Science.gov

Sample records for 121-foot wing span

  1. Effects of Wing Platform on the Aerodynamic Performance of Finite-Span Flapping Wings

    NASA Astrophysics Data System (ADS)

    Yu, Meilin; Wang, Z. J.; Hu, Hui

    2010-11-01

    A numerical study is conducted to investigate the effects of wing platform on the aerodynamics performance of finite-span flapping wings. A three-dimensional high-order Navier-Stokes compressible flow solver was developed using the spectral difference method and dynamic grids. An AUSM^+-up Riemann solver was implemented to simulate the unsteady low Mach number flows over finite-span flapping wings with explicit third order Runge-Kutta time integration. The studied finite-span flapping wings, which include a rectangular flapping wing, an elliptic flapping wing and a bio-inspired flapping wing, have the same wing span, aspect ratio of the platform and the characteristics of the flapping motion (i.e., sinusoidal trajectory of the flapping wing tip, Strouhal number and reduced frequency). In the present study, the Strouhul number (Str) of the finite-span flapping wings was selected to be well within the optimal range usually used by flying insects and birds and swimming fishes (i.e., 0.2 < Str < 0.4). The effects of the wing platform on the aerodynamics performance of the finite-span flapping wings were elucidated in the terms of the evolutions and dynamic interaction between the leading edge vortices (LEV) and the wing tip vortices as well as the resultant aerodynamic forces (both lift and thrust) generated by the flapping wings.

  2. Span load distribution for tapered wings with partial-span flaps

    NASA Technical Reports Server (NTRS)

    Pearson, H A

    1937-01-01

    Tables are given for determining the load distribution of tapered wings with partial-span flaps placed either at the center or at the wing tips. Seventy-two wing-flap combinations, including two aspect ratios, four taper ratios, and nine flap lengths, are included. The distributions for the flapped wing are divided into two parts, one a zero lift distribution due primarily to the flaps and the other an additional lift distribution due to an angle of attack of the wing as a whole. Comparison between theoretical and experimental results for wings indicate that the theory may be used to predict the load distribution with sufficient accuracy for structural purposes.

  3. Accumulated span loadings of an arrow wing having vortex flow

    NASA Technical Reports Server (NTRS)

    Reddy, C. Subba

    1989-01-01

    The vortex flow over an arrow wing is theoretically investigated using the free-vortex-sheet method. The sectional lift coefficient and accumulated span loadings, which are important in determining the root bending moment, are calculated. The longitudinal stability variation is also estimated.

  4. Distribution of Structural Weight of Wing Along the Span

    NASA Technical Reports Server (NTRS)

    Savelyev, V. V.

    1946-01-01

    In the present report the true weight distribution law of the wing structure along the span is investigated. It is shown that the triangular distribution and that based on the proportionality to the chords do not correspond to the actual weight distribution, On the basis of extensive data on wings of the CAHI type airplane formulas are obtained from which it is possible to determine the true diagram of the structural weight distribution along the span from a knowledge of only the geometrical dimensions of the wing. At the end of the paper data are presented showing how the structural weight is distributed between the straight center portion and the tapered portion as a function of their areas.

  5. Full Scale Span Load Distribution on a Tapered Wing with Split Flaps of Various Spans

    NASA Technical Reports Server (NTRS)

    Parsons, John F; Silverstein, Abe

    1937-01-01

    Pressure-distribution tests were conducted in the full-scale wind tunnel on a 2:1 tapered U.S.A. 45 airfoil equipped with 20 percent chord split trailing-edge flaps of various spans. A special installation was employed in the tests utilizing a half-span airfoil mounted vertically above a reflection plane. The airfoil has a constant chord center section and rounded tips and is tapered in thickness from 18 percent c at the root to 9 percent c at the tip. The aerodynamic characteristics, given by the usual dimension less coefficients, are presented graphically as functions of flap span and angle of attack as well as by semispan load diagrams. The results indicate, in general, that only a relatively small increase in the normal-force coefficient is to be expected by extending the flap span of an airfoil-flap combination, similar to the one tested, beyond 70 percent of the wing span.

  6. Computational wing optimization and comparisons with experiment for a semi-span wing model

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Haney, H. P.; Ballhaus, W. F.

    1978-01-01

    A computational wing optimization procedure was developed and verified by an experimental investigation of a semi-span variable camber wing model in the NASA Ames Research Center 14 foot transonic wind tunnel. The Bailey-Ballhaus transonic potential flow analysis and Woodward-Carmichael linear theory codes were linked to Vanderplaats constrained minimization routine to optimize model configurations at several subsonic and transonic design points. The 35 deg swept wing is characterized by multi-segmented leading and trailing edge flaps whose hinge lines are swept relative to the leading and trailing edges of the wing. By varying deflection angles of the flap segments, camber and twist distribution can be optimized for different design conditions. Results indicate that numerical optimization can be both an effective and efficient design tool. The optimized configurations had as good or better lift to drag ratios at the design points as the best designs previously tested during an extensive parametric study.

  7. Lift and Drag of Wings with Small Span

    NASA Technical Reports Server (NTRS)

    Weinig, F.

    1947-01-01

    The lift coefficient of!a wing of small span at first shows a linear increase for the increasing angle of attack, but to a lesser degree then was to be expected according to the theory of the lifting line; thereafter the lift coefficient increases more rapidly than linearity, as contrasted with the the theory of the lifting line. The induced drag coefficient for a given lift coefficient, on the other hand, is obviously much smaller than it would be according to the theory. A mall change in the theory of the lifting line will cover these deviations.

  8. Prediction of span loading of straight-wing/propeller combinations up to stall. [propeller slipstreams and wing loading

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.; Gray, L.; Kisielowski, E.

    1975-01-01

    A method is presented for calculating the spanwise lift distribution on straight-wing/propeller combinations. The method combines a modified form of the Prandtl wing theory with a realistic representation of the propeller slipstream distribution. The slipstream analysis permits calculations of the nonuniform axial and rotational slipstream velocity field of propeller/nacelle combinations. This nonuniform field was then used to calculate the wing lift distribution by means of the modified Prandtl wing theory. The theory was developed for any number of nonoverlapping propellers, on a wing with partial or full-span flaps, and is applicable throughout an aspect ratio range from 2.0 and higher. A computer program was used to calculate slipstream characteristics and wing span load distributions for a number of configurations for which experimental data are available, and favorable comparisons are demonstrated between the theoretical predictions and the existing data.

  9. Vibration of a Wing of Finite Span in a Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Haskind, M. D.; Falkovich, S. V.

    1950-01-01

    An investigate ion was made of the disturbed motion of a gas for the harmonic vibrations of a thin slightly cambered wing of finite span moving forward with supersonic velocity. This problem was considered by E. A. Krasilshchikova who applied the method of Fourier series and obtained a solution of the space problem for the condition that the Mach cones drawn through the leading edge of the wing intersect the wing or are tangent to it. In this paper, a different method of solution is given, which is free from the previously mentioned condition. In particular, the vibrations of a triangular wing lying within the Mach cone are considered.

  10. Effect of wing loading, aspect ratio, and span loading of flight performances

    NASA Technical Reports Server (NTRS)

    Gothert, B

    1940-01-01

    An investigation is made of the possible improvements in maximum, cruising, and climbing speeds attainable through increase in the wing loading. The decrease in wing area was considered for the two cases of constant aspect ratio and constant span loading. For a definite flight condition, an investigation is made to determine what loss in flight performance must be sustained if, for given reasons, certain wing loadings are not to be exceeded. With the aid of these general investigations, the trend with respect to wing loading is indicated and the requirements to be imposed on the landing aids are discussed

  11. Theoretical span loading and moments of tapered wings produced by aileron deflection

    NASA Technical Reports Server (NTRS)

    Pearson, H A

    1937-01-01

    The effect of tapered ailerons on linearly tapered wings is theoretically determined. Four different aileron spans are considered for each of three wing aspect ratios and each of four wing taper ratios. The change in lift on one half of the wing, the rolling moment, the additional induced drag, and the yawing moment, due to aileron deflection, are represented by non dimensional coefficients. Similar coefficients are given for the damping and yawing moments, the additional drag, and the change in lift, due to rolling. It was found possible to effect a fairly close agreement between the theoretical and experimental rolling moments by introducing into the theoretical expression for the rolling moment an effective change in angle of attack obtained from an analysis of flap data. The theoretical curves show that the highly tapered wing with long ailerons has a lower ratio of yawing to rolling moment and a lower additional induced drag than wings with less taper.

  12. Experimental Investigation of Dynamic Stall on a Finite Span NACA 0012 Wing

    NASA Astrophysics Data System (ADS)

    Spellman, Wyatt; Bohl, Douglas

    2015-11-01

    In this work the velocity and vorticity fields around finite and ``infinite'' span wings with a NACA 0012 profile undergoing constant rate pitching were quantified using Molecular Tagging Velocimetry (MTV). The ``infinite'' span wing was bounded by walls to reduce the effects of the wing tip vortex while the finite span wing was bounded by a wall on one end and unbounded on the other. The wings were pitched from α = 0 to 55° with a constant non-dimensional pitch rate of Ω* = 0.1 at Rec = 12000. The Dynamic Stall Vortex (DSV) was identified and tracked using the `` Γ criteria.'' The results showed that the formation and trajectory of the DSV for the finite wing case varied with the spanwise location, with the location of the DSV remaining progressively closer to the airfoil surface towards the wingtip. These results were consistent with the ``Omega'' vortex structure previously observed in flow visualization. The DSV was also found to remain closer, and convect away from the airfoil surface slower, at all spanwise measurement planes when compared to the infinite span results. This work was supported by NSF Grant #845882.

  13. Unsteady transonic flow simulation on a full-span-wing-body configuration

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Goorjian, Peter M.

    1987-01-01

    The presence of a body influences both the aerodynamic and aeroelastic performance of wings. Such effects are more pronounced in the transonic regime. To accurately account for the effect of the body, particularly when the wings are experiencing asymmetric modal motions, it is necessary to model the full configuration in the nonlinear transonic regime. In this study, full-span-wing-body configurations are simulated for the first time by a theoretical method that uses the unsteady potential equations based on the small-disturbance theory. The body geometry is modeled exactly as the physical shape, instead of as a rectangular box, which has been done in the past. Steady pressure computations for wing-body configurations compare well with the available experimental data. Unsteady pressure computations when the wings are oscillating in asymmetric modes show significant influence of the body.

  14. Theoretical symmetric span loading at subsonic speeds for wings having arbitrary plan form

    NASA Technical Reports Server (NTRS)

    Deyoung, John; Harper, Charles W

    1948-01-01

    A method is shown by which the symmetric span loading for a certain class of wings can be simply found. The geometry of these wings is limited only to the extent that they must have symmetry about the root chord, must have a straight quarter-chord line over the semispan, and must have no discontinuities in twist. A procedure is shown for finding the lift-curve slope, pitching moment, center of lift, and induced drag from the span load distribution. A method of accounting for the effects of Mach number and for changes in section lift-curve slope is also given. Charts are presented which give directly the characteristics of many wings. Other charts are presented which reduce the problem of finding the symmetric loading on all wings falling within the prescribed limits to the solution of not more than four simultaneous equations. The loadings and wing characteristics predicted by the theory are compared to those given by other theories and by experiment. It is concluded that the results given by the subject theory are satisfactory. The theory is applied to a number of wings to exhibit the effects of such variables as sweep, aspect ratio, taper, and twist. The results are compared and conclusions drawn as to the relative effects of these variables.

  15. Comparison of wing-span averaging effects on lift, rolling moment, and bending moment for two span load distributions and for two turbulence representations

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.

    1978-01-01

    An analytical method of computing the averaging effect of wing-span size on the loading of a wing induced by random turbulence was adapted for use on a digital electronic computer. The turbulence input was assumed to have a Dryden power spectral density. The computations were made for lift, rolling moment, and bending moment for two span load distributions, rectangular and elliptic. Data are presented to show the wing-span averaging effect for wing-span ratios encompassing current airplane sizes. The rectangular wing-span loading showed a slightly greater averaging effect than did the elliptic loading. In the frequency range most bothersome to airplane passengers, the wing-span averaging effect can reduce the normal lift load, and thus the acceleration, by about 7 percent for a typical medium-sized transport. Some calculations were made to evaluate the effect of using a Von Karman turbulence representation. These results showed that using the Von Karman representation generally resulted in a span averaging effect about 3 percent larger.

  16. Sensitivity Analysis of Flutter Response of a Wing Incorporating Finite-Span Corrections

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian; Kapania, Rakesh K.; Barthelemy, Jean-Francois M.

    1994-01-01

    Flutter analysis of a wing is performed in compressible flow using state-space representation of the unsteady aerodynamic behavior. Three different expressions are used to incorporate corrections due to the finite-span effects of the wing in estimating the lift-curve slope. The structural formulation is based on a Rayleigh-Pitz technique with Chebyshev polynomials used for the wing deflections. The aeroelastic equations are solved as an eigen-value problem to determine the flutter speed of the wing. The flutter speeds are found to be higher in these cases, when compared to that obtained without accounting for the finite-span effects. The derivatives of the flutter speed with respect to the shape parameters, namely: aspect ratio, area, taper ratio and sweep angle, are calculated analytically. The shape sensitivity derivatives give a linear approximation to the flutter speed curves over a range of values of the shape parameter which is perturbed. Flutter and sensitivity calculations are performed on a wing using a lifting-surface unsteady aerodynamic theory using modules from a system of programs called FAST.

  17. On the application of transonic similarity rules to wings of finite span

    NASA Technical Reports Server (NTRS)

    Spreiter, John R

    1953-01-01

    The transonic aerodynamic characteristics of wings of finite span are discussed from the point of view of a unified small perturbation theory for subsonic, transonic, and supersonic flows about thin wings. This approach avoids certain ambiguities which appear if one studies transonic flows by means of equations derived under the more restrictive assumption that the local velocities are everywhere close to sonic velocity. The relation between the two methods of analysis of transonic flow is examined, the similarity rules and known solutions of transonic flow theory are reviewed, and the asymptotic behavior of the lift, drag, and pitching-moment characteristics of wings of large and small aspect ratio is discussed. It is shown that certain methods of data presentation are advantageous for the effective display of these characteristics.

  18. Aerodynamic Comparison of Hyper-Elliptic Cambered Span (HECS) Wings with Conventional Configurations

    NASA Technical Reports Server (NTRS)

    Lazos, Barry S.; Visser, Kenneth D.

    2006-01-01

    An experimental study was conducted to examine the aerodynamic and flow field characteristics of hyper-elliptic cambered span (HECS) wings and compare results with more conventional configurations used for induced drag reduction. Previous preliminary studies, indicating improved L/D characteristics when compared to an elliptical planform prompted this more detailed experimental investigation. Balance data were acquired on a series of swept and un-swept HECS wings, a baseline elliptic planform, two winglet designs and a raked tip configuration. Seven-hole probe wake surveys were also conducted downstream of a number of the configurations. Wind tunnel results indicated aerodynamic performance levels of all but one of the HECS wings exceeded that of the other configurations. The flow field data surveys indicate the HECS configurations displaced the tip vortex farther outboard of the wing than the Baseline configuration. Minimum drag was observed on the raked tip configuration and it was noted that the winglet wake lacked the cohesive vortex structure present in the wakes of the other configurations.

  19. Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Camello, Stephanie

    2015-01-01

    There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the ice shapes for the aerodynamic testing, ice-accretion testing will be conducted in the NASA Icing Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The ice shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D ice shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of ice than can be used. However, a full-span ice accretion will require 75 ft span of ice. This means there will be large gaps between these spanwise ice sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span ice shape from the three 1.5 ft span ice shapes from the three models.

  20. Spanwise loading distribution and wake velocity surveys of a semi-span wing

    NASA Technical Reports Server (NTRS)

    Felker, F. F., III; Piziali, R. A.; Gall, J. K.

    1982-01-01

    The spanwise distribution of bound circulation on a semi-span wing and the flow velocities in its wake were measured in a wind tunnel. Particular attention was given to documenting the flow velocities in and around the development tip vortex. A two-component laser velocimeter was used to make the velocity measurements. The spanwise distribution of bound circulation, three components of the time-averaged velocities throughout the near wake their standard deviations, and the integrated forces and moments on a metric tip as measured by an internal strain gage balance are presented without discussion.

  1. Low-speed aerodynamic performance of an aspect-ratio-10 supercritical-wing transport model equipped with a full-span slat and part-span and full-span double-slotted flaps

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1981-01-01

    An investigation was conducted in the Langley 4 by 7 Meter Tunnel to determine the static longitudinal and lateral directional aerodynamic characteristics of an advanced aspect ratio 10 supercritical wing transport model equipped with a full span leading edge slat as well as part span and full span trailing edge flaps. This wide body transport model was also equipped with spoiler and aileron roll control surfaces, flow through nacelles, landing gear, and movable horizontal tails. Six basic wing configurations were tested: (1) cruise (slats and flaps nested), (2) climb (slats deflected and flaps nested), (3) part span flap, (4) full span flap, (5) full span flap with low speed ailerons, and (6) full span flap with high speed ailerons. Each of the four flapped wing configurations was tested with leading edge slat and trailing edge flaps deflected to settings representative of both take off and landing conditions. Tests were conducted at free stream conditions corresponding to Reynolds number of 0.97 to 1.63 x 10 to the 6th power and corresponding Mach numbers of 0.12 to 0.20, through an angle of attack range of 4 to 24, and a sideslip angle range of -10 deg to 5 deg. The part and full span wing configurations were also tested in ground proximity.

  2. Determination of the Mass Moments and Radii of Inertia of the Sections of a Tapered Wing and the Center-of-Gravity Line along the Wing Span

    NASA Technical Reports Server (NTRS)

    Savelyev, V. V.

