Science.gov

Sample records for 121-foot wing span

  1. Design and aerodynamic characteristics of a span morphing wing

    NASA Astrophysics Data System (ADS)

    Yu, Yuemin; Liu, Yanju; Leng, Jinsong

    2009-03-01

    Flight vehicles are often designed to function around a primary operating point such as an efficient cruise or a high maneuverability mode. Performance and efficiency deteriorate rapidly as the airplane moves towards other portions of the flight envelope. One solution to this quandary is to radically change the shape of the aircraft. This yields both improved efficiency and a larger flight envelope. This global shape change is an example of morphing aircraft . One concept of morphing is the span morphing wing in which the wingspan is varied to accommodate multiple flight regimes. This type of design allows for at least two discreet modes of the aircraft. The original configuration, in which the extensible portion of the wing is fully retracted, yields a high speed dash mode. Fully extending the wing provides the aircraft with a low speed mode tailored for fine tracking and loiter tasks. This paper discusses the design of a span morphing wing that permits a change in the aspect ratio while simultaneously supporting structural wing loads. The wing cross section is maintained by NACA 4412 rib sections . The span morphing wing was investigated in different configurations. The wing area and the aspect ratio of the span morphing wing increase as the wings pan increases. Computational aerodynamics are used to estimate the performance and dynamic characteristics of each wing shape of this span morphing wing as its wingspan is changed. Results show that in order to obtain the same lift, the conventional wing requires a larger angle of attach(AOA) than that of the span morphing wing.The lift of the span morphing wing increases as the wing span ,Mach number and AOA increases.

  2. Finite Span Wings in Compressible Flow

    NASA Technical Reports Server (NTRS)

    Krasilschchikova, E A

    1956-01-01

    Equations are developed using the source distribution method for the velocity potential function and pressure on thin wings in steady and unsteady motion. Closed form solutions are given for harmonically oscillating wings of general plan form including the effect of the wing wake. Some useful examples are presented in an appendix for arrow, semielliptical, and hexagonal plan form wings.

  3. Span load distribution for tapered wings with partial-span flaps

    NASA Technical Reports Server (NTRS)

    Pearson, H A

    1937-01-01

    Tables are given for determining the load distribution of tapered wings with partial-span flaps placed either at the center or at the wing tips. Seventy-two wing-flap combinations, including two aspect ratios, four taper ratios, and nine flap lengths, are included. The distributions for the flapped wing are divided into two parts, one a zero lift distribution due primarily to the flaps and the other an additional lift distribution due to an angle of attack of the wing as a whole. Comparison between theoretical and experimental results for wings indicate that the theory may be used to predict the load distribution with sufficient accuracy for structural purposes.

  4. Distribution of Structural Weight of Wing Along the Span

    NASA Technical Reports Server (NTRS)

    Savelyev, V. V.

    1946-01-01

    In the present report the true weight distribution law of the wing structure along the span is investigated. It is shown that the triangular distribution and that based on the proportionality to the chords do not correspond to the actual weight distribution, On the basis of extensive data on wings of the CAHI type airplane formulas are obtained from which it is possible to determine the true diagram of the structural weight distribution along the span from a knowledge of only the geometrical dimensions of the wing. At the end of the paper data are presented showing how the structural weight is distributed between the straight center portion and the tapered portion as a function of their areas.

  5. Computational wing optimization and comparisons with experiment for a semi-span wing model

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Haney, H. P.; Ballhaus, W. F.

    1978-01-01

    A computational wing optimization procedure was developed and verified by an experimental investigation of a semi-span variable camber wing model in the NASA Ames Research Center 14 foot transonic wind tunnel. The Bailey-Ballhaus transonic potential flow analysis and Woodward-Carmichael linear theory codes were linked to Vanderplaats constrained minimization routine to optimize model configurations at several subsonic and transonic design points. The 35 deg swept wing is characterized by multi-segmented leading and trailing edge flaps whose hinge lines are swept relative to the leading and trailing edges of the wing. By varying deflection angles of the flap segments, camber and twist distribution can be optimized for different design conditions. Results indicate that numerical optimization can be both an effective and efficient design tool. The optimized configurations had as good or better lift to drag ratios at the design points as the best designs previously tested during an extensive parametric study.

  6. Prediction of span loading of straight-wing/propeller combinations up to stall. [propeller slipstreams and wing loading

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.; Gray, L.; Kisielowski, E.

    1975-01-01

    A method is presented for calculating the spanwise lift distribution on straight-wing/propeller combinations. The method combines a modified form of the Prandtl wing theory with a realistic representation of the propeller slipstream distribution. The slipstream analysis permits calculations of the nonuniform axial and rotational slipstream velocity field of propeller/nacelle combinations. This nonuniform field was then used to calculate the wing lift distribution by means of the modified Prandtl wing theory. The theory was developed for any number of nonoverlapping propellers, on a wing with partial or full-span flaps, and is applicable throughout an aspect ratio range from 2.0 and higher. A computer program was used to calculate slipstream characteristics and wing span load distributions for a number of configurations for which experimental data are available, and favorable comparisons are demonstrated between the theoretical predictions and the existing data.

  7. Wind-tunnel investigation of tapered wings with ordinary ailerons and partial-span split flaps

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J

    1937-01-01

    Report presents the results of an investigation made in the NACA 7 by 10-foot wind tunnel to determine the aerodynamic properties of tapered wings having partial-span flaps for high lift and ordinary ailerons for lateral control. Each of two Clark-y wings, tapered 5:1 and 5:3, was equipped with partial-span split flaps of two lengths and with ordinary ailerons extending from the outboard ends of the flap to the wing tips. Measurements of wing forces and moments and of aileron hinge moments were made for the two conditions of flaps neutral and deflected.

  8. Calculation of the aerodynamic characteristics of tapered wings with partial-span flaps

    NASA Technical Reports Server (NTRS)

    Person, Henry A; Anderson, Raymond F

    1939-01-01

    Factors derived from wing theory are presented. By means of these factors, the angle of zero lift, the lift-curve slope, the pitching moment, the aerodynamic-center position, and the induced drag of tapered wings with partial-span flaps may be calculated. The factors are given for wings of aspect ratios 6 and 10 , of taper ratios from 0.25 to 1.00, and with flaps of various length. An example is presented of the method of application of the factors. Fair agreement with experimental results is shown for two wings of different taper ratio having plain flaps of various spacing.

  9. Effect of wing loading, aspect ratio, and span loading of flight performances

    NASA Technical Reports Server (NTRS)

    Gothert, B

    1940-01-01

    An investigation is made of the possible improvements in maximum, cruising, and climbing speeds attainable through increase in the wing loading. The decrease in wing area was considered for the two cases of constant aspect ratio and constant span loading. For a definite flight condition, an investigation is made to determine what loss in flight performance must be sustained if, for given reasons, certain wing loadings are not to be exceeded. With the aid of these general investigations, the trend with respect to wing loading is indicated and the requirements to be imposed on the landing aids are discussed

  10. Theoretical symmetric span loading at subsonic speeds for wings having arbitrary plan form

    NASA Technical Reports Server (NTRS)

    Deyoung, John; Harper, Charles W

    1948-01-01

    A method is shown by which the symmetric span loading for a certain class of wings can be simply found. The geometry of these wings is limited only to the extent that they must have symmetry about the root chord, must have a straight quarter-chord line over the semispan, and must have no discontinuities in twist. A procedure is shown for finding the lift-curve slope, pitching moment, center of lift, and induced drag from the span load distribution. A method of accounting for the effects of Mach number and for changes in section lift-curve slope is also given. Charts are presented which give directly the characteristics of many wings. Other charts are presented which reduce the problem of finding the symmetric loading on all wings falling within the prescribed limits to the solution of not more than four simultaneous equations. The loadings and wing characteristics predicted by the theory are compared to those given by other theories and by experiment. It is concluded that the results given by the subject theory are satisfactory. The theory is applied to a number of wings to exhibit the effects of such variables as sweep, aspect ratio, taper, and twist. The results are compared and conclusions drawn as to the relative effects of these variables.

  11. Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Camello, Stephanie

    2015-01-01

    There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the ice shapes for the aerodynamic testing, ice-accretion testing will be conducted in the NASA Icing Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The ice shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D ice shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of ice than can be used. However, a full-span ice accretion will require 75 ft span of ice. This means there will be large gaps between these spanwise ice sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span ice shape from the three 1.5 ft span ice shapes from the three models.

  12. Spanwise loading distribution and wake velocity surveys of a semi-span wing

    NASA Technical Reports Server (NTRS)

    Felker, F. F., III; Piziali, R. A.; Gall, J. K.

    1982-01-01

    The spanwise distribution of bound circulation on a semi-span wing and the flow velocities in its wake were measured in a wind tunnel. Particular attention was given to documenting the flow velocities in and around the development tip vortex. A two-component laser velocimeter was used to make the velocity measurements. The spanwise distribution of bound circulation, three components of the time-averaged velocities throughout the near wake their standard deviations, and the integrated forces and moments on a metric tip as measured by an internal strain gage balance are presented without discussion.

  13. Low-speed aerodynamic performance of an aspect-ratio-10 supercritical-wing transport model equipped with a full-span slat and part-span and full-span double-slotted flaps

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1981-01-01

    An investigation was conducted in the Langley 4 by 7 Meter Tunnel to determine the static longitudinal and lateral directional aerodynamic characteristics of an advanced aspect ratio 10 supercritical wing transport model equipped with a full span leading edge slat as well as part span and full span trailing edge flaps. This wide body transport model was also equipped with spoiler and aileron roll control surfaces, flow through nacelles, landing gear, and movable horizontal tails. Six basic wing configurations were tested: (1) cruise (slats and flaps nested), (2) climb (slats deflected and flaps nested), (3) part span flap, (4) full span flap, (5) full span flap with low speed ailerons, and (6) full span flap with high speed ailerons. Each of the four flapped wing configurations was tested with leading edge slat and trailing edge flaps deflected to settings representative of both take off and landing conditions. Tests were conducted at free stream conditions corresponding to Reynolds number of 0.97 to 1.63 x 10 to the 6th power and corresponding Mach numbers of 0.12 to 0.20, through an angle of attack range of 4 to 24, and a sideslip angle range of -10 deg to 5 deg. The part and full span wing configurations were also tested in ground proximity.

  14. Determination of the Mass Moments and Radii of Inertia of the Sections of a Tapered Wing and the Center-of-Gravity Line along the Wing Span

    NASA Technical Reports Server (NTRS)

    Savelyev, V. V.

    1943-01-01

    For computing the critical flutter velocity of a wing among the data required are the position of the line of centers of gravity of the wing sections along the span and the mass moments and radii of inertia of any section of the wing about the axis passing through the center of gravity of the section. A sufficiently detailed computation of these magnitudes even if the weights of all the wing elements are known, requires a great deal of time expenditure. Thus a rapid competent worker would require from 70 to 100 hours for the preceding computations for one wing only, while hundreds of hours would be required if all the weights were included. With the aid of the formulas derived in the present paper, the preceding work can be performed with a degree of accuracy sufficient for practical purposes in from one to two hours, the only required data being the geometric dimensions of the outer wing (tapered part), the position of its longerons, the total weight of the outer wing, and the approximate weight of the longerons, The entire material presented in this paper is applicable mainly to wings of longeron construction of the CAHI type and investigations are therefore being conducted by CAHI for the derivation of formulas for the determination of the preceding data for wings of other types.

  15. Theoretical symmetric span loading due to flap deflection for wings of arbitrary plan form at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Deyoung, John

    1952-01-01

    A simplified lifting-surface theory is applied to the problem of evaluating span loading due to flap deflection for arbitrary wing plan forms. With the resulting procedure, the effects of flap deflection on the span loading and associated aerodynamic characteristics can be easily computed for any wing which is symmetrical about the root chord and which has a straight quarter-chord line over the wing semispan. The effects of compressibility and spanwise variation of section lift-curve slope are taken into account by the procedure. The method presented can also be used to calculate the downwash in the vertical center of the wake of a wing which has arbitrary spanwise loading.

  16. Flow characteristics of infinite-span wings with wavy leading edges

    NASA Astrophysics Data System (ADS)

    Perez-Torro, Rafael; Kim, Jae-Wook

    2016-11-01

    Implicit LES computations are performed for an infinite-span wing based on the NACA0021 aerofoil section with a sinusoidal wavy leading edge (WLE). At Re∞ = 1 . 2 ×105 and M∞ = 0 . 3 , the computations performed in this study show that three-dimensional laminar separation bubbles (LSBs) form at troughs of the undulated wing. Prior to stall, LSBs can be found in all troughs. However, past the stall angle, LSBs tend to group together in a collocated fashion, leaving regions of complete separation in between groups where a separated shear layer (SSL) is formed. It is found that the size of the LSB group is highly dependent on the number of WLE wavelengths used in the spanwise-periodic domain. The LSB group formation process is investigated by means of simulations where the geometry is slowly pitched from an angle of attack of α =10° to α =20° . The study also includes the analysis of instantaneous flow fields using Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques. The authors acknowledge the HPC facilities of the UK National Supercomputer Archer via the support of the UK Turbulence Consortium (EP/L000261/1) and the local Iridis4 at the University of Southampton.

  17. Modified Matrix Method for Calculating Steady-State Span Loading on Flexible Wings in Subsonic Flight

    NASA Technical Reports Server (NTRS)

    Gainer, Patrick A.; Aiken, William S., Jr.

    1959-01-01

    A method is presented for shortening the computations required to determine the steady-state span loading on flexible wings in subsonic flight. The method makes use of tables of downwash factors to find the necessary aerodynamic-influence coefficients for the application of lifting-line theory. Explicit matrix equations of equilibrium are converted into a matrix power series with a finite number of terms by utilizing certain characteristic properties of matrices. The number of terms in the series is determined by a trial-and-error process dependent upon the required accuracy of the solution. Spanwise distributions of angle of attack, airload, shear, bending moment, and pitching moment are readily obtained as functions of qm(sub R) where q denotes the dynamic pressure and mR denotes the lift-curve slope of a rigid wing. This method is intended primarily to make it practical to solve steady-state aeroelastic problems on the ordinary manually operated desk calculators, but the method is also readily adaptable to automatic computing equipment.

  18. Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees.

    PubMed

    Dainat, Benjamin; Evans, Jay D; Chen, Yan Ping; Gauthier, Laurent; Neumann, Peter

    2012-02-01

    Elevated winter losses of managed honeybee colonies are a major concern, but the underlying mechanisms remain controversial. Among the suspects are the parasitic mite Varroa destructor, the microsporidian Nosema ceranae, and associated viruses. Here we hypothesize that pathogens reduce the life expectancy of winter bees, thereby constituting a proximate mechanism for colony losses. A monitoring of colonies was performed over 6 months in Switzerland from summer 2007 to winter 2007/2008. Individual dead workers were collected daily and quantitatively analyzed for deformed wing virus (DWV), acute bee paralysis virus (ABPV), N. ceranae, and expression levels of the vitellogenin gene as a biomarker for honeybee longevity. Workers from colonies that failed to survive winter had a reduced life span beginning in late fall, were more likely to be infected with DWV, and had higher DWV loads. Colony levels of infection with the parasitic mite Varroa destructor and individual infections with DWV were also associated with reduced honeybee life expectancy. In sharp contrast, the level of N. ceranae infection was not correlated with longevity. In addition, vitellogenin gene expression was significantly positively correlated with ABPV and N. ceranae loads. The findings strongly suggest that V. destructor and DWV (but neither N. ceranae nor ABPV) reduce the life span of winter bees, thereby constituting a parsimonious possible mechanism for honeybee colony losses.

  19. Some steady and oscillating airfoil test results, including the effects of sweep, from the tunnel spanning wing

    NASA Technical Reports Server (NTRS)

    Carta, F. O.; St.hilaire, A. O.; Rorke, J. B.; Jepson, W. D.

    1979-01-01

    A large scale tunnel spanning wing was built and tested. The model can be operated as either a swept or unswept wing and can be tested in steady state or oscillated sinusoidally in pitch about its quarter chord. Data is taken at mid-span with an internal 6-component balance and is also obtained from miniature pressure transducers distributed near the center span region. A description is given of the system and a brief discussion of some of the steady and unsteady results obtained to date. These are the steady load behavior to Mach numbers of approximately 1.1 and unsteady loads, including drag, at a reduced frequency of approximately 0.1.

  20. Investigation of certain wing shapes with sections varying progressively along the span

    NASA Technical Reports Server (NTRS)

    Arsandaux, L

    1931-01-01

    This investigation has a double object: 1) the calculation of the general characteristics of certain wings with progressively varying sections; 2) the determination of data furnishing, in certain cases, some information on the actual distribution of the external forces acting on a wing. We shall try to show certain advantages belonging to the few wing types of variable section which we shall study and that, even if the general aerodynamic coefficients of these wings are not often clearly superior to those of certain wings of uniform section, the wings of variable section nevertheless have certain advantages over those of uniform section in the distribution of the attainable stresses.

  1. A flow visualization and aerodynamic force data evaluation of spanwise blowing on full and half span delta wings

    NASA Technical Reports Server (NTRS)

    Visser, K. D.; Nelson, R. C.; Ng, T. T.

    1989-01-01

    A wind-tunnel investigation has been performed to quantify the effects of a jet on the leading-edge vortices generated by a 70-deg-sweep sharp-edged delta wing at low Reynolds numbers. Efforts were made ot optimize the jet nozzle position with respect to maximum lift increments. Both half-span force-balance testing and half- and full-span flow visualization tests were conducted. Two angles of attack were investigated, 30 and 35 deg, at Reynolds numbers of 150,000 and 200,000. Aerodynamic enhancement, including lift and drag gains of about 20 and 17 percent respectively, were measured. Results indicate an optimum jet nozzle location to be close to the leading edge, tangent to the upper wing surface, and in a direction aligned parallel to the leading edge. Nozzle interference effects, especially near the apex, were not negligible.

  2. Technical and economic assessment of swept-wing span-distributed load concepts for civil and military air cargo transports

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The feasibility of large freighter aircraft was assessed, including the impact of military requirements on the performance, economics, and fuel consumption characteristics. Only configurations having net payloads of 272,155 to 544,311 kilograms contained within swept wings of constant chord were studied. These configurations were of advanced composite construction with controllable winglets and full-span digitally-controlled trailing-edge surfaces. Civil, military, and joint civil/military production programs were considered.

  3. Design of a Large Span-Distributed Load Flying-Wing Cargo Airplane

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.; Quartero, C. B.

    1977-01-01

    The design and operation of very large, long-range, subsonic cargo aircraft are considered. A design concept which distributes the payload along the wingspan to counterbalance the aerodynamic loads, with a resultant decrease in the in-flight wing bending moments and shear forces, is described. The decreased loading of the wing structure, coupled with the very thick wing housing the cargo, results in a relatively low overall structural weight in comparison to that of conventional aircraft.

  4. Theoretical antisymmetric span loading for wings of arbitrary plan form at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Deyoung, John

    1951-01-01

    A simplified lifting-surface theory that includes effects of compressibility and spanwise variation of section lift-curve slope is used to provide charts with which antisymmetric loading due to arbitrary antisymmetric angle of attack can be found for wings having symmetric plan forms with a constant spanwise sweep angle of the quarter-chord line. Consideration is given to the flexible wing in roll. Aerodynamic characteristics due to rolling, deflected ailerons, and sideslip of wings with dihedral are considered. Solutions are presented for straight-tapered wings for a range of swept plan forms.

  5. Viscous/potential flow about multi-element two-dimensional and infinite-span swept wings: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Olson, L. E.; Dvorak, F. A.

    1975-01-01

    The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary layer and potential flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.

  6. Investigation of a Spoiler-Type Lateral Control System on a Wing with Full-Span Flaps in the Langley 19-Foot Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Deters, Owen J; Russell, Robert T

    1947-01-01

    Tests of a partial-span model of a large bomber-type air1ane were conducted to determine the. aerodynamic characteristics of the wing equipped with full-span flaps and a retractable spoiler end aileron lateral control system. The arrangement consisted of (1) a double slotted flap extending over aproximate1y 86 percent of the wing semispan, (2) a 20-percent constant-percentage-chord aileron extending from the outboard end of the flap to the wing tip, and (3) a retractable spoiler, located at the 65-percent wing-chord station and extending from approximately 63 percent of the wing semispan to the wing tip. In addition, tests were made of a wing vent (of 1 and 2 percent of the wing chord located directly behind the spoiler), perforations in the spoiler, a blot or cut-out along the lower edge of the spoiler and spoilers of various spans. With full-span flaps deflected and with the 2-percent vent open or closed the initial stalling of the wing occurred at the tips, but with the vents closed there probably would be no appreciable loss in lateral control until maximum lift was reached. The l-percent vent increased the rolling effectiveness of the spoiler at small spoi1er deflections, particularly at high angles of attack with flaps deflected. With flaps deflected the 2-percent vent caused a large reduction in both the wing lift and rolling effectiveness of the spoiler at large angles of attack. However, at small angle of attack the 2-percent vent increased the rolling effectiveness of the spoiler at small spoiler deflections. The simultaneous operation of the spoiler and vent (in contrast to a vent fixed in the wing) would result in a large increase in the effectiveness of the spoiler and would avoid any loss in wing lift as in a fixed vent arrangement. The tests of the spoiler modifications revealed that (1) the spoiler perforations reduced the rolling-moment and yawing-moment coefficients but caused the spoiler hinge-moment coefficients to become more positive; (2) the

  7. Preliminary study of a large span-distributed-load flying-wing cargo airplane concept

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.

    1978-01-01

    An aircraft capable of transporting containerized cargo over intercontinental distances is analyzed. The specifications for payload weight, density, and dimensions in essence configure the wing and establish unusually low values of wing loading and aspect ratio. The structural weight comprises only about 18 percent of the design maximum gross weight. Although the geometric aspect ratio is 4.53, the winglet effect of the wing-tip-mounted vertical tails, increase the effective aspect ratio to approximately 7.9. Sufficient control power to handle the large rolling moment of inertia dictates a relatively high minimum approach velocity of 315 km/hr (170 knots). The airplane has acceptable spiral, Dutch roll, and roll-damping modes. A hardened stability augmentation system is required. The most significant noise source is that of the airframe. However, for both take-off and approach, the levels are below the FAR-36 limit of 108 db. The design mission fuel efficiency is approximately 50 percent greater than that of the most advanced, currently operational, large freighter aircraft. The direct operating cost is significantly lower than that of current freighters, the advantage increasing as fuel price increases.

  8. Effects of winglets on a first-generation jet transport wing. 7: Sideslip effects on winglet loads and selected wing loads at subsonic speeds for a full-span model

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.; Covell, Peter F.

    1986-01-01

    The effect of sideslip on winglet loads and selected wing loads was investigated at high and low subsonic Mach numbers. The investigation was conducted in two separate wind tunnel facilities, using two slightly different 0.035-scale full-span models. Results are presented which indicate that, in general, winglet loads as a result of sideslip are analogous to wing loads caused by angle of attack. The center-of-pressure locations on the winglets are somewhat different than might be expected for an analogous wing. The spanwise center of pressure for a winglet tends to be more inboard than for a wing. The most notable chordwise location is a forward center-of-pressure location on the winglet at high sideslip angles. The noted differences between a winglet and an analogous wing are the result of the influence of the wing on the winglet.

  9. Water tunnel experiments on span-wise variation of laminar separation bubbles for swept and unswept wings using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Gilbert, Jordan

    An inverted airfoil mounted above a flat plate was used to create laminar separation bubbles on a flat plate in water tunnel experiments at low Reynolds numbers. Boundary layer suction ensured that the flow remained attached to the wing. Two-dimensional PIV measurements were used to qualitatively and quantitatively characterize the spanwise bubble variation on an unswept wing and on the same wing featuring a 22 degree sweep. The separation bubbles were recorded at varied span-wise locations in a 31.5 cm wide region of the flow. The limitations of this measurement region were dictated by the focal length of the laser optic used for PIV measurements. The straight wing exhibited approximately uniform time averaged separation positions across the span of the wing. The reattachment locations varied only slightly which was expected due to the transition to turbulent flow before reattachment. A form of bubble "breathing" was observed in the laminar separation bubbles on the straight wing and is believed to have affected the mean reattachment locations for two data points recorded. The shedding frequencies on the straight wing were slightly higher than those obtained from CFD simulations. The swept wing planform showed significantly more variation in the mean separation and reattachment locations with respect to the leading edge of the wing. There is a general trend of the separation locations moving upstream in the direction of the aft leading edge. The reattachment points are shown to move downstream as the separation points move upstream relative to the leading edge and visa versa, displaying an inverse relationship between the two. The bubble lengths were found to be slightly longer on the swept wing compared to the straight wing usually by about 10%. The shedding frequencies on the swept wing were found to be lower than the straight wing. The quality of flow in the water tunnel may have degraded over time, showing signs of increased free stream turbulence. After data

  10. Full-scale semi-span tests of an advanced NLF business jet wing

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Jordan, Frank L., Jr.; Davis, Patrick J.; Muchmore, C. Byram

    1987-01-01

    An investigation has been conducted in the NASA Langley Research Center's 30- by 60-Foot Wind Tunnel on a full-scale semispan model to evaluate and document the low-speed, high-lift characteristics of a business-jet class wing utilizing the HSNLF(1)-0213 airfoil section and a single slotted flap system. In addition to the high-lift studies, evaluations of boundary layer transition effects, the effectiveness of a segmented leading-edge droop for improved stall/spin resistance, and roll control effectiveness with and without flap deflection were made. The wind-tunnel investigation showed that deployment of a single-slotted trailing-edge flap provided substantial increments in lift. Fixed transition studies indicated no adverse effects on lift and pitching-moment characteristics for either the cruise or landing configuration. Subscale roll damping tests also indicated that stall/spin resistance could be enhanced through the use of a properly designed leading-edge droop.

  11. Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti

    2016-01-01

    Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.

  12. Investigation of a free-tip rotor configuration for research on spanwise life distributions and wake velocity surveys of a semi-span wing with a discontinuous twist

    NASA Technical Reports Server (NTRS)

    Fortin, Paul; Kumagai, Hiroyuki

    1989-01-01

    A wind tunnel test was conducted in the NASA Ames 7 x 10 Foot Wind Tunnel to investigate the lift distribution on a semi-span wing with a discontinuous change in spanwise twist. The semi-span wing had a tip with an adjustable pitch angle independent on the inboard section pitch angle simulating the free-tip rotor blade when its free-tip is at a deflected position. The spanwise lift distribution over the wing and the tip were measured and three component velocity surveys behind the wing were obtained with a three dimensional laser Doppler velocimeter (LV) with the wing at one angle of attack and the tip deflected at different pitch angles. A six component internal strain gage balance was also used to measure total forces and moments on the tip. The three dimensional lift was computed from the two dimensional life distributions obtained from the LV and from the strain gage balance. The results from both experimental methods are shown to be in agreement with predictions made by a steady, three dimensional panel code, VSAERO.

  13. Low-speed aerodynamic performance of a high-aspect-ratio supercritical-wing transport model equipped with full-span slat and part-span double-slotted flaps

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.; Paulson, J. W., Jr.

    1979-01-01

    An investigation was conducted in the Langley V/STOL tunnel to determine the static longitudinal and lateral-directional aerodynamic characteristics of an advanced high-aspect-ratio supercritical-wing transport model equipped with a full-span leading-edge slat and part-span double-slotted trailing-edge flaps. This wide-body transport model was also equipped with spoiler and aileron control surfaces, flow-through nacelles, landing gear, movable horizontal tails, and interchangeable wing tips with aspect ratios of 10 and 12. The model was tested with leading-edge slat and trailing-edge flap combinations representative of cruise, climb, takeoff, and landing wing configurations. The tests were conducted at free-stream conditions corresponding to Reynolds numbers (based on mean geometric chord) of 0.97 to 1.63 x 10 to the 6th power and corresponding Mach numbers of 0.12 to 0.20, through an angle-of-attack range of -2 deg to 24 deg and a sideslip-angle range of -10 deg to 5 deg.

  14. Spanwise lift distributions and wake velocity surveys of a semi-span wing with a discontinuous twist

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki

    1989-01-01

    A wind tunnel test was conducted in the NASA-Ames 7 x 10 ft wind tunnel to investigate the lift distribution on a semispan wing with a discontinuous change in spanwise twist. The semispan wing had a tip with an adjustable pitch angle independent on the inboard section pitch angle simulating the free tip rotor blade when its free tip is at a deflected position. The spanwise lift distribution over the wing and the tip were measured and three component velocity surveys behind the wing were obtained with a 3-D laser Doppler velocimeter (LV) with the wing at one angle of attack and the tip deflected at different pitch angles. A six-component internal strain gage balance was also used to measure total forces and moments on the tip. The 3-D lift was computed from the 2-D lift distributions obtained from the LV and from the strain gage balance. The results from both experimental methods are shown to be in agreement with predictions made by a steady, 3-D panel code, VSAERO.

  15. Pretest Report for the Full Span Propulsive Wing/Canard Model Test in the NASA Langley 4 x 7 Meter Low Speed Wind Tunnel Second Series Test

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.

    1986-01-01

    A full span propulsive wing/canard model is to be tested in the NASA Langley Research Center (LaRC) 4 x 7 meter low speed wind tunnel. These tests are a continuation of the tests conducted in Feb. 1984, NASA test No.290, and are being conducted under NASA Contract NAS1-17171. The purpose of these tests is to obtain extensive lateral-directional data with a revised fuselage concept. The wings, canards, and vertical tail of this second test series model are the same as tested in the previous test period. The fuselage and internal flow path have been modified to better reflect an external configuration suitable for a fighter airplane. Internal ducting and structure were changed as required to provide test efficiency and blowing control. The model fuselage tested during the 1984 tests was fabricated with flat sides to provide multiple wing and canard placement variations. The locations of the wing and canard are important variables in configuration development. With the establishment of the desired relative placement of the lifting surfaces, a typically shaped fuselage has been fabricated for these tests. This report provides the information necessary for the second series tests of the propulsive wing/canard model. The discussion in this report is limited to that affected by the model changes and to the second series test program. The pretest report information for test 290 which is valid for the second series test was published in Rockwell report NR 83H-79. This report is presented as Appendix 1 and the modified fuselage stress report is presented as Appendix 2 to this pretest report.

  16. Effect of winglets on a first-generation jet transport wing. 5: Stability characteristics of a full-span wing with a generalized fuselage at high subsonic speeds

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.

    1978-01-01

    The effects of winglets on the static aerodynamic stability characteristics of a KC-135A jet transport model at high subsonic speeds are presented. The investigation was conducted in the Langley 8 foot transonic pressure tunnel using 0.035-scale wing panels mounted on a generalized research fuselage. Data were taken over a Mach number range from 0.50 to 0.95 at angles of attack ranging from -12 deg to 20 deg and sideslip angles of 0 deg, 5 deg, and -5 deg. The model was tested at two Reynolds number ranges to achieve a wide angle of attack range and to determine the effect of Reynolds number on stability. Results indicate that adding the winglets to the basic wing configuration produces small increases in both lateral and longitudinal aerodynamic stability and that the model stability increases slightly with Reynolds number. The winglets do increase the wing bending moments slightly, but the buffet onset characteristics of the model are not affected by the winglets.

  17. Small-Scale Transonic Investigation of the Effects of Partial-Span Leading-Edge Camber on the Aerodynamic Characteristics of a 50 Deg 38' Sweptback Wing of Aspect Ratio 2.98

    NASA Technical Reports Server (NTRS)

    Alford, William J., Jr.; Byrnes, Andrew L., Jr.

    1952-01-01

    A small-scale transonic investigation of two semispan wings of the same plan form was made in the Langley high-speed 7- by 10-foot tunnel through a Mach number range of 0.70 to 1.10 and a mean-test Reynolds number range of 745,000 to 845,000 to determine the effects of partial-span leading-edge camber on the aerodynamic characteristics of a swept-back wing. This paper presents the results of the investigation of wing-alone and wing-fuselage configurations of the two wings; one, was an uncambered wing and the other had the forward 45 percent of the chord cambered over the outboard 55 percent of the span. The semispan wings had 50deg 38ft sweepback of their quarter-chord lines, aspect ratio of 2.98, taper ratio of 0.45, and modified NACA 64A-series airfoil sections tapered in thickness ratio. Lift, drag, pitching moment, and root-bending moment were obtained for these configurations. The results indicated that, for the wing-alone configuration, use of the partial-span leading-edge camber provided an increase in maximum lift-drag ratios up to a Mach number of 0.95, after which no gain was realized. For the wing-fuselage combination, the partial-span leading-edge camber appeared to cause no gain in maximum lift-drag ratio throughout the test range of Mach numbers. The lift-curve slopes of the partial-span leading-edge camber configurations indicated no significant change over the basic configurations in the subsonic range but resulted in slight reductions at the higher Mach numbers. No significantly large changes in pitching-moment-curve slopes or lateral center of additional loading were indicated because of the modification.

  18. Effects of Small Angles of Sweep and Moderate Amounts of Dihedral on Stalling and Lateral Characteristics of a Wing-Fuselage Combination Equipped with Partial- and Full-Span Double Slotted Flaps

    NASA Technical Reports Server (NTRS)

    Teplitz, Jerome

    1944-01-01

    Tests of a wing-fuselage combinations incorporating NACA 65-series airfoil sections were conducted in the NACA 19-foot pressure tunnel. The investigation included the tests with flaps neutral and with partial- and full-span double slotted flaps deflected to determine the effects of (1) variations of wing sweep between -4 degrees and 8 degrees on stalling and lateral stability and control characteristics and (2) variations of dihedral between 0 degree and 6.75 degrees on lateral stability characteristics.

  19. Finite-span rotating flat-plate wings at low reynolds number and the effects of aspect ratio

    NASA Astrophysics Data System (ADS)

    Carr, Zakery R.

    In the complex and dangerous environments of the modern warrior and emergency professional, the small size, maneuverability, and stealth of flapping-wing micro air vehicles (MAVs), scaled to the size of large insects or hummingbirds, has the potential to provide previously inaccessible levels of situational awareness, reconnaissance capability, and flexibility directly to the front lines. Although development of such an efficient, autonomous, and capable MAV is years away, there are immediate contributions that can be made to the fundamental science of the flapping-wing-type propulsion that makes MAVs so attractive. This investigation contributes to those fundamentals by considering the unsteady vortex dynamics problem of a rigid, rectangular flat plate at a fixed angle of attack rotating from rest---a simplified hovering half-stroke. Parameters are chosen to be biologically-relevant and relevant to MAVs operating at Reynolds numbers of O (103), and experiments are performed in a 50% by mass glycerin-water mixture. These experiments use novel application of methodologies verified by rigorous uncertainty analysis. The overall objective is to understand the vortex formation and forces as well as aspect ratio ( AR) effects. Of interest is the overall, time-varying, three-dimensional vortex structure obtained qualitatively from dye visualization and quantitatively from volumes reconstructed using planar stereoscopic digital particle image velocimetry (S-DPIV) measurements. The velocity information from S-DPIV also allows statements to be made on leading-edge vortex (LEV) stability, spanwise flow, LEV and tip-vortex (TV) circulation, and numerous circulation scalings. Force measurements are made and the lift coefficient is discussed in the context of the flow structure, the dimensional lift and the ability to relate velocity and force measurements going forward. AR effects is a topic of continued interest to those performing MAV-related research and also a primary

  20. Low-Speed Investigation of a Full-Span Internal-Flow Jet-Augmented Flap on a High-Wing Model with a 35 deg Swept Wing of Aspect Ratio 7.0

    NASA Technical Reports Server (NTRS)

    Turner, Thomas R.

    1960-01-01

    An investigation of a full-span 17-percent-chord internal-flow jet-augmented flap on an aspect-ratio-7.0 wing with 35 deg of sweepback has been made in the Langley 300-MPH 7- by 10-foot tunnel. Blowing over the conventional elevator and blowing down from a nose jet were investigated as a means of trimming the large diving moments at the high momentum and high lift coefficients. The results of the investigation showed that the model with the horizontal tail 0.928 mean aerodynamic chord above the wing-chord plane was stable to the maximum lift coefficient. The large diving-moment coefficients could be trimmed either with a downward blowing nose jet or by blowing over the elevator. Neither the downward blowing nose jet nor blowing over the elevator greatly affected the static longitudinal stability of the model. Trimmed lift coefficients up to 8.8 with blowing over the elevator and up to 11.4 with blowing down at the nose were obtained when the flap was deflected 70 deg and the total momentum coefficients were 3.26 and 4.69.

  1. Effects of Winglets on a First-Generation Jet Transport Wing. 7. Sideslip Effects on Winglet Loads and Selected Wing Loads at Subsonic Speeds for a Full-Span Model

    DTIC Science & Technology

    1986-09-01

    bending The results presented in this report moments at the wing-fuselage juncture. are referenced to the stability-axis sys- tem for the aircraft ... longitudinal aerody- As a result of these indicated gains namic characteristics. Wing and winglet in performance, NASA and the U.S. Air force and moment

  2. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  3. Charts for Determining Preliminary Values of Span-load, Shear, Bending-moment, and Accumulated-torque Distributions of Swept Wings of Various Taper Ratios

    NASA Technical Reports Server (NTRS)

    Wollner, Bertram C

    1948-01-01

    Contains charts for use in determining preliminary values of the spanwise-load, shear, bending-moment, and accumulated-torque distributions of swept wings. The charts are based on strip theory and include four aerodynamic-load distributions, two section-moment distributions, and two inertia-load distributions. The taper ratios considered cover the range from 1.0 to 0 and the results are applicable to any angle of sweep.

  4. Effects of Compressibility on the Maximum Lift Characteristics and Spanwise Load Distribution of a 12-Foot-Span Fighter-Type Wing of NACA 230-Series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    West, F E

    1945-01-01

    Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.

  5. Grade Span.

    ERIC Educational Resources Information Center

    Renchler, Ron

    2000-01-01

    This issue reviews grade span, or grade configuration. Catherine Paglin and Jennifer Fager's "Grade Configuration: Who Goes Where?" provides an overview of issues and concerns related to grade spans and supplies profiles of eight Northwest schools with varying grade spans. David F. Wihry, Theodore Coladarci, and Curtis Meadow's…

  6. Span efficiency in hawkmoths

    PubMed Central

    Henningsson, Per; Bomphrey, Richard J.

    2013-01-01

    Flight in animals is the result of aerodynamic forces generated as flight muscles drive the wings through air. Aerial performance is therefore limited by the efficiency with which momentum is imparted to the air, a property that can be measured using modern techniques. We measured the induced flow fields around six hawkmoth species flying tethered in a wind tunnel to assess span efficiency, ei, and from these measurements, determined the morphological and kinematic characters that predict efficient flight. The species were selected to represent a range in wingspan from 40 to 110 mm (2.75 times) and in mass from 0.2 to 1.5 g (7.5 times) but they were similar in their overall shape and their ecology. From high spatio-temporal resolution quantitative wake images, we extracted time-resolved downwash distributions behind the hawkmoths, calculating instantaneous values of ei throughout the wingbeat cycle as well as multi-wingbeat averages. Span efficiency correlated positively with normalized lift and negatively with advance ratio. Average span efficiencies for the moths ranged from 0.31 to 0.60 showing that the standard generic value of 0.83 used in previous studies of animal flight is not a suitable approximation of aerodynamic performance in insects. PMID:23658113

  7. Results of recent experiments with slotted wings

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1925-01-01

    This report gives the results of a recent series of experiments performed on a wing designed for a cantilever monoplane. Both wings were trapezial in their ground plan, with their tips rounded elliptically. These wing sections combine all known devices for increasing the lift, namely, the slot, the increased camber and angle of attack by means of an aileron running the whole length of the span. The last advance included in the wing section was an increase in wing area by means of an auxiliary wing adjusted by a sort of rectangular joint.

