ability of aluminum and steel with explosion welding was investigated. Experimental studies, microscopy, microhardness, tensile and bend test showed out that, aluminum and steel could be bonded with a good quality of bonding properties with explosion welding.

  8. Stainless steel tanks

    SciTech Connect

    Hagen, T.

    1995-12-31

    There is currently no recognized code or standard for the design, fabrication and construction of atmospheric and low pressure stainless steel tanks. At the present time these tanks are being designed to individual specifications, manufacturers standards or utilizing other codes and standards that may not be entirely applicable. Recognizing the need, the American Petroleum Institute will be publishing a new appendix to the API STD 650 Standard which will cover stainless steel tanks. The new Appendix was put together by a Task Group of selected individuals from the API Subcommittee of Pressure Vessels and Tanks from the Committee on Refinery Equipment. This paper deals with the development and basis of the new appendix. The new appendix will provide a much needed standard to cover the material, design, fabrication, erection and testing requirements for vertical, cylindrical, austenitic stainless steel aboveground tanks in nonrefrigerated service.

  9. A-3 steel work completed

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  10. Antimicrobial Cu-bearing stainless steel scaffolds.

    PubMed

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B; Yang, Ke

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels.

  11. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  12. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  13. Solid Solutions

    NASA Astrophysics Data System (ADS)

    Lee, Go-Eun; Kim, Il-Ho; Lim, Young Soo; Seo, Won-Seon; Choi, Byeong-Jun; Hwang, Chang-Won

    2014-06-01

    Since Bi2Te3 and Bi2Se3 have the same crystal structure, they form a homogeneous solid solution. Therefore, the thermal conductivity of the solid solution can be reduced by phonon scattering. The thermoelectric figure of merit can be improved by controlling the carrier concentration through doping. In this study, Bi2Te2.85Se0.15:D m (D: dopants such as I, Cu, Ag, Ni, Zn) solid solutions were prepared by encapsulated melting and hot pressing. All specimens exhibited n-type conduction in the measured temperature range (323 K to 523 K), and their electrical conductivities decreased slightly with increasing temperature. The undoped solid solution showed a carrier concentration of 7.37 × 1019 cm-3, power factor of 2.1 mW m-1 K-1, and figure of merit of 0.56 at 323 K. The figure of merit ( ZT) was improved due to the increased power factor by I, Cu, and Ag dopings, and maximum ZT values were obtained as 0.76 at 323 K for Bi2Te2.85Se0.15:Cu0.01 and 0.90 at 423 K for Bi2Te2.85Se0.15:I0.005. However, the thermoelectric properties of Ni- and Zn-doped solid solutions were not enhanced.

  14. Effect of Ti interlayer on the bonding quality of W and steel HIP joint

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Chao; Wang, Wanjing; Wei, Ran; Wang, Xingli; Sun, Zhaoxuan; Xie, Chunyi; Li, Qiang; Luo, Guang-Nan

    2017-03-01

    Tungsten (W) and steel bonding is one of the key technologies for blanket First Wall (FW) manufacture in thermal fusion reactor. The W/Steel joints are prone to fail without interlayer for the different thermo physical properties. To study the effect of titanium (Ti) interlayer on the bonding quality of W and steel joints, W/Steel Hot Isostatic Pressing (HIP) experiments with Ti interlayer were conducted under 930 °C, 100 MPa for 2 h. Intermetallics caused by atom interdiffusion would affect the bonding quality of W/Ti/Steel HIP joints, the bonding quality was evaluated by microstructure analysis and mechanical tests. All the HIP joints were well bonded and results showed no intermetallics occurred between W/Ti interfaces, meanwhile multiply phases were found between Ti/Steel interfaces. Shear tests indicated when Ti thickness was 100-500 μm, the maximum shear strength of W/Ti/Steel HIP joints would be up to around 151 MPa. Charpy impact tests showed the W/Ti/Steel HIP joints all broke in a brittle manner and the maximum Charpy impact energy was ∼0.192 J. Nano-indentation tests demonstrated W/Ti interfaces could be enhanced by solid solution hardening and formation of brittle phases has conducted high hardness across the Ti/Steel interfaces.

  15. Stabilization of small deformations of maraging steels by stress relaxation

    SciTech Connect

    Alekseeva, L.E.; Koritskaya, G.I.; Talalakina, E.I.

    1988-05-01

    The possibility of increasing the forming accuracy with small degrees of deformation of maraging steel by aging of it under stress after deformation was investigated. Aging under stress of water hardened VNS-2 maraging steel was done in the elastic area and after deformation to epsilon = 6% at 450/degree/: No. 12, (Dec 1987)C, a temperature corresponding to the maximum degree of dispersion hardening. The influence of the degree of deformation on the mechanical properties of the steel, the residual deformation, and stabilization of the ratio of the residual to the total deformations were determined. The structural condition of the martensite and the degree of solid solution decomposition were studied by x-ray diffraction analysis. The proposed treatment led to complete stabilization of the specified deformations with simultaneous strengthening and made it possible to obtain high accuracy in production of small curvature parts.

  16. Friction Stir Welding of ODS and RAFM Steels

    SciTech Connect

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  17. Friction Stir Welding of ODS and RAFM Steels

    NASA Astrophysics Data System (ADS)

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-01

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this work, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  18. Friction Stir Welding of ODS and RAFM Steels

    DOE PAGES

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; ...

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW onmore » grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.« less

  19. Solid electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  20. High-strength state of ultrafine-grained martensitic steel produced by high pressure torsion

    NASA Astrophysics Data System (ADS)

    Karavaeva, M. V.; Nikitina, M. A.; Ganeev, A. V.; Islamgaliev, R. K.

    2017-02-01

    The paper presents the study results on the effect of severe plastic deformation (SPD) via high pressure torsion (HPT) on the structure and properties of martensitic steel. The contribution of different strengthening mechanisms in the strength of steel has been analyzed. It is shown that independently of the deformation temperature the main contribution in hardening belongs to grain boundaries (about 50 %), whereas the dislocation and solid solution components achieve 15 and 25 %, respectively.

  1. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Surface Transportation Board SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver Infrastructure Partners LP (SRIP LP), SteelRiver...

  2. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  3. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  4. Literature Review of Solid Lubrication Mechanisms.

    DTIC Science & Technology

    1987-07-01

    Other work also suggests limited movement. Connelly and Rabinowicz used exoelectrons to study migration of MoS 2 , graphite, and PTFE on partially...against steel (0.29 to 0.51) as reported by Rabinowicz .( 04) The data for lead are shown in Fig. 10. Although the same trends are seen, there are some... Rabinowicz , E., "Detecting Wear and Migration of Solid- Film Lubricants Using Simultaneous Exoelectron Emission," Trans. ASLE, Vol. 26, No. 2, p. 139

  5. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    SciTech Connect

    Cao, Guoping; Yang, Yong

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  6. History of ultrahigh carbon steels

    SciTech Connect

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  7. Lithium Based Anodes for Solid State Batteries

    DTIC Science & Technology

    1981-06-30

    AFOSR- 77- 3460 LITHIUM BASED ANODES FOR SOLID STATE BATTERIES R.A.H. Edwards, J.R. Owen and B.C.H. Steele I!Tolfson Unit for Solid State Ionics, D...use in secondary lithium batteries . Three main problems associated with the use of pure lithium as the negative plate are as follows: (a) Formation of...Proceedings of the Workshop on Lithium Non aque ous Battery Electrochemistry. Case Western Reserve Univ. June 4-6 1980, pp.130-142, The Electrochemical Soc

  8. Positive segregation as a function of buoyancy force during steel ingot solidification.

    PubMed

    Radovic, Zarko; Jaukovic, Nada; Lalovic, Milisav; Tadic, Nebojsa

    2008-12-01

    We analyze theoretically and experimentally solute redistribution in the dendritic solidification process and positive segregation during solidification of steel ingots. Positive segregation is mainly caused by liquid flow in the mushy zone. Changes in the liquid steel velocity are caused by the temperature gradient and by the increase in the solid fraction during solidification. The effects of buoyancy and of the change in the solid fraction on segregation intensity are analyzed. The relationships between the density change, liquid fraction and the steel composition are considered. Such elements as W, Ni, Mo and Cr decrease the effect of the density variations, i.e. they show smaller tendency to segregate. Based on the modeling and experimental results, coefficients are provided controlling the effects of chemical composition, secondary dendrite arm spacing and the solid fraction.

  9. Fabricating the Solid Core Heatpipe Reactor

    SciTech Connect

    Ring, Peter J.; Sayre, Edwin D.; Houts, Mike

    2006-01-20

    The solid core heatpipe nuclear reactor has the potential to be the most dependable concept for the nuclear space power system. The design of the conversion system employed permits multiple failure modes instead of the single failure mode of other concepts. Regardless of the material used for the reactor, either stainless steel, high-temperature alloys, Nb1Zr, Tantalum Alloys or MoRe Alloys, making the solid core by machining holes in a large diameter billet is not satisfactory. This is because the large diameter billet will have large grains that are detrimental to the performance of the reactor due to grain boundary diffusion. The ideal fabrication method for the solid core is by hot isostatic pressure diffusion bonding (HIPing). By this technique, wrought fine-grained tubes of the alloy chosen are assembled into the final shape with solid cusps and seal welded so that there is a vacuum in between all surfaces to be diffusion bonded. This welded structure is then HIPed for diffusion bonding. A solid core made of Type 321 stainless steel has been satisfactorily produced by Advanced Methods and Materials and is undergoing evaluation by NASA Marshall Space Flight Center.

  10. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  11. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  12. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  13. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  14. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  15. Work of adhesion of dairy products on stainless steel surface

    PubMed Central

    Bernardes, Patrícia Campos; Araújo, Emiliane Andrade; dos Santos Pires, Ana Clarissa; Queiroz Fialho Júnior, José Felício; Lelis, Carini Aparecida; de Andrade, Nélio José

    2012-01-01

    The adhesion of the solids presents in food can difficult the process of surface cleaning and promotes the bacterial adhesion process and can trigger health problems. In our study, we used UHT whole milk, chocolate based milk and infant formula to evaluate the adhesion of Enterobacter sakazakii on stainless steel coupons, and we determine the work of adhesion by measuring the contact angle as well as measured the interfacial tension of the samples. In addition we evaluated the hydrophobicity of stainless steel after pre-conditioning with milk samples mentioned. E. sakazakii was able to adhere to stainless steel in large numbers in the presence of dairy products. The chocolate based milk obtained the lower contact angle with stainless steel surface, higher interfacial tension and consequently higher adhesion work. It was verified a tendency of decreasing the interfacial tension as a function of the increasing of protein content. The preconditioning of the stainless steel coupons with milk samples changed the hydrophobic characteristics of the surfaces and became them hydrophilic. Therefore, variations in the composition of the milk products affect parameters important that can influence the procedure of hygiene in surface used in food industry. PMID:24031951

  16. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  17. High Fragmentation Steel Production Process

    DTIC Science & Technology

    1984-01-01

    phase of the project entailed the purchase and metallurgical characterization of two heats of HF-1 steel from different vendors. Performed by...At>-A 13^ nzt AD AD-E401 117 CONTRACTOR REPORT ARLCD-CR-83049 HIGH FRAGMENTATION STEEL PRODUCTION PROCESS ^"fP-PTTMirj A 1 James F. Kane...Report 6. PERFORMING ORG. REPORT NUMBER High Fragmentation Steel Production Process 7. AUTHORfs; James F. Kane, Ronald L. Kivak, Colin C. MacCrindle

  18. Rarefied solids

    NASA Technical Reports Server (NTRS)

    Noever, D. A.; Nikora, V. I.

    1994-01-01

    One important limit to creating low density materials is the objects' own weight. As a solid or colloidal matrix becomes more rarefied, gravity acts destructively to compress its suporting skeleton. We describe experimental results and propose a model which matches the low gravity behavior of rarefied or fractal solids. On parabolic airplane flights, we sought to demonstrate a key component of producing higher surface area fractals. Flight paths were selected to give a range of gravity levels: 0.01 g/g(sub 0) (low), 0.16 g(sub 0) (Lunar), 0.33 g/g(sub 0) (Martian), 1 g/g(sub 0) (Earth) and 1.8 g/g(sub 0) (high) (where g(sub 0) = 980 cm/sq s). Results using the model material of hydrophobic silica indicated that stable agglomeration of such tenuous objects can increase markedly in reduced gravity. Optical characterization revealed that fractal dimension changed directly with varying gravity. As measured by fractal dimension, effective surface area and roughness increased by 40% in low gravity. This finding supports the conclusion that relieving internal weight stresses on delicate aggregates can enhance their overall size (by two orders of magnitude) and internal surface area. We conclude that gravitational restructuring limits the overall size and void content of low-density solids. These sparse colloidal regimes may present new and technologically attractive physics, ranging from improved insulators, liquid-like tension in a 'solid' matrix, and characteristically low conductivities for sound and (8 to 14 micrometers wavelength) infrared radiation.

  19. Process for dezincing galvanized steel

    DOEpatents

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  20. Process for dezincing galvanized steel

    DOEpatents

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  1. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  2. Hydrogen Embrittlement of Gun Steel

    DTIC Science & Technology

    1987-11-01

    8217s HY80 and HY130 steels were checked for the critical hydrogen concentrations which were determined to be 6 ppm for HY8O steel 8 and 3 ppm for HY130...JOTC FILE COPY AD-A188 972 AD 1 TECHNICAL REPORT ARCCB-TR-87030 HYDROGEN EMBRITTLEMENT OF GUN STEEL F’ GERALD L. SPFNCER DTIC DEC 1 5 1987 NOVEMBER...PtEtIOC COVERED HYDROGEN EMBRITTLEHENT OF GUN STEEL Final OG EOTNME 6. PERFORMINGORO EOTNME 7. A*JTNOR(s) S. CONTRACT OR GRANT NUMBER(&) Gerald L

  3. Neodymium-rich precipitate phases in a high-chromium ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Shen, Yinzhong; Zhou, Xiaoling; Shang, Zhongxia

    2016-05-01

    Neodymium being considered as nitride forming element has been used in a design of advanced ferritic/martensitic (FM) steels for fossil fired power plants at service temperatures of 630 °C to 650 °C to effectively improve the creep strength of the steels. To fully understand the characteristics of neodymium precipitates in high-Cr FM steels, precipitate phases in an 11Cr FM steel with 0.03 wt% addition of Nd have been investigated by transmission electron microscopy. Three neodymium phases with a face-centered cubic crystal structure and different composition were observed in the steel. They consisted of neodymium carbonitride with an average lattice parameter of 1.0836 nm, Nd-rich carbonitride mainly containing Mn, and Nd-rich MN nitride mainly containing Mn and Co. Other three Nd-rich and Nd-containing phases, which appear to be Nd-Co-Cr/Nd-rich intermetallic compounds and Cr-Fe-rich nitride containing Nd, were also detected in the steel. Nd-relevant precipitates were found to be minor phases compared with M23C6 and Nb/V/Ta-rich MX phases in the steel. The content of Nd in other precipitate phases was very low. Most of added Nd is considered to be present as solid solution in the matrix of the steel.

  4. Stress-corrosion cracking of steels in ammonia with consideration given to OTEC design: a survey

    SciTech Connect

    Teel, R.B.

    1980-03-01

    Carbon steel, alloy steel, and high-strength, quenched and tempered steel, when under applied or residual stress and especially when cold formed and/or welded without subsequent thermal stress relief, are subject to failure by stress-corrosion cracking (SCC) in air-contaminated dry ammonia. Water as well as hydrazine when present in small amounts have been shown to be effective inhibitors in an all steel system. Galvanic corrosion between dissimilar metals and/or accelerated failure by SCC of stressed steel as a result of galvanic coupling may be of concern. Where water has proven effective as an inhibitor of SCC in an all steel system, it may not be adequate in a mixed metal system. With aluminum tubes, the tube sheet will either have to be solid aluminum, aluminum clad steel or some nonconductive coating will be necessary to effectively remove the cathodic alloy from the galvanic circuit. Research is required to determine the severity of the coupling effect between dissimilar alloys in ammonia under OTEC conditions; especially the possibility of accelerated SCC failures of stressed steel where the presence of an inhibitor in the ammonia may not be sufficient to override the galvanic coupling effect.

  5. The industrial ecology of steel

    SciTech Connect

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  6. MINOS Detector Steel Magnetic Measurements

    SciTech Connect

    Robert C. Trendler and Walter F. Jaskierny

    1999-03-03

    Magnetic measurements were made on one steel plate of the MINOS far detector. The conventionally used technique of measuring sense coil voltage induced by step changes in excitation current voltage was successful in providing stable, repeatable measurements. Measurements were made at several locations on the steel and the results are presented.

  7. Hydrogen Embrittlement of Structural Steels

    SciTech Connect

    Somerday, Brian P.; San Marchi, Christopher W

    2014-08-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines; however, it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittlement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a well-established failure mode for steel hydrogen containment structures subjected to pressure cycling. This pressure cycling represents one of the key differences in operating conditions between current hydrogen pipelines and those anticipated in a hydrogen delivery infrastructure. Applying structural integrity models in design codes coupled with measurement of relevant material properties allows quantification of the reliability/integrity of steel hydrogen pipelines subjected to pressure cycling. Furthermore, application of these structural integrity models is aided by the development of physics-based predictive models, which provide important insights such as the effects of microstructure on hydrogen-assisted fatigue crack growth. Successful implementation of these structural integrity and physics-based models enhances confidence in the design codes and enables decisions about materials selection and operating conditions for reliable and efficient steel hydrogen pipelines.

  8. 2169 Steel Waveform Experiments

    NASA Astrophysics Data System (ADS)

    Furnish, M.; Alexander, C.; Reinhart, W.; Brown, J.

    2013-06-01

    In support of efforts to develop multiscale models of materials, we performed eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn). These experiments provided shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were used, with samples 1 to 5 mm thick. The study focused on dynamic strength determination via the release/reshock paths. Reshock tests with explosively welded impactors produced clean results. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allowed release information to be determined from these free surface samples as well. The sample strength appears to increase with stress from ~1 GPa to ~3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field

    PubMed Central

    Mand, Jaspreet; Park, Hyung S.; Okoro, Chuma; Lomans, Bart P.; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2016-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  10. Effect of cooling rate during solidification on the structure of high-speed steel powder particles

    SciTech Connect

    Ershova, L.S.; Smirnov, V.P.

    1985-08-01

    The structure and properties of a P/M high-speed steel form during solidification, hot plastic working, and subsequent heat treatment are the focus here. The character of steel structure variation under the action of high cooling rates during solidification has not yet been sufficiently investigated, therefore it is of interest to study the interrelationship between these factors. An R6M5F3 steel powder was produced by the atomization of molten metal in an apparatus constructed at the Ukranian Scientific-Research Institute of Special Steels, and divided into several fractions. A study was then made of the effect of cooling rate on the phase composition of the steel, degree of alloying of its solid solution and the microstructure and microhardness of the material. As a result of a higher rate of cooling, the amount of metastable M2C carbide inclusions in the structure of P/M R6M5F3 steel increases and the degree of bulk alloying of its grains grows. The increase in the microhardness of powder particles brought about by cooling at a higher rate is due to the formation of finer carbide inclusions during solidification, grain refinement, and an increased degree of alloying of the gamma and alpha solid solutions being formed.

  11. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  12. Propagating Instabilities in Solids

    NASA Astrophysics Data System (ADS)

    Kyriakides, Stelios

    1998-03-01

    Instability is one of the factors which limit the extent to which solids can be loaded or deformed and plays a pivotal role in the design of many structures. Such instabilities often result in localized deformation which precipitates catastrophic failure. Some materials have the capacity to recover their stiffness following a certain amount of localized deformation. This local recovery in stiffness arrests further local deformation and spreading of the instability to neighboring material becomes preferred. Under displacement controlled loading the propagation of the transition fronts can be achieved in a steady-state manner at a constant stress level known as the propagation stress. The stresses in the transition fronts joining the highly deformed zone to the intact material overcome the instability nucleation stresses and, as a result, the propagation stress is usually much lower than the stress required to nucleate the instability. The classical example of this class of material instabilities is L/"uders bands which tend to affect mild steels and other metals. Recent work has demonstrated that propagating instabilities occur in several other materials. Experimental and analytical results from four examples will be used to illustrate this point: First the evolution of L=FCders bands in mild steel strips will be revisited. The second example involves the evolution of stress induced phase transformations (austenite to martensite phases and the reverse) in a shape memory alloy under displacement controlled stretching. The third example is the crushing behavior of cellular materials such as honeycombs and foams made from metals and polymers. The fourth example involves the axial broadening/propagation of kink bands in aligned fiber/matrix composites under compression. The microstructure and, as a result, the micromechanisms governing the onset, localization, local arrest and propagation of instabilities in each of the four materials are vastly different. Despite this

  13. Occupational Profiles in the European Steel Industry.

    ERIC Educational Resources Information Center

    Franz, Hans-Werner; And Others

    The steel industry in Europe has faced great changes, with resulting layoffs and restructuring. Now that the most basic changes seem to be over, it has become evident that the remaining steel industry requires more highly trained workers than was the case previously. Although steel maintenance employees were always highly skilled, steel production…

  14. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  15. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  16. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  17. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  18. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  19. Improving the toughness of ultrahigh strength steel

    SciTech Connect

    Soto, Koji

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors.

  20. Hypereutectoid high-speed steels

    SciTech Connect

    Kremnev, L.S.

    1986-01-01

    Half of the tungsten and molybdenum contained in R6M5 and R18 steels is concentrated in the undissolved eutectic carbides hindering austenitic grain gowth in hardening and providing the necessary strength and impact strength. This article describes the tungsten-free low-alloy high-speed steel 11M5F with a chemical composition of 1.03-1.10% C, 5.2-5.7% Mo, 3.8-4.2% Cr, 1.3-1.7% V, 0.3-0.6% Si, and 0.3% Ce. The properties of 11M5F and R6M5 steels are examined and compared. The results of production and laboratory tests of the cutting properties of tools of the steels developed showed their high effectiveness, especially of 11M5F steel with 1% A1. The life of tools of the tungsten-free steels is two or three times greater than the life of tools of R6M5 steel.