    1943-01-01

    For computing the critical flutter velocity of a wing among the data required are the position of the line of centers of gravity of the wing sections along the span and the mass moments and radii of inertia of any section of the wing about the axis passing through the center of gravity of the section. A sufficiently detailed computation of these magnitudes even if the weights of all the wing elements are known, requires a great deal of time expenditure. Thus a rapid competent worker would require from 70 to 100 hours for the preceding computations for one wing only, while hundreds of hours would be required if all the weights were included. With the aid of the formulas derived in the present paper, the preceding work can be performed with a degree of accuracy sufficient for practical purposes in from one to two hours, the only required data being the geometric dimensions of the outer wing (tapered part), the position of its longerons, the total weight of the outer wing, and the approximate weight of the longerons, The entire material presented in this paper is applicable mainly to wings of longeron construction of the CAHI type and investigations are therefore being conducted by CAHI for the derivation of formulas for the determination of the preceding data for wings of other types.

  3. Experimental investigation into wing span and angle-of-attack effects on sub-scale race car wing/wheel interaction aerodynamics

    NASA Astrophysics Data System (ADS)

    Diasinos, S.; Gatto, A.

    2008-09-01

    This paper details a quantitative 3D investigation using LDA into the interaction aerodynamics on a sub-scale open wheel race car inverted front wing and wheel. Of primary importance to this study was the influence of changing wing angle of attack and span on the resulting near-field and far-field flow characteristics. Results obtained showed that both variables do have a significant influence on the resultant flow-field, particularly on wing vortex and wheel wake development and propagation.

  4. Theoretical Additional Span Loading Characteristics of Wings with Arbitrary Sweep, Aspect Ratio, and Taper Ratio

    NASA Technical Reports Server (NTRS)

    Deyoung, John

    1947-01-01

    The Weissinger method for determining additional span loading has been used to find the lift-curve slope, spanwise center of pressure, aerodynamic center location, and span loading coefficients of untwisted and uncambered wings having a wide range of plan forms characterized by various combinations of sweep, aspect ratio, and taper ratio. The results are presented as variations of the aerodynamic characteristics with sweep angle for various values of aspect ratio and taper ratio. Methods are also included for determining induced drag and the approximate effects of compressibility. Despite the limitations of a lifting line method such as Weissinger's, the good agreement found between experimentally and theoretically determined characteristics warrants confidence in the method. In particular, it is believed that trends observed in results of the Weissinger method should be reliable. One of the most significant results showed that for each angle of sweep there is a taper ratio for which aspect ratio has little effect on the span loading and for which the loading is practically elliptical. This elliptic loading is approached at a taper ratio of 1.39 for 30 degree of sweepforward, 0.45 for zero degree of sweepback. (author)

  5. Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees.

    PubMed

    Dainat, Benjamin; Evans, Jay D; Chen, Yan Ping; Gauthier, Laurent; Neumann, Peter

    2012-02-01

    Elevated winter losses of managed honeybee colonies are a major concern, but the underlying mechanisms remain controversial. Among the suspects are the parasitic mite Varroa destructor, the microsporidian Nosema ceranae, and associated viruses. Here we hypothesize that pathogens reduce the life expectancy of winter bees, thereby constituting a proximate mechanism for colony losses. A monitoring of colonies was performed over 6 months in Switzerland from summer 2007 to winter 2007/2008. Individual dead workers were collected daily and quantitatively analyzed for deformed wing virus (DWV), acute bee paralysis virus (ABPV), N. ceranae, and expression levels of the vitellogenin gene as a biomarker for honeybee longevity. Workers from colonies that failed to survive winter had a reduced life span beginning in late fall, were more likely to be infected with DWV, and had higher DWV loads. Colony levels of infection with the parasitic mite Varroa destructor and individual infections with DWV were also associated with reduced honeybee life expectancy. In sharp contrast, the level of N. ceranae infection was not correlated with longevity. In addition, vitellogenin gene expression was significantly positively correlated with ABPV and N. ceranae loads. The findings strongly suggest that V. destructor and DWV (but neither N. ceranae nor ABPV) reduce the life span of winter bees, thereby constituting a parsimonious possible mechanism for honeybee colony losses.

  6. Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio

    NASA Astrophysics Data System (ADS)

    Carr, Z. R.; Chen, C.; Ringuette, M. J.

    2013-02-01

    We investigate experimentally the effect of aspect ratio ( [InlineMediaObject not available: see fulltext.] ) on the time-varying, three-dimensional flow structure of flat-plate wings rotating from rest at 45° angle of attack. Plates of [InlineMediaObject not available: see fulltext.] = 2 and 4 are tested in a 50 % by mass glycerin-water mixture, with a total rotation of ϕ = 120° and a matched tip Reynolds number of 5,000. The time-varying, three-component volumetric velocity field is reconstructed using phase-locked, phase-averaged stereoscopic digital particle image velocimetry in multiple, closely-spaced chordwise planes. The vortex structure is analyzed using the {Q}-criterion, helicity density, and spanwise quantities. For both [InlineMediaObject not available: see fulltext.] s, the flow initially consists of a connected and coherent leading-edge vortex (LEV), tip vortex (TV), and trailing-edge vortex (TEV) loop; the LEV increases in size with span and tilts aft. Smaller, discrete vortices are present in the separated shear layers at the trailing and tip edges, which wrap around the primary TEV and TV. After about ϕ = 20°, the outboard-span LEV lifts off the plate and becomes arch-like. A second, smaller LEV and the formation of corner vortex structures follow. For [InlineMediaObject not available: see fulltext.] = 4, the outboard LEV moves farther aft, multiple LEVs form ahead of it, and after about ϕ = 50° a breakdown of the lifted-off LEV and the TV occurs. However, for [InlineMediaObject not available: see fulltext.] = 2, the outboard LEV lift-off is not progressive, and the overall LEV-TV flow remains more coherent and closer to the plate, with evidence of breakdown late in the motion. Inboard of about 50 % span, the [InlineMediaObject not available: see fulltext.] = 4 LEV is stable for the motion duration. Up to approximately 60 % span, the [InlineMediaObject not available: see fulltext.] = 2 LEV is distinct from the TV and is similarly stable

  7. Design of a Large Span-Distributed Load Flying-Wing Cargo Airplane

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.; Quartero, C. B.

    1977-01-01

    The design and operation of very large, long-range, subsonic cargo aircraft are considered. A design concept which distributes the payload along the wingspan to counterbalance the aerodynamic loads, with a resultant decrease in the in-flight wing bending moments and shear forces, is described. The decreased loading of the wing structure, coupled with the very thick wing housing the cargo, results in a relatively low overall structural weight in comparison to that of conventional aircraft.

  8. Technical and economic assessment of swept-wing span-distributed load concepts for civil and military air cargo transports

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The feasibility of large freighter aircraft was assessed, including the impact of military requirements on the performance, economics, and fuel consumption characteristics. Only configurations having net payloads of 272,155 to 544,311 kilograms contained within swept wings of constant chord were studied. These configurations were of advanced composite construction with controllable winglets and full-span digitally-controlled trailing-edge surfaces. Civil, military, and joint civil/military production programs were considered.

  9. Theoretical antisymmetric span loading for wings of arbitrary plan form at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Deyoung, John

    1951-01-01

    A simplified lifting-surface theory that includes effects of compressibility and spanwise variation of section lift-curve slope is used to provide charts with which antisymmetric loading due to arbitrary antisymmetric angle of attack can be found for wings having symmetric plan forms with a constant spanwise sweep angle of the quarter-chord line. Consideration is given to the flexible wing in roll. Aerodynamic characteristics due to rolling, deflected ailerons, and sideslip of wings with dihedral are considered. Solutions are presented for straight-tapered wings for a range of swept plan forms.

  10. Preliminary study of a large span-distributed-load flying-wing cargo airplane concept

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.

    1978-01-01

    An aircraft capable of transporting containerized cargo over intercontinental distances is analyzed. The specifications for payload weight, density, and dimensions in essence configure the wing and establish unusually low values of wing loading and aspect ratio. The structural weight comprises only about 18 percent of the design maximum gross weight. Although the geometric aspect ratio is 4.53, the winglet effect of the wing-tip-mounted vertical tails, increase the effective aspect ratio to approximately 7.9. Sufficient control power to handle the large rolling moment of inertia dictates a relatively high minimum approach velocity of 315 km/hr (170 knots). The airplane has acceptable spiral, Dutch roll, and roll-damping modes. A hardened stability augmentation system is required. The most significant noise source is that of the airframe. However, for both take-off and approach, the levels are below the FAR-36 limit of 108 db. The design mission fuel efficiency is approximately 50 percent greater than that of the most advanced, currently operational, large freighter aircraft. The direct operating cost is significantly lower than that of current freighters, the advantage increasing as fuel price increases.

  11. Full-scale semi-span tests of an advanced NLF business jet wing

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Jordan, Frank L., Jr.; Davis, Patrick J.; Muchmore, C. Byram

    1987-01-01

    An investigation has been conducted in the NASA Langley Research Center's 30- by 60-Foot Wind Tunnel on a full-scale semispan model to evaluate and document the low-speed, high-lift characteristics of a business-jet class wing utilizing the HSNLF(1)-0213 airfoil section and a single slotted flap system. In addition to the high-lift studies, evaluations of boundary layer transition effects, the effectiveness of a segmented leading-edge droop for improved stall/spin resistance, and roll control effectiveness with and without flap deflection were made. The wind-tunnel investigation showed that deployment of a single-slotted trailing-edge flap provided substantial increments in lift. Fixed transition studies indicated no adverse effects on lift and pitching-moment characteristics for either the cruise or landing configuration. Subscale roll damping tests also indicated that stall/spin resistance could be enhanced through the use of a properly designed leading-edge droop.

  12. Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti

    2016-01-01

    Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.

  13. Pretest Report for the Full Span Propulsive Wing/Canard Model Test in the NASA Langley 4 x 7 Meter Low Speed Wind Tunnel Second Series Test

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.

    1986-01-01

    A full span propulsive wing/canard model is to be tested in the NASA Langley Research Center (LaRC) 4 x 7 meter low speed wind tunnel. These tests are a continuation of the tests conducted in Feb. 1984, NASA test No.290, and are being conducted under NASA Contract NAS1-17171. The purpose of these tests is to obtain extensive lateral-directional data with a revised fuselage concept. The wings, canards, and vertical tail of this second test series model are the same as tested in the previous test period. The fuselage and internal flow path have been modified to better reflect an external configuration suitable for a fighter airplane. Internal ducting and structure were changed as required to provide test efficiency and blowing control. The model fuselage tested during the 1984 tests was fabricated with flat sides to provide multiple wing and canard placement variations. The locations of the wing and canard are important variables in configuration development. With the establishment of the desired relative placement of the lifting surfaces, a typically shaped fuselage has been fabricated for these tests. This report provides the information necessary for the second series tests of the propulsive wing/canard model. The discussion in this report is limited to that affected by the model changes and to the second series test program. The pretest report information for test 290 which is valid for the second series test was published in Rockwell report NR 83H-79. This report is presented as Appendix 1 and the modified fuselage stress report is presented as Appendix 2 to this pretest report.

  14. Effects of Small Angles of Sweep and Moderate Amounts of Dihedral on Stalling and Lateral Characteristics of a Wing-Fuselage Combination Equipped with Partial- and Full-Span Double Slotted Flaps

    NASA Technical Reports Server (NTRS)

    Teplitz, Jerome

    1944-01-01

    Tests of a wing-fuselage combinations incorporating NACA 65-series airfoil sections were conducted in the NACA 19-foot pressure tunnel. The investigation included the tests with flaps neutral and with partial- and full-span double slotted flaps deflected to determine the effects of (1) variations of wing sweep between -4 degrees and 8 degrees on stalling and lateral stability and control characteristics and (2) variations of dihedral between 0 degree and 6.75 degrees on lateral stability characteristics.

  15. Wind-Tunnel Investigation of Wings with Ordinary Ailerons and Full-Span External-Airfoil Flaps

    NASA Technical Reports Server (NTRS)

    Platt, Robert C; Shortal, Joseph A

    1937-01-01

    Report presents an investigation carried out in the NACA 7- by 10-foot wind tunnel of an NACA 23012 airfoil equipped, first, with a full-span NACA 23012 external-airfoil flap having a chord 0.20 of the main airfoil chord and with a full-span aileron with a chord 0.12 of the main airfoil chord on the trailing edge of the main airfoil and equipped second, with a 0.30-chord full-span NACA 23012 external-airfoil flap and a 0.13-chord full-span aileron. The results are arranged in three groups, the first two of which deal with the airfoil characteristics of the two airfoil-flap combinations and with the internal-control characteristics of the airfoil-flap-aileron combinations. The third group of tests deals with several means for balancing ailerons mounted on a special large-chord NACA 23012 external-airfoil flap. The tests included an ordinary aileron, a curtained-nose balance, a frise balance, and a tab.

  16. Finite-span rotating flat-plate wings at low reynolds number and the effects of aspect ratio

    NASA Astrophysics Data System (ADS)

    Carr, Zakery R.

    In the complex and dangerous environments of the modern warrior and emergency professional, the small size, maneuverability, and stealth of flapping-wing micro air vehicles (MAVs), scaled to the size of large insects or hummingbirds, has the potential to provide previously inaccessible levels of situational awareness, reconnaissance capability, and flexibility directly to the front lines. Although development of such an efficient, autonomous, and capable MAV is years away, there are immediate contributions that can be made to the fundamental science of the flapping-wing-type propulsion that makes MAVs so attractive. This investigation contributes to those fundamentals by considering the unsteady vortex dynamics problem of a rigid, rectangular flat plate at a fixed angle of attack rotating from rest---a simplified hovering half-stroke. Parameters are chosen to be biologically-relevant and relevant to MAVs operating at Reynolds numbers of O (103), and experiments are performed in a 50% by mass glycerin-water mixture. These experiments use novel application of methodologies verified by rigorous uncertainty analysis. The overall objective is to understand the vortex formation and forces as well as aspect ratio ( AR) effects. Of interest is the overall, time-varying, three-dimensional vortex structure obtained qualitatively from dye visualization and quantitatively from volumes reconstructed using planar stereoscopic digital particle image velocimetry (S-DPIV) measurements. The velocity information from S-DPIV also allows statements to be made on leading-edge vortex (LEV) stability, spanwise flow, LEV and tip-vortex (TV) circulation, and numerous circulation scalings. Force measurements are made and the lift coefficient is discussed in the context of the flow structure, the dimensional lift and the ability to relate velocity and force measurements going forward. AR effects is a topic of continued interest to those performing MAV-related research and also a primary

  17. Effects of Wing Flaps and Wing Duct Inlet on the Lift and Stalling Characteristics of a 1/4-Scale Partial-Span Model of the Republic XF-12 Airplane in the Langley 19-Foot Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Graham, Robert R.; Martina, Albert P.; Salmi, Reino J.

    1946-01-01

    An investigation was conducted in the Langley 19-foot pressure tunnel to determine the lift, drag, pitching-moment and stalling characteristics fo a 1/4 -scale partial-span model of the left wing of the Republic XF-12 airplane. The effects of a duct inlet, located between the nacelles at the leading edge of the wing, on those characteristics were also investigated. The Reynolds numbers for the investigation covered a range from 4,500,000 to 8,600,000. The results of the investigation indicated that maximum lift coefficients of 1.36, 1.71, and 2.11 were measured on the model with flaps neutral and deflected 20 deg and 55 deg, respectively at a Reynolds number of 8,600,000. When the duct inlet was replaced by a basic airfoil nose the flap-neutral maximum-lift coefficient was increased from 1.36 to 1.41. The results also showed that at maximum lift with flaps neutral or deflected 55 deg. most of the area between the nacelles were stalled while only small areas on other portions of the model were stalled; when the duct inlet was replaced by the basic airfoil nose the stall was delayed to a slightly higher angle of attack but the nature of the stall was relatively unaffected.

  18. Effects of Compressibility on the Maximum Lift Characteristics and Spanwise Load Distribution of a 12-Foot-Span Fighter-Type Wing of NACA 230-Series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    West, F E

    1945-01-01

    Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.

  19. Measurement of Aerodynamic Forces for Various Mean Angles of Attack on an Airfoil Oscillating in Pitch and on Two Finite-span Wings Oscillating in Bending with Emphasis on Damping in the Stall

    NASA Technical Reports Server (NTRS)

    Rainey, A Gerald

    1957-01-01

    The oscillating air forces on a two-dimensional wing oscillating in pitch about the midchord have been measured at various mean angles of attack and at Mach numbers of 0.35 and 0.7. The magnitudes of normal-force and pitching-moment coefficients were much higher at high angles of attack than at low angles of attack for some conditions. Large regions of negative damping in pitch were found, and it was shown that the effect of increasing the Mach number 0.35 to 0.7 was to decrease the initial angle of attack at which negative damping occurred. Measurements of the aerodynamic damping of a 10-percent-thick and of a 3-percent-thick finite-span wing oscillating in the first bending mode indicate no regions of negative damping for this type of motion over the range of variables covered. The damping measured at high angles of attack was generally larger than that at low angles of attack. (author)

  20. Grade Span.

    ERIC Educational Resources Information Center

    Renchler, Ron

    2000-01-01

    This issue reviews grade span, or grade configuration. Catherine Paglin and Jennifer Fager's "Grade Configuration: Who Goes Where?" provides an overview of issues and concerns related to grade spans and supplies profiles of eight Northwest schools with varying grade spans. David F. Wihry, Theodore Coladarci, and Curtis Meadow's "Grade Span and…

  1. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  2. 6. DETAIL OF MASONRY ON SOUTHWEST WING WALL. MASONRY ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF MASONRY ON SOUTHWEST WING WALL. MASONRY ON WING WALLS IS LAID IN A RANDOM RUBBLE PATTERN. - Core Creek County Bridge, Spanning Core Creek, approximately 1 mile South of State Route 332 (Newtown Bypass), Newtown, Bucks County, PA

  3. Span efficiency in hawkmoths.

    PubMed

    Henningsson, Per; Bomphrey, Richard J

    2013-07-01

    Flight in animals is the result of aerodynamic forces generated as flight muscles drive the wings through air. Aerial performance is therefore limited by the efficiency with which momentum is imparted to the air, a property that can be measured using modern techniques. We measured the induced flow fields around six hawkmoth species flying tethered in a wind tunnel to assess span efficiency, ei, and from these measurements, determined the morphological and kinematic characters that predict efficient flight. The species were selected to represent a range in wingspan from 40 to 110 mm (2.75 times) and in mass from 0.2 to 1.5 g (7.5 times) but they were similar in their overall shape and their ecology. From high spatio-temporal resolution quantitative wake images, we extracted time-resolved downwash distributions behind the hawkmoths, calculating instantaneous values of ei throughout the wingbeat cycle as well as multi-wingbeat averages. Span efficiency correlated positively with normalized lift and negatively with advance ratio. Average span efficiencies for the moths ranged from 0.31 to 0.60 showing that the standard generic value of 0.83 used in previous studies of animal flight is not a suitable approximation of aerodynamic performance in insects. PMID:23658113

  4. Span efficiency in hawkmoths

    PubMed Central

    Henningsson, Per; Bomphrey, Richard J.