  8. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  9. 6. DETAIL OF MASONRY ON SOUTHWEST WING WALL. MASONRY ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF MASONRY ON SOUTHWEST WING WALL. MASONRY ON WING WALLS IS LAID IN A RANDOM RUBBLE PATTERN. - Core Creek County Bridge, Spanning Core Creek, approximately 1 mile South of State Route 332 (Newtown Bypass), Newtown, Bucks County, PA

  10. Detail of northeast wing wall and guiderail. The section of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of northeast wing wall and guiderail. The section of the wing wall in the foreground is a historic extension of this element. - Chester County Bridge No. 225, Spanning Tweed Creek at Hopewell Road, Oxford, Chester County, PA

  11. Parametric weight evaluation of joined wings by structural optimization

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Shyu, Albert T.; Wolkovitch, Julian

    1988-01-01

    Joined-wing aircraft employ tandem wings having positive and negative sweep and dihedral, arranged to form diamond shapes in both plan and front views. An optimization method was applied to study the effects of joined-wing geometry parameters on structural weight. The lightest wings were obtained by increasing dihedral and taper ratio, decreasing sweep and span, increasing fraction of airfoil chord occupied by structural box, and locating the joint inboard of the front wing tip.

  12. Generic Wing, Pylon, and Moving Finned Store

    DTIC Science & Technology

    2000-10-01

    66.4 cm 2.9 Area of planform 1425.8 cm’ 2.10 Location of reference of profiles and NACA 64A010 airfoil section over entire span definition of profiles...2.11 Lofting procedure between reference Straight line sections 2.12 Form of wing-body, or wing-root NACA 64A010 airfoil section; note references...below junction 2.13 Form of wing tip NACA 64A010 airfoil section 2.14 Wing centerbody Ogive-cylinder: Tangent at wailing edge of wing. Nose 16.51 cm from

  13. Avian Wings

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  14. Active Dihedral Control System for a Torisionally Flexible Wing

    NASA Technical Reports Server (NTRS)

    Kendall, Greg T. (Inventor); Lisoski, Derek L. (Inventor); Morgan, Walter R. (Inventor); Griecci, John A. (Inventor)

    2015-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  15. Bat flight with bad wings: is flight metabolism affected by damaged wings?

    PubMed

    Voigt, Christian C

    2013-04-15

    Infection of North American bats with the keratin-digesting fungus Geomyces destructans often results in holes and ruptures of wing membranes, yet it is unknown whether flight performance and metabolism of bats are altered by such injuries. I conducted flight experiments in a circular flight arena with Myotis albescens and M. nigricans individuals with an intact or ruptured trailing edge of one of the plagiopatagial membranes. In both species, individuals with damaged wings were lighter, had a higher aspect ratio (squared wing span divided by wing area) and an increased wing loading (weight divided by wing area) than conspecifics with intact wings. Bats with an asymmetric reduction of the wing area flew at similar speeds to conspecifics with intact wings but performed fewer flight manoeuvres. Individuals with damaged wings showed lower metabolic rates during flight than conspecifics with intact wings, even when controlling for body mass differences; the difference in mass-specific metabolic rate may be attributable to the lower number of flight manoeuvres (U-turns) by bats with damaged wings compared with conspecifics with intact wings. Possibly, bats compensated for an asymmetric reduction in wing area by lowering their body mass and avoiding flight manoeuvres. In conclusion, it may be that bats suffer from moderate wing damage not directly, by experiencing increased metabolic rate, but indirectly, by a reduced manoeuvrability and foraging success. This could impede a bat's ability to gain sufficient body mass before hibernation.

  16. AST Composite Wing Program: Executive Summary

    NASA Technical Reports Server (NTRS)

    Karal, Michael

    2001-01-01

    The Boeing Company demonstrated the application of stitched/resin infused (S/RFI) composite materials on commercial transport aircraft primary wing structures under the Advanced Subsonic technology (AST) Composite Wing contract. This report describes a weight trade study utilizing a wing torque box design applicable to a 220-passenger commercial aircraft and was used to verify the weight savings a S/RFI structure would offer compared to an identical aluminum wing box design. This trade study was performed in the AST Composite Wing program, and the overall weight savings are reported. Previous program work involved the design of a S/RFI-base-line wing box structural test component and its associated testing hardware. This detail structural design effort which is known as the "semi-span" in this report, was completed under a previous NASA contract. The full-scale wing design was based on a configuration for a MD-90-40X airplane, and the objective of this structural test component was to demonstrate the maturity of the S/RFI technology through the evaluation of a full-scale wing box/fuselage section structural test. However, scope reductions of the AST Composite Wing Program pre-vented the fabrication and evaluation of this wing box structure. Results obtained from the weight trade study, the full-scale test component design effort, fabrication, design development testing, and full-scale testing of the semi-span wing box are reported.

  17. Effect of aileron displacement on wing characteristics

    NASA Technical Reports Server (NTRS)

    Heald, R H

    1933-01-01

    The effect of aileron displacement on wing characteristics has been investigated for the Clark Y and the U.S.A. 27 wing sections equipped with rectangular ailerons. The airfoils, rectangular in plan, and having a 10 inch chord and 60 inch span, were mounted on a model fuselage.

  18. New investigation of short wings with lateral jets

    NASA Technical Reports Server (NTRS)

    Carafoli, E.; Camarasescu, N.

    1983-01-01

    The lift of short wings by means of lateral fluid jets fired in the plane of the wing in the direction of the span is described. After some theoretical considerations, the experimental results obtained in a wind tunnel on a series of wings of various lengths are presented.

  19. Effect of wing flexibility on the experimental aerodynamic characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Yee, S. C.

    1977-01-01

    A solid-aluminum oblique wing was designed to deflect considerably under load so as to relieve the asymmetric spanwise stalling that is characteristic of this type of wing by creating washout on the trailing wing panel and washin on the leading wing panel. Experimental forces, and pitching, rolling and yawing moments were measured with the wing mounted on a body of revolution. In order to vary the dynamic pressure, measurements were made at several unit Reynolds numbers, and at Mach numbers. The wing was investigated when unswept (at subsonic Mach numbers only) and when swept 45 deg, 50 deg, and 60 deg. The wing was straight tapered in planform, had an aspect ratio of 7.9 (based on the unswept span), and a profile with a maximum thickness of 4 percent chord. The results substantiate the concept that an oblique wing designed with the proper amount of flexibility self relieves itself of asymmetric spanwise stalling and the associated nonlinear moment curves.

  20. 2. View northeast. South elevation Westminster span, link span, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View northeast. South elevation - Westminster span, link span, Walpole span. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  1. 1. View south. North elevation Walpole span, link span, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View south. North elevation - Walpole span, link span, and Westminster span. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  2. An aerodynamic model for one and two degree of freedom wing rock of slender delta wings

    NASA Technical Reports Server (NTRS)

    Hong, John

    1993-01-01

    The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.

  3. Nonlinear Aerodynamics and the Design of Wing Tips

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan

    1991-01-01

    The analysis and design of wing tips for fixed wing and rotary wing aircraft still remains part art, part science. Although the design of airfoil sections and basic planform geometry is well developed, the tip regions require more detailed consideration. This is important because of the strong impact of wing tip flow on wing drag; although the tip region constitutes a small portion of the wing, its effect on the drag can be significant. The induced drag of a wing is, for a given lift and speed, inversely proportional to the square of the wing span. Concepts are proposed as a means of reducing drag. Modern computational methods provide a tool for studying these issues in greater detail. The purpose of the current research program is to improve the understanding of the fundamental issues involved in the design of wing tips and to develop the range of computational and experimental tools needed for further study of these ideas.

  4. Rotor/Wing Interactions in Hover

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  5. Induced drag ideal efficiency factor of arbitrary lateral-vertical wing forms

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1980-01-01

    A relatively simple equation is presented for estimating the induced drag ideal efficiency factor e for arbitrary cross sectional wing forms. This equation is based on eight basic but varied wing configurations which have exact solutions. The e function which relates the basic wings is developed statistically and is a continuous function of configuration geometry. The basic wing configurations include boxwings shaped as a rectangle, ellipse, and diamond; the V-wing; end-plate wing; 90 degree cruciform; circle dumbbell; and biplane. Example applications of the e equations are made to many wing forms such as wings with struts which form partial span rectangle dumbbell wings; bowtie, cruciform, winglet, and fan wings; and multiwings. Derivations are presented in the appendices of exact closed form solutions found of e for the V-wing and 90 degree cruciform wing and for an asymptotic solution for multiwings.

  6. Annular wing

    NASA Technical Reports Server (NTRS)

    Walker, H. J. (Inventor)

    1981-01-01

    An annular wing particularly suited for use in supporting in flight an aircraft characterized by the absence of directional stabilizing surfaces is described. The wing comprises a rigid annular body of a substantially uniformly symmetrical configuration characterized by an annular positive lifting surface and cord line coincident with the segment of a line radiating along the surface of an inverted truncated cone. A decalage is established for the leading and trailing semicircular portions of the body, relative to instantaneous line of flight, and a dihedral for the laterally opposed semicircular portions of the body, relative to the line of flight. The direction of flight and climb angle or glide slope angle are established by selectively positioning the center of gravity of the wing ahead of the aerodynamic center along the radius coincident with an axis for a selected line of flight.

  7. SPAN: Ocean science

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Koblinsky, Chester J.; Webster, Ferris; Zlotnicki, Victor; Green, James L.

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links space and Earth science research and data analysis computers. It provides a common working environment for sharing computer resources, sharing computer peripherals, solving proprietary problems, and providing the potential for significant time and cost savings for correlative data analysis. This is one of a series of discipline-specific SPAN documents which are intended to complement the SPAN primer and SPAN Management documents. Their purpose is to provide the discipline scientists with a comprehensive set of documents to assist in the use of SPAN for discipline specific scientific research.

  8. The Nichols Wing Cutting Equipment

    NASA Technical Reports Server (NTRS)

    Ford, James B

    1923-01-01

    Described here is wing cutting equipment for the economical production of metal wings for wind tunnel models. The machine will make any size of constant-section wing or strut up to one-sixth inch chord by 36-inch span and up to a thickness of one and one-quarter inches. It cuts a smooth, true model that is accurate to within two-thousandths of an inch on any ordinate. The holding jaws are so designed as to leave the model free of chip marks, and the only hand finishing necessary after the cutting is a rub with amunite to remove burrs. The actual change on ordinate in this finishing rub is less than .0002 inches.

  9. Scapular Winging

    PubMed Central

    Gooding, Benjamin W. T.; Geoghegan, John M.; Wallace, W. Angus; Manning, Paul A.

    2013-01-01

    This review explores the causes of scapula winging, with overview of the relevant anatomy, proposed aetiology and treatment. Particular focus is given to lesions of the long thoracic nerve, which is reported to be the most common aetiological factor. PMID:27582902

  10. SPAN: Astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Green, James L.; Warren, Wayne H., Jr.; Lopez-Swafford, Brian

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links science research and data analysis computers in the U.S., Canada, and Europe. The purpose of this document is to provide Astronomy and Astrophysics scientists, currently reachable on SPAN, with basic information and contacts for access to correlative data bases, star catalogs, and other astrophysic facilities accessible over SPAN.

  11. 1. VIEW OF WEST HEADWALL AND WING WALL, FROM BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF WEST HEADWALL AND WING WALL, FROM BRIDGE TO THE WEST, FACING EAST. - Cut Stone Bridge, Southern Pacific Railroad line spanning runoff channel at South Spruce Avenue, South San Francisco, San Mateo County, CA

  12. 2. VIEW OF WEST HEADWALL AND WING WALL, FROM EMBANKMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WEST HEADWALL AND WING WALL, FROM EMBANKMENT TO THE SOUTHWEST, FACING NORTHEAST. - Cut Stone Bridge, Southern Pacific Railroad line spanning runoff channel at South Spruce Avenue, South San Francisco, San Mateo County, CA

  13. 9. South abutment, detail of collapsed east wing wall; also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. South abutment, detail of collapsed east wing wall; also detail of bottom lateral bracing and stringers; looking southeast - Dodd Ford Bridge, County Road 147 Spanning Blue Earth River, Amboy, Blue Earth County, MN

  14. 11. DETAIL VIEW OF NORTH ELEVATION ARCH AND WING WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF NORTH ELEVATION ARCH AND WING WALL AT JUNCTURE WITH PEDESTRIAN BRIDGE, LOOKING SOUTHWEST - Lake Street Bridge, Spanning Ruddiman Creek at Lake Shore Drive, Muskegon, Muskegon County, MI

  15. 4. HISTORIC PHOTOGRAPH, DETAIL OF WING WALL UNDER CONSTRUCTION, CA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. HISTORIC PHOTOGRAPH, DETAIL OF WING WALL UNDER CONSTRUCTION, CA. 1935. COLLECTION CONNECTICUT DEPARTMENT OF TRANSPORTATION. - Merritt Parkway, Wire Mill Road Bridge, Spanning Merritt Parkway, Stamford, Fairfield County, CT

  16. 4. DOWNSTREAM ELEVATION. DETAIL OF BUTTRESS ADDITION ON NORTHEAST WING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DOWNSTREAM ELEVATION. DETAIL OF BUTTRESS ADDITION ON NORTHEAST WING WALL. - Core Creek County Bridge, Spanning Core Creek, approximately 1 mile South of State Route 332 (Newtown Bypass), Newtown, Bucks County, PA

  17. 4. DETAIL VIEW OF STONE MASONRY, WING WALL AND WHAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF STONE MASONRY, WING WALL AND WHAT REMAINS OF ORIGINAL WALKWAY RAILING. - Main Street Parker Pony Truss Bridge, Main Street (Route 170) spanning Yellow Creek, Poland, Mahoning County, OH

  18. Rockfaced, coursed ashlar wing wall on the southwest corner of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rock-faced, coursed ashlar wing wall on the southwest corner of the bridge, facing west. - Oakland Avenue Viaduct, Oakland Avenue spanning U.S. Route 62 (State Route 2302) & Pine Run, Sharon, Mercer County, PA

  19. 6. VIEW OF EAST HEADWALL, TWO WING WALLS, AND CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF EAST HEADWALL, TWO WING WALLS, AND CONCRETE CULVERT (PORTION OF TOP), FACING SOUTHWEST. - Cut Stone Bridge, Southern Pacific Railroad line spanning runoff channel at South Spruce Avenue, South San Francisco, San Mateo County, CA

  20. 9. West elevation, west end of south wing wall, south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. West elevation, west end of south wing wall, south abutment and south railing panel looking east - Western Maryland Railway Bridge, Spanning Maryland Route 51 at Spring Gap, Cumberland, Allegany County, MD

  1. 3. GENERAL VIEW, LOOKING WEST, SHOWING EAST ELEVATION NORTH WING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW, LOOKING WEST, SHOWING EAST ELEVATION NORTH WING WALL (SCALE ROD IS MEASURED IN FEET) - Mulladay Hollow Bridge, Spanning Mulladay Hollow Creek at County Road No.61, Eureka Springs, Carroll County, AR

  2. 10. West elevation, west end of north wing wall, top ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. West elevation, west end of north wing wall, top of north abutment and oblique of railing panels looking northwest - Western Maryland Railway Bridge, Spanning Maryland Route 51 at Spring Gap, Cumberland, Allegany County, MD

  3. 4. View northwest. South elevation Walpole span, link span, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View northwest. South elevation - Walpole span, link span, and Westminster span. Structure on east pier is stream level gauge station. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  4. Inflatable wing

    DOEpatents

    Priddy, Tommy G.

    1988-01-01

    An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a stiff reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof.

  5. 6. View of east side abutment and wing wall. The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of east side abutment and wing wall. The detail of this abutment and wing wall is the same for the similar abutment treatment at the west side. - Tipp-Elizabeth Road Bridge, Spanning Great Miami River, Tipp City, Miami County, OH

  6. Improvement of hang glider performance by use of ultralight elastic wing

    NASA Technical Reports Server (NTRS)

    Wolf, J. S.

    1979-01-01

    The problem of the lateral controllability of the hang glider by the pilot's weight shift was considered. The influence of the span and the torsional elasticity of the wing was determined. It was stated that an ultralight elastic wing of a new kind was most suitable for good control. The wing also has other advantageous properties.

  7. ANOTHER DETAIL OF A TYPICAL SPAN, SHOWING THE SOUTH END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ANOTHER DETAIL OF A TYPICAL SPAN, SHOWING THE SOUTH END OF BRIDGE WITH ABUTMENT, WING WALLS, AND A FREE-STANDING PIER AT LEFT. OBLIQUE VIEW TO SOUTHEAST. 40 - Burlington Northern Santa Fe Railroad, Cajon Subdivision, Structure No. 61.5X, between Cajon Summit and Keenbrook, Devore, San Bernardino County, CA

  8. January | 201span>6 | Space Station - NASA

    NASA Website

    August 201span>6; July 201span>6; June 201span>6; May 201span>6; April 201span>6; March 201span>6; February 201span>6; January 201span>6; December 2015; November 2015; October 2015; ...

  9. Experimental investigation of non-planar sheared outboard wing planforms

    NASA Technical Reports Server (NTRS)

    Naik, D. A.; Ostowari, C.

    1988-01-01

    The outboard planforms of wings have been found to be of prime importance in studies of induced drag reduction. This conclusion is based on an experimental and theoretical study of the aerodynamic characteristics of planar and nonplanar outboard wing forms. Six different configurations; baseline rectangular, planar sheared, sheared with dihedral, sheared with anhedral, rising arc, and drooping arc were investigated for two different spans. Span efficiencies as much as 20 percent greater than baseline can be realized with nonplanar wing forms. Optimization studies show that this advantage can be achieved along with a bending moment benefit. Parasite drag and lateral stability estimations were not included in the analysis.

  10. Study of Semi-Span Model Testing Techniques

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; McGhee, Robert J.

    1996-01-01

    An investigation has been conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel in order to further the development of semi-span testing capabilities. A twin engine, energy efficient transport (EET) model with a four-element wing in a takeoff configuration was used for this investigation. Initially a full span configuration was tested and force and moment data, wing and fuselage surface pressure data, and fuselage boundary layer measurements were obtained as a baseline data set. The semi-span configurations were then mounted on the wind tunnel floor, and the effects of fuselage standoff height and shape as well as the effects of the tunnel floor boundary layer height were investigated. The effectiveness of tangential blowing at the standoff/floor juncture as an active boundary-layer control technique was also studied. Results indicate that the semi-span configuration was more sensitive to variations in standoff height than to variations in floor boundary layer height. A standoff height equivalent to 30 percent of the fuselage radius resulted in better correlation with full span data than no standoff or the larger standoff configurations investigated. Undercut standoff leading edges or the use of tangential blowing in the standoff/ floor juncture improved correlation of semi-span data with full span data in the region of maximum lift coefficient.

  11. Measurements of Supersonic Wing Tip Vortices

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James

    1994-01-01

    An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.

  12. Investigation of Aeroelastic Flow Control of a Fluttering Wing with HPCMP CREATE(trademark)-AV Kestrel

    DTIC Science & Technology

    2015-01-05

    The aeroelastic behavior of a finite aspect ratio (AR=6) NACA0018 wing is computationally analyzed. HPCMP CREATE(trademark)-AV Kestrel, a fully...aeroelastically deforming wing . Externally controlled blowing slots distributed along the span of the wing are used to inject mass into the flow field to...coefficients. For the rigid wing , the lift is increased, as are the pitching and rolling moments. When aeroelastic deformation is considered, the

  13. EAST END FROM MID SPAN OF EASTERN SPAN (THREE DIFFERENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST END FROM MID SPAN OF EASTERN SPAN (THREE DIFFERENT TRUSSES, EAST SOUTHEAST 110 DEGREES) - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  14. 4. From Skew Span to portal on span 1 looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. From Skew Span to portal on span 1 looking up grade toward the south end. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  15. View of approach span and movable span, looking southeast from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of approach span and movable span, looking southeast from navy land. Note that navigational channel exists only on north side of movable span. - Naval Supply Annex Stockton, Rough & Ready Island, Stockton, San Joaquin County, CA

  16. Performance Analysis of a Wing With Multiple Winglets

    DTIC Science & Technology

    2001-01-01

    demonstrated that the tip slots of soaring birds reduce induced drag and increase the span factor of the wings20. He found remarkable improvements of...addition, the feathered tip maintained a high span factor under increasing angle of attack. Work by evolutionary biologists at the Technical University

  17. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  18. What is SPAN?

    NASA Astrophysics Data System (ADS)

    SPAN is the Space Physics Analysis Network. This important research tool of the NASA scientific community links space researchers from over 50 institutions throughout the United States. The SPAN system is growing within the United States, and it also is expanding to connect NASA scientists with European and Japanese space research institutions.The SPAN system serves many functions. Its paramount purpose is to provide scientists with a tool that improves their productivity. SPAN has traditionally been used to exchange mail messages, to send data back and forth for scientific papers and analysis workshops, and to share scientific software. SPAN has played a crucial role by disseminating spacecraft data in near-real time during several recent NASA and ESA program successes, such as the International Cometary Explorer (ICE) spacecraft encounter with Comet Giacobini-Zinner (see “Behind the Scenes During a Comet Encounter” by J.L. Green and J.H. King, Eos, March 4, 1986, p. 105), the Voyager 2 encounter with Uranus, and the Giotto spacecraft encounter with Comet Halley (see “Networking Ground-Based Images of Comet Halley during the Giotto Encounter” by D. Rees et al., Eos, December 16, 1986, p. 1385). Of course, SPAN has served a variety of broader purposes. It has provided (and will continue to provide) an excellent testing ground for trying new technologies and for evaluating ideas about processing, storing, and transferring various kinds of information. Until the recent availability of computers sponsored by the National Science Foundation, the SPAN network provided one of the few opportunities for NASA researchers to have ready access to the supercomputers needed for large-scale numerical simulation of magnetospheric and ionospheric plasma systems. SPAN has also increased its usefulness substantially by the addition of the National Space Science Data Center (NSSDC) as a data node on the system. The network, which was originally based on a starshaped

  19. Numerical study of the trailing vortex of a wing with wing-tip blowing

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin

    1994-01-01

    Trailing vortices generated by lifting surfaces such as helicopter rotor blades, ship propellers, fixed wings, and canard control surfaces are known to be the source of noise, vibration, cavitation, degradation of performance, and other hazardous problems. Controlling these vortices is, therefore, of practical interest. The formation and behavior of the trailing vortices are studied in the present research. In addition, wing-tip blowing concepts employing axial blowing and spanwise blowing are studied to determine their effectiveness in controlling these vortices and their effects on the performance of the wing. The 3D, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The wing-tip blowing is simulated using the actuator plane concept, thereby, not requiring resolution of the jet slot geometry. Furthermore, the solution blanking feature of the chimera scheme is used to simplify the parametric study procedure for the wing-tip blowing. Computed results are shown to compare favorably with experimental measurements. It is found that axial wing-tip blowing, although delaying the rolling-up of the trailing vortices and the near-field behavior of the flowfield, does not dissipate the circulation strength of the trailing vortex farther downstream. Spanwise wing-tip blowing has the effect of displacing the trailing vortices outboard and upward. The increased 'wing-span' due to the spanwise wing-tip blowing has the effect of lift augmentation on the wing and the strengthening of the trailing vortices. Secondary trailing vortices are created at high spanwise wing-tip blowing intensities.

  20. Preservation of wing leading edge suction at the plane of symmetry as a factor in wing-fuselage design

    NASA Technical Reports Server (NTRS)

    Larrabee, E. E.

    1975-01-01

    Most fuselage geometries cover a portion of the wing leading edge near the plane of symmetry, and it seems reasonable to expect that a large fraction of the leading edge suction which would be developed by the covered wing at high angles of attack is not developed on the fuselage. This is one of the reasons that the Oswald span efficiency factor for the wing body combination fails to approach the value predicted by lifting line theory for the isolated wing. Some traditional and recent literature on wing-body interference is discussed and high Reynolds number data on wing-body-nacelle drag are reviewed. An exposed central leading edge geometry has been developed for a sailplane configuration. Low Reynolds number tests have not validated the design concept.

  1. View east, showing Northwest Wing (Wing 5) and rear elevations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, showing Northwest Wing (Wing 5) and rear elevations of facade and tis flaking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  2. Flexible flapping wings with self-organized microwrinkles.

    PubMed

    Tanaka, Hiroto; Okada, Hiroyuki; Shimasue, Yosuke; Liu, Hao

    2015-06-29

    Bio-inspired flapping wings with a wrinkled wing membrane were designed and fabricated. The wings consist of carbon fibre-reinforced plastic frames and a polymer film with microscale wrinkles inspired by bird feathers and the corrugations of insect wings. The flexural and tensile stiffness of the wrinkled film can be controlled by modifying the orientations and waveforms of the wrinkles, thereby expanding the design space of flexible wings for micro flapping-wing aerial robots. A self-organization phenomenon was exploited in the fabrication of the microwrinkles such that microscale wrinkles spanning a broad wing area were spontaneously created. The wavy shape of these self-organized wrinkles was used as a mould, and a Parylene film was deposited onto the mould to form a wrinkled wing film. The effect of the waveforms of the wrinkles on the film stiffness was investigated theoretically, computationally and experimentally. Compared with a flat film, the flexural stiffness was increased by two orders of magnitude, and the tensile stiffness was reduced by two orders of magnitude. To demonstrate the effect of the wrinkles on the actual deformation of the flapping wings and the resulting aerodynamic forces, the fabricated wrinkled wings were tested using a tethered electric flapping mechanism. Chordwise unidirectional wrinkles were found to prevent fluttering near the trailing edge and to produce a greater aerodynamic lift compared with a flat wing or a wing with spanwise wrinkles. Our results suggest that the fine stiffness control of the wing film that can be achieved by tuning the microwrinkles can improve the aerodynamic performance of future flapping-wing aerial robots.

  3. Upstroke wing flexion and the inertial cost of bat flight.

    PubMed

    Riskin, Daniel K; Bergou, Attila; Breuer, Kenneth S; Swartz, Sharon M

    2012-08-07

    Flying vertebrates change the shapes of their wings during the upstroke, thereby decreasing wing surface area and bringing the wings closer to the body than during downstroke. These, and other wing deformations, might reduce the inertial cost of the upstroke compared with what it would be if the wings remained fully extended. However, wing deformations themselves entail energetic costs that could exceed any inertial energy savings. Using a model that incorporates detailed three-dimensional wing kinematics, we estimated the inertial cost of flapping flight for six bat species spanning a 40-fold range of body masses. We estimate that folding and unfolding comprises roughly 44 per cent of the inertial cost, but that the total inertial cost is only approximately 65 per cent of what it would be if the wing remained extended and rigid throughout the wingbeat cycle. Folding and unfolding occurred mostly during the upstroke; hence, our model suggests inertial cost of the upstroke is not less than that of downstroke. The cost of accelerating the metacarpals and phalanges accounted for around 44 per cent of inertial costs, although those elements constitute only 12 per cent of wing weight. This highlights the energetic benefit afforded to bats by the decreased mineralization of the distal wing bones.

  4. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

  5. View east, showing Northwest Wing (Wing 5), west wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, showing Northwest Wing (Wing 5), west wall of the North Wing (Wing 2) and rear elevations of the facade and its flanking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  6. Effects of wing-leading-edge modifications on a full-scale, low-wing general aviation airplane: Wind-tunnel investigation of high-angle-of-attack aerodynamic characteristics. [conducted in Langley 30- by 60-foot tunnel

    NASA Technical Reports Server (NTRS)

    Newsom, W. A., Jr.; Satran, D. R.; Johnson, J. L., Jr.

    1982-01-01

    Wing-leading-edge modifications included leading-edge droop and slat configurations having full-span, partial-span, or segmented arrangements. Other devices included wing-chord extensions, fences, and leading-edge stall strips. Good correlation was apparent between the results of wind-tunnel data and the results of flight tests, on the basis of autorotational stability criterion, for a wide range of wing-leading-edge modifications.

  7. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  8. 16. Overall view of the swing span (Span G) turning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Overall view of the swing span (Span G) turning drum, showing rollers and drive chains; looking W. (Ceronie) - Rock Island Arsenal, Rock Island Bridge, Fort Armstrong Avenue, Rock Island, Rock Island County, IL

  9. Innovative Concept for a Heavy-Load Aircraft Utilizing a Two-Dimensional Wing

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2007-01-01

    Heavy-load aircraft of conventional wing-body-tail design have become very large. Excessive size of such aircraft may present problems in the manufacturing process. In addition, large wing spans may cause some difficulties in ground handling. Increasing lift loads on large span cantilever wings will also increase the strength of the wing tip vortex. The concept presented herein proposes a means for substantially increasing the lift load capability of an aircraft without increasing the overall length and span of the configuration. The concept has a rectangular wing with a relatively low span and a large chord to provide the area required for high lift. Large fuselages are attached at each wing tip to provide the volume required for heavy loading. The fuselages serve as endplates for the wing and should preclude tip flow so that two-dimensional flow might be established on the wing. Elimination of the wing tip flow should prevent the formation of a tip vortex and eliminate the tip vortex hazard to trailing aircraft. Exploratory wind tunnel tests of such an aircraft concept have been conducted. Lessons learned from these tests are discussed herein in an effort to determine the validity of the concept.

  10. Downwash measurements behind wings with detached float

    NASA Technical Reports Server (NTRS)

    Petersohn, E

    1931-01-01

    This investigation, which was made in the small wind tunnel having a diameter of 1.2 m (3.94 feet), embraced three wing models, behind which, at various angles of attack between 0 and 60 degrees, the static pressure and the total pressure along vertical lines (perpendicular to the direction of the undisturbed wind and to the wing span) were measured. The location of these vertical lines are indicated in Figure 1. Moreover, the wing polars were determined by the customary three-component measurements. For testing the pressure field, a Pitot tube and a static probe, both of 2 mm (0.08 in.) in diameter, were mounted 40 mm (1.57 in.) apart on the end of a shaft 1 m (39.37 in.) long.

  11. View of approach span and movable span, looking southeast from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of approach span and movable span, looking southeast from navy land. Note that navigational channel exists only on north side of movable span. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  12. Problem of the slotted wing : a communication from the Aerodynamic Institute of the Aachen Technical High School

    NASA Technical Reports Server (NTRS)

    Klemperer, W

    1922-01-01

    It is to be expected that the advantageous properties, hitherto discovered in many slotted wing sections, depend very largely on the contour of the slot and the structural details of the wing. It is therefore of interest, aside from measurements on wings of constant cross-section along the span, to measure also wing models in which the structural details have already been given practical consideration.

  13. Wind-Tunnel Tests of an NACA 44R-Series Tapered Wing with a Straight Trailing Edge and a Constant-Chord Center Section

    NASA Technical Reports Server (NTRS)

    Neely, Robert H.

    1943-01-01

    As part of a general investigation in the NACA 19-foot pressure tunnel to determine stall characteristics and effectiveness of high-lift devices on wings of various sections, tests were made of a tapered. wing having NACA 44R-series airfoil sections. Lift, drag, pitching-moment, and stall characteristics were determined at a Reynolds number of 4,850,000 for the plain wing and for the wing with partial-and with full-span split flaps. The stall progressed slowly over The plain wing; a gradual loss of lift for angles of attack up to and beyond that for the maximum lift coefficient resulted. As Compared with the stall of the plain wing, the initial stall of the wing with either partial-span or full-span flaps deflected occurred at a higher angle of attack and the stall progressed much more rapidly. The maximum lift coefficients at a Reynolds number of 4,850,000 were 1.35 for the plain wing, 2.25 for the wing with partial-span flaps at 60 deg, and 2.67 for the wing with full-span flaps at 60 deg. The positions of the aerodynamic center, in terms of mean chords back of the leading edge of the root section, were approximately 0.458 with no flaps, 0.483 with partial-span flaps at 60 deg, and 0.498 with full-span flaps at 60 deg.

  14. Computational wing design studies relating to natural laminar flow

    NASA Technical Reports Server (NTRS)

    Waggoner, Edgar G.

    1986-01-01

    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  15. Flapping of Insectile Wings

    NASA Astrophysics Data System (ADS)

    Huang, Yangyang; Kanso, Eva

    2015-11-01

    Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. Yet the effects of muscle stiffness on the performance of insect wings remain unclear. Here, we construct an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring and submerged in an oscillatory flow. The wing system is free to rotate and flap. We first explore the extent to which the flyer can withstand roll perturbations, then study its flapping behavior and performance as a function of spring stiffness. We find an optimal range of spring stiffness that results in large flapping amplitudes, high force generation and good storage of elastic energy. We conclude by conjecturing that insects may select and adjust the muscle spring stiffness to achieve desired movement. These findings may have significant implications on the design principles of wings in micro air-vehicles.

  16. The winged scapula.

    PubMed

    Fiddian, N J; King, R J

    1984-05-01

    Twenty-five patients with 23 different types of winging of the scapula are described. A simple clinical and etiologic classification of the winged scapula is proposed based on the study of these patients in conjunction with a review of the literature. Winging of the scapula is either static or dynamic. Static winging is due to fixed deformity in the shoulder girdle, spine, or ribs. Dynamic winging is due to a neuromuscular disorder. The great variety of lesions that produce winging of the scapula may be classified anatomically into four types: Type I, nerve; Type II, muscle; Type III, bone; and Type IV, joint. Winging of the scapula is a surprisingly common physical sign, but because it is often asymptomatic it receives little attention. However, symptoms of pain, weakness, or cosmetic deformity may demand attention, and it is hoped that this classification will help in the diagnosis and assessment of these patients.

  17. Subsonic flow investigations on a cranked wing designed for high maneuverability

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1986-01-01

    The characteristic pitching moment nonlinearity of cranked wings limits their usable lift coefficient well below C sub L max. The potential of several aerodynamic devices, viz., fences, pylon vortex generators (PVG), mid-span strakes and cavity flaps, in delaying the pitch up onset on a 70/50 deg cranked wing was explored in low speed tunnel tests. Upper surface pressure measurements and low visualizations were conducted on a semi-span wing model to observe the vortex flow development with increasing angle of attack, and then to assess the effectiveness of the devices in controlling the collapse of vortex lift over the wing panel outboard of the crank. Force tests on a full span wing and body model were also conducted to assess the fence and PVG in improving the usable C sub L.

  18. Chordwise and compressibility corrections to slender-wing theory

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Sluder, Loma

    1952-01-01

    Corrections to slender-wing theory are obtained by assuming a spanwise distribution of loading and determining the chordwise variation which satisfies the appropriate integral equation. Such integral equations are set up in terms of the given vertical induced velocity on the center line or, depending on the type of wing plan form, its average value across the span at a given chord station. The chordwise distribution is then obtained by solving these integral equations. Results are shown for flat-plate rectangular, and triangular wings.

  19. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    NASA Astrophysics Data System (ADS)

    DeLuca, Anthony M.

    the wing. Th 60° angle stop wing achieved the largest total stroke angle and generated the most lift for the lowest power consumption of the wings tested. 2. Phase averaged stereo Particle Image Velocimetry (PIV) data was collected at eight phases through the flap cycle on the 30°, 45°, and 60° angle stop wings. Wings were mounted transverse and parallel to the interrogating laser sheet, and planar velocity intersections at the wing mid-span, one chord below the wing, were compared to one another to verify data fidelity. A Rankine-Froude actuator disk model was adapted to calculate the approximate vertical thrust generated from the total momentum flux through the flapping semi-disk using the velocity field measurements. Three component stereo u, v, and w-velocity contour measurements confirmed the presence of extensive vortical structures in the vicinity of the wing. The leading edge vortex was successfully tracked through the stroke cycle appearing at approximately 25% span, increasing in circulatory strength and translational velocity down the span toward the tip, and dissipating just after 75% span. Thrust calculations showed the vertically mounted wing more accurately represented the vertical forces when compared to its corresponding force balance measurement than the horizontally mounted wing. The mid-span showed the highest vertical velocity profile below the wing; and hence, was the location responsible for the majority of lift production along the span.

  20. Sectional lift coefficient of a rotating wing at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Kim, Jieun; Kweon, Jihoon; Choi, Haecheon

    2012-11-01

    We investigate the characteristics of sectional lift force on a rotating wing at low Reynolds number using three-dimensional numerical simulation. Three different types of flat plate wings (fruit-fly, rectangular and triangular wings) are considered but keeping their aspect ratio (wing span/wing chord) the same at 3.74. The wings rotate at a constant angular velocity and the angle of attack is fixed during rotation (5° ~45°). The Reynolds number is 136 based on the wing chord length and the translational velocity at the wing tip, corresponding to that of the flapping fruit-fly wing in hovering flight. An immersed boundary method in a non-inertial reference frame (Kim and Choi, JCP, 2006) is used to simulate the flow. During the first rotation, the sectional lift coefficient decreases from the wing root to the wing tip for all cases. After several rotations, however, the sectional lift coefficient becomes nearly constant except near the wing root and tip at low angles of attack (<=15°), but maintains a similar behavior to that of first rotation at high angle of attack (~45°). Finally, the wing shape does not significantly change the spanwise distribution of sectional lift coefficient. Supported by the NRF Program (2011-0028032).

  1. Membrane and adaptively-shaped wings for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Lian, Yongsheng

    Micro air vehicles (MAVs), with wing span of 15 cm or less and flight speed around 10 m/s, have many applications in both civilian and military areas. The Reynolds number based on the given parameters is around 10 4, which often yields insufficient lift-to-drag ratio. Furthermore, one expects the unsteady effect to be noticeable for such flight vehicles. The flexible wing has been demonstrated to exhibit favorable characteristics such as passive adaptation to the flight; environment and delayed stall. The present study focuses on developing computational and modeling capabilities to better understand the MAV aerodynamics. Both flexible wings, utilizing membrane materials, and adaptively-shaped wings, utilizing piezo-actuated flaps, have been studied. In the adaptively-shaped wing study, we use piezo-actuated flaps to actively control the flow. We assess the impacts of the flap geometry, flapping amplitude, and turbulence; modeling on the flow structure with a parallel experimental effort. The membrane wing uses a passive control mechanism to delay the stall angle and to provide a smoother flight platform. Our study focuses on the mutual interactions between the membrane wing and its surrounding viscous flow. We compare the lift-to-drag ratio and the flow structure between the flexible wing and the corresponding rigid wing. We also investigate the aerodynamic characteristics associated with the low Reynolds number and low aspect ratio wing. To assist our study, we propose an automatic and efficient moving grid technique to facilitate the fluid and structure interaction computations; we also present a dynamic membrane model to study the intrinsic large deformation of the flexible membrane wing. Solutions obtained from the three-dimensional Navier-Stokes equations are presented to highlight, the salient features of the wing aerodynamics. Besides the aerodynamic study, we also perform shape optimization to improve the membrane wing performance. Since direct

  2. Natural flow wing

    NASA Technical Reports Server (NTRS)

    Wood, Richard M. (Inventor); Bauer, Steven X. S. (Inventor)

    1992-01-01

    The invention is a natural flow wing and a method for constructing the same. The method comprises contouring a three-dimensional upper surface and a three-dimensional lower surface of the natural flow wing independently of one another into a prescribed shape. Experimental data and theoretical analysis show that flow and pressure-loading over an upper surface of a wing tend to be conical about an apex of the wing, producing favorable and unfavorable regions of performance based on drag. The method reduces these unfavorable regions by shaping the upper surface such that the maximum thickness near a tip of the natural flow wing moves aft, thereby, contouring the wing to coincide more closely with the conical nature of the flow on the upper surface. Nearly constant compressive loading characterizes the flow field over a lower surface of the conventional wing. Magnitude of these compressive pressures on the lower surface depends on angle of attack and on a streamwise curvature of the lower surface of the wing and not on a cross-sectional spanwise curvature. The method, thereby, shapes the lower surface to create an area as large as possible with negative slopes. Any type of swept wing may be used to obtain the final, shaped geometry of the upper and lower surfaces of the natural flow wing.