  1. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    NASA Astrophysics Data System (ADS)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2017-02-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  2. On-Line Measurement Of Hot Rolling Steel Bar

    NASA Astrophysics Data System (ADS)

    Feng, Chen

    1989-03-01

    A passive instrument for on-line measuring hot rolling steel bar has been developed. The instrument uses self emission of the hot steel bar to deside the profile of working piece. The instrument can measure the dimensions of the cross section of the high speed and high temperature steel bar on the production line. It can be used for real-time monitoring, evaluating, and controlling the quality of the products. Compared with other similar instrument, new instrument has following features: - Passive measurement for simplifying the structure; - Simultaneous dimension and position measurement for ensuring high accuracy; - Temperature measurement for compensating thermal error; - Solid state sensor array for raising reliability; - Special structure for running in hostile enviornment; All these features make it possible to realize accurate measurement in high temperature, high humidity, and high dusty circumstance. The paper will present and discuss relative problems in the design and construction of this instrument. A prototype has been made and a series analogue experiments have been carried out in the laboratory. Rolling shop running test approves that the instrument can accurately measure the hot rolling steel bar on the production line. The total error is less than 0.05 mm while the measuring rate is as high as 2000 samples per second.

  3. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    NASA Astrophysics Data System (ADS)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  4. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    NASA Astrophysics Data System (ADS)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-12-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  5. Modelling macrosegregation in a 2.45 ton steel ingot

    NASA Astrophysics Data System (ADS)

    Li, J.; Wu, M.; Ludwig, A.; Kharicha, A.

    2012-07-01

    A three phase model for the mixed columnar-equiaxed solidification was proposed by the current authors [Wu and Ludwig 2006 Metall. Mater. Trans. 37A 1613-31]. The main features of the mixed columnar-equiaxed solidification are considered: the growth of the columnar dendrite trunks from the ingot surface, the nucleation and growth of the equiaxed crystals, the sedimentation of the equiaxed crystals, the thermal and solutal buoyancy flow and its interactions with the growing crystals, the solute partitioning at the solid-liquid interface during solidification, the solute transport due to melt convection and equiaxed sedimentation, the mechanical interaction/impingement between columnar and equiaxed crystals and the columnar-to-equiaxed transition (CET). However, due to the model complexity and the limited computational capability the model has not yet applied to the large steel ingots of engineering scale. This paper is going to simulate a 2.45 ton big-end-up industry steel ingot, for which some experimental results were reported [Marburg 1926 Iron Steel Inst. 113 39-176]. Here a simplified binary phase diagram for the steel (Fe-0.45 wt. %C) is considered. Comparison of the modelling results such as as-cast columnar and equiaxed zones, macrosegregation with the experimental results is made. Details about the formation sequence of the distinguished crystal zones and segregation patterns are analyzed.

  6. Thermodynamic-kinetic simulation of constrained dendrite growth in steels

    SciTech Connect

    Miettinen, J.

    2000-04-01

    A model of constrained dendritic growth for steels, based on thermodynamic and kinetic theory, is presented. The model links thermodynamic chemical potential-equality equations to an existing, approximate treatment of constrained dendritic growth in multicomponent steels, taking into account the deviation from the local thermodynamic equilibrium of the phase interface caused by interface friction, capillarity, and solute trapping. Due to the thermodynamic approach, with a thermodynamic model and recently assessed data, the present treatment yields a more accurate determination of phase stabilities than the earlier methods. Depending on the steel composition and the growth conditions (growth rate and temperature gradient), the model determines the dendrite tip undercooling, the primary solid phase (ferrite or austenite), the stability of that phase, certain dimensions of the microstructure, and the solute accumulation ahead of the dendrite tip. A special optional calculations is that of the equally probable formation of ferrite and austenite in stainless steels. Calculations for testing the model and for validation it with experimental data are presented.

  7. Microstructure and the elemental and phase compositions of the diffusion joint of grade 45 steel through a powder layer

    NASA Astrophysics Data System (ADS)

    Zeer, G. M.; Zelenkova, E. G.; Belousov, O. V.; Koroleva, Yu. P.; Fedorova, E. N.; Mikheev, A. A.

    2015-04-01

    The microstructures of the transition zone and the powder layer, the concentration distribution of chemical elements across a diffusion joint, and the microhardness of the grade 45 steel-Ni powder layer-grade 45 steel layered composite materials fabricated by diffusion welding at various temperatures are studied. It is shown that the deposition of a nickel sublayer on steel and the application of a submicron nickel powder as an activating layer make it possible to form a high-quality diffusion joint at a temperature of 850°C, which is ~0.6 of the melting temperature of nickel (which has the lowest melting temperature in the given composite material). The sintering of a nickel powder and the formation of a transition zone between the nickel layer and steel occur simultaneously in a solid phase during diffusion joining. The transition zone consists of an α-Fe solid solution and the FeNi3 compound.

  8. Microstructural development of diffusion-brazed austenitic stainless steel to magnesium alloy using a nickel interlayer

    SciTech Connect

    Elthalabawy, Waled M.; Khan, Tahir I.

    2010-07-15

    The differences in physical and metallurgical properties of stainless steels and magnesium alloys make them difficult to join using conventional fusion welding processes. Therefore, the diffusion brazing of 316L steel to magnesium alloy (AZ31) was performed using a double stage bonding process. To join these dissimilar alloys, the solid-state diffusion bonding of 316L steel to a Ni interlayer was carried out at 900 deg. C followed by diffusion brazing to AZ31 at 510 deg. C. Metallographic and compositional analyses show that a metallurgical bond was achieved with a shear strength of 54 MPa. However, during the diffusion brazing stage B{sub 2} intermetallic compounds form within the joint and these intermetallics are pushed ahead of the solid/liquid interface during isothermal solidification of the joint. These intermetallics had a detrimental effect on joint strengths when the joint was held at the diffusion brazing temperature for longer than 20 min.

  9. Mathematical modeling and validation of the carburizing of low carbon steels

    NASA Astrophysics Data System (ADS)

    García Mariaca, A.; Cendales, E. D.; Chamarraví, O.

    2016-02-01

    This paper shows the mathematical modeling of heat and mass transfer in transient state of cylindrical bars of low carbon steel subjected to carburizing process. The model solution for the two phenomena was performed using a one-dimensional analysis in the radius direction, using the numerical method of finite differences; also a sensitivity analysis by varying the coefficient of convective heat transfer (h) is performed. The modeling results show that this carburization steel is strongly dependent on h. These results suggest that if it can increase the value of h in this kind of process could reduce the time of process for this heat treatment. Additionally, an experimental procedure was established by carburization of a steel AISI SAE 1010, which develops cementing solid phase and the specimen steel and micrographic hardness profiles obtained from samples of the specimen analysis was performed, to determine the penetration depth of the carbon and validate this result over the values obtained by the computer model.

  10. Solidification structures grown under induced flow and continuous casting of steel

    NASA Technical Reports Server (NTRS)

    Tsavaras, A. A.

    1984-01-01

    The use of induced flow as a means to control solidification structures in strand cast steel is investigated. The quality problems in strand cast steel stemming from columnar growth can be partially controlled, by Electro Magnetic Stirring (EMS). Induced flow changes the normal morphology of dendrites. Solids grown under intense stirring conditions show both negative and positive segregation which is considered unacceptable by some steel producers. The inclusion size and population is strongly affected by induced flow (EMS). Laboratory and industrial data show substantial reduction in inclusion size and content, but the overall effect of flow on inclusions is affected by the particular type of flow patterns utilized in each case. Productivity and quality are raised substantially in steel strand casting by utilizing EMS.

  11. High Strength and Retained Ductility Achieved in a Nitrided Strip Cast Nb-Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Xie, Kelvin Y.; Shrestha, Sachin L.; Felfer, Peter J.; Cairney, Julie M.; Killmore, Chris R.; Carpenter, Kristin R.; Kaul, Harold R.; Ringer, Simon P.

    2013-02-01

    The current study investigates the strengthening of an Nb-microallyed CASTRIP® steel at 798 K (525 °C) by nitriding in a KNO3 salt bath. Nitriding up to 1 hour dramatically increased the yield strength of the steel by ~35 pct (from 475 to 645 MPa) with no sacrifice of ductility (~16 pct). Further nitriding led to brittle fracture. Hardness profiles of the nitrided steels through the thickness reveal hard surfaces and a relatively softer core. The hardening of the shell in the nitrided steels is thought to be the combined effect of solid solution strengthening from nitrogen and dispersion strengthening from clusters and precipitates. The retained ductility is attributed to the hard-shell-soft-core structure through nitriding.

  12. Cycles for Science: Biology Curriculum Supplement for Grades 9-12. A Steel Cycles Program.

    ERIC Educational Resources Information Center

    Rogers, Diana; Laymon, Carol

    This document contains project-oriented lessons and hands-on activities developed to integrate steel recycling, natural resource conservation, and solid waster management into science learning. It is designed to assist secondary teachers and students (grades 9-12) in meeting state and local goals for learning in biology, chemistry, general science…

  13. Austenite Stability and Tensile Properties of Warm-Extruded Trip Steels

    DTIC Science & Technology

    1976-05-01

    ductility in war-extruded TRIP steel. The austenite stability could be adjusted, however, by a tempering treatment to remove some carbon from solid ... solution , giving tensile properties equivalent or superior to those obtained by warm rolling. Difficulties in alloy composition control or temperature

  14. Method for welding chromium molybdenum steels

    SciTech Connect

    Sikka, V.K.

    1986-09-16

    A process is described for welding chromium-molybdenum steels which consist of: subjecting the steel to normalization by heating to above the transformation temperature and cooling in air; subjecting the steel to a partial temper by heating to a temperature less than a full temper; welding the steel using an appropriate filler metal; subjecting the steel to a full temper by heating to a temperature sufficient to optimize strength, reduce stress, increase ductility and reduce hardness.

  15. 2169 steel waveform experiments.

    SciTech Connect

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  16. Solid oxide fuel cell matrix and modules

    DOEpatents

    Riley, B.

    1988-04-22

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs. 11 figs.

  17. Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size

    NASA Astrophysics Data System (ADS)

    Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.

    2007-10-01

    Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.

  18. Finite element modeling and analysis of electro-magnetic pulse welding of aluminium tubes to steel bars

    NASA Astrophysics Data System (ADS)

    Kumar, Ramesh; Doley, Jyoti; Kore, Sachine

    2016-10-01

    Magnetic pulse welding is a high-speed, solid-state welding process that is applicable to sheets or tube-to-tube or tube-to-bar configurations. In this article we discuss about the MPW process modeling and simulation for welding Al tubes to steel bars. Finite element simulation was done to weld 6061 Al tubes of 1.65 mm wall thickness to 1010 steel bars of a 47.6 mm nominal diameter. Simulation results indicate that Al tubes can be successfully welded to steel bars using MPW. It is found that the standoff distance between the Al tube and the steel bar i.e. gap between inner diameter of Al tube and diameter of steel bar is a dominant factor for achieving a sound weld. The addition of receding angles to the bars can promote MPW weldability window.

  19. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  20. Precipitation sequence in niobium-alloyed ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Fujita, Nobuhiro; Bhadeshia, H. K. D. H.; Kikuchi, Masao

    2004-03-01

    Niobium is an important alloying element in the design of heat-resistant ferritic stainless steels for automotive exhaust systems. When in solid solution, it improves both the high temperature strength and the resistance to thermal fatigue. However, it also forms several kinds of precipitates during service. These reactions have been modelled, taking into account the multicomponent nature of the diffusion process and allowing for capillarity effects. It has been possible to estimate not only the volume fractions but also the particle sizes for Fe2Nb (Laves phase) and Fe3Nb3C (M6C) carbide in a 19Cr-0.8Nb steel, with good agreement against experimental data.

  1. Stainless steel porous substrates produced by tape casting

    NASA Astrophysics Data System (ADS)

    Mercadelli, Elisa; Gondolini, Angela; Pinasco, Paola; Sanson, Alessandra

    2017-01-01

    In this work the technological issues related to the production of tape cast large-area porous stainless steel supports for Solid Oxide Fuel Cells (SOFC) applications were carefully investigated. The slurry formulation was optimized in terms of amount and nature of the organic components needed: rice starch and polymethyl metacrylate were found to be, respectively, the most suitable pore former and binder because easily eliminated during the thermal treatment in reducing atmosphere. The compatibility of the binder system chosen with the most widely used solvents for screen printing inks was also evaluated. Finally the influence of the sintering temperature and of the refractory supports to be used during the thermal treatments onto the production of porous stainless steel supports was discussed. The whole process optimization allows to produce flat, crack-free metallic substrate 900-1000 μm thick, dimensions up to 5×5 cm and with a tailored porosity of 40% suitable for SOFCs application.

  2. Measurement and simulation of deformation and stresses in steel casting

    NASA Astrophysics Data System (ADS)

    Galles, D.; Monroe, C. A.; Beckermann, C.

    2012-07-01

    Experiments are conducted to measure displacements and forces during casting of a steel bar in a sand mold. In some experiments the bar is allowed to contract freely, while in others the bar is manually strained using embedded rods connected to a frame. Solidification and cooling of the experimental castings are simulated using a commercial code, and good agreement between measured and predicted temperatures is obtained. The deformations and stresses in the experiments are simulated using an elasto-viscoplastic finite-element model. The high temperature mechanical properties are estimated from data available in the literature. The mush is modeled using porous metal plasticity theory, where the coherency and coalescence solid fraction are taken into account. Good agreement is obtained between measured and predicted displacements and forces. The results shed considerable light on the modeling of stresses in steel casting and help in developing more accurate models for predicting hot tears and casting distortions.

  3. NDE of Space Shuttle Solid Rocket Motor field joint

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.

    1987-01-01

    One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.

  4. NDE of Space Shuttle Solid Rocket Motor field joint

    NASA Astrophysics Data System (ADS)

    Johnston, Patrick H.

    One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.

  5. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  6. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  7. ELECTROMAGNETIC INSPECTION OF HARDENED STEEL.

    DTIC Science & Technology

    heat treat methods (no carbon added to the surface), and (2) The determination of through hardness or tempering temperature history of Stentor tool...effectiveness of phase sensitive and harmonic eddy current test methods for determining tempering temperature history of 4340 and Stentor tool steels was...showed that tempering temperature history of 4340 and Stentor steel can be determined for all temperatures (265 F to 820 F) used for specimen preparation on this program.

  8. Static and cyclic strength of austenitic corrosion-resistant cast Cr-Ni-Mn-Mo-N steel

    NASA Astrophysics Data System (ADS)

    Kostina, M. V.; Muradyan, S. O.; Terent'ev, V. F.; Blinov, E. V.; Prosvirin, D. V.

    2015-05-01

    The resistance to cyclic loading of high-nitrogen corrosion-resistant cast austenitic 05Kh22AG15N8M2FL (˜0.5% N) steel is studied for the first time (high-cycle tests of plane specimens at 20°C in air upon repeated tension). The structure of the steel, its static strength, and the fracture in regions of high- and low-cycle fatigues are investigated. It is shown that the structural state of the steel (solid-solution treatment of the as-cast and deformed steel, hot plastic deformation, and aging) and the test conditions influence the fatigue life. The results are compared with the high-cycle fatigue life of austenitic steels with 0.1-1.1% N treated for solid solution, and the fatigue limit is compared to the ultimate strength, the grain size, and the total content of nitrogen and carbon in the steels. Fractographic studies are performed for the fracture surfaces of cast 05Kh22AG15N8M2FL steel after fatigue tests.

  9. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  10. Strengthening Mechanisms and Their Relative Contributions to the Yield Strength of Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Lu, Junfang; Omotoso, Oladipo; Wiskel, J. Barry; Ivey, Douglas G.; Henein, Hani

    2012-09-01

    size effects, solid-solution strengthening, and precipitation strengthening are quantified to understand fully the strengthening mechanisms for these steels.

  11. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    SciTech Connect

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These

  12. High-power laser applications in Nippon Steel Corporation

    NASA Astrophysics Data System (ADS)

    Minamida, Katsuhiro

    2000-02-01

    The laser, which was invented in 1960, has been developed using various substances of solids, liquids, gases and semiconductors as laser active media. Applications of laser utilizing the coherent properties of laser light and the high power density light abound in many industries and in heavy industries respectively. The full-scale use of lasers in the steel industry began nearly 23 years ago with their applications as controllable light sources. Its contribution to the increase in efficiency and quality of the steel making process has been important and brought us the saving of the energy, the resource and the labor. Laser applications in the steel making process generally require high input energy, so it is essential to consider the interaction between the laser beam and the irradiated material. In particular, the reflectivity of the laser beam on the surface of material and the quantity of the laser-induced plasma are critical parameters for high efficient processes with low energy losses. We have developed plenty of new laser systems for the steel making process with their considerations in mind. A review of the following high-power-laser applications is given in the present paper: (1) Use of plasma as a secondary heat source in CO2 laser welding for connecting steel sheets of various grades. (2) Laser-assisted electric resistance welding of pipes. (3) New type all-laser-welded honeycomb panels for high-speed transport. (4) Laser flying welder for continuous hot rolling mill using two 45 kW CO2 lasers.

  13. Austenite Static Recrystallization Kinetics in Microalloyed B Steels

    NASA Astrophysics Data System (ADS)

    Larrañaga-Otegui, Ane; Pereda, Beatriz; Jorge-Badiola, Denis; Gutiérrez, Isabel

    2016-06-01

    Boron is added to steels to increase hardenability, substituting of more expensive elements. Moreover, B acts as a recrystallization delaying element when it is in solid solution. However, B can interact with N and/or C to form nitrides and carbides at high temperatures, limiting its effect on both phase transformation and recrystallization. On the other hand, other elements like Nb and Ti are added due to the retarding effect that they exert on the austenite softening processes, which results in pancaked austenite grains and refined room microstructures. In B steels, Nb and Ti are also used to prevent B precipitation. However, the complex interaction between these elements and its effect on the austenite microstructure evolution during hot working has not been investigated in detail. The present work is focused on the effect the B exerts on recrystallization when added to microalloyed steels. Although B on its own leads to retarded static recrystallization kinetics, when Nb is added a large delay in the static recrystallization times is observed in the 1273 K to 1373 K (1000 °C to 1100 °C) temperature range. The effect is larger than that predicted by a model developed for Nb-microalloyed steels, which is attributed to a synergistic effect of both elements. However, this effect is not so prominent for Nb-Ti-B steels. The complex effect of the composition on recrystallization kinetics is explained as a competition between the solute drag and precipitation pinning phenomena. The effect of the microalloying elements is quantified, and a new model for the predictions of recrystallization kinetics that accounts for the B and Nb+B synergetic effects is proposed.

  14. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  15. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  16. 38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN BOILER PLANT LOCATED EAST OF MAIN STEEL PLANT, 1909. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  17. Thixocasting Steel Parts

    DTIC Science & Technology

    1978-09-01

    fraction of solid. The main body of the Rheocaster is a slip cast, 1/2" thick crucible made from Vesuvius #235 (58% A1203 , 26% C, 12% Si0 2). The upper...2" OD,with a 1/4" diameter exit hole) cemented inside the Vesuvius crucible. An induction coil, powered by a 20 KW, 10 KHz Radio Frequency Company...samples taken during the runs. The samples were mounted and then polished in successive steps on wet, rota- ting silicon carbide papers of 30, 120, 240

  18. Martensitic transformations in high-strength steels at aging

    NASA Astrophysics Data System (ADS)

    Berezovskaya, V. V.; Bannykh, O. A.

    2011-04-01

    The effect of heat treatment and elastic stresses on the texture of maraging NiTi-steels is studied. The interruption of the decomposition of martensite at the early stages is shown to be accompanied by the γ → α transformation, which proceeds upon cooling from the aging temperature and under elastic (σ < σ0.2) tensile stresses. The martensite has a crystallographic texture, which is caused by the evolution of hot-deformation texture as a result of quenching and decomposition of a supersaturated α solid solution.

  19. Corrosion Performance of Ferritic Steel for SOFC Interconnect Applications

    SciTech Connect

    Ziomek-Moroz, M.; Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Jablonski, P.D.; Alman, D.E.

    2006-11-01

    Ferritic stainless steels have been identified as potential candidates for interconnects in planar-type solid oxide fuel cells (SOFC) operating below 800ºC. Crofer 22 APU was selected for this study. It was studied under simulated SOFC-interconnect dual environment conditions with humidified air on one side of the sample and humidified hydrogen on the other side at 750ºC. The surfaces of the oxidized samples were studied by scanning electron microscopy (SEM) equipped with microanalytical capabilities. X-ray diffraction (XRD) analysis was also used in this study.