    2013-01-01

    Flight in animals is the result of aerodynamic forces generated as flight muscles drive the wings through air. Aerial performance is therefore limited by the efficiency with which momentum is imparted to the air, a property that can be measured using modern techniques. We measured the induced flow fields around six hawkmoth species flying tethered in a wind tunnel to assess span efficiency, ei, and from these measurements, determined the morphological and kinematic characters that predict efficient flight. The species were selected to represent a range in wingspan from 40 to 110 mm (2.75 times) and in mass from 0.2 to 1.5 g (7.5 times) but they were similar in their overall shape and their ecology. From high spatio-temporal resolution quantitative wake images, we extracted time-resolved downwash distributions behind the hawkmoths, calculating instantaneous values of ei throughout the wingbeat cycle as well as multi-wingbeat averages. Span efficiency correlated positively with normalized lift and negatively with advance ratio. Average span efficiencies for the moths ranged from 0.31 to 0.60 showing that the standard generic value of 0.83 used in previous studies of animal flight is not a suitable approximation of aerodynamic performance in insects. PMID:23658113

  5. Avian Wings

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  6. Hydrodynamics of penguin wing models

    NASA Astrophysics Data System (ADS)

    Noca, Flavio; Cuong Duong, Nhut; Herpich, Jerome

    2010-11-01

    The three-dimensional kinematics of penguin wings were obtained from movie footage in aquariums. A 1:1 scale model of the penguin wing (with an identical planform but with a flat section profile and a rigid configuration) was actuated with a robotic arm in a water channel. The experiments were performed at a chord Reynolds number of about 10^4 (an order of magnitude lower than for the observed penguin). The dynamics of the wing were analyzed with force and flowfield measurements. The two main results are: 1. a net thrust on both the upstroke and downstroke movement; 2. the occurence of a leading edge vortex (LEV) along the wing span. The effects of section profile, wing flexibility, and a higher Reynolds number will be investigated in the future.

  7. Active Dihedral Control System for a Torisionally Flexible Wing

    NASA Technical Reports Server (NTRS)

    Kendall, Greg T. (Inventor); Lisoski, Derek L. (Inventor); Morgan, Walter R. (Inventor); Griecci, John A. (Inventor)

    2015-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  8. AST Composite Wing Program: Executive Summary

    NASA Technical Reports Server (NTRS)

    Karal, Michael

    2001-01-01

    The Boeing Company demonstrated the application of stitched/resin infused (S/RFI) composite materials on commercial transport aircraft primary wing structures under the Advanced Subsonic technology (AST) Composite Wing contract. This report describes a weight trade study utilizing a wing torque box design applicable to a 220-passenger commercial aircraft and was used to verify the weight savings a S/RFI structure would offer compared to an identical aluminum wing box design. This trade study was performed in the AST Composite Wing program, and the overall weight savings are reported. Previous program work involved the design of a S/RFI-base-line wing box structural test component and its associated testing hardware. This detail structural design effort which is known as the "semi-span" in this report, was completed under a previous NASA contract. The full-scale wing design was based on a configuration for a MD-90-40X airplane, and the objective of this structural test component was to demonstrate the maturity of the S/RFI technology through the evaluation of a full-scale wing box/fuselage section structural test. However, scope reductions of the AST Composite Wing Program pre-vented the fabrication and evaluation of this wing box structure. Results obtained from the weight trade study, the full-scale test component design effort, fabrication, design development testing, and full-scale testing of the semi-span wing box are reported.

  9. Joukowski wings

    NASA Technical Reports Server (NTRS)

    Margoulis, W

    1922-01-01

    To sum up, Professor Joukowski's theory of supporting wings renders it possible to calculate the coefficient of lift in terms of the angle of attack, and Prandtl's coefficient of induced drag and the correction of the angle of attack in terms of the disposition and aspect ratio of the wings.

  10. New investigation of short wings with lateral jets

    NASA Technical Reports Server (NTRS)

    Carafoli, E.; Camarasescu, N.

    1983-01-01

    The lift of short wings by means of lateral fluid jets fired in the plane of the wing in the direction of the span is described. After some theoretical considerations, the experimental results obtained in a wind tunnel on a series of wings of various lengths are presented.

  11. Winged pipelaying

    SciTech Connect

    Ayers, R.R.; Kopp, F.

    1988-12-06

    This patent describes an apparatus for towing at least one submerged pipeline above-seabed comprising: tow means attached to the pipeline; and at least one wing attached to the pipeline and positioned to provide lifting force to the pipeline when the pipeline is being towed, the wing being rotatable from a substantially perpendicular alignment to a substantially perpendicular alignment to a substantially lateral alignment with the pipeline in a non-towing mode.

  12. Flow visualization study of close-coupled canard wing and strake wing configuration

    NASA Technical Reports Server (NTRS)

    Miner, D. D.; Gloss, B. B.

    1975-01-01

    The Langley 1/8-scale V/STOL model tunnel was used to qualitatively determine the flow fields associated with semi-span close coupled canard wing and strake wing models. Small helium filled bubbles were injected upstream of the models to make the flow visible. Photographs were taken over the angle-of-attack ranges of -10 deg to 40 deg.

  13. An aerodynamic model for one and two degree of freedom wing rock of slender delta wings

    NASA Technical Reports Server (NTRS)

    Hong, John

    1993-01-01

    The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.

  14. Rotor/Wing Interactions in Hover

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  15. Nonlinear Aerodynamics and the Design of Wing Tips

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan

    1991-01-01

    The analysis and design of wing tips for fixed wing and rotary wing aircraft still remains part art, part science. Although the design of airfoil sections and basic planform geometry is well developed, the tip regions require more detailed consideration. This is important because of the strong impact of wing tip flow on wing drag; although the tip region constitutes a small portion of the wing, its effect on the drag can be significant. The induced drag of a wing is, for a given lift and speed, inversely proportional to the square of the wing span. Concepts are proposed as a means of reducing drag. Modern computational methods provide a tool for studying these issues in greater detail. The purpose of the current research program is to improve the understanding of the fundamental issues involved in the design of wing tips and to develop the range of computational and experimental tools needed for further study of these ideas.

  16. Scapular Winging

    PubMed Central

    Gooding, Benjamin W. T.; Geoghegan, John M.; Wallace, W. Angus; Manning, Paul A.

    2013-01-01

    This review explores the causes of scapula winging, with overview of the relevant anatomy, proposed aetiology and treatment. Particular focus is given to lesions of the long thoracic nerve, which is reported to be the most common aetiological factor. PMID:27582902

  17. The Nichols Wing Cutting Equipment

    NASA Technical Reports Server (NTRS)

    Ford, James B

    1923-01-01

    Described here is wing cutting equipment for the economical production of metal wings for wind tunnel models. The machine will make any size of constant-section wing or strut up to one-sixth inch chord by 36-inch span and up to a thickness of one and one-quarter inches. It cuts a smooth, true model that is accurate to within two-thousandths of an inch on any ordinate. The holding jaws are so designed as to leave the model free of chip marks, and the only hand finishing necessary after the cutting is a rub with amunite to remove burrs. The actual change on ordinate in this finishing rub is less than .0002 inches.

  18. Inflatable wing

    DOEpatents

    Priddy, Tommy G.

    1988-01-01

    An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a stiff reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof.

  19. 1. View south. North elevation Walpole span, link span, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View south. North elevation - Walpole span, link span, and Westminster span. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  20. 2. View northeast. South elevation Westminster span, link span, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View northeast. South elevation - Westminster span, link span, Walpole span. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  1. 3. GENERAL VIEW, LOOKING WEST, SHOWING EAST ELEVATION NORTH WING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW, LOOKING WEST, SHOWING EAST ELEVATION NORTH WING WALL (SCALE ROD IS MEASURED IN FEET) - Mulladay Hollow Bridge, Spanning Mulladay Hollow Creek at County Road No.61, Eureka Springs, Carroll County, AR

  2. 1. VIEW OF WEST HEADWALL AND WING WALL, FROM BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF WEST HEADWALL AND WING WALL, FROM BRIDGE TO THE WEST, FACING EAST. - Cut Stone Bridge, Southern Pacific Railroad line spanning runoff channel at South Spruce Avenue, South San Francisco, San Mateo County, CA

  3. 2. VIEW OF WEST HEADWALL AND WING WALL, FROM EMBANKMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WEST HEADWALL AND WING WALL, FROM EMBANKMENT TO THE SOUTHWEST, FACING NORTHEAST. - Cut Stone Bridge, Southern Pacific Railroad line spanning runoff channel at South Spruce Avenue, South San Francisco, San Mateo County, CA

  4. 9. South abutment, detail of collapsed east wing wall; also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. South abutment, detail of collapsed east wing wall; also detail of bottom lateral bracing and stringers; looking southeast - Dodd Ford Bridge, County Road 147 Spanning Blue Earth River, Amboy, Blue Earth County, MN

  5. 9. West elevation, west end of south wing wall, south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. West elevation, west end of south wing wall, south abutment and south railing panel looking east - Western Maryland Railway Bridge, Spanning Maryland Route 51 at Spring Gap, Cumberland, Allegany County, MD

  6. 10. West elevation, west end of north wing wall, top ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. West elevation, west end of north wing wall, top of north abutment and oblique of railing panels looking northwest - Western Maryland Railway Bridge, Spanning Maryland Route 51 at Spring Gap, Cumberland, Allegany County, MD

  7. Empirical corrections to the span load distribution at the tip

    NASA Technical Reports Server (NTRS)

    Pearson, H A

    1937-01-01

    An analysis of existing pressure-distribution data was made to determine the variation of the tip loading with wing plan form. A series of empirical tip corrections was derived that may be added to theoretical curves in certain cases to obtain a closer approach to the actual loading at the tip. The analysis indicated that the need for a tip correction decreases as either the aspect ratio or the wing taper is increased. In general, it may be said that, for wings of conventional aspect ratio, corrections to the theoretical span load curves are necessary only if the wing is tapered less than 2:1 and has a blunt tip. If the tip is well rounded in plan form, no correction appears necessary even for a wing with no taper.

  8. 3. VIEW NORTH SHOWING FIXED SPAN, COVERED SPAN, MOVEABLE TRANSITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTH SHOWING FIXED SPAN, COVERED SPAN, MOVEABLE TRANSITION SPAN AND PONTOON FLOATING SPAN - Lacey V. Murrow Memorial Floating Bridge, Spanning Lake Washington at I-90, Seattle, King County, WA

  9. SPAN: Ocean science

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Koblinsky, Chester J.; Webster, Ferris; Zlotnicki, Victor; Green, James L.

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links space and Earth science research and data analysis computers. It provides a common working environment for sharing computer resources, sharing computer peripherals, solving proprietary problems, and providing the potential for significant time and cost savings for correlative data analysis. This is one of a series of discipline-specific SPAN documents which are intended to complement the SPAN primer and SPAN Management documents. Their purpose is to provide the discipline scientists with a comprehensive set of documents to assist in the use of SPAN for discipline specific scientific research.

  10. Experimental investigation of non-planar sheared outboard wing planforms

    NASA Technical Reports Server (NTRS)

    Naik, D. A.; Ostowari, C.

    1988-01-01

    The outboard planforms of wings have been found to be of prime importance in studies of induced drag reduction. This conclusion is based on an experimental and theoretical study of the aerodynamic characteristics of planar and nonplanar outboard wing forms. Six different configurations; baseline rectangular, planar sheared, sheared with dihedral, sheared with anhedral, rising arc, and drooping arc were investigated for two different spans. Span efficiencies as much as 20 percent greater than baseline can be realized with nonplanar wing forms. Optimization studies show that this advantage can be achieved along with a bending moment benefit. Parasite drag and lateral stability estimations were not included in the analysis.

  11. Measurements of Supersonic Wing Tip Vortices

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James

    1994-01-01

    An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.

  12. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  13. SPAN: Astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Green, James L.; Warren, Wayne H., Jr.; Lopez-Swafford, Brian

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links science research and data analysis computers in the U.S., Canada, and Europe. The purpose of this document is to provide Astronomy and Astrophysics scientists, currently reachable on SPAN, with basic information and contacts for access to correlative data bases, star catalogs, and other astrophysic facilities accessible over SPAN.

  14. 6. DETAIL OF VERTICAL LIFT SPAN AND FIXED SPAN IMMEDIATELY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF VERTICAL LIFT SPAN AND FIXED SPAN IMMEDIATELY NORTH OF VERTICAL LIFT SPAN, LOOKING SOUTHEAST. - Shippingsport Bridge, Spanning Illinois River at State Route 51, La Salle, La Salle County, IL

  15. 37. VIEW SOUTHWEST, CENTER SPAN OF THREE SPAN FRAME SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. VIEW SOUTHWEST, CENTER SPAN OF THREE SPAN FRAME SHOWING BRACING SYSTEM (SPAN 50) - Route 1 Extension, Southbound Viaduct, Spanning Conrail Yards, Wilson Avenue, Delancy Street, & South Street on Routes 1 & 9 Southbound, Newark, Essex County, NJ

  16. 4. View northwest. South elevation Walpole span, link span, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View northwest. South elevation - Walpole span, link span, and Westminster span. Structure on east pier is stream level gauge station. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  17. 4. DETAIL VIEW FIXED SPAN INCLUDING TRUSS, MOVEABLE SPAN WHICH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW FIXED SPAN INCLUDING TRUSS, MOVEABLE SPAN WHICH THE NEXT UNIT TO THE RIGHT, AND FIRST UNIT OF PONTOON FLOATING SPAN. - Lacey V. Murrow Memorial Floating Bridge, Spanning Lake Washington at I-90, Seattle, King County, WA

  18. 20. Vertical lift span, north tower, bascule span, and Warren ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Vertical lift span, north tower, bascule span, and Warren truss spans, facing north - Sault Ste. Marie International Railroad Bridge, Spanning Soo Locks at St. Marys Falls Canal, Sault Ste. Marie, Chippewa County, MI

  19. Inflatable wing

    SciTech Connect

    Priddy, T.G.

    1988-02-16

    An inflatable aerodynamic wing structure is described comprising: (a) an airfoil having at least two air-tight inflatable tubular enclosure means made of a first flexible material and extending along a spanwise axis; (b) top and bottom reinforcement member means made of a second stiff fabric material and connecting at least two air-tight inflatable tubular enclosure means together for transfer of inflation pressure-induced tensile stress from the enclosure means to the top and bottom reinforcement member means; (c) rigid hoops shaped to provide airfoil definition and spaced from each other along the spanwise axis and extending generally perpendicular thereto, the air-tight inflatable tubular enclosure means extending through the airfoil definition hoops and fastened thereto through the top and bottom reinforcement member means, the rigid hoops collapsing into each other for stacked stowage upon deflation of the enclosure means; and (d) means for forming an airfoil outer surface, made of a third thin, flexible and collapsible material, about substantially the entire tubular enclosure means and the top and bottom reinforcement member means, such that the area of a cross-section of the tubular enclosure means is much smaller than the area of a cross-section of the airfoil outer surface.

  20. Numerical study of the trailing vortex of a wing with wing-tip blowing

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin

    1994-01-01

    Trailing vortices generated by lifting surfaces such as helicopter rotor blades, ship propellers, fixed wings, and canard control surfaces are known to be the source of noise, vibration, cavitation, degradation of performance, and other hazardous problems. Controlling these vortices is, therefore, of practical interest. The formation and behavior of the trailing vortices are studied in the present research. In addition, wing-tip blowing concepts employing axial blowing and spanwise blowing are studied to determine their effectiveness in controlling these vortices and their effects on the performance of the wing. The 3D, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The wing-tip blowing is simulated using the actuator plane concept, thereby, not requiring resolution of the jet slot geometry. Furthermore, the solution blanking feature of the chimera scheme is used to simplify the parametric study procedure for the wing-tip blowing. Computed results are shown to compare favorably with experimental measurements. It is found that axial wing-tip blowing, although delaying the rolling-up of the trailing vortices and the near-field behavior of the flowfield, does not dissipate the circulation strength of the trailing vortex farther downstream. Spanwise wing-tip blowing has the effect of displacing the trailing vortices outboard and upward. The increased 'wing-span' due to the spanwise wing-tip blowing has the effect of lift augmentation on the wing and the strengthening of the trailing vortices. Secondary trailing vortices are created at high spanwise wing-tip blowing intensities.

  1. ANOTHER DETAIL OF A TYPICAL SPAN, SHOWING THE SOUTH END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ANOTHER DETAIL OF A TYPICAL SPAN, SHOWING THE SOUTH END OF BRIDGE WITH ABUTMENT, WING WALLS, AND A FREE-STANDING PIER AT LEFT. OBLIQUE VIEW TO SOUTHEAST. 40 - Burlington Northern Santa Fe Railroad, Cajon Subdivision, Structure No. 61.5X, between Cajon Summit and Keenbrook, Devore, San Bernardino County, CA

  2. Smart wing shape memory alloy actuator design and performance

    NASA Astrophysics Data System (ADS)

    Jardine, A. Peter; Flanagan, John S.; Martin, Christopher A.; Carpenter, Bernie F.