  3. Petiolate wings: effects on the leading-edge vortex in flapping flight

    PubMed Central

    2017-01-01

    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1–3. The wings were driven using a mechanical device, the ‘Flapperatus’, to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested. PMID:28163876

  4. Petiolate wings: effects on the leading-edge vortex in flapping flight.

    PubMed

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2017-02-06

    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1-3. The wings were driven using a mechanical device, the 'Flapperatus', to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.

  5. Winging of the scapula.

    PubMed

    Saeed, M A; Gatens, P F; Singh, S

    1981-10-01

    Common neurogenic causes of scapular winging are serratus anterior, trapezius and rhomboid palsy. Deformity is minimal in serratus anterior palsy (long thoracic nerve); winging is accentuated by forward elevation and pushing with outstretched arms. In trapezius palsy (spinal accessory nerve), the shoulder droops and winging is accentuated by arm abduction at the shoulder level. Rhomboid weakness (dorsal scapular nerve or C5 root) is best demonstrated by slowly lowering the arms from the forward elevated position.

  6. Propeller/wing interaction

    NASA Technical Reports Server (NTRS)

    Witkowski, David P.; Johnston, Robert T.; Sullivan, John P.

    1989-01-01

    The present experimental investigation of the steady-state and unsteady-state effects due to the interaction between a tractor propeller's wake and a wing employs, in the steady case, wind tunnel measurements at low subsonic speed; results are obtained which demonstrate wing performance response to variations in configuration geometry. Other steady-state results involve the propeller-hub lift and side-force due to the wing's influence on the propeller. The unsteady effects of interaction were studied through flow visualization of propeller-tip vortex distortion over a wing, again using a tractor-propeller configuration.

  7. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight.

    PubMed

    Percin, M; van Oudheusden, B W; de Croon, G C H E; Remes, B

    2016-05-19

    The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum conditions. Comparison of the results for different flapping frequencies reveals different wing kinematics and deformation characteristics. The high flapping frequency case produces higher forces throughout the complete flapping cycle. Moreover, a phase difference occurs in the variation of the forces, such that the low flapping frequency case precedes the high frequency case. A similar phase lag is observed in the temporal evolution of the wing deformation characteristics, suggesting that there is a direct link between the two phenomena. A considerable camber formation occurs during stroke reversals, which is mainly determined by the stiffener orientation. The wing with the thinner surface membrane displays very similar characteristics to the baseline wing, which implies the dominance of the stiffeners in terms of providing rigidity to the wing. Wing span has a significant effect on the aerodynamic efficiency such that increasing the span length by 4 cm results in a 6% enhancement in the cycle-averaged X-force to power consumption ratio compared to the standard DelFly II wings with a span length of 28 cm.

  8. 15. MERRITT PARKWAY UNDER SPORT HILL ROAD, FRAME AND WING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. MERRITT PARKWAY UNDER SPORT HILL ROAD, FRAME AND WING WALL DETAILS. Photocopy of drawing (original in Connecticut Department of Transportation, Wethersfield); Connecticut State Highway Department, Approved February 1936. - Merritt Parkway, Bridge No. 744, Spanning Merritt Parkway at Route 59, Fairfield, Fairfield County, CT

  9. Electrogasdynamic excitation of controlling disturbances near a swept wing leading edge

    NASA Astrophysics Data System (ADS)

    Chernyshev, Sergey; Kiselev, Andrey; Kuryachii, Aleksandr

    2016-10-01

    New design of multiple plasma actuator intended for the excitation of disturbances in boundary layer near a leading edge of a swept wing is proposed. The excited disturbances have to suppress the cross-flow-type instability modes provoking laminar-to-turbulent transition in usual conditions. Numerical modeling of the excitation of controlling disturbances by plasma actuator has been executed in stationary approximation for the case of infinite span swept wing at subsonic cruise flight conditions. Localized volumetric force and heat impact of actuator periodic along a wing span has been considered. Calculations have been executed for physical parameters of impact typical for surface dielectric barrier discharge.

  10. Optimization of composite tiltrotor wings with extensions and winglets

    NASA Astrophysics Data System (ADS)

    Kambampati, Sandilya

    Tiltrotors suffer from an aeroelastic instability during forward flight called whirl flutter. Whirl flutter is caused by the whirling motion of the rotor, characterized by highly coupled wing-rotor-pylon modes of vibration. Whirl flutter is a major obstacle for tiltrotors in achieving high-speed flight. The conventional approach to assure adequate whirl flutter stability margins for tiltrotors is to design the wings with high torsional stiffness, typically using 23% thickness-to-chord ratio wings. However, the large aerodynamic drag associated with these high thickness-to-chord ratio wings decreases aerodynamic efficiency and increases fuel consumption. Wingtip devices such as wing extensions and winglets have the potential to increase the whirl flutter characteristics and the aerodynamic efficiency of a tiltrotor. However, wing-tip devices can add more weight to the aircraft. In this study, multi-objective parametric and optimization methodologies for tiltrotor aircraft with wing extensions and winglets are investigated. The objectives are to maximize aircraft aerodynamic efficiency while minimizing weight penalty due to extensions and winglets, subject to whirl flutter constraints. An aeroelastic model that predicts the whirl flutter speed and a wing structural model that computes strength and weight of a composite wing are developed. An existing aerodynamic model (that predicts the aerodynamic efficiency) is merged with the developed structural and aeroelastic models for the purpose of conducting parametric and optimization studies. The variables of interest are the wing thickness and structural properties, and extension and winglet planform variables. The Bell XV-15 tiltrotor aircraft the chosen as the parent aircraft for this study. Parametric studies reveal that a wing extension of span 25% of the inboard wing increases the whirl flutter speed by 10% and also increases the aircraft aerodynamic efficiency by 8%. Structurally tapering the wing of a tiltrotor

  11. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1: Load alleviation/extended span development and flight tests

    NASA Technical Reports Server (NTRS)

    Johnston, J. F.

    1979-01-01

    Active wing load alleviation to extend the wing span by 5.8 percent, giving a 3 percent reduction in cruise drag is covered. The active wing load alleviation used symmetric motions of the outboard ailerons for maneuver load control (MLC) and elastic mode suppression (EMS), and stabilizer motions for gust load alleviation (GLA). Slow maneuvers verified the MLC, and open and closed-loop flight frequency response tests verified the aircraft dynamic response to symmetric aileron and stabilizer drives as well as the active system performance. Flight tests in turbulence verified the effectiveness of the active controls in reducing gust-induced wing loads. It is concluded that active wing load alleviation/extended span is proven in the L-1011 and is ready for application to airline service; it is a very practical way to obtain the increased efficiency of a higher aspect ratio wing with minimum structural impact.

  12. A theory for lateral wing-tip blowing

    NASA Technical Reports Server (NTRS)

    Tavella, D.; Roberts, L.

    1985-01-01

    The concept of lateral blowing consists in utilizing thin jets of air, which are ejected in the spanwise direction from slots at the tips of straight and swept wings, or along the leading edges of delta wings, to generate aerodynamic forces without the assistance of deflecting solid surfaces. For weak intensities of blowing the so-generated forces could be used for roll and lateral control of aircraft. In this work a theory for this concept as applied to straight wings is presented, revealing the analytical relationship between blowing and aerodynamic forces. The approach is based on perturbing the span of an elliptically loaded wing. Scaling laws involving blowing intensity, aspect ratio, and angle of attack are derived and compared with experiments. It is concluded that this concept has potential as a novel roll and lateral control device.

  13. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  14. An attached flow design of a noninterfering leading edge extension to a thick delta wing

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Lamar, J. E.

    1985-01-01

    The analytical procedure presented for leading edge extension (LEE) determination, in keeping with such design criteria as noninterference at the wing design point, is applied to thick delta wings. The LEE device thus defined is to be mounted on a wing along a dividing stream surface that is associated with an attached flow design lift coefficient greater than zero. The delta wing in question is of twisted and cambered type. It is demonstrated that span reductions for the candidate LEEs has the most detrimental effect on overall aerodynamic efficiency, irrespective of area or shape.

  15. Application of a panel method to wake-vortex/wing interaction and comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Ross, James C.

    1987-01-01

    The ability of the Vortex Separation AEROdynamics (VSAERO) program to calculate aerodynamic loads on wings due to interaction with free vortices was studied. The loads were calculated for various positions of a downstream following wing relative to an upstream vortex-generating wing. Calculated vortex-induced span loads, rolling-moment coefficients, and lift coefficients on the following wing were compared with experimental results of McMillan et al. and El-Ramly et al. Comparisons of calculated and experimental vortex tangential velocities were also made.

  16. Pressure Distribution Over a Thick, Tapered and Twisted Monoplane Wing Model-NACA 81-J

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J

    1932-01-01

    This reports presents the results of pressure distribution tests on a thick, tapered and twisted monoplane wing model. The investigation was conducted for the purpose of obtaining data on the aerodynamic characteristics of the new wing and to provide additional information suitable for use in the design of tapered cantilever wings. The tests included angles of attack up to 90 degrees. The span loading over the wing was approximately of elliptical shape, which gave rise to relatively small bending moments about the root. The angle of zero lift for all sections along the span varied only within plus or minus 0.4 degree of the angle of zero lift for the whole wing, resulting in small leading edge loads for the high-speed condition of flight. The results also add to the available information for the study of large angles of attack.

  17. Aerodynamic characteristics of a propulsive wing-canard concept at STOL speeds

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.

    1985-01-01

    A full span model of a wing/canard concept representing a fighter configuration has been tested at STOL conditions in the NASA Langley 4 x 7 meter tunnel. The results of this test are presented, and comparisons are made to previous data of the same configuration tested as a semispan model. The potential of the propulsive wing/canard to develop very high lift coefficients was investigated with several nozzle spans (nozzle aspect ratios). Although longitudinal trim was not accomplished with the blowing distributions and configurations tested, the propulsive wing/canard appears to offer an approach to managing the large negative pitching moments associated with trailing edge flap blowing. Also presented are data showing the effects of large flap deflections and relative wing/canard positions. Presented in the appendix to the report are limited lateral-directional and ground effects data, as well as wing downwash measurements.

  18. Development of the NTF-117S Semi-Span Balance

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.

    2010-01-01

    A new high-capacity semi-span force and moment balance has recently been developed for use at the National Transonic Facility at the NASA Langley Research Center. This new semi-span balance provides the NTF a new measurement capability that will support testing of semi-span test models at transonic high-lift testing regimes. Future testing utilizing this new balance capability will include active circulation control and propulsion simulation testing of semi-span transonic wing models. The NTF has recently implemented a new highpressure air delivery station that will provide both high and low mass flow pressure lines that are routed out to the semi-span models via a set high/low pressure bellows that are indirectly linked to the metric end of the NTF-117S balance. A new check-load stand is currently being developed to provide the NTF with an in-house capability that will allow for performing check-loads on the NTF-117S balance in order to determine the pressure tare affects on the overall performance of the balance. An experimental design is being developed that will allow for experimentally assessing the static pressure tare affects on the balance performance.

  19. Exhaust Plume Effects on Sonic Boom for a Delta Wing and a Swept Wing-Body Model

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Lake, Troy

    2012-01-01

    Supersonic travel is not allowed over populated areas due to the disturbance caused by the sonic boom. Research has been performed on sonic boom reduction and has included the contribution of the exhaust nozzle plume. Plume effect on sonic boom has progressed from the study of isolated nozzles to a study with four exhaust plumes integrated with a wing-body vehicle. This report provides a baseline analysis of the generic wing-body vehicle to demonstrate the effect of the nozzle exhaust on the near-field pressure profile. Reductions occurred in the peak-to-peak magnitude of the pressure profile for a swept wing-body vehicle. The exhaust plumes also had a favorable effect as the nozzles were moved outward along the wing-span.

  20. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  1. January | 201span>6 | Ground Systems Development and Operations ...

    NASA Website

    August 201span>6; July 201span>6; June 201span>6; May 201span>6; April 201span>6; March 201span>6; February 201span>6; January 201span>6; December 2015; November 2015; October 2015; ...

  2. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  3. Flying wings / flying fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    The present paper has documented the historical relationships between various classes of all lifting vehicles, which includes the flying wing, all wing, tailless, lifting body, and lifting fuselage. The diversity in vehicle focus was to ensure that all vehicle types that map have contributed to or been influenced by the development of the classical flying wing concept was investigated. The paper has provided context and perspective for present and future aircraft design studies that may employ the all lifting vehicle concept. The paper also demonstrated the benefit of developing an understanding of the past in order to obtain the required knowledge to create future concepts with significantly improved aerodynamic performance.

  4. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    Vassberg, John C. (Inventor); Gea, Lie-Mine (Inventor); McLean, James D. (Inventor); Witowski, David P. (Inventor); Krist, Steven E. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  5. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  6. AD-1 multiple exposure showing wing sweep

    NASA Technical Reports Server (NTRS)

    1980-01-01

    flight on August 7, 1982, was NASA Research Pilot Thomas C. McMurtry. The AD-1 flew a total of 79 times during the research program. The aircraft was constructed by the Ames Industrial Co., Bohemia, NY, under a $240, 000 fixed-price contract. NASA specified the design based on a geometric configuration provided by the Boeing company. The Rutan Aircraft Factory, Mojave, CA, provided the detailed design and loads analysis for the vehicle. The aircraft was 38.8 feet long and 6.75 feet high with a wing span of 32.3 feet, unswept. It was constructed of plastic reinforced with fiberglass and weighed 1,450 pounds,empty. The vehicle was powered by two small turbojet engines, each producing 220 pounds of thrust at sea level. Due to safety concerns, the aircraft was limited to speeds of 170 mph.

  7. Lightplane Wing Design

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Venture, a kit airplane designed and manufactured by Questair, is a high performance lightplane with excellent low speed characteristics and enhanced safety due to NASA technology incorporated in its unusual wing design. In 1987, North Carolina State graduate students and Langley Research Center spent seven months researching and analyzing the Venture. The result was a wing modification, improving control and providing more usable lift. The plane subsequently set 10 world speed records.

  8. Quasi-Steady Simulation of Insect-Like Flapping Wing

    NASA Astrophysics Data System (ADS)

    Compton, Brett G.

    2005-11-01

    The goal of this study is to computationally compare turbulent and laminar quasi-steady, 3-D models of insect flight using a simplified wing planform with roughly the same dimensions and stroke kinematics as the average bumblebee wing. To simulate flapping motion of the wing we use a velocity distribution at the inlet that varies linearly with distance along the span of the wing. Angle of attack is treated by changing the angle of the input velocity vector while keeping the wing stationary, thus simplifying grid generation efforts. A laminar simulation is run on an unstructured grid of ˜2.63x10^5 mesh volumes using the commercial CFD code, Fluent; the turbulent simulation is run on a structured grid of similar size and resolution using a research LES code developed by the second author. In both cases we are seeking to reproduce the leading edge vortex (LEV) stabilized with span-wise flow as seen from previous experiments, to compare the time series of coefficients of lift and drag from the laminar and turbulent simulations over one half-stroke, and to analyze validity (or lack thereof) of the quasi-steady approximation.

  9. Effect of 3D stall-cells on the pressure distribution of a laminar NACA64-418 wing

    NASA Astrophysics Data System (ADS)

    Ragni, Daniele; Ferreira, Carlos

    2016-08-01

    A 3D stall-cell flow-field has been studied in a 4.8 aspect-ratio wing obtained by linear extrusion of a laminar NACA64-418 airfoil profile. The span-wise change in the velocity and pressure distribution along the wing has been quantified with respect to the development of cellular structures from 8° to 20° angle of attack. Oil-flow visualizations help localizing the regular cellular pattern in function of the angle of attack. Multi-plane stereoscopic PIV measurements obtained by traversing the entire setup along the wing span show that the flow separation is not span-wise uniform. The combination of different stereoscopic fields into a 3D volume of velocity data allows studying the global effect of the stall-cell pattern on the wing flow. Integration of the experimentally computed pressure gradient from the Navier-Stokes equation is employed to compute the span-wise distribution of the mean surface pressure. Comparison of the results with the ones obtained from pressure taps installed in the wing evidences a span-wise periodic loading on the wing. The periodic loading has maxima confined in the stream-wise direction between the location of the highest airfoil curvature and the one of the airfoil flow separation. Estimation of the periodic loading is found within 2-6 % of the sectional wing lift.

  10. The Aerodynamics of Deforming Wings at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Medina, Albert

    responsive to flexibility satisfying an inverse proportionality to stiffness. In hover, an effective pitch angle can be defined in a flexible wing that accounts for deflection which shifts results toward trend lines of rigid wings. Three-dimensional simulations examining the effects of two distinct deformation modes undergoing prescribed deformation associated with root and tip deflection demonstrated a greater aerodynamic response to tip deflection in hover. Efficiency gains in flexion wings over rigid wing counterpart were shown to be dependent on Reynolds number with efficiency in both modes increasing with increased Reynolds number. Additionally, while the leading-edge vortex axis proved insensitive to deformation, the shape and orientation of the LEV core is modified. Experiments on three-dimensional dynamically-scaled fruit fly wings with passive deformation operating in the bursting limit Reynolds number regime revealed enhanced leading-edge vortex bursting with tip deflection promoting greater LEV core flow deceleration in stroke. Experimental studies on rotary wings highlights a universal formation time of the leading-edge vortex independent of Reynolds number, acceleration profile and aspect ratio. Efforts to replicate LEV bursting phenomena of higher aspect ratio wings in a unity aspect ratio wing such that LEV growth is no limited by span but by the LEV traversing the chord revealed a flow regime of oscillatory lift generation reminiscent of behavior exhibited in translating wings that also maintains magnitude peak to peak.

  11. The Interference Effects of a Body on the Spanwise Load Distributions of Two 45 Degree Sweptback Wings of Aspect Ratio 8.02 from Low-Speed Tests

    NASA Technical Reports Server (NTRS)

    Martina, Albert P.

    1956-01-01

    Tests of two wing-body combinations have been conducted in the Langley 19-foot pressure tunnel at a Reynolds number of 4 x 10(exp 6) and a Mach number of 0.19 to determine the effects of the bodies on the wing span load distributions. The wings had 45 degrees sweepback of the quarter-chord line, aspect ratio 8.02, taper ratio 0.45, and incorporated 12-percent-thick airfoil sections streamwise. One wing was untwisted and uncambered whereas the second wing incorporated both twist and camber. Identical bodies of revolution, of 10:1 fineness ratio, having diameter-to-span ratios of 0.10, were mounted in mid-high-wing arrangements. The effects of wind incidence, wing fences, and flap deflection were determined for the plane uncambered wing. The addition of the body to the plane wing increased the exposed wing loading at a given lift coefficient as much as 10 percent with the body at 0 degrees incidence and 4 percent at 4 degrees incidence. The bending-moment coefficients at the wing-body juncture were increased about 2 percent with the body at 0 degrees incidence, whereas the increases were as much as 10 percent with the body at 4 degrees incidence. The spanwise load distributions due to the body on the plane wing as calculated by using a swept-wing method employing 19 spanwise lifting elements and control points generally showed satisfactory agreement with experiment. The spanwise load distributions due to body on the flapped plane wing and on the twisted and cambered wing were dissimilar to those obtained on the plane wing. Neither of the methods of calculation which were employed yielded distributions that agreed consistently with experiment for either the flapped plane wing or the twisted and cambered wing.

  12. Effect of Aspect Ratio on the Low-Speed Lateral Control Characteristics of Untapered Low-Aspect-Ratio Wings Equipped with Flap and with Retractable Ailerons

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Naeseth, Rodger L; Hagerman, John R; O'Hare, William M

    1952-01-01

    A low-speed wind-tunnel investigation was made to determine the lateral control characteristics of a series of untapered low-aspect-ratio wings. Sealed flap ailerons of various spans and spanwise locations were investigated on unswept wings of aspect ratios 1.13, 1.13, 4.13, and 6.13; and various projections of 0.60-semispan retractable ailerons were investigated on the unsweptback wings of aspect ratios 1.13, 2.13, and 4.13 and on a 45 degree sweptback wing. The retractable ailerons investigated on the unswept wings spanned the outboard stations of each wing; whereas the plain and stepped retractable ailerons investigated on the sweptback wing were located at various spanwise stations. Design charts based on experimental results are presented for estimating the flap aileron effectiveness for low-aspect-ratio, untapered, unswept.

  13. 3D reconstruction and analysis of wing deformation in free-flying dragonflies.

    PubMed

    Koehler, Christopher; Liang, Zongxian; Gaston, Zachary; Wan, Hui; Dong, Haibo

    2012-09-01

    Insect wings demonstrate elaborate three-dimensional deformations and kinematics. These deformations are key to understanding many aspects of insect flight including aerodynamics, structural dynamics and control. In this paper, we propose a template-based subdivision surface reconstruction method that is capable of reconstructing the wing deformations and kinematics of free-flying insects based on the output of a high-speed camera system. The reconstruction method makes no rigid wing assumptions and allows for an arbitrary arrangement of marker points on the interior and edges of each wing. The resulting wing surfaces are projected back into image space and compared with expert segmentations to validate reconstruction accuracy. A least squares plane is then proposed as a universal reference to aid in making repeatable measurements of the reconstructed wing deformations. Using an Eastern pondhawk (Erythimus simplicicollis) dragonfly for demonstration, we quantify and visualize the wing twist and camber in both the chord-wise and span-wise directions, and discuss the implications of the results. In particular, a detailed analysis of the subtle deformation in the dragonfly's right hindwing suggests that the muscles near the wing root could be used to induce chord-wise camber in the portion of the wing nearest the specimen's body. We conclude by proposing a novel technique for modeling wing corrugation in the reconstructed flapping wings. In this method, displacement mapping is used to combine wing surface details measured from static wings with the reconstructed flapping wings, while not requiring any additional information be tracked in the high speed camera output.

  14. Wind-tunnel investigation of aerodynamic characteristics and wing pressure distributions of an airplane with variable-sweep wings modified for laminar flow

    NASA Technical Reports Server (NTRS)

    Hallissy, James B.; Phillips, Pamela S.

    1989-01-01

    A wind tunnel test was conducted to evaluate the aerodynamic characteristics and wing pressure distributions of a variable wing sweep aircraft having wing panels that are modified to promote laminar flow. The modified wing section shapes were incorporated over most of the exposed outer wing panel span and were obtained by extending the leading edge and adding thickness to the existing wing upper surface forward of 60 percent chord. Two different wing configurations, one each for Mach numbers 0.7 and 0.8, were tested on the model simultaneously, with one wing configuration on the left side and the other on the right. The tests were conducted at Mach numbers 0.20 to 0.90 for wing sweep angles of 20, 25, 30, and 35 degrees. Longitudinal, lateral and directional aerodynamic characteristics of the modified and baseline configurations, and selected pressure distributions for the modified configurations, are presented in graphical form without analysis. A tabulation of the pressure data for the modified configuration is available as microfiche.

  15. Overview of the ARPA/WL Smart Structures and Materials Development-Smart Wing contract

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Jardine, A. Peter; Martin, Christopher A.; Appa, Kari

    1996-05-01

    While the concept of an adaptive aircraft wing, i.e., a wing whose shape parameters such as camber, wing twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied, the complexity and weight penalty of the actuation mechanisms have precluded their practical implementation. Recent development of sensors and actuators using smart materials could potentially alleviate the shortcomings of prior designs, paving the way for a practical, `smart' adaptive wing which responds to changes in flight and environmental conditions by modifying its shape to provide optimal performance. This paper presents a summary of recent work done on adaptive wing designs under an on-going ARPA/WL contract entitled `Smart Structures and Materials Development--Smart Wing.' Specifically, the design, development and planned wind tunnel testing of a 16% model representative of a fighter aircraft wing and incorporating the following features, are discussed: (1) a composite wing torque box whose span-wise twist can be varied by activating built-in shape memory alloy (SMA) torque tubes to provide increased lift and enhanced maneuverability at multiple flight conditions, (2) trailing edge control surfaces deployed using composite SMA actuators to provide smooth, hingeless aerodynamic surfaces, and (3) a suite of fiber optic sensors integrated into the wing skin which provide real-time strain and pressure data to a feedback control system.

  16. July | 201span>6 | ISS On-Orbit Status Report

    NASA Website

    Monday, 08/01: Airway Monitoring Airlock ops, SPHERES, ... August 201span>6; July 201span>6; June 201span>6; May 201span>6; April 201span>6; March 201span>6; February 201span>6; January ...

  17. Technical and Economic Assessment of Span-Distributed Loading Cargo Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Johnston, W. M.; Muehlbauer, J. C.; Eudaily, R. R.; Farmer, B. T.; Monrath, J. F.; Thompson, S. G.

    1976-01-01

    A 700,000 kg (1,540,000-lb) aircraft with a cruise Mach number of 0.75 was found to be optimum for the specified mission parameters of a 272 155-kg (600,000-lb) payload, a 5560-km (3000-n.mi.) range, and an annual productivity of 113 billion revenue-ton km (67 billion revenue-ton n. mi.). The optimum 1990 technology level spanloader aircraft exhibited the minimum 15-year life-cycle costs, direct operating costs, and fuel consumption of all candidate versions. Parametric variations of wing sweep angle, thickness ratio, rows of cargo, and cargo density were investigated. The optimum aircraft had two parallel rows of 2.44 x 2.44-m (8 x 8-ft) containerized cargo with a density of 160 kg/cu m (10 lb/ft 3) carried throughout the entire 101-m (331-ft) span of the constant chord, 22-percent thick, supercritical wing. Additional containers or outsized equipment were carried in the 24.4-m (80-ft) long fuselage compartment preceding the wing. Six 284,000-N (64,000-lb) thrust engines were mounted beneath the 0.7-rad (40-deg) swept wing. Flight control was provided by a 36.6-m (120-ft) span canard surface mounted atop the forward fuselage, by rudders on the wingtip verticals and by outboard wing flaperons.

  18. Circulation Produced by a Flapping Wing During Stroke Reversal

    NASA Astrophysics Data System (ADS)

    Burge, Matthew; Ringuette, Matthew

    2016-11-01

    We investigate the circulation behavior of the 3D flow structures formed during the stroke-reversal of a 2-degree-of-freedom flapping wing in hover. Previous work has related circulation peaks to the unsteady wing kinematics and forces. However, information from experiments detailing contributions from the multiple, 3D flow structures is lacking. The objective of this work is to quantitatively study the spanwise circulation as well as the spanwise flow which advects vorticity in the complex loop topology of a flapping wing during stroke reversal. We analyze the flow features of a scaled wing model using multi-plane stereo digital particle image velocimetry in a glycerin-water mixture. Data plane locations along the wing span are inspired by the time-resolved behavior of the 3D vortex structures observed in our earlier flow visualization studies. As with our prior work, we vary dimensionless parameters such as the pitching reduced frequency to understand their effect on the circulation. This research provides insight into the vortex dynamics produced by the coupled rotational and pitching wing motions during stroke reversal, when lift generation is challenging. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.

  19. [A winged scapula].

    PubMed

    Faber, C G; Klaver, M M; Wokke, J H J

    2002-09-14

    Three patients, one woman aged 22 and two men aged 54 and 28, presented with scapular winging. In the first patient amyotrophic plexus neuralgia was diagnosed. The second patient most probably suffered from a stretch injury of the long thoracic nerve. The third patient had scapular winging due to an isolated paresis of the trapezius muscle, which was caused by an idiopathic lesion of the accessory nerve. In the first and second patient an improvement was noticeable after 9 months and 1.5 years respectively. There was no improvement in the third patient after 11 years. Paresis of the M. serratus anterior occurs due to paralysis of the N. thoracicus longus, as a result of direct compression, stump trauma, interventions such as thoracic operations, (repeated) stretch injuries or neuralgic brachial plexus amyotrophy; in these cases the scapular winging increases as the arm is lifted forwards. Paresis of the M. trapezius occurs due to the paralysis of the N. accessorius, due to trauma, interventions such as in the neck area, a space-occupying abnormality or an idiopathic abnormality; in these cases the scapular winging increases upon the arm being lifted sideways. Another possible cause of scapular winging is muscular dystrophy, especially fascioscapulohumeral muscular dystrophy (FSHD). Usually the prognosis for recovery from a neuropraxia and an idiopathic lesion of the N. thoracicus longus within a two-year period is good. The prognosis for an isolated lesion of the N. accessorius is much less favourable. An EMG is essential for establishing a diagnosis.

  20. Finite wing aerodynamics with simulated glaze ice

    NASA Technical Reports Server (NTRS)

    Khodadoust, A.; Bragg, M. B.; Kerho, M.; Wells, S.; Soltani, M. R.

    1992-01-01

    The effect of a simulated glaze ice accretion on the aerodynamic performance of a three-dimensional wing is studied experimentally. The model used for these tests was a semi-span wing of effective aspect ratio five, mounted from the sidewall of the UIUC subsonic wind tunnel. The model has an NACA 0012 airfoil section on a rectangular, untwisted planform with interchangeable leading edges to allow for testing both the baseline and the iced wing geometry. A three-component sidewall balance was used to measure lift, drag and pitching moment on the clean and iced model. A four-beam two-color fiberoptic laser Doppler velocimeter (LDV) was used to map the flowfield along several spanwise cuts on the model. Preliminary results from LDV scans, which will be the bulk of this paper, are presented following the force balance measurement results. Initial comparison of LDV surveys compare favorably with inviscid theory results and 2D split hot-film measurements near the model surface.

  1. On the Minimum Induced Drag of Wings

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  2. On the Minimum Induced Drag of Wings

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2010-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb

  3. Pressure Distribution Over a Rectangular Airfoil with a Partial-Span Split Flap

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Harris, Thomas A

    1937-01-01

    This report presents the results of pressure-distribution tests of a Clark y wing model with a partial-span split flap made to determine the distribution of air loads over both the wing and the flap. The model was used in conjunction with a reflection plane in the NACA 7 by 10 foot wind tunnel. The 20-percent-chord split flap extended over the inboard 60 percent of the semispan. The tests were made at various flap deflections up to 45 degrees and covered a range of angles of attack from zero lift to approximately maximum lift for each deflection.

  4. The SPAN cookbook: A practical guide to accessing SPAN

    NASA Technical Reports Server (NTRS)

    Mason, Stephanie; Tencati, Ronald D.; Stern, David M.; Capps, Kimberly D.; Dorman, Gary; Peters, David J.

    1990-01-01

    This is a manual for remote users who wish to send electronic mail messages from the Space Physics Analysis Network (SPAN) to scientific colleagues on other computer networks and vice versa. In several instances more than one gateway has been included for the same network. Users are provided with an introduction to each network listed with helpful details about accessing the system and mail syntax examples. Also included is information on file transfers, remote logins, and help telephone numbers.

  5. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  6. Boundary-layer measurements on a transonic low-aspect ratio wing

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.

    1985-01-01

    Tabulations and plots are presented of boundary-layer velocity and flow-direction surveys from wind-tunnel tests of a large-scale (0.90 m semi-span) model of the NASA/Lockheed Wing C. This wing is a generic, transonic, supercritical, highly three-dimensional, low-aspect-ratio configuration designed with the use of a three-dimensional, transonic full-potential-flow wing code (FLO22). Tests were conducted at the design angle of attack of 5 deg over a Mach number range from 0.25 to 0.96 and a Reynolds number range of 3.4x10 to the 6th power. Wing pressures were measured at five span stations, and boundary-layer surveys were measured at the midspan station. The data are presented without analysis.

  7. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    NASA Astrophysics Data System (ADS)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  8. Investigation of Seal-to-Floor Effects on Semi-Span Transonic Models

    NASA Technical Reports Server (NTRS)

    Sleppy, Mark A.; Engel, Eric A.; Watson, Kevin T.; Atler, Douglas M.

    2009-01-01

    In an effort to achieve the maximum possible Reynolds number (Re) when conducting production testing for flight loads aerodynamic databases, it has been the preferred practice of The Boeing Company / Commercial Airplanes (BCA) -- Loads and Dynamics Group since the early 1990's to test large scale semi-span models in the 11- By 11-Foot Transonic Wind Tunnel (TWT) leg of the Unitary Plan Wind Tunnel (UPWT) at the NASA Ames Research Center (ARC). There are many problems related to testing large scale semi-span models of high aspect ratio flexible transport wings, such as; floor boundary layer effects, wing spanwise wall effects, solid blockage buoyancy effects, floor mechanical interference effects, airflow under the model effects, or tunnel flow gradient effects. For most of these issues, BCA has developed and implemented either standard testing methods or numerical correction schemes and these will not be discussed in this document. Other researchers have reported on semi-span transonic testing correction issues, however most of the reported research has been for low Mach testing. Some of the reports for low Mach testing address the difficult problem of preventing undesirable airflow under a semi-span model while ensuring unrestricted main balance functionality, however, for transonic models this issue has gone unresolved. BCA has been cognizant for sometime that there are marked differences in wing pressure distributions from semi-span transonic model testing than from full model or flight testing. It has been suspected that these differences are at least in part due to airflow under the model. Previous efforts by BCA to address this issue have proven to be ineffective or inconclusive and in one situation resulted in broken hardware. This paper reports on a Boeing-NASA collaborative investigation based on a series of small tests conducted between June 2006 and November 2007 in the 11 by 11 foot Transonic Wind Tunnel at NASA Ames on three large commercial jet

  9. Hypersonic wing test structure design, analysis, and fabrication

    NASA Technical Reports Server (NTRS)

    Plank, P. P.

    1975-01-01

    An investigation was conducted to provide the analyses, data, and hardware required to experimentally validate the beaded panel concept and demonstrate its usefulness as a basis for design of a hypersonic research airplane (HRA). Combinations of beaded panel structure, heat shields, channel caps, and corrugated webs for ribs and spars were analyzed for the wing of a specified HRA to operate at Mach 8 with a life span of 150 flights. Detailed analyses, conducted in accordance with established design criteria, included aerodynamic heating and load predictions, transient structural thermal calculations, extensive NASTRAN computer modeling, and structural optimization. After geometry was established for the total wing, part of the wing (85 sq ft) was designed, fabricated, and assembled into a test structure to experimentally verify the structural adequacy of the beaded panel design concept.

  10. Winged cargo return vehicle conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is committed to placing a permanent space station in Earth orbit in the 1990's. Space Station Freedom (SSF) will be located in a 220 n.m. orbit at 28.5 degrees inclination. The Winged Cargo Return Vehicle's (CRV) primary mission is to support SSF crew by flying regular resupply missions. The winged CRV is designed to be reusable, dry land recoverable, and unmanned. The CRV will be launched inline on three liquid hydrogen/oxygen rocket boosters with a payload capacity of 113,000 lbs. The three boosters will take the CRV to an orbit of 50 by 110 n.m. From this altitude the orbital manuevering engine will place the vehicle in synchronous orbit with the space station. The winged CRV will deliver cargo modules to the space station by direct docking or by remaining outside the SSF command zone and using the Orbital Maneuvering Vehicle (OMV) to transfer cargo. After unloading/loading, the CRV will deorbit and fly back to Kennedy Space Center. The CRV has a wing span of 57.8 feet, a length of 76.0 feet, and a dry weight of 61.5 klb. The cargo capacity of the vehicle is 44.4 klb. The vehicle has a lift-drag ratio of 1.28 (hypersonic) and 6.0 (subsonic), resulting in a 1351 n.m. cross range. The overall mission length ranges between 18.8 and 80.5 hr. The operational period will be the years 2000 to 2020.

  11. Comparison of theory with experiment in the phenomenon of wing flutter

    NASA Technical Reports Server (NTRS)

    Cicala, P

    1939-01-01

    Direct measurements were undertaken at the Aeronautics Laboratory in Turin of the aerodynamic actions on an oscillating wing. The tests conducted had as their essential object the examination of the operation of apparatus designed for this measurement. The values experimentally obtained for the aerodynamic coefficients are in good agreement with the theory of oscillatory motion of the wing of finite span and show clear deviation from the values obtained by theory of plane motion.

  12. Analysis of transonic flow about lifting wing-body configurations

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1975-01-01

    An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.

  13. The spanwise distribution of lift for minimum induced drag of wings having a given lift and a given bending moment

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1950-01-01

    The problem of the minimum induced drag of wings having a given lift and a given span is extended to include cases in which the bending moment to be supported by the wing is also given. The theory is limited to lifting surfaces traveling at subsonic speeds. It is found that the required shape of the downwash distribution can be obtained in an elementary way which is applicable to a variety of such problems. Expressions for the minimum drag and the corresponding spanwise load distributions are also given for the case in which the lift and the bending moment about the wing root are fixed while the span is allowed to vary. The results show a 15-percent reduction of the induced drag with a 15-percent increase in span as compared with results for an elliptically loaded wing having the same total lift and bending moment.

  14. [Dynamic winged scapula].

    PubMed

    Perjés, K

    1990-01-01

    Author describes the paralysis of the serratus muscle in consequence of the paralysis of the long thoracic nerve. The form of appearance is the winged of "flying" scapula. Beside the presentation of the literary and anatomical data the own cases are described. Only conservative therapy was made, an operation was in no case necessary.

  15. Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight

    PubMed Central

    Heerenbrink, M. Klein; Johansson, L. C.; Hedenström, A.

    2015-01-01

    Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models. PMID:27547098

  16. Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight.

    PubMed

    Heerenbrink, M Klein; Johansson, L C; Hedenström, A

    2015-05-08

    Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models.

  17. Aeroacoustic theory for noncompact wing-gust interaction

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Widnall, S. E.

    1981-01-01

    Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.

  18. Experimental Investigation of the Unsteady Flow Structures of Two Interacting Pitching Wings

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2015-11-01

    Birds, insects and fish propel themselves with unsteady motions of their wings and fins. Many of these animals are also found to fly or swim in three-dimensional flocks and schools. Numerous studies have explored the three-dimensional steady flow interactions and the two-dimensional unsteady flow interactions in collectives. Yet, the characterization of the three-dimensional unsteady interactions remains relatively unexplored. This study aims to characterize the flow structures and interactions between two sinusoidally pitching finite-span wings. The arrangement of the wings varies from a tandem to a bi-plane configuration. The vortex structures for these various arrangements are quantified by using particle image velocimetry. The vortex-wing interactions are also characterized as the synchrony between the wings is modified.

  19. Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.

    1990-01-01

    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.

  20. Flight test and numerical simulation of transonic flow around YAV-8B Harrier II wing

    NASA Technical Reports Server (NTRS)

    Gea, Lie-Mine; Chyu, Wei J.; Stortz, Michael W.; Roberts, Andrew C.; Chow, Chuen-Yen

    1991-01-01

    A computational fluid dynamics (CFD) method is used to study the aerodynamics of the YAV-8B Harrier II wing in the transonic region. A numerical procedure is developed to compute the flow field around the complicated wing-pylon-fairing geometry. The surface definition of the wing and pylons were obtained from direct measurement using theodolite triangulation. A thin-layer Navier-Stokes code with the Chimera technique is used to compute flow solutions. The computed pressure distributions at several span stations are compared with flight test data and show good agreement. Computed results are correlated with flight test data that show the flow is severely separated in the vicinity of the wing-pylon junction. Analysis shows that shock waves are induced by pylon swaybrace fairings, that the flow separation is much stronger at the outboard pylon and that the separation is caused mainly by the crossflow passing the geometry of wing-pylon junction.

  1. Effects of Horizontal-Control Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.

    1981-01-01

    An investigation at low subsonic speeds has been conducted in the Langley 300-MPH 7- by 10-foot tunnel. The basic wing had a trapezoidal planform, an aspect ratio of 3.0., a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the basic wing included deflectable full-span and partial-span leading-edge chord-extensions. A trapezoidal horizontal control similar in planform to the basic wing and a 60 deg sweptback delta horizontal control were tested in conjunction with the wing. The total planform area of each horizontal control was 16 percent of the total basic-wing area. Modifications to these horizontal controls included addition of a full-span chord-extension to the trapezoidal planform and a fence to the delta planform.

  2. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.