  20. Nickel release from stainless steels.

    PubMed

    Haudrechy, P; Mantout, B; Frappaz, A; Rousseau, D; Chabeau, G; Faure, M; Claudy, A

    1997-09-01

    In 1994, a study of nickel release and allergic contact dermatitis from nickel-plated metals and stainless steels was published in this journal. It was shown that low-sulfur stainless steel grades like AISI 304, 316L or 430 (S < or = 0.007%) release less than 0.03 microgram/cm2/week of nickel in acid artificial sweat and elicit no reactions in patients already sensitized to nickel. In contrast, nickel-plated samples release around 100 micrograms/cm2/week of Ni and high-sulfur stainless steel (AISI 303-S approximately 0.3%) releases about 1.5 micrograms/cm2/week in this acid artificial sweat. Applied on patients sensitized to nickel, these metals elicit positive reactions in 96% and 14%, respectively, of the patients. The main conclusion was that low-sulfur stainless steels like AISI 304, 316L or 430, even when containing Ni, should not elicit nickel contact dermatitis, while metals having a mean corrosion resistance like a high-sulfur stainless steel (AISI 303) or nickel-plated steel should be avoided. The determining characteristic was in fact the corrosion resistance in chloride media, which, for stainless steels, is connected, among other factors, to the sulfur content. Thus, a question remained concerning the grades with an intermediate sulfur content, around 0.03%, which were not studied. They are the object of the study presented in this paper. 3 tests were performed: leaching experiments, dimethylglyoxime and HNO3 spot tests, and clinical patch tests; however, only stainless steels were tested: a low-sulfur AISI 304 and AISI 303 as references and 3 grades with a sulfur content around 0.03%: AISI 304L, AISI 304L added with Ca, AISI 304L+Cu. Leaching experiments showed that the 4 non-resulfurised grades released less than 0.5 microgram/cm2/week in acid sweat while the reulfurized AISI 303 released around or more than 0.5 microgram/cm2/week. This is explained by the poorer corrosion resistance of the resulfurized grade. Yet all these grades had the same

  1. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  2. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  3. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  4. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  5. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  6. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  7. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  8. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  9. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  10. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  11. Solids fluidizer-injector

    DOEpatents

    Bulicz, Tytus R.

    1990-01-01

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  12. [Methodological approaches to the development of environmentally benign technology for the use of solid waste in iron metallurgy].

    PubMed

    Pugin, K G; Vaĭsman, Ia I

    2013-01-01

    On the basis of the life cycle of materials, containing wastes of iron and steel industry, new methodological approaches to the assessment of technologies of the secondary use of wastes are developed A complex criteria for selection of the technology for the use of resource potential of solid waste of iron and steel industry are developed with taking into account environmental, technological and economic indices. The technology of the use of wastes of ferrovanadium industry as bulk solid materials at the solid waste landfill is shown.

  13. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  14. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  15. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  16. Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels

    NASA Astrophysics Data System (ADS)

    Taweejun, Nipon; Poapongsakorn, Piyamon; Kanchanomai, Chaosuan

    2017-04-01

    Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.

  17. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    2012-04-16

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

  18. Precipitates in Nb and Nb-V microalloyed X80 pipeline steel.

    PubMed

    Li, Zhongyi; Liu, Delu; Zhang, Jianping; Tian, Wenhuai

    2013-08-01

    Precipitates in two X80 pipeline steels were studied by transmission electron microscopy equipped with an energy filtering system. The steels are microalloyed with niobium and niobium-vanadium (Nb-V), respectively, and produced by continuous hot rolling. Besides the precipitates TiN and (Ti, Nb) (C, N), which were 10-100 nm in size, a large number of precipitates smaller than 10 nm distributed in the two steels have been observed. In the Nb-V microalloyed steel, only a few titanium nitrides covered by vanadium compounds on the surface have been observed. It is inferred that the vanadium exists mainly in the matrix as a solid solution element. The fact has been accepted that there was no contribution to the precipitation strengthening of the X80 steel by adding 0.04-0.06% vanadium under the present production process. By contrast, the toughness of the Nb-V steel is deteriorated. Therefore, a better toughness property of the Nb microalloyed X80 results from the optimum microalloying composition design and the suitable accelerating cooling after hot rolling.

  19. Electrophoretically-deposited solid film lubricants

    SciTech Connect

    Dugger, M.T.; Panitz, J.K.J.; Vanecek, C.W.

    1995-04-01

    An aqueous-based process that uses electrophoresis to attract powdered lubricant in suspension to a charged target was developed. The deposition process yields coatings with low friction, complies with environmental safety regulations, requires minimal equipment, and has several advantages over processes involving organic binders or vacuum techniques. This work focuses on development of the deposition process, includes an analysis of the friction coefficient of the material in sliding contact with stainless steel under a range of conditions, and a functional evaluation of coating performance in a precision mechanical device application. Results show that solid lubricant films with friction coefficients as low as 0.03 can be produced. A 0.03 friction coefficient is superior to solid lubricants with binder systems and is comparable to friction coefficients generated with more costly vacuum techniques.

  20. Influence Of Tool Geometry, Tool Coating And Process Parameters In Thixoextrusion Of Steel

    SciTech Connect

    Knauf, Frederik; Hirt, Gerhard; Immich, Philipp; Bobzin, Kirsten

    2007-04-07

    Thixoextrusion could become one possibility to enlarge the complexity of extruded profiles made of steel. Accordingly semi-solid extrusion experiments of X210CrW12 tool steel using round dies of approximately 15 mm diameter were performed in order to achieve first information concerning possible process windows and process limits. For liquid fractions between 38% and 10%, extrusion press velocities from 10 mm/s to 50 mm/s and dies with novel PVD-coatings no complete solidification during extrusion was achieved. However the collected pieces of the extruded bars showed a fine and evenly distributed globular microstructure.

  1. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  2. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    SciTech Connect

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  3. Copper-Nickel Cladding on Stainless Steel

    DTIC Science & Technology

    2005-07-01

    steel,. Monel (65Ni/35Cu) alloy consumables should be used as they can tolerate more iron dilution from the steel than the 70-30 copper-nickel alloy ...Cooper Alloys , 400 , K-500 Stainless Steel - Tyles 302, 304, 321, 347 N ickel 200 Silver Braze Alloys Nickel-Chromium Alloy 600 Nickel-Aluminum Bronze 70...cladding of austenitic stainless steels may also offer some ballistic, non-magnetic, and electromagnetic signature advantages over current hull alloys and

  4. Corrosion Behavior of Steel Fibrous Concrete

    DTIC Science & Technology

    1977-05-01

    Crvtaiue wi ,rerse sido it necessaty m’d Identify by block number) steel fibrous concrete corrosion cracked fibrous concrete 20 ABST RACT (Continue...dissolved gas in liq- Although chloride ions affect the rate of steel corro- uids. sion in concrete , corrosion can occur without them. Verbeck has...repcrted that steel subjected to a concrete Corrosion of steel will not occur without water. Not environment normally develops a protective oxide film

  5. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Fabricated steel began arriving by truck Oct. 24 for construction of the A-3 Test Stand that will be used to test the engine for the nation's next generation of moon rockets. Within days workers from Lafayette Steel Erector Inc. began assembling the 16 steel stages needed on the foundation and footings poured in the previous year.

  6. Steeling and Resilience in Art Education

    ERIC Educational Resources Information Center

    Heise, Donalyn

    2014-01-01

    Steel is an incredibly strong alloy of iron and carbon. Due to its incredible strength and durability, this resilient material is commonly used for constructing buildings. The transitive verb "steeling" is defined in Miriam-Webster dictionary as "to fill with resolution or determination, as in, she 'steeled herself to face the…

  7. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans.

    PubMed

    Bayat, Oktay; Sever, Efsun; Bayat, Belgin; Arslan, Volkan; Poole, Colin

    2009-01-01

    The bacterial leaching of zinc and iron from solid wastes at the Isdemir iron and steel plant has been investigated using Acidithiobacillus ferrooxidans as the bacterial agent. The effects of a range of operational parameters, including particle size, solids concentration and pH, on the efficiency of the bioleaching process were investigated. In each test, several variables were determined to assess the efficiency of leaching, including slurry pH and redox potential, temperature, bacteria population and concentrations of zinc and iron in solution. Experimental results demonstrated that pulp solids concentration, slurry pH and solids particle size were all important parameters in the bacterial leaching process. Maximum extraction was achieved at pH values around 1.3 and a solids concentration of 1% w/v, with 35% of the Zn content and 37% of the Fe being dissolved.

  8. Metallography of maraging 350 steel

    SciTech Connect

    Hutson, S.M.; Merten, C.W.

    1987-01-01

    A technique for etching maraging 350 steel with Glyceregia is described. Surface activation procedures are integral to this technique. Microstructural features revealed by this technique are compared with those obtained with Kalling's reagent, Fry's reagent, and 5% Nital, three etchants commonly used to reveal microstructures of maraging steels. Features which may be simultaneously revealed using Glyceregia include prior austenite grain boundaries, martensitic structure, precipitates, titanium carbo-nitrides, and reverted austenite. The other etchants examined in this investigation typically reveal only a few of the microstructural features detailed above at any one time. 11 refs., 10 figs., 2 tabs.

  9. Physicochemical processes on the solid metal-molten metal interface

    SciTech Connect

    Eremenko, V.N.; Dybkov, V.I.; Natanzon, Y.V.

    1985-05-01

    The authors present a method of dissolution by which bimetalspecimens of St3 and 45 steels, 12Kh18N1OT stainless steel with A995 aluminum, ADl and silumin were obtained. Tests showed high mechanical strength of the bimetals and good resistance under thermal shock conditions. The authors further conclude that the method of creation of permanent joints of metals by holding the solid, more refractory metal with a liquid low-melting one is most suitable for the production of cylindrical bimetal blanks since in this case it is easy to agitate the molten metal by rotation of the original blank of the solid metal in it. By simple machining from such a bimetal, it is possible to obtain tubes, butt joints or concentric two- and three-layer sleeves.

  10. Austenitic stainless steel patterning by plasma assisted diffusion treatments

    NASA Astrophysics Data System (ADS)

    Czerwiec, T.; Marcos, G.; Thiriet, T.; Guo, Y.; Belmonte, T.

    2009-09-01

    The new concept of surface texturing or surface patterning on austenitic stainless steel by plasma assisted diffusion treatment is presented in this paper. It allows the creation of uniform micro or nano relief with regularly shaped asperities or depressions. Plasma assisted diffusion treatments are based on the diffusion of nitrogen and/or carbon in a metallic material at moderate to elevated temperatures. Below 420°C, a plasma assisted nitriding treatment of austenitic stainless steel produces a phase usually called expanded austenite. Expanded austenite is a metastable nitrogen supersaturated solid solution with a disordered fcc structure and a distorted lattice. The nitrided layer with the expanded austenite is highly enriched in nitrogen (from 10 to 35 at%) and submitted to high compressive residual stresses. From mechanical consideration, it is shown that the only possible deformation occurs in the direction perpendicular to the surface. Such an expansion of the layer from the initial surface of the substrate to the gas phase is used here for surface patterning of stainless steel parts. The surface patterning is performed by using masks (TEM grid) and multi-dipolar plasmas.

  11. Mechanical alloying of lanthana-bearing nanostructured ferritic steels

    SciTech Connect

    Somayeh Paseban; Indrajit Charit; Yaqiao Q. Wu; Jatuporn Burns; Kerry N. Allahar; Darryl P. Butt; James I. Cole

    2013-09-01

    A novel nanostructured ferritic steel powder with the nominal composition Fe–14Cr–1Ti–0.3Mo–0.5La2O3 (wt.%) was developed via high energy ball milling. La2O3 was added to this alloy instead of the traditionally used Y2O3. The effects of varying the ball milling parameters, such as milling time, steel ball size and ball to powder ratio, on the mechanical properties and micro structural characteristics of the as-milled powder were investigated. Nanocrystallites of a body-centered cubic ferritic solid solution matrix with a mean size of approximately 20 nm were observed by transmission electron microscopy. Nanoscale characterization of the as-milled powder by local electrode atom probe tomography revealed the formation of Cr–Ti–La–O-enriched nanoclusters during mechanical alloying. The Cr:Ti:La:O ratio is considered “non-stoichiometric”. The average size (radius) of the nanoclusters was about 1 nm, with number density of 3.7 1024 m3. The mechanism for formation of nanoclusters in the as-milled powder is discussed. La2O3 appears to be a promising alternative rare earth oxide for future nanostructured ferritic steels.

  12. Accelerated carbonation of steel slags in a landfill cover construction

    SciTech Connect

    Diener, S.; Andreas, L.; Herrmann, I.; Ecke, H.; Lagerkvist, A.

    2010-01-15

    Steel slags from high-alloyed tool steel production were used in a full scale cover construction of a municipal solid waste (MSW) landfill. In order to study the long-term stability of the steel slags within the final cover, a laboratory experiment was performed. The effect on the ageing process, due to i.e. carbonation, exerted by five different factors resembling both the material characteristics and the environmental conditions is investigated. Leaching behaviour, acid neutralization capacity and mineralogy (evaluated by means of X-ray diffraction, XRD, and thermogravimetry/differential thermal analysis, TG/DTA) are tested after different periods of ageing under different conditions. Samples aged for 3 and 10 months were evaluated in this paper. Multivariate data analysis was used for data evaluation. The results indicate that among the investigated factors, ageing time and carbon dioxide content of the atmosphere were able to exert the most relevant effect. However, further investigations are required in order to clarify the role of the temperature.

  13. Optimization of Melt Treatment for Austenitic Steel Grain Refinement

    NASA Astrophysics Data System (ADS)

    Lekakh, Simon N.; Ge, Jun; Richards, Von; O'Malley, Ron; TerBush, Jessica R.

    2017-02-01

    Refinement of the as-cast grain structure of austenitic steels requires the presence of active solid nuclei during solidification. These nuclei can be formed in situ in the liquid alloy by promoting reactions between transition metals (Ti, Zr, Nb, and Hf) and metalloid elements (C, S, O, and N) dissolved in the melt. Using thermodynamic simulations, experiments were designed to evaluate the effectiveness of a predicted sequence of reactions targeted to form precipitates that could act as active nuclei for grain refinement in austenitic steel castings. Melt additions performed to promote the sequential precipitation of titanium nitride (TiN) onto previously formed spinel (Al2MgO4) inclusions in the melt resulted in a significant refinement of the as-cast grain structure in heavy section Cr-Ni-Mo stainless steel castings. A refined as-cast structure consisting of an inner fine-equiaxed grain structure and outer columnar dendrite zone structure of limited length was achieved in experimental castings. The sequential of precipitation of TiN onto Al2MgO4 was confirmed using automated SEM/EDX and TEM analyses.

  14. Temperature Controlled Laser Joining of Aluminum to Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Weller, Daniel; Simon, Jörg; Stritt, Peter; Weber, Rudolf; Graf, Thomas; Bezençon, Cyrille; Bassi, Corrado

    Reliable joining of 6000 series aluminum alloy to galvanized steel is a challenge for current manufacturing technologies. To control and limit the formation of brittle intermetallic phases, mixing of both metals in liquid state has to be avoided. It has been shown that laser weld-brazing is a possible process. Thereby the aluminum and zinc layer of the galvanized steel are molten and the steel remains solid during the process. In addition, to avoid zinc degassing, the aluminum melt bath temperature has to be below zinc boiling temperature of 907°C. To meet these requirements a temperature controlled laser process was developed, allowing to join the two materials without flux and filler material. The thickness of the intermetallic layer shows a dependency on the set temperature used to control the process. At optimum set temperature the thickness of intermetallic phases can be limited to about 5 μm. Tensile strengths of the joints of up to 75% of the aluminum base material were achieved.

  15. Preparation of barium hexaferrite powders using oxidized steel scales waste

    NASA Astrophysics Data System (ADS)

    Septiani, Ardita; Idayanti, Novrita; Kristiantoro, Tony

    2016-02-01

    Research on preparation of barium hexaferrite powders has been done using Hot Strip Mill scales as raw materials. Hot Strip Mill scales are oxidized steel scales waste from steel industrial process. The method used for preparing the barium hexaferrite powders was solid state reaction method. Oxidized steel scales were milled using ball mill for 10 hours, then screened through a 250 mesh sieve to obtain powders with maximum size of 63 µm. Powders were roasted at 600°C temperature for 4 hours to obtain hematite (Fe2O3) phase. Roasted powders were then mixed with barium carbonate, and were subsequently milled for 16 hours. After mixing, powders were calcined with an increasing rate of 10°C/min and maintained at 1100°C for 3 hours. Calcination process was performed to acquire barium hexaferrite phase. X-ray Diffraction (XRD) characterization in conjunction with RIR analysis showed that 85 wt. % of barium hexaferrite is formed. The magnetic properties of powders were characterized using Permagraph. It is found the value of remanent induction is 1.09 kG, coercivity of 2.043 kOe, and the maximum energy product of 0.25 MGOe.

  16. Teaching Steel Connections Using an Interactive Virtual Steel Sculpture

    ERIC Educational Resources Information Center

    Moaveni, Saeed; Chou, Karen C.

    2015-01-01

    Steel connections play important roles in the integrity of a structure, and many structural failures are attributed to connection failures. Connections are the glue that holds a structure together. The failures of the Hartford Coliseum in 1977, the Hyatt Regency Hotel in Kansas City in 1980, and the I-35W Bridge in Minneapolis in 2007 are all…

  17. Thermal testing of solid neutron shielding materials

    SciTech Connect

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800{degree}C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280{degree}F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found.

  18. Thermal testing of solid neutron shielding materials

    SciTech Connect

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800[degree]C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280[degree]F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found.

  19. Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Murphy, N. C.

    2004-01-01

    The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

  20. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  1. Dynamics of solid lubrication as observed by optical microscopy

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1976-01-01

    A bench metallograph was converted into a micro contact imager by the addition of a tribometer employing a steel ball in sliding contact with a glass disk. The sliding contact was viewed in real time by means of projection microscope optics. The dynamics of abrasive particles and of solid lubricant particles within the contact were observed in detail. The contact was characterized by a constantly changing pattern of elastic strain with the passage of surface discontinuities and solid particles. Abrasive particles fragmented upon entering the contact, embedded in one surface and scratched the other; in contrast, the solid lubricant particles flowed plastically into thin films. The rheological behavior of the lubricating solids gave every appearance of a paste-like consistency within the Hertzian contact.

  2. Bearing steels in the 21. century

    SciTech Connect

    Tsubota, Kazuichi; Sato, Toshio; Kato, Yoshiyuki; Hiraoka, Kazuhiko; Hayashi, Ryoji

    1998-12-31

    Oxygen content of bearing steel will be reduced to below 3 ppm in the year 2000 if the current trend for the reduction of oxygen in the steel continues. As a result, size of oxide inclusions will become smaller and the fatigue life will be doubled. From the viewpoint of life prediction, cleanliness evaluation methods currently used are not effective. Inclusion Rating Method by Statistics of Extreme is useful for both cleanliness evaluation and fatigue life prediction. Bearings made of suitably heat treated carbon steels or low alloy steels, which possess equivalent fatigue properties to bearing steels, will increase owing to the requirement for lower cost and better formability.

  3. Reduced-activation steels: Future development for improved creep strength

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.

    2008-08-01

    Reduced-activation steels for fusion applications were developed in the 1980s to replace the elevated-temperature commercial steels first considered. The new steels were patterned after the commercial steels, with the objective that the new steels have yield stress and ultimate tensile strength and impact toughness in a Charpy test comparable to or better than the steels they replaced. That objective was achieved in reduced-activation steels developed in Japan, Europe, and the United States. Although tensile and impact toughness of the reduced-activation steels exceed those of the commercial steels they were patterned after, their creep-rupture properties are inferior to some commercial steels they replaced. They are even more inferior to commercial steels developed since the 1980s. In this paper, compositional differences between reduced-activation steels and new commercial steels are examined, and compositions are proposed for development of new-and-improved reduced-activation steels.

  4. Fusion welding of a modern borated stainless steel

    SciTech Connect

    Robino, C.V.; Cieslak, M.J.

    1997-01-01

    Experiments designed to assess the fabrication and service weldability of 304B4A borated stainless steel were conducted. Welding procedures and parameters for manual gas tungsten arc (GTA) welding, autogenous electron beam (EB) welding and filler-added EB welding were developed and found to be similar to those for austenitic stainless steels. Following the procedure development, four test welds were produced and evaluated by microstructural analysis and Charpy impact testing. Further samples were used for determination of the postweld heat treatment (PWHT) response of the welds. The fusion zone structure of welds in this alloy consists of primary austenite dendrites with an interdendritic eutectic-like austenite/boride constituent. Welds also show an appreciable partially molten zone that consists of the austenite/boride eutectic surrounding unmelted austenite islands. The microstructure of the EB welds was substantially finer than that of the GTA welds, and boride coarsening was not observed in the solid state heat-affected zone (HAZ) of either weld type. The impact toughness of as-welded samples was found to be relatively poor, averaging less than 10 J for both GTA and EB welds. For fusion zone notched GTA and EB samples and centerline notched EB samples, fracture generally occurred along the boundary between the partially molten and solid-state regions of the HAZ. The results of the PWHT study were very encouraging, with typical values of the impact energy for HAZ notched samples approaching 40 J, or twice the minimum code-acceptable value.

  5. Dendritic inhomogeneity of stainless maraging steels

    SciTech Connect

    Krasnikova, S.I.; Drobot, A.V.; Shmelev, A.Y.; Vukelich, S.B.

    1986-03-01

    The authors investigated dendritic inhomogeneity in industrial ingots 630 mm (steel I) in diameter and 500 mm (steel II) in diameter. The variation in the degree of dendritic inhomogeneity was investigated over the height of the ingots and across the sections on an MS-46 microprobe. It was established that the elements can be placed in the following order in accordance with the degree of reduction in the liquation factor: titanium, molybdenum, nickel, chromium, and cobalt. Titanium and molybdenum exhibit forward liquation in both steels, and chromium in steel II. The distribution of nickel and chromium in the steel I ingots and cobalt in the steel II ingots is unconventional. Dendritic inhomogeneity, which must be considered in assigning the heat treatment for finished articles, develops during the crystallization of stainless maraging steels.

  6. Thermal Linear Expansion of Nine Selected AISI Stainless Steels

    DTIC Science & Technology

    1978-04-01

    stainless steels. The nine selected stainless steels are AISI 303, 304, 304L, 316, 317, 321, 347, 410 , and 430. The recoended values Include the...point of the stainless steels. The nine selected stainless steels are AISI 303, 304, 304L, 316, 317, 321, 347, 410 , and 430. The recommended values...Stainless Steel..................................26 8. AISI 410 Stainless Steel..................................29 9. AISI 430 Stainless Steel

  7. Welding Behavior of Free Machining Stainless Steel

    SciTech Connect

    BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.; MICHAEL,JOSEPH R.