    1997-05-01

    Shape Memory Effect TiNi torque tubes were fabricated, tested and installed to supply 2500 in.lbs and 500 in.lbs of torque for inboard and outboard sections, respectively, of the DARPA smart wing wind tunnel model. Structural connections to the tubes were designed so that the entire assembly would fit within the interior of the wing, whose maximum dimensions of depth ranged from 1.125' to 0.375', depending on the position along the wing span. The torque tubes themselves were made by the gun drilling a TiNi ingot and ElectroSpark Discharge Machining to the required dimensions, which were calculated from a simple model described in a previous paper. The torque tubes were placed into the wing and twist deflections were measured. Deflections on the wing were measured at 1.3 degree(s), which provided a significant increase (approximately 8%) in the wing rolling moment.

  3. View east, showing Northwest Wing (Wing 5) and rear elevations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, showing Northwest Wing (Wing 5) and rear elevations of facade and tis flaking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  4. Preservation of wing leading edge suction at the plane of symmetry as a factor in wing-fuselage design

    NASA Technical Reports Server (NTRS)

    Larrabee, E. E.

    1975-01-01

    Most fuselage geometries cover a portion of the wing leading edge near the plane of symmetry, and it seems reasonable to expect that a large fraction of the leading edge suction which would be developed by the covered wing at high angles of attack is not developed on the fuselage. This is one of the reasons that the Oswald span efficiency factor for the wing body combination fails to approach the value predicted by lifting line theory for the isolated wing. Some traditional and recent literature on wing-body interference is discussed and high Reynolds number data on wing-body-nacelle drag are reviewed. An exposed central leading edge geometry has been developed for a sailplane configuration. Low Reynolds number tests have not validated the design concept.

  5. Flexible flapping wings with self-organized microwrinkles.

    PubMed

    Tanaka, Hiroto; Okada, Hiroyuki; Shimasue, Yosuke; Liu, Hao

    2015-08-01

    Bio-inspired flapping wings with a wrinkled wing membrane were designed and fabricated. The wings consist of carbon fibre-reinforced plastic frames and a polymer film with microscale wrinkles inspired by bird feathers and the corrugations of insect wings. The flexural and tensile stiffness of the wrinkled film can be controlled by modifying the orientations and waveforms of the wrinkles, thereby expanding the design space of flexible wings for micro flapping-wing aerial robots. A self-organization phenomenon was exploited in the fabrication of the microwrinkles such that microscale wrinkles spanning a broad wing area were spontaneously created. The wavy shape of these self-organized wrinkles was used as a mould, and a Parylene film was deposited onto the mould to form a wrinkled wing film. The effect of the waveforms of the wrinkles on the film stiffness was investigated theoretically, computationally and experimentally. Compared with a flat film, the flexural stiffness was increased by two orders of magnitude, and the tensile stiffness was reduced by two orders of magnitude. To demonstrate the effect of the wrinkles on the actual deformation of the flapping wings and the resulting aerodynamic forces, the fabricated wrinkled wings were tested using a tethered electric flapping mechanism. Chordwise unidirectional wrinkles were found to prevent fluttering near the trailing edge and to produce a greater aerodynamic lift compared with a flat wing or a wing with spanwise wrinkles. Our results suggest that the fine stiffness control of the wing film that can be achieved by tuning the microwrinkles can improve the aerodynamic performance of future flapping-wing aerial robots. PMID:26119657

  6. View east, showing Northwest Wing (Wing 5), west wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, showing Northwest Wing (Wing 5), west wall of the North Wing (Wing 2) and rear elevations of the facade and its flanking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  7. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  8. Study of Semi-Span Model Testing Techniques

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; McGhee, Robert J.

    1996-01-01

    An investigation has been conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel in order to further the development of semi-span testing capabilities. A twin engine, energy efficient transport (EET) model with a four-element wing in a takeoff configuration was used for this investigation. Initially a full span configuration was tested and force and moment data, wing and fuselage surface pressure data, and fuselage boundary layer measurements were obtained as a baseline data set. The semi-span configurations were then mounted on the wind tunnel floor, and the effects of fuselage standoff height and shape as well as the effects of the tunnel floor boundary layer height were investigated. The effectiveness of tangential blowing at the standoff/floor juncture as an active boundary-layer control technique was also studied. Results indicate that the semi-span configuration was more sensitive to variations in standoff height than to variations in floor boundary layer height. A standoff height equivalent to 30 percent of the fuselage radius resulted in better correlation with full span data than no standoff or the larger standoff configurations investigated. Undercut standoff leading edges or the use of tangential blowing in the standoff/ floor juncture improved correlation of semi-span data with full span data in the region of maximum lift coefficient.

  9. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

  10. LANN wing design

    NASA Technical Reports Server (NTRS)

    Firth, G. C.

    1983-01-01

    The LANN wing is the result of a joint effort between Lockheed, the Air Force, NASA, and the Netherlands to measure unsteady pressures at transonic speeds. It is a moderate-aspect-ratio transport wing configuration. The wing was machined from NITRONIC 40 and has 12 percent thick supercritical airfoil sections.

  11. Investigating the Force Production of Functionally-Graded Flexible Wings in Flapping Wing Flight

    NASA Astrophysics Data System (ADS)

    Mudbhari, Durlav; Erdogan, Malcolm; He, Kai; Bateman, Daniel; Lipkis, Rory; Moored, Keith

    2015-11-01

    Birds, insects and bats oscillate their wings to propel themselves over long distances and to maneuver with unprecedented agility. A key element to achieve their impressive aerodynamic performance is the flexibility of their wings. Numerous studies have shown that homogeneously flexible wings can enhance force production, propulsive efficiency and lift efficiency. Yet, animal wings are not homogenously flexible, but instead have varying material properties. The aim of this study is to characterize the force production and energetics of functionally-graded flexible wings. A partially-flexible wing composed of a rigid section and a flexible section is used as a first-order model of functionally-graded materials. The flexion occurs in the spanwise direction and it is affected by the spanwise flexion ratio, that is, the ratio of the length of the rigid section compared to the total span length. By varying the flexion ratio as well as the material properties of the flexible section, the study aims to examine the force production and energetics of flapping flight with functionally-graded flexible wings. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-14-1-0533.

  12. Bridge Types: Suspension Bridge Spans, Section AA; Cantilever Truss Spans, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge Types: Suspension Bridge Spans, Section A-A; Cantilever Truss Spans, Section B-B; Through Truss Spans, Section C-C; Deck Truss Spans, Section D-D - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  13. Effects of wing-leading-edge modifications on a full-scale, low-wing general aviation airplane: Wind-tunnel investigation of high-angle-of-attack aerodynamic characteristics. [conducted in Langley 30- by 60-foot tunnel

    NASA Technical Reports Server (NTRS)

    Newsom, W. A., Jr.; Satran, D. R.; Johnson, J. L., Jr.

    1982-01-01

    Wing-leading-edge modifications included leading-edge droop and slat configurations having full-span, partial-span, or segmented arrangements. Other devices included wing-chord extensions, fences, and leading-edge stall strips. Good correlation was apparent between the results of wind-tunnel data and the results of flight tests, on the basis of autorotational stability criterion, for a wide range of wing-leading-edge modifications.

  14. Downwash measurements behind wings with detached float

    NASA Technical Reports Server (NTRS)

    Petersohn, E

    1931-01-01

    This investigation, which was made in the small wind tunnel having a diameter of 1.2 m (3.94 feet), embraced three wing models, behind which, at various angles of attack between 0 and 60 degrees, the static pressure and the total pressure along vertical lines (perpendicular to the direction of the undisturbed wind and to the wing span) were measured. The location of these vertical lines are indicated in Figure 1. Moreover, the wing polars were determined by the customary three-component measurements. For testing the pressure field, a Pitot tube and a static probe, both of 2 mm (0.08 in.) in diameter, were mounted 40 mm (1.57 in.) apart on the end of a shaft 1 m (39.37 in.) long.

  15. View of approach span and movable span, looking southeast from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of approach span and movable span, looking southeast from navy land. Note that navigational channel exists only on north side of movable span. - Naval Supply Annex Stockton, Rough & Ready Island, Stockton, San Joaquin County, CA

  16. EAST END FROM MID SPAN OF EASTERN SPAN (THREE DIFFERENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST END FROM MID SPAN OF EASTERN SPAN (THREE DIFFERENT TRUSSES, EAST SOUTHEAST 110 DEGREES) - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  17. 23. Span 1, detail view, central section of span front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Span 1, detail view, central section of span front below; view to south. - Fifth Street Bridge, Spanning MBTA Fitchburg Commuter Rail Line tracks, Conrail Fitchburg Secondary Line & North Nashua River, Fitchburg, Worcester County, MA

  18. 2. Skew Span on left to Span 3 on right ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Skew Span on left to Span 3 on right from north bank-up river. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  19. 4. From Skew Span to portal on span 1 looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. From Skew Span to portal on span 1 looking up grade toward the south end. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  20. 11. Span 2 foreground, Span 3 beyondunderneath from riverbank vicinity ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Span 2- foreground, Span 3 beyond-underneath from riverbank vicinity Pier 1 toward Pier 2 in river. - Monongahela Connecting Railroad Company, Main Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  1. 5. From Span 6 to portal on span 5 looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. From Span 6 to portal on span 5 looking down grade toward north end. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  2. 3. Span 4 on right to Skew Span on leftfrom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Span 4 on right to Skew Span on left-from south bank-up river. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  3. 25. Spans 25, underview of Span 4 and western elevation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Spans 2-5, underview of Span 4 and western elevation of Pier 4; view to northeast. - Fifth Street Bridge, Spanning MBTA Fitchburg Commuter Rail Line tracks, Conrail Fitchburg Secondary Line & North Nashua River, Fitchburg, Worcester County, MA

  4. 22. VIEW OF FIXED SPAN SUBSTRUCTURE, EAST SPAN, SHOWING CANTILEVEREDBEAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW OF FIXED SPAN SUBSTRUCTURE, EAST SPAN, SHOWING CANTILEVERED-BEAM SIDEWALK SUPPORTS, LONGITUDINAL GIRDER AND TRANSVERSE ROADBED BEAMS, LOOKING SOUTHEAST - Congress Street Bascule Bridge, Spanning Fort Point Channel at Congress Street, Boston, Suffolk County, MA

  5. Flapping of Insectile Wings

    NASA Astrophysics Data System (ADS)

    Huang, Yangyang; Kanso, Eva

    2015-11-01

    Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. Yet the effects of muscle stiffness on the performance of insect wings remain unclear. Here, we construct an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring and submerged in an oscillatory flow. The wing system is free to rotate and flap. We first explore the extent to which the flyer can withstand roll perturbations, then study its flapping behavior and performance as a function of spring stiffness. We find an optimal range of spring stiffness that results in large flapping amplitudes, high force generation and good storage of elastic energy. We conclude by conjecturing that insects may select and adjust the muscle spring stiffness to achieve desired movement. These findings may have significant implications on the design principles of wings in micro air-vehicles.

  6. Innovative Concept for a Heavy-Load Aircraft Utilizing a Two-Dimensional Wing

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2007-01-01

    Heavy-load aircraft of conventional wing-body-tail design have become very large. Excessive size of such aircraft may present problems in the manufacturing process. In addition, large wing spans may cause some difficulties in ground handling. Increasing lift loads on large span cantilever wings will also increase the strength of the wing tip vortex. The concept presented herein proposes a means for substantially increasing the lift load capability of an aircraft without increasing the overall length and span of the configuration. The concept has a rectangular wing with a relatively low span and a large chord to provide the area required for high lift. Large fuselages are attached at each wing tip to provide the volume required for heavy loading. The fuselages serve as endplates for the wing and should preclude tip flow so that two-dimensional flow might be established on the wing. Elimination of the wing tip flow should prevent the formation of a tip vortex and eliminate the tip vortex hazard to trailing aircraft. Exploratory wind tunnel tests of such an aircraft concept have been conducted. Lessons learned from these tests are discussed herein in an effort to determine the validity of the concept.

  7. Problem of the slotted wing : a communication from the Aerodynamic Institute of the Aachen Technical High School

    NASA Technical Reports Server (NTRS)

    Klemperer, W

    1922-01-01

    It is to be expected that the advantageous properties, hitherto discovered in many slotted wing sections, depend very largely on the contour of the slot and the structural details of the wing. It is therefore of interest, aside from measurements on wings of constant cross-section along the span, to measure also wing models in which the structural details have already been given practical consideration.

  8. Efficiency characteristics of crescent-shaped wings and caudal fins

    NASA Technical Reports Server (NTRS)

    Van Dam, C. P.

    1987-01-01

    Caudal (tail) fins of fish and aquatic mammals that cruise long distances, and wings of certain birds, often have the shape of a crescent moon. This study investigates how the crescent shape contributes to the traveling performance of these animals. A steady-flow theory (Maskew, 1982) that correctly models the trailing wake was used to analyze lifting surface efficiency, which is dependent on the level of induced (or vortex) drag for a given lift and span of the lifting surface. This analysis shows that backward curvature of a wing improves induced efficiency to a value greater than that of the flat untwisted wing of elliptical shape considered optimal in classical wing theory (Prandt, 1921 and Munk, 1921). This increase of induced efficiency results from the nonplanar trailing vortex sheet produced by the crescent-shaped wing at a given angle of attack.

  9. Chordwise and compressibility corrections to slender-wing theory

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Sluder, Loma

    1952-01-01

    Corrections to slender-wing theory are obtained by assuming a spanwise distribution of loading and determining the chordwise variation which satisfies the appropriate integral equation. Such integral equations are set up in terms of the given vertical induced velocity on the center line or, depending on the type of wing plan form, its average value across the span at a given chord station. The chordwise distribution is then obtained by solving these integral equations. Results are shown for flat-plate rectangular, and triangular wings.

  10. A possible method for preventing the autorotation of airplane wings

    NASA Technical Reports Server (NTRS)

    Schrenk, Oskar

    1930-01-01

    At the suggestion of Professor Betz, the following device was tested with the object of reducing the autorotational speed of airplane wings. The model of a normal wing with the Gottigen profile 420, 1 meter span and 0.2 meter chord was provided with a pair of symmetrical slots on the suction side, connected with each other inside the wing. The arrangement of the testing equipment and models are given and the effect of the slots can be seen in the experimental curves that are included.

  11. Effect of Variation of Chord and Span of Ailerons on Rolling and Yawing Moments at Several Angles of Pitch

    NASA Technical Reports Server (NTRS)

    Heald, R H; Strother, D H; Monish, B H

    1931-01-01

    This report presents the results of an extension to higher angles of attack of the investigation of the rolling and yawing moments due to ailerons of various chords and spans on two airfoils having the Clark Y and U. S. A. 27 wings. The measurements were made at various angles of pitch but at zero angle of roll and yaw, the wing chord being set at an angle of +4 degrees to the fuselage axis. In the case of the Clark Y airfoil the measurements have been extended to a pitch angle of 40 degrees, using ailerons of span equal to 67 per cent of the wing semispan and chord equal to 20 and 30 per cent of the wing chord. The work was conducted on wing models of 60-inch span and 10-inch chord.

  12. Recent progress in flapping wing aerodynamics and aeroelasticity

    NASA Astrophysics Data System (ADS)

    Shyy, W.; Aono, H.; Chimakurthi, S. K.; Trizila, P.; Kang, C.-K.; Cesnik, C. E. S.; Liu, H.

    2010-10-01

    Micro air vehicles (MAVs) have the potential to revolutionize our sensing and information gathering capabilities in areas such as environmental monitoring and homeland security. Flapping wings with suitable wing kinematics, wing shapes, and flexible structures can enhance lift as well as thrust by exploiting large-scale vortical flow structures under various conditions. However, the scaling invariance of both fluid dynamics and structural dynamics as the size changes is fundamentally difficult. The focus of this review is to assess the recent progress in flapping wing aerodynamics and aeroelasticity. It is realized that a variation of the Reynolds number (wing sizing, flapping frequency, etc.) leads to a change in the leading edge vortex (LEV) and spanwise flow structures, which impacts the aerodynamic force generation. While in classical stationary wing theory, the tip vortices (TiVs) are seen as wasted energy, in flapping flight, they can interact with the LEV to enhance lift without increasing the power requirements. Surrogate modeling techniques can assess the aerodynamic outcomes between two- and three-dimensional wing. The combined effect of the TiVs, the LEV, and jet can improve the aerodynamics of a flapping wing. Regarding aeroelasticity, chordwise flexibility in the forward flight can substantially adjust the projected area normal to the flight trajectory via shape deformation, hence redistributing thrust and lift. Spanwise flexibility in the forward flight creates shape deformation from the wing root to the wing tip resulting in varied phase shift and effective angle of attack distribution along the wing span. Numerous open issues in flapping wing aerodynamics are highlighted.

  13. Subsonic flow investigations on a cranked wing designed for high maneuverability

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1986-01-01

    The characteristic pitching moment nonlinearity of cranked wings limits their usable lift coefficient well below C sub L max. The potential of several aerodynamic devices, viz., fences, pylon vortex generators (PVG), mid-span strakes and cavity flaps, in delaying the pitch up onset on a 70/50 deg cranked wing was explored in low speed tunnel tests. Upper surface pressure measurements and low visualizations were conducted on a semi-span wing model to observe the vortex flow development with increasing angle of attack, and then to assess the effectiveness of the devices in controlling the collapse of vortex lift over the wing panel outboard of the crank. Force tests on a full span wing and body model were also conducted to assess the fence and PVG in improving the usable C sub L.