    PubMed

    Lehmann, Fritz-Olaf

    2008-01-01

    Understanding the fluid dynamics of force control in flying insects requires the exploration of how oscillating wings interact with the surrounding fluid. The production of vorticity and the shedding of vortical structures within the stroke cycle thus depend on two factors: the temporal structure of the flow induced by the wing's own instantaneous motion and the flow components resulting from both the force production in previous wing strokes and the motion of other wings flapping in close proximity. These wake-wing interactions may change on a stroke-by-stroke basis, confronting the neuro-muscular system of the animal with a complex problem for force control. In a single oscillating wing, the flow induced by the preceding half stroke may lower the wing's effective angle of attack but permits the recycling of kinetic energy from the wake via the wake capture mechanism. In two-winged insects, the acceleration fields produced by each wing may strongly interact via the clap-and-fling mechanism during the dorsal stroke reversal. Four-winged insects must cope with the fact that the flow over their hindwings is affected by the presence of the forewings. In these animals, a phase-shift between the stroke cycles of fore- and hindwing modulates aerodynamic performance of the hindwing via leading edge vortex destruction and changes in local flow condition including wake capture. Moreover, robotic wings demonstrate that phase-lag during peak performance and the strength of force modulation depend on the vertical spacing between the two stroke planes and the size ratio between fore- and hindwing. This study broadly summarizes the most prominent mechanisms of wake-wing and wing-wing interactions found in flapping insect wings and evaluates the consequences of these processes for the control of locomotor forces in the behaving animal.

  3. Data and analysis procedures for improved aerial applications mission performance. [agricultural aircraft wing geometry

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Morris, D. K.; Razak, K.

    1979-01-01

    An analysis procedure is given and cases analyzed for the effects of wing geometry on lateral transport of a variety of agricultural particles released in the wake of an agricultural airplane. The cases analyzed simulate the release of particles from a fuselage centerline-mounted dry material spreader; however, the procedure applies to particles released anywhere along the wing span. Consideration is given to the effects of taper ratio, aspect ratio, wing loading, and deflected flaps. It is noted that significant lateral transport of large particles can be achieved using high-lift devices positioned to create a strong vortex near the location of particle release.

  4. Theoretical characteristics in supersonic flow of two types of control surfaces on triangular wings

    NASA Technical Reports Server (NTRS)

    Tucker, Warren A; Nelson, Robert L

    1949-01-01

    Methods based on the linearized theory for supersonic flow were used to find the characteristics of two types of control surfaces on thin triangular wings. The first type, the constant-chord partial-span flap, was considered to extend either outboard from the center of the wing or inboard from the wing tip. The second type, the full-triangular-tip flap, was treated only for the case in which the Mach number component normal to the leading edge is supersonic. For each type, expressions were found for the lift, rolling-moment, pitching-moment, and hinge-moment characteristics.

  5. Experimental study of the effect on span loading on aircraft wakes

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Rossow, V. J.; Ciffone, D. L.

    1975-01-01

    Measurements were made in the NASA-Ames 40- by 80-foot wind tunnel of the rolling moment induced on a following model in the wake 13.6 spans behind a subsonic transport model for a variety of trailing edge flap settings of the generator. It was found that the rolling moment on the following model was reduced substantially, compared to the conventional landing configuration, by reshaping the span loading on the generating model to approximate a span loading, found in earlier studies, which resulted in reduced wake velocities. This was accomplished by retracting the outboard trailing edge flaps. It was concluded, based on flow visualization conducted in the wind tunnel as well as in a water tow facility, that this flap arrangement redistributes the vorticity shed by the wing along the span to form three vortex pairs that interact to disperse the wake.

  6. Energetics and optimum motion of oscillating lifting surfaces of finite span

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.; Widnall, S. E.

    1986-01-01

    In certain modes of animal propulsion in nature, such as bird flight and fish swimming, the efficiency compared to man-made vehicles is very high. In such cases, wing and tail motions are typically associated with relatively high Reynolds numbers, where viscous effects are confined to a thin boundary layer at the surface and a thin trailing wake. The propulsive forces, which are generated primarily by the inertial forces, can be calculated from potential-flow theory using linearized unsteady-wing theory (for small-amplitude oscillations). In the present study, a recently developed linearized, low-frequency, unsteady lifting-line theory is employed to calculate the (sectional and total) energetic quantities and optimum motion of an oscillating wing of finite span.

  7. Drag reduction by wing tip slots in a gliding Harris' hawk, Parabuteo unicinctus

    PubMed

    Tucker

    1995-01-01

    The anterior-most primary feathers of many birds that soar over land bend upwards and separate vertically to form slotted wing tips during flight. The slots are thought to reduce aerodynamic drag, although drag reduction has never been demonstrated in living birds. Wing theory explains how the feathers that form the tip slots can reduce induced drag by spreading vorticity horizontally along the wing and by acting as winglets, which are used on aircraft to make wings non-planar and to spread vorticity vertically. This study uses the induced drag factor to measure the induced drag of a wing relative to that of a standard planar wing with the same span, lift and speed. An induced drag factor of less than 1 indicates that the wing is non-planar. The minimum drag of a Harris' hawk gliding freely in a wind tunnel was measured before and after removing the slots by clipping the tip feathers. The unclipped hawk had 70­90 % of the drag of the clipped hawk at speeds between 7.3 and 15.0 m s-1. At a wing span of 0.8 m, the unclipped hawk had a mean induced drag factor of 0.56, compared with the value of 1.10 assumed for the clipped hawk. A Monte Carlo simulation of error propagation and a sensitivity analysis to possible errors in measured and assumed values showed that the true mean value of the induced drag factor for the unclipped hawk was unlikely to be more than 0.93. These results for a living bird support the conclusions from a previous study of a feathered tip on a model wing in a wind tunnel: the feathers that form the slotted tips reduce induced drag by acting as winglets that make the wings non-planar and spread vorticity both horizontally and vertically.

  8. Unsteady Performance of Finite-Span Pitching Propulsors in Mixtures of Side-by-Side and In-Line Arrangements

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2016-11-01

    Birds, insects, and fish propel themselves by flapping their wings or oscillating their fins in unsteady motions. Many of these animals fly or swim in groups or collectives, typically described as flocks, swarms and schools. The three-dimensional steady flow interactions and the two dimensional unsteady flow interactions that occur in collectives are well characterized. However, the interactions that occur among three-dimensional unsteady propulsors remain relatively unexplored. The aim of the current study is to measure the forces acting on and the energetics of two finite-span pitching wings. The wings are arranged in mixtures of canonical in-line and side-by-side configurations while the phase delay between the pitching wings is varied. The thrust force, fluid-mediated interaction force between the wings and the propulsive efficiency are quantified. The three-dimensional interaction mechanisms are compared and contrasted with previously examined two-dimensional mechanisms. Stereoscopic particle image velocimetry is employed to characterize the three-dimensional flow structures along the span of the pitching wings.

  9. Technical and economic assessment of span-distributed loading cargo aircraft concepts

    NASA Technical Reports Server (NTRS)

    Whitlow, D. H.; Whitner, P. C.

    1976-01-01

    A preliminary design study of the performance and economics resulting from the application of the distributed load concept to large freighter aircraft was made. The study was limited to configurations having the payload entirely contained in unswept wings of constant chord with conventional tail surfaces supported from the wing by twin booms. A parametric study based on current technology showed that increases in chord had a similar effect on the economics as increases in span. Increases in both span and chord or airplane size had the largest and most favorable effect. At 600,000 lbs payload a configuration was selected and refined to incorporate advanced technology that could be in production by 1990 and compared with a reference conventional airplane having similar technology.

  10. Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots.

    PubMed

    Ortega Ancel, Alejandro; Eastwood, Rodney; Vogt, Daniel; Ithier, Carter; Smith, Michael; Wood, Rob; Kovač, Mirko

    2017-02-06

    Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s(-1). The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested.

  11. Detailed pressure distribution measurements obtained on several configurations of an aspect-ratio-7 variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.

    1985-01-01

    Detailed pressure distribution measurements were made for 11 twist configurations of a unique, multisegmented wing model having an aspect ratio of 7 and a taper ratio of 1. These configurations encompassed span loads ranging from that of an untwisted wing to simple flapped wings both with and without upper-surface spoilers attached. For each of the wing twist configurations, electronic scanning pressure transducers were used to obtain 580 surface pressure measurements over the wing in about 0.1 sec. Integrated pressure distribution measurements compared favorably with force-balance measurements of lift on the model when the model centerbody lift was included. Complete plots and tabulations of the pressure distribution data for each wing twist configuration are provided.

  12. On Celestial Wings,

    DTIC Science & Technology

    1995-11-01

    warning at headquarters of Japanese planes approaching Clark Field. Despite all our warning systems and all the reconnaissance missions we had flown, the...late January 1942. 49 ON CELESTIAL WINGS Davao on 3 January 1942. They staged through Samarinda, Bomeo , and flew the 730 nautical miles to find the...knocking out our hydraulic system , our brakes, landing gear and bomb release mechanism. We kicked the bombs out manually over Bali and returned to Java

  13. Wing on a String

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an activity that shows students how flight occurs. The "wing on a string" is a simple teacher-made frame that consists of PVC pipe, fishing line, and rubber bands--all readily available hardware store items. The only other materials/tools involved are a sheet of paper, some pieces of a soda straw, a stapler,…

  14. ACTE Wing Loads Analysis

    NASA Technical Reports Server (NTRS)

    Horn, Nicholas R.

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) project modified a Gulfstream III (GIII) aircraft with a new flexible flap that creates a seamless transition between the flap and the wing. As with any new modification, it is crucial to ensure that the aircraft will not become overstressed in flight. To test this, Star CCM a computational fluid dynamics (CFD) software program was used to calculate aerodynamic data for the aircraft at given flight conditions.

  15. Variable Camber Morphing Wings

    DTIC Science & Technology

    2016-02-02

    exploring smart materials , aiming at achieving more efficient morphing capability in terms of control authority and energy consump- tion. Other specific...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT...methodology of variable camber morphing wings based on the use of active materials , namely piezoelectric materials and shape memory alloys. The research work

  16. Measurements of Blast Pressures on a Rigid 35 deg Sweptback Wing at Mach 0.76 from Rocket Propelled Sled Tests.

    DTIC Science & Technology

    1980-01-31

    inches Root Chord (at model centerline) 15.091 Wing Section (streamwise) 64A010 Thickness Ratio (at model centerline) 17% (at tip) 10% Pressure Stations...Theoretical Symmetric Span Loading at Subsonic Speeds for Wings Having Arbitrary Planforms, NACA , Report No. 921, 1948. 95 APPENDIX A PRESSURE

  17. Influence of Finite Span and Sweep on Active Flow Control Efficacy

    NASA Technical Reports Server (NTRS)

    Greenblatt, David; Washburn, Anthony E.

    2007-01-01

    Active flow control efficacy was investigated by means of leading-edge and flap-shoulder zero mass-flux blowing slots on a semispan wing model that was tested in unswept (standard) and swept configurations. On the standard configuration, stall commenced inboard, but with sweep the wing stalled initially near the tip. On both configurations, leading-edge perturbations increased C(sub L,max) and post stall lift, both with and without deflected flaps. Without sweep, the effect of control was approximately uniform across the wing span but remained effective to high angles of attack near the tip; when sweep was introduced a significant effect was noted inboard, but this effect degraded along the span and produced virtually no meaningful lift enhancement near the tip, irrespective of the tip configuration. In the former case, control strengthened the wingtip vortex; in the latter case, a simple semi-empirical model, based on the trajectory or streamline of the evolving perturbation, served to explain the observations. Control on finite-span flaps did not differ significantly from their two-dimensional counterpart, while control over a tip flap produced significant variations to all three moments in the presence of large deflection and these variations were linear with input slot momentum. Control from the flap produced expected lift enhancement and CL,max improvements in the absence of sweep, but these improvements degraded with the introduction of sweep.

  18. Influence of Finite Span and Sweep on Active Flow Control Efficacy

    NASA Technical Reports Server (NTRS)

    Greenblatt, David; Washburn, Anthony E.

    2008-01-01

    Active flow control efficacy was investigated by means of leading-edge and flap-shoulder zero mass-flux blowing slots on a semispan wing model that was tested in unswept (standard) and swept configurations. On the standard configuration, stall commenced inboard, but with sweep the wing stalled initially near the tip. On both configurations, leading-edge perturbations increased CL,max and post stall lift, both with and without deflected flaps. Without sweep, the effect of control was approximately uniform across the wing span but remained effective to high angles of attack near the tip; when sweep was introduced a significant effect was noted inboard, but this effect degraded along the span and produced virtually no meaningful lift enhancement near the tip, irrespective of the tip configuration. In the former case, control strengthened the wingtip vortex; in the latter case, a simple semi-empirical model, based on the trajectory or "streamline" of the evolving perturbation, served to explain the observations. In the absence of sweep, control on finite-span flaps did not differ significantly from their nominally twodimensional counterpart. Control from the flap produced expected lift enhancement and CL,max improvements in the absence of sweep, but these improvements degraded with the introduction of sweep.

  19. Postnatal development in Andersen's leaf-nosed bat Hipposideros pomona: flight, wing shape, and wing bone lengths.

    PubMed

    Lin, Ai-Qing; Jin, Long-Ru; Shi, Li-Min; Sun, Ke-Ping; Berquist, Sean W; Liu, Ying; Feng, Jiang

    2011-04-01

    Postnatal changes in flight development, wing shape and wing bone lengths of 56 marked neonate Hipposideros pomona were investigated under natural conditions in southwest China. Flight experiments showed that pups began to flutter with a short horizontal displacement at 10 days and first took flight at 19 days, with most achieving sustained flight at 1 month old. Analysis of covariance on wingspan, wing area, and the other seven wing characteristics between 'pre-flight' and 'post-volancy' periods supports the hypothesis that growth had one 'pre-flight' trajectory and a different 'post-volancy' trajectory in bats. Wingspan, handwing length and area, armwing length and area, and total wing area increased linearly until the age of first flight, after which the growth rates decreased (all P < 0.001). Wing loading declined linearly until day 19 before ultimately decreasing to adult levels (P < 0.001). Additionally, the relationship of different pairwise combinations of bony components composing span-wise length and chord-wise length was evaluated to test the hypothesis that compensatory growth of wing bones in H. pomona occurred in both 'pre-flight' and 'post-volancy' periods. The frequency of short-long and long-short pairs was significantly greater than that of short-short, long-long pairs in most pairs of bone elements in adults. The results indicate that a bone 'shorter than expected' would be compensated by a bone or bones 'longer than expected', suggesting compensatory growth in H. pomona. The pairwise comparisons conducted in adults were also performed in young bats during 'pre-flight' and 'post-volancy' periods, demonstrating that compensatory growth occurred throughout postnatal ontogeny.

  20. Semi-span model testing in the national transonic facility

    NASA Astrophysics Data System (ADS)

    Chokani, Ndaona

    1994-05-01

    The present work was motivated by an ongoing research program at NASA Langley Research Center to develop a semi-span testing capability for the National Transonic Facility (NTF). This test technique is being investigated as a means to design and optimize high-lift devices at flight Reynolds numbers in a ground test facility. Even though the freestream Mach numbers of interest are around .20, the flow around a transport wing with high lift devices deployed may contain regions of compressible flow. Thus to properly model the flow physics, a compressible flow solver may be required. However, the application of a compressible flow solver at low Mach numbers can be problematic. The objective of this phase of the project is to directly compare the performance of two widely used three-dimensional compressible Navier-Stokes solvers at low Mach numbers to both experimental data and to results obtained from an incompressible Navier-Stokes solver. The geometries of interest are two isolated wings with different leading edge sweep angles. The compressible Navier-Stokes solvers chosen, TLNS3D-MB and CFL3D, which were developed at NASA Langley Research Center (LaRC), represent the current state-of-the-art in compressible 3-D Navier-Stokes solvers. The incompressible Navier-Stokes solver, INS3D-UP, developed recently at NASA Ames Research Center (ARC), represents the current state-of-the-art in incompressible Navier-Stokes solvers.

  1. Fog spontaneously folds mosquito wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.

    2015-02-01

    The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.

  2. Homological Computation Using Spanning Trees

    NASA Astrophysics Data System (ADS)

    Molina-Abril, H.; Real, P.

    We introduce here a new mathbb{F}_2 homology computation algorithm based on a generalization of the spanning tree technique on a finite 3-dimensional cell complex K embedded in ℝ3. We demonstrate that the complexity of this algorithm is linear in the number of cells. In fact, this process computes an algebraic map φ over K, called homology gradient vector field (HGVF), from which it is possible to infer in a straightforward manner homological information like Euler characteristic, relative homology groups, representative cycles for homology generators, topological skeletons, Reeb graphs, cohomology algebra, higher (co)homology operations, etc. This process can be generalized to others coefficients, including the integers, and to higher dimension.

  3. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  4. Analysis and design of planar and non-planar wings for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Straussfogel, Dennis M.; Maughmer, Mark D.

    1991-01-01

    Improvements in the aerodynamic efficiency of commercial transport aircraft will reduce fuel usage with subsequent reduced cost, both monetary and environmental. To this end, the current research is aimed at reducing the overall drag of these aircraft with specific emphasis on reducing the drag generated by the lifting surfaces. The ultimate goal of this program is to create a wing design methodology which optimizes the geometry of the wing for lowest total drag within the constraints of a particular design specification. The components of drag which must be considered include profile drag, and wave drag. Profile drag is dependent upon, among other things, the airfoil section and the total wetted area. Induced drag, which is manifested as energy left in the wake by the trailing vortex system is mostly a function of wing span, but also depends on other geometric wing parameters. Wave drag of the wing, important in the transonic flight regime, is largely affected by the airfoil section, wing sweep, and so forth. The optimization problem is that of assessing the various parameters which contribute to the different components of wing drag, and determining the wing geometry which generates the best overall performance for a given aircraft mission. The primary thrust of the research effort to date was in the study of induced drag. Results from the study are presented.

  5. Simulation of iced wing aerodynamics

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Bragg, M. B.; Kwon, O. J.; Sankar, L. N.

    1991-01-01

    The sectional and total aerodynamic load characteristics of moderate aspect ratio wings with and without simulated glaze leading edge ice were studied both computationally, using a three dimensional, compressible Navier-Stokes solver, and experimentally. The wing has an untwisted, untapered planform shape with NACA 0012 airfoil section. The wing has an unswept and swept configuration with aspect ratios of 4.06 and 5.0. Comparisons of computed surface pressures and sectional loads with experimental data for identical configurations are given. The abrupt decrease in stall angle of attack for the wing, as a result of the leading edge ice formation, was demonstrated numerically and experimentally.

  6. Use of a Viscous Flow Simulation Code for Static Aeroelastic Analysis of a Wing at High-Lift Conditions

    NASA Technical Reports Server (NTRS)

    Akaydin, H. Dogus; Moini-Yekta, Shayan; Housman, Jeffrey A.; Nguyen, Nhan

    2015-01-01

    In this paper, we present a static aeroelastic analysis of a wind tunnel test model of a wing in high-lift configuration using a viscous flow simulation code. The model wing was tailored to deform during the tests by amounts similar to a composite airliner wing in highlift conditions. This required use of a viscous flow analysis to predict the lift coefficient of the deformed wing accurately. We thus utilized an existing static aeroelastic analysis framework that involves an inviscid flow code (Cart3d) to predict the deformed shape of the wing, then utilized a viscous flow code (Overflow) to compute the aerodynamic loads on the deformed wing. This way, we reduced the cost of flow simulations needed for this analysis while still being able to predict the aerodynamic forces with reasonable accuracy. Our results suggest that the lift of the deformed wing may be higher or lower than that of the non-deformed wing, and the washout deformation of the wing is the key factor that changes the lift of the deformed wing in two distinct ways: while it decreases the lift at low to moderate angles of attack simply by lowering local angles of attack along the span, it increases the lift at high angles of attack by alleviating separation.

  7. Effects of ornamentation and phylogeny on the evolution of wing shape in stalk-eyed flies (Diopsidae).

    PubMed

    Husak, J F; Ribak, G; Baker, R H; Rivera, G; Wilkinson, G S; Swallow, J G

    2013-06-01

    Exaggerated male ornaments are predicted to be costly to their bearers, but these negative effects may be offset by the correlated evolution of compensatory traits. However, when locomotor systems, such as wings in flying species, evolve to decrease such costs, it remains unclear whether functional changes across related species are achieved via the same morphological route or via alternate changes that have similar function. We conducted a comparative analysis of wing shape in relation to eye-stalk elongation across 24 species of stalk-eyed flies, using geometric morphometrics to determine how species with increased eye span, a sexually selected trait, have modified wing morphology as a compensatory mechanism. Using traditional and phylogenetically informed multivariate analyses of shape in combination with phenotypic trajectory analysis, we found a strong phylogenetic signal in wing shape. However, dimorphic species possessed shifted wing veins with the result of lengthening and narrowing wings compared to monomorphic species. Dimorphic species also had changes that seem unrelated to wing size, but instead may govern wing flexion. Nevertheless, the lack of a uniform, compensatory pattern suggests that stalk-eyed flies used alternative modifications in wing structure to increase wing area and aspect ratio, thus taking divergent morphological routes to compensate for exaggerated eye stalks.

  8. Experimental characterization and multidisciplinary conceptual design optimization of a bendable load stiffened unmanned air vehicle wing

    NASA Astrophysics Data System (ADS)

    Jagdale, Vijay Narayan

    Demand for deployable MAVs and UAVs with wings designed to reduce aircraft storage volume led to the development of a bendable wing concept at the University of Florida (UF). The wing shows an ability to load stiffen in the flight load direction, still remaining compliant in the opposite direction, enabling UAV storage inside smaller packing volumes. From the design prospective, when the wing shape parameters are treated as design variables, the performance requirements : high aerodynamic efficiency, structural stability under aggressive flight loads and desired compliant nature to prevent breaking while stored, in general conflict with each other. Creep deformation induced by long term storage and its effect on the wing flight characteristics are additional considerations. Experimental characterization of candidate bendable UAV wings is performed in order to demonstrate and understand aerodynamic and structural behavior of the bendable load stiffened wing under flight loads and while the wings are stored inside a canister for long duration, in the process identifying some important wing shape parameters. A multidisciplinary, multiobjective design optimization approach is utilized for conceptual design of a 24 inch span and 7 inch root chord bendable wing. Aerodynamic performance of the wing is studied using an extended vortex lattice method based Athena Vortex Lattice (AVL) program. An arc length method based nonlinear FEA routine in ABAQUS is used to evaluate the structural performance of the wing and to determine maximum flying velocity that the wing can withstand without buckling or failing under aggressive flight loads. An analytical approach is used to study the stresses developed in the composite wing during storage and Tsai-Wu criterion is used to check failure of the composite wing due to the rolling stresses to determine minimum safe storage diameter. Multidisciplinary wing shape and layup optimization is performed using an elitist non-dominated sorting

  9. Effects of Wing Sweep on In-flight Boundary-layer Transition for a Laminar Flow Wing at Mach Numbers from 0.60 to 0.79

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.

    1990-01-01

    The variable sweep transition flight experiment (VSTFE) was conducted on an F-14A variable sweep wing fighter to examine the effect of wing sweep on natural boundary layer transition. Nearly full span upper surface gloves, extending to 60 percent chord, were attached to the F-14 aircraft's wings. The results are presented of the glove 2 flight tests. Glove 2 had an airfoil shape designed for natural laminar flow at a wing sweep of 20 deg. Sample pressure distributions and transition locations are presented with the complete results tabulated in a database. Data were obtained at wing sweeps of 15, 20, 25, 30, and 35 deg, at Mach numbers ranging from 0.60 to 0.79, and at altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number obtained was 18.6 x 10(exp 6) at 15 deg of wing sweep, Mach 0.75, and at an altitude of 10,000 ft.

  10. Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.

    PubMed

    Cheney, Jorn A; Allen, Justine J; Swartz, Sharon M

    2017-04-01

    Unlike birds and insects, bats fly with wings composed of thin skin that envelops the bones of the forelimb and spans the area between the limbs, digits, and sometimes the tail. This skin is complex and unusual; it is thinner than typical mammalian skin and contains organized bundles of elastin and embedded skeletal muscles. These elements are likely responsible for controlling the shape of the wing during flight and contributing to the aerodynamic capabilities of bats. We examined the arrangement of two macroscopic architectural elements in bat wings, elastin bundles and wing membrane muscles, to assess the diversity in bat wing skin morphology. We characterized the plagiopatagium and dactylopatagium of 130 species from 17 families of bats using cross-polarized light imaging. This method revealed structures with distinctive relative birefringence, heterogeneity of birefringence, variation in size, and degree of branching. We used previously published anatomical studies and tissue histology to identify birefringent structures, and we analyzed their architecture across taxa. Elastin bundles, muscles, neurovasculature, and collagenous fibers are present in all species. Elastin bundles are oriented in a predominantly spanwise or proximodistal direction, and there are five characteristic muscle arrays that occur within the plagiopatagium, far more muscle than typically recognized. These results inform recent functional studies of wing membrane architecture, support the functional hypothesis that elastin bundles aid wing folding and unfolding, and further suggest that all bats may use these architectural elements for flight. All species also possess numerous muscles within the wing membrane, but the architecture of muscle arrays within the plagiopatagium varies among families. To facilitate present and future discussion of these muscle arrays, we refine wing membrane muscle nomenclature in a manner that reflects this morphological diversity. The architecture of the

  11. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    PubMed

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing.

  12. Application of a Navier-Stokes Solver to the Analysis of Multielement Airfoils and Wings Using Multizonal Grid Techniques

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth M.; Biedron, Robert T.; Whitlock, Mark

    1995-01-01

    A computational study was performed to determine the predictive capability of a Reynolds averaged Navier-Stokes code (CFL3D) for two-dimensional and three-dimensional multielement high-lift systems. Three configurations were analyzed: a three-element airfoil, a wing with a full span flap and a wing with a partial span flap. In order to accurately model these complex geometries, two different multizonal structured grid techniques were employed. For the airfoil and full span wing configurations, a chimera or overset grid technique was used. The results of the airfoil analysis illustrated that although the absolute values of lift were somewhat in error, the code was able to predict reasonably well the variation with Reynolds number and flap position. The full span flap analysis demonstrated good agreement with experimental surface pressure data over the wing and flap. Multiblock patched grids were used to model the partial span flap wing. A modification to an existing patched- grid algorithm was required to analyze the configuration as modeled. Comparisons with experimental data were very good, indicating the applicability of the patched-grid technique to analyses of these complex geometries.

  13. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    PubMed

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  14. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures

    PubMed Central

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean

    2017-01-01

    Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574

  15. January | 201span>6 | Space Station | Page 2

    NASA Website

    Posted on January 7, 201span>6 at 12:00 pm by Mark Garcia. 1 Reply. ... August 201span>6; July 201span>6; June 201span>6; May 201span>6; April 201span>6; March 201span>6; February 201span>6; ...

  16. Constructing Gloved wings for aerodynamic studies

    NASA Technical Reports Server (NTRS)

    Bohn-Meyer, Marta R.

    1988-01-01

    Recently, two aircraft from the Dryden Flight Research Facility were used in the general study of natural laminar flow (NLF). The first, an F-14A aircraft on short-term loan from the Navy, was used to investigate transonic natural laminar flow. The second, an F-15A aircraft on long-term loan from the Air Force, was used to examine supersonic NLF. These tests were follow-on experiments to the NASA F-111 NLF experiment conducted in 1979. Both wings of the F-14A were gloved, in a two-phased experiment, with full-span(upper surface only) airfoil shapes constructed primarily of fiberglass, foam, and resin. A small section of the F-15A right wing was gloved in a similar manner. Each glove incorporated provisions for instrumentation to measure surface pressure distributions. The F-14A gloves also had provisions for instrumentation to measure boundary layer profiles, acoustic environments, and surface pitot pressures. Discussions of the techniques used to construct the gloves and to incorporate the required instrumentation are presented.

  17. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  18. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  19. Time-varying span efficiency through the wingbeat of desert locusts

    PubMed Central

    Henningsson, Per; Bomphrey, Richard J.

    2012-01-01

    The flight performance of animals depends greatly on the efficacy with which they generate aerodynamic forces. Accordingly, maximum range, load-lifting capacity and peak accelerations during manoeuvres are all constrained by the efficiency of momentum transfer to the wake. Here, we use high-speed particle image velocimetry (1 kHz) to record flow velocities in the near wake of desert locusts (Schistocerca gregaria, Forskål). We use the measured flow fields to calculate time-varying span efficiency throughout the wing stroke cycle. The locusts are found to operate at a maximum span efficiency of 79 per cent, typically at a plateau of about 60 per cent for the majority of the downstroke, but at lower values during the upstroke. Moreover, the calculated span efficiencies are highest when the largest lift forces are being generated (90% of the total lift is generated during the plateau of span efficiency) suggesting that the combination of wing kinematics and morphology in locust flight perform most efficiently when doing the most work. PMID:22112649

  20. The natural flow wing-design concept

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1992-01-01

    A wing-design study was conducted on a 65 degree swept leading-edge delta wing in which the wing geometry was modified to take advantage of the naturally occurring flow that forms over a slender wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study which was divided into three parts: preliminary design, initial design, and final design. In the preliminary design, the wing planform, the design conditions, and the near-conical wing-design concept were derived, and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential flow solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and to investigate modifications to the airfoil thickness, leading-edge radius, airfoil maximum-thickness position, and wing upper to lower surface asymmetry on the baseline near-conical wing. The final design employed an Euler solver to analyze the best wing configurations found in the initial design and to extend the study of wing asymmetry to develop a more refined wing. Benefits resulting from each modification are discussed, and a final 'natural flow' wing geometry was designed that provides an improvement in aerodynamic performance compared with that of a baseline conventional uncambered wing, linear-theory cambered wing, and near-conical wing.

  1. Pressure Distributions from Subsonic Tests of a NACA 0012 Semispan Wing Model

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.

    1995-01-01

    An unswept, semispan wing model incorporating a NACA 0012 airfoil section was tested in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data which document effects of wing configuration and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a full-span, single-slotted trailing-edge flap. The trailing-edge flap was tested at a deflection angle of 40 degrees and the Krueger flap at a deflection of 55 degrees. Three wing configurations were tested: cruise, trailing-edge flap only, and Knueger flap and trailing-edge flap deployed. Tests were conducted at free-stream dynamic pressures of 15, 30 and 60 psf, with corresponding chord Reynolds numbers of 1.22 to 2.11 million and Mach numbers of 0.12 to 0.20. Angles of attack presented range from 0 to 20 degrees, depending on wing configuration. The data are presented without analysis.

  2. Extended attention span training system

    NASA Technical Reports Server (NTRS)

    Pope, Alan T.; Bogart, Edward H.

    1991-01-01

    Attention Deficit Disorder (ADD) is a behavioral disorder characterized by the inability to sustain attention long enough to perform activities such as schoolwork or organized play. Treatments for this disorder include medication and brainwave biofeedback training. Brainwave biofeedback training systems feed back information to the trainee showing him how well he is producing the brainwave pattern that indicates attention. The Extended Attention Span Training (EAST) system takes the concept a step further by making a video game more difficult as the player's brainwaves indicate that attention is waning. The trainee can succeed at the game only by maintaining an adequate level of attention. The EAST system is a modification of a biocybernetic system that is currently being used to assess the extent to which automated flight management systems maintain pilot engagement. This biocybernetic system is a product of a program aimed at developing methods to evaluate automated flight deck designs for compatibility with human capabilities. The EAST technology can make a contribution in the fields of medical neuropsychology and neurology, where the emphasis is on cautious, conservative treatment of youngsters with attention disorders.

  3. Design and Testing of a Morphing Wing for an Experimental UAV

    DTIC Science & Technology

    2007-11-01

    line through the use of conformal flaps [6]. Variable cant angle winglets [7] and variable span wing [8] research has also been made. RTO-MP-AVT...A.Gatto and M.I. Friswell, “The Application of Variable Cant Angle Winglets for Morphing Aircraft Control”, University of Bristol, AIAA2006-3660, 2006

  4. Subsonic longitudinal and lateral aerodynamic characteristics for a systematic series of strake-wing configurations

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1979-01-01

    A systematic wind tunnel study was conducted in the Langley 7 by 10 foot high speed tunnel to help establish a parametric data base of the longitudinal and lateral aerodynamic characteristics for configurations incorporating strake-wing geometries indicative of current and proposed maneuvering aircraft. The configurations employed combinations of strakes with reflexed planforms having exposed spans of 10%, 20%, and 30% of the reference wing span and wings with trapezoidal planforms having leading edge sweep angles of approximately 30, 40, 44, 50, and 60 deg. Tests were conducted at Mach numbers ranging from 0.3 to 0.8 and at angles of attack from approximately -4 to 48 deg at zero sideslip.

  5. Analytical study of takeoff and landing performance for a jet STOL transport configuration with full-span, externally blown, triple-slotted flaps

    NASA Technical Reports Server (NTRS)

    Washington, H. P.; Gibbons, J. T.

    1973-01-01

    Takeoff and landing performance characteristics and field length requirements were determined analytically for a jet STOL transport configuration with full-span, externally blown, tripleslotted flaps. The configuration had a high wing, high T-tail, and four pod-mounted high-bypass-ratio turbofan engines located under and forward of the wing. One takeoff and three approach and landing flap settings were evaluated. The effects of wing loading, thrust-to-weight ratio, weight, ambient temperature, altitude on takeoff and landing field length requirements are discussed.

  6. Effect of variation of chord and span of ailerons on hinge moments at several angles of pitch

    NASA Technical Reports Server (NTRS)

    Monish, B H

    1932-01-01

    This report presents the results of an investigation of the hinge moments of ailerons of various chords and spans on two airfoils having the Clark Y and USA-27 wing sections, supplementing the investigations described in NACA-TR-298 and NACA-TR-343, of the rolling and yawing moments due to similar ailerons on these two airfoil sections. The measurements were made at various angles of pitch, but at zero angle of roll and yaw, the wing chord being set at an angle of +4 degrees to the fuselage axis. In the case of the Clark Y airfoil the measurements have been extended to a pitch angle of 40 degrees, using ailerons of span equal to 67 per cent of the wing semispan and chord equal to 20 and 30 per cent of the wing chord. The investigation was conducted on models of 60-inch span and 10-inch chord, having square tips, no taper in plan form or thickness, zero dihedral, and zero sweepback.

  7. Beetle wings are inflatable origami

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  8. SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN vSHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN - Snake River Bridge at Lyons' Ferry, State Route 261 spanning Snake River, Starbuck, Columbia County, WA

  9. X-31 wing removal

    NASA Technical Reports Server (NTRS)

    1995-01-01

    U.S. and German personnel of the X-31 Enhanced Fighter Maneuverability Technology Demonstrator aircraft program removing the right wing of the aircraft, which was ferried from Edwards Air Force Base, California, to Europe on May 22, 1995 aboard an Air Force Reserve C-5 transport. The X-31, based at the NASA Dryden Flight Research Center was ferried to Europe and flown in the Paris Air Show in June. The wing of the X-31 was removed on May 18, 1995, to allow the aircraft to fit inside the C-5 fuselage. Officials of the X-31 project used Manching, Germany, as a staging base to prepare the aircraft for the flight demonstration. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The aircraft arrived back at Edwards in a Air Force Reserve C-5 on June 25, 1995 and off loaded at Dryden June 27. The X-31 aircraft was developed jointly by Rockwell International's North American Aircraft Division (now part of Boeing) and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm), under sponsorship by the U.S. Department of Defense and The German Federal Ministry of Defense.

  10. Design and wind tunnel tests of winglets on a DC-10 wing

    NASA Technical Reports Server (NTRS)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  11. Peak-Seeking Optimization of Spanwise Lift Distribution for Wings in Formation Flight

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack

    2012-01-01

    A method is presented for the in-flight optimization of the lift distribution across the wing for minimum drag of an aircraft in formation flight. The usual elliptical distribution that is optimal for a given wing with a given span is no longer optimal for the trailing wing in a formation due to the asymmetric nature of the encountered flow field. Control surfaces along the trailing edge of the wing can be configured to obtain a non-elliptical profile that is more optimal in terms of minimum combined induced and profile drag. Due to the difficult-to-predict nature of formation flight aerodynamics, a Newton-Raphson peak-seeking controller is used to identify in real time the best aileron and flap deployment scheme for minimum total drag. Simulation results show that the peak-seeking controller correctly identifies an optimal trim configuration that provides additional drag savings above those achieved with conventional anti-symmetric aileron trim.

  12. Improved sonic-box computer program for calculating transonic aerodynamic loads on oscillating wings with thickness

    NASA Technical Reports Server (NTRS)

    Ruo, S. Y.

    1978-01-01

    A computer program was developed to account approximately for the effects of finite wing thickness in transonic potential flow over an oscillation wing of finite span. The program is based on the original sonic box computer program for planar wing which was extended to account for the effect of wing thickness. Computational efficiency and accuracy were improved and swept trailing edges were accounted for. Account for the nonuniform flow caused by finite thickness was made by application of the local linearization concept with appropriate coordinate transformation. A brief description of each computer routine and the applications of cubic spline and spline surface data fitting techniques used in the program are given, and the method of input was shown in detail. Sample calculations as well as a complete listing of the computer program listing are presented.

  13. Structural Testing of a Stitched/Resin Film Infused Graphite-Epoxy Wing Box

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Bush, Harold G.

    2001-01-01

    The results of a series of tests conducted at the NASA Langley Research Center to evaluate the behavior of an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending, down-bending and brake roll loading conditions were applied. The structure with non-visible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole.

  14. Vortex Structures behind an Oscillating Wing

    NASA Astrophysics Data System (ADS)

    Guglielmini, Laura; Triantafyllou, Michael S.

    2003-11-01

    The three dimensional structure of the flow behind a heaving and pitching finite-span wing is investigated by mean of numerical simulations of Navier-Stokes equations at Reynolds number 600. Parameters are chosen so that the motion produces thrust and is characterized by high propulsive efficiency. The structure of this flow behind a two dimensional airfoil is characterized by the shedding of two vortices per cycle and the formation of a reverse Karman street, as shown by both experimental and numerical studies of the phenomenon (Triantafyllou et al. 2000, Anderson at al. 1998, Wang 2000, Guglielmini & Blondeaux 2003). However there are few studies on finite-span airfoils (Freymuth 1989, von Ellenrieder et al. 2002, Ramamurti & Sandberg 2001, Sun & Tang, 2002). In this case the interaction of the tip vortices with leading and trailing edge vorticity creates a different vorticity field. The flow structure resembles vortex rings with adjoining backs, as first sketched in Lighthill (1969). The analysis of the computed field allows to visualize the longitudinal structure of the vortex strands, their entanglement and connectivity and to understand the mechanism of thrust generation.

  15. Low-speed wind tunnel investigation of a semispan STOL jet transport wing body with an upper surface blown jet flap

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III; Letko, W.; Henderson, R. L.

    1973-01-01

    An investigation of the static longitudinal aerodynamic characteristics of a semispan STOL jet transport wing-body with an upper-surface blown jet flap for lift augmentation was conducted in a low-speed wind tunnel having a 12-ft octagonal test section. The semispan swept wing had an aspect ratio of 3.92 (7.84 for the full span) and had two simulated turbofan engines mounted ahead of and above the wing in a siamese pod equipped with an exhaust deflector. The purpose of the deflector was to spread the engine exhaust into a jet sheet attached to the upper surface of the wing so that it would turn downward over the flap and provide lift augmentation. The wing also had optional boundary-layer control provided by air blowing through a thin slot over a full-span plain trailing-edge flap.