    2000-07-24

    The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metal at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.

  8. Behavior of AISI SAE 1020 Steel Implanted by Titanium and Exposed to Bacteria Sulphate Deoxidizer

    NASA Astrophysics Data System (ADS)

    Niño, Ely Dannier V.; Garnica, Hernán; Dugar-Zhabon, Veleriy; Castillo, Genis

    2014-05-01

    A hybrid technology to treat solid surfaces with the pulse high voltage and electric arc discharges of low pressure with a three-dimensional ion implantation technique (3DII) is applied. This technology is used to protect AISI SAE 1020 steel against a microbiological corrosion. The titanium ion implanted steel samples (coupons) are subjected to a medium of bacteria sulphate deoxidizer (BSD) which are very typical of the hydrocarbon industry and are potentially harmful for structures when are in contact with petroleum and some of its derivatives. The used technology aims to find an effective hybrid procedure to minimize the harmful effects of bacteria on AISI SAE 1020 steel. The hybrid technology efficiency of superficial titanium implantation is estimated through the measurements of the point corrosion characteristics obtained after testing both the treated and non-treated coupons. The three-dimensional surface structures of the samples are reconstructed with help of a confocal microscope.

  9. INTERACTION OF LASER RADIATION WITH MATTER: Estimates of phase-transition heats in steels and ceramics heated by laser radiation

    NASA Astrophysics Data System (ADS)

    Tsar'kova, O. G.; Garnov, Sergei V.

    2003-08-01

    Measurements of the high-temperature dependences of the heat capacity of solids heated by high-power laser radiation and the model of formation of structural point defects (vacancies) are used to estimate the heats of sublimation, evaporation and melting, as well as enthalpy of phase transformations for modern processing of steels and ceramics.

  10. Comparison of Strength and Serration at Cryogenic Temperatures among 304L, 316L and 310S Steels

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Ogata, T.; Nyilas, A.; Yuri, T.; Fujii, H.; Ohmiya, S.; Onishi, T.; Weiss, K. P.

    2008-03-01

    Tensile tests of 310S steel were performed at temperatures below 300 K and the yield strength and deformation behavior were compared with those of 304L and 316L steels. Computer simulations were also carried out to graph stress-elongation curves in order to discuss the effects of martensitic transformations induced during deformation on their strengths and deformation behavior at low temperatures. Tensile tests showed that yield strength of 310S steel is highest and that of 304L is lowest. The differences in yield strengths between 316L and 310S steels and between 304L and 316L steels are larger than those expected from the differences in solid solution strengthening. This can be explained by the effect of the strain through γ to ɛ martensitic transformation induced by elastic stress in 304L and 316L steels. The strength level and the shape of stress-elongation curves at cryogenic temperatures excluding serration can be qualitatively revealed by simulation when higher strength of ɛ phase comparing to α' phase and the window effect of α' were considered simultaneously. In liquid hydrogen, the three steels exhibit large serrations on the stress-elongation curves after the deformation near to the ultimate stress, while the curves are smooth before the onset of the serration. Such serrations in liquid hydrogen could not be revealed by simulation.

  11. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  12. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  13. Tetraphenylborate Solids Stability Tests

    SciTech Connect

    Walker, D.D.

    1997-06-25

    Tetraphenylborate solids are a potentially large source of benzene in the slurries produced in the In-Tank Precipitation (ITP) process. The stability of the solids is an important consideration in the safety analysis of the process and we desire an understanding of the factors that influence the rate of conversion of the solids to benzene. This report discusses current testing of the stability of tetraphenylborate solids.

  14. Laser cooling of solids

    SciTech Connect

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  15. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  16. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  17. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  18. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  19. Comparative Structural Strength Research of Hardened Carbon Steel and Hot-Rolled Alloy Steel

    NASA Astrophysics Data System (ADS)

    Bogomolov, A. V.; Zhakupov, A. N.; Kanayev, A. T.; Sikach, I. A.; Tugumov, K. K.

    2016-08-01

    Experiments on quantitative evaluation of fatigue strength showed that St5ps and St5sp carbon steels with A400 strength class can be fully applied for erection of constructions and buildings having cyclical loads during operation. Study of corrosion resistance of hardened carbon steel in comparison with hot-rolled alloy steel consists in difference in structures and hence, difference in intensity of electric and chemical processes featuring presence of steel in concrete. Structure of St5sp steel with A400 strength class in surface area has significantly less corrosion rate than ferritic-perlitic structure of 35GS steel with A400 strength class.

  20. Erosion and Corrosion Behavior of Laser Cladded Stainless Steels with Tungsten Carbide

    NASA Astrophysics Data System (ADS)

    Singh, Raghuvir; Kumar, Mukesh; Kumar, Deepak; Mishra, Suman K.

    2012-11-01

    Laser cladding of tungsten carbide (WC) on stainless steels 13Cr-4Ni and AISI 304 substrates has been performed using high power diode laser. The cladded stainless steels were characterized for microstructural changes, hardness, solid particle erosion resistance and corrosion behavior. Resistance of the clad to solid particle erosion was evaluated using alumina particles according to ASTM G76 and corrosion behavior was studied by employing the anodic polarization and open circuit potential measurement in 3.5% NaCl solution and tap water. The hardness of laser cladded AISI 304 and 13Cr-4Ni stainless steel was increased up to 815 and 725Hv100 g, respectively. The erosion resistance of the modified surface was improved significantly such that the erosion rate of cladded AISI 304 (at 114 W/mm2) was observed ~0.74 mg/cm2/h as compared to ~1.16 and 0.97 mg/cm2/h for untreated AISI 304 and 13Cr-4Ni, respectively. Laser cladding of both the stainless steels, however, reduced the corrosion resistance in both NaCl and tap water.

  1. 49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... box: 6HA2, 6HB2, 6HC, 6HD2 or 6HG2 Glass, porcelain or stoneware in steel, aluminum, plywood or fiber drum: 6PA1, 6PB1, 6PD1 or 6PG1 Glass, porcelain or stoneware in steel, aluminum, wooden or fiberboard box: 6PA2, 6PB2, 6PC or 6PG2 Glass, porcelain or stoneware in expanded or solid plastic...

  2. 49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fiberboard box: 6HA2, 6HB2, 6HC, 6HD2 or 6HG2 Glass, porcelain or stoneware in steel, aluminum, plywood or fiber drum: 6PA1, 6PB1, 6PD1 or 6PG1 Glass, porcelain or stoneware in steel, aluminum, wooden or fiberboard box: 6PA2, 6PB2, 6PC or 6PG2 Glass, porcelain or stoneware in expanded or solid plastic...

  3. 49 CFR 173.211 - Non-bulk packagings for solid hazardous materials in Packing Group I.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... plastic drum: 6HA1, 6HB1, 6HD1, 6HG1 or 6HH1 Glass, porcelain or stoneware in steel, aluminum, plywood or fiber drum: 6PA1, 6PB1, 6PD1 or 6PG1 Glass, porcelain or stoneware in steel, aluminum, wooden or fiberboard box: 6PA2, 6PB2, 6PC or 6PG2 Glass, porcelain or stoneware in expanded or solid plastic...

  4. 49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fiberboard box: 6HA2, 6HB2, 6HC, 6HD2 or 6HG2 Glass, porcelain or stoneware in steel, aluminum, plywood or fiber drum: 6PA1, 6PB1, 6PD1 or 6PG1 Glass, porcelain or stoneware in steel, aluminum, wooden or fiberboard box: 6PA2, 6PB2, 6PC or 6PG2 Glass, porcelain or stoneware in expanded or solid plastic...

  5. 49 CFR 173.211 - Non-bulk packagings for solid hazardous materials in Packing Group I.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... plastic drum: 6HA1, 6HB1, 6HD1, 6HG1 or 6HH1 Glass, porcelain or stoneware in steel, aluminum, plywood or fiber drum: 6PA1, 6PB1, 6PD1 or 6PG1 Glass, porcelain or stoneware in steel, aluminum, wooden or fiberboard box: 6PA2, 6PB2, 6PC or 6PG2 Glass, porcelain or stoneware in expanded or solid plastic...

  6. 49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... box: 6HA2, 6HB2, 6HC, 6HD2 or 6HG2 Glass, porcelain or stoneware in steel, aluminum, plywood or fiber drum: 6PA1, 6PB1, 6PD1 or 6PG1 Glass, porcelain or stoneware in steel, aluminum, wooden or fiberboard box: 6PA2, 6PB2, 6PC or 6PG2 Glass, porcelain or stoneware in expanded or solid plastic...

  7. NASA's Advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  8. Hollow Retroreflectors Offer Solid Benefits

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A technician who lead a successful team of scientists, engineers, and other technicians in the design, fabrication, and characterization of cryogenic retroreflectors for the NASA Cassini/Composite Infrared Spectrometer (CIRS) mission to Saturn, developed a hollow retroreflector technology while working at NASA Goddard Space Flight Center. With 16 years of NASA experience, the technician teamed up with another NASA colleague and formed PROSystems, Inc., of Sharpsburg, Maryland, to provide the optics community with an alternative source for precision hollow retroreflectors. The company's hollow retroreflectors are front surface glass substrates assembled to provide many advantages over existing hollow retroreflectors and solid glass retroreflectors. Previous to this new technology, some companies chose not to use hollow retroreflectors due to large seam widths and loss of signal. The "tongue and groove" facet design of PROSystems's retroreflector allows for an extremely small seam width of .001 inches. Feedback from users is very positive regarding this characteristic. Most of PROSystems's primary customers mount the hollow retroreflectors in chrome steel balls for laser tracker targets in applications such as automobile manufacturing and spacecraft assembly.

  9. NASA's Advanced solid rocket motor

    NASA Astrophysics Data System (ADS)

    Mitchell, Royce E.

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  10. Solid expellant plasma generator

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  11. [Radioactivity monitoring of steel processing in Croatian steel mills and foundries].

    PubMed

    Sofilić, Tahir; Marjanović, Tihana; Rastovcan-Mioc, Alenka

    2006-03-01

    The last twenty years have seen a number of cases of radioactive pollution in metallurgical industry. Therefore many metal producers have implemented systematic monitoring of radioactivity in their production processes, especially in steel processing, steel being the most applied construction material with the annual world output of over billion tonnes. Learning from the experience of the best known steel producers in Europe and the world Croatian steel mills have introduced radioactivity surveillance and control systems for radioactive elements in steel scrap, semi-finished and finished products. This paper argues in favour of radioactivity surveillance and control systems in steel and steel castings production in Croatia, and describes current systems and solutions available. Since we lack our own standards and regulations to control both domestic and imported steel scrap, semi-finished products (crude steel, hot and cold rolled strip) and finished products, we need to start implementing radioactivity surveillance and control systems in our steel and steel castings production applying the current international recommendations and guidelines, until we build up our own monitoring system and adopt legislation on the national level. This paper gives an overview of the basic types of radioactivity surveillance and control systems, the most frequent requirements to be met, as well as of the measurement and information flow in their application in steel and steel castings production.

  12. Microstructure and Mechanical Properties of HSLA-100 Steel

    DTIC Science & Technology

    1990-12-01

    13 Figure 4. High Strength Bainite Strength Components .................... 20 Figure 5. Bainitic Steel Tempering and DBTT ...21 Figure 6. Tempered Bainite Steel Yield Stress and DBTT .................. 21 Figure 7. HSLA-100 Steel Yield Strength versus Aging...Energy at -84°C ............... 31 Figure 14. HSLA-100 Steel Lot GQH DBTT ............................ 31 Figure 15. HSLA-100 Steel Lot GQH Ductility

  13. Enhanced humification by carbonated basic oxygen furnace steel slag--I. Characterization of humic-like acids produced from humic precursors.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nie, Yongfeng

    2012-01-01

    Carbonated basic oxygen furnace steel slag (hereinafter referred to as "steel slag") is generated during iron and steel manufacturing and is often classified as waste. The effect of steel slag on humification process was investigated. Catechol, glycine and glucose were used as model humic precursors from degraded biowastes. To verify that humification occurred in the system, humic-like acids (HLAs) were isolated and characterized structurally by elemental analysis, FTIR spectra, solid-state CP-MAS (13)C NMR spectra, and TMAH-Py-GC/MS. Characteristics of the steel slag-HLA were compared with those of HLAs formed in the presence of zeolite and birnessite, and with that of mature compost humic acid. The results showed that steel slag-HLA, like zeolite- and birnessite-HLA, is complex organic material containing prominent aromatic structures. Steel slag substantially accelerated the humification process, which would be highly significant for accelerating the stabilization of biowastes during composting (e.g. municipal solid waste, sewage sludge, and food waste).

  14. Solids fluidizer-injector

    DOEpatents

    Bulicz, T.R.

    1990-04-17

    An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

  15. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths (τ (app)) and slip coefficient (β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  16. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  17. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  18. Field Test Results of Corrosion-Resistant Coatings for Carbon-Steel Steam Condensate Return Lines

    DTIC Science & Technology

    1994-04-01

    20 and 40 ppm. Note that addition of sodium sulfite promotes a higher level of total dissolved solids, which increases the boiler blowdown rate. 2O...some form of external treatment process, including- 1. Demineralization 2. Hot lime softening 3. Split-stream, sodium hydrogen, ion exchange 4. Chloride...water due to system leakage occuring in carbon-steel condensate return lines within buildings. The makeup water is taken from the Potomac River, sodium

  19. Comparing flat top and Gaussian focal beam shapes when micromachining steel

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Ohar, Orest

    2011-10-01

    Laser micromachining, drilling and marking is extensively used within the aerospace, automotive and firearms industries. The unique properties of lasers make them ideal tools for micromachining a wide diversity of materials, including steel alloys [1]. We describe the results of micromachining of low carbon steel and stainless steel alloys, using a high powered diode pumped solid state (DPSS) laser operating at a wavelength of 355nm. The laser was configured with beam conditioning optics to produce either a flat top beam or a Gaussian output which was then sent through a galvanometer scanner and telecentric lens beam delivery system. This paper outlines the interrelationship of process variables when micromachining fine features in steel and stainless steel alloys. Process variables measured included the optimum laser focus plane, energy density, galvanometer scan rate, and pulse overlap and focal spot diameter. Optimum process performance was evaluated based on a dimensional comparison of the micromachined features from each test coupon, including uniformity and surface roughness of the micromachined surface and the minimization of surface irregularities (stalagmite type slag / debris / corn row patterns) and taper angle of the micromachined feature side walls.

  20. Microstructural characterization of 5-9% chromium reduced-activation steels

    SciTech Connect

    Jayaram, R.; Klueh, R.L.

    1997-08-01

    The microstructures of a 9Cr-2W-0.25-0.1C (9Cr-2WV), a 9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa), a 7Cr-2W-0.25V-0.07Ta-0.1C (7Cr-2WVTa), and a 5Cr-2W-0.25V-0.07Ta-0.1C (5Cr-2WVTa) steel (all compositions are in weight percent) have been characterized by Analytical Electron Microscopy (AEM) and Atom Probe Field Ion Microscopy (APFIM). The matrix in all four reduced-activation steels was 100% martensite. In the two 9Cr steels, the stable precipitates were blocky M{sub 23}C{sub 6} and small spherical MC. The two lower-chromium steels contained blocky M{sub 7}C{sub 3} and small needle-shaped carbonitrides in addition to M{sub 23}C{sub 6}. AEM and APFIM analysis revealed that in the steels containing tantalum, the majority of the tantalum was in solid solution. The experimental observations were in good agreement with phases and compositions predicted by phase equilibria calculations.

  1. Longer Life for Steel Structures

    NASA Technical Reports Server (NTRS)

    1990-01-01

    IC 531 is a coating manufactured and marketed by Inorganic Coatings, Inc. The coating was developed by Goddard to protect structures at Kennedy Space Center. It is a high ratio potassium silicate formula. The coating is water based, nontoxic, and nonflammable. It generates no volatile organic compounds nor hazardous chemical waste, and bonds to steel in 30 minutes. At the present time, no one can say for sure how long IC 531's effective lifetime is. Some of the original Goddard test applications of 1976 are still going strong after lengthy exposure to the Sun, salt and moisture. Says IC in company literature: 'IC 531 offers virtually permanent protection for steel. We predict it will protect structures for well beyond 25 years. If necessary, it is infinitely maintainable; if damaged, it can easily be touched up with more IC 531.'

  2. Underwater wet welding of steel

    SciTech Connect

    Ibarra, S.; Liu, S.; Olson, D.L.

    1995-05-01

    Underwater wet welding is conducted directly in water with the shielded metal arc (SMA) and flux cored arc (FCA) welding processes. Underwater wet welding has been demonstrated as an acceptable repair technique down to 100 meters (325 ft.) in depth, but wet welds have been attempted on carbon steel structures down to 200 meters (650 ft.). The primary purpose of this interpretive report is to document and evaluate current understanding of metallurgical behavior of underwater wet welds so that new welding consumables can be designed and new welding practices can be developed for fabrication and repair of high strength steel structures at greater depths. First the pyrometallurgical and physical metallurgy behaviors of underwater weldments are discussed. Second, modifications of the welding consumables and processes are suggested to enhance the ability to apply wet welding techniques.

  3. Steel Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2004-10-01

    ITP conducted a study on energy use and potential savings, or "bandwidth" study, in major steelmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results based on the 2nd law of thermodynamics. The Steel Industry Energy Bandwidth Study (PDF 133 KB) also estimates steel industry energy use in the year 2010, and uses that value as a basis for comparison against the minimum requirements. This energy savings opportunity for 2010 will aid focus on longer term R&D.

  4. Existing Steel Railway Bridges Evaluation

    NASA Astrophysics Data System (ADS)

    Vičan, Josef; Gocál, Jozef; Odrobiňák, Jaroslav; Koteš, Peter

    2016-12-01

    The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  5. Light microscopy of carbon steels

    SciTech Connect

    Samuels, L.E.

    1998-12-31

    Containing over 1,200 representative micrographs and the information and explanatory text that makes them really useful: composition, condition, etchant, and magnification, and more than 100 graphs and tables, this how to book not only gives everyday working examples, but also discusses the relationship between the constitution, metallurgy, and microstructure of various carbon steel products. Written by a renowned expert in metallography, this definitive work is a must for all those working in this area. Contents include: nomenclature of phases and constituents; phase transformations; low-carbon irons and steels; annealing and normalizing; spheroidization and graphitization; austenitization; transformation of austenite; tempering of martensite; welding; surface oxidation, decarburation; and oxidation scaling; glossary of terms; etching methods; conversion tables.

  6. Welding of high chromium steels

    NASA Technical Reports Server (NTRS)

    Miller, W B

    1928-01-01

    A brief description is given of different groups of high chromium steels (rustless iron and stainless steels) according to their composition and more generally accepted names. The welding procedure for a given group will be much the same regardless of the slight variations in chemical composition which may exist within a certain group. Information is given for the tensile properties (yield point and ultimate strength) of metal sheets and welds before and after annealing on coupons one and one-half inches wide. Since welds in rustless iron containing 16 to 18 percent chromium and 7 to 12 percent nickel show the best combination of strength and ductility in the 'as welded' or annealed condition, it is considered the best alloy to use for welded construction.

  7. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    SciTech Connect

    M. L. Proctor

    2006-06-13

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the "metal line" of the P-10 Tritium Separation Project.

  8. Steel Industry Marginal Opportunity Analysis

    SciTech Connect

    none,

    2005-09-01

    The Steel Industry Marginal Opportunity Analysis (PDF 347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.

  9. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  10. A study of Damascus steel

    SciTech Connect

    Berge, P.

    1995-02-16

    The Damascus sword has been an article of fascination for many years to blade collectors and metallurgists alike. The blades were given their name by Europeans who encountered these blades which originated from Damascus, Syria. They are best known for the appearance of the blade face. Genuine Damascus blades show swirling patterns of alternating light and dark regions which are due to the microstructure of the steel. The microstructure consists of arrays of well rounded cementite patterns in a matrix of either pearlite, bainite, or martensite. When this structure is etched the matrix will turn dark leaving the cementite particles light. Although many blades were produced over the centuries, while some of the process is known the making of a genuine Damascus blade today is generally considered a lost art. Many scientists have studied the subject in an attempt to understand the complex process by which the clustered arrays of cementite particles develop in the steel blades. The most prominent theories to date are presented in the General Introduction to this thesis. The thesis is divided into four main parts. In the first part, four proposed mechanisms of cementite cluster sheet formation as they relate to the banding theory are introduced. Experiments to investigate these mechanisms are presented. In Part II, collaborative research focused on the methodology of the reconstructed process for making Damascus steel is presented. In the third part, a study into the graphitization of the reconstructed blades is presented. In Part IV, experimental attempts at producing Damascus steel ingots in the laboratory are presented.

  11. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    NASA Astrophysics Data System (ADS)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  12. Phase Stability under Irradiation of Precipitates and Solid Solutions in Model ALloys and in ODS Alloys Relevant for Gen IV

    SciTech Connect

    Arthur T. Motta; Robert C. Birtcher

    2007-10-17

    The overall objective of this program is to investigate the irradiation-altered phase stability of oxide precipitates in ODS steels and of model alloy solid solutions of associated systems. This information can be used to determine whether the favorable mechanical propertiies of these steels are maintained under irradiation, thus addressing one of the main materials research issues for this class of steels as identified by the GenIV working groups. The research program will also create fundamental understanding of the irradiation precipitation/dissolution problem by studying a "model" system in which the variables can be controlled and their effects understood individually.

  13. 77 FR 67400 - RG Steel Wheeling, LLC, a Division of RG Steel, LLC, Doing Business as Wheeling Corrugating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Employment and Training Administration RG Steel Wheeling, LLC, a Division of RG Steel, LLC, Doing Business as..., 2012, applicable to workers of RG Steel Wheeling, LLC, a division of RG Steel, LLC, doing business as... RG Steel, LLC, doing business as Wheeling Corrugating Company, Beech Bottom, West Virginia,...