  14. ER-20037 LLNL eternal pathfinder wing spar design study report

    SciTech Connect

    Not Available

    1994-03-01

    This document outlines the results of a design study performed by EDO-FSD on the LLNL Eternal Pathfinder Wing Spar/Fuel Tank. The main focus of the design study was the weight minimization of the composite wall of the mid span spar section of the aircraft. The torque, shear, moment and pressure loading requirements, as well as LLNL`s preliminary drawings, were used to develop a reduced weight mid-span spar design. The design study also encompassed details such as the pressure bulkheads, wing rod connectors, and attachment flanges.

  15. 5. VIEW OF SPAN ADJOINING SPAN TO THE NORTH OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF SPAN ADJOINING SPAN TO THE NORTH OF THE VERTICAL LIFT SPAN (IN THE DISTANCE IS THE RECENTLY COMPLETED NEW STATE ROUTE 51 BRIDGE CROSSING THE ILLINOIS RIVER). - Shippingsport Bridge, Spanning Illinois River at State Route 51, La Salle, La Salle County, IL

  16. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    NASA Astrophysics Data System (ADS)

    DeLuca, Anthony M.

    the wing. Th 60° angle stop wing achieved the largest total stroke angle and generated the most lift for the lowest power consumption of the wings tested. 2. Phase averaged stereo Particle Image Velocimetry (PIV) data was collected at eight phases through the flap cycle on the 30°, 45°, and 60° angle stop wings. Wings were mounted transverse and parallel to the interrogating laser sheet, and planar velocity intersections at the wing mid-span, one chord below the wing, were compared to one another to verify data fidelity. A Rankine-Froude actuator disk model was adapted to calculate the approximate vertical thrust generated from the total momentum flux through the flapping semi-disk using the velocity field measurements. Three component stereo u, v, and w-velocity contour measurements confirmed the presence of extensive vortical structures in the vicinity of the wing. The leading edge vortex was successfully tracked through the stroke cycle appearing at approximately 25% span, increasing in circulatory strength and translational velocity down the span toward the tip, and dissipating just after 75% span. Thrust calculations showed the vertically mounted wing more accurately represented the vertical forces when compared to its corresponding force balance measurement than the horizontally mounted wing. The mid-span showed the highest vertical velocity profile below the wing; and hence, was the location responsible for the majority of lift production along the span.

  17. Sectional lift coefficient of a rotating wing at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Kim, Jieun; Kweon, Jihoon; Choi, Haecheon

    2012-11-01

    We investigate the characteristics of sectional lift force on a rotating wing at low Reynolds number using three-dimensional numerical simulation. Three different types of flat plate wings (fruit-fly, rectangular and triangular wings) are considered but keeping their aspect ratio (wing span/wing chord) the same at 3.74. The wings rotate at a constant angular velocity and the angle of attack is fixed during rotation (5° ~45°). The Reynolds number is 136 based on the wing chord length and the translational velocity at the wing tip, corresponding to that of the flapping fruit-fly wing in hovering flight. An immersed boundary method in a non-inertial reference frame (Kim and Choi, JCP, 2006) is used to simulate the flow. During the first rotation, the sectional lift coefficient decreases from the wing root to the wing tip for all cases. After several rotations, however, the sectional lift coefficient becomes nearly constant except near the wing root and tip at low angles of attack (<=15°), but maintains a similar behavior to that of first rotation at high angle of attack (~45°). Finally, the wing shape does not significantly change the spanwise distribution of sectional lift coefficient. Supported by the NRF Program (2011-0028032).

  18. Optimum hovering wing planform.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2016-10-01

    Theoretical analysis is used to identify the optimum wing planform of a flapping/revolving wing in hover. This solution is of interest as a benchmark to which hovering wing geometries driven by broader multidisciplinary evolutionary or engineering constraints can be compared. Furthermore, useful insights into the aerodynamic performance of untwisted hovering wings are delivered. It is shown that profile power is minimised by using an untwisted elliptical planform whereas induced power is minimised by a more highly tapered planform similar to that of a hummingbird. PMID:27329340

  19. Propeller/wing interaction

    NASA Technical Reports Server (NTRS)

    Witkowski, David P.; Johnston, Robert T.; Sullivan, John P.

    1989-01-01

    The present experimental investigation of the steady-state and unsteady-state effects due to the interaction between a tractor propeller's wake and a wing employs, in the steady case, wind tunnel measurements at low subsonic speed; results are obtained which demonstrate wing performance response to variations in configuration geometry. Other steady-state results involve the propeller-hub lift and side-force due to the wing's influence on the propeller. The unsteady effects of interaction were studied through flow visualization of propeller-tip vortex distortion over a wing, again using a tractor-propeller configuration.

  20. Flapping-wing mechanical butterfly on a wheel

    NASA Astrophysics Data System (ADS)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  1. 6. VIEW OF APPROACH SPAN AND MAIN SPAN OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF APPROACH SPAN AND MAIN SPAN OF THE ACCESS BRIDGE AND INTAKE PIER, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  2. View of approach span and movable span, looking southeast from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of approach span and movable span, looking southeast from navy land. Note that navigational channel exists only on north side of movable span. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  3. 56. VIEW SOUTH, WEST SIDE AT CANTILEVER SPAN (SPAN 70) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. VIEW SOUTH, WEST SIDE AT CANTILEVER SPAN (SPAN 70) SHOWING FACADE, DOUBLE CROSS BRACING AT COLUMNS, AND CONCRETE BASE - Route 1 Extension, Southbound Viaduct, Spanning Conrail Yards, Wilson Avenue, Delancy Street, & South Street on Routes 1 & 9 Southbound, Newark, Essex County, NJ

  4. 15. MERRITT PARKWAY UNDER SPORT HILL ROAD, FRAME AND WING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. MERRITT PARKWAY UNDER SPORT HILL ROAD, FRAME AND WING WALL DETAILS. Photocopy of drawing (original in Connecticut Department of Transportation, Wethersfield); Connecticut State Highway Department, Approved February 1936. - Merritt Parkway, Bridge No. 744, Spanning Merritt Parkway at Route 59, Fairfield, Fairfield County, CT

  5. An experimental investigation of apex fence flaps on delta wings

    NASA Technical Reports Server (NTRS)

    Vess, R. J.; Wahls, R. A.; Moskovitz, C. A.

    1985-01-01

    The effects on leading edge vortex formation produced by apex fences mounted on two delta wings were examined in a subsonic wind tunnel. Pressure data were collected on the upper surface of the test wings and oil flow and bubble flow visualizations were performed. The deflections studied were 74, 90 and 65 deg in one-sided and two-sided configurations. Full span and semi-span delta wing planforms were used. Relatively small, symmetrically deployed apex fences provided enhanced upper surface suction which, in some angle-of-attack situations, could lead to a pitch-up force. Asymmetrically-deployed fences showed promise for yaw control at high angles of attack, althouh the force effectiveness has yet to be quantified.

  6. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    Vassberg, John C. (Inventor); Gea, Lie-Mine (Inventor); McLean, James D. (Inventor); Witowski, David P. (Inventor); Krist, Steven E. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  7. Flying wings / flying fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    The present paper has documented the historical relationships between various classes of all lifting vehicles, which includes the flying wing, all wing, tailless, lifting body, and lifting fuselage. The diversity in vehicle focus was to ensure that all vehicle types that map have contributed to or been influenced by the development of the classical flying wing concept was investigated. The paper has provided context and perspective for present and future aircraft design studies that may employ the all lifting vehicle concept. The paper also demonstrated the benefit of developing an understanding of the past in order to obtain the required knowledge to create future concepts with significantly improved aerodynamic performance.

  8. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  9. Application of a panel method to wake-vortex/wing interaction and comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Ross, James C.

    1987-01-01

    The ability of the Vortex Separation AEROdynamics (VSAERO) program to calculate aerodynamic loads on wings due to interaction with free vortices was studied. The loads were calculated for various positions of a downstream following wing relative to an upstream vortex-generating wing. Calculated vortex-induced span loads, rolling-moment coefficients, and lift coefficients on the following wing were compared with experimental results of McMillan et al. and El-Ramly et al. Comparisons of calculated and experimental vortex tangential velocities were also made.

  10. Aerodynamic characteristics of a propulsive wing-canard concept at STOL speeds

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.

    1985-01-01

    A full span model of a wing/canard concept representing a fighter configuration has been tested at STOL conditions in the NASA Langley 4 x 7 meter tunnel. The results of this test are presented, and comparisons are made to previous data of the same configuration tested as a semispan model. The potential of the propulsive wing/canard to develop very high lift coefficients was investigated with several nozzle spans (nozzle aspect ratios). Although longitudinal trim was not accomplished with the blowing distributions and configurations tested, the propulsive wing/canard appears to offer an approach to managing the large negative pitching moments associated with trailing edge flap blowing. Also presented are data showing the effects of large flap deflections and relative wing/canard positions. Presented in the appendix to the report are limited lateral-directional and ground effects data, as well as wing downwash measurements.

  11. Pressure Distribution Over a Thick, Tapered and Twisted Monoplane Wing Model-NACA 81-J

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J

    1932-01-01

    This reports presents the results of pressure distribution tests on a thick, tapered and twisted monoplane wing model. The investigation was conducted for the purpose of obtaining data on the aerodynamic characteristics of the new wing and to provide additional information suitable for use in the design of tapered cantilever wings. The tests included angles of attack up to 90 degrees. The span loading over the wing was approximately of elliptical shape, which gave rise to relatively small bending moments about the root. The angle of zero lift for all sections along the span varied only within plus or minus 0.4 degree of the angle of zero lift for the whole wing, resulting in small leading edge loads for the high-speed condition of flight. The results also add to the available information for the study of large angles of attack.

  12. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  13. Exhaust Plume Effects on Sonic Boom for a Delta Wing and a Swept Wing-Body Model

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Lake, Troy

    2012-01-01

    Supersonic travel is not allowed over populated areas due to the disturbance caused by the sonic boom. Research has been performed on sonic boom reduction and has included the contribution of the exhaust nozzle plume. Plume effect on sonic boom has progressed from the study of isolated nozzles to a study with four exhaust plumes integrated with a wing-body vehicle. This report provides a baseline analysis of the generic wing-body vehicle to demonstrate the effect of the nozzle exhaust on the near-field pressure profile. Reductions occurred in the peak-to-peak magnitude of the pressure profile for a swept wing-body vehicle. The exhaust plumes also had a favorable effect as the nozzles were moved outward along the wing-span.

  14. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  15. Analysis of iced wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Chen, H. H.; Kaups, K.; Schimke, S.; Shin, J.

    1992-01-01

    A method for computing ice shapes along the leading edge of a wing and a method for predicting its aerodynamic performance degradation due to icing is described. Ice shapes are computed using an extension of the LEWICE code which was developed for airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered ice wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  16. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  17. Sonic-box method employing local Mach number for oscillating wings with thickness

    NASA Technical Reports Server (NTRS)

    Ruo, S. Y.

    1978-01-01

    A computer program was developed to account approximately for the effects of finite wing thickness in the transonic potential flow over an oscillating wing of finite span. The program is based on the original sonic-box program for planar wing which was previously extended to include the effects of the swept trailing edge and the thickness of the wing. Account for the nonuniform flow caused by finite thickness is made by application of the local linearization concept. The thickness effect, expressed in terms of the local Mach number, is included in the basic solution to replace the coordinate transformation method used in the earlier work. Calculations were made for a delta wing and a rectangular wing performing plunge and pitch oscillations, and the results were compared with those obtained from other methods. An input quide and a complete listing of the computer code are presented.

  18. Quasi-Steady Simulation of Insect-Like Flapping Wing

    NASA Astrophysics Data System (ADS)

    Compton, Brett G.

    2005-11-01

    The goal of this study is to computationally compare turbulent and laminar quasi-steady, 3-D models of insect flight using a simplified wing planform with roughly the same dimensions and stroke kinematics as the average bumblebee wing. To simulate flapping motion of the wing we use a velocity distribution at the inlet that varies linearly with distance along the span of the wing. Angle of attack is treated by changing the angle of the input velocity vector while keeping the wing stationary, thus simplifying grid generation efforts. A laminar simulation is run on an unstructured grid of ˜2.63x10^5 mesh volumes using the commercial CFD code, Fluent; the turbulent simulation is run on a structured grid of similar size and resolution using a research LES code developed by the second author. In both cases we are seeking to reproduce the leading edge vortex (LEV) stabilized with span-wise flow as seen from previous experiments, to compare the time series of coefficients of lift and drag from the laminar and turbulent simulations over one half-stroke, and to analyze validity (or lack thereof) of the quasi-steady approximation.

  19. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1: Load alleviation/extended span development and flight tests

    NASA Technical Reports Server (NTRS)

    Johnston, J. F.

    1979-01-01

    Active wing load alleviation to extend the wing span by 5.8 percent, giving a 3 percent reduction in cruise drag is covered. The active wing load alleviation used symmetric motions of the outboard ailerons for maneuver load control (MLC) and elastic mode suppression (EMS), and stabilizer motions for gust load alleviation (GLA). Slow maneuvers verified the MLC, and open and closed-loop flight frequency response tests verified the aircraft dynamic response to symmetric aileron and stabilizer drives as well as the active system performance. Flight tests in turbulence verified the effectiveness of the active controls in reducing gust-induced wing loads. It is concluded that active wing load alleviation/extended span is proven in the L-1011 and is ready for application to airline service; it is a very practical way to obtain the increased efficiency of a higher aspect ratio wing with minimum structural impact.

  20. The Aerodynamics of Deforming Wings at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Medina, Albert

    responsive to flexibility satisfying an inverse proportionality to stiffness. In hover, an effective pitch angle can be defined in a flexible wing that accounts for deflection which shifts results toward trend lines of rigid wings. Three-dimensional simulations examining the effects of two distinct deformation modes undergoing prescribed deformation associated with root and tip deflection demonstrated a greater aerodynamic response to tip deflection in hover. Efficiency gains in flexion wings over rigid wing counterpart were shown to be dependent on Reynolds number with efficiency in both modes increasing with increased Reynolds number. Additionally, while the leading-edge vortex axis proved insensitive to deformation, the shape and orientation of the LEV core is modified. Experiments on three-dimensional dynamically-scaled fruit fly wings with passive deformation operating in the bursting limit Reynolds number regime revealed enhanced leading-edge vortex bursting with tip deflection promoting greater LEV core flow deceleration in stroke. Experimental studies on rotary wings highlights a universal formation time of the leading-edge vortex independent of Reynolds number, acceleration profile and aspect ratio. Efforts to replicate LEV bursting phenomena of higher aspect ratio wings in a unity aspect ratio wing such that LEV growth is no limited by span but by the LEV traversing the chord revealed a flow regime of oscillatory lift generation reminiscent of behavior exhibited in translating wings that also maintains magnitude peak to peak.

  1. Effect of 3D stall-cells on the pressure distribution of a laminar NACA64-418 wing

    NASA Astrophysics Data System (ADS)

    Ragni, Daniele; Ferreira, Carlos

    2016-08-01

    A 3D stall-cell flow-field has been studied in a 4.8 aspect-ratio wing obtained by linear extrusion of a laminar NACA64-418 airfoil profile. The span-wise change in the velocity and pressure distribution along the wing has been quantified with respect to the development of cellular structures from 8° to 20° angle of attack. Oil-flow visualizations help localizing the regular cellular pattern in function of the angle of attack. Multi-plane stereoscopic PIV measurements obtained by traversing the entire setup along the wing span show that the flow separation is not span-wise uniform. The combination of different stereoscopic fields into a 3D volume of velocity data allows studying the global effect of the stall-cell pattern on the wing flow. Integration of the experimentally computed pressure gradient from the Navier-Stokes equation is employed to compute the span-wise distribution of the mean surface pressure. Comparison of the results with the ones obtained from pressure taps installed in the wing evidences a span-wise periodic loading on the wing. The periodic loading has maxima confined in the stream-wise direction between the location of the highest airfoil curvature and the one of the airfoil flow separation. Estimation of the periodic loading is found within 2-6 % of the sectional wing lift.

  2. The Interference Effects of a Body on the Spanwise Load Distributions of Two 45 Degree Sweptback Wings of Aspect Ratio 8.02 from Low-Speed Tests

    NASA Technical Reports Server (NTRS)

    Martina, Albert P.

    1956-01-01

    Tests of two wing-body combinations have been conducted in the Langley 19-foot pressure tunnel at a Reynolds number of 4 x 10(exp 6) and a Mach number of 0.19 to determine the effects of the bodies on the wing span load distributions. The wings had 45 degrees sweepback of the quarter-chord line, aspect ratio 8.02, taper ratio 0.45, and incorporated 12-percent-thick airfoil sections streamwise. One wing was untwisted and uncambered whereas the second wing incorporated both twist and camber. Identical bodies of revolution, of 10:1 fineness ratio, having diameter-to-span ratios of 0.10, were mounted in mid-high-wing arrangements. The effects of wind incidence, wing fences, and flap deflection were determined for the plane uncambered wing. The addition of the body to the plane wing increased the exposed wing loading at a given lift coefficient as much as 10 percent with the body at 0 degrees incidence and 4 percent at 4 degrees incidence. The bending-moment coefficients at the wing-body juncture were increased about 2 percent with the body at 0 degrees incidence, whereas the increases were as much as 10 percent with the body at 4 degrees incidence. The spanwise load distributions due to the body on the plane wing as calculated by using a swept-wing method employing 19 spanwise lifting elements and control points generally showed satisfactory agreement with experiment. The spanwise load distributions due to body on the flapped plane wing and on the twisted and cambered wing were dissimilar to those obtained on the plane wing. Neither of the methods of calculation which were employed yielded distributions that agreed consistently with experiment for either the flapped plane wing or the twisted and cambered wing.

  3. 3D reconstruction and analysis of wing deformation in free-flying dragonflies.