  16. Clean wing airframe noise modeling for multidisciplinary design and optimization

    NASA Astrophysics Data System (ADS)

    Hosder, Serhat

    A new noise metric has been developed that may be used for optimization problems involving aerodynamic noise from a clean wing. The modeling approach uses a classical trailing edge noise theory as the starting point. The final form of the noise metric includes characteristic velocity and length scales that are obtained from three-dimensional, steady, RANS simulations with a two equation k-o turbulence model. The noise metric is not the absolute value of the noise intensity, but an accurate relative noise measure as shown in the validation studies. One of the unique features of the new noise metric is the modeling of the length scale, which is directly related to the turbulent structure of the flow at the trailing edge. The proposed noise metric model has been formulated so that it can capture the effect of different design variables on the clean wing airframe noise such as the aircraft speed, lift coefficient, and wing geometry. It can also capture three dimensional effects which become important at high lift coefficients, since the characteristic velocity and the length scales are allowed to vary along the span of the wing. Noise metric validation was performed with seven test cases that were selected from a two-dimensional NACA 0012 experimental database. The agreement between the experiment and the predictions obtained with the new noise metric was very good at various speeds, angles of attack, and Reynolds Number, which showed that the noise metric is capable of capturing the variations in the trailing edge noise as a relative noise measure when different flow conditions and parameters are changed. Parametric studies were performed to investigate the effect of different design variables on the noise metric. Two-dimensional parametric studies were done using two symmetric NACA four-digit airfoils (NACA 0012 and NACA 0009) and two supercritical (SC(2)-0710 and SC(2)-0714) airfoils. The three-dimensional studies were performed with two versions of a conventional

  17. Wing-vortex interaction: unraveling the flowfield of a hovering rotor

    NASA Astrophysics Data System (ADS)

    Bhagwat, Mahendra J.; Caradonna, Francis X.; Ramasamy, Manikandan

    2015-01-01

    This paper focuses on one of the most prominent flow features of the hovering rotor wake, the close interaction of the tip vortex with a following blade. Such vortex interactions are fundamental determinants of rotor performance, loads, and noise. Yet, they are not completely understood, largely due to the lack of sufficiently comprehensive experimental data. The present study aims to perform such comprehensive measurements, not on hovering helicopter rotors (which hugely magnifies test complexity) but using fixed-wing models in controlled wind tunnel tests. The experiments were designed to measure, in considerable detail, the aerodynamic loading resulting from a vortex interacting with a semi-span wing, as well as the wake resulting from that interaction. The goal of the present study is to answer fundamental questions such as (a) the influence of a vortex passing below a wing on the lift, drag, tip vortex, and the wake of that wing and (b) the strength of the forming tip vortex and its relation to the wing loading and/or the tip loading. This paper presents detailed wing surface pressure measurements that result from the interaction of the wing with an interacting vortex trailing from an upstream wing. The data show large lift distribution changes for a range of wing-vortex interactions including the effects of close encounter with the vortex core. Significant asymmetry in the vortex-induced lift loading was observed, with the increase in wing sectional lift outboard of the interacting vortex (closer to the tip) being much smaller than the corresponding decrease inboard of the vortex.

  18. Validation of Vortex-Lattice Method for loads on wings in lift-generated wakes

    NASA Technical Reports Server (NTRS)

    Rossow, J.

    1994-01-01

    A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by use of measurements made in the 80- by 120-foot wind tunnel of the lift, rolling-moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling moment distributions are used to determine the accuracy of the vortex-lattice code. It was found that the vortex-lattice method is very reliable as long as the span of the encountering of following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts. The increase in deviation of the computed from the measured loads with size of the following wing is attributed to the increase in distortion of the structure of the vortex wake as it approaches and passes the larger following wings.

  19. Incompressible Turbulent Wing-Body Junction Flow

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.

    1998-01-01

    -stream flow. The lateral curvature of the wing/strat causes the oncoming turbulent layer to skew about am axis (x-axis) parallel to the plane (xz-plane) of the mean shear. This is the principle mechanism for the generation of secondary flow. Such skew-induced secondary flows are slow to be attenuated by Reynolds stresses. Additional contribution to the generation of secondary flow comes from anisotropies in Reynolds stresses. Upstream of the strut, the mean-vorticity is directed span wise (along the y-direction). The presence of secondary flow in the vicinity of the strut causes the vorticity to stretch around the obstacle in a horse-shoe shape, with each leg having a vorticity of the opposite sense. The blockage effect of the strut imposes a severe adverse pressure gradient on the oncoming turbulent shear layer, causing boundary layer separation ahead of the leading edge, resulting in a vortex that rolls up and flows downstream into the juncture region. The separation vortices trailing in the wake of the wing can alter the lift or drag characteristics of the surfaces downstream of the wing-body juncture. Likewise, on submarines, the wake flow behind the appendage can degrade the performance of the propeller located downstream. The complex nature of this flow is caused by the presence of all six components of Reynolds stresses. Devenport and Simpson report that in the vicinity of the horse-shoe vortex there is intense recirculation with turbulent stresses being much larger than those normally observed in turbulent flows. These features contribute to making this flow a challenge to predict numerically. Some of the past studies provide useful insights into this flow that would guide our numerical efforts. In measurements reported by Shabaka and Bradshaw, the eddy viscosity tensor is seen to be non-isotropic and has negative components in certain regions. In an effort to evaluate the closure assumptions of various turbulence models, Devenport and Simpson used their own extensive

  20. Wind-tunnel investigation of several high aspect-ratio supercritical wing configurations on a wide-body-type fuselage

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1977-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel on two aspect-ratio 11.95 supercritical wings that were tested in combination with a representative wide-body-type fuselage. The two supercritical wings have identical planforms for equal sweep angles and differ only in thickness. Each wing was tested at quarter-chord sweep angles of 27 deg and 30 deg. At the higher sweep angle, the aspect ratio is reduced to 11.36. At 27 deg of quarter-chord sweep, the thicker supercritical wing (SCW-1) has maximum streamwise thickness-to-chord ratios of 0.16 at the wing-fuselage juncture, 0.14 at the planform break station, and 0.12 at the tip. The thinner wing (SCW-2) has maximum streamwise thickness-to-chord ratios of 0.144, 0.12, and 0.10 at the same stations respectively. Tests were also conducted on the thinner supercritical wing at the 27 deg sweep angle with a 15.24 cm (6.0 in.) shorter span which results in an aspect ratio of 10.25. For comparison, data were obtained on a current wide-body transport wing (AR=7) that was tested on the same fuselage used with the supercritical wings.

  1. Aerodynamic characteristics of a distinct wing-body configuration at Mach 6: Experiment, theory, and the hypersonic isolation principle

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Pittman, J. L.

    1985-01-01

    An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on body length) of 17.9 x 10 to the 6th power. Seven wings with leading edge sweep angles from -20 deg to 60 deg were tested on a common body over an angle of attack range from -12 deg to 10 deg. All wings had a common span, aspect ratio, taper ratio, planform area, and thickness ratio. Wings were translated longitudinally on the body to make tests possible with the total and exposed mean aerodynamic chords located at a fixed body station. Aerodynamic forces were found to be independent of wing sweep and translation, and pitching moments were constant when the exposed wing mean aerodynamic chord was located at a fixed body station. Thus, the Hypersonic Isolation Principle was verified. Theory applied with tangent wedge pressures on the wing and tangent cone pressures on the body provided excellent predictions of aerodynamic force coefficients but poor estimates of moment coefficients.

  2. Flow interactions of finite-span synthetic jets and a cross flow

    NASA Astrophysics Data System (ADS)

    Vasile, Joseph D.

    The interaction of a finite-span synthetic jet with a cross-flow over a swept-back finite wing was studied experimentally at a Reynolds number of 100,000 and at multiple angles of attack. The focus of the work was to explore the interaction of finite span synthetic jets with a locally attached or separated flow field in the vicinity of the synthetic jet orifice. The effect of blowing ratio and aspect ratio of the jet orifice was discussed in detail. As was shown in previous work for an unswept finite configuration, the time-averaged velocity field exhibits secondary streamwise flow structures that evolve due to the finite span of the synthetic jet orifice. Furthermore, these structures depend upon actuation level of the jet, as well as orifice geometry. Phase-averaged measurements over the swept-back finite configuration showed that in the presence of sweep the flow becomes highly three-dimensional almost immediately downstream of the synthetic jet orifice. It was demonstrated that the baseline flow field that develops over a swept-back configuration (dependent on angle of attack), which is characterized by spanwise and streamwise vorticity components, is responsible for the immediate breakdown of the coherent structures that are introduced by the synthetic jet orifice, and for the formation of the secondary flow structures that were seen in the time-averaged flow field. Furthermore, the effect of jet placement along the span of the wing was studied. A finite-span synthetic jet was placed near the tip of a finite sweptback wing. The focus of that part of the work was to explore the interaction of the synthetic jet with a spatially non-uniform velocity field (due to the presence of a tip vortex), especially the formation and advection of flow structures in the vicinity of the synthetic jet. As was shown, the time-averaged velocity field exhibited streamwise flow structures downstream of the jet. The tip vortex was found to influence the development of the flow

  3. Validation of Vortex-Lattice Method for Loads on Wings in Lift-Generated Wakes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1995-01-01

    A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by the use of measurements made in the 80 by 120 ft Wind Tunnel of the lift, rolling moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling-moment distributions the vortex-lattice method is very reliable as long as the span of the encountering or following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts.

  4. Assembly modes of dragonfly wings.

    PubMed

    Zhao, Hong-Xiao; Yin, Ya-Jun; Zhong, Zheng

    2011-12-01

    The assembly modes of dragonfly wings are observed through FEG-ESEM. Different from airplane wings, dragonfly wings are found to be assembled through smooth transition mode and global package mode. First, at the vein/membrane conjunctive site, the membrane is divided into upper and lower portions from the center layer and transited smoothly to the vein. Then the two portions pack the vein around and form the outer surface of the vein. Second, at the vein/spike conjunctive site, the vein and spike are connected smoothly into a triplet. Last, at the vein/membrane/spike conjunctive site, the membrane (i.e., the outer layer of the vein) transits smoothly to the spike, packs it around, and forms its outer layer. In short, the membrane looks like a closed coat packing the wing as a whole. The smooth transition mode and the global package mode are universal assembly modes in dragonfly wings. They provide us the references for better understanding of the functions of dragonfly wings and the bionic manufactures of the wings of flights with mini sizes.

  5. Preliminary Weight Savings Estimate for a Commercial Transport Wing Using Rod-Stiffened Stitched Composite Technology

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.

    2015-01-01

    A structural concept called pultruded rod stitched efficient unitized structure (PRSEUS) was developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. While PRSEUS was an enabling technology for the pressurized HWB structure, limited investigation of PRSEUS for other aircraft structures, such as circular fuselages and wings, has been done. Therefore, a study was undertaken to investigate the potential weight savings afforded by using the PRSEUS concept for a commercial transport wing. The study applied PRSEUS to the Advanced Subsonic Technology (AST) Program composite semi-span test article, which was sized using three load cases. The initial PRSEUS design was developed by matching cross-sectional stiffnesses for each stringer/skin combination within the wing covers, then the design was modified to ensure that the PRSEUS design satisfied the design criteria. It was found that the PRSEUS wing design exhibited weight savings over the blade-stiffened composite AST Program wing of nearly 9%, and a weight savings of 49% and 29% for the lower and upper covers, respectively, compared to an equivalent metallic wing.

  6. Design and Development of a Flapping Wing System for Unsteady Forces and Power Measurement

    NASA Astrophysics Data System (ADS)

    Mudbhari, Durlav

    Flyers and swimmers flap their wings and fins to propel themselves efficiently over long distances, maneuver in tight spaces and navigate silently to avoid detection by prey. A key element to achieve these amazing feats is the flexibility of their propulsors. While numerous studies have shown that homogeneously flexible wings can enhance force production and efficiency, animals actually have wings with varying flexural rigidity along their chord and span. The goal of this study is to design and develop an experimental setup that would help understand and characterize the force production and energetics of functionally-graded, chordwise flexible wings. A flapping wing composed of a rigid and a flexible region, that define a chordwise gradient in flexural rigidity, is used to model functionally-graded materials. By varying the ratio of the lengths of the rigid to flexible regions, the flexural rigidity of the flexible region, and the flapping frequency, the thrust production of a functionally-graded wing is directly measured. An unsteady force and torque measurement system is developed to measure the lift/drag forces and power consumption during flapping wing flight in wind tunnel. A novel vacuum chamber apparatus is developed to be used in conjunction with the wind tunnel measurements to reliably measure the aerodynamic power input and the propulsive efficiency.

  7. A mathematical model for the thrust force generated by a flapping elastic wing

    NASA Astrophysics Data System (ADS)

    Tarasov, Alexander E.; Sumbatyan, Mezhlum A.

    2012-11-01

    The physical nature of the thrust force generated by flapping wings is of a long-time interest of many researchers. The idea of the thrust effect came from the observation of birds' flight. Apparently, Leonardo da Vinci was first who tried to explain the mechanism of the flapping wing trust, for possible engineering applications. Nevertheless, the fundamental basics of a theoretical study of wing oscillations were laid only near the beginning of the 20th century. The thrust effect of the flapping wing was explained by Knoller in 1909 and Betz in 1912, independently. The principal problem in this theory is to define an optimal deformation law which provides the flapping wing to work with highest efficiency. In the present paper we study a rectangular elastic wing of finite span as a propulsion device. We propose an analytical approach, to study harmonic oscillations of a thin elastic rectangular wing at zero attack angle in a flow of inviscid incompressible fluid. The problem is reduced to an integro-differential equation, in frames of the "plane sections" hypothesis.

  8. Force and Power Measurements of a Functionally-Graded Chordwise-Flexible Flapping Wing

    NASA Astrophysics Data System (ADS)

    Mudbhari, Durlav; Erdogan, Malcolm; Moored, Keith

    2016-11-01

    Flyers and swimmers flap their wings and fins to propel themselves efficiently over long distances. A key element to achieve their high performance is the flexibility of their appendages. While numerous studies have shown that homogeneously flexible wings can enhance force production and efficiency, animals actually have wings with varying flexural rigidity along their chord and span. The goal of this study is to understand and characterize the force production and energetics of functionally-graded, chordwise flexible wings. A flapping wing composed of a rigid and a flexible region, that define a chordwise gradient in flexural rigidity, is used to model functionally-graded materials. By varying the ratio of the lengths of the rigid to flexible regions, the flexural rigidity of the flexible region, and the flapping frequency, the thrust production of a functionally-graded wing is directly measured in a wind tunnel. A novel vacuum chamber apparatus is used in conjunction with the wind tunnel measurements to reliably measure the aerodynamic power input and the propulsive efficiency. Limited flow visualization is performed with particle image velocimetry in order to connect the force production and energetics of the partially-flexible wing with its generated flow structures. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  9. The aerodynamic analysis of the gyroplane rotating-wing system

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1934-01-01

    An aerodynamic analysis of the gyroplane rotating-wing system is presented herein. This system consists of a freely rotating rotor in which opposite blades are rigidly connected and allowed to rotate or feather freely about their span axis. Equations have been derived for the lift, the lift-drag ratio, the angle of attack, the feathering angles, and the rolling and pitching moments of a gyroplane rotor in terms of its basic parameters. Curves of lift-drag ratio against lift coefficient have been calculated for a typical case, showing the effect of varying the pitch angle, the solidarity, and the average blade-section drag coefficient. The analysis expresses satisfactorily the qualitative relations between the rotor characteristics and the rotor parameters. As disclosed by this investigation, the aerodynamic principles of the gyroplane are sound, and further research on this wing system is justified.

  10. Wing tip vortex control by the pulsed MHD actuator

    NASA Astrophysics Data System (ADS)

    Moralev, I. A.; Biturin, V. A.; Kazansky, P. N.; Zaitsev, M. Yu.; Kopiev, Vl. A.

    2016-10-01

    The paper presents the experimental results and the analysis of the wingtip vortex control by magnetohydrodynamic (MHD) plasma actuator [1]. The actuator is installed on the surface of the asymmetric wing of a finite span. In a single cycle of actuator operation, the pulsed discharge is created between two electrodes and then driven by the Lorentz force in the spanwise direction. The evolution of the vortex after the actuator pulse is studied directly downstream of the wing trailing edge. The shift of the vortex position, without a significant change in the vortex circulation is the main effect obtained after the discharge pulse. The effect of the external flow velocity and the position of the actuator on the shift amplitude were studied. The authority of the flow control by the actuator is shown to reduce at higher velocity values; the position on the suction side of the airfoil is shown to be crucial for the effective actuator operation.

  11. Aerodynamic measurements on a finite wing with simulated ice

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Khodadoust, A.; Soltani, R.; Wells, S.; Kerho, M.

    1991-01-01

    The effect of a simulated glaze ice accretion on the aerodynamic performance of a three-dimensional straight and swept wing is studied experimentally. A semispan wing of effective aspect ratio five was mounted from the sidewall of the UIUC subsonic wind tunnel. The model uses an NACA 0012 airfoil section on a rectangular planform with interchangeable tip and root sections to allow for 0- and 30-deg sweep. A sidewall suction system is used to minimize the tunnel boundary-layer interaction with the model. A three-component sidewall balance has been designed, built and used to measure lift, drag and pitching moment on the clean and iced model. Fluorescent oil flow visualization has been performed on the iced model and reveals extensive spanwise flow in the separation bubble aft of the upper surface horn. These results are compared to computational results for the surface pressures, span loads and surface oil flow.

  12. Effect of outer wing separation on lift and thrust generation in a flapping wing system.

    PubMed

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-09-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  13. Aerostructures Test Wing

    NASA Technical Reports Server (NTRS)

    Lind, RIck; Voracek, David F.; Doyle, Tim; Truax, Roger; Potter, Starr; Brenner, Marty; Voelker, Len; Freudinger, Larry; Stocjt. C (off)

    2003-01-01

    The Aerostructures Test Wing (ATW) was an apparatus used in a flight experiment during a program of research on aeroelastic instabilities. The ATW experiment was performed to study a specific instability known as flutter. Flutter is a destructive phenomenon caused by adverse coupling of structural dynamics and aerodynamics. The process of determining a flight envelope within which an aircraft will not experience flutter, known as flight flutter testing, is very dangerous and expensive because predictions of the instability are often unreliable. The ATW was a small-scale airplane wing that comprised an airfoil and boom (see upper part of Figure 1). For flight tests, the ATW was mounted on the F-15B/FTF-II testbed, which is a second-generation flight-test fixture described in Flight-Test Fixture for Aerodynamic Research (DRC- 95-27), NASA Tech Briefs, Vol. 19, No. 9, September 1995, page 84. The ATW was mounted horizontally on this fixture, and the entire assembly was attached to the undercarriage of the F-15B airplane (see lower part of Figure 1). The primary objective of the ATW project was to investigate traditional and advanced methodologies for predicting the onset of flutter. In particular, the ATW generated data that were used to evaluate a flutterometer. This particular flutterometer is an on-line computer program that uses method analysis to estimate worst-case flight conditions associated with flutter. This software was described in A Flutterometer Flight Test Tool NASA Tech Briefs, Vol. 23, No. 1, January 1999, page 52.

  14. Wind-tunnel tests on combinations of a wing with fixed auxiliary airfoils having various chords and profiles

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Sanders, Robert

    1934-01-01

    This report presents the results of wind tunnel tests on various auxiliary airfoils having three different airfoil sections and several different chord lengths in combination with a Clark y model wing in a sufficient number of relative positions to determine the optimum with regard to certain criterions of aerodynamic performance. The airfoil sections included a symmetrical profile, one of medium camber, and a highly cambered one. The chord sizes of the auxiliary airfoils ranged from 7.5 to 25 percent of the chord of the main wing, and the span was equal to that of the main wing.

  15. Mission Adaptive Wing test program

    NASA Technical Reports Server (NTRS)

    Birk, Frank T.; Smith, Rogers E.

    1986-01-01

    With the completion of the F-111 test-bed Mission Adaptive Wing (MAW) test program's manual flight control system, emphasis has been shifted to flight testing of MAW automatic control modes. These encompass (1) cruise camber control, (2) maneuver camber control, (3) maneuver load control, and (4) maneuver enhancement and load alleviation control. The aircraft is currently cleared to a 2.5-g maneuvering limit due to generally higher variable-incidence wing pivot loads than had been anticipated, especially at the higher wing-camber settings. Buffet is noted to be somewhat higher than expected at the higher camber settings.

  16. Wing design for spin resistance

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Dicarlo, D. J.; Glover, K. E.; Stewart, E. C.

    1984-01-01

    Use of a discontinuous outboard wing leading edge to improve stall/spin characteristics has been evaluated through wind-tunnel and flight tests. Addition of such a discontinuous outboard wing leading-edge droop design to three light airplanes having NACA 6-series airfoil sections produced significant improvements in stall characteristics and spin resistance. The increased spin resistance of the modified airplanes has been related to the difference in angle of attack between the outer wing panel stall and the maximum attainable angle of attack.

  17. An insect-inspired flapping wing micro air vehicle with double wing clap-fling effects and capability of sustained hovering

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc-Viet; Chan, Woei Leong; Debiasi, Marco

    2015-03-01

    We present our recent flying insect-inspired Flapping-Wing Micro Air Vehicle (FW-MAV) capable of hovering flight which we have recently achieved. The FW-MAV has wing span of 22 cm (wing tip-to-wing tip), weighs about 16.6 grams with onboard integration of radio control system including a radio receiver, an electronic speed control (ESC) for brushless motor, three servos for attitude flight controls of roll, pitch, and yaw, and a single cell lithium-polymer (LiPo) battery (3.7 V). The proposed gear box enables the FW-MAV to use one DC brushless motor to synchronously drive four wings and take advantage of the double clap-and-fling effects during one flapping cycle. Moreover, passive wing rotation is utilized to simplify the design, in addition to passive stabilizing surfaces for flight stability. Powered by a single cell LiPo battery (3.7 V), the FW-MAV flaps at 13.7 Hz and produces an average vertical force or thrust of about 28 grams, which is sufficient for take-off and hovering flight. Finally, free flight tests in terms of vertical take-off, hovering, and manual attitude control flight have been conducted to verify the performance of the FW-MAV.

  18. Computations on Wings With Full-Span Oscillating Control Surfaces Using Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2013-01-01

    A dual-level parallel procedure is presented for computing large databases to support aerospace vehicle design. This procedure has been developed as a single Unix script within the Parallel Batch Submission environment utilizing MPIexec and runs MPI based analysis software. It has been developed to provide a process for aerospace designers to generate data for large numbers of cases with the highest possible fidelity and reasonable wall clock time. A single job submission environment has been created to avoid keeping track of multiple jobs and the associated system administration overhead. The process has been demonstrated for computing large databases for the design of typical aerospace configurations, a launch vehicle and a rotorcraft.

  19. Node degree distribution in spanning trees

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2016-03-01

    A method is presented for computing the number of spanning trees involving one link or a specified group of links, and excluding another link or a specified group of links, in a network described by a simple graph in terms of derivatives of the spanning-tree generating function defined with respect to the eigenvalues of the Kirchhoff (weighted Laplacian) matrix. The method is applied to deduce the node degree distribution in a complete or randomized set of spanning trees of an arbitrary network. An important feature of the proposed method is that the explicit construction of spanning trees is not required. It is shown that the node degree distribution in the spanning trees of the complete network is described by the binomial distribution. Numerical results are presented for the node degree distribution in square, triangular, and honeycomb lattices.

  20. Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts

    NASA Technical Reports Server (NTRS)

    Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.; Maiden, J.; Neves, J.

    1996-01-01

    Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.

  1. Origin Story: Blended Wing Body

    NASA Video Gallery

    NASA is partnering with the Boeing Company, among others, to develop and test the blended wing body aircraft. The BWB has the potential to significantly reduce fuel use and noise. In this video, Bo...

  2. Embedded Wing Propulsion Conceptual Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Saunders, John D.

    2003-01-01

    As a part of distributed propulsion work under NASA's Revolutionary Aeropropulsion Concepts or RAC project, a new propulsion-airframe integrated vehicle concept called Embedded Wing Propulsion (EWP) is developed and examined through system and computational fluid dynamics (CFD) studies. The idea behind the concept is to fully integrate a propulsion system within a wing structure so that the aircraft takes full benefits of coupling of wing aerodynamics and the propulsion thrust stream. The objective of this study is to assess the feasibility of the EWP concept applied to large transport aircraft such as the Blended-Wing-Body aircraft. In this paper, some of early analysis and current status of the study are presented. In addition, other current activities of distributed propulsion under the RAC project are briefly discussed.

  3. Oblique-wing supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Inventor)

    1976-01-01

    An aircraft including a single fuselage having a main wing and a horizontal stabilizer airfoil pivotally attached at their centers to the fuselage is described. The pivotal attachments allow the airfoils to be yawed relative to the fuselage for high speed flight, and to be positioned at right angles with respect to the fuselage during takeoff, landing, and low speed flight. The main wing and the horizontal stabilizer are upwardly curved from their center pivotal connections towards their ends to form curvilinear dihedrals.

  4. Span-Load Distribution as a Factor in Stability in Roll

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Noyes, Richard W

    1932-01-01

    This report gives the results of pressure-distribution tests made to study the effects on lateral stability of changing the span-load distribution on a rectangular monoplane wing model of fairly thick section. Three methods of changing the distribution were employed: variation in profile along the span to a thin symmetrical section at the tip, twist from +5 degrees to -15 degrees at the tip, and sweepback from +20 degrees to -20 degrees. The tests were conducted in a 5-foot closed-throat atmospheric wind tunnel. The investigation shows the following results: (1) change in profile along the span from the NACA-84 at the root to the NACA-M2 at the tip considerably reduces lateral instability, but also reduces the general effectiveness of the wing. (2) washout up to 11 degrees progressively reduces maximum lateral instability. (3) transition from sweepforward to sweepback gradually reduces the useful angle-of-attack range, but has no clearly defined effect on maximum lateral instability.

  5. Perspective on the span-distributed-load concept for application to large cargo aircraft design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1975-01-01

    Results of a simplified analysis of the span-distributed-load concept (in which payload is placed within the wing structure) are presented. It is shown that a design based on these principles has a high potential for application to future large air cargo transport. Significant improvements are foreseen in increased payload fraction and productivity and in reduced fuel consumption and operating costs. A review of the efforts in the 1940's to develop all-wing aircraft shows the potential of transferring those early technological developments to current design of distributed-load aircraft. Current market analyses are projected to 1990 to show the future commercial demand for large capacity freighters. Several configuration designs which would serve different market requirements for these large freighters are discussed as are some of the pacing-technology requirements.

  6. 3. View west. North elevation Walpole span in foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View west. North elevation - Walpole span in foreground, link span; Westminster span in background. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  7. Pressure distributions and oil-flow patterns for a swept circulation-control wing

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.; Sanderfer, Dwight T.; Wood, Norman J.

    1987-01-01

    Pressure distributions and photographs of oil flow patterns are presented for a circulation control wing. The model was an aspect ratio four semispan wing mounted on the side wall of the NASA Ames Transonic Wind Tunnel. The airfoil was a 20 percent thick ellipse, modified with circular leading and trailing edges of 4 percent radius, and had a 25.4 cm constant chord. This configuration does not represent a specific wing design, but is generic. A full span, tangetial, rearward blowing, circulation control slot was incorporated ahead of the trailing edge on the upper surface. The wing was tested at Mach numbers from 0.3 to 0.75 at sweep angle of 0 to 45 deg with internal to external pressure ratios of 1.0 to 3.0. Lift and pitching momemt coefficients were obtained from measured pressure distributions at five span stations. When the conventional corrections resulting from sweep angle are applied to the lift and moment of circulation control sections, no additional corrections are necessary to account for changes in blowing efficiency. This is demonstrated for an aft sweep angle of 45 deg. An empirical technique for estimating the downwash distribution of a swept wing was validated.

  8. The structural design of the bat wing web and its possible role in gas exchange.

    PubMed

    Makanya, Andrew N; Mortola, Jacopo P

    2007-12-01

    The structure of the skin in the epauletted fruit bat (Epomophorus wahlbergi) wing and body trunk was studied with a view to understanding possible adaptations for gas metabolism and thermoregulation. In addition, gas exchange measurements were performed using a respirometer designed for the purpose. The body skin had an epidermis, a dermis with hair follicles and sweat glands and a fat-laden hypodermis. In contrast, the wing web skin was made up of a thin bilayered epidermis separated by a connective tissue core with collagen and elastic fibres and was devoid of hair follicles and sweat glands. The wings spanned 18-24 cm each, with about 753 cm2 of surface exposed to air. The body skin epidermis was thick (61 +/- 3 microm, SEM), the stratum corneum alone taking a third of it (21 +/- 3 microm). In contrast, the wing web skin epidermis was thinner at 9.8 +/- 0.7 microm, with a stratum corneum measuring 4.1 +/- 0.3 microm (41%). The wing capillaries in the wing web skin ran in the middle of the connective tissue core, with a resultant surface-capillary diffusion distance of 26.8 +/- 3.2 microm. The rate of oxygen consumption (VO2) of the wings alone and of the whole animal measured under light anaesthesia at ambient temperatures of 24 masculineC and 33 masculineC, averaged 6% and 10% of the total, respectively. Rate of carbon dioxide production had similar values. The membrane diffusing capacity for the wing web was estimated to be 0.019 ml O2 min(-1) mmHg(-1). We conclude that in Epomophorus wahlbergi, the wing web has structural modifications that permit a substantial contribution to the total gas exchange.

  9. The structural design of the bat wing web and its possible role in gas exchange

    PubMed Central

    Makanya, Andrew N; Mortola, Jacopo P

    2007-01-01

    The structure of the skin in the epauletted fruit bat (Epomophorus wahlbergi) wing and body trunk was studied with a view to understanding possible adaptations for gas metabolism and thermoregulation. In addition, gas exchange measurements were performed using a respirometer designed for the purpose. The body skin had an epidermis, a dermis with hair follicles and sweat glands and a fat-laden hypodermis. In contrast, the wing web skin was made up of a thin bilayered epidermis separated by a connective tissue core with collagen and elastic fibres and was devoid of hair follicles and sweat glands. The wings spanned 18–24 cm each, with about 753 cm2 of surface exposed to air. The body skin epidermis was thick (61 ± 3 µm, SEM), the stratum corneum alone taking a third of it (21 ± 3 µm). In contrast, the wing web skin epidermis was thinner at 9.8 ± 0.7 µm, with a stratum corneum measuring 4.1 ± 0.3 µm (41%). The wing capillaries in the wing web skin ran in the middle of the connective tissue core, with a resultant surface-capillary diffusion distance of 26.8 ± 3.2 µm. The rate of oxygen consumption (V˙O2) of the wings alone and of the whole animal measured under light anaesthesia at ambient temperatures of 24 ºC and 33 ºC, averaged 6% and 10% of the total, respectively. Rate of carbon dioxide production had similar values. The membrane diffusing capacity for the wing web was estimated to be 0.019 ml O2 min−1 mmHg−1. We conclude that in Epomophorus wahlbergi, the wing web has structural modifications that permit a substantial contribution to the total gas exchange. PMID:17971117

  10. Sexual Conflict, Life Span, and Aging

    PubMed Central

    Adler, Margo I.; Bonduriansky, Russell

    2014-01-01

    The potential for sexual conflict to influence the evolution of life span and aging has been recognized for more than a decade, and recent work also suggests that variation in life span and aging can influence sexually antagonistic coevolution. However, empirical exploration of these ideas is only beginning. Here, we provide an overview of the ideas and evidence linking inter- and intralocus sexual conflicts with life span and aging. We aim to clarify the conceptual basis of this research program, examine the current state of knowledge, and suggest key questions for further investigation. PMID:24938876

  11. Reynolds Number, Compressibility, and Leading-Edge Bluntness Effects on Delta-Wing Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2004-01-01

    An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.

  12. Calculation of unsteady transonic aerodynamics for oscillating wings with thickness (computer program)

    NASA Technical Reports Server (NTRS)

    Ruo, S. Y.

    1974-01-01

    A computer program has been developed to account approximately for the effects of finite wing thickness in the transonic potential flow over an oscillating wing of finite span. The program is based on the original sonic-box program of Rodemich and Andrew, and accounts for the nonuniform flow caused by finite thickness by application of the local linearization concept. A brief description of each subroutine is given, and the method of input is shown in detail. A sample problem as well as a complete listing of the computer program are presented.

  13. Some aspects of hybrid-zeppelins. [optimization of delta wings for airships

    NASA Technical Reports Server (NTRS)

    Mackrodt, P. A.

    1975-01-01

    To increase an airship's maneuverability and payload capacity as well as to save bouyant gas it is proposed to outfit it with a slender delta-wing, which carries about one half of the total take-off weight of the vehicle. An optimization calculation based on the data of LZ 129 (the last airship, which saw passenger-service) leads to a Hybrid-Zeppelin with a wing of aspect-ratio 1.5 and 105 m span. The vehicle carries a payload of 40% of it's total take-off weight and consumes 0.8 t fuel per ton payload over a distance of 10000 km.

  14. The Effect of End Plates on Swept Wings at Low Speed

    DTIC Science & Technology

    1950-11-01

    Langley 300 MEH 7- "by 10-foot tunnel (fig. 3). The untapered wing had NACA 64A010 airfoil sections normal to the wing leading edge and had...span and around the tips of airfoils resulted in increased lift-curve slopes, less induced drag, and higher maximum lift coefficients. 2 * NACA TN...moment coefficient (N/qSb) NACA TN 2229 < L lift of model, pounds (-Z) v D drag of model, pounds (-X when i|f = 0°) Y force along Y

  15. Effect of drooped-nose flaps on the experimental force and moment characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Lovette, G. H.

    1976-01-01

    Six-component experimental force and moment data are presented for a low aspect ratio, oblique wing equipped with drooped-nose flaps and mounted on top of a body of revolution. These flaps were investigated on the downstream wing panel with the nose drooped 5 deg, 10 deg, 20 deg, and 30 deg, and on both wing panels with the nose drooped 30 deg. It was to determine if such flaps would make the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients. The wing was elliptical in planform and had an aspect ratio of 6.0 (based on the unswept wing span). The wing was tested at sweep angles of 45 deg and 50 deg throughout the Mach number range from 0.25 to 0.95. The drooped-nose flaps alone were not effective in making the moment curves more linear; however, a previous study showed that Kruger nose flaps improved the linearity of the moment curves when the Kruger flaps were used on only the downstream wing panel equipped with drooped-nose flaps deflected 5 deg.

  16. NAAMES-II Expedition: June 1, 201span>6 : Notes from the Field ...

    NASA Website

    August 201span>6; July 201span>6; June 201span>6; May 201span>6; April 201span>6; March 201span>6; February 201span>6; January 201span>6; December 2015; November 2015; October 2015; ...

  17. NAAMES-II Expedition: May 31, 201span>6 : Notes from the Field ...

    NASA Website

    August 201span>6; July 201span>6; June 201span>6; May 201span>6; April 201span>6; March 201span>6; February 201span>6; January 201span>6; December 2015; November 2015; October 2015; ...

  18. Effect of canard location and size on canard-wing interference and aerodynamic center shift related to maneuvering aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, typical of highly maneuverable aircraft, was tested in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.70 to 1.20 to determine the effects of canard location and size on canard-wing interference effects and aerodynamic center shift at transonic speeds. The canards had exposed areas of 16.0 and 28.0 percent of the wing reference area and were located in the chord plane of the wing or in a position 18.5 percent of the wing mean geometric chord above or below the wing chord plane. Two different wing planforms were tested, one with leading-edge sweep of 60 deg and the other 44 deg; both wings had the same reference area and span. The results indicated that the largest benefits in lift and drag were obtained with the canard above the wing chord plane for both wings tested. The low canard configuration for the 60 deg swept wing proved to be more stable and produced a more linear pitching-moment curve than the high and coplanar canard configurations for the subsonic test Mach numbers.

  19. Computation of spanwise distribution of circulation and lift coefficient for flapped wings of arbitrary planform

    NASA Technical Reports Server (NTRS)

    Razak, K.

    1980-01-01

    The question of the effect of distribution and magnitude of spanwise circulation and shed vorticity from an airplane wing on the distribution pattern of agricultural products distributed from an airplane was studied. The first step in an analysis of this question is the determination of the actual distribution of lift along an airplane wing, from which the pattern of shed vorticity can be determined. A procedure is developed to calculate the span loading for flapped and unflapped wings of arbitrary aspect ratio and taper ratio. The procedure was programmed on a small programmable calculator, the Hewlett Packard HP-97, and also was programmed in BASIC language. They could be used to explore the variations in span loading that can be secured by variable flap deflections or the effect of flying at varying air speeds at different airplane gross weights. Either an absolute evaluation of span loading can be secured or comparative span loading can be evaluated to determine their effect on swath width and swath distribution pattern. The programs are intended to assist the user in evaluating the effect of a given spanload distribution.

  20. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  1. Reynolds number effects on leading edge vortex development on a waving wing

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Babinsky, H.

    2011-07-01

    The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.

  2. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  3. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1978-01-01

    An engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blowing (USB) was developed. Potential flow models were incorporated into the prediction method: a wing and flap lifting surface model and a jet wake model. The wing-flap model used a vortex-lattice to represent the wing and flaps. The wing had an arbitrary planform and camber and twist, and the flap system was made up of a Coanda flap and other flap segments of arbitrary size. The jet wake model consisted of a series of closely spaced rectangular vortex rings. The wake was positioned such that it was tangent to the upper surface of the wing and flap between the exhaust nozzle and the flap trailing edge. It was specified such that the mass, momentum, and spreading rates were similar to actual USB jet wakes. Comparisons of measured and predicted pressure distributions, span load distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are included. A wide range of thrust coefficients and flap deflection angles were considered at angles of attack up to the onset of stall.

  4. Social network sampling using spanning trees

    NASA Astrophysics Data System (ADS)

    Jalali, Zeinab S.; Rezvanian, Alireza; Meybodi, Mohammad Reza

    2016-12-01

    Due to the large scales and limitations in accessing most online social networks, it is hard or infeasible to directly access them in a reasonable amount of time for studying and analysis. Hence, network sampling has emerged as a suitable technique to study and analyze real networks. The main goal of sampling online social networks is constructing a small scale sampled network which preserves the most important properties of the original network. In this paper, we propose two sampling algorithms for sampling online social networks using spanning trees. The first proposed sampling algorithm finds several spanning trees from randomly chosen starting nodes; then the edges in these spanning trees are ranked according to the number of times that each edge has appeared in the set of found spanning trees in the given network. The sampled network is then constructed as a sub-graph of the original network which contains a fraction of nodes that are incident on highly ranked edges. In order to avoid traversing the entire network, the second sampling algorithm is proposed using partial spanning trees. The second sampling algorithm is similar to the first algorithm except that it uses partial spanning trees. Several experiments are conducted to examine the performance of the proposed sampling algorithms on well-known real networks. The obtained results in comparison with other popular sampling methods demonstrate the efficiency of the proposed sampling algorithms in terms of Kolmogorov-Smirnov distance (KSD), skew divergence distance (SDD) and normalized distance (ND).

  5. Elements of butterfly wing patterns.

    PubMed

    Nijhout, H F

    2001-10-15

    The color patterns on the wings of butterflies are unique among animal color patterns in that the elements that make up the overall pattern are individuated. Unlike the spots and stripes of vertebrate color patterns, the elements of butterfly wing patterns have identities that can be traced from species to species, and typically across genera and families. Because of this identity it is possible to recognize homologies among pattern elements and to study their evolution and diversification. Individuated pattern elements evolved from non-individuated precursors by compartmentalization of the wing into areas that became developmentally autonomous with respect to color pattern formation. Developmental compartmentalization led to the evolution of serially repeated elements and the emergence of serial homology. In these compartments, serial homologues were able to acquire site-specific developmental regulation and this, in turn, allowed them to diverge morphologically. Compartmentalization of the wing also reduced the developmental correlation among pattern elements. The release from this developmental constraint, we believe, enabled the great evolutionary radiation of butterfly wing patterns. During pattern evolution, the same set of individual pattern elements is arranged in novel ways to produce species-specific patterns, including such adaptations as mimicry and camouflage.