  14. Nickel: makes stainless steel strong

    USGS Publications Warehouse

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  15. Recycling steel. Conducting a waste audit.

    PubMed

    Crawford, G

    1996-01-01

    This is the second in a series of three articles regarding steel can recycling from foodservice operations of healthcare facilities. This article highlights the basic methods of recycling steel cans, and includes information on conducting a waste audit and negotiating with a hauler regarding the benefits of recycling. The previous article discussed how steel is recycled across the country. The next article will convey a case history of actual foodservice recycling practice from a healthcare facility.

  16. Nonmetallic Inclusions in HSLA Steel Weldments

    DTIC Science & Technology

    1989-12-01

    lowering the DBTT . Nickel prevents the hot shortness phenomenon often observed in copper-bearing steels . Nickel is also an austenite stabilizer. By lowering... STEEL WELDMENTS by Brent A. Douglas December, 1989 Thesis Advisor Alan G. Fox Approved for public release; distribution is unlimited. 90 ,-. S...ACCESSION NO. II. TITLE (Incude Security Claw fication) Nonmetallic Inclusions In HSLA Steel Weldments IZ. PERSONAL AUTHOR(S) Douglas, Brent A. 138

  17. Evaluation of the Benefits of HSLA Steels

    DTIC Science & Technology

    1989-03-01

    quenched and tempered steels , such as HY80 and HY1OO, require preheat and interpass temperature controls during welding of plates thicker than 1/2 inch...interpass tempera- tures and heat input limitations. Strict adherence to these requirements is mandatory to avoid cracking in hydrogen- sensitive steels ...requirement and excellent weldability of this steel will probably lower produc- tion costs and cracking -related repairs enough to overcome the slight

  18. Effect of ITER components manufacturing cycle on the irradiation behaviour of 316L(N)-IG steel

    NASA Astrophysics Data System (ADS)

    Rodchenkov, B. S.; Prokhorov, V. I.; Makarov, O. Yu; Shamardin, V. K.; Kalinin, G. M.; Strebkov, Yu. S.; Golosov, O. A.

    2000-12-01

    The main options for the manufacturing of high heat flux (HHF) components is hot isostatic pressing (HIP) using either solid pieces or powder. There was no database on the radiation behaviour of these materials, and in particular stainless steel (SS) 316L(N)-IG with ITER components manufacturing thermal cycle. Irradiation of wrought steel, powder-HIP, solid-HIP and HIPed joints has been performed within the framework of an ITER task. Specimens cut from 316L(N)-IG plate, HIP products, and solid-HIP joints were irradiated in the SM-3 reactor in Dimitrovgrad up to 4 and 10 dpa at 175°C and 265°C. The paper describes the results of post-irradiation tensile and fracture toughness tests.

  19. Bending Properties of Al-Steel and Steel-Steel Composite Metal Foams

    NASA Astrophysics Data System (ADS)

    Brown, Judith A.; Vendra, Lakshmi J.; Rabiei, Afsaneh

    2010-11-01

    The performance of new composite metal foams (CMFs) under bending was evaluated with simultaneous acoustic emission (AE) monitoring on samples processed by cast and powder metallurgy (PM) techniques. The results showed high maximum strength in all samples up to 86 MPa with more ductile failure in PM samples. Acoustic emission behavior confirmed that the dominating failure mechanism of cast CMF is the brittle fracture of intermetallic phases that mostly exist at the interface of the steel spheres with the aluminum matrix, whereas in PM samples (100 pct steel), the failure is governed by the propagation of preexisting microporosities in the matrix resulting in a complete ductile failure. SEM imaging of the fracture surfaces supported these findings.

  20. Modified 43XX Steels for High Toughness

    DTIC Science & Technology

    1980-04-01

    AL AMMRC TR 80-20 MODIFIED 43XX STEELS FOR HIGH TOUGHNESS T CS.,•, °x ,•, o o,,o,,,sD T I W4 AftELECTE APRIL 1980 J N.J. Kar, V.F. Zackay and E.R...carried out. Isohra tasomions in these steels resulted inn bbaainni 11-v DI FOR Z 47 RITIOW OF I NOV695 IS OBSOLETE UCASFE SECURITY UCLASSIFIEDINOFTI PAGE...this investigation for Si-modified AISI 4330 steel appear to be superior to those for unmodified AISI 4340 and 300-M steels , whilst the strength-tough

  1. Fracture Characteristics of Structural Steels and Weldments

    DTIC Science & Technology

    1975-11-01

    constrctionTECHNICAL REPORT`M.170 engineringNovember 1975 research laboratory FRACTURE CHARACTERISTICS OF STRUCTURAL STEELS AND WELDMENTS by J...microscope structure steel steel weldments 2 0. AUS51RA.Y’ Ztiu is~~g e ".C f ,e owl mod Idwisf~yb 6405 ". b mbef This5 tepof I p)wnh~t tlie tiIodings...CLALUVICA1IOli Of UAE(.0’ LINCLASSTFI~n SECURITY CLASSIFICATION Of THIS PAQE(1h.M Data EntWOO4 The hydrogen-enibrittled, high-strength steels exhibited

  2. Corrosion of stainless steel, 2. edition

    SciTech Connect

    Sedriks, A.J.

    1996-10-01

    The book describes corrosion characteristics in all the major and minor groups of stainless steels, namely, in austenitic, ferritic, martensitic, duplex, and precipitation hardenable steels. Several chapters are spent on those special forms of corrosion that are investigated in the great detail in stainless steels, namely, pitting corrosion, crevice corrosion, and stress corrosion cracking. The influences of thermal treatment (heat affected zone cases), composition, and microstructure on corrosion are given good coverage. Corrosive environments include high temperature oxidation, sulfidation as well as acids, alkalis, various different petroleum plant environments, and even human body fluids (stainless steels are commonly used prosthetic materials).

  3. 30. Photocopy of photograph. STEEL PLANT, OPEN HEARTH FURNACE CHARGING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of photograph. STEEL PLANT, OPEN HEARTH FURNACE CHARGING CREW, 1910. (From the Bethlehem Steel Corporation Colletion, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  4. 37. Photocopy of photograph. STEEL PLANT, OPEN HOUSE INSIDE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Photocopy of photograph. STEEL PLANT, OPEN HOUSE INSIDE PLANT AT TIME OF ITS OPENING, 1910. (From the Bethlehem Steel Corporation Collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  5. North and west facades of crucible steel building; looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North and west facades of crucible steel building; looking southeast - Bethlehem Steel Corporation, South Bethlehem Works, Crucible Steel Plant, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  6. Solidification Microstructure, Segregation, and Shrinkage of Fe-Mn-C Twinning-Induced Plasticity Steel by Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Lan, Peng; Tang, Haiyan; Zhang, Jiaquan

    2016-06-01

    A 3D cellular automaton finite element model with full coupling of heat, flow, and solute transfer incorporating solidification grain nucleation and growth was developed for a multicomponent system. The predicted solidification process, shrinkage porosity, macrosegregation, grain orientation, and microstructure evolution of Fe-22Mn-0.7C twinning-induced plasticity (TWIP) steel match well with the experimental observation and measurement. Based on a new solute microsegregation model using the finite difference method, the thermophysical parameters including solid fraction, thermal conductivity, density, and enthalpy were predicted and compared with the results from thermodynamics and experiment. The effects of flow and solute transfer in the liquid phase on the solidification microstructure of Fe-22Mn-0.7C TWIP steel were compared numerically. Thermal convection decreases the temperature gradient in the liquid steel, leading to the enlargement of the equiaxed zone. Solute enrichment in front of the solid/liquid interface weakens the thermal convection, resulting in a little postponement of columnar-to-equiaxed transition (CET). The CET behavior of Fe-Mn-C TWIP steel during solidification was fully described and mathematically quantized by grain morphology statistics for the first time. A new methodology to figure out the CET location by linear regression of grain mean size with least-squares arithmetic was established, by which a composition design strategy for Fe-Mn-C TWIP steel according to solidification microstructure, matrix compactness, and homogeneity was developed.

  7. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  8. Mixed oxide solid solutions

    DOEpatents

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  9. Management of solid waste

    SciTech Connect

    Thompson, W.T.; Stinton, L.H.

    1980-04-16

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options.

  10. Steel shear walls, behavior, modeling and design

    SciTech Connect

    Astaneh-Asl, Abolhassan

    2008-07-08

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only 'strip model', forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  11. Solid oxide fuel cell matrix and modules

    DOEpatents

    Riley, Brian

    1990-01-01

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.

  12. Solid phase microextraction device using aerogel

    DOEpatents

    Miller, Fred S.; Andresen, Brian D.

    2005-06-14

    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  13. Clean steel technology -- Fundamental to the development of high performance steels

    SciTech Connect

    Wilson, A.D.

    1999-07-01

    The use of clean steel technology (low sulfur with calcium treatment for inclusion shape control) is a fundamental building block in the development of high performance plate steels. A brief review will be presented of the benefits of calcium treatment and its effect on non-metallic inclusions (sulfides and oxides) and reducing sulfur levels. During the past thirty years the requirements for low sulfur levels have been reduced from 0.010% maximum to 0.001% maximum. The effects of clean steel practices on specific properties will be reviewed including tensile ductility, Charpy V-notch and fracture toughness, fatigue crack propagation and hydrogen-induced-cracking resistance. Traditional low sulfur plate steel applications have included pressure vessels. offshore platforms, plastic injection molds and line-pipe skelp. More recent applications will be discussed including bridge steels, high strength structural steels to 130 ksi (897 MPa) minimum yield strength, 9% nickel steels for cryogenic applications, and military armor.

  14. Corrosion Behavior of IF Steel in Various Media and Its Comparison with Mild Steel

    NASA Astrophysics Data System (ADS)

    Singh, G. P.; Moon, A. P.; Sengupta, S.; Deo, G.; Sangal, S.; Mondal, K.

    2015-05-01

    The present work discusses corrosion behavior of an interstitial-free (IF) steel in 0.6 M NaCl, 1 M NaOH, and 1 M HCl solutions, and its comparison with mild steel (MS). Dynamics polarization and AC Impedance Spectroscopy explain different polarization behaviors of the steel samples. All the steels were exposed to open atmosphere for 100 days, and to 0.6 M NaCl salt fog for 30 days. Scanning electron microscopy, x-ray diffraction, and Raman and Fourier Transformed Infrared Spectroscopy were used to characterize microstructure of the steels, rust constituents, and morphologies. Corrosion behavior of the steels has close relation with the morphology and constituents of the rusts. It has been observed that the corrosion in the IF and MS steels is uniform in nature.

  15. New wastewater treatment facility at Wheeling-Pittsburgh Steel`s Steubenville East Coke Plant

    SciTech Connect

    Nodianos, M.J.; Goshe, A.J.

    1995-07-01

    With stricter wastewater regulatory limits on the horizon and a consent decree issued by the Federal Environmental Protection Agency, Wheeling-Pittsburgh Steel Corp. opted to upgrade the existing biological treatment plant and construct a terminal treatment plant for organic polishing at the Steubenville East Coke Plant. Prior to this project, three main sources were treated at the biological treatment plant prior to being discharged to the Ohio River, those being excess flushing liquor, benzol interceptor sump water from the light oil recovery plant and direct cooler condensate from the desulfurization facility. Additionally, storm water and other contaminated process waste streams are now treated at the plant along with the previously mentioned sources. Bio plant effluent is then treated at the newly constructed terminal treatment plant where it is passed through sand filters for solids removal and carbon filters where any remaining organic constituents are removed. The new system treats an average of 700,000 gal of wastewater per day, compared to 450,000 gal/day before modifications. As a result of the upgraded system, phenolic compounds and ammonias have been dramatically reduced in coke plant wastewater returning to the Ohio River.

  16. Help for the Steel Industry

    NASA Astrophysics Data System (ADS)

    1991-01-01

    A collaboration between NASA Lewis Research Center (LRC) and Gladwin Engineering resulted in the adaptation of aerospace high temperature metal technology to the continuous casting of steel. The continuous process is more efficient because it takes less time and labor. A high temperature material, once used on the X-15 research plane, was applied to metal rollers by a LRC developed spraying technique. Lewis Research Center also supplied mold prototype of metal composites, reducing erosion and promoting thermal conductivity. Rollers that previously cracked due to thermal fatigue, lasted longer. Gladwin's sales have increased, and additional NASA-developed innovations are anticipated.

  17. Chromizing of 3Cr Steel

    SciTech Connect

    Ravi, Vilupanur; Harrison, Bradley; Koch, Jordan; Ly, Alexander; Schissler, Andrew; Pint, Bruce A; Haynes, James A

    2011-01-01

    Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N) was chromized by the halide-activated pack cementation (HAPC) process. Key process parameters, i.e., coating temperatures and pack compositions, were investigated. Ammonium chloride-activated packs in the 700-1000 C range produced coatings nominally in the 1-8 {micro}m range, as determined by optical and scanning electron microscopy (SEM). Coatings applied in the 900-1000 C temperature range resulted in Cr-rich coatings. The predominant phase in the coating was identified as Cr23C6 by X-ray diffraction. In addition, the presence of chromium nitride, Cr2N, was observed in the coating. The power generation industry is faced with an ever-increasing demand for energy while simultaneously having to reduce carbon emissions. These goals can be facilitated by increasing plant efficiency through the use of higher operating temperatures and pressures. Traditional construction materials, e.g., the ferritic Grade 22 high strength low alloy steel, are limited to operations below {approx} 550 C. Therefore, new materials are required for future plants designed to operate up to 650 C and possibly higher. These new materials need to have improved tensile strength, ductility, toughness, corrosion resistance, and creep properties at elevated temperatures. Oak Ridge National Laboratory (ORNL) is investigating the oxidation and creep behavior of various coatings on Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N), a super-bainitic steel developed for superior creep properties. Thin, chemical vapor-deposited (CVD) aluminide coatings were used to compensate for the reduced corrosion and oxidation resistance that resulted from the low chromium content of the alloy. However, the aluminized Grade 315 alloys performed less-than-favorably under conditions relevant to fossil boilers, leading to the conclusion that higher chromium contents are required for the formation of

  18. Diffusion brazing nickel-plated stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1976-01-01

    To bond parts, sandwich assembly is made up of aluminum core, aluminum face sheet with brazing alloy interface, and nickel plated stainless steel part. Sandwich is placed between bottom and top glide sheet that is placed in stainless steel retort where assembly is bonded at 580 C.

  19. Technological properties of steels of martensitic class

    NASA Astrophysics Data System (ADS)

    Kleiner, L. M.; Greben'kov, S. K.; Zakirova, M. G.; Tolchina, I. V.; Ryaposov, I. V.

    2011-03-01

    Process, design, and ecological advantages of low-carbon martensitic steels (LCMS) are presented as compared to medium-carbon heat-treatable structural steels with a structure of tempered sorbite. The factors ensuring high manufacture adaptability in all stages of the production cycle are considered. Technological properties of widely used commercial weldable LCMS are analyzed.

  20. Method for welding chromium molybdenum steels

    DOEpatents

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  1. History dependence of magnetomechanical properties of steel

    NASA Astrophysics Data System (ADS)

    Melquiond, F.; Mouroux, A.; Jouglar, J.; Vuillermoz, P. L.; Weinstock, H.

    1996-05-01

    Magnetomechanical measurements using a superconducting SQUID magnetic gradiometer and a tensile-testing machine have been performed on a variety of steel specimens to determine the change in magnetization due to applied stress and the possible application of the observed behavior as a new form of nondestructive evaluation in steel. This study builds on earlier related measurements.

  2. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. ); Morgan, W.A.; Kellner, A.W.; Harrison, J. )

    1992-01-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  3. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.; Kellner, A.W.; Harrison, J.

    1992-08-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  4. Chem I Supplement: Chemistry of Steel Making.

    ERIC Educational Resources Information Center

    Sellers, Neal

    1980-01-01

    Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)

  5. Mineral resource of the month: steel

    USGS Publications Warehouse

    Fenton, Michael D.

    2007-01-01

    About 96 million metric tons of steel was produced in the United States last year — more than any other metal. And the $3.46 billion of iron and steel scrap exported was also the highest of any metal scrap export, helping to reduce the U.S. trade deficit.

  6. African Drum and Steel Pan Ensembles.

    ERIC Educational Resources Information Center

    Sunkett, Mark E.

    2000-01-01

    Discusses how to develop both African drum and steel pan ensembles providing information on teacher preparation, instrument choice, beginning the ensemble, and lesson planning. Includes additional information for the drum ensembles. Lists references and instructional materials, sources of drums and pans, and common note layout/range for steel pan…

  7. Ellie Mannette: Master of the Steel Drum.

    ERIC Educational Resources Information Center

    Svaline, J. Marc

    2001-01-01

    Presents an interview with Elliot ("Ellie") Mannette who has played a major role in the development and application of steel drums. States that he has spent most of his life designing and teaching the steel drums. Covers interview topics and background information on Mannette. (CMK)

  8. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  9. Low Mn alloy steel for cryogenic service

    DOEpatents

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  10. Forming "dynamic" membranes on stainless steel

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.

    1979-01-01

    "Dynamic" zirconium polyacrylic membrane is formed directly on stainless steel substrate without excessive corrosion of steel. Membrane is potentially useful in removal of contaminated chemicals from solution through reversed osmosis. Application includes use in filtration and desalination equipment, and in textile industry for separation of dyes from aqueous solvents.

  11. Self-Passivating Lithium/Solid Electrolyte/Iodine Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Whitcare, Jay; Narayanan, Sekharipuram; West, William

    2006-01-01

    Robust lithium/solid electrolyte/iodine electrochemical cells that offer significant advantages over commercial lithium/ iodine cells have been developed. At room temperature, these cells can be discharged at current densities 10 to 30 times those of commercial lithium/iodine cells. Moreover, from room temperature up to 80 C, the maximum discharge-current densities of these cells exceed those of all other solid-electrolyte-based cells. A cell of this type includes a metallic lithium anode in contact with a commercial flexible solid electrolyte film that, in turn, is in contact with an iodine/ graphite cathode. The solid electrolyte (the chemical composition of which has not been reported) offers the high ionic conductivity needed for high cell performance. However, the solid electrolyte exhibits an undesirable chemical reactivity to lithium that, if not mitigated, would render the solid electrolyte unsuitable for use in a lithium cell. In this cell, such mitigation is affected by the formation of a thin passivating layer of lithium iodide at the anode/electrolyte interface. Test cells of this type were fabricated from iodine/graphite cathode pellets, free-standing solid-electrolyte films, and lithium-foil anodes. The cathode mixtures were made by grinding together blends of nominally 10 weight percent graphite and 90 weight percent iodine. The cathode mixtures were then pressed into pellets at 36 kpsi (248 MPa) and inserted into coin-shaped stainless-steel cell cases that were coated with graphite paste to minimize corrosion. The solid-electrolyte film material was stamped to form circular pieces to fit in the coin cell cases, inserted in the cases, and pressed against the cathode pellets with polyethylene gaskets. Lithium-foil anodes were placed directly onto the electrolyte films. The layers described thus far were pressed and held together by stainless- steel shims, wave springs, and coin cell caps. The assembled cells were then crimped to form hermetic seals

  12. Solid-state configurations

    NASA Technical Reports Server (NTRS)

    Schroeder, K. G.

    1980-01-01

    Two prototype solid-state phased array systems concepts developed for the solar power satellite (SPS) are described. In both concepts, the beam was centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed are results of solid state studies.

  13. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  14. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  15. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  16. Solid Waste: Health Concerns

    ERIC Educational Resources Information Center

    Duel, Ward

    1975-01-01

    In this article the means of disposing solid wastes are discussed with reference to their health hazards and environmental desirability. Included in the discussion are solid waste dumps, landfills, incinerators, and grinders. Some attention is given to the reclamation of mineral resources from trash. (MA)

  17. Co-extrusion of Discontinuously, Non-centric Steel-reinforced Aluminum

    SciTech Connect

    Foydl, A.; Haase, M.; Khalifa, N. Ben; Tekkaya, A. E.

    2011-05-04

    The process of manufacturing discontinuously non-centric steel reinforced aluminum by means of co-extrusion has been examined. By this process semi-finished reinforced profiles can be fabricated for further treatment through forging techniques. Therefore, steel reinforcement elements consisting of E295GC were inserted into conventional aluminum billets and co-extruded into two different solid profiles; a rectangle one by an extrusion ratio of 10.1:1 and a round one by 4.8:1. The used aluminum alloy is EN AW-6060. The billet temperature as well as the ram speed were varied to investigate their influence on the position of the reinforcement elements inside the strand. The measurement was done by a video measurement system, called Optomess A250, after milling off the strand. The distances between the elements in longitudinal direction were nearly constant, apart from the rear part of the strand. The same was observed for the distance of the steel elements to the profile edge. This due to the inhomogeneous material flow in the transverse weld, related to the billet-to-billet extrusion. The rotation of the reinforcement elements occurs because the elements flow nearby the shear zone. Further, micrographs were made to investigate the embedding situation and the grain size distribution. The embedding of the reinforcement elements were good in the solid round profile, but in the rectangle profile were found some kind of air pocket. The grain size of the aluminum alloy close to the steel elements is much smaller than in the other parts of the solid round profile.

  18. Hydrogen transport in iron and steel

    NASA Technical Reports Server (NTRS)

    Louthan, M. R., Jr.; Derrick, R. G.; Donovan, J. A.; Caskey, G. R., Jr.