    PubMed

    Koehler, Christopher; Liang, Zongxian; Gaston, Zachary; Wan, Hui; Dong, Haibo

    2012-09-01

    Insect wings demonstrate elaborate three-dimensional deformations and kinematics. These deformations are key to understanding many aspects of insect flight including aerodynamics, structural dynamics and control. In this paper, we propose a template-based subdivision surface reconstruction method that is capable of reconstructing the wing deformations and kinematics of free-flying insects based on the output of a high-speed camera system. The reconstruction method makes no rigid wing assumptions and allows for an arbitrary arrangement of marker points on the interior and edges of each wing. The resulting wing surfaces are projected back into image space and compared with expert segmentations to validate reconstruction accuracy. A least squares plane is then proposed as a universal reference to aid in making repeatable measurements of the reconstructed wing deformations. Using an Eastern pondhawk (Erythimus simplicicollis) dragonfly for demonstration, we quantify and visualize the wing twist and camber in both the chord-wise and span-wise directions, and discuss the implications of the results. In particular, a detailed analysis of the subtle deformation in the dragonfly's right hindwing suggests that the muscles near the wing root could be used to induce chord-wise camber in the portion of the wing nearest the specimen's body. We conclude by proposing a novel technique for modeling wing corrugation in the reconstructed flapping wings. In this method, displacement mapping is used to combine wing surface details measured from static wings with the reconstructed flapping wings, while not requiring any additional information be tracked in the high speed camera output. PMID:22660780

  4. Experimental wing and canard jet-flap aerodynamics

    NASA Technical Reports Server (NTRS)

    Smeltzer, D. B.; Durston, D. A.; Stewart, V. R.

    1983-01-01

    The effects of upper surface blowing on the aerodynamics of a 1/2-span wing/body/canard configuration are shown. The results expand a data base that is limited at high subsonic Mach numbers (M = 0.6-0.9), data that are needed if computational techniques are to be developed for the complex flowfields generated by jet blowing. At lift coefficients greater than about 1.0, the thrust removed drag coefficient was lower with jet blowing than without jet blowing. This favorable effect increased with increasing jet blowing coefficient, and, for a fixed coefficient, simultaneous wing/canard jet blowing was slightly more effective than blowing either surface alone.

  5. Effects of aspect ratio on flapping wing aerodynamics in animal flight

    NASA Astrophysics Data System (ADS)

    Fu, Jun-Jiang; Hefler, Csaba; Qiu, Hui-He; Shyy, Wei

    2014-12-01

    Morphology as well as kinematics is a critical determinant of performance in flapping flight. To understand the effects of the structural traits on aerodynamics of bio-flyers, three rectangular wings with aspect ratios (AR) of 1, 2, and 4 performing hovering-like sinusoidal kinematics at wingtip based Reynolds number of 5 300 are experimentally investigated. Flow structures on sectional cuts along the wing span are compared. Stronger K-H instability is found on the leading edge vortex of wings with higher aspect ratios. Vortex bursting only appears on the outer spanwise locations of high-aspect-ratio wings. The vortex bursting on high-aspect-ratio wings is perhaps one of the reasons why bio-flyers normally have low-aspect-ratio wings. Quantitative analysis exhibits larger dimensionless circulation of the leading edge vortex (LEV) over higher aspect ratio wings except when vortex bursting happens. The average dimensionless circulation of AR1 and AR2 along the span almost equals the dimensionless circulation at the 50% span. The flow structure and the circulation analysis show that the sinusoidal kinematics suppresses breakdown of the LEV compared with simplified flapping kinematics used in similar studies. The Reynolds number effect results on AR4 show that in the current Re range, the overall flow structure is not sensitive to Reynolds number.

  6. CFD Analysis Based Evaluation of Aerodynamic Characteristics for Supersonic Biplane with Finite Span Length

    NASA Astrophysics Data System (ADS)

    Yonezawa, Masahito; Obayashi, Shigeru

    The supersonic biplane is well known as the airfoil that has zero wave drag at the supersonic speed. This paper investigates aerodynamic characteristics of the supersonic biplane with the finite span length and effects of the aspect and taper ratios by comparing with the two-dimensional supersonic biplane which has the infinite span length using the computational fluid dynamics. The rectangular wing was employed to examine the effect of the aspect ratio and tapered wing was employed to inspect the effect of the taper ratio. Both the rectangular wing and the two-dimensional supersonic biplane choke at the high angle of attack. The drag of the three-dimensional wing becomes smaller when it has a higher aspect ratio. The drag polar curve of the three-dimensional wing approaches asymptotically to the drag polar curve of the two-dimensional supersonic biplane when it has a higher taper ratio. The drag of the tapered wing becomes smaller when it has an adequate taper ratio.

  7. Wind tunnel research concerning lateral control devices, particularly at high angles of attack VII : Handley Page tip and full-span slots with ailerons and spoilers

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Wenzinger, Carl J

    1933-01-01

    Tests were made with ordinary ailerons and different sizes of spoilers on rectangular Clark Y wing models with Handley Page tip and full span slots. The tests showed the effect of the control devices on the general performance of the wings as well as on the lateral control and lateral stability characteristics.

  8. A comparison of several tapered wings designed to avoid tip stalling

    NASA Technical Reports Server (NTRS)

    Anderson, Raymond F

    1939-01-01

    Optimum proportions of tapered wings were investigated by a method that involved a comparison of wings designed to be aerodynamically equal. The conditions of aerodynamic equality were equality in stalling speed, in induced drag at a low speed, and in the total drag at cruising speed. After the wings were adjusted to aerodynamic equivalence, the weights of the wings were calculated as a convenient method of indicating the optimum wing. The aerodynamic characteristics were calculated from wing theory and test data for the airfoil sections. Various combinations of washout, camber increase in the airfoil sections from the center to the tips, and sharp leading edges at the center were used to bring about the desired equivalence of maximum lift and center-stalling characteristics. In the calculation of the weights of the wings, a simple type of spar structure was assumed that permitted an integration across the span to determine the web and the flange weights. The covering and the remaining weight were taken in proportion to the wing area. The total weights showed the wings with camber and washout to have the lowest weights and indicated the minimum for wings with a taper ratio between 1/2 and 1/3.

  9. Overview of the ARPA/WL Smart Structures and Materials Development-Smart Wing contract

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Jardine, A. Peter; Martin, Christopher A.; Appa, Kari

    1996-05-01

    While the concept of an adaptive aircraft wing, i.e., a wing whose shape parameters such as camber, wing twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied, the complexity and weight penalty of the actuation mechanisms have precluded their practical implementation. Recent development of sensors and actuators using smart materials could potentially alleviate the shortcomings of prior designs, paving the way for a practical, `smart' adaptive wing which responds to changes in flight and environmental conditions by modifying its shape to provide optimal performance. This paper presents a summary of recent work done on adaptive wing designs under an on-going ARPA/WL contract entitled `Smart Structures and Materials Development--Smart Wing.' Specifically, the design, development and planned wind tunnel testing of a 16% model representative of a fighter aircraft wing and incorporating the following features, are discussed: (1) a composite wing torque box whose span-wise twist can be varied by activating built-in shape memory alloy (SMA) torque tubes to provide increased lift and enhanced maneuverability at multiple flight conditions, (2) trailing edge control surfaces deployed using composite SMA actuators to provide smooth, hingeless aerodynamic surfaces, and (3) a suite of fiber optic sensors integrated into the wing skin which provide real-time strain and pressure data to a feedback control system.

  10. Effect of Aspect Ratio on the Low-Speed Lateral Control Characteristics of Untapered Low-Aspect-Ratio Wings Equipped with Flap and with Retractable Ailerons

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Naeseth, Rodger L; Hagerman, John R; O'Hare, William M

    1952-01-01

    A low-speed wind-tunnel investigation was made to determine the lateral control characteristics of a series of untapered low-aspect-ratio wings. Sealed flap ailerons of various spans and spanwise locations were investigated on unswept wings of aspect ratios 1.13, 1.13, 4.13, and 6.13; and various projections of 0.60-semispan retractable ailerons were investigated on the unsweptback wings of aspect ratios 1.13, 2.13, and 4.13 and on a 45 degree sweptback wing. The retractable ailerons investigated on the unswept wings spanned the outboard stations of each wing; whereas the plain and stepped retractable ailerons investigated on the sweptback wing were located at various spanwise stations. Design charts based on experimental results are presented for estimating the flap aileron effectiveness for low-aspect-ratio, untapered, unswept.

  11. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  12. Development of the NTF-117S Semi-Span Balance

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.

    2010-01-01

    A new high-capacity semi-span force and moment balance has recently been developed for use at the National Transonic Facility at the NASA Langley Research Center. This new semi-span balance provides the NTF a new measurement capability that will support testing of semi-span test models at transonic high-lift testing regimes. Future testing utilizing this new balance capability will include active circulation control and propulsion simulation testing of semi-span transonic wing models. The NTF has recently implemented a new highpressure air delivery station that will provide both high and low mass flow pressure lines that are routed out to the semi-span models via a set high/low pressure bellows that are indirectly linked to the metric end of the NTF-117S balance. A new check-load stand is currently being developed to provide the NTF with an in-house capability that will allow for performing check-loads on the NTF-117S balance in order to determine the pressure tare affects on the overall performance of the balance. An experimental design is being developed that will allow for experimentally assessing the static pressure tare affects on the balance performance.

  13. On the Minimum Induced Drag of Wings

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  14. On the Minimum Induced Drag of Wings

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2010-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb

  15. Butterfly wing colours: scale beads make white pierid wings brighter.

    PubMed Central

    Stavenga, D. G.; Stowe, S.; Siebke, K.; Zeil, J.; Arikawa, K.

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the scales contain an absorbing pigment, reflectance is suppressed in the absorption wavelength range of the pigment. The reflectance of the white wing areas of P. rapae, where the scales are studded with beads, is considerably higher than that of the white wing areas of H. melpomene, which has scales lacking beads. The beads presumably cause the distinct matt-white colour of the wings of pierids and function to increase the reflectance amplitude. This will improve the visual discrimination between conspecific males and females. PMID:15306303

  16. Aircraft Wing Preparation

    NASA Technical Reports Server (NTRS)

    1921-01-01

    A LMAL carpenter prepares full scale wings for flight research, 1920. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 36), by James Schultz. Published in Engineer in Charge, NASA SP- 4305 (p. 82), by James R. Hansen.

  17. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    NASA Astrophysics Data System (ADS)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  18. Boundary-layer measurements on a transonic low-aspect ratio wing

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.

    1985-01-01

    Tabulations and plots are presented of boundary-layer velocity and flow-direction surveys from wind-tunnel tests of a large-scale (0.90 m semi-span) model of the NASA/Lockheed Wing C. This wing is a generic, transonic, supercritical, highly three-dimensional, low-aspect-ratio configuration designed with the use of a three-dimensional, transonic full-potential-flow wing code (FLO22). Tests were conducted at the design angle of attack of 5 deg over a Mach number range from 0.25 to 0.96 and a Reynolds number range of 3.4x10 to the 6th power. Wing pressures were measured at five span stations, and boundary-layer surveys were measured at the midspan station. The data are presented without analysis.

  19. Calculation of tapered monoplane wings

    NASA Technical Reports Server (NTRS)

    Amstutz, E

    1930-01-01

    The tapered wing shape increases the lift in the middle of the wing and thus reduces the bending moment of the lifting forces in the plane of symmetry. Since this portion of the wing is the thickest, the stresses of the wing material are reduced and desirable space is provided for stowing the loads in the wing. This statically excellent form of construction, however, has aerodynamic disadvantages which must be carefully weighed, if failures are to be avoided. This treatise is devoted to the consideration of these problems.

  20. An experimental study of spanwise flow effects on lift generation in flapping wings

    NASA Astrophysics Data System (ADS)

    Hong, Youngsun

    Using a combination of force transducer measurement to quantify net lift force, a high frame rate camera to quantify and subtract inertial contributions, and Digital Particle Image Velocimetry (DPIV) to calculate aerodynamic contributions in the spanwise plane, the contribution of spanwise flow to the generation of lift force in wings undergoing a pure flapping motion in hover is shown as a function of flapping angle throughout the flapping cycle. When flapping a flat plate wing and a wing of identical wing area and aspect ratio, but cambered in span (both wings in hover with no change in pitch), the spanwise cambered wing was found to generate a greater mean lift force through the whole flap cycle under the same acceleration. However, depending on the angle in flapping arc, the spanwise cambered wing can generate less lift than the flat wing. Additionally, since the lift force generated by the wingtip vortex in the spanwise plane resulting from the flapping motion has yet to be directly quantified, the wingtip vortex is investigated to determine precisely how it augments the lift force through the various phases in the flapping motion. Vortices in the vicinity of the wingtip generate lift force in the spanwise plane of flapping wings. In classical fixed wing aerodynamics, the presence of wing tip vortices has been shown to increase the lift locally near the tip. Also, the impingement of large vortices on the upper surface of delta wings is considered to contribute largely to the lift force at higher angles of attack. This study determined that vortices in the spanwise plane (streamwise vorticity) generate lift in a similar manner in flapping wings. Using a mechanical ornithopter with wings fabricated in-house, vortices were identified at several different locations along the span of the wing, and at numerous different points throughout the flapping cycle under a variety of operating conditions. The lift generated by these spanwise planar oriented vortices was

  1. Analysis of transonic flow about lifting wing-body configurations

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1975-01-01

    An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.

  2. Aerodynamic Influence of a Slat on a Flapped Wing

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Baker, M. David; Roth, Karlin R.; Cummings, Russell M.; VanDalegen, William R. (Technical Monitor)

    1998-01-01

    Three high-lift configurations were computationally studied to assess the aerodynamic influence of slats. A flapped wing was simulated with no slat, a full-span slat, and a three quarter-span slat at a chord based Reynolds number of 3.7 million. The flows were computed using a compressible Navier-Stokes solver on structured grids with the Spalart-Allmaras turbulence model. All cases were compared with experimental data to validate the approach. The slats not only increase the lift generated by the wing but alter the topology of the flowfield considerably. The changes in the flow give insight into the working of a slat and contribute to a better understanding of high-lift flows in general.

  3. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.

    PubMed

    Lehmann, Fritz-Olaf

    2008-01-01

    Understanding the fluid dynamics of force control in flying insects requires the exploration of how oscillating wings interact with the surrounding fluid. The production of vorticity and the shedding of vortical structures within the stroke cycle thus depend on two factors: the temporal structure of the flow induced by the wing's own instantaneous motion and the flow components resulting from both the force production in previous wing strokes and the motion of other wings flapping in close proximity. These wake-wing interactions may change on a stroke-by-stroke basis, confronting the neuro-muscular system of the animal with a complex problem for force control. In a single oscillating wing, the flow induced by the preceding half stroke may lower the wing's effective angle of attack but permits the recycling of kinetic energy from the wake via the wake capture mechanism. In two-winged insects, the acceleration fields produced by each wing may strongly interact via the clap-and-fling mechanism during the dorsal stroke reversal. Four-winged insects must cope with the fact that the flow over their hindwings is affected by the presence of the forewings. In these animals, a phase-shift between the stroke cycles of fore- and hindwing modulates aerodynamic performance of the hindwing via leading edge vortex destruction and changes in local flow condition including wake capture. Moreover, robotic wings demonstrate that phase-lag during peak performance and the strength of force modulation depend on the vertical spacing between the two stroke planes and the size ratio between fore- and hindwing. This study broadly summarizes the most prominent mechanisms of wake-wing and wing-wing interactions found in flapping insect wings and evaluates the consequences of these processes for the control of locomotor forces in the behaving animal.

  4. Flutter study of an advanced composite wing with external stores

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Rivera, Jose A., Jr.; Nagaraja, K. S.

    1987-01-01

    A flutter test using a scaled model of an advanced composite wing for a Navy attack aircraft has been conducted in the NASA Langley Research Center Transonic Dynamics Tunnel. The model was a wall-mounted half-span wing with a semi-span of 6.63 ft. The wing had an aspect ratio of 5.31, taper ratio of 0.312, and quarter-chord sweep of 25 degrees. The model was supported in a manner that simulated the load path in the carry-through structure of the aircraft and the symmetric boundary condition at the fuselage centerline. The model was capable of carrying external stores from three pylon locations on the wing. Flutter tests were conducted for the wing with and without external stores. No flutter was encountered for the clean wing at test conditions which simulated the scaled airplane operating envelope. Flutter boundaries were obtained for several external store configurations. The flutter boundaries for the fuel tanks were nearly Mach number independent (occurring at constant dynamic pressure). To study the aerodynamic effect of the fuel tank stores, pencil stores (slender cylindrical rods) which had the same mass and pitch and yaw inertia as the fuel tanks were tested on the model. These pencil store configurations exhibited a transonic dip in the flutter dynamic pressure, indicating that the aerodynamic effect of the actual fuel tanks on flutter was significant. Several flutter analyses methods were used in an attempt to predict the flutter phenomenon exhibited during the wind-tunnel test. The analysis gave satisfactory predictions of flutter for the pencil store configurations, but unsatisfactory correlation for the actual fuel tank configurations.

  5. Charts for the Determination of Wing Torsional Stiffness Required for Specified Rolling Characteristics or Aileron Reversal Speed

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A; Aiken, William S , Jr

    1944-01-01

    A series of charts are presented by which the wing torsional stiffness required to meet a given standard of rolling effectiveness may be quickly determined. The charts may also be used to obtain quickly the aileron reversal speed and the variation of the loss in rolling effectiveness with airspeed. The charts apply to linearly tapered wings and elliptical wings of tubular-shell construction having various aspect ratios with aileron span and location of ailerons as variables. In the derivation of the charts, induced lift effects have been taken into account and the form of the wing-torsional-stiffness curve has been assumed.

  6. Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight

    PubMed Central

    Heerenbrink, M. Klein; Johansson, L. C.; Hedenström, A.

    2015-01-01

    Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models. PMID:27547098

  7. Aeroacoustic theory for noncompact wing-gust interaction

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Widnall, S. E.

    1981-01-01

    Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.