  6. Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)

    NASA Technical Reports Server (NTRS)

    Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth

    1993-01-01

    The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.

  7. Active Flow Control on a Generic Trapezoidal Wing Planform

    NASA Astrophysics Data System (ADS)

    Wygnanski, Israel; Little, Jesse; Roentsch, Bernhard; Endrikat, Sebastian

    2016-11-01

    Fluidic oscillators are employed to increase the lift and improve longitudinal stability of a generic trapezoidal wing having aspect ratio of 1.15 and taper ratio of 0.27. Actuation is applied along the flap hinge which spans the entire wing and is parallel to the trailing edge. Experiments are conducted at a Reynolds number of 1 . 7 ×106 for a wide range of incidence (-8° o to 24°) and flap deflection angles (0° to 75°). Baseline flow on the deflected flap is directed inboard prior to boundary layer separation, but changes to outboard with increasing incidence and flap deflection. The attached spanwise flow can be redirected using a sparse distribution of fluidic oscillators acting as a fluidic fence. However, the majority of lift enhancement and pitch break improvement is accomplished using a more dense distribution of actuators which attaches separated flow to the flap. Integral force and moment results are supported by surface flow visualization, pressure sensitive paint and PIV which reveal unique flow features such as a hinge vortex analogous to the leading edge vortex on a forward swept wing and the possible existence of an absolute instability in a plane parallel to the highly deflected flap. Supported by U.S. Office of Naval Research (N00014-14-1-0387).

  8. Secondary Wing System for Use on an Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Brian E. (Inventor)

    1999-01-01

    A secondary wing system for use on an aircraft augments the lift, stability, and control of the aircraft at subsonic speeds. The secondary wing system includes a mechanism that allows the canard to be retracted within the contour of the aircraft fuselage from an operational position to a stowed position. The top surface of the canard is exposed to air flow in the stowed position, and is contoured to integrate aerodynamically and smoothly within the contour of the fuselage when the canard is retracted for high speed flight. The bottom portion of the canard is substantially flat for rotation into a storage recess within the fuselage. The single canard rotates about a vertical axis at its spanwise midpoint. The canard can be positioned between a range of sweep angles during flight and a stowed position in which its span is substantially parallel to the aircraft fuselage. The canard can be deployed and retracted during flight. The deployment mechanism includes a circular mounting ring and drive mechanism that connects the canard with the fuselage and permits it to rotate and to change incidence. The deployment mechanism further includes retractable fairings which serve to streamline the wing when it is retracted into the top of the fuselage.

  9. Interference drag in a simulated wing-fuselage juncture

    NASA Technical Reports Server (NTRS)

    Kubendran, L. R.; Mcmahon, H.; Hubbartt, J. E.

    1984-01-01

    The interference drag in a wing fuselage juncture as simulated by a flat plate and a body of constant thickness having a 1.5:1 elliptical leading edge is evaluated experimentally. The experimental measurements consist of mean velocity data taken with a hot wire at a streamwise location corresponding to 16 body widths downstream of the body leading edge. From these data, the interference drag is determined by calculating the total momentum deficit (momentum area) in the juncture and also in the two dimensional turbulent boundary layers on the flat plate and body at locations sufficiently far from the juncture flow effect. The interference drag caused by the juncture drag as measured at this particular streamwise station is -3% of the total drag due to the flat plate and body boundary layers in isolation. If the body is considered to be a wing having a chord and span equal to 16 body widths, the interference drag due to the juncture is only -1% of the frictional drag of one surface of such a wing.

  10. Schooling of flapping wings: Simulations

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Becker, Alexander; Ristroph, Leif; Shelley, Michael

    2014-11-01

    We examine the locomotion of an infinite array of wings that heave vertically with a prescribed sinusoidal motion and are free to translate in the horizontal direction. To do this, we simulate the motion of a freely translating flapping airfoil in a domain with periodic horizontal boundary conditions. These simulations indicate that the wings can ``take advantage'' of their collectively generated wake flows. In agreement with our experiments in a rotational geometry, we find ranges of flapping frequency over which there are multiple stable states of locomotion, with one of these swimming states having both higher speeds and efficiencies than an isolated flapping and locomoting wing. A simple mathematical model, which emphasizes the importance of history dependence in vortical flows, explains this multi-stability. These results may be important to understanding the role of hydrodynamic interactions in fish schooling and bird flocking.

  11. Aircraft wing structure detail design

    NASA Technical Reports Server (NTRS)

    Sager, Garrett L.; Roberts, Ron; Mallon, Bob; Alameri, Mohamed; Steinbach, Bill

    1993-01-01

    The provisions of this project call for the design of the structure of the wing and carry-through structure for the Viper primary trainer, which is to be certified as a utility category trainer under FAR part 23. The specific items to be designed in this statement of work were Front Spar, Rear Spar, Aileron Structure, Wing Skin, and Fuselage Carry-through Structure. In the design of these parts, provisions for the fuel system, electrical system, and control routing were required. Also, the total weight of the entire wing planform could not exceed 216 lbs. Since this aircraft is to be used as a primary trainer, and the SOW requires a useful life of 107 cycles, it was decided that all of the principle stresses in the structural members would be kept below 10 ksi. The only drawback to this approach is a weight penalty.

  12. Aerodynamic control with passively pitching wings

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  13. The function of resilin in beetle wings.

    PubMed Central

    Haas, F; Gorb, S; Blickhan, R

    2000-01-01

    This account shows the distribution of elastic elements in hind wings in the scarabaeid Pachnoda marginata and coccinellid Coccinella septempunctata (both Coleoptera). Occurrence of resilin, a rubber-like protein, in some mobile joints together with data on wing unfolding and flight kinematics suggest that resilin in the beetle wing has multiple functions. First, the distribution pattern of resilin in the wing correlates with the particular folding pattern of the wing. Second, our data show that resilin occurs at the places where extra elasticity is needed, for example in wing folds, to prevent material damage during repeated folding and unfolding. Third, resilin provides the wing with elasticity in order to be deformable by aerodynamic forces. This may result in elastic energy storage in the wing. PMID:10983820

  14. Evolution: taking wing with weak feathers.

    PubMed

    Xu, Xing

    2012-12-04

    Scientists long thought they knew what the wings of early birds looked like. But new reconstructions of Archaeopteryx and its kin suggest quite different feather arrangements on their wings with profound implications for the evolution of flight.

  15. Insect Evolution: The Origin of Wings.

    PubMed

    Ross, Andrew

    2017-02-06

    The debate on the evolution of wings in insects has reached a new level. The study of primitive fossil insect nymphs has revealed that wings developed from a combination of the dorsal part of the thorax and the body wall.

  16. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  17. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  18. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  19. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  20. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps. Wing flaps, their operating mechanisms, and their supporting structures must be designed for critical...

  1. Advancements in adaptive aerodynamic technologies for airfoils and wings

    NASA Astrophysics Data System (ADS)

    Jepson, Jeffrey Keith

    Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as

  2. Pressure distribution data from tests of 2.29-meter (7.5-ft.) span EET high-lift research model in Langley 4- by 7-meter tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1982-01-01

    A 2.29 m (7.5 ft.) span high-lift research model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Langley 4- by 7-Meter Tunnel to determine the low speed performance characteristics of a representative high aspect ratio suprcritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  3. Component Analysis of Simple Span vs. Complex Span Adaptive Working Memory Exercises: A Randomized, Controlled Trial

    PubMed Central

    Gibson, Bradley S.; Kronenberger, William G.; Gondoli, Dawn M.; Johnson, Ann C.; Morrissey, Rebecca A.; Steeger, Christine M.

    2012-01-01

    There has been growing interest in using adaptive training interventions such as Cogmed-RM to increase the capacity of working memory (WM), but this intervention may not be optimally designed. For instance, Cogmed-RM can target the primary memory (PM) component of WM capacity, but not the secondary memory (SM) component. The present study hypothesized that Cogmed-RM does not target SM capacity because the simple span exercises it uses may not cause a sufficient amount of information to be lost from PM during training. To investigate, we randomly assigned participants to either a standard (simple span; N = 31) or a modified (complex span; N = 30) training condition. The main findings showed that SM capacity did not improve, even in the modified training condition. Hence, the potency of span-based WM interventions cannot be increased simply by converting simple span exercises into complex span exercises. PMID:23066524

  4. Flexible-Wing-Based Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Jenkins, David A.; Ettinger, Scott; Lian, Yong-Sheng; Shyy, Wei; Waszak, Martin R.

    2002-01-01

    This paper documents the development and evaluation of an original flexible-wing-based Micro Air Vehicle (MAV) technology that reduces adverse effects of gusty wind conditions and unsteady aerodynamics, exhibits desirable flight stability, and enhances structural durability. The flexible wing concept has been demonstrated on aircraft with wingspans ranging from 18 inches to 5 inches. Salient features of the flexible-wing-based MAV, including the vehicle concept, flexible wing design, novel fabrication methods, aerodynamic assessment, and flight data analysis are presented.

  5. Downwash in the plane of symmetry of an elliptically loaded wing

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.

    1985-01-01

    A closed-form solution for the downwash in the plane of symmetry of an elliptically loaded line is given. This theoretical result is derived from Prandtl's lifting-line theory and assumes that: (1) a three-dimensional wing can be replaced by a straight lifting line, (2) this line is elliptically loaded, and (3) the trailing wake is a flat-sheet which does not roll up. The first assumption is reasonable for distances greater than about 1 chord from the wing aerodynamic center. The second assumption is satisfied by any combination of wing twist, spanwise camber variation, or planform that approximates elliptic loading. The third assumption is justified only for high-aspect-ratio wings at low lift coefficients and downstream distances less than about 1 span from the aerodynamic center. It is shown, however, that assuming the wake to be fully rolled up gives downwash values reasonably close to those of the flat-sheet solution derived in this paper. The wing can therefore be modeled as a single horseshoe vortex with the same lift and total circulation as the equivalent ellipticity loaded line, and the predicted downwash will be a close approximation independent of aspect ratio and lift coefficient. The flat-sheet equation and the fully rolled up wake equation are both one-line formulas that predict the upwash field in front of the wing, as well as the downwash field behind it. These formulas are useful for preliminary estimates of the complex aerodynamic interaction between two wings (i.e., canard, tandem wing, and conventional aircraft) including the effects of gap and stagger.

  6. Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.

    1999-01-01

    An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.

  7. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    DTIC Science & Technology

    2011-03-03

    Thankfully, nature has already optimized micro air vehicles with the evolution of birds and insects, which become the instinctual inspirational candidates...properties to those wings found in nature. More specifically, with size comparable to a hummingbird , elastic modulus comparable to a cicada, and

  8. Fishing for ecosystem servicespan>s.

    PubMed

    Pope, Kevin L; Pegg, Mark A; Cole, Nicholas W; Siddons, Stephen F; Fedele, Alexis D; Harmon, Brian S; Ruskamp, Ryan L; Turner, Dylan R; Uerling, Caleb C

    2016-12-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem servicespan>s. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem servicespan>s. By focusing on broader scales, managing for ecosystem servicespan>s, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem servicespan>s could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem servicespan>s. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships.

  9. Span graphics display utilities handbook, first edition

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Green, J. L.; Newman, R.

    1985-01-01

    The Space Physics Analysis Network (SPAN) is a computer network connecting scientific institutions throughout the United States. This network provides an avenue for timely, correlative research between investigators, in a multidisciplinary approach to space physics studies. An objective in the development of SPAN is to make available direct and simplified procedures that scientists can use, without specialized training, to exchange information over the network. Information exchanges include raw and processes data, analysis programs, correspondence, documents, and graphite images. This handbook details procedures that can be used to exchange graphic images over SPAN. The intent is to periodically update this handbook to reflect the constantly changing facilities available on SPAN. The utilities described within reflect an earnest attempt to provide useful descriptions of working utilities that can be used to transfer graphic images across the network. Whether graphic images are representative of satellite servations or theoretical modeling and whether graphics images are of device dependent or independent type, the SPAN graphics display utilities handbook will be the users guide to graphic image exchange.

  10. On the autorotation of animal wings.

    PubMed

    Ortega-Jimenez, Victor Manuel; Martín-Alcántara, Antonio; Fernandez-Feria, Ramon; Dudley, Robert

    2017-01-01

    Botanical samaras spin about their centre of mass and create vertical aerodynamic forces which slow their rate of descent. Descending autorotation of animal wings, however, has never been documented. We report here that isolated wings from Anna's hummingbirds, and also from 10 species of insects, can stably autorotate and achieve descent speeds and aerodynamic performance comparable to those of samaras. A hummingbird wing loaded at its base with the equivalent of 50% of the bird's body mass descended only twice as fast as an unloaded wing, and rotated at frequencies similar to those of the wings in flapping flight. We found that even entire dead insects could stably autorotate depending on their wing postures. Feather removal trials showed no effect on descent velocity when the secondary feathers were removed from hummingbird wings. By contrast, partial removal of wing primaries substantially improved performance, except when only the outer primary was present. A scaling law for the aerodynamic performance of autorotating wings is well supported if the wing aspect ratio and the relative position of the spinning axis from the wing base are included. Autorotation is a useful and practical method that can be used to explore the aerodynamics of wing design.

  11. Effect of Wing Thickness and Sweep on the Oscillating Hinge-Moment and Flutter Characteristics of a Flap-Type Control at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Moseley, William C., Jr.; Gainer, Thomas G.

    1959-01-01

    Free-oscillation tests were made in the Langley high-speed 7- by 10-foot tunnel to determine the effects of wing thickness and wing sweep on the hinge-moment and flutter characteristics of a trailing-edge flap-type control. The untapered semispan wings had full-span aspect ratios of 5 and NACA 65A-series airfoil sections. Unswept wings having ratios of wing thickness to chord of 0.04, 0.06, 0.08, and 0.10 were investigated. The swept wings were 6 percent thick and had sweep angles of 30 deg and 45 deg. The full-span flap-type controls had a total chord of 50 percent of the wing chord and were hinged at the 0.765-wing-chord line. Tests were made at zero angle of attack over a Mach number range from 0.60 to 1.02, control oscillation amplitudes up to about 12 deg, and a range of control-reduced frequencies. Static hinge-moment data were also obtained. Results indicate that the control aerodynamic damping for the 4-percent-thick wing-control model was unstable in the Mach number range from 0.92 to 1.02 (maximum for these tests). Increasing the ratio of wing thickness to chord to 0.06, 0.08, and then to 0.10 had a stabilizing effect on the aerodynamic damping in this speed range so that the aerodynamic damping was stable for the 10-percent-thick model at all Mach numbers. The 6-percent-thick unswept-wing-control model generally had unstable aerodynamic damping in the Mach number range from 0.96 to 1.02. Increasing the wing sweep resulted in a general decrease in the stable aerodynamic damping at the lower Mach numbers and in the unstable aerodynamic damping at the higher Mach numbers. The one-degree-of-freedom control-surface flutter which occurred in the transonic Mach number range (0.92 to 1.02) for the 4-, 6-, and 8-percent-thick unswept-wing-control models could be eliminated by further increasing the ratio of thickness to chord to 0.10. Flutter could also be eliminated by increasing the wing sweep angle to either 30 deg or 45 deg. The magnitude of variation in

  12. Analysis of the effects of wing interference on the tail contributions to the rolling derivatives

    NASA Technical Reports Server (NTRS)

    Michael, William H , Jr

    1952-01-01

    An analysis of the effects of wing interference on the tail contributions to the rolling stability derivatives of complete airplane configurations is made by calculating the angularity of the air stream at the vertical tail due to rolling and determining the resulting forces and moments. Some of the important factors which affect the resultant angularity on the vertical tail are wing aspect ratio and sweepback, vertical-tail span, and considerations associated with angle of attack and airplane geometry. Some calculated sidewash results for a limited range of plan forms and vertical-tail sizes are presented. Equations taking into account the sidewash results are given for determining the tail contributions to the rolling derivatives. Comparisons of estimated and experimental results indicate that a consideration of wing interference effects improves the estimated values of the tail contributions to the rolling derivatives and that fair agreement with available experimental data is obtained.

  13. Calculated spanwise lift distributions, influence functions, and influence coefficients for unswept wings in subsonic flow

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W; Zlotnick, Martin

    1955-01-01

    Spanwise lift distributions have been calculated for nineteen unswept wings with various aspect ratios and taper ratios and with a variety of angle-of-attack or twist distributions, including flap and aileron deflections, by means of the Weissinger method with eight control points on the semispan. Also calculated were aerodynamic influence coefficients which pertain to a certain definite set of stations along the span, and several methods are presented for calculating aerodynamic influence functions and coefficients for stations other than those stipulated. The information presented in this report can be used in the analysis of untwisted wings or wings with known twist distributions, as well as in aeroelastic calculations involving initially unknown twist distributions.

  14. Design aspects of long range supersonic LFC airplanes with highly swept wings. [laminar flow control

    NASA Technical Reports Server (NTRS)

    Pfenninger, W.; Vemuru, C. S.

    1990-01-01

    Studies on supersonic long-range LFC (laminar flow control) aircraft were performed with the aim of maximizing L/D and alleviating sonic boom during supersonic cruise. It is found that configurations with highly swept LFC wings of very high structural aspect ratio, with the sweep increasing toward the wing root and braced externally by wide chord laminarized struts, appear especially promising. In the supersonic cruise design condition the wing upper surface isobars are swept such that the flow in the direction normal to them is transonic with embedded supersonic zones and practically shock-free over most of the span, with M-perpendicular equal to the two-dimensional design values of advanced SC LFC airfoils, e.g., of the X-787 or X-6 type.

  15. Wind-Tunnel Investigation of Subsonic Longitudinal Aerodynamic Characteristics of a Tiltable-Wing Vertical-Take-Off-and-Landing Supersonic Bomber Configuration Including Turbojet Power Effects

    NASA Technical Reports Server (NTRS)

    Thompson, Robert F.; Vogler, Raymond D.; Moseley, William C., Jr.

    1959-01-01

    Jet-powered model tests were made to determine the low-speed longitudinal aerodynamic characteristics of a vertical-take-off and-landing supersonic bomber configuration. The configuration has an unique engine-wing arrangement wherein six large turbojet engines (three on each side of the fuselage) are buried in a low-aspect-ratio wing which is tilted into the vertical plane for take-off. An essentially two-dimensional variable inlet, spanning the leading edge of each wing semispan, provides air for the engines. Jet flow conditions were simulated for a range of military (nonafterburner) and afterburner turbojet-powered flight at subsonic speeds. Three horizontal tails were tested at a station down-stream of the jet exit and at three heights above the jet axes. A semi-span model was used and test parameters covered wing-fuselage incidence angles from 0 deg to 15 deg, wing angles of attack from -4 deg to 36 deg, a variable range of horizontal-tail incidence angles, and some variations in power simulation conditions. Results show that, with all horizontal tails tested, there were large variations in static stability throughout the lift range. When the wing and fuselage were alined, the model was statically stable throughout the test range only with the largest tail tested (tail span of 1.25 wing span) and only when the tail was located in the low test position which placed the tail nearest to the undeflected jet. For transition flight conditions, none of the tail configurations provided satisfactory longitudinal stability or trim throughout the lift range. Jet flow was destabilizing for most of the test conditions, and varying the jet-exit flow conditions at a constant thrust coefficient had little effect on the stability of this model. Wing leading-edge simulation had some important effects on the longitudinal aerodynamic characteristics.

  16. Wind-tunnel investigation of a Fowler flap and spoiler for an advanced general aviation wing

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.

    1976-01-01

    The wing was tested without fuselage or empennage and was fitted with approximately three-quarter span Fowler flaps and half span spoilers. The spoilers were hinged at the 70 percent chord point and vented when the flaps were deflected. Static longitudinal and lateral aerodynamic data were obtained over an angle of attack range of -8 deg to 22 deg for various flap deflections and positions, spoiler geometries, and vent lip geometries. Lateral characteristics indicate that the spoilers are generally adequate for lateral control. In general, the spoiler effectiveness increases with increasing angle of attack, increases with increasing flap deflections, and is influenced by vent lip geometry. In addition, the data show that some two-dimensional effects on spoiler effectiveness are reduced in the three-dimensional case. Results also indicate significant increase in lift coefficient as the Fowler flaps are deflected; when the flap was fully deflected, the maximum wing lift coefficient was increased about 96 percent.

  17. Reflection-plane tests of spoilers on an advanced technology wing with a large Fowler flap

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Volk, C. G., Jr.

    1976-01-01

    Wind tunnel experiments were conducted to determine the effectiveness of spoilers applied to a finite-span wing which utilizes the GA(W)-1 airfoil section and a 30% chord full-span Fowler flap. A series of spoiler cross sectioned shapes were tested utilizing a reflection-plane model. Five-component force characteristics and hinge moment measurements were obtained. Results confirm earlier two-dimensional tests which showed that spoilers could provide large lift increments at any flap setting, and that spoiler control reversal tendencies could be eliminated by providing a vent path from lower surface to upper surface. Performance penalties due to spoiler leakage airflow were measured.

  18. Aerodynamic yawing moment characteristics of bird wings.

    PubMed

    Sachs, Gottfried

    2005-06-21

    The aerodynamic yawing moments due to sideslip are considered for wings of birds. Reference is made to the experience with aircraft wings in order to identify features which are significant for the yawing moment characteristics. Thus, it can be shown that wing sweep, aspect ratio and lift coefficient have a great impact. Focus of the paper is on wing sweep which can considerably increase the yawing moment due to sideslip when compared with unswept wings. There are many birds the wings of which employ sweep. To show the effect of sweep for birds, the aerodynamic characteristics of a gull wing which is considered as a representative example are treated in detail. For this purpose, a sophisticated aerodynamic method is used to compute results of high precision. The yawing moments of the gull wing with respect to the sideslip angle and the lift coefficient are determined. They show a significant level of yaw stability which strongly increases with the lift coefficient. It is particularly high in the lift coefficient region of best gliding flight conditions. In order to make the effect of sweep more perspicuous, a modification of the gull wing employing no sweep is considered for comparison. It turns out that the unswept wing yields yawing moments which are substantially smaller than those of the original gull wing with sweep. Another feature significant for the yawing moment characteristics concerns the fact that sweep is at the outer part of bird wings. By considering the underlying physical mechanism, it is shown that this feature is most important for the efficiency of wing sweep. To sum up, wing sweep provides a primary contribution to the yawing moments. It may be concluded that this is an essential reason why there is sweep in bird wings.

  19. Boundary Spanning Leadership Practices for Population Health.

    PubMed

    Shirey, Maria R; White-Williams, Connie

    2015-09-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. In this article, the authors discuss boundary spanning leadership practices for achieving the Triple Aim of simultaneously improving the health of populations, improving the patient experience, and reducing per-capita cost of health care. Drawing on experience with an existing population-focused heart failure clinic borne of an academic-practice partnership, the authors discuss boundary spanning leadership practices aimed at achieving the Triple Aim concept and its intended design.

  20. Computational design of flapping kinematics of a flexible finite-span foil

    NASA Astrophysics Data System (ADS)

    Hong, Seungpyo; Lee, Jinmo; You, Donghyun

    2013-11-01

    While many of the effects of chordwise flexibility of a two-dimensional plate or a foil under pitching motions are revealed in recent computational and experimental research, the effects of flexibility of a three-dimensional foil on the manipulation of wing-tip vortices as well as leading-/trailing-edge vortices are rarely understood. The present study aims at identifying flow physics associated with flapping motions of flexible finite-span foils and the effects of the flapping kinematics and flexibility of the foil on the propulsive performance. The propulsive performance and fluid dynamics of wing-tip vortices leading-edge and trailing-edge vortices associated with the thrust generation are investigated in detail by conducting numerical simulations of flow over a flapping foil with different span-to-chord aspect ratios and bending stiffness using a recently developed coupled immersed boundary method and computational structural dynamics. Supported by the Office of Naval Research Grant N000141110652 and the National Research Foundation of Korea Grant NRF-2012R1A1A2003699.

  1. Wings: Women Entrepreneurs Take Flight.

    ERIC Educational Resources Information Center

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  2. FLEXIBLE WING INDIVIDUAL DROP GLIDER

    DTIC Science & Technology

    The feasibility of the paraglider concept as a means of descent for individual airborne troops is presented. Full-scale 22-foot inflatable wings and...in an effort to achieve system reliability. The feasibility of using the paraglider as a means of controlled delivery of airborne paratroopers was successfully demonstrated.

  3. Wing Leading Edge Debris Analysis

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Gregory

    2004-01-01

    This is a slide presentation showing the Left Wing Leading Edge (WLE) heat damage observations: Heavy "slag" deposits on select RCC panels. Eroded and knife-edged RCC rib sections. Excessive overheating and slumping of carrier panel tiles. Missing or molten attachment bolts but intact bushing. Deposit mainly on "inside" RCC panel. Deposit on some fractured RCC surface

  4. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  5. The Wings for Angels Project

    ERIC Educational Resources Information Center

    McMillan, Liberty; McMillan, Ellen; Ayers, Ann

    2012-01-01

    How can the spirits of critically ill children be raised? Alexis Weisel (co-president of the Monarch High School National Art Honor Society, 2010-2011) had this question in mind when she initiated and developed the Wings for Angels Project after hearing about the Believe in Tomorrow (BIT) organization through her art teacher, Ellen McMillan. The…

  6. Active Flexible Wing (AFW) Technology

    DTIC Science & Technology

    1988-02-01

    copy of zeach of the fbllowing records: AD B253477, XV-8A Flexible Win& Aerial Utility Vehicle, by H-. Kredit . January 1964, 144 pages AD 13252433...Counterinsurgency Operations by R.A. Wise, Feb 0965, 74 pages - AD 461202. XV-8A Flexible Wing Aerial Utility Vehicle, H. Kredit , Feb. 1965. 100 pages _-AD

  7. [Winged scapula in lyme borreliosis].

    PubMed

    Rausch, V; Königshausen, M; Gessmann, J; Schildhauer, T A; Seybold, D

    2016-06-01

    Here we present the case of a young patient with one-sided winged scapula and lyme borreliosis. This disease can be very delimitating in daily life. If non-operative treatment fails, dynamic or static stabilization of the scapula can be a therapeutic option.

  8. 23 | September | 201span>6 | ISS On-Orbit Status Report

    NASA Website

    Opening of Lab MCA Hand Valve 01; HRF2 Supply Kit Resupply; ... August 201span>6; July 201span>6; June 201span>6; May 201span>6; April 201span>6; March 201span>6; February 201span>6; ...

  9. F-8 oblique wing structural feasibility study

    NASA Technical Reports Server (NTRS)

    Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.

    1975-01-01

    The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.

  10. Trapezoidal Wing Experimental Repeatability and Velocity Profiles in the 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Hannon, Judith A.; Washburn, Anthony E.; Jenkins, Luther N.; Watson, Ralph D.

    2012-01-01

    The AIAA Applied Aerodynamics Technical Committee sponsored a High Lift Prediction Workshop held in June 2010. For this first workshop, data from the Trapezoidal Wing experiments were used for comparison to CFD. This paper presents long-term and short-term force and moment repeatability analyses for the Trapezoidal Wing model tested in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This configuration was chosen for its simplified high-lift geometry, publicly available set of test data, and previous CFD experience with this configuration. The Trapezoidal Wing is a three-element semi-span swept wing attached to a body pod. These analyses focus on configuration 1 tested in 1998 (Test 478), 2002 (Test 506), and 2003 (Test 513). This paper also presents model velocity profiles obtained on the main element and on the flap during the 1998 test. These velocity profiles are primarily at an angle of attack of 28 degrees and semi-span station of 83% and show confluent boundary layers and wakes.

  11. 10. DETAIL, SOUTHEAST SPAN THROUGH CANAL, VIEW BLOCKED BY STEEL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL, SOUTHEAST SPAN THROUGH CANAL, VIEW BLOCKED BY STEEL, CLAD COUNTER WEIGHT, WATER SPAN RAISED OUT OF VIEW - Cape Cod Canal Lift Bridge, Spanning Cape Cod Canal, Buzzards Bay, Barnstable County, MA

  12. 26. Central compression lock, north span facing north. Compression lock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Central compression lock, north span facing north. Compression lock locks two spans together at highest point. There are three compression locks. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  13. 20. DETAIL OF WEST ANCHOR SPAN, CANTILEVER ARMS AND WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL OF WEST ANCHOR SPAN, CANTILEVER ARMS AND WEST HALF OF SUSPENDED SPAN OF THROUGH TRUSS. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  14. 5. LOOKING SOUTHEAST, VIEW OF CENTER TURN SPAN AND SOUTHWESTERNMOST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING SOUTHEAST, VIEW OF CENTER TURN SPAN AND SOUTHWESTERNMOST SPAN FROM ADJACENT INTERSTATE 40 BRIDGE - St. Francis River Bridge, Spanning St. Francis River at U.S. Highway 70, Forrest City, St. Francis County, AR

  15. 41. Detail showing meeting of two fixed land span segments, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Detail showing meeting of two fixed land span segments, bridge land span at left, viaduct at right. VIEW NORTH - Broadway Bridge, Spanning Foundry Street, MBTA Yard, Fort Point Channel, & Lehigh Street, Boston, Suffolk County, MA

  16. Preliminary study of a wing-tip vortex using laser velocimetry

    NASA Technical Reports Server (NTRS)

    Takahashi, R. K.; Mcalister, K. W.

    1987-01-01

    Measurements have been made in the wake of a semi-span NACA 0015 airfoil with emphasis on the region of the wing tip vortex. The spanwise and streamwise velocity components were measured using a two-component laser Doppler velocimeter. The purpose of the study was to initiate the operation of a laser velocimeter system and to perform preliminary wake measurements in preparation for a more extensive study of the structure and near field development of a tip vortex.

  17. The influence of aspect ratio and stroke pattern on force generation of a bat-inspired membrane wing.

    PubMed

    Schunk, Cosima; Swartz, Sharon M; Breuer, Kenneth S

    2017-02-06

    Aspect ratio (AR) is one parameter used to predict the flight performance of a bat species based on wing shape. Bats with high AR wings are thought to have superior lift-to-drag ratios and are therefore predicted to be able to fly faster or to sustain longer flights. By contrast, bats with lower AR wings are usually thought to exhibit higher manoeuvrability. However, the half-span ARs of most bat wings fall into a narrow range of about 2.5-4.5. Furthermore, these predictions do not take into account the wide variation in flapping motion observed in bats. To examine the influence of different stroke patterns, we measured lift and drag of highly compliant membrane wings with different bat-relevant ARs. A two degrees of freedom shoulder joint allowed for independent control of flapping amplitude and wing sweep. We tested five models with the same variations of stroke patterns, flapping frequencies and wind speed velocities. Our results suggest that within the relatively small AR range of bat wings, AR has no clear effect on force generation. Instead, the generation of lift by our simple model mostly depends on wingbeat frequency, flapping amplitude and freestream velocity; drag is mostly affected by the flapping amplitude.

  18. Effect of thrust on the aeroelastic instability of a composite swept wing with two engines in subsonic compressible flow

    NASA Astrophysics Data System (ADS)

    Firouz-Abadi, R. D.; Askarian, A. R.; Zarifian, P.

    2013-01-01

    This paper aims to investigate aeroelastic stability boundary of subsonic wings under the effect of thrust of two engines. The wing structure is modeled as a tapered composite box-beam. Moreover, an indicial function based model is used to calculate the unsteady lift and moment distribution along the wing span in subsonic compressible flow. The two jet engines mounted on the wing are modeled as concentrated masses and the effect of thrust of each engine is applied as a follower force. Using Hamilton's principle along with Galerkin's method, the governing equations of motion are derived, then the obtained equations are solved in frequency domain using the K-method and the aeroelastic instability conditions are determined. The flutter analysis results of four example wings are compared with the experimental and analytical results in the literature and good agreements are achieved which validate the present model. Furthermore, based on several case studies on a reference wing, some attempts are performed to analyze the effect of thrust on the stability margin of the wing and some conclusions are outlined.

  19. Rotor/wing aerodynamic interactions in hover

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Light, J. S.

    1986-01-01

    An experimental and theoretical investigation of rotor/wing aerodynamic interactions in hover is described. The experimental investigation consisted of both a large-scale and small-scale test. A 0.658-scale, V-22 rotor and wing was used in the large-scale test. Wind download, wing surface pressure, rotor performance, and rotor downwash data from the large-scale test are presented. A small-scale experiment was conducted to determine how changes in the rotor/wing geometry affected the aerodynamic interactions. These geometry variations included the distance between the rotor and wing, wing incidence angle, and configurations both with the rotor axis at the tip of the wing (tilt rotor configuration) and with the rotor axis at the center of the wing (compound helicopter configuration). A wing with boundary-layer control was also tested to evaluate the effect of leading and trailing edge upper surface blowing on the wing download. A computationally efficient, semi-empirical theory was developed to predict the download on the wing. Finally, correlations between the theoretical predictions and test data are presented.

  20. General closeup view of the swing span bridge in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General close-up view of the swing span bridge in the close position, looking upriver. The pivot/center pier is positioned in the center of Tennessee River. Note: Each arm of the continuous swing span acts as simple spans. The total span over four (4) supports is partially continuous-- the middle panel at the center pier is continuous for bending moments, but discontinuous for shears. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  1. Topology of Vortex-Wing Interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  2. Spatial Abilities across the Adult Life Span

    ERIC Educational Resources Information Center

    Borella, Erika; Meneghetti, Chiara; Ronconi, Lucia; De Beni, Rossana

    2014-01-01

    The study investigates age-related effects across the adult life span on spatial abilities (testing subabilities based on a distinction between spatial visualization, mental rotation, and perspective taking) and spatial self-assessments. The sample consisted of 454 participants (223 women and 231 men) from 20 to 91 years of age. Results showed…

  3. School Organization: Grade Span. Trends and Issues.

    ERIC Educational Resources Information Center

    Renchler, Ron

    This paper examines grade spans (grade configurations) and their importance in community school systems. Research has shown that geographic location often dictates the kind of grade configuration districts use. Furthermore, every grade configuration has strengths and weaknesses, and school officials must focus on developing the positive potential…

  4. SPAN C - Terminal sterilization process analysis program

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Computer program, SPAN-C, measures the dry heat thermal sterilization process applied to a planetary capsule and calculates the time required for heat application, steady state conditions, and cooling. The program is based on the logarithmic survival of micro-organisms. Temperature profiles must be input on cards.

  5. SPAN - Terminal sterilization process analysis program

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Computer program, SPAN, measures the dry heat thermal sterilization process applied to a planetary capsule and calculates the time required for heat application, steady state conditions, and cooling. The program is based on the logarithmic survival of micro-organisms. Temperature profiles must be input on tape.

  6. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    PubMed

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  7. Experimental study of the flow field induced by a resonating piezoelectric flapping wing

    NASA Astrophysics Data System (ADS)

    Bidakhvidi, M. Ahmadi; Shirzadeh, R.; Steenackers, G.; Vanlanduit, S.

    2013-11-01

    Flexible plate structures with integrated piezoelectric patches offer interesting possibilities when considered as actuation mechanisms for energy harvesting devices, cooling devices and propulsion devices of micro-aerial vehicles. Most of the studies reported in literature are based on the assumption of a 2D aerodynamic flow. However, the flow behind a finite span wing is significantly more complex than that of an infinite span wing. In order to corroborate this statement, the present experimental study contains high-speed particle image velocimetry measurements performed on a piezoelectric finite span wing oscillating in air, at 84.8 Hz. The paper focuses on the situation of low Keulegan-Carpenter numbers (KC < 3). The dimensionless KC number describes the relative importance of the drag forces over inertia forces for objects that oscillate in a fluid flow at rest. The evolution of the unsteady vortex structures near the plate is characterized for different conditions. This allows a better understanding of the unsteady aerodynamics of flapping flight. The accomplished experimental data analysis has shown that the flow phenomena are strongly dependent on the KC values.

  8. 25. DETAIL VIEW OF COMMEMORATIVE NAMEPLATE PLAQUE, NORTH END SPAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. DETAIL VIEW OF COMMEMORATIVE NAMEPLATE PLAQUE, NORTH END SPAN - East Bloomsburg Bridge, Spanning Susquehanna River at Pennsylvania Route 487 (Legislative Route 283), Bloomsburg, Columbia County, PA

  9. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.

    PubMed

    Nan, Yanghai; Karásek, Matěj; Lalami, Mohamed Esseghir; Preumont, André

    2017-03-06

    Flapping wing micro air vehicles (MAVs) take inspiration from natural fliers, such as insects and hummingbirds. Existing designs manage to mimic the wing motion of natural fliers to a certain extent; nevertheless, differences will always exist due to completely different building blocks of biological and man-made systems. The same holds true for the design of the wings themselves, as biological and engineering materials differ significantly. This paper presents results of experimental optimization of wing shape of a flexible wing for a hummingbird-sized flapping wing MAV. During the experiments we varied the wing 'slackness' (defined by a camber angle), the wing shape (determined by the aspect and taper ratios) and the surface area. Apart from the generated lift, we also evaluated the overall power efficiency of the flapping wing MAV achieved with the various wing design. The results indicate that especially the camber angle and aspect ratio have a critical impact on the force production and efficiency. The best performance was obtained with a wing of trapezoidal shape with a straight leading edge and an aspect ratio of 9.3, both parameters being very similar to a typical hummingbird wing. Finally, the wing performance was demonstrated by a lift-off of a 17.2 g flapping wing robot.

  10. Subsonic longitudinal and lateral-directional static aerodynamic characteristics of a general research fighter model employing a strake-wing concept

    NASA Technical Reports Server (NTRS)

    Fox, C. H., Jr.

    1978-01-01

    A general research fighter model was tested in the Langley 7 by 10 foot high speed tunnel at a Mach number of 0.3. Strakes with exposed semi-spans of 10 percent, 20 percent, and 30 percent of the wing reference semi-span were tested in combination with wings having leading edge sweep angles of 30, 44, and 60 degrees. The angle of attack range was from -4 degrees to approximately 48 degrees at sideslip angles of 0, -5, and 5 degrees. The data are presented without analysis in order to expedite publication.

  11. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  12. Spinning Characteristics of Wings I : Rectangular Clark Y Monoplane Wing

    NASA Technical Reports Server (NTRS)

    Bamber, M J; Zimmerman, C H

    1936-01-01

    A series of wind tunnel tests of a rectangular Clark Y wing was made with the NACA spinning balance as part of a general program of research on airplane spinning. All six components of the aerodynamic force and moment were measured throughout the range of angles of attack, angles of sideslip, and values omega b/2v likely to be attained by a spinning airplane; the results were reduced to coefficient form. It is concluded that a conventional monoplane with a rectangular Clark y wing can be made to attain spinning equilibrium throughout a wide range of angles of attack but that provision of a yawing moment coefficient of -0.02 (against the spin) by the tail, fuselage, and interferences will insure against attainment of equilibrium in a steady spin.

  13. DARPA/AFRL Smart Wing Phase 2 wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, C. A.; Sanders, Brian P.; West, Mark N.; Pinkerton-Florance, Jennifer L.; Wieseman, Carol D.; Burner, Alpheus W.; Fleming, Gary A.

    2002-07-01

    Northrop Grumman Corporation built and twice tested a 30 percent scale wind tunnel model of a proposed uninhabited combat air vehicle under the DARPA/AFRL Smart Materials and Structures Development - Smart Wing Phase 2 program to demonstrate the applicability of smart control surfaces on advanced aircraft configurations. The model constructed was a full span, sting mounted model with smart leading and trailing edge control surfaces on the right wing and conventional, hinged trailing edge control surfaces on the left wing. Among the performance benefits that were quantified were increased pitching moment, increased rolling moment and improved pressure distribution of the smart wing over the conventional wing. This paper present an overview of the result from the wind tunnel test performed at NASA Langley Research Center's Transonic Dynamic Tunnel in March 2000 and May 2001. Successful results included: (1) improved aileron effectiveness at high dynamic pressures, (2) demonstrated improvements in lateral and longitudinal effectiveness with smooth contoured smart trailing edge over conventional hinged control surfaces, (3) chordwise and spanwise shape control of the smart trailing edge control surface, and (4) smart trailing edge control surface deflection rates over 80 deg/sec.