    1976-01-01

    The permeabilities of protium, deuterium, and tritium in foil specimens of Marz grade iron, 4130 steel, Armco iron, HP-9-4-20, and T-1 steels were studied at hydrogen pressures between 0.02 and 0.5 MPa over the temperature range 260-700 K. The permeability was measured by a pressure-rise method, deuterium counting with a detector, and radioactivity counting. Good agreement is found between the measurement techniques used. It is shown that the permeabilities of protium, deuterium, and tritium in iron and T-1 steel at temperatures as low as 260 K are in good agreement with the equation proposed by Gonzalez (1967). However, the permeabilities of HP-9-4-20 and 4130 steel to hydrogen are typically lower than predicted. The isotope effect on hydrogen permeability of HP-9-4-20, 4130 and T-1 steels, and high-purity iron can be estimated by an inverse square root of mass correction.

  19. Stainless Steel RSM Beneficial Reuse technical feasibility to business reality

    SciTech Connect

    Boettinger, W.L.; Mishra, G.

    1997-08-01

    The Stainless Steel Beneficial Reuse Program began in 1994 as a demonstration funded by the DOE Office of Science and Technology. The purpose was to assess the practicality of stainless steel radioactive scrap metal (RSM) recycle. Technical feasibility has been demonstrated through the production of a number of products made from recycled RSM. A solid business foundation is yet to be achieved. However, a business environment is beginning to develop as multiple markets and applications for RSM are surfacing around the Complex. The criteria for a successful business reality includes: - affordable programs, - a continuing production base from which to expand, - real products needs, - adequate RSM supply, and - a multi-year program This program currently sponsored by SRS and DOE-ORO to fabricate Defense Waste Processing Facility (DWPF) canisters from RSM provides an activity that satisfies these criteria. The program status is discussed. A comparison of the cost of DWPF canisters fabricated from recycled RSM and virgin metal is presented. The comparison is a function of several factors: disposal costs, the fabrication cost of virgin metal canisters, the fabrication cost of recycled RSM canisters, free release decontamination costs, and the cost to accumulate the RSM. These variables are analyzed and the relationship established to show the break-even point for various values of each parameter.

  20. XDT in HTPB propellant from steel flyer plate impact tests

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsumi; Noda, Keiichiro; Hyodo, Yukio; Nakamura, Hiroyuki; Kosaka, Katsuaki; Nakayama, Takashi; Katayama, Masahide; Takeba, Atsushi

    2000-04-01

    Several experiments simulating ground impact explosion following the command destruction of a launch vehicle have been performed using HTPB propellant samples of mass 460 to 940 kg impacted by a steel flyer plate. Impact velocities were varied from 135 m/s to 170 m/s. Strong explosions were observed at impact velocities higher than 150 m/s for tests of solid rocket propellant weighting 460 kg. The XDT (Unknown to Detonation Transition) is studied using a bulk failure reaction model including strain rate effect. Computational results are compared with observed blast waves for various impact velocities. The present model has been successfully applied to 22 inch Critical Diameter tests for SRMU HTPB propellant.

  1. Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel

    NASA Astrophysics Data System (ADS)

    Pickering, E. J.; Bhadeshia, H. K. D. H.

    2014-06-01

    This work assesses the consequences of macrosegregation on microstructural evolution during solid-state transformations in a continuously cooled pressure-vessel steel (SA508 Grade 3). Stark spatial variations in microstructure are observed following a simulated quench from the austenitization temperature, which are found to deliver significant variations in hardness. Partial-transformation experiments are used to show the development of microstructure in segregated material. Evidence is presented which indicates the bulk microstructure is not one of upper bainite, as it has been described in the past, but one comprised of Widmanstätten ferrite and pockets of lower bainite. Segregation is observed on three different length scales, and the origins of each type are proposed. Suggestions are put forward for how the segregation might be minimized, and its detrimental effects suppressed by heat treatments.

  2. Forsterite film formation and grain growth in 3% Si steel

    SciTech Connect

    Cunha, M.A.; Cesar, M.G.M.M. )

    1994-11-01

    The forsterite film in 3% Si steel is formed by a solid state reaction of the annealing separator, MgO, with SiO[sub 2] that results from the reduction of the fayalite layer in the hydrogen atmosphere in the high temperature anneal. In this work, secondary recrystallization was about complete at 1,000 C. After that temperature tertiary recrystallization can occur if the boundary drag of the second phase particles can be overcome. Addition of phosphates to the annealing separator affects the morphology of the forsterite film and can have an important effect on tertiary recrystallization by affecting the rate of decrease of the boundary-drag and/or the surface energy relationship.

  3. Lubrication with solids.

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Johnson, R. L.

    1972-01-01

    Brief discussion of the historical background, variety range, chemistry, physics, and other properties of solid lubricants, and review of their current uses. The widespread use of solid lubricants did not occur until about 1947. At present, they are the object of such interest that a special international conference on their subject was held in 1971. They are used at temperatures beyond the useful range of conventional lubricating oils and greases. Their low volatility provides them with the capability of functioning effectively in vacuum and invites their use in space applications. Their high load carrying ability makes them useful with heavily loaded components. Solid lubricants, however, do lack some of the desirable properties of conventional lubricants. Unlike oils and greases, which have fluidity and can continuously be carried back into contact with lubricated surfaces, solid lubricants, because of their immobility, have finite lives. Also, oils and greases can carry away frictional heat from contacting surfaces, while solid lubricants cannot.

  4. An understanding of HSLA-65 plate steels

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2006-02-01

    HSLA-65 plate steels can be produced using one of five plate manufacturing techniques: normalizing, controlled rolling (CR), controlled rolling followed by accelerated cooling (CR-AC), direct quenching and tempering (DQT), or conventional quenching and tempering (Q&T). The HSLA-65 steels are characterized by low carbon content and low alloy content, and they exhibit a low carbon equivalent that allows improved plate weldability. These characteristics in turn (a) provide the steel plate with a refined microstructure that ensures high strength and toughness; (b) eliminate or substantially reduce the need for preheating during welding; (c) resist susceptibility to hydrogen-assisted cracking (HAC) in the weld heat affected zone (HAZ) when fusion (arc) welded using low heat-input conditions; and (d) depending on section thickness, facilitate high heat-input welding (about 2 kJ/mm) without significant loss of strength or toughness in the HAZ. However, application of this plate manufacturing process and of these controls produces significant differences in the metallurgical structure and range of mechanical properties of the HSLA-65 plate steels both among themselves and versus conventional higher strength steel (HSS) plates. For example, among the HSLA-65 plate steels, those produced by Q&T exhibit minimal variability in mechanical properties, especially in thicker plates. Besides variability in mechanical properties depending on plate thickness, the CR and CR-AC plate steels exhibit a relatively higher yield strength to ultimate tensile strength (YS/UTS) ratio than do DQT and Q&T steels. Such differences in processing and properties of HSLA-65 plate steels could potentially affect the selection and control of various secondary fabrication practices, including arc welding. Consequently, fabricators must exercise extreme caution when transferring allowable limits of certified secondary fabrication practices from one type of HSLA-65 plate steel to another, even for the

  5. CORROSION TESTING OF CARBON STEEL IN OXALIC ACID CHEMICAL CLEANING SOLUTIONS

    SciTech Connect

    Wiersma, B.; Mickalonis, J.; Subramanian, K.; Ketusky, E.

    2011-10-14

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

  6. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    NASA Astrophysics Data System (ADS)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  7. Detection of Non-metallic Inclusions in Centrifugal Continuous Casting Steel Billets

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Zhang, Lifeng; Seetharaman, Sridhar; Yang, Shufeng; Yang, Wen; Wang, Yi

    2016-06-01

    In the current study, automated particle analysis was employed to detect non-metallic inclusions in steel during a centrifugal continuous casting process of a high-strength low alloy steel. The morphology, composition, size, area fraction, amount, and spatial distribution of inclusions in steel were obtained. Etching experiment was performed to reveal the dendrite structure of the billet and to discuss the effect of centrifugal force on the distribution of oxide inclusions in the final solidified steel by comparing the solidification velocity with the critical velocity reported in literature. It was found that the amount of inclusions was highest in samples from the tundish (~250 per mm2), followed by samples from the mold (~200 per mm2), and lowest in billet samples (~86 per mm2). In all samples, over 90 pct of the inclusions were smaller than 2μm. In steel billets, the content of oxides, dual-phase oxide-sulfides, and sulfides in inclusions were found to be 10, 30, and 60 pct, respectively. The dual-phase inclusions were oxides with sulfides precipitated on the outer surface. Oxide inclusions consisted of high Al2O3 and high MnO which were solid at the molten steel temperature, implying that the calcium treatment was insufficient. Small oxide inclusions very uniformly distributed on the cross section of the billet, while there were more sulfide inclusions showing a banded structure at the outside 25 mm layer of the billet. The calculated solidification velocity was higher than the upper limit at which inclusions were entrapped by the solidifying front, revealing that for oxide inclusions smaller than 8μm in this study, the centrifugal force had little influence on its final distribution in billets. Instead, oxide inclusions were rapidly entrapped by solidifying front.

  8. Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor

    2013-06-01

    Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.

  9. Residual stresses and microstructure of H13 steel formed by combining two different direct fabrication methods

    SciTech Connect

    Maziasz, P.J.; Payzant, E.A.; Schlienger, M.E.; McHugh, K.M.

    1998-10-13

    Direct fabrication (DF) of tool and die steels by rapid solidification techniques can produce near-net-shape parts and components with unique properties, and without the distortions caused by conventional normalizing and tempering heat-treatments. When combined with sophisticated 3-dimensional computer control to build complex solid metallic shapes, one has the capability of using DF for rapid prototyping. Spray forming using a circular converging/diverging atomizer is a DF process being developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for rapid manufacturing of tool and die steels like H-13. Laser Engineered Net Shaping (LENS{trademark}) is a DF process being developed at Sandia National laboratory (SNL). LENS involves laser-processing fine powder metal sprays into complex, fully-dense 3-dimensional shapes with fine-detail control that would allow rapid prototyping of tools or dies. One logical combination of the two processes is to combine spray forming to replicate most of the die surface and backing, and then t o build other die-surface fine-features with LENS. Premium H-13 steel was used because it belongs to the widely used group of hot-work steels that have good resistance to heat, pressure and abrasion for metal-forging and aluminum die-casting applications. The microstructure and residual stresses that exist across the interface of a composite metal produced by these two DF methods are critical parameters in producing crack-free components with functional properties. The purpose of this work is to combine unique neutron-diffraction facilities at the Oak Ridge National Laboratory (ORNL) for measuring bulk residual stresses with these two different DF processes to characterize LENS deposits of H-13 steel made on a spray-formed base of that same steel.

  10. Test Plan - Solids Accumulation Scouting Studies

    SciTech Connect

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.; Fowley, M. D.

    2012-05-10

    This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilization Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.

  11. Automated Steel Cleanliness Analysis Tool (ASCAT)

    SciTech Connect

    Gary Casuccio; Michael Potter; Fred Schwerer; Dr. Richard J. Fruehan; Dr. Scott Story

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet

  12. DWPF DECON FRIT: SUMP AND SLURRY SOLIDS ANALYSIS

    SciTech Connect

    Crawford, C.; Peeler, D.; Click, D.

    2010-10-20

    The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. In this report, the physical and chemical characterization results of the slurry solids and sump solids are reported. Crawford et al. (2010) provide the results of the supernate analysis. The results of the sump solids are reported on a mass basis given the samples were essentially dry upon receipt. The results of the slurry solids were converted to a volume basis given approximately 2.4 grams of slurry solids were obtained from the {approx}4 liters of liquid slurry sample. Although there were slight differences in the analytical results between the sump solids and slurry solids the following general summary statements can be made. Slight differences in the results are also captured for specific analysis. (1) Physical characterization - (a) SEM/EDS analysis suggested that the samples were enriched in Li and Si (B and Na not detectable using the current EDS system) which is consistent with two of the four principle oxides of Frit 418 (B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O and SiO{sub 2}). (b) SEM/EDS analysis also identified impurities which were elementally consistent with stainless steel (i.e., Fe, Ni, Cr contamination). (c) XRD results indicated that the sump solids samples were amorphous which is consistent with XRD results expected for a Frit 418 based sample. (d) For the sump solids, SEM/EDS analysis indicated that the particle size of the sump solids were consistent with that of an as received Frit 418 sample from a current DWPF vendor. (e) For the slurry solids, SEM/EDS analysis indicated that the particle size range

  13. High Strength Carbide-Based Fibrous Monolith Materials for Solid Rocket Nozzles

    DTIC Science & Technology

    2008-02-19

    by winding FM filaments around a steel mandrel. 5 Figure 3. Fabrication of radially aligned, “pie” nozzle. Figure 4. FM solid rocket...brittle transition temperature ( DBTT ) between 3000°F and 3500°F so a change in behavior of the Gen 3 material between these temperatures would be possible...Figure 18 shows the setup used during these evaluations. The 1.5” x 1.5” monolithic and fibrous monolithic specimens were mounted in a steel

  14. Elastic-Plastic Deformation in Cracked Solids and Ductile Fracture Criterion.

    DTIC Science & Technology

    1982-01-01

    AT CRACK EXTENSION 8, MATERIAL - HY80 U1) YIELD STRESS- 560 MNm 2 (80KSI) SPEC"(.N TYPE OIMENSO 6 S, sm WJ 7 i b 101 WI0b 50 mm 90 DEC f-3PB W: 2a25mm...development of the non-linear fracture mechanics. The surthors also wish to acknowledge the financial supports by American Iron and Steel Institute...1966, pp. 393-399. [6] Dugdale, D. S., "Yielding of Steel Sheets Containing Slits," Journal of Mech. and Phys. of Solids, Vol. 8, 1960, pp. 100-104

  15. [Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].

    PubMed

    Zhang, Ya-hui; Zhang, Cheng; Wang, Ding-yong; Luo, Cheng-zhong; Yang, Xi; Xu, Feng

    2015-12-01

    To preliminarily discuss the mercury emission characteristics and its mass balance in each process of the iron and steel production, a typical iron and steel enterprise was chosen to study the total mercury in all employed materials and estimate the input and output of mercury during the steel production process. The results showed that the mercury concentrations of input materials in each technology ranged 2.93-159.11 µg · kg⁻¹ with the highest level observed in ore used in blast furnace, followed by coal of sintering and blast furnace. The mercury concentrations of output materials ranged 3.09-18.13 µg · kg⁻¹ and the mercury concentration of dust was the highest, followed by converter slag. The mercury input and the output in the coking plant were 1346.74 g · d⁻¹ ± 36.95 g · d⁻¹ and 177.42 g · d⁻¹ ± 13.73 g · d⁻¹, respectively. In coking process, mercury mainly came from the burning of coking coal. The sintering process was the biggest contributor for mercury input during the iron and steel production with the mercury input of 1075. 27 g · d⁻¹ ± 60.89 g · d⁻¹ accounting for 68.06% of the total mercury input during this production process, and the ore powder was considered as the main mercury source. For the solid output material, the output in the sintering process was 14.15 g · d⁻¹ ± 0.38 g · d⁻¹, accounting for 22.61% of the total solid output. The mercury emission amount from this studied iron and steel enterprise was estimated to be 553.83 kg in 2013 with the emission factor of 0.092 g · t⁻¹ steel production. Thus, to control the mercury emissions, iron and steel enterprises should combine with production practice, further reduce energy consumption of coking and sintering, or improve the quality of raw materials and reduce the input of mercury.

  16. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    DTIC Science & Technology

    2013-08-01

    and around particle inclusions within the WZ. In the case of FSW aluminum to steel , the structure often seen is one of steel particles dispersed...the microstructure and mechanical performance of dissimilar FSWs between aluminum and steel , this study focuses on the characterization of the...MICROSTRUCTURAL CHARACTERIZATION OF FRICTION STIR WELDED ALUMINUM - STEEL JOINTS By ERIN ELIZABETH PATTERSON A thesis submitted in

  17. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  18. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel drums. 178.504 Section 178.504...-bulk Performance-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2...

  19. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  20. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  1. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  2. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  3. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  4. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  5. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  6. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  7. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  8. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  9. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  10. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  11. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  12. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  13. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  14. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  15. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable...

  16. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  17. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  18. 75 FR 8746 - Certain Steel Grating From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... COMMISSION Certain Steel Grating From China AGENCY: United States International Trade Commission. ACTION... retarded, by reason of subsidized and less-than-fair-value imports from China of certain steel gratings... ``certain steel grating, consisting of two or more pieces of steel, including load- bearing pieces and...

  19. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  20. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  1. 19 CFR 360.101 - Steel import licensing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Steel import licensing. 360.101 Section 360.101 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.101 Steel import licensing. (a) In general. (1) All imports of basic steel...

  2. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  3. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  4. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  5. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  6. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  7. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  8. Theory of Solid Surfaces.

    DTIC Science & Technology

    1976-05-01

    A~ —~ on 022 CAMBRIDGE UNIV (ENGLAND) CAVEND ISH LAB —. FIG 20/12 —“1THEORY OF SOLID SURFACES .(U) MAY 76 ~J C INKS ON, P W ANDERSON AF AFOSR...t_ ~ - ~ - ~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~ Grant Number AFOSR 73—2le~9 ~ Theory of Solid Surfaces J.C. INKSON and P.W. ANDERSON Cavendish Laboratory... solid state techniques to the theory of nucleii and neutron stars . On surfaces an important : ew development is described in the theory of catalysis

  9. The solid state

    SciTech Connect

    Guinier, A.; Remi, J.

    1989-01-01

    This book is an introduction to the solid state for students and non-specialists. Authors aim to relate the macroscopic properties of solids (usually crystalline) to models of their atomic structure. Thermal expansion, the electronic conductivity of metals, ferromagnetism, plastic deformation and diffusion in real systems are among specific topics addressed. Advanced mathematical explanations are set off from the rest of the text in boxed sections for readers wishing a more indepth treatment of topics. Abbreviated bibliography included. For academic collections in solid state physics.

  10. Solid propellant motor

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  11. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.

  12. Austenite grain coarsening in microalloyed steels

    NASA Astrophysics Data System (ADS)

    Cuddy, L. J.; Raley, J. C.

    1983-10-01

    A uniform, fine-grain structure is essential in steels, particularly for strip and plate, that are to meet demands for high strength and toughness. To produce such microstructures, every step of the high-temperature processing of the steel must be carefully controlled, beginning with grain coarsening that occurs during reheating for slab rolling. Extremely coarse or nonuniform grain structures in the reheated slab are difficult to refine by subsequent hot working. Accordingly, the grain-coarsening behavior of laboratory heats of C-Mn-Si base steels and of such steels with additions of Al, V, Ti, or Nb was examined to understand the principles governing the behavior of this class of steels. The grain-coarsening temperature (the temperature at which abnormal or discontinuous growth occurs) varies with the type and concentration of the microalloy addition; an approximate relation is presented. Generally the grain-coarsening temperature increases with, but is lower than, the temperature required for complete dissolution of the microalloy carbide or nitride present. Thus, steels containing the very insoluble TiN coarsen at much higher temperatures than steels containing the more soluble VCN. These results agree qualitatively with predictions of models of grain-boundary pinning by precipitate particles.

  13. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity.

    PubMed

    Schütz, Marta K; Moreira, Rebeca; Bildstein, Olivier; Lartigue, Jean-Eric; Schlegel, Michel L; Tribollet, Bernard; Vivier, Vincent; Libert, Marie

    2014-06-01

    The availability of respiratory substrates, such as H2 and Fe(II,III) solid corrosion products within nuclear waste repository, will sustain the activities of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB). This may have a direct effect on the rate of carbon steel corrosion. This study investigates the effects of Shewanella oneidensis (an HOB and IRB model organism) on the corrosion rate by looking at carbon steel dissolution in the presence of H2 as the sole electron donor. Bacterial effect is evaluated by means of geochemical and electrochemical techniques. Both showed that the corrosion rate is enhanced by a factor of 2-3 in the presence of bacteria. The geochemical experiments indicated that the composition and crystallinity of the solid corrosion products (magnetite and vivianite) are modified by bacteria. Moreover, the electrochemical experiments evidenced that the bacterial activity can be stimulated when H2 is generated in a small confinement volume. In this case, a higher corrosion rate and mineralization (vivianite) on the carbon steel surface were observed. The results suggest that the mechanism likely to influence the corrosion rate is the bioreduction of Fe(III) from magnetite coupled to the H2 oxidation.

  14. The Corrosion Behavior of Carbon Steel in Sulfide Aqueous Media at 30°C

    NASA Astrophysics Data System (ADS)

    El Mendili, Yassine; Abdelouas, Abdesselam; Bardeau, Jean-François

    2014-04-01

    In this paper, we studied the effect of sulfide ions on the corrosion behavior of carbon steel to simulate the geological disposal of high-level radioactive waste. In geological storage conditions, sulfidogenic environment was sustained by sulfate-reducing bacteria. Corrosion tests were conducted in systems in a controlled atmosphere of 5% H2/N2. Batch experiments were conducted at 30°C for 1 month with steel coupons immersed in Na2S solutions. The structural characterization of the corrosion products was investigated by scanning electron microscope/energy dispersive x-ray spectroscopy, confocal micro-Raman spectrometry, and x-ray diffraction. In the absence of sulfide ion, a magnetite (Fe3O4) corrosion product layer was formed on steel surface while in the presence of sulfide ions we observed the formation of a poorly crystallized irons sulfide at low-sulfide concentration (1 mg/L) and a solid adherent pyrrhotite layer at higher sulfide concentration (5-15 mg/L). The strong drop in steel corrosion rate with sulfide concentration was revealed and related to the formation of well-crystallized pyrrhotite.