  8. Flight test and numerical simulation of transonic flow around YAV-8B Harrier II wing

    NASA Technical Reports Server (NTRS)

    Gea, Lie-Mine; Chyu, Wei J.; Stortz, Michael W.; Roberts, Andrew C.; Chow, Chuen-Yen

    1991-01-01

    A computational fluid dynamics (CFD) method is used to study the aerodynamics of the YAV-8B Harrier II wing in the transonic region. A numerical procedure is developed to compute the flow field around the complicated wing-pylon-fairing geometry. The surface definition of the wing and pylons were obtained from direct measurement using theodolite triangulation. A thin-layer Navier-Stokes code with the Chimera technique is used to compute flow solutions. The computed pressure distributions at several span stations are compared with flight test data and show good agreement. Computed results are correlated with flight test data that show the flow is severely separated in the vicinity of the wing-pylon junction. Analysis shows that shock waves are induced by pylon swaybrace fairings, that the flow separation is much stronger at the outboard pylon and that the separation is caused mainly by the crossflow passing the geometry of wing-pylon junction.

  9. Experimental Investigation of the Unsteady Flow Structures of Two Interacting Pitching Wings

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2015-11-01

    Birds, insects and fish propel themselves with unsteady motions of their wings and fins. Many of these animals are also found to fly or swim in three-dimensional flocks and schools. Numerous studies have explored the three-dimensional steady flow interactions and the two-dimensional unsteady flow interactions in collectives. Yet, the characterization of the three-dimensional unsteady interactions remains relatively unexplored. This study aims to characterize the flow structures and interactions between two sinusoidally pitching finite-span wings. The arrangement of the wings varies from a tandem to a bi-plane configuration. The vortex structures for these various arrangements are quantified by using particle image velocimetry. The vortex-wing interactions are also characterized as the synchrony between the wings is modified.

  10. Deformed wing virus.

    PubMed

    de Miranda, Joachim R; Genersch, Elke

    2010-01-01

    Deformed wing virus (DWV; Iflaviridae) is one of many viruses infecting honeybees and one of the most heavily investigated due to its close association with honeybee colony collapse induced by Varroadestructor. In the absence of V.destructor DWV infection does not result in visible symptoms or any apparent negative impact on host fitness. However, for reasons that are still not fully understood, the transmission of DWV by V.destructor to the developing pupae causes clinical symptoms, including pupal death and adult bees emerging with deformed wings, a bloated, shortened abdomen and discolouration. These bees are not viable and die soon after emergence. In this review we will summarize the historical and recent data on DWV and its relatives, covering the genetics, pathobiology, and transmission of this important viral honeybee pathogen, and discuss these within the wider theoretical concepts relating to the genetic variability and population structure of RNA viruses, the evolution of virulence and the development of disease symptoms.

  11. Theoretical characteristics in supersonic flow of two types of control surfaces on triangular wings

    NASA Technical Reports Server (NTRS)

    Tucker, Warren A; Nelson, Robert L

    1949-01-01

    Methods based on the linearized theory for supersonic flow were used to find the characteristics of two types of control surfaces on thin triangular wings. The first type, the constant-chord partial-span flap, was considered to extend either outboard from the center of the wing or inboard from the wing tip. The second type, the full-triangular-tip flap, was treated only for the case in which the Mach number component normal to the leading edge is supersonic. For each type, expressions were found for the lift, rolling-moment, pitching-moment, and hinge-moment characteristics.

  12. Technical and Economic Assessment of Span-Distributed Loading Cargo Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Johnston, W. M.; Muehlbauer, J. C.; Eudaily, R. R.; Farmer, B. T.; Monrath, J. F.; Thompson, S. G.

    1976-01-01

    A 700,000 kg (1,540,000-lb) aircraft with a cruise Mach number of 0.75 was found to be optimum for the specified mission parameters of a 272 155-kg (600,000-lb) payload, a 5560-km (3000-n.mi.) range, and an annual productivity of 113 billion revenue-ton km (67 billion revenue-ton n. mi.). The optimum 1990 technology level spanloader aircraft exhibited the minimum 15-year life-cycle costs, direct operating costs, and fuel consumption of all candidate versions. Parametric variations of wing sweep angle, thickness ratio, rows of cargo, and cargo density were investigated. The optimum aircraft had two parallel rows of 2.44 x 2.44-m (8 x 8-ft) containerized cargo with a density of 160 kg/cu m (10 lb/ft 3) carried throughout the entire 101-m (331-ft) span of the constant chord, 22-percent thick, supercritical wing. Additional containers or outsized equipment were carried in the 24.4-m (80-ft) long fuselage compartment preceding the wing. Six 284,000-N (64,000-lb) thrust engines were mounted beneath the 0.7-rad (40-deg) swept wing. Flight control was provided by a 36.6-m (120-ft) span canard surface mounted atop the forward fuselage, by rudders on the wingtip verticals and by outboard wing flaperons.

  13. Torsion in box wings

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1931-01-01

    Logical analysis of a box wing necessitates the allowance for the contribution of the drag spars to the torsional strength of the structure. A rigorous analysis is available in the use of the Method of Least Work. The best logical method of analysis is that applying Prandtl's Membrane Analogy. The results so obtained vary by a negligible amount from those obtained by the rigorous method.

  14. Wing on a String

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an activity that shows students how flight occurs. The "wing on a string" is a simple teacher-made frame that consists of PVC pipe, fishing line, and rubber bands--all readily available hardware store items. The only other materials/tools involved are a sheet of paper, some pieces of a soda straw, a stapler,…

  15. ACTE Wing Loads Analysis

    NASA Technical Reports Server (NTRS)

    Horn, Nicholas R.

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) project modified a Gulfstream III (GIII) aircraft with a new flexible flap that creates a seamless transition between the flap and the wing. As with any new modification, it is crucial to ensure that the aircraft will not become overstressed in flight. To test this, Star CCM a computational fluid dynamics (CFD) software program was used to calculate aerodynamic data for the aircraft at given flight conditions.

  16. Drag reduction by wing tip slots in a gliding Harris' hawk, Parabuteo unicinctus

    PubMed

    Tucker

    1995-01-01

    The anterior-most primary feathers of many birds that soar over land bend upwards and separate vertically to form slotted wing tips during flight. The slots are thought to reduce aerodynamic drag, although drag reduction has never been demonstrated in living birds. Wing theory explains how the feathers that form the tip slots can reduce induced drag by spreading vorticity horizontally along the wing and by acting as winglets, which are used on aircraft to make wings non-planar and to spread vorticity vertically. This study uses the induced drag factor to measure the induced drag of a wing relative to that of a standard planar wing with the same span, lift and speed. An induced drag factor of less than 1 indicates that the wing is non-planar. The minimum drag of a Harris' hawk gliding freely in a wind tunnel was measured before and after removing the slots by clipping the tip feathers. The unclipped hawk had 70­90 % of the drag of the clipped hawk at speeds between 7.3 and 15.0 m s-1. At a wing span of 0.8 m, the unclipped hawk had a mean induced drag factor of 0.56, compared with the value of 1.10 assumed for the clipped hawk. A Monte Carlo simulation of error propagation and a sensitivity analysis to possible errors in measured and assumed values showed that the true mean value of the induced drag factor for the unclipped hawk was unlikely to be more than 0.93. These results for a living bird support the conclusions from a previous study of a feathered tip on a model wing in a wind tunnel: the feathers that form the slotted tips reduce induced drag by acting as winglets that make the wings non-planar and spread vorticity both horizontally and vertically.

  17. Effects of Horizontal-Control Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.

    1981-01-01

    An investigation at low subsonic speeds has been conducted in the Langley 300-MPH 7- by 10-foot tunnel. The basic wing had a trapezoidal planform, an aspect ratio of 3.0., a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the basic wing included deflectable full-span and partial-span leading-edge chord-extensions. A trapezoidal horizontal control similar in planform to the basic wing and a 60 deg sweptback delta horizontal control were tested in conjunction with the wing. The total planform area of each horizontal control was 16 percent of the total basic-wing area. Modifications to these horizontal controls included addition of a full-span chord-extension to the trapezoidal planform and a fence to the delta planform.

  18. Flow Structure on a Flapping Wing: Quasi-Steady Limit

    NASA Astrophysics Data System (ADS)

    Ozen, Cem; Rockwell, Donald

    2011-11-01

    The flapping motion of an insect wing typically involves quasi-steady motion between extremes of unsteady motion. This investigation characterizes the flow structure for the quasi-steady limit via a rotating wing in the form of a thin rectangular plate having a low aspect ratio (AR =1). Particle Image Velocimetry (PIV) is employed, in order to gain insight into the effects of centripetal and Coriolis forces. Vorticity, velocity and streamline patterns are used to describe the overall flow structure with an emphasis on the leading-edge vortex. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75° and it is observed that at each angle of attack the flow structure remains relatively same over the Reynolds number range from 3,600 to 14,500. The dimensionless circulation of the leading edge vortex is found to be proportional to the effective angle of attack. Quasi-three-dimensional construction of the flow structure is used to identify the different regimes along the span of the wing which is then complemented by patterns on cross flow planes to demonstrate the influence of root and tip swirls on the spanwise flow. The rotating wing results are also compared with the equivalent of translating wing to further illustrate the effects of the rotation.

  19. Transonic swept wings studied by the lifting-line theory

    NASA Technical Reports Server (NTRS)

    Cheng, H. K.; Meng, S. Y.; Chow, R.; Smith, R. C.

    1981-01-01

    Transonic swept wings are analyzed as a lifting-line problem under a small-disturbance approximation. Basic concepts and principal results of the asymptotic theory are discussed. The study focuses on straight oblique wings and V-shaped swept wings, of which the local centerline curvature can be equated to zero. The three-dimensional (3-D) perturbation of the nonlinear component flow admits a similarity flow structure but requires that all wing sections are generated from a single airfoil profile; the reduced 2-D problems in this case are solved only once for all span stations. Examples of solutions involving high subcritical and slightly supercritical component flows are demonstrated and compared with surface pressure data from 3-D computer codes based on the full-potential equation (FLO 22). Except in the neighborhood of leading edges, where the small-disturbance assumption breaks down, and in the vicinities of wing tips and the symmetry plane, where neither the theory nor the 3-D codes may claim full validity, reasonable agreement is consistently found. The explicit results from the upwash analysis, along with the similarity flow structure, provides a rational approach to the control of 3-D effects in transonic aerodynamic design studies.

  20. Fog spontaneously folds mosquito wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.

    2015-02-01

    The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.

  1. Pressure Distribution Over a Rectangular Airfoil with a Partial-Span Split Flap

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Harris, Thomas A

    1937-01-01

    This report presents the results of pressure-distribution tests of a Clark y wing model with a partial-span split flap made to determine the distribution of air loads over both the wing and the flap. The model was used in conjunction with a reflection plane in the NACA 7 by 10 foot wind tunnel. The 20-percent-chord split flap extended over the inboard 60 percent of the semispan. The tests were made at various flap deflections up to 45 degrees and covered a range of angles of attack from zero lift to approximately maximum lift for each deflection.

  2. Investigation of Seal-to-Floor Effects on Semi-Span Transonic Models

    NASA Technical Reports Server (NTRS)

    Sleppy, Mark A.; Engel, Eric A.; Watson, Kevin T.; Atler, Douglas M.

    2009-01-01

    In an effort to achieve the maximum possible Reynolds number (Re) when conducting production testing for flight loads aerodynamic databases, it has been the preferred practice of The Boeing Company / Commercial Airplanes (BCA) -- Loads and Dynamics Group since the early 1990's to test large scale semi-span models in the 11- By 11-Foot Transonic Wind Tunnel (TWT) leg of the Unitary Plan Wind Tunnel (UPWT) at the NASA Ames Research Center (ARC). There are many problems related to testing large scale semi-span models of high aspect ratio flexible transport wings, such as; floor boundary layer effects, wing spanwise wall effects, solid blockage buoyancy effects, floor mechanical interference effects, airflow under the model effects, or tunnel flow gradient effects. For most of these issues, BCA has developed and implemented either standard testing methods or numerical correction schemes and these will not be discussed in this document. Other researchers have reported on semi-span transonic testing correction issues, however most of the reported research has been for low Mach testing. Some of the reports for low Mach testing address the difficult problem of preventing undesirable airflow under a semi-span model while ensuring unrestricted main balance functionality, however, for transonic models this issue has gone unresolved. BCA has been cognizant for sometime that there are marked differences in wing pressure distributions from semi-span transonic model testing than from full model or flight testing. It has been suspected that these differences are at least in part due to airflow under the model. Previous efforts by BCA to address this issue have proven to be ineffective or inconclusive and in one situation resulted in broken hardware. This paper reports on a Boeing-NASA collaborative investigation based on a series of small tests conducted between June 2006 and November 2007 in the 11 by 11 foot Transonic Wind Tunnel at NASA Ames on three large commercial jet

  3. Life Span Well-Being

    ERIC Educational Resources Information Center

    Wolf, Mary Alice

    2005-01-01

    This chapter, rooted in life span developmental research and theory, examines domains of subjective well-being: emotional, social, and psychological. What is the impact of these domains on the learner's experience of education? It invites the reader to consider implications for learning through the use of learners' narratives.

  4. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  5. Wing Flutter Control

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through Small Business Innovation Research (SBIR) contracts from Langley Research Center, Orbital Research Inc. developed the Orbital Research Intelligent Control Algorithm (ORICA), the first practical hardware-independent adaptive predictive control structure, specifically suited for optimal control of complex, time-varying systems. ORICA technology has been applied to the problem of controlling aircraft wing flutter. Coupled with NASA expertise, the technology has the possibility of making jet travel safer, more cost effective by extending distance range, and lowering overall aircraft operating costs. Future application areas for ORICA include control of robots, power trains, systems with arrays of sensors, or regulating chemical plants or electrical power plant control.

  6. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  7. Effects of Wing Sweep on In-flight Boundary-layer Transition for a Laminar Flow Wing at Mach Numbers from 0.60 to 0.79

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.

    1990-01-01

    The variable sweep transition flight experiment (VSTFE) was conducted on an F-14A variable sweep wing fighter to examine the effect of wing sweep on natural boundary layer transition. Nearly full span upper surface gloves, extending to 60 percent chord, were attached to the F-14 aircraft's wings. The results are presented of the glove 2 flight tests. Glove 2 had an airfoil shape designed for natural laminar flow at a wing sweep of 20 deg. Sample pressure distributions and transition locations are presented with the complete results tabulated in a database. Data were obtained at wing sweeps of 15, 20, 25, 30, and 35 deg, at Mach numbers ranging from 0.60 to 0.79, and at altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number obtained was 18.6 x 10(exp 6) at 15 deg of wing sweep, Mach 0.75, and at an altitude of 10,000 ft.

  8. Constructing Gloved wings for aerodynamic studies

    NASA Technical Reports Server (NTRS)

    Bohn-Meyer, Marta R.

    1988-01-01

    Recently, two aircraft from the Dryden Flight Research Facility were used in the general study of natural laminar flow (NLF). The first, an F-14A aircraft on short-term loan from the Navy, was used to investigate transonic natural laminar flow. The second, an F-15A aircraft on long-term loan from the Air Force, was used to examine supersonic NLF. These tests were follow-on experiments to the NASA F-111 NLF experiment conducted in 1979. Both wings of the F-14A were gloved, in a two-phased experiment, with full-span(upper surface only) airfoil shapes constructed primarily of fiberglass, foam, and resin. A small section of the F-15A right wing was gloved in a similar manner. Each glove incorporated provisions for instrumentation to measure surface pressure distributions. The F-14A gloves also had provisions for instrumentation to measure boundary layer profiles, acoustic environments, and surface pitot pressures. Discussions of the techniques used to construct the gloves and to incorporate the required instrumentation are presented.

  9. Effects of ornamentation and phylogeny on the evolution of wing shape in stalk-eyed flies (Diopsidae).

    PubMed

    Husak, J F; Ribak, G; Baker, R H; Rivera, G; Wilkinson, G S; Swallow, J G

    2013-06-01

    Exaggerated male ornaments are predicted to be costly to their bearers, but these negative effects may be offset by the correlated evolution of compensatory traits. However, when locomotor systems, such as wings in flying species, evolve to decrease such costs, it remains unclear whether functional changes across related species are achieved via the same morphological route or via alternate changes that have similar function. We conducted a comparative analysis of wing shape in relation to eye-stalk elongation across 24 species of stalk-eyed flies, using geometric morphometrics to determine how species with increased eye span, a sexually selected trait, have modified wing morphology as a compensatory mechanism. Using traditional and phylogenetically informed multivariate analyses of shape in combination with phenotypic trajectory analysis, we found a strong phylogenetic signal in wing shape. However, dimorphic species possessed shifted wing veins with the result of lengthening and narrowing wings compared to monomorphic species. Dimorphic species also had changes that seem unrelated to wing size, but instead may govern wing flexion. Nevertheless, the lack of a uniform, compensatory pattern suggests that stalk-eyed flies used alternative modifications in wing structure to increase wing area and aspect ratio, thus taking divergent morphological routes to compensate for exaggerated eye stalks.

  10. Use of a Viscous Flow Simulation Code for Static Aeroelastic Analysis of a Wing at High-Lift Conditions

    NASA Technical Reports Server (NTRS)

    Akaydin, H. Dogus; Moini-Yekta, Shayan; Housman, Jeffrey A.; Nguyen, Nhan

    2015-01-01

    In this paper, we present a static aeroelastic analysis of a wind tunnel test model of a wing in high-lift configuration using a viscous flow simulation code. The model wing was tailored to deform during the tests by amounts similar to a composite airliner wing in highlift conditions. This required use of a viscous flow analysis to predict the lift coefficient of the deformed wing accurately. We thus utilized an existing static aeroelastic analysis framework that involves an inviscid flow code (Cart3d) to predict the deformed shape of the wing, then utilized a viscous flow code (Overflow) to compute the aerodynamic loads on the deformed wing. This way, we reduced the cost of flow simulations needed for this analysis while still being able to predict the aerodynamic forces with reasonable accuracy. Our results suggest that the lift of the deformed wing may be higher or lower than that of the non-deformed wing, and the washout deformation of the wing is the key factor that changes the lift of the deformed wing in two distinct ways: while it decreases the lift at low to moderate angles of attack simply by lowering local angles of attack along the span, it increases the lift at high angles of attack by alleviating separation.