  14. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.

    2016-01-01

    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  15. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic computational fluid dynamics analysis of a wing glove attached to one wing of a business jet is presented and discussed. A wing glove placed on only one wing will produce asymmetric aerodynamic effects that will result in overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to ensure that the wing glove does not have a significant effect on the aircraft flight characteristics. TRANAIR (Calmar Research Corporation, Cato, New York), a nonlinear full potential solver, and Star-CCM+ (CD-adapco, Melville, New York), a finite volume full Reynolds-averaged Navier-Stokes computational fluid dynamics solver, are used to analyze a full aircraft with and without the glove at a variety of flight conditions, aircraft configurations, and angles of attack and sideslip. Changes in the aircraft lift, drag, and side force along with roll, pitch, and yaw are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove are discussed. Results show that the glove produces only small changes in the aerodynamic forces and moments acting on the aircraft, most of which are insignificant.

  16. Computational design of natural laminar flow wings for transonic transport application

    NASA Technical Reports Server (NTRS)

    Waggoner, Edgar G.; Campbell, Richard L.; Phillips, Pamela S.; Viken, Jeffrey K.

    1986-01-01

    Two research programs are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wind planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first program supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. Boundary-layer and static-pressure data will be measured on this design during the supporting wind-tunnel and flight tests. These data will then be analyzed and used to infer the relationship between crossflow and Tollmein-Schlichting disturbances on laminar boundary-layer transition. A wing was designed computationally for a corporate transport aircraft in the second program. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs. Wing surface pressure distributions, which support the design objective and were derived from transonic three-dimensional analyses codes, are also presented. Current status of each of the research programs is included in the summary.

  17. A Comparison of Metallic, Composite and Nanocomposite Optimal Transonic Transport Wings

    NASA Technical Reports Server (NTRS)

    Kennedy, Graeme J.; Kenway, Gaetan K. W.; Martins, Joaquim R. R.

    2014-01-01

    Current and future composite material technologies have the potential to greatly improve the performance of large transport aircraft. However, the coupling between aerodynamics and structures makes it challenging to design optimal flexible wings, and the transonic flight regime requires high fidelity computational models. We address these challenges by solving a series of high-fidelity aerostructural optimization problems that explore the design space for the wing of a large transport aircraft. We consider three different materials: aluminum, carbon-fiber reinforced composites and an hypothetical composite based on carbon nanotubes. The design variables consist of both aerodynamic shape (including span), structural sizing, and ply angle fractions in the case of composites. Pareto fronts with respect to structural weight and fuel burn are generated. The wing performance in each case is optimized subject to stress and buckling constraints. We found that composite wings consistently resulted in lower fuel burn and lower structural weight, and that the carbon nanotube composite did not yield the increase in performance one would expect from a material with such outstanding properties. This indicates that there might be diminishing returns when it comes to the application of advanced materials to wing design, requiring further investigation.

  18. Numerical Analysis on Aerodynamic Characteristics of Delta Wing with Variable Geometry Device in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Kanamori, Masashi; Imamura, Osamu; Suzuki, Kojiro

    The application of the variable geometry (VG) wing to a lifting re-entry body is expected to enhance the control capability of its aerodynamic characteristics and, as a result, to widen the corridor for the flight trajectory. In the present study, the flow field around a plain delta wing having three chord-wise hinges, one is on the wing root and the others on both sides of the mid-span of the wing, at Mach number 3 is numerically investigated by solving the Euler equations. The effects of the angle of attack and the “tip-down” bending angles around these hinges are clarified. The results show that the lift-to-drag ratio is hardly affected by the tip-down angle and that the overall lift and drag forces vary almost proportional to the change in the projected wing area by taking the tip-down configuration. The center of pressure moves backward by the tip-down effect.

  19. Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae.

    PubMed

    Von Busse, Rhea; Hedenström, Anders; Winter, York; Johansson, L Christoffer

    2012-12-15

    The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0-7 m/s), to determine how factors affecting the lift production vary across flight speed and within wingbeats. We found that the wing area, the angle of attack and the camber, which are determinants of the lift production, decreased with increasing speed. The camber is controlled by multiple mechanisms along the span, including the deflection of the leg relative to the body, the bending of the fifth digit, the deflection of the leading edge flap and the upward bending of the wing tip. All these measures vary throughout the wing beat suggesting active or aeroelastic control. The downstroke Strouhal number, St(d), is kept relatively constant, suggesting that favorable flow characteristics are maintained during the downstroke, across the range of speeds studied. The St(d) is kept constant through changes in the stroke plane, from a strongly inclined stroke plane at low speeds to a more vertical stroke plane at high speeds. The mean angular velocity of the wing correlates with the aerodynamic performance and shows a minimum at the speed of maximum lift to drag ratio, suggesting a simple way to determine the optimal speed from kinematics alone. Taken together our results show the high degree of adjustments that the bats employ to fine tune the aerodynamics of the wings and the correlation between kinematics and aerodynamic performance.

  20. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  1. Aerodynamic-structural study of canard wing, dual wing, and conventional wing systems for general aviation applications

    NASA Technical Reports Server (NTRS)

    Selberg, B. P.; Cronin, D. L.

    1985-01-01

    An analytical aerodynamic-structural airplane configuration study was conducted to assess performance gains achievable through advanced design concepts. The mission specification was for 350 mph, range of 1500 st. mi., at altitudes between 30,000 and 40,000 ft. Two payload classes were studied - 1200 lb (6 passengers) and 2400 lb (12 passengers). The configurations analyzed included canard wings, closely coupled dual wings, swept forward - swept rearward wings, joined wings, and conventional wing tail arrangements. The results illustrate substantial performance gains possible with the dual wing configuration. These gains result from weight savings due to predicted structural efficiencies. The need for further studies of structural efficiencies for the various advanced configurations was highlighted.

  2. Swept wing ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Bidwell, C. S.

    1990-01-01

    An effort to develop a three-dimensional ice accretion modeling method is initiated. This first step toward creation of a complete aircraft icing simulation code builds on previously developed methods for calculating three-dimensional flowfields and particle trajectories combined with a two-dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This work is intended as a demonstration of the types of calculations necessary to predict a three-dimensional ice accretion. Results of calculations using the 3D method for a MS-317 swept wing geometry are projected onto a 2D plane normal to the wing leading edge and compared to 2D results for the same geometry. These results indicate that the flowfield over the surface and the particle trajectories differed for the two calculations. This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice accumulation for the 3D calculation.

  3. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    2009-05-01

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  4. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  5. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    NASA Astrophysics Data System (ADS)

    Yu, Meilin

    suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.

  6. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.

    PubMed

    Shang, J K; Combes, S A; Finio, B M; Wood, R J

    2009-09-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  7. Flexible Wing Model for Structural Sizing and Multidisciplinary Design Optimization of a Strut-Braced Wing

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.; Naghshineh, Amir H.; Sulaeman, Erwin; Kapania, Rakesh K.; Haftka, Raphael T.

    2000-01-01

    This paper describes a structural and aeroelastic model for wing sizing and weight calculation of a strut-braced wing. The wing weight is calculated using a newly developed structural weight analysis module considering the special nature of strut-braced wings. A specially developed aeroelastic model enables one to consider wing flexibility and spanload redistribution during in-flight maneuvers. The structural model uses a hexagonal wing-box featuring skin panels, stringers, and spar caps, whereas the aerodynamics part employs a linearized transonic vortex lattice method. Thus, the wing weight may be calculated from the rigid or flexible wing spanload. The calculations reveal the significant influence of the strut on the bending material weight of the wing. The use of a strut enables one to design a wing with thin airfoils without weight penalty. The strut also influences wing spanload and deformations. Weight savings are not only possible by calculation and iterative resizing of the wing structure according to the actual design loads. Moreover, as an advantage over the cantilever wing, employment of the strut twist moment for further load alleviation leads to increased savings in structural weight.

  8. Flow visualization of leading-edge vortex enhancement by spanwise blowing. [swept wings - wind tunnel stability tests

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Campbell, J. F.

    1975-01-01

    Flow visualization studies were conducted in a small pilot wind tunnel to determine qualitative effects of blowing a discrete jet essentially parallel to the leading edge of a 45 deg-swept trapezoidal wing featuring leading- and trailing-edge flaps. Test parameters included wing angle-of-attack, jet momentum coefficient, leading- and trailing-edge flap deflections, and nozzle chordwise displacement. Results of this study indicate that blowing from a reflection plane over the wing enhances the leading-edge vortex and delays vortex bursting to higher angles-of-attack and greater span distances. Increased blowing rates decrease vortex size, growth rate, and vertical displacement above the wing surface at a given span station and also extend the spanwise effectiveness of lateral blowing. Deflection of a leading-edge flap delays the beneficial effects of spanwise blowing to higher angles-of-attack. Nozzle chordwise locations investigated for the wing with and without leading-edge flap deflection appear equally effective in enhancing the separated leading-edge flow.

  9. The Cost of Uncertain Life Span*

    PubMed Central

    Edwards, Ryan D.

    2012-01-01

    A considerable amount of uncertainty surrounds the length of human life. The standard deviation in adult life span is about 15 years in the U.S., and theory and evidence suggest it is costly. I calibrate a utility-theoretic model of preferences over length of life and show that one fewer year in standard deviation is worth about half a mean life year. Differences in the standard deviation exacerbate cross-sectional differences in life expectancy between the U.S. and other industrialized countries, between rich and poor countries, and among poor countries. Accounting for the cost of life-span variance also appears to amplify recently discovered patterns of convergence in world average human well-being. This is partly for methodological reasons and partly because unconditional variance in human length of life, primarily the component due to infant mortality, has exhibited even more convergence than life expectancy. PMID:22368324

  10. Optimal decomposable witnesses without the spanning property

    SciTech Connect

    Augusiak, Remigiusz; Sarbicki, Gniewomir; Lewenstein, Maciej

    2011-11-15

    One of the unsolved problems in the characterization of the optimal entanglement witnesses is the existence of optimal witnesses acting on bipartite Hilbert spaces H{sub m,n}=C{sup m} x C{sup n} such that the product vectors obeying =0 do not span H{sub m,n}. So far, the only known examples of such witnesses were found among indecomposable witnesses, one of them being the witness corresponding to the Choi map. However, it remains an open question whether decomposable witnesses exist without the property of spanning. Here we answer this question affirmatively, providing systematic examples of such witnesses. Then, we generalize some of the recently obtained results on the characterization of 2 x n optimal decomposable witnesses [R. Augusiak et al., J. Phys. A 44, 212001 (2011)] to finite-dimensional Hilbert spaces H{sub m,n} with m,n{>=}3.

  11. Attitudes Toward Death Across the Life Span.

    ERIC Educational Resources Information Center

    Maiden, Robert; Walker, Gail

    To understand the change and development of people's attitudes toward death over the life span, a 62-item attitude questionnaire on death and dying was administered to 90 adults. Participants included five females and five males in each of nine age categories: 18-20, 20-24, 25-29, 30-34, 35-39, 40-49, 50-59, 60-64, and 65 or older. Participants…

  12. 9. VIEW SHOWING JUNCTION OF CONCRETE EAST APPROACH SPAN WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW SHOWING JUNCTION OF CONCRETE EAST APPROACH SPAN WITH STEEL SPAN, LOOKING NORTH. NOTE ROCKING CAST STEEL SHOE ATTACHED TO PIER TO ALLOW FOR EXPANSION OF STEEL SPAN - Jensen Bridge, Spanning Green River at Town of Jensen, Jensen, Uintah County, UT

  13. Improving Memory Span in Children with Down Syndrome

    ERIC Educational Resources Information Center

    Conners, F. A.; Rosenquist, C. J.; Arnett, L.; Moore, M. S.; Hume, L. E.

    2008-01-01

    Background: Down syndrome (DS) is characterized by impaired memory span, particularly auditory verbal memory span. Memory span is linked developmentally to several language capabilities, and may be a basic capacity that enables language learning. If children with DS had better memory span, they might benefit more from language intervention. The…

  14. Vision in Flies: Measuring the Attention Span

    PubMed Central

    Koenig, Sebastian; Wolf, Reinhard; Heisenberg, Martin

    2016-01-01

    A visual stimulus at a particular location of the visual field may elicit a behavior while at the same time equally salient stimuli in other parts do not. This property of visual systems is known as selective visual attention (SVA). The animal is said to have a focus of attention (FoA) which it has shifted to a particular location. Visual attention normally involves an attention span at the location to which the FoA has been shifted. Here the attention span is measured in Drosophila. The fly is tethered and hence has its eyes fixed in space. It can shift its FoA internally. This shift is revealed using two simultaneous test stimuli with characteristic responses at their particular locations. In tethered flight a wild type fly keeps its FoA at a certain location for up to 4s. Flies with a mutation in the radish gene, that has been suggested to be involved in attention-like mechanisms, display a reduced attention span of only 1s. PMID:26848852

  15. Effects of Canard Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.

    1961-01-01

    An investigation has been conducted at low subsonic speeds to study the effects of canard planform and wing-leading-edge modification on the longitudinal aerodynamic characteristics of a general research canard airplane configuration. The basic wing of the model had a trapezoidal planform, an aspect ratio of 3.0, a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the wing included addition of full-span and partial-span leading-edge chord-extensions. Two canard planforms were employed in the study; one was a 60 deg sweptback delta planform and the other was a trapezoidal planform similar to that of the basic wing. Modifications to these canards included addition of a full-span leading-edge chord-extension to the trapezoidal planform and a fence to the delta planform. For the basic-wing-trapezoidal-canard configuration, rather abrupt increases in stability occurred at about 12 deg angle of attack. A slight pitch-up tendency occurred for the delta-canard configuration at approximately 8 deg angle of attack. A comparison of the longitudinal control effectiveness for the basic-wing-trapezoidal-canard combination and for the basic-wing-delta-canard combination indicates higher values of control effectiveness at law angles of attack for the trapezoidal canard. The control effectiveness for the delta-canard configuration, however, is seen to hold up for higher canard deflections and to higher angles of attack. Use of a full-span chord-extension deflected approximately 30 deg on the trapezoidal canard greatly improved the control characteristics of this configuration and enabled a sizeable increase in trim lift to be realized.

  16. Aerostructural Shape and Topology Optimization of Aircraft Wings

    NASA Astrophysics Data System (ADS)

    James, Kai

    A series of novel algorithms for performing aerostructural shape and topology optimization are introduced and applied to the design of aircraft wings. An isoparametric level set method is developed for performing topology optimization of wings and other non-rectangular structures that must be modeled using a non-uniform, body-fitted mesh. The shape sensitivities are mapped to computational space using the transformation defined by the Jacobian of the isoparametric finite elements. The mapped sensitivities are then passed to the Hamilton-Jacobi equation, which is solved on a uniform Cartesian grid. The method is derived for several objective functions including mass, compliance, and global von Mises stress. The results are compared with SIMP results for several two-dimensional benchmark problems. The method is also demonstrated on a three-dimensional wingbox structure subject to fixed loading. It is shown that the isoparametric level set method is competitive with the SIMP method in terms of the final objective value as well as computation time. In a separate problem, the SIMP formulation is used to optimize the structural topology of a wingbox as part of a larger MDO framework. Here, topology optimization is combined with aerodynamic shape optimization, using a monolithic MDO architecture that includes aerostructural coupling. The aerodynamic loads are modeled using a three-dimensional panel method, and the structural analysis makes use of linear, isoparametric, hexahedral elements. The aerodynamic shape is parameterized via a set of twist variables representing the jig twist angle at equally spaced locations along the span of the wing. The sensitivities are determined analytically using a coupled adjoint method. The wing is optimized for minimum drag subject to a compliance constraint taken from a 2 g maneuver condition. The results from the MDO algorithm are compared with those of a sequential optimization procedure in order to quantify the benefits of the MDO

  17. A Discrete-Vortex Method for Studying the Wing Rock of Delta Wings

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    2002-01-01

    A discrete-vortex method is developed to investigate the wing rock problem associated with highly swept wings. The method uses two logarithmic vortices placed above the wing to represent the vortex flow field and uses boundary conditions based on conical flow, vortex rate of change of momentum, and other considerations to position the vortices and determine their strengths. A relationship based on the time analogy and conical-flow assumptions is used to determine the hysteretic positions of the vortices during roll oscillations. Static and dynamic vortex positions and wing rock amplitudes and frequencies calculated by using the method are generally in good agreement with available experimental data. The results verify that wing rock is caused by hysteretic deflections of the vortices and indicate that the stabilizing moments that limit wing rock amplitudes are the result of the one primary vortex moving outboard of the wing where it has little influence on the wing.

  18. Elements of the Wing Section Theory and of the Wing Theory

    NASA Technical Reports Server (NTRS)

    Munk, Max M.

    1979-01-01

    Results are presented of the theory of wings and of wing sections which are of immediate practical value. They are proven and demonstrated by the use of the simple conceptions of kinetic energy and momentum only.

  19. Constraints on the wing morphology of pterosaurs.

    PubMed

    Palmer, Colin; Dyke, Gareth

    2012-03-22

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine-let alone measure-optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability.

  20. Constraints on the wing morphology of pterosaurs

    PubMed Central

    Palmer, Colin; Dyke, Gareth

    2012-01-01

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine—let alone measure—optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability. PMID:21957137

  1. Effects of Mach Number and Reynolds Number on the Maximum Lift Coefficient of a Wing of NACA 230-series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Furlong, G. Chester; Fitzpatrick, James E.

    1947-01-01

    Wing was tested with full-span, partial-span, or split flaps deflected 60 Degrees and without flaps. Chordwise pressure-distribution measurements were made for all flap configurations.. Peak values of maximum lift coefficient were obtained at relatively low free-stream Mach numbers and, before critical Mach number was reached, were almost entirely dependent on Reynolds Number. Lift coefficient increased by increasing Mach number or deflecting flaps while critical pressure coefficient was reached at lower free-stream Mach numbers.

  2. Showing partial side view of swing span in closed position. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Showing partial side view of swing span in closed position. The two (2) arms act as simple spans, a small amount of negative bending is accommodated by the continous top and bottom truss chords due to a continuous condition. Note the inclined end post of each of the simple spans, the operator's house, center/pivot pier and the pivotal pole-line pole placed atop of bridge. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  3. Effects of deflected thrust on the longitudinal aerodynamic characteristics of a close-coupled wing-canard configuration. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Paulson, J. W., Jr.

    1977-01-01

    The effects of power on the longitudinal aerodynamic characteristics of a close-coupled wing-canard fighter configuration with partial-span rectangular nozzles at the trailing edge of the wing were investigated. Data were obtained on a basic wing-strake configuration for nozzle and flap deflections from 0 deg to 30 deg and for nominal thrust coefficients from 0 to 0.30. The model was tested over an angle-of-attack range from -2 deg to 40 deg at Mach numbers of 0.15 and 0.18. Results show substantial improvements in lift-curve slope, in maximum lift, and in drag-due-to-lift efficiency when the canard and strakes have been added to the basic wing-fuselage (wing-alone) configuration. Addition of power increased both lift-curve slope and maximum lift, improved longitudinal stability, and reduced drag due to lift on both the wing-canard and wing-canard-strake configurations. These beneficial effects are primarily derived from boundary-layer control due to moderate thrust coefficients which delay flow separation on the nozzle and inboard portion of the wing flaps.

  4. Subtractive Structural Modification of Morpho Butterfly Wings.

    PubMed

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.

  5. Digest: Imperfect convergence in butterfly wing patterns.

    PubMed

    Earl, Chandra; Guralnick, Robert P; Kawahara, Akito Y

    2017-02-27

    Butterfly wing patterns are among the most diverse morphological characteristics in nature, with many of the 18,000 or so described butterfly species readily distinguished by wing pattern alone. Wing pattern serves as one of the primary means of communication among species and is thus subject to strong natural selection for mimicry and warning color (aposematism). Convergent wing patterns are particularly evident across the butterfly genus Adelpha, suggesting this genus may be a good system to study the underlying mechanisms behind mimicry. This article is protected by copyright. All rights reserved.

  6. Optimal redesign study of the harm wing

    NASA Technical Reports Server (NTRS)

    Mcintosh, S. C., Jr.; Weynand, M. E.

    1984-01-01

    The purpose of this project was to investigate the use of optimization techniques to improve the flutter margins of the HARM AGM-88A wing. The missile has four cruciform wings, located near mid-fuselage, that are actuated in pairs symmetrically and antisymmetrically to provide pitch, yaw, and roll control. The wings have a solid stainless steel forward section and a stainless steel crushed-honeycomb aft section. The wing restraint stiffness is dependent upon wing pitch amplitude and varies from a low value near neutral pitch attitude to a much higher value at off-neutral pitch attitudes, where aerodynamic loads lock out any free play in the control system. The most critical condition for flutter is the low-stiffness condition in which the wings are moved symmetrically. Although a tendency toward limit-cycle flutter is controlled in the current design by controller logic, wing redesign to improve this situation is attractive because it can be accomplished as a retrofit. In view of the exploratory nature of the study, it was decided to apply the optimization to a wing-only model, validated by comparison with results obtained by Texas Instruments (TI). Any wing designs that looked promising were to be evaluated at TI with more complicated models, including body modes. The optimization work was performed by McIntosh Structural Dynamics, Inc. (MSD) under a contract from TI.

  7. Waving Wing Aerodynamics at Low Reynolds Numbers

    DTIC Science & Technology

    2010-07-01

    canonical pitch - up , pitch -down wing maneuver, in 39th AIAA Fluid Dynamics Conference, AIAA 2009-3687, San Antonio, TX, 22-25 June 2009. [7] C. P. Ellington...unsteady lift generation on three-dimensional flapping wings in the MAV flight regime and, if a leading edge vortex develops at MAV-like Reynolds numbers... wing rotates in a propeller-like motion through a wing stroke angle up to 90 degrees. Unsteady lift and drag force data was acquired throughout the

  8. A magnetic fluid microdevice using insect wings

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Tsuyuki, K.; Yano, T.; Takagi, K.

    2008-05-01

    A magnetic fluid microdevice using Diptera insect wings is proposed and constructed. The magnetic fluid device is composed of insect wings, a small permanent magnet, coil, and kerosene-based magnetic fluid. First, the structural properties of insect wings are studied through measurements of certain morphological parameters. Secondly, the novel type of microwind energy converter is constructed. Thirdly, the power generation characteristics of the magnetic fluid microdevice using insect wings are examined. It is found that the output power is roughly proportional to the cube of the airflow velocity.

  9. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  10. The function of resilin in honeybee wings.

    PubMed

    Ma, Yun; Ning, Jian Guo; Ren, Hui Lan; Zhang, Peng Fei; Zhao, Hong Yan

    2015-07-01

    The present work aimed to reveal morphological characteristics of worker honeybee (Apis mellifera) wings and demonstrate the function of resilin on camber changes during flapping flight. Detailed morphological investigation of the wings showed that different surface characteristics appear on the dorsal and ventral side of the honeybee wings and the linking structure connecting the forewing and hindwing plays an indispensable role in honeybee flapping flight. Resilin stripes were found on both the dorsal and ventral side of the wings, and resilin patches mostly existed on the ventral side. On the basis of resilin distribution, five flexion lines and three cambered types around the lines of passive deformation of the coupled-wing profile were obtained, which defined the deformation mechanism of the wing along the chord, i.e. concave, flat plate and convex. From a movie obtained using high-speed photography from three orthogonal views of free flight in honeybees, periodic changes of the coupled-wing profile were acquired and further demonstrated that the deformation mechanism is a fundamental property for variable deformed shapes of the wing profile during flapping flight, and, in particular, the flat wing profile achieves a nice transition between downstrokes and upstrokes.

  11. Veins improve fracture toughness of insect wings.

    PubMed

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  12. Aeroelastic tailoring for oblique wing lateral trim

    NASA Technical Reports Server (NTRS)

    Bohlmann, Jonathan D.; Weisshaar, Terrence A.; Eckstrom, Clinton V.

    1988-01-01

    Composite material aeroelastic tailoring is presently explored as a means for the correction of the roll trim imbalance of oblique-wing aircraft configurations. The concept is demonstrated through the analysis of a realistic oblique wing by a static aeroelastic computational procedure encompassing the full potential transonic aerodynamic code FLO22 and a Ritz structural plate program that models the stiffness due to symmetrical-but-unbalanced composite wing skins. Results indicate that asymetric composite tailoring reduces the aileron deflection needed for roll equilibrium, and reduces control surface hinge moment and drag. Wing skin stresses are, however, very high.

  13. Euler calculations for wings using Cartesian grids

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.

    1987-01-01

    A method is presented for the calculation of transonic flows past wings using Cartesian grids. The calculations are based on a finite volume formulation of the Euler equations. Results are presented for a rectangular wing with a flat tip and the ONERA M6 wing. In general, the results are in good agreement with other computations and available experiment. However, Cartesian grids require a greater number of points than body fitted grids in order to resolve the flow properties near the leading edge of a swept wing.

  14. Crossflow Stability and Transition Experiments in Swept-Wing Flow

    NASA Technical Reports Server (NTRS)

    Dagenhart, J. Ray; Saric, William S.

    1999-01-01

    An experimental examination of crossflow instability and transition on a 45deg swept wing was conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized by using both sublimating chemical and liquid-crystal coatings. Extensive hot-wire measurements were obtained at several measurement stations across a single vortex track. The mean and travelling wave disturbances were measured simultaneously. Stationary crossflow disturbance profiles were determined by subtracting either a reference or a span-averaged velocity profile from the mean velocity data. Mean, stationary crossflow, and traveling wave velocity data were presented as local boundary layer profiles and contour plots across a single stationary crossflow vortex track. Disturbance mode profiles and growth rates were determined. The experimental data are compared with predictions from linear stability theory.

  15. Low-speed tests of a high-aspect-ratio, supercritical-wing transport model equipped with a high-lift flap system in the Langley 4- by 7-meter and Ames 12-foot pressure tunnels

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.; Kjelgaard, S. O.

    1983-01-01

    The Ames 12-Foot Pressure Tunnel was used to determine the effects of Reynolds number on the static longitudinal aerodynamic characteristics of an advanced, high-aspect-ratio, supercritical wing transport model equipped with a full span, leading edge slat and part span, double slotted, trailing edge flaps. The model had a wing span of 7.5 ft and was tested through a free stream Reynolds number range from 1.3 to 6.0 x 10 to 6th power per foot at a Mach number of 0.20. Prior to the Ames tests, an investigation was also conducted in the Langley 4 by 7 Meter Tunnel at a Reynolds number of 1.3 x 10 to 6th power per foot with the model mounted on an Ames strut support system and on the Langley sting support system to determine strut interference corrections. The data obtained from the Langley tests were also used to compare the aerodynamic charactertistics of the rather stiff, 7.5-ft-span steel wing model tested during this investigation and the larger, and rather flexible, 12-ft-span aluminum-wing model tested during a previous investigation. During the tests in both the Langley and Ames tunnels, the model was tested with six basic wing configurations: (1) cruise; (2) climb (slats only extended); (3) 15 deg take-off flaps; (4) 30 deg take-off flaps; (5) 45 deg landing flaps; and (6) 60 deg landing flaps.

  16. Projection Moire Interferometry Measurements of Micro Air Vehicle Wings

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-01-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  17. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  18. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2015-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this paper is on tool presentation, verification, and validation. These processes are carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  19. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2014-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio and number of control surfaces. A doublet lattice approach is taken to compute generalized forces. A rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. Although, all parameters can be easily modified if desired.The focus of this paper is on tool presentation, verification and validation. This process is carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool. Therefore the flutter speed and frequency for a clamped plate are computed using V-g and V-f analysis. The computational results are compared to a previously published computational analysis and wind tunnel results for the same structure. Finally a case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to V-g and V-f analysis. This also includes the analysis of the model in response to a 1-cos gust.

  20. The phenotypic and genetic covariance structure of drosphilid wings.

    PubMed

    McGuigan, Katrina; Blows, Mark W

    2007-04-01

    Evolutionary constraint results from the interaction between the distribution of available genetic variation and the position of selective optima. The availability of genetic variance in multitrait systems, as described by the additive genetic variance-covariance matrix (G), has been the subject of recent attempts to assess the prevalence of genetic constraints. However, evolutionary constraints have not yet been considered from the perspective of the phenotypes available to multivariate selection, and whether genetic variance is present in all phenotypes potentially under selection. Determining the rank of the phenotypic variance-covariance matrix (P) to characterize the phenotypes available to selection, and contrasting it with the rank of G, may provide a general approach to determining the prevalence of genetic constraints. In a study of a laboratory population of Drosophila bunnanda from northern Australia we applied factor-analytic modeling to repeated measures of individual wing phenotypes to determine the dimensionality of the phenotypic space described by P. The phenotypic space spanned by the 10 wing traits had 10 statistically supported dimensions. In contrast, factor-analytic modeling of G estimated for the same 10 traits from a paternal half-sibling breeding design suggested G had fewer dimensions than traits. Statistical support was found for only five and two genetic dimensions, describing a total of 99% and 72% of genetic variance in wing morphology in females and males, respectively. The observed mismatch in dimensionality between P and G suggests that although selection might act to shift the intragenerational population mean toward any trait combination, evolution may be restricted to fewer dimensions.

  1. Dietary restriction: critical co-factors to separate health span from life span benefits.

    PubMed

    Mendelsohn, Andrew R; Larrick, James W

    2012-10-01

    Dietary restriction (DR), typically a 20%-40% reduction in ad libitum or "normal" nutritional energy intake, has been reported to extend life span in diverse organisms, including yeast, nematodes, spiders, fruit flies, mice, rats, and rhesus monkeys. The magnitude of the life span enhancement appears to diminish with increasing organismal complexity. However, the extent of life span extension has been notoriously inconsistent, especially in mammals. Recently, Mattison et al. reported that DR does not extend life span in rhesus monkeys in contrast to earlier work of Colman et al. Examination of these papers identifies multiple potential confounding factors. Among these are the varied genetic backgrounds and composition of the "normal" and DR diets. In monkeys, the correlation of DR with increased health span is stronger than that seen with life span and indeed may be separable. Recent mechanistic studies in Drosophila implicate non-genetic co-factors such as level of physical activity and muscular fatty acid metabolism in the benefits of DR. These results should be followed up in mammals. Perhaps levels of physical activity among the cohorts of rhesus monkeys contribute to inconsistent DR effects. To understand the maximum potential benefits from DR requires differentiating fundamental effects on aging at the cellular and molecular levels from suppression of age-associated diseases, such as cancer. To that end, it is important that investigators carefully evaluate the effects of DR on biomarkers of molecular aging, such as mutation rate and epigenomic alterations. Several short-term studies show that humans may benefit from DR in as little as 6 months, by achieving lowered fasting insulin levels and improved cardiovascular health. Optimized health span engineering will require a much deeper understanding of DR.

  2. Wind-tunnel investigation of aerodynamic efficiency of three planar elliptical wings with curvature of quarter-chord line

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Vijgen, Paul M. H. W.

    1993-01-01

    Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.

  3. Mutant models of prolonged life span.

    PubMed

    Mahler, J F

    2001-01-01

    Aging is an important biological process that affects all creatures. For humans, age-related diseases and the question of why we age and die also have tremendous social and philosophical impact. We can therefore expect that models to study mechanisms of the aging process will always attract much interest. Until recently, the mutant model approach to study molecular mechanisms of aging has been limited to lower animals such as yeast, worms, and flies. However, given the current power of genetic technology in mammals, we can expect that phenotypes of prolonged life span will increasingly be seen in mice and subject to evaluation by pathologists. A brief review of current models is presented.

  4. 01 | February | 201span>6 | ISS On-Orbit Status Report

    NASA Website

    February 201span>6; S M T W T F S « Jan : ... August 201span>6; July 201span>6; June 201span>6; May 201span>6; April 201span>6; March 201span>6; February 201span>6; January 201span>6; December ...

  5. Winged launcher thermal design aspects

    NASA Astrophysics Data System (ADS)

    Keller, K.

    1991-12-01

    The need for significant reduction in launch cost favors the consideration of reusable space transportation systems which are assisted by aerodynamic lift. The thermomechanical and thermochemical environments and the basic design requirements of two airbreathing vehicle classes are put in relation to vehiles like Shuttle and Hermes. Similarities as well as essential differences between the various vehicles are highlighted. State of the art thermal protection concepts and materials are analyzed with respect to winged launcher concepts. Future development trends for design and materials with potential application are identified. The need for improved thermostructural analysis and optimization techniques is outlined.

  6. Insect-like flapping wing mechanism based on a double spherical Scotch yoke

    PubMed Central

    Galiński, Cezary; Żbikowski, Rafał

    2005-01-01

    We describe the rationale, concept, design and implementation of a fixed-motion (non-adjustable) mechanism for insect-like flapping wing micro air vehicles in hover, inspired by two-winged flies (Diptera). This spatial (as opposed to planar) mechanism is based on the novel idea of a double spherical Scotch yoke. The mechanism was constructed for two main purposes: (i) as a test bed for aeromechanical research on hover in flapping flight, and (ii) as a precursor design for a future flapping wing micro air vehicle. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forwards and backwards. During this motion the wing tip approximately traces a ‘figure-of-eight’ or a ‘banana’ and the wing changes the angle of attack (pitching) significantly. The kinematic and aerodynamic data from free-flying insects are sparse and uncertain, and it is not clear what aerodynamic consequences different wing motions have. Since acquiring the necessary kinematic and dynamic data from biological experiments remains a challenge, a synthetic, controlled study of insect-like flapping is not only of engineering value, but also of biological relevance. Micro air vehicles are defined as flying vehicles approximately 150 mm in size (hand-held), weighing 50–100 g, and are developed to reconnoitre in confined spaces (inside buildings, tunnels, etc.). For this application, insect-like flapping wings are an attractive solution and hence the need to realize the functionality of insect flight by engineering means. Since the semi-span of the insect wing is constant, the kinematics are spatial; in fact, an approximate figure-of-eight/banana is traced on a sphere. Hence a natural mechanism implementing such kinematics should be (i) spherical and (ii) generate mathematically convenient curves expressing the figure-of-eight/banana shape. The double spherical Scotch yoke design has property (i) by definition and achieves (ii) by

  7. Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  8. Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.

    PubMed

    Muijres, Florian T; Iwasaki, Nicole A; Elzinga, Michael J; Melis, Johan M; Dickinson, Michael H

    2017-02-06

    Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.

  9. Wing Deployment Sequence #2: The deployable, inflatable wing technology demonstrator experiment airc

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wing Deployment Sequence #2: The deployable, inflatable wing technology demonstrator experiment aircraft's wings continue deploying following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  10. Wing Deployment Sequence #3: The deployable, inflatable wing technology demonstrator experiment airc

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wing Deployment Sequence #3: The deployable, inflatable wing technology demonstrator experiment aircraft's wings fully deployed during flight following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, Californiaornia. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  11. Wing Deployment Sequence #1: The deployable, inflatable wing technology demonstrator experiment airc

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wing Deployment Sequence #1: The deployable, inflatable wing technology demonstrator experiment aircraft's wings begin deploying following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  12. Automated Kinematic Extraction of Wing and Body Motions of Free Flying Diptera

    NASA Astrophysics Data System (ADS)

    Kostreski, Nicholas I.

    In the quest to understand the forces generated by micro aerial systems powered by oscillating appendages, it is necessary to study the kinematics that generate those forces. Automated and manual tracking techniques were developed to extract the complex wing and body motions of dipteran insects, ideal micro aerial systems, in free flight. Video sequences were captured by three high speed cameras (7500 fps) oriented orthogonally around a clear flight test chamber. Synchronization and image-based triggering were made possible by an automated triggering circuit. A multi-camera calibration was implemented using image-based tracking techniques. Three-dimensional reconstructions of the insect were generated from the 2-D images by shape from silhouette (SFS) methods. An intensity based segmentation of the wings and body was performed using a mixture of Gaussians. In addition to geometric and cost based filtering, spectral clustering was also used to refine the reconstruction and Principal Component Analysis (PCA) was performed to find the body roll axis and wing-span axes. The unobservable roll state of the cylindrically shaped body was successfully estimated by combining observations of the wing kinematics with a wing symmetry assumption. Wing pitch was determined by a ray tracing technique to compute and minimize a point-to-line cost function. Linear estimation with assumed motion models was accomplished by discrete Kalman filtering the measured body states. Generative models were developed for different species of diptera for model based tracking, simulation, and extraction of inertial properties. Manual and automated tracking results were analyzed and insect flight simulation videos were developed to quantify ground truth errors for an assumed model. The results demonstrated the automated tracker to have comparable performance to a human digitizer, though manual techniques displayed superiority during aggressive maneuvers and image blur. Both techniques demonstrated

  13. An Attached Flow Design of a Noninterferring Leading Edge Extension to a Thick Delta Wing

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Ghaffari, Farhad

    1985-01-01

    An analytical procedure for the determination of the shape of a Leading-Edge Extension (LEE) which satisfies design criteria, including especially noninterference at the wing design point, has been developed for thick delta wings. The LEE device best satisfying all criteria is designed to be mounted on a wing along a dividing stream surface associated with an attached flow design lift coefficient (C(sub L,d)) of greater than zero. This device is intended to improve the aerodynamic performance of transonic aircraft at C(sub L) greater than C(sub L,d) system emanating from the LEE leading edge. In order to quantify this process a twisted and cambered thick delta wing was chosen for the initial application of this design procedure. Appropriate computer codes representing potential and vortex flows were employed to determine the dividing stream surface at C(sub L,d) and an optimized LEE planform shape at C(sub L) greater than C(sub L,d), respectively. To aid in the LEE selection, the aerodynamic effectiveness of 36 planforms was investigated at C(sub L) greater than C(sub L,d). This study showed that reducing the span of the candidate LEEs has the most detrimental effect on overall aerodynamic efficiency, regardless of the shape or area. Furthermore, for a fixed area, constant-chord LEE candidates were relatively more efficient than those with sweep less than the wing. At C(sub L,d), the presence of the LEE planform best satisfying the design criteria was found to have no effect on the wing alone aerodynamic performance.

  14. Numerical investigation of insect wing fracture behaviour.

    PubMed

    Rajabi, H; Darvizeh, A; Shafiei, A; Taylor, D; Dirks, J-H

    2015-01-02

    The wings of insects are extremely light-weight biological composites with exceptional biomechanical properties. In the recent years, numerical simulations have become a very powerful tool to answer experimentally inaccessible questions on the biomechanics of insect flight. However, many of the presented models require a sophisticated balance of biomechanical material parameters, many of which are not yet available. In this article we show the first numerical simulations of crack propagation in insect wings. We have used a combination of the maximum-principal stress theory, the traction separation law and basic biomechanical properties of cuticle to develop simple yet accurate finite element (FE) models of locust wings. The numerical results of simulated tensile tests on wing samples are in very good qualitative, and interestingly, also in excellent quantitative agreement with previously obtained experimental data. Our study further supports the idea that the cross-veins in insect wings act as barriers against crack propagation and consequently play a dominant role in toughening the whole wing structure. The use of numerical simulations also allowed us to combine experimental data with previously inaccessible data, such as the distribution of the first principal stress through the wing membrane and the veins. A closer look at the stress-distribution within the wings might help to better understand fracture-toughening mechanisms and also to design more durable biomimetic micro-air vehicles.

  15. Wing-Design And -Analysis Code

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Carlson, Harry W.

    1990-01-01

    WINGDES2 computer program provides wing-design algorithm based on modified linear theory taking into account effects of attainable leading-edge thrust. Features improved numerical accuracy and additional capabilities. Provides analysis as well as design capability and applicable to both subsonic and supersonic flow. Replaces earlier wing-design code designated WINGDES (see LAR-13315). Written in FORTRAN V.