  15. Effect of alloy composition on high-temperature bending fatigue strength of ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Ahn, Yong-Sik; Song, Jeon-Young

    2011-12-01

    Exhaust manifolds are subjected to an environment in which heating and cooling cycles occur due to the running pattern of automotive engines. This temperature profile results in the repeated bending stress of exhaust pipes. Therefore, among high-temperature characteristics, the bending fatigue strength is an important factor that affects the lifespan of exhaust manifolds. Here, we report on the effect of the alloy composition, namely the weight fraction of the elements Cr, Mo, Nb, and Ti, on the high-temperature bending fatigue strength of the ferritic stainless steel used in exhaust manifolds. Little difference in the tensile strength and bending fatigue strength of the different composition steels was observed below 600 °C, with the exception of the low-Cr steel. However, steels with high Cr, Mo, or Nb fractions showed considerably larger bending fatigue strength at temperatures of 800 °C. After heating, the precipitates from the specimens were extracted electrolytically and analyzed using scanning electron microscopy energy dispersive spectrometry and transmission electron microscopy. Alloying with Cr and Mo was found to increase the bending fatigue strength due to the substitutional solid solution effect, while alloying with Nb enhanced the strength by forming fine intermetallic compounds, including NbC and Fe2Nb.

  16. Joining techniques for a reduced activation 12Cr steel for inertial fusion energy

    SciTech Connect

    Hunt, R. M.; El-Dasher, B.; Choi, B. W.; Torres, S. G.

    2014-10-01

    At Lawrence Livermore National Laboratory, we are developing a reduced activation ferritic martensitic steel that is based on the ferritic martensitic steel HT-9. As a part of the development of this steel, we tested a series of welding processes for characterization, including conventional welds (electron beam, tungsten inert gas, and laser) as well as solid-state welds (hot isostatic pressing). We also heat treated the joints at various temperatures between 750 °C and 1050 °C to find a suitable normalization scheme. The modified HT-9 reduced activation ferritic martensitic steel appears highly suitable to welding and diffusion bonding. All welds showed good quality fusion zones with insignificant cracking or porosity. Additionally, a heat treatment schedule of 950 °C for one hour caused minimal grain growth while still converging the hardness of the base metal with that of the fusion and heat-affected zones. Also, modified HT-9 diffusion bonds that were created at temperatures of at least 950 °C for two hours at 103 MPa had interface tensile strengths of greater than 600 MPa. The diffusion bonds showed no evidence of increased hardness nor void formation at the diffusion bonded interface.

  17. Spreading of lithium on a stainless steel surface at room temperature

    SciTech Connect

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2015-11-10

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.

  18. Improving Cleanliness of 95CrMo Drill Rod Steel by Slag Refining

    NASA Astrophysics Data System (ADS)

    Wang, Linzhu; Yang, Shufeng; Li, Jingshe; Wu, Tuo; Liu, Wei; Xiong, Jiaze

    2016-02-01

    Industrial experiments were performed to improve the cleanliness of 95CrMo drill rod steel by slag refining. Higher steel cleanliness, lower corrosion, and small inclusions were obtained using the optimal slag composition (pctCaO/pctSiO2 = 3.7 to 4, pctCaO/pctAl2O3 = 6 to 8). Layered composite inclusions formed during vacuum decarburizing refining. CaS first precipitated around the spinel and subsequently formed inclusions in which solid CaS-CaO wrapped around the Al2O3-MgO-SiO2-CaO system as the modification and diffusion progressed. The thermodynamic equilibrium between slag and liquid 95CrMo steel at 1873 K (1600 °C) was also studied to understand the effect of slag composition on the oxygen content and absorption capacity for Al2O3. A mathematical model based on an investigation of slag viscosity and the interfacial tension between slag and inclusions was used to predict the size of critical inclusions for different slags. The evolution of typical inclusions is discussed in terms of the study of reactions between slag and steel.

  19. Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnects

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Simner, Steven P.; Stevenson, Jeffry W.

    2005-08-01

    To protect solid oxide fuel cells (SOFCs) from chromium poisoning and improve metallic interconnect stability, manganese cobaltite spinel protection layers with a nominal composition of Mn1.5Co1.5O4 were thermally grown on Crofer22 APU, a ferritic stainless steel. Thermal, electrical and electrochemical investigations indicated that the spinel protection layers not only significantly decreased the contact area specific resistance (ASR) between a LSF cathode and the stainless steel interconnect, but also inhibited the sub-scale growth on the stainless steel by acting as a barrier to the inward diffusion of oxygen. A long-term thermal cycling test demonstrated excellent structural and thermomechanical stability of these spinel protection layers, which also acted as a barrier to outward chromium cation diffusion to the interconnect surface. The reduction in the contact ASR and prevention of Cr migration achieved by application of the spinel protection layers on ferritic stainless steel resulted in improved stability and electrochemical performance of SOFCs.

  20. Spreading of lithium on a stainless steel surface at room temperature

    DOE PAGES

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; ...

    2015-11-10

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less

  1. HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel

    SciTech Connect

    Hsiung, L; Tumey, S; Fluss, M; Serruys, Y; Willaime, F

    2011-08-30

    Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y{sub 4}Al{sub 2}O{sub 9} complex-oxide nanoparticles in the ODS steel imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than {approx}2 nm and amorphous cluster-domains smaller than {approx}2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

  2. Tribological performance of hard carbon coatings on 440C bearing steel

    NASA Astrophysics Data System (ADS)

    Kustas, Frank N.; Misra, Mohan S.; Shepard, Donald F.; Froechtenigt, Joseph F.

    1990-12-01

    Hard carbon coating such as diamond and diamond-like c :bon (also referred to as amorphous carbon) have received considerable attention for tribological applications due to their high hardness high modulus and desirable surface properties. Unfortunately most of the deposition techniques induce high substrate temperatures that temper traditional bearing steels and reduce the substrate load-carrying capability. Therefore to effectively use these desirable coatings a lower temperature deposition technique is required. Ion beam deposition offers essentially ambient temperature conditions accurate control ofprocess parameters and good coating-substrate adhesion. To use these attributes a test program was initiated to deposit mass analyzed high purity carbon and methane ions onto molybdenum and 440C bearing steel for subsequent characterization by Raman spectroscopy and friction-wear tests. Preliminary results for a coating deposited from a CO source showed an amorphous carbon/microcrystalline graphite structure which exhibited very high microhardness and a 3-fold reduction in coefficient of friction for unlubricated tests compared to untreated 440C steel. In addition incrementally increasing the applied load up to a factor of 5 resulted in progressively lower coefficients of friction only a minor increase (about 11) in the wear scar depth and no dramatic coating delamination or damage. Therefore an amorphous carbon/graphite coating applied to 440C steel at ambient temperature exhibits solid lubricating film characteristics with extremely high load-carrying capability. *Work performed under Martin Marietta Independent Research and Development Project D-8 1R Materials Technology. 116

  3. Deterioration in Fracture Toughness of 304LN Austenitic Stainless Steel Due to Sensitization

    NASA Astrophysics Data System (ADS)

    Ghosh, Swati; Kain, V.; Ray, A.; Roy, H.; Sivaprasad, S.; Tarafder, S.; Ray, K. K.

    2009-12-01

    The aim of this report is to examine the influence of sensitization on the mechanical properties of AISI grade 304LN stainless steel with special emphasis on its fracture toughness. A series of stainless steel samples has been sensitized by holding at 1023 K for different time periods ranging from 1 to 100 hours followed by water quenching. The degree of sensitization (DOS) for each type of the varyingly heat-treated samples has been measured by an electrochemical potentiodynamic reactivation (EPR) test. The microstructures of these samples have been characterized by optical metallography, scanning electron microscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD) analyses, together with measurements of their hardness and tensile properties. The fracture toughness of the samples has been measured by the ball indentation (BI) technique and the results are validated by conducting conventional J-integral tests. It is revealed for the first time that the fracture toughness and ductility of AISI 304LN stainless steel deteriorate significantly with increased DOS, while the tensile strength (TS) values remain almost unaltered. The results have been critically discussed in terms of the depletion of solid solution strengtheners, the nature of the grain boundary precipitations, and the strain-induced martensite formation with the increasing DOS of the 304LN stainless steel.

  4. Accumulation and annealing of radiation defects under low-temperature electron and neutron irradiation of ODS steel and Fe-Cr alloys

    NASA Astrophysics Data System (ADS)

    Arbuzov, V. L.; Goshchitskii, B. N.; Sagaradze, V. V.; Danilov, S. E.; Kar'kin, A. E.

    2010-10-01

    The processes of accumulation and annealing of radiation defects at low-temperature (77 K) electron and neutron irradiation and their effect on the physicomechanical properties of Fe-Cr alloys and oxide dispersion strengthened (ODS) steel have been studied. It has been shown that the behavior of radiation defects in ODS steel and Fe-Cr alloys is qualitatively similar. Above 250 K, radiation-induced processes of the solid solution decomposition become conspicuous. These processes are much less pronounced in ODS steel because of specific features of its microstructure. Processes related to the overlapping of displacement cascades under neutron irradiation have been considered. It has been shown that, in this case, it is the increase in the size of vacancy clusters, rather than the growth of their concentration, that is prevailing. Possible mechanisms of the radiation hardening of the ODS steel and the Fe-13Cr alloy upon irradiation and subsequent annealing have been discussed.

  5. Effect of microalloying elements on the structure and properties of low-carbon and ultralow-carbon cold-rolled steels

    NASA Astrophysics Data System (ADS)

    Girina, O. A.; Fonshtein, N. M.; Storozheva, L. M.

    1994-03-01

    Cold-rolled steels used for the forged components of automobiles should exhibit high, partly mutually-exclusive properties: high forgeability with desirably high strength, resistance to aging combined with hardenability at temperatures for drying paint coatings, etc. Satisfaction of these requirements is provided to a considerable degree by microalloying. The final mechanical properties of cold-rolled steel depend on such structural parameters of hot-rolled strip as texture, the amount of dissolved C and N atoms in α-solid solution, and ferrite grain size. With constant hot rolling production schedules these structural parameters are governed by steel composition, in particular by the type of microalloying. In this work the effect is considered for dispersed microalloying elements, i.e., phosphorus, boron, titanium, and nïobium, on the final mechanical properties of low- and ultralow-carbon steels.

  6. Recycling galvanized steel: Operating experience and benefits

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.

    1993-08-01

    In response to the increase in consumption of galvanized steel for automobiles in the last decade and the problems associated with remelting larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is recovered electrolytically as dendritic powder. The dezinced ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant to continuously treat loose scrap, with a design capacity of 48,000 tonnes annually, has been in operation in East Chicago, Indiana since early in 1993. The first 450 t of scrap degalvanized in the pilot plant have residual zinc below 0.01% and sodium dragout below 0.01%. Use of degalvanized steel scrap decreases raw materials, environmental compliance, and opportunity costs to steel- and iron-makers. Availability of clean degalvanized scrap may enable integrated steel producers to recycle furnace dusts to the sinter plant and EAF shops to produce flat products without use of high quality scrap alternatives such as DRI, pig iron, or iron carbide. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap. The quantities of zinc available by the year 2000 from prompt and obsolete automotive scrap win approach 25% of zinc consumed in the major automotive production centers of the world. Zinc recycling from galvanized steel scrap, either before or after scrap melting, will have to be implemented.

  7. Alloy dissolution in argon stirred steel

    NASA Astrophysics Data System (ADS)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  8. The investigation of the deformation wave hardening effect on the strength of the medium and low alloy steels

    NASA Astrophysics Data System (ADS)

    Kirichek, A. V.; Barinov, S. V.; Yashin, A. V.; Kolontsov, S. E.

    2017-02-01

    The article presents the data on the effect of wave deformation hardening on the strength of the 45, 40X and 35 HGSA steel. To improve the strength of these steels, it is proposed to create structured areas consisting of alternating solid and viscous-plastic sections in their surface layer. The evenness of arrangement of the sections is characterized by the overlap factor. The studies found that wave deformation treatment of the samples, made of the 45, 40X 35HGSA steel, made it possible to increase the tensile strength by 8, 4.2 and 13%, the values of elastic deformations – by 37, 81 and 51% during their hardening with overlapping coefficients 0.7; 0.9 and 0.7, respectively.

  9. Steel Creek wildlife: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Giffin, M.A.; Patterson, K.K.

    1988-03-01

    Reptile and amphibian populations in Steel Creek below L-Lake were assessed in monthly or quarterly sampling programs. Thirty-eight species of reptiles or amphibians were collected during 1987 in the Steel Creek corridor below the L-Lake impoundment, and in the delta and channel. Juvenile turtles and alligators, and larval amphibians were observed or collected during the study, indicating continued reproduction in Steel Creek. The reptile and amphibian populations in Steel Creek show no indication of any effect due to the impoundment of the lake or the operation of L-Reactor. Waterfowl and associated birds in Steel Creek below L-Lake were observed, in conjunction with other sampling programs, during winter--spring and fall--winter migrations. Nine species of waterfowl and five species of associated birds were observed in 1987 in the Steel Creek corridor below the L-Lake impoundment and in the delta and channel.

  10. Modernization of Controls Improves Productivity and Reduces Energy Costs at a Large Steel Plant (Weirton Steel Plant)

    SciTech Connect

    2000-04-01

    In 1996 and 1997, Weirton Steel upgraded the utilities control systems at its main steel manufacturing plant in Weirton, WV. In response to increasing energy costs and the need to remain competitive in the steel industry, Weirton Steel commissioned a comprehensive energy management study of the facility, which provided the basis for an energy management control strategy.

  11. Radial Distribution of Martensitic Phase Transformation in a Metastable Stainless Steel under Torsional Deformation: A Synchrotron X-ray Diffraction Study

    SciTech Connect

    Cakmak, Ercan; Choo, Hahn; An, Ke; Ren, Yang

    2011-01-01

    The strain-induced martensitic phase transformation in a metastable 304 L stainless steel under torsional deformation was investigated using synchrotron X-ray diffraction. The measured radial distribution of the martensite phase fraction in a solid cylindrical specimen agrees well with the prediction based on a combination of transformation kinetics and a radial plastic strain distribution equation.

  12. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    SciTech Connect

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities

  13. Ultrahigh Carbon Steels and Their Laminates

    DTIC Science & Technology

    1990-02-01

    PROGRAM PROJECT TASK WORK UNIT 11LitME NT NO. No. NO. NO I I TITLE tiAtluda Seca.r.ty Ck~iaialasonJ Ultrahigh Carbon Steels and their laminates...PROM Aug. 1984 To- Fe~r--9O February 1, 1906 1S. SUPPLEMENTARY NOTATION Amore coinpetc tte of tie-program is: Low Density and Tough Steels with High...Hardenabihzty: Processing, Testing and Evaluation of UHC steels and their laminates 17 COSATI CODES Is.. SUBJECT TERMS (CoAtInai" on uvwrue iroleemary

  14. Thermal embrittlement of reactor vessel steels

    SciTech Connect

    Corwin, W.R.; Nanstad, R.K.; Alexander, D.J.; Stoller, R.E.; Wang, J.A.; Odette, G.R.

    1995-06-01

    As a result of observations of possible thermal embrittlement from recent studies with welds removed from retired steam generators of the Palisades Nuclear Plant (PNP), an assessment was made of thermal aging of reactor pressure vessel (RPV) steels under nominal reactor operating conditions. Discussions are presented on (1) data from the literature regarding relatively low-temperature thermal embrittlement of RPV steels; (2)relevant data from the US power reactor-embrittlement data base (PR-EDB); and (3)potential mechanisms of thermal embrittlement in low-alloy steels.

  15. Direct Alloying of Steel with Nickel Concentrate

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhikhina, I. D.; Proshunin, I. E.

    2016-08-01

    A technology of alloying steel with nickel reduced from nickel concentrate is analysed and developed. Limits of reduction concentration areas are defined. An optimal composition of nickel concentrate pellets and a method of feeding them into the furnace are deduced from experiments. It is proved that when pellets made of nickel concentrate and coke are added into the charge during steel smelting by the technology of alloyed scrap remelting, nickel recovery achieves 92-95%. The technology was tested by smelting DSP-40 steel.

  16. Strain hardening of steel EP836

    SciTech Connect

    Lyadskaya, A.A.; Lappa, R.M.; Spuskanyuk, V.Z.

    1986-03-01

    The authors investigate the effect of different combinations of cold hydraulic pressing and heat treatment on the physical and mechanical properties of steel EP836 (03N17K10V10MT), containing 0.03% C, 16-17% Ni, 10-11.5% Co, 9.5-11.5% W, 1% Ti, 1% Mo, and 0.15% A1. Deformation of the unaged steel resulted in insignificant hardening without a decrease in plasticity; this agrees with the results of investigations of other steels of this class.

  17. Tritiated Water Interaction with Stainless Steel

    SciTech Connect

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  18. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  19. ELECTRON IRRADIATION OF SOLIDS

    DOEpatents

    Damask, A.C.

    1959-11-01

    A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

  20. The Organic Solid State.

    ERIC Educational Resources Information Center

    Cowan, Dwaine O.; Wlygul, Frank M.

    1986-01-01

    Reviews interesting and useful electrical, magnetic, and optical properties of the organic solid state. Offers speculation as to areas of fruitful research. Discusses organic superconductors, conducting organic polymers, organic metals, and traces recent history of creation of organic metals. (JM)

  1. Solid Earth: Introduction

    NASA Astrophysics Data System (ADS)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  2. The solid waste dilemma

    USGS Publications Warehouse

    Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.

    1996-01-01

    In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.

  3. Solid Waste Treatment Technology

    ERIC Educational Resources Information Center

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  4. Internal friction in solids

    NASA Astrophysics Data System (ADS)

    Wert, C. A.

    1986-09-01

    Study of the damping of vibrations in solids has developed into an acoustical spectroscopy which can elucidate many geometrical, thermodynamic, and kinetic characteristics of solids. In a relatively brief 15 years, between 1935 and 1950, Clarence Zener contributed physical insight, analytical procedures, and suggestions for important topics which persist even today. This review traces development of ideas and techniques from that period to the present. It uses chiefly as examples the flow of heat across vibrating reeds (and the corollary Gorsky effect), the Snoek effect in interstitial alloys, and the Zener effect in substitutional alloys. Internal friction of molecular reorientation in polymeric solids is described. Finally, the joint use of internal friction and dielectric loss is demonstrated to provide additional insight into molecular configurations in solids which are both mechanical and electric dipoles.

  5. Steel pressure vessels for hydrostatic pressures to 50 kilobars.

    PubMed

    Lavergne, A; Whalley, E

    1978-07-01

    Cylindrical steel pressure vessels are described that can be used for hydrostatic pressures up to 50 kilobars. Monoblock vessels of 350 maraging steel can be used to 40 kilobars and compound vessels with an inner vessel of 350 maraging steel and an outer vessel of 300 maraging steel to 50 kilobars. Neither requires the cylinder to be end loaded, and so they are much easier to use than the more usual compound vessels with a tungsten carbide inner and steel outer vessel.

  6. Solid polymer electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  7. Solid electrolyte cell

    NASA Technical Reports Server (NTRS)

    Richter, R. (Inventor)

    1982-01-01

    A solid electrolyte cell including a body of solid ionized gas-conductive electrolyte having mutually spaced surfaces and on which is deposited a multiplicity of mutually spaced electrodes is described. Strips and of bare substances are interposed between electrodes, so that currents of ionic gas may be established between the electrodes via the bare strips, whereby electrical resistance for the cells is lowered and the gas conductivity is enhanced.

  8. Solid polymer electrolytes

    DOEpatents

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  9. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  10. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes.

  11. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  12. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  13. Keep solids in suspension

    SciTech Connect

    Gladki, H.Z.

    1997-10-01

    Mixing is an important operation in the CPI. It is not synonymous with agitation. Mixing is a random distribution into and through one another of two or more initially separate phases. Within that broad definition is the important specialty area of liquid-solid dispersion. This paper addresses the dispersion of solids in lower concentrations that don`t affect the rheological properties of the fluid. The just suspended condition represents the lowest grade of complete suspension, but this level of agitation is the most efficient for solids-liquid agitation. Higher mixing speeds waste energy. Undersized mixers need replacing. The top-entering mixer has a long history in the CPI and the environmental area. Many suspension studies were run with this type. These papers result in empirical correlations for just suspension conditions to scale up from laboratory measurement. Variables considered are the agitation speed, liquid and solids physical properties, solids concentration, system geometry and impeller type. Lately, submersible mixers are becoming more popular, but there are no published sizing methods. This article will explain how to define the critical hydraulic conditions in the tank to reach just solids suspension for a submersible agitator of the type described here as FJFA (Free Jet Flow Agitator).

  14. Solid Mathematical Marbling.

    PubMed

    Lu, Shufang; Jin, Xiaogang; Jaffer, Aubrey; Gao, Fei; Mao, Xiaoyang

    2016-05-25

    Years of research have been devoted to computer-generated two-dimensional marbling. However, three-dimensional marbling has yet to be explored. In this paper, we present mathematical marbling of three-dimensional solids which supports a compact random-access vector representation. Our solid marbling textures are created by composing closed-form 3D pattern tool functions. These tool functions are an injection function and five deformation functions. The injection function is used to generate basic patterns, and the deformation functions are responsible for transforming the basic pattern into complex marbling effects. The resulting representation is feature preserving and resolution-independent. Our approach can render high-quality images preserving both the sharp features and the smooth color variations of a solid texture. When implemented on the GPU, our representation enables efficient color evaluation during the real-time solid marbling texture mapping. The color of a point in the volume space is computed by the 3D pattern tool functions from its coordinates. Our method consumes very little memory because only the mathematical functions and their corresponding parameters are stored. In addition, we develop an intuitive user interface and a genetic algorithm to facilitate the solid marbling texture authoring process. We demonstrate the effectiveness of our approach through various solid marbling textures and 3D objects carved from them.

  15. Characterization of solid waste conversion and cogeneration systems

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Three basic technologies for recovering energy from Municipal Solid Waste (MSW) were considered: direct combustion using a waterwall incinerator in which the heat from burning refuse is converted to steam by circulating water in steel tubes jacketing the interior of the incinerator; manufacture of a relatively uniform shredded, pulverized or pelleted refuse-derived fuel (RDF) for supplemental firing in a utility boiler; and pyrolysis or destructive distillation of MSW to extract a low-Btu fuel gas. While resource recovery and energy recovery systems can be installed independently, the processes described include both energy and resource recovery systems as well as necessary pollution control equipment for gaseous emissions.