  11. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    PubMed

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing.

  12. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    PubMed

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing. PMID:24434625

  13. The SPAN cookbook: A practical guide to accessing SPAN

    NASA Technical Reports Server (NTRS)

    Mason, Stephanie; Tencati, Ronald D.; Stern, David M.; Capps, Kimberly D.; Dorman, Gary; Peters, David J.

    1990-01-01

    This is a manual for remote users who wish to send electronic mail messages from the Space Physics Analysis Network (SPAN) to scientific colleagues on other computer networks and vice versa. In several instances more than one gateway has been included for the same network. Users are provided with an introduction to each network listed with helpful details about accessing the system and mail syntax examples. Also included is information on file transfers, remote logins, and help telephone numbers.

  14. Application of a Navier-Stokes Solver to the Analysis of Multielement Airfoils and Wings Using Multizonal Grid Techniques

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth M.; Biedron, Robert T.; Whitlock, Mark

    1995-01-01

    A computational study was performed to determine the predictive capability of a Reynolds averaged Navier-Stokes code (CFL3D) for two-dimensional and three-dimensional multielement high-lift systems. Three configurations were analyzed: a three-element airfoil, a wing with a full span flap and a wing with a partial span flap. In order to accurately model these complex geometries, two different multizonal structured grid techniques were employed. For the airfoil and full span wing configurations, a chimera or overset grid technique was used. The results of the airfoil analysis illustrated that although the absolute values of lift were somewhat in error, the code was able to predict reasonably well the variation with Reynolds number and flap position. The full span flap analysis demonstrated good agreement with experimental surface pressure data over the wing and flap. Multiblock patched grids were used to model the partial span flap wing. A modification to an existing patched- grid algorithm was required to analyze the configuration as modeled. Comparisons with experimental data were very good, indicating the applicability of the patched-grid technique to analyses of these complex geometries.

  15. Beetle wings are inflatable origami

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  16. Energetics and optimum motion of oscillating lifting surfaces of finite span

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.; Widnall, S. E.

    1986-01-01

    In certain modes of animal propulsion in nature, such as bird flight and fish swimming, the efficiency compared to man-made vehicles is very high. In such cases, wing and tail motions are typically associated with relatively high Reynolds numbers, where viscous effects are confined to a thin boundary layer at the surface and a thin trailing wake. The propulsive forces, which are generated primarily by the inertial forces, can be calculated from potential-flow theory using linearized unsteady-wing theory (for small-amplitude oscillations). In the present study, a recently developed linearized, low-frequency, unsteady lifting-line theory is employed to calculate the (sectional and total) energetic quantities and optimum motion of an oscillating wing of finite span.

  17. Exploring the Dimensionality of Digit Span

    ERIC Educational Resources Information Center

    Bowden, Stephen C.; Petrauskas, Vilija M.; Bardenhagen, Fiona J.; Meade, Catherine E.; Simpson, Leonie C.

    2013-01-01

    The Digit Span subtest from the Wechsler Scales is used to measure Freedom from Distractibility or Working Memory. Some published research suggests that Digit Span forward should be interpreted differently from Digit Span backward. The present study explored the dimensionality of the Wechsler Memory Scale-III Digit Span (forward and backward)…

  18. Loneliness across the life span.

    PubMed

    Qualter, Pamela; Vanhalst, Janne; Harris, Rebecca; Van Roekel, Eeske; Lodder, Gerine; Bangee, Munirah; Maes, Marlies; Verhagen, Maaike

    2015-03-01

    Most people have experienced loneliness and have been able to overcome it to reconnect with other people. In the current review, we provide a life-span perspective on one component of the evolutionary theory of loneliness-a component we refer to as the reaffiliation motive (RAM). The RAM represents the motivation to reconnect with others that is triggered by perceived social isolation. Loneliness is often a transient experience because the RAM leads to reconnection, but sometimes this motivation can fail, leading to prolonged loneliness. We review evidence of how aspects of the RAM change across development and how these aspects can fail for different reasons across the life span. We conclude with a discussion of age-appropriate interventions that may help to alleviate prolonged loneliness. PMID:25910393

  19. Loneliness across the life span.

    PubMed

    Qualter, Pamela; Vanhalst, Janne; Harris, Rebecca; Van Roekel, Eeske; Lodder, Gerine; Bangee, Munirah; Maes, Marlies; Verhagen, Maaike

    2015-03-01

    Most people have experienced loneliness and have been able to overcome it to reconnect with other people. In the current review, we provide a life-span perspective on one component of the evolutionary theory of loneliness-a component we refer to as the reaffiliation motive (RAM). The RAM represents the motivation to reconnect with others that is triggered by perceived social isolation. Loneliness is often a transient experience because the RAM leads to reconnection, but sometimes this motivation can fail, leading to prolonged loneliness. We review evidence of how aspects of the RAM change across development and how these aspects can fail for different reasons across the life span. We conclude with a discussion of age-appropriate interventions that may help to alleviate prolonged loneliness.

  20. Technical and economic assessment of span-distributed loading cargo aircraft concepts

    NASA Technical Reports Server (NTRS)

    Whitlow, D. H.; Whitner, P. C.

    1976-01-01

    A preliminary design study of the performance and economics resulting from the application of the distributed load concept to large freighter aircraft was made. The study was limited to configurations having the payload entirely contained in unswept wings of constant chord with conventional tail surfaces supported from the wing by twin booms. A parametric study based on current technology showed that increases in chord had a similar effect on the economics as increases in span. Increases in both span and chord or airplane size had the largest and most favorable effect. At 600,000 lbs payload a configuration was selected and refined to incorporate advanced technology that could be in production by 1990 and compared with a reference conventional airplane having similar technology.

  1. Large-Scale Boundary-Layer Control Tests on Two Wings in the NACA 20-Foot Wind Tunnel, Special Report

    NASA Technical Reports Server (NTRS)

    Freeman, Hugh B.

    1935-01-01

    Tests were made in the N.A.C.A. 20-foot wind tunnel on: (1) a wing, of 6.5-foot span, 5.5-foot chord, and 30 percent maximum thickness, fitted with large end plates and (2) a 16-foot span 2.67-foot chord wing of 15 percent maximum thickness to determine the increase in lift obtainable by removing the boundary layer and the power required for the blower. The results of the tests on the stub wing appeared more favorable than previous small-scale tests and indicated that: (1) the suction method was considerably superior to the pressure method, (2) single slots were more effective than multiple slots (where the same pressure was applied to all slots), the slot efficiency increased rapidly for increasing slot widths up to 2 percent of the wing chord and remained practically constant for all larger widths tested, (3) suction pressure and power requirements were quite low (a computation for a light airplane showed that a lift coefficient of 3.0 could be obtained with a suction as low as 2.3 times the dynamic pressure and a power expenditure less than 3 percent of the rated engine power), and (4) the volume of air required to be drawn off was quite high (approximately 0.5 cubic feet per second per unit wing area for an airplane landing at 40 miles per hour with a lift coefficient of 3,0), indicating that considerable duct area must be provided in order to prevent flow losses inside the wing and insure uniform distribution of suction along the span. The results from the tests of the large-span wing were less favorable than those on the stub wing. The reasons for this were, probably: (1) the uneven distribution of suction along the span, (2) the flow losses inside the wing, (3) the small radius of curvature of the leading edge of the wing section, and (4) the low Reynolds Number of these tests, which was about one half that of the stub wing. The results showed a large increase in the maximum lift coefficient with an increase in Reynolds Number in the range of the tests. The

  2. Insect wing membrane topography is determined by the dorsal wing epithelium.

    PubMed

    Belalcazar, Andrea D; Doyle, Kristy; Hogan, Justin; Neff, David; Collier, Simon

    2013-01-01

    The Drosophila wing consists of a transparent wing membrane supported by a network of wing veins. Previously, we have shown that the wing membrane cuticle is not flat but is organized into ridges that are the equivalent of one wing epithelial cell in width and multiple cells in length. These cuticle ridges have an anteroposterior orientation in the anterior wing and a proximodistal orientation in the posterior wing. The precise topography of the wing membrane is remarkable because it is a fusion of two independent cuticle contributions from the dorsal and ventral wing epithelia. Here, through morphological and genetic studies, we show that it is the dorsal wing epithelium that determines wing membrane topography. Specifically, we find that wing hair location and membrane topography are coordinated on the dorsal, but not ventral, surface of the wing. In addition, we find that altering Frizzled Planar Cell Polarity (i.e., Fz PCP) signaling in the dorsal wing epithelium alone changes the membrane topography of both dorsal and ventral wing surfaces. We also examined the wing morphology of two model Hymenopterans, the honeybee Apis mellifera and the parasitic wasp Nasonia vitripennis. In both cases, wing hair location and wing membrane topography are coordinated on the dorsal, but not ventral, wing surface, suggesting that the dorsal wing epithelium also controls wing topography in these species. Because phylogenomic studies have identified the Hymenotera as basal within the Endopterygota family tree, these findings suggest that this is a primitive insect character.

  3. Aeroelastic Analysis of Aircraft: Wing and Wing/Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Chen, H. H.; Chang, K. C.; Tzong, T.; Cebeci, T.

    1997-01-01

    A previously developed interface method for coupling aerodynamics and structures is used to evaluate the aeroelastic effects for an advanced transport wing at cruise and under-cruise conditions. The calculated results are compared with wind tunnel test data. The capability of the interface method is also investigated for an MD-90 wing/fuselage configuration. In addition, an aircraft trim analysis is described and applied to wing configurations. The accuracy of turbulence models based on the algebraic eddy viscosity formulation of Cebeci and Smith is studied for airfoil flows at low Mach numbers by using methods based on the solutions of the boundary-layer and Navier-Stokes equations.

  4. Subsonic longitudinal and lateral aerodynamic characteristics for a systematic series of strake-wing configurations

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1979-01-01

    A systematic wind tunnel study was conducted in the Langley 7 by 10 foot high speed tunnel to help establish a parametric data base of the longitudinal and lateral aerodynamic characteristics for configurations incorporating strake-wing geometries indicative of current and proposed maneuvering aircraft. The configurations employed combinations of strakes with reflexed planforms having exposed spans of 10%, 20%, and 30% of the reference wing span and wings with trapezoidal planforms having leading edge sweep angles of approximately 30, 40, 44, 50, and 60 deg. Tests were conducted at Mach numbers ranging from 0.3 to 0.8 and at angles of attack from approximately -4 to 48 deg at zero sideslip.

  5. The aerodynamic characteristics of a propulsive wing/canard concept in STOL

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.; Paulson, J. W. JR.

    1984-01-01

    The potential of the propulsive wing in developing very high lift coefficients for STOL operation has been investigated with several nozzle aspect ratios. The use of the propulsive wing/canard appears to offer an approach to managing the large negative pitching moments associated with trailing-edge blowing. A full-span model of a wing/canard concept representing a fighter configuration has been tested at STOL conditions in the Langley 4 by 7 Meter Tunnel. The results of this test are presented, and comparisons are made to previous tests of the same configuration tested as a semispan model (Stewrt, 1983). Also presented are data showing the effects of large flap deflection and the effect of nozzle span. Comparisons of the test results with jet-flap theory are made and indicate good agreement.

  6. Flow Structure on a Rotating Wing: Effect of Rossby Number

    NASA Astrophysics Data System (ADS)

    Wolfinger, Maxwell; Rockwell, Donald

    2013-11-01

    The flow structure on a rotating wing is determined via stereoscopic particle image velocimetry. Sectional and three-dimensional, volumetric reconstructions define the flow patterns as a function of Rossby number Ro. An aspect ratio AR = 1 rectangular, flat plate is rotated at a geometric angle of attack α = 45°. The flow structure is determined at various angles of rotation, in order to characterize both the initial development and the fully evolved state of the flow structure. The Rossby number Ro =rg / C is varied via alteration of the radius of gyration rg of the wing, to give values from Ro = 1.2 to Ro = 5.1. Large changes of the flow structure are represented by images of of spanwise vorticity, Q-criterion; spanwise velocity; and downwash velocity. At the lowest Rossby number Ro = 1.2, a vortex is attached to the leading edge of the wing; it is present along most of the span. At higher Rossby numbers Ro = 2.1 and Ro = 5.1, this leading-edge vortex becomes less organized and deflects away from the surface of the wing. At a Rossby number Ro = 5.1 the structure of the flow in the vicinity of the leading edge resembles a separated shear layer. The nature of other elements of the three-dimensional flow, such as the root and tip vortices and the downwash velocity, are closely related to the degree of coherence of the leading-edge vortex.

  7. Incompressible Turbulent Wing-Body Junction Flow

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.

    1998-01-01

    -stream flow. The lateral curvature of the wing/strat causes the oncoming turbulent layer to skew about am axis (x-axis) parallel to the plane (xz-plane) of the mean shear. This is the principle mechanism for the generation of secondary flow. Such skew-induced secondary flows are slow to be attenuated by Reynolds stresses. Additional contribution to the generation of secondary flow comes from anisotropies in Reynolds stresses. Upstream of the strut, the mean-vorticity is directed span wise (along the y-direction). The presence of secondary flow in the vicinity of the strut causes the vorticity to stretch around the obstacle in a horse-shoe shape, with each leg having a vorticity of the opposite sense. The blockage effect of the strut imposes a severe adverse pressure gradient on the oncoming turbulent shear layer, causing boundary layer separation ahead of the leading edge, resulting in a vortex that rolls up and flows downstream into the juncture region. The separation vortices trailing in the wake of the wing can alter the lift or drag characteristics of the surfaces downstream of the wing-body juncture. Likewise, on submarines, the wake flow behind the appendage can degrade the performance of the propeller located downstream. The complex nature of this flow is caused by the presence of all six components of Reynolds stresses. Devenport and Simpson report that in the vicinity of the horse-shoe vortex there is intense recirculation with turbulent stresses being much larger than those normally observed in turbulent flows. These features contribute to making this flow a challenge to predict numerically. Some of the past studies provide useful insights into this flow that would guide our numerical efforts. In measurements reported by Shabaka and Bradshaw, the eddy viscosity tensor is seen to be non-isotropic and has negative components in certain regions. In an effort to evaluate the closure assumptions of various turbulence models, Devenport and Simpson used their own extensive

  8. Influence of Finite Span and Sweep on Active Flow Control Efficacy

    NASA Technical Reports Server (NTRS)

    Greenblatt, David; Washburn, Anthony E.

    2008-01-01

    Active flow control efficacy was investigated by means of leading-edge and flap-shoulder zero mass-flux blowing slots on a semispan wing model that was tested in unswept (standard) and swept configurations. On the standard configuration, stall commenced inboard, but with sweep the wing stalled initially near the tip. On both configurations, leading-edge perturbations increased CL,max and post stall lift, both with and without deflected flaps. Without sweep, the effect of control was approximately uniform across the wing span but remained effective to high angles of attack near the tip; when sweep was introduced a significant effect was noted inboard, but this effect degraded along the span and produced virtually no meaningful lift enhancement near the tip, irrespective of the tip configuration. In the former case, control strengthened the wingtip vortex; in the latter case, a simple semi-empirical model, based on the trajectory or "streamline" of the evolving perturbation, served to explain the observations. In the absence of sweep, control on finite-span flaps did not differ significantly from their nominally twodimensional counterpart. Control from the flap produced expected lift enhancement and CL,max improvements in the absence of sweep, but these improvements degraded with the introduction of sweep.

  9. Influence of Finite Span and Sweep on Active Flow Control Efficacy

    NASA Technical Reports Server (NTRS)

    Greenblatt, David; Washburn, Anthony E.

    2007-01-01

    Active flow control efficacy was investigated by means of leading-edge and flap-shoulder zero mass-flux blowing slots on a semispan wing model that was tested in unswept (standard) and swept configurations. On the standard configuration, stall commenced inboard, but with sweep the wing stalled initially near the tip. On both configurations, leading-edge perturbations increased C(sub L,max) and post stall lift, both with and without deflected flaps. Without sweep, the effect of control was approximately uniform across the wing span but remained effective to high angles of attack near the tip; when sweep was introduced a significant effect was noted inboard, but this effect degraded along the span and produced virtually no meaningful lift enhancement near the tip, irrespective of the tip configuration. In the former case, control strengthened the wingtip vortex; in the latter case, a simple semi-empirical model, based on the trajectory or streamline of the evolving perturbation, served to explain the observations. Control on finite-span flaps did not differ significantly from their two-dimensional counterpart, while control over a tip flap produced significant variations to all three moments in the presence of large deflection and these variations were linear with input slot momentum. Control from the flap produced expected lift enhancement and CL,max improvements in the absence of sweep, but these improvements degraded with the introduction of sweep.

  10. Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Lovejoy, Andrew E.; Bush, Harold G.

    2001-01-01

    Analytical and experimental results of the test for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.

  11. Peak-Seeking Optimization of Spanwise Lift Distribution for Wings in Formation Flight

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack

    2012-01-01

    A method is presented for the in-flight optimization of the lift distribution across the wing for minimum drag of an aircraft in formation flight. The usual elliptical distribution that is optimal for a given wing with a given span is no longer optimal for the trailing wing in a formation due to the asymmetric nature of the encountered flow field. Control surfaces along the trailing edge of the wing can be configured to obtain a non-elliptical profile that is more optimal in terms of minimum combined induced and profile drag. Due to the difficult-to-predict nature of formation flight aerodynamics, a Newton-Raphson peak-seeking controller is used to identify in real time the best aileron and flap deployment scheme for minimum total drag. Simulation results show that the peak-seeking controller correctly identifies an optimal trim configuration that provides additional drag savings above those achieved with conventional anti-symmetric aileron trim.

  12. Structural Testing of a Stitched/Resin Film Infused Graphite-Epoxy Wing Box

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Bush, Harold G.

    2001-01-01

    The results of a series of tests conducted at the NASA Langley Research Center to evaluate