  16. The Realization and Study of Optical Wings

    NASA Astrophysics Data System (ADS)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  17. Materials Analysis of Foreign Produced Flex Wings

    DTIC Science & Technology

    1995-03-01

    Vehicle, by H. Kredit , January 1964, 144 pages AD B252433, Pilot’s Handbook for tbe Flexible Wing Aerial Utility Vehicle XV-8A, Match 1964, 52 pp AD...Vehicle. H. Kredit , Feb. 1965. 100 pages _AD 460405, XV-8A Flexible Wing Aerial Utility Vehicle. Final Report. Feb. 1965, 113 page; -AD 431128

  18. Flex Wing Fabrication and Static Pressure Testing

    DTIC Science & Technology

    1995-06-01

    Vehicle, by H. Kredit , January 1964, 144 pages AD. B252433, Pilot’s Handbook for the Flexible Wing Aerial Utility Vehicle XV-8A, Match 1964, 52 pp AD...Vehicle, H. Kredit , Feb. 1965. 100 pages .- AD 460405, XV-8A Flexible Wing Aerial Utility Vehicle. Final Report. Feb. 1965, 113 page; -- AD 431128

  19. Computer Code Aids Design Of Wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1993-01-01

    AERO2S computer code developed to aid design engineers in selection and evaluation of aerodynamically efficient wing/canard and wing/horizontal-tail configurations that includes simple hinged-flap systems. Code rapidly estimates longitudinal aerodynamic characteristics of conceptual airplane lifting-surface arrangements. Developed in FORTRAN V on CDC 6000 computer system, and ported to MS-DOS environment.

  20. Advanced wing design survivability testing and results

    NASA Technical Reports Server (NTRS)

    Bruno, J.; Tobias, M.

    1992-01-01

    Composite wings on current operational aircraft are conservatively designed to account for stress/strain concentrations, and to assure specified damage tolerance. The technology that can lead to improved composite wing structures and associated structural efficiency is to increase design ultimate strain levels beyond their current limit of 3500 to 4000 micro-in/in to 6000 micro-in/in without sacrificing structural integrity, durability, damage tolerance, or survivability. Grumman, under the sponsorship of the Naval Air Development Center (NADC), has developed a high-strain composite wing design for a subsonic aircraft wing using novel and innovative design concepts and manufacturing methods, while maintaining a state-of-the-art fiber/resin system. The current advanced wing design effort addressed a tactical subsonic aircraft wing using previously developed, high-strain wing design concepts in conjunction with newer/emerging fiber and polymer matrix composite (PMC) materials to achieve the same goals, while reducing complexity. Two categories of advanced PMC materials were evaluated: toughened thermosets; and engineered thermoplastics. Advanced PMC materials offer the technological opportunity to take maximum advantage of improved material properties, physical characteristics, and tailorability to increase performance and survivability over current composite structure. Damage tolerance and survivability to various threats, in addition to structural integrity and durability, were key technical issues addressed during this study, and evaluated through test. This paper focuses on the live-fire testing, and the results performed to experimentally evaluate the survivability of the advanced wing design.

  1. Modeling flexible flapping wings oscillating at resonance

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Masoud, Hassan

    2010-03-01

    Using a hybrid approach for fluid-structure interactions that integrates the lattice Boltzmann and lattice spring models, we study the three-dimensional aerodynamics of flexible flapping wings at hovering. The wings are a pair of flat elastic plates tilted from the horizontal and driven to oscillate according to the sinusoidal law. Our simulations reveal that resonance oscillations of flexible wings dramatically increase aerodynamic lift at low Reynolds number. Comparing to otherwise identical rigid wings, flexible wings at resonance generate up to two orders of magnitude greater lift. Within the resonance band, we identify two operation regimes leading to the maximum lift and the maximum efficiency, respectively. The maximum lift occurs when the wing tip and root move with a phase lag of 90 degrees, whereas the maximum efficiency occurs at the frequency where the wing tip and root oscillate in counterphase. Our results suggest that the resonance regimes would be optimal for the design of microscale flying machines using flexible flapping wings driven by simple kinematic strokes.

  2. Winglets on low aspect ratio wings

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Liaw, Paul

    1987-01-01

    The drag reduction potentially available from the use of winglets at the tips of low aspect ratio (1.75-2.67) wings with pronounced (45-60 deg) leading edge sweep is assessed numerically for the case of a cruise design point at Mach of 0.8 and a lift coefficient of 0.3. Both wing-winglet and wing-alone design geometries are derived from a linear-theory, minimum induced drag design methodology. Relative performance is evaluated with a nonlinear extended small disturbance potential flow analysis code. Predicted lift coefficient/pressure drag coefficient increases at equal lift for the wing-winglet configurations over the wing-alone planform are of the order of 14.6-15.8, when boundary layer interaction is included.

  3. Collective Flow Enhancement by Tandem Flapping Wings.

    PubMed

    Gravish, Nick; Peters, Jacob M; Combes, Stacey A; Wood, Robert J

    2015-10-30

    We examine the fluid-mechanical interactions that occur between arrays of flapping wings when operating in close proximity at a moderate Reynolds number (Re≈100-1000). Pairs of flapping wings are oscillated sinusoidally at frequency f, amplitude θ_{M}, phase offset ϕ, and wing separation distance D^{*}, and outflow speed v^{*} is measured. At a fixed separation distance, v^{*} is sensitive to both f and ϕ, and we observe both constructive and destructive interference in airspeed. v^{*} is maximized at an optimum phase offset, ϕ_{max}, which varies with wing separation distance, D^{*}. We propose a model of collective flow interactions between flapping wings based on vortex advection, which reproduces our experimental data.

  4. Wing rock suppression using forebody vortex control

    NASA Technical Reports Server (NTRS)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  5. Wing extensions for improving climb performance

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.

    1983-01-01

    Recent wind tunnel studies have shown that significant improvements in wing efficiency and climb performance can be achieved using wing extensions having sharp edges and unmodified upper airfoil contours. Based on tests of six configurations, a simple tip shape provided the best wing efficiency at high lift conditions without penalty during cruise conditions. The best configuration tested exhibited more than 20 percent improvement in the maximum rate of climb, plus a reduction in stall speed and a slight improvement in cruise performance over a baseline tip with a round edge. In addition to measurements that were used to determine performance, flow visualization studies provided insight into reasons for improved wing efficiency. Tests were conducted using a high performance general aviation aircraft model with a tapered, cantilevered wing.

  6. Design of a transonically profiled wing

    NASA Technical Reports Server (NTRS)

    Kiekebusch, B.

    1978-01-01

    The application of well known design concepts with the combined use of thick transonic profiles to aircraft wing design was investigated. Optimization in terms of weight and operational costs was emphasized. It is shown that the usual design criteria and concepts are too restricted and do not sufficiently represent the physical processes over the wing. Suggestions are made for improving this situation, and a design example given. Compared with a wing design according to previously used criteria, the new design is found to be superior in the most important functions. It is concluded that an isobar concept adjusted to the planform in conjunction with an 'organically' designed wing will lead to the weight optimum solutions of wing profiles.

  7. Strain monitoring of a composite wing

    NASA Astrophysics Data System (ADS)

    Strathman, Joseph; Watkins, Steve E.; Kaur, Amardeep; Macke, David C.

    2016-04-01

    An instrumented composite wing is described. The wing is designed to meet the load and ruggedness requirements for a fixed-wing unmanned aerial vehicle (UAV) in search-and-rescue applications. The UAV supports educational systems development and has a 2.1-m wingspan. The wing structure consists of a foam core covered by a carbon-fiber, laminate composite shell. To quantify the wing characteristics, a fiber-optic strain sensor was surface mounted to measure distributed strain. This sensor is based on Rayleigh scattering from local index variations and it is capable of high spatial resolution. The use of the Rayleigh-scattering fiber-optic sensors for distributed measurements is discussed.

  8. High speed flow past wings

    NASA Technical Reports Server (NTRS)

    Norstrud, H.

    1973-01-01

    The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

  9. Surgical treatment of winged scapula.

    PubMed

    Galano, Gregory J; Bigliani, Louis U; Ahmad, Christopher S; Levine, William N

    2008-03-01

    Injuries to the long thoracic and spinal accessory nerves present challenges in diagnosis and treatment. Palsies of the serratus anterior and trapezius muscles lead to destabilization of the scapula with medial and lateral scapular winging, respectively. Although nonoperative treatment is successful in some patients, failures have led to the evolution of surgical techniques involving various combinations of fascial graft and/or transfer of adjacent muscles. Our preferred method of reconstruction for serratus anterior palsy is a two-incision, split pectoralis major transfer without fascial graft. For trapezius palsy, we prefer a modified version of the Eden-Lange procedure. At a minimum followup of 16 months (mean, 47 months), six patients who underwent the Eden-Lange procedure showed improvement in mean American Shoulder and Elbow Surgeons Shoulder scores (33.3-64.6), forward elevation (141.7-151.0), and visual analog scale (7.0-2.3). At a minimum followup of 16 months (mean, 44 months), 10 patients (11 shoulders) who underwent split pectoralis transfer also improved American Shoulder and Elbow Surgeons Shoulder scores (53.3-63.8), forward elevation (158.2-164.5), and visual analog scale (5.0-2.9). We encountered two complications, both superficial wound infections. These tendon transfers were effective for treating scapular winging in patients who did not respond to nonoperative treatment.

  10. 7. Underside of span, details of deck, stringers, floor beams, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Underside of span, details of deck, stringers, floor beams, bottom-lateral bracing, and north abutment; looking north - Bridge No. 92101, Spanning Pike River at County Highway 373, Embarrass, St. Louis County, MN

  11. General perspective view of the main steel plate girder spans, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the main steel plate girder spans, view looking southwest - Whiteson Bridge, Spanning South Yamhill River at Milepoint 42 on Pacific Highway West (Oregon Route 99W), Whiteson, Yamhill County, OR

  12. Detail of expansion bearing shoe of Span No. 1 on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of expansion bearing shoe of Span No. 1 on Abutment No. 1, view to south - Gillespie Dam Bridge, Spanning Gila River on Old US 80 Highway, south of Gillespie Dam, Arlington, Maricopa County, AZ

  13. 20. Third approach span, comparing pier types and showing guardrail ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Third approach span, comparing pier types and showing guardrail and connection to arch spring point, looking east - U.S. Route 1 Nottoway River Bridge, U.S. Route 1 spanning Nottoway River, McKenney, Dinwiddie County, VA

  14. INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS PLACED ON ZONE III; ASPHALT ZONE IX) - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  15. ELEVATION NORTHEAST BY 30 DEGREES, WEST SECTIONS OF SPAN COVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELEVATION NORTHEAST BY 30 DEGREES, WEST SECTIONS OF SPAN COVERED BY OVERGROWTH - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  16. 33. View of swing span floor framing, looking east from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. View of swing span floor framing, looking east from pivot pier - Macombs Dam Bridge, Spanning Harlem River Between 155th Street Viaduct, Jerome Avenue, & East 162nd Street, Bronx, Bronx County, NY

  17. 7. View of first panel point, bottom chord. Span 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View of first panel point, bottom chord. Span 1 is showing pin connection and eye bar construction around pin. - Bridge No. 33.3, Spanning Elk River at Milepost JC-33.3, Fayetteville, Lincoln County, TN

  18. FIXED END OF MIDDLE SPAN. WESTERN SIDE SHOWING WELDING OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FIXED END OF MIDDLE SPAN. WESTERN SIDE SHOWING WELDING OF TOP PLATE ADDED TO STRENGTHEN THE BRIDGE. - Spile Bridge Road Bridge, Spanning Black Lake Outlie at Spile Bridge Road, Oswegatchie, St. Lawrence County, NY

  19. 56. View below deck of Manhattan side span showing ramps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. View below deck of Manhattan side span showing ramps to East Side Expressway. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  20. 51. View below deck superstructure of Manhattan side span showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View below deck superstructure of Manhattan side span showing connection between main center cable and deck superstructure. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  1. 21. Southern approach span plan and elevation views for pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Southern approach span plan and elevation views for pier and abutment structural changes required after flood of December 1955 on Moody Bridge. - Moody Bridge, Spanning South Fork Eel River, Garberville, Humboldt County, CA

  2. 26. Southern approach span showing detail plan, elevation, and existing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Southern approach span showing detail plan, elevation, and existing views for pier and abutment structural changes required after flood of December 1955. - Moody Bridge, Spanning South Fork Eel River, Garberville, Humboldt County, CA

  3. 5. EAST SPAN, FROM SOUTH, SHOWING STRUCTURAL CONFIGURATION, INCLUDING POLYGONAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EAST SPAN, FROM SOUTH, SHOWING STRUCTURAL CONFIGURATION, INCLUDING POLYGONAL TOP CHORD, TRUSS PANELS, EAST ABUTMENT, AND CENTRAL PIER - Glendale Road Bridge, Spanning Deep Creek Lake on Glendale Road, McHenry, Garrett County, MD

  4. View of central lift span truss web of Tensaw River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of central lift span truss web of Tensaw River Bridge, showing support girders for life house, looking east - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  5. 31. DETAIL VIEW OF MOVABLE SPAN, UPPER TRUSS GUSSET PLATE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL VIEW OF MOVABLE SPAN, UPPER TRUSS GUSSET PLATE, CONNECTION OF VERTICAL AND HORIZONTAL MEMBERS AT BRIDGE TENDER'S MOUSE (taken in December 1983) - Sharptown Bridge, Spanning Nanticoke River, State Route 313, Sharptown, Wicomico County, MD

  6. 39. DETAIL AERIAL VIEW LOOKING AT 210' 9' LIFT SPAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DETAIL AERIAL VIEW LOOKING AT 210' 9' LIFT SPAN TOWER SHEAVES SHOWING 1 SET WITH AND 1 SET WITHOUT SHEAVE HOODS - Central Railroad of New Jersey, Newark Bay Lift Bridge, Spanning Newark Bay, Newark, Essex County, NJ

  7. 98. George Newman Photographer. VIEW OF THE NEBRASKA SWING SPAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. George Newman Photographer. VIEW OF THE NEBRASKA SWING SPAN OPEN FOR RIVER PASSAGE. APRIL 13, 1945. - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA

  8. View of West end of central lift span truss web ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of West end of central lift span truss web of Tensaw River Bridge, showing web brace of lift girder superstructure, looking west - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  9. 9. Detail of truss work on southwesternmost span, looking northnortheast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail of truss work on southwesternmost span, looking north-northeast - Bridge No. 4800, Spanning Minnesota River on Trunk Highway 4 between Brown & Nicollet Counties, Sleepy Eye, Brown County, MN

  10. 18. WEST DECK TRUSS APPROACH SPAN AND PIERS NO. 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. WEST DECK TRUSS APPROACH SPAN AND PIERS NO. 1 AND 2, FROM WEST RIVERBANK. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  11. 19. WEST ANCHOR SPAN OF THROUGH TRUSS AND PIERS NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. WEST ANCHOR SPAN OF THROUGH TRUSS AND PIERS NO. 2 AND 3, FROM WEST RIVERBANK. VIEW TO NORTH. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  12. 15. DETAIL OF EAST DECK GIRDER APPROACH SPANS AND STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAIL OF EAST DECK GIRDER APPROACH SPANS AND STEEL CYLINDER PIERS, FROM EAST RIVERBANK. VIEW TO NORTHWEST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  13. 12. DETAIL OF THROUGH TRUSS SPANS AND PIERS NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL OF THROUGH TRUSS SPANS AND PIERS NO. 3, 4 AND 5, FROM WEST RIVERBANK. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  14. 16. DETAIL OF EAST DECK GIRDER APPROACH SPANS AND STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF EAST DECK GIRDER APPROACH SPANS AND STEEL CYLINDER PIERS, FROM EAST RIVERBANK. VIEW TO WEST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  15. 10. VIEW OF NORTH END SPAN, SHOWING FLOOR BEAM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF NORTH END SPAN, SHOWING FLOOR BEAM AND STRINGERS AT PANEL POINT L1 - East Bloomsburg Bridge, Spanning Susquehanna River at Pennsylvania Route 487 (Legislative Route 283), Bloomsburg, Columbia County, PA

  16. 11. VIEW, LOOKING NORTHEAST, SHOWING SOUTH END SPAN, WEST SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW, LOOKING NORTHEAST, SHOWING SOUTH END SPAN, WEST SIDE, AT FLOOR LEVEL - East Bloomsburg Bridge, Spanning Susquehanna River at Pennsylvania Route 487 (Legislative Route 283), Bloomsburg, Columbia County, PA

  17. 15. VIEW OF SOUTH END SPAN, SHOWING SWAY BRACING FRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF SOUTH END SPAN, SHOWING SWAY BRACING FRAME AT PANEL POINTS 2 AND 4, TOP LATERAL BRACING - East Bloomsburg Bridge, Spanning Susquehanna River at Pennsylvania Route 487 (Legislative Route 283), Bloomsburg, Columbia County, PA

  18. 8. VIEW, LOOKING SOUTHWEST, SHOWING NORTH END SPAN, SIDE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW, LOOKING SOUTHWEST, SHOWING NORTH END SPAN, SIDE AND FLOOR SYSTEM - East Bloomsburg Bridge, Spanning Susquehanna River at Pennsylvania Route 487 (Legislative Route 283), Bloomsburg, Columbia County, PA

  19. 44. Detail, bridge land span outboard girder brackets carrying utility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Detail, bridge land span outboard girder brackets carrying utility conduit. Structure rests on granite blocks mounted on granite piers. - Broadway Bridge, Spanning Foundry Street, MBTA Yard, Fort Point Channel, & Lehigh Street, Boston, Suffolk County, MA

  20. 16. Span 1, view across at traffic level, showing all ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Span 1, view across at traffic level, showing all three upper lateral struts; view to east. - Fifth Street Bridge, Spanning MBTA Fitchburg Commuter Rail Line tracks, Conrail Fitchburg Secondary Line & North Nashua River, Fitchburg, Worcester County, MA

  1. 15. Span 1, view across at traffic level; view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Span 1, view across at traffic level; view to west. - Fifth Street Bridge, Spanning MBTA Fitchburg Commuter Rail Line tracks, Conrail Fitchburg Secondary Line & North Nashua River, Fitchburg, Worcester County, MA

  2. 52. Fixed Span, Top Chord at Panel Point 6; diagonal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Fixed Span, Top Chord at Panel Point 6; diagonal member goes to intermediate connection 7 & then to bottom chord at 8; looking ESE. - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA

  3. 48. Fixed Span, Detail of Pinned Connection between End Post ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Fixed Span, Detail of Pinned Connection between End Post & First Segment of Top Chord (Vertical Tension Member goes to 2L); looking E. - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA

  4. 1. VIEW NORTHWEST, THROUGH CENTER SPAN OF EASTBOUND BRIDGE, WESTBOUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHWEST, THROUGH CENTER SPAN OF EASTBOUND BRIDGE, WESTBOUND BRIDGE IN BACKGROUND - Willow Run Expressway Bridge No. R01, Spanning Conrail Railway, eastbound, at US-10, Ypsilanti, Washtenaw County, MI

  5. Detail view of fixed end of northernmost truss span. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of fixed end of northernmost truss span. - Pittsburgh, Fort Wayne & Chicago Railway, Beaver River Bridge, Spanning Beaver River along line of Second Avenue, New Brighton, Beaver County, PA

  6. Interior view of fixed end of northernmost truss span, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of fixed end of northernmost truss span, looking due south. - Pittsburgh, Fort Wayne & Chicago Railway, Beaver River Bridge, Spanning Beaver River along line of Second Avenue, New Brighton, Beaver County, PA

  7. 6. DETAIL VIEW OF INTERIOR OF NORTH SPAN, SHOWING LOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF INTERIOR OF NORTH SPAN, SHOWING LOWER BRACING, LOOKING FROM NORTHEAST TO SOUTHWEST - Marathon City Bridge, Spanning Big Rib River, on state Trunk Highway 107, Marathon, Marathon County, WI

  8. 2. VIEW OF NORTH SPAN TRUSS, SHOWING CAUSEWAY BETWEEN NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF NORTH SPAN TRUSS, SHOWING CAUSEWAY BETWEEN NORTH AND SOUTH TRUSS, LOOKING FROM SOUTHWEST TO NORTHEAST - Marathon City Bridge, Spanning Big Rib River, on state Trunk Highway 107, Marathon, Marathon County, WI

  9. Detail view of 850 plate girder span directly over creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of 85-0 plate girder span directly over creek, looking west. - New York, Chicago & St. Louis Railroad, Elk Creek Trestle, Spanning Elk Creek, south of Elk Park Road, Lake City, Erie County, PA

  10. Perspective view showing 850 plate girder span directly over creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view showing 85-0 plate girder span directly over creek, looking west. - New York, Chicago & St. Louis Railroad, Elk Creek Trestle, Spanning Elk Creek, south of Elk Park Road, Lake City, Erie County, PA

  11. 20. DETAIL VIEW OF MOVABLE SPAN MACHINERY UNDER GRID DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL VIEW OF MOVABLE SPAN MACHINERY UNDER GRID DECK AT CENTRAL CONCRETE SUPPORT PEDESTAL, SHOWING DRIVE GEARS, ELECTRIC MOTOR AND STEEL BEAMS (taken in January 1984) - Sharptown Bridge, Spanning Nanticoke River, State Route 313, Sharptown, Wicomico County, MD

  12. Detail of moveable span over navigation channel of Fort Point ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of moveable span over navigation channel of Fort Point Channel showing fender remanent. View west - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  13. 32. DETAIL VIEW OF PIVOT SPAN TURNTABLE, SHOWING MORTISE GEAR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL VIEW OF PIVOT SPAN TURNTABLE, SHOWING MORTISE GEAR, GEAR SHAFT, DRIVE GEAR AND BULL GEAR, LOOKING SOUTHEAST - Alton Bridge, Spanning Mississippi River between IL & MO, Alton, Madison County, IL

  14. 33. DETAIL VIEW OF PIVOT SPAN TURNTABLE, SHOWING BEVEL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. DETAIL VIEW OF PIVOT SPAN TURNTABLE, SHOWING BEVEL AND MORTISE GEARS, GEAR SHAFT, DRIVE GEAR AND BULL GEAR, LOOKING NORTHEAST - Alton Bridge, Spanning Mississippi River between IL & MO, Alton, Madison County, IL

  15. 15. View north. Detail of west end of link span, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. View north. Detail of west end of link span, north chord, showing expansion joint and typical scupper inside of plate, girder web. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  16. 9. View southwest. Typical bearing detail (northwest corner. Walpole span) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View southwest. Typical bearing detail (northwest corner. Walpole span) showing slip plate and bolted anchorage. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  17. 78. VIEW SHOWING PLACEMENT OF LIFE SPAN SHOE ON PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. VIEW SHOWING PLACEMENT OF LIFE SPAN SHOE ON PIER 6, LOOKING NORTH, March 5, 1935 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  18. 13. Underside Span 1, Hot Metal Bridge on right toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Underside Span 1, Hot Metal Bridge on right toward Pier 1. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  19. 15. Perspective view of bascule and vertical lift spans, each ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Perspective view of bascule and vertical lift spans, each in open position, facing east - Sault Ste. Marie International Railroad Bridge, Spanning Soo Locks at St. Marys Falls Canal, Sault Ste. Marie, Chippewa County, MI

  20. Comparison of two-dimensional and three-dimensional droplet trajectory calculations in the vicinity of finite wings

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.; Bidwell, Colin S.

    1992-01-01

    Computational predictions of ice accretion on flying aircraft most commonly rely on modeling in two dimensions (2D). These 2D methods treat an aircraft geometry either as wing-like with infinite span, or as an axisymmetric body. Recently, fully three dimensional (3D) methods have been introduced that model an aircrafts true 3D shape. Because 3D methods are more computationally expensive than 2D methods, 2D methods continue to be widely used. However, a 3D method allows us to investigate whether it is valid to continue applying 2D methods to a finite wing. The extent of disagreement between LEWICE, a 2D method, and LEWICE3D, a 3D method, in calculating local collection efficiencies at the leading edge of finite wings is investigated in this paper.

  1. Galactic Archaeology and Minimum Spanning Trees

    NASA Astrophysics Data System (ADS)

    MacFarlane, B. A.; Gibson, B. K.; Flynn, C. M. L.

    2016-10-01

    Chemical tagging of stellar debris from disrupted open clusters and associations underpins the science cases for next-generation multi-object spectroscopic surveys. As part of the Galactic Archaeology project TraCD (Tracking Cluster Debris), a preliminary attempt at reconstructing the birth clouds of now phase-mixed thin disk debris is undertaken using a parametric minimum spanning tree (MST) approach. Empirically-motivated chemical abundance pattern uncertainties (for a 10-dimensional chemistry-space) are applied to NBODY6-realized stellar associations dissolved into a background sea of field stars, all evolving in a Milky Way potential. We demonstrate that significant population reconstruction degeneracies appear when the abundance uncertainties approach ˜0.1 dex and the parameterized MST approach is employed; more sophisticated methodologies will be required to ameliorate these degeneracies.

  2. Hierarchical clustering in minimum spanning trees.

    PubMed

    Yu, Meichen; Hillebrand, Arjan; Tewarie, Prejaas; Meier, Jil; van Dijk, Bob; Van Mieghem, Piet; Stam, Cornelis Jan

    2015-02-01

    The identification of clusters or communities in complex networks is a reappearing problem. The minimum spanning tree (MST), the tree connecting all nodes with minimum total weight, is regarded as an important transport backbone of the original weighted graph. We hypothesize that the clustering of the MST reveals insight in the hierarchical structure of weighted graphs. However, existing theories and algorithms have difficulties to define and identify clusters in trees. Here, we first define clustering in trees and then propose a tree agglomerative hierarchical clustering (TAHC) method for the detection of clusters in MSTs. We then demonstrate that the TAHC method can detect clusters in artificial trees, and also in MSTs of weighted social networks, for which the clusters are in agreement with the previously reported clusters of the original weighted networks. Our results therefore not only indicate that clusters can be found in MSTs, but also that the MSTs contain information about the underlying clusters of the original weighted network.

  3. Hierarchical clustering in minimum spanning trees

    NASA Astrophysics Data System (ADS)

    Yu, Meichen; Hillebrand, Arjan; Tewarie, Prejaas; Meier, Jil; van Dijk, Bob; Van Mieghem, Piet; Stam, Cornelis Jan

    2015-02-01

    The identification of clusters or communities in complex networks is a reappearing problem. The minimum spanning tree (MST), the tree connecting all nodes with minimum total weight, is regarded as an important transport backbone of the original weighted graph. We hypothesize that the clustering of the MST reveals insight in the hierarchical structure of weighted graphs. However, existing theories and algorithms have difficulties to define and identify clusters in trees. Here, we first define clustering in trees and then propose a tree agglomerative hierarchical clustering (TAHC) method for the detection of clusters in MSTs. We then demonstrate that the TAHC method can detect clusters in artificial trees, and also in MSTs of weighted social networks, for which the clusters are in agreement with the previously reported clusters of the original weighted networks. Our results therefore not only indicate that clusters can be found in MSTs, but also that the MSTs contain information about the underlying clusters of the original weighted network.

  4. Correcting deep spans in subsea pipelines

    SciTech Connect

    Sinclair, M.

    1985-11-01

    A diverless pipeline trenching system unique in nature and working method is described. The system is a highly effective tool for pipeline trenching and particularly for span correction. The system is a 90-ton ROV neutrally buoyant and employing a cutter suction principle to soil excavation. The cutter excavates on one side of the pipe to a controllable depth of cut with respect to the pipe. A combination of single and multipass cutting is possible. The trenching machine operates through an umbilical cable with the mother vessel. The neutrally buoyant machine is flown down to the seafloor by means of eight propellers. A sensor package is used to locate the pipeline and the machine clamps onto the pipe using it as a track during trenching. The specially developed handling system, based on a 130-ton U-frame with umbilical heave compensating unit, allows for operation and deployment in up to three meter significant wave height.

  5. Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.

  6. Theoretical aerodynamics of upper-surface-blowing jet-wing interaction

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Campbell, J. F.

    1975-01-01

    A linear, inviscid subsonic compressible flow theory is formulated to treat the aerodynamic interaction between the wing and an inviscid upper-surface-blowing (USB) thick jet with Mach number nonuniformity. The predicted results show reasonably good agreement with some available lift and induced-drag data. It was also shown that the thin-jet-flap theory is inadequate for the USB configurations with thick jet. Additional theoretical results show that the lift and induced drag were reduced by increasing jet temperature and increased by increasing jet Mach number. Reducing jet aspect ratio, while holding jet area constant, caused reductions in lift, induced drag, and pitching moment at a given angle of attack but with a minimal change in the curve of lift coefficient against induced-drag coefficient. The jet-deflection effect was shown to be beneficial to cruise performance. The aerodynamic center was shifted forward by adding power or jet-deflection angle. Moving the jet away from the wing surface resulted in rapid changes in lift and induced drag. Reducing the wing span of a rectangular wing by half decreased the jet-circulation lift by only 24 percent at a thrust coefficient of 2.

  7. An integrated approach to the optimum design of actively controlled composite wings

    NASA Technical Reports Server (NTRS)

    Livne, E.

    1989-01-01

    The importance of interactions among the various disciplines in airplane wing design has been recognized for quite some time. With the introduction of high gain, high authority control systems and the design of thin, flexible, lightweight composite wings, the integrated treatment of control systems, flight mechanics and dynamic aeroelasticity became a necessity. A research program is underway now aimed at extending structural synthesis concepts and methods to the integrated synthesis of lifting surfaces, spanning the disciplines of structures, aerodynamics and control for both analysis and design. Mathematical modeling techniques are carefully selected to be accurate enough for preliminary design purposes of the complicated, built-up lifting surfaces of real aircraft with their multiple design criteria and tight constraints. The presentation opens with some observations on the multidisciplinary nature of wing design. A brief review of some available state of the art practical wing optimization programs and a brief review of current research effort in the field serve to illuminate the motivation and support the direction taken in our research. The goals of this research effort are presented, followed by a description of the analysis and behavior sensitivity techniques used. The presentation concludes with a status report and some forecast of upcoming progress.

  8. Pressure distribution for the wing of the YAV-8B airplane; with and without pylons

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Delfrate, John H.; Sabsay, Catherine M.; Yarger, Jill M.

    1992-01-01

    Pressure distribution data have been obtained in flight at four span stations on the wing panel of the YAV-8B airplane. Data obtained for the supercritical profiled wing, with and without pylons installed, ranged from Mach 0.46 to 0.88. The altitude ranged from approximately 20,000 to 40,000 ft and the resultant Reynolds numbers varied from approximately 7.2 million to 28.7 million based on the mean aerodynamic chord. Pressure distribution data and flow visualization results show that the full-scale flight wing performance is compromised because the lower surface cusp region experiences flow separation for some important transonic flight conditions. This condition is aggravated when local shocks occur on the lower surface of the wing (mostly between 20 and 35 percent chord) when the pylons are installed for Mach 0.8 and above. There is evidence that convex fairings, which cover the pylon attachment flanges, cause these local shocks. Pressure coefficients significantly more negative than those for sonic flow also occur farther aft on the lower surface (near 60 percent chord) whether or not the pylons are installed for Mach numbers greater than or equal to 0.8. These negative pressure coefficient peaks and associated local shocks would be expected to cause increasing wave and separation drag at transonic Mach number increases.

  9. Theoretical stability and control characteristics of wings with various amounts of taper and twist

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A; Jones, Robert T

    1938-01-01

    Stability derivatives have been computed for twisted wings of different plan forms that include variations in both the wing taper and the aspect ratio. Taper ratios of 1.0, 0,50, and 0.25 are considered for each of three aspect ratios: 6, 10, and 16. The specific derivatives for which results are given are the rolling-moment and the yawing-moment derivatives with respect to (a) rolling velocity, (b) yawing velocity, and (c) angle of sideslip. These results are given in such a form that the effect of any initial symmetrical wing twist (such as may be produced by flaps) on the derivatives may easily be taken into account. In addition to the stability derivatives, results are included for determining the theoretical rolling moment due to aileron deflection and a series of influence lines is given by which the loading across the span may be determined for any angle-of-attack distribution that may occur on the wing plan forms considered. The report also includes incidental references to the application of the results.

  10. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2010-01-01

    The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.

  11. NSI directed to continue SPAN's functions

    NASA Technical Reports Server (NTRS)

    Rounds, Fred

    1991-01-01

    During a series of network management retreats in June and July 1990, representatives from NASA Headquarters Codes O and S agreed on networking roles and responsibilities for their respective organizations. The representatives decided that NASA Science Internet (NSI) will assume management of both the Space Physics Analysis Network (SPAN) and the NASA Science Network (NSN). SPAN is now known as the NSI/DECnet, and NSN is now known as the NSI/IP. Some management functions will be distributed between Ames Research Center (ARC) and Goddard Space Flight Center (GSFC). NSI at ARC has the lead role for requirements generation and networking engineering. Advanced Applications and the Network Information Center is being developed at GSFC. GSFC will lead the NSI User Services, but NSI at Ames will continue to provide the User Services during the transition. The transition will be made as transparent as possible for the users. DECnet service will continue, but is now directly managed by NSI at Ames. NSI will continue to work closely with routing center managers at other NASA centers, and has formed a transition team to address the change in management. An NSI/DECnet working group had also been formed as a separate engineering group within NSI to plan the transition to Phase 5, DECnet's approach to Open System Integration (OSI). Transition is not expected for a year or more due to delays in produce releases. Plans to upgrade speeds in tail circuits and the backbone are underway. The proposed baseline service for new connections is up to 56 Kbps; 9.6 Kbps lines will gradually be upgraded as requirements dictate. NSI is in the process of consolidating protocol traffic, tail circuits, and the backbone. Currently NSI's backbone is fractional T1; NSI will go to full T1 service as soon as it is feasible.

  12. 16. DETAIL OF END OF SWING SPAN (LEFT) AND SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF END OF SWING SPAN (LEFT) AND SOUTH END OF NORTH STATIONARY SPAN REVEALING IRON SKID AND SWING BALANCE SUPPORT WHEEL. NOTE CHAIN USED TO HOLD BRIDGE IN PLACE - Maurice River Pratt Through-Truss Swing Bridge, Spanning Maurice River, Mauricetown, Cumberland County, NJ

  13. 25. Central tension lock looking straight down, south span is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Central tension lock looking straight down, south span is to the left, north span to the right. there are three tension locks just below road level. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  14. Habitat variation and wing coloration affect wing shape evolution in dragonflies.

    PubMed

    Outomuro, D; Dijkstra, K-D B; Johansson, F

    2013-09-01

    Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing water or standing water with tolerance for temporary conditions) and landscape (forested to open) using 32 species of dragonflies of the genus Trithemis (80% of the known species). We included a potential source of variation linked to sexual selection: the extent of wing coloration on hindwings. We used geometric morphometric methods for studying wing shape. We also explored the phenotypic correlation of wing shape between the sexes. We found that wing shape showed a phylogenetic structure and therefore also ran phylogenetic independent contrasts. After correcting for the phylogenetic effects, we found (i) no significant effect of water body on wing shape; (ii) male forewings and female hindwings differed with regard to landscape, being progressively broader from forested to open habitats; (iii) hindwings showed a wider base in wings with more coloration, especially in males; and (iv) evidence for phenotypic correlation of wing shape between the sexes across species. Hence, our results suggest that natural and sexual selection are acting partially independently on fore- and hindwings and with differences between the sexes, despite evidence for phenotypic correlation of wing shape between males and females.

  15. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles

    NASA Astrophysics Data System (ADS)

    Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.

    2015-06-01

    Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2

  16. Experimental effects of wing location on wing-body pressures at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Allen, Jerry M.; Watson, Carolyn B.

    1993-01-01

    An experimental study was performed at supersonic speeds to measure wing and body spanwise pressure distributions on an axisymmetric-body delta wing model on which the wing vertical location on the body was systematically varied from low- to high-mounted positions. In addition, for two of these positions both horizontal and radial wing angular orientations relative to the body were tested, and roll angle effects were investigated for one of the positions. Seven different wing-body configurations and a body-alone configuration were studied. The test was conducted at Mach numbers from 1.70 to 2.86 at angles of attack from about -4 deg to 24 deg. Pressure orifices were located at three longitudinal stations on each wing-body model, and at each station the orifices were located completely around the body, along the lower surface of the right wing (looking upstream), and along the upper surface of the left wing. All pressure coefficient data are tabulated and selected samples are shown graphically to illustrate the effects of the test variables. The effects of angle of attack, roll angle, Mach number, longitudinal station, wing vertical location, wing angular orientation, and wing-body juncture are analyzed. The vertical location of the wing on the body had a very strong effect on the body pressures. For a given angle of attack at a roll angle of 0 deg, the pressures were virtually constant in the spanwise direction across the windward surfaces of the wing-body combination. Pressure-relieving, channeling, and vortex effects were noted in the data.

  17. Analytical modeling and experimental evaluation of a passively morphing ornithopter wing

    NASA Astrophysics Data System (ADS)

    Wissa, Aimy A.

    Ornithopters or flapping wing Unmanned Aerial Vehicles (UAVs) have potential applications in both civil and military sectors. Amongst all categories of UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work was to improve the steady level flight wing performance of an ornithopter by implementing the Continuous Vortex Gait (CVG) using a novel passive compliant spine. The CVG is a set of bio-inspired kinematics that natural flyers use to produce lift and thrust during steady level flight. A significant contribution of this work was the recognition that the CVG is an avian gait that could be achieved using a passive morphing mechanism. In contrast to rigid-link mechanisms and active approaches, reported by other researchers in the open literature, passive morphing mechanisms require no additional energy expenditure, while introducing minimal weight addition and complexity. During the execution of the CVG, the avian wing wrist is the primary joint responsible for the wing shape changes. Thus a compliant mechanism, called a compliant spine, was fabricated, and integrated in the ornithopter's wing leading edge spar where an avian wrist would normally exist, namely at 37% of the wing half span. Each compliant spine was designed to be flexible in bending during the wing upstroke and stiff in bending during the wing downstroke. Inserting a variable stiffness compliant mechanism in the leading edge (LE) spar of the ornithopter could affect its structural stability. An analytical model was developed to determine the structural stability of the ornithopter LE spar. The model was validated using experimental measurements. The LE spar equations of motion were then reformulated into Mathieu's equation and the LE spar was proven to be structurally stable with a

  18. Aerodynamic characteristics of a small-scale straight and swept-back wing with knee-blown jet flaps

    NASA Technical Reports Server (NTRS)

    Morehouse, G. G.; Eckert, W. T.; Boles, R. A.

    1977-01-01

    Two sting-mounted, 50.8 cm (20 in.) span, knee-blown, jet-flap models were tested in a large (2.1- by 2.5-m (7- by 10-ft) subsonic wind tunnel. A straight- and swept-wing model were tested with fixed flap deflection with various combinations of full-span leading-edge slats. The swept-wing model was also tested with wing tip extensions. Data were taken at angles-of-attack between 0 deg and 40 deg, at dynamic pressures between 143.6 N/sq m (3 lb/sq ft) and 239.4 N/sq m (5 lb/sq ft), and at Reynolds numbers (based on wing chord) ranging from 100,000 to 132,000. Jet flap momentum blowing coefficients up to 10 were used. Lift, drag, and pitching-moment coefficients, and exit flow profiles for the flap blowing are presented in graphical form without analysis.

  19. Insect Wing Displacement Measurement Using Digital Holography

    SciTech Connect

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-04-15

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.

  20. 08 | December | 201span>6 | ISS On-Orbit Status Report

    NASA Website

    JPM1F0-01 CLOSEOUT PANEL FASTENER LOOSEN; ... August 201span>6; July 201span>6; June 201span>6; May 201span>6; April 201span>6; March 201span>6; February 201span>6; January 201span>6; ...