  16. Impact ignition of new and aged solid explosives

    SciTech Connect

    Chidester, S.K.; Tarver, C.M.; Lee, C.G.

    1998-07-01

    The critical impact velocities of 60.1 mm diameter steel projectiles required to produce ignition are measured for new and aged confined charges of the HMX-based solid explosives LX-10, LX-04, PBX-9404, and PBX-9501. External blast overpressure gauges are employed to determine the relative violence of the explosive reactions. The experiment is modeled in DYNA2D using recently developed material strength models, and thermal energy deposition thresholds for impact ignition are found. {copyright} {ital 1998 American Institute of Physics.}

  17. Silver solid-state bonding: a review and assessment

    SciTech Connect

    Heiple, C.R.

    1986-07-07

    Silver solid-state bonding is a joining process which has been largely developed at Rocky Flats and used successfully in a number of programs. The implementation of this technology has generally been successful, but significant problems have been encountered in 316 stainless steel-to-1100 aluminum transition joints. In this paper, the known information about the effect of variables in the various steps in the bonding process on final bond strength is reviewed. On the basis of this information, processing steps or variables with the greatest potential for causing large reductions in the final bond strength are identified. 54 figs., 9 tabs.

  18. Numerical simulation of dynamic fracture and failure in solids

    SciTech Connect

    Chen, E.P.

    1994-05-01

    Numerical simulation of dynamic fracture and failure processes in solid continua using Lagrangian finite element techniques is the subject of discussion in this investigation. The specific configurations in this study include penetration of steel projectiles into aluminum blocks and concrete slabs. The failure mode in the aluminum block is excessive deformation while the concrete slab fails by hole growth, spallation, and scabbing. The transient dynamic finite element code LS-DYNA2D was used for the numerical analysis. The erosion capability in LS-DYNA2D was exercised to carry out the fracture and failure simulations. Calculated results were compared to the experimental data. Good correlations were obtained.

  19. Influence of process parameters to composite interface organization and performance of liquid/solid bimetal

    NASA Astrophysics Data System (ADS)

    Rong, S. F.; Zhu, Y. C.; Wu, Y. H.; Yang, P. H.; Duan, X. L.; Zhou, H. T.

    2015-12-01

    The liquid-solid composite technique was used to prepare the high carbon high chromium steel (HCHCS) and low alloy steel (LCS) bimetal composite materials by means of insert casting method. The influence of some process parameters such as liquid-solid ratio, preheat temperature, pouring temperature on the interface microstructure and mechanical properties were studied. Interface microstructure and element distribution were analyzed. The results show that the interface microstructure becomes better, and bonding area becomes thicker with the increase of the volume of liquid to solid ratio, preheating temperature and pouring temperature. When the liquid-solid ratio is 8:1, the preheating temperature is 300 °C and the pouring temperature is 1565 °C, a good metallurgical bonding area without any hole can be obtained with the interface combination of diffusion and fusion. The composite interface structure was composed of a core material diffusion layer, a cooling solidification layer, a direction growth layer and some cell particles. The elements of C, Cr and Mn diffuse from the HCHCS side to the alloy steel side. The microhardness increased in the gradient from the LCS side to the HCHCS. The microhardness of the interface is significantly higher than that of LCS.

  20. Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light

    SciTech Connect

    Zhang, Yan; Yu, Jianqiang; Sun, Kai; Zhu, Yukun; Bu, Yuyu; Chen, Zhuoyuan

    2014-05-01

    Graphical abstract: If the conduction band potential of In{sub 2}O{sub 3} is more negative than the corrosion potential of stainless steel, photo-induced electrons will be transferred from In{sub 2}O{sub 3} to the steel, thus shifting the potential of the steel into a corrosion immunity region and preventing the steel from the corrosion. - Highlights: • Indium oxide performed novel application under visible light. • Indium oxide by sol–gel method behaved better photoelectrochemical properties. • Electrons were transferred to stainless steel from indium oxide once light on. - Abstract: This paper reports the photoelectrochemical cathodic protection of 304 stainless steel by In{sub 2}O{sub 3} thin-film under visible-light. The films were fabricated with In{sub 2}O{sub 3} powders, synthesized by both sol–gel (In{sub 2}O{sub 3}-sg) and solid-state (In{sub 2}O{sub 3}-ss) processes. The photo-induced open circuit potential and the photo-to-current efficiency measurements suggested that In{sub 2}O{sub 3} could be a promising candidate material for photoelectrochemical cathodic protection of metallic alloys under visible light. Moreover, the polarization curve experimental results indicated that In{sub 2}O{sub 3}-sg thin-film can mitigate the corrosion potential of 304 stainless steel to much more negative values with a higher photocurrent density than the In{sub 2}O{sub 3}-ss film under visible-light illumination. All the results demonstrated that the In{sub 2}O{sub 3}-sg thin-film provides a better photoelectrochemical cathodic protection for 304 stainless steel than In{sub 2}O{sub 3}-ss thin-film under visible-light illumination. The higher photoelectrochemical efficiency is possibly due to the uniform thin films produced with the smaller particle size of In{sub 2}O{sub 3}-sg, which facilitates the transfer of the photo-induced electrons from bulk to the surface and suppresses the charge recombination of the electrons and holes.

  1. Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application

    DTIC Science & Technology

    2010-03-01

    AFRL-RX-WP-TP-2010-4149 EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR AIRCRAFT LANDING GEAR...March 2010 – 01 March 2010 4. TITLE AND SUBTITLE EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR...Code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on

  2. Materials design data for reduced activation martensitic steel type EUROFER

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  3. TiC reinforced cast chromium steels

    SciTech Connect

    Dogan, Omer N.; Rawers, James C.; Hawk, Jeffrey A.; Schrems, Karol K.

    2003-11-01

    A series of new titanium carbide reinforced cast chromium steels were developed for wear applications. Objective of the program was to enhance wear resistant alloys and, if possible, improve mechanical properties. The new steels which were melted in a vacuum induction furnace contained 12 Cr, 3-5 Ti, 1-2 C in weight percent. Alloying with Ti changed the precipitate microstructure from Cr carbide to TiC dispersed in a martensitic matrix. Yield strength and impact resistance improved with Ti alloying. Wear rates of the cast Cr/TiC steels, (determined from high- and low-stress abrasion tests, erosion test, and scratch tests) were generally lower than both the as-cast and heat-treated AISI type 440°C steel and were often further reduced by increasing the Ti alloy concentration. The exceptions were the erosion test for which all materials had similar wear rate.

  4. TiC reinforced cast Cr steels

    SciTech Connect

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  5. Steel - Structural, reinforcing; Pressure vessel, railway

    SciTech Connect

    Not Available

    1986-01-01

    This book contains specifications for structural steel used in various constructions; concrete reinforcement; plate and forgings for boilers and pressure vesseles; rails, axles, wheels and other accessories for railway service.

  6. High performance corrosion-resistant structural steels

    SciTech Connect

    Fletcher, F.B.; Ferry, B.N.; Beblo, D.G.

    1995-12-31

    A new corrosion-resistant structural steel named Duracorr was developed for low maintenance when compared to conventional structural steels. The new stainless steel is a dual phase composition between the established 12% Cr, ferritic T409 and martensitic T410 grades. Attractive combinations of hardness, strength, toughness, weldability and formability are derived from a microstructure that is a dual phase mixture of ferrite and martensite. The Duracorr composition, UNS S41003, provides for a microstructure of ferrite and austenite to be present throughout the hot rolling process. Cooling to room temperature causes transformation of the austenite to martensite. Subsequent tempering of the steel creates minimum mechanical properties of 275 MPa (40 ksi) yield strength and 455 MPa (66 ksi) tensile strength with room temperature longitudinal Charpy impact values typically greater than 34 J (25 ft-lbs).

  7. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  8. Abbreviated annealing of high-speed steel

    SciTech Connect

    Zablotskii, V.K.; Bartel, G.P.

    1987-07-01

    The authors investigate the structural and phase transformations during the heating, holding, and cooling of high-speed steels of two basic groups: tungsten (R18, R12, R12F3, and R12F4K5) and tungsten-molybdenum (R6M5, 10R6M5, R6M5K5, R8M3, 10R8M3, and R8M3K6S) steels in the forged state. They propose a cooling regime with complete alpha-gamma recrystallization whose implementation at a Soviet steel plant has made it possible to reduce the duration of heat treatment and increase productivity by 20% in cutting the annealed high-speed steels.

  9. Clean Cast Steel Technology, Phase IV

    SciTech Connect

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  10. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  11. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  12. Lightweight Steel Solutions for Automotive Industry

    NASA Astrophysics Data System (ADS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  13. Hydrogen compatibility handbook for stainless steels

    SciTech Connect

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  14. When do oxide precipitates form during consolidation of oxide dispersion strengthened steels?

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; De Geuser, F.; Malaplate, J.; Sornin, D.

    2016-12-01

    The processing of oxide dispersion strengthened (ODS) steels involves ball milling, where the oxide forming species are driven in solid solution. Precipitation of the nanometre-scale oxides occurs during subsequent annealing and consolidation. This paper reports in-situ Small-Angle X-ray Scattering measurements of the formation of these precipitates during heating of cold-compressed as-milled powders. Clusters are already initially present, and precipitation starts at 300 °C. The maximum precipitate density is achieved at 600 °C, followed by very slow coarsening at higher temperature. These results open the way to understand the coupled evolution of precipitation and crystalline defects during heating and consolidation of ODS steels.

  15. Temperature Histories of Structural Steel Welds Calculated Using Solidification-Boundary Constraints

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.

    2016-09-01

    Temperature histories of structural steel deep-penetration welds are presented, which are calculated using numerical-analytical basis functions and solidification-boundary constraints. These weld temperature histories can be adopted as input data to various types of computational procedures, which include numerical models for prediction of solid-state phase transformations and mechanical response. In addition, these temperature histories can be used parametrically for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that uses three-dimensional constraint conditions whose two-dimensional projections are mapped within transverse cross sections of experimentally measured solidification boundaries. In addition, the present study uses experimentally measured estimates of the heat effect zone edge to examine the consistency of calculated temperature histories for steel welds.

  16. Finite element based simulation on friction stud welding of metal matrix composites to steel

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Tharmaraj, R.; Velu, P. Shenbaga; Kumar, R.

    2016-05-01

    Friction welding is a solid state joining technique used for joining similar and dissimilar materials with high integrity. This new technique is being successfully applied to the aerospace, automobile, and ship building industries, and is attracting more and more research interest. The quality of Friction Stud Welded joints depends on the frictional heat generated at the interface. Hence, thermal analysis on friction stud welding of stainless steel (AISI 304) and aluminium silicon carbide (AlSiC) combination is carried out in the present work. In this study, numerical simulation is carried out using ANSYS software and the temperature profiles are predicted at various increments of time. The developed numerical model is found to be adequate to predict temperature distribution of friction stud weld aluminium silicon carbide/stainless steel joints.

  17. Fabrication of biomimetic superhydrophobic steel surface under an oxygen rich environment

    NASA Astrophysics Data System (ADS)

    Yin, Liang; Zhang, Haifeng; Li, Yuyang; Wang, Yang; Zhang, Ruimin; Chen, Weiping; Liu, Xiaowei

    2016-09-01

    A novel and facile approach was proposed to fabricate superhydrophobic surface with similar micro- and nanostructures of lotus leaf on the steel foil. The acidic solution was used to grow Fe3O4 nanosheet films consisted of hydrochloric acid and potassium chloride under an O2 rich environment. The as-prepared superhydrophobic steel surfaces had water CA (contact angle) of 166 ± 2°. The water SA (sliding angle) was less than 2°. In order to estimate the drag reduction property of the as-prepared surface, the experimental setup of the liquid-solid friction drag was proposed. The drag reduction ratio for superhydrophobic surface was 61.3% compare with untreated surface at a flow velocity of 1.66 m s-1.

  18. Adsorption of chemically synthesized mussel adhesive peptide sequences containing DOPA on stainless steel.

    PubMed

    Chandrasekaran, Neha; Dimartino, Simone; Janmale, Tejraj; Gieseg, Steven P; Fee, Conan J

    2015-08-01

    The adsorption of proteins at solid-liquid interfaces is important in biosensor and biomaterial applications. Marine mussels affix themselves to surfaces using a highly cross-linked, protein-based adhesive containing a high proportion of L-3,4-dihydroxyphenylalanine (DOPA) residues. In this work, the effect of DOPA residues on protein adhesion on stainless steel surfaces was studied using a quartz crystal microbalance with dissipation system. The adsorption of two repetitive peptide motifs, KGYKYYGGSS and KGYKYY, from the mussel Mytilus edulis foot protein 5 on stainless steel was studied before and after chemo-enzymatic modification of tyrosine residues to DOPA using mushroom tyrosinase. Conversion from tyrosine to DOPA, evaluated by HPLC, was in the range 70-99%. DOPA-modified sequences showed fourfold greater adhesion than unmodified M. edulis foot protein 5 motifs.

  19. Conjugate (solid/fluid) computational fluid dynamics analysis of the space shuttle solid rocket motor nozzle/case and case field joints

    NASA Technical Reports Server (NTRS)

    Doran, D.; Keeton, L. W.; Dionne, P. J.; Singhal, A. K.

    1989-01-01

    Three-dimensional, conjugate (solid/fluid) heat transfer analyses of new designs of the Solid Rocket Motor (SRM) nozzle/case and case field joints are described. The main focus was to predict the consequences of multiple rips (or debonds) in the ambient cure adhesive packed between the nozzle/case joint surfaces and the bond line between the mating field joint surfaces. The models calculate the transient temperature responses of the various materials neighboring postulated flow/leakpaths into, past, and out from the nozzle/case primary O-ring cavity and case field capture O-ring cavity. These results were used to assess if the design was failsafe (i.e., no potential O-ring erosion) and reusable (i.e., no excessive steel temperatures). The models are adaptions and extensions of the general purpose PHOENICS fluid dynamics code. A non-orthogonal coordinate system was employed and 11,592 control cells for the nozzle/case and 20,088 for the case field joints are used with non-uniform distribution. Physical properties of both fluid and solids are temperature dependent. A number of parametric studies were run for both joints with results showing temperature limits for reuse for the steel case on the nozzle joint being exceeded while the steel case temperatures for the field joint were not. O-ring temperatures for the nozzle joint predicted erosion while for the field joint they did not.

  20. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  1. Thermal treatment of dissimilar steels' welded joints

    NASA Astrophysics Data System (ADS)

    Nikulina, A. A.; Denisova, A. S.; Gradusov, I. N.; Ryabinkina, P. A.; Rushkovets, M. V.

    2016-04-01

    In this paper combinations of chrome-nickel steel and high-carbon steel, produced by flash butt welding after heat treatment, are investigated. Light and electron microscopic studies show that the welded joints after heat treatment have a complex structure consisting of several phases as initial welded joints. A martensite structure in welded joints after thermal treatment at 300... 800 °C has been found.

  2. High strength and high toughness steel

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.

    1979-01-01

    A structural steel which possess both high strength and high toughness and has particular application of cryogenic uses. The steel is produced by the utilization of thermally induced phase transformation following heating in a three-phase field in iron-rich alloys of the Fe-Ni-Ti system, with a preferred composition of 12% nickel, 0.5% titanium, the remainder being iron.

  3. High strength, high ductility low carbon steel

    DOEpatents

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  4. Stainless Steels’ Resistance to Hydroerosion,

    DTIC Science & Technology

    1980-07-30

    Omel’chenko, engineer, S. L. Millichenko, A. G. Aleksandrov, Candidates of Technical Sciences Thanks to a high corrosion resistance stainless steels have...has great significance. The resistance to hydroerosion of several of the most common types of stainless steels which have roughly the same corrosion ...the failure is first localized in the ferrite phase and occurs by means of plastic deformation and the development of fatigue micro- cracks both

  5. Diffraction Measurements on CPF Steel Fatigue Samples

    DTIC Science & Technology

    1995-05-30

    I I I I I I I I I I I I I I I I I I I - 535 - Diffraction Measurements on CPF Steel Fatigue Samples by Percy Clark*, Tom...to the formation of a detectable fatigue crack, a series of hourglass shaped specimens were fabricated from 350WT steel , cyclically loaded to...were made between these experiments and earlier less successful similar experiments conducted on HY80 samples. The limitations and potential for the

  6. Occupational rhinitis due to steel welding fumes.

    PubMed

    Castano, Roberto; Suarthana, Eva

    2014-12-01

    Exposure to welding fumes is a recognized respiratory hazard. Occupational asthma but not occupational rhinitis has been documented in workers exposed to steel welding fumes. We report a 26-year-old male with work-related rhinitis symptoms as well as lower airways symptoms suggestive of occupational asthma and metal fume fever associated with exposure to steel welding fumes. The diagnosis of occupational rhinitis was confirmed by specific inhalation challenge.

  7. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1985-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  8. Improved High Strength Armor Steel through Texturing

    DTIC Science & Technology

    1979-09-01

    80 I 14 02w INTRODUCTION During metal manufacturing processing, such as rolling of sheet and plate, the polycrystalline aggregate of the material...of the quenched martensite has been documented by previous investigators including Kula and Dhosi who ob- served that thermomechanical processing can...textured armor steel exhibits improved ballistic resistance to conventionally uncontrolled rolled steels of equal hardness at normal obliquity. This

  9. Laser Rewelding of 304L Stainless Steel.

    SciTech Connect

    Maguire, Michael Christopher; Rodelas, Jeffrey

    2016-11-01

    Laser welding of 304L stainless steel during component fabrication has been found to alter the chemical composition of the steel due to material evaporation. During repair or rework, or during potential reuse/ rewelding of certain components, the potential exists to alter the composition to the extent that the material becomes prone to solidification cracking. This work aims to characterize the extent of this susceptibility in order to make informed decisions regarding rewelding practice and base metal chemistry allowances.

  10. Regularities of bainitic steel deformation transition

    NASA Astrophysics Data System (ADS)

    Gromov, V. E.; Nikitina, E. N.; Ivanov, Yu F.; Aksenova, K. V.

    2016-09-01

    Quantitative analysis of defect and carbide subsystems evolution in medium-carbon bainitic steel subjected to compressive strain up to 36% was performed by means of transmission electron diffraction microscopy. Dislocation substructure and carbide phase parameters dependence on degree of deformation are identified, possible reasons of staging in their changes are discussed. It is suggested that the reason for bainitic steel softening at high (over 15%) degrees of deformation is activation of deformation microtwinning process.

  11. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  12. Steels with controlled hardenability for induction hardening

    NASA Astrophysics Data System (ADS)

    Shepelyakovskii, K. Z.

    1980-07-01

    Steels of the CH and LH type developed in the Soviet Union permit the use of a new method of induction hardening — bulk-surface hardening — and efficient utilization of the high-strength conditions (σb = 230-250 kgf/mm2). These steels make it possible to improve the structural strength, operating characteristics, service life, and reliability of critical heavily loaded machine parts. At the same time, CH steels make it possible to reduce by a factor of 2-3 the quantity of alloying elements, reduce the electrical energy for heat treatment, and completely exclude the cost of quenching oil for heat treatment in automatic equipment with high labor productivity, while retaining good working conditions. All this leads to substantial savings in production and operation. For example, when transmission gears (cylindrical and conical) are manufactured from LH steels the annual savings amount to more than 700,000 rubles at two automobile plants. Machine parts of CH steels — half axles and bearings in railway cars —have saved respectively six and four million rubles annually. The introduction of controlled-hardenability steels for induction hardening is a necessary condition for technological progress in machine construction and metallurgy.

  13. Development of Steel Foam Materials and Structures

    SciTech Connect

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  14. Ultrahigh Ductility, High-Carbon Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  15. Microstructural studies of advanced austenitic steels

    SciTech Connect

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  16. Ion-nitriding of austenitic stainless steels

    SciTech Connect

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-12-31

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors.

  17. Effects of interactive particles on steel weldability

    SciTech Connect

    Eijk, C. van der; Grong, O.; Babu, S.S.; David, S.A.

    1998-11-01

    The concept of intragranular ferrite nucleation by specific inclusions is well known from steel weld metals. In this paper it is shown that the idea can be transferred to steel metallurgy. Control of the inclusion composition and thus the nucleation potency with respect to ferrite can readily be achieved by the choice of an appropriate deoxidation procedure. Thermodynamic (Thermo-Calc) calculations in addition to X-ray mappings and microprobe analysis are employed to understand and predict the inclusion formation in the steels. Three different steels, two of them Ti-deoxidized, and one Al-Ca-deoxidized, have been subjected to weld thermal simulation at different peak temperatures and cooling programs followed by Charpy-V notch testing at {minus}40 C to reveal differences in the HAZ toughness. The results from these tests show that the titanium deoxidized steels exhibit excellent toughness in the grain coarsened HAZ after high heat input weld simulation because of a refinement of the microstructure. This observation is in contrast to the more traditional behavior of the conventional Al-Ca deoxidized steels, which show no evidence of intragranular ferrite formation.

  18. Utilization of structural steel in buildings

    PubMed Central

    Moynihan, Muiris C.; Allwood, Julian M.

    2014-01-01

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is ‘rationalization’—providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in ‘embodied’ carbon emissions. PMID:25104911

  19. Anisotropy in solid inflation

    SciTech Connect

    Bartolo, Nicola; Matarrese, Sabino; Ricciardone, Angelo; Peloso, Marco E-mail: sabino.matarrese@pd.infn.it E-mail: angelo.ricciardone@pd.infn.it

    2013-08-01

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(φ)F{sup 2} model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton φ and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(φ)F{sup 2} model.

  20. Anisotropy in solid inflation

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo

    2013-08-01

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(phi)F2 model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton phi and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(phi)F2 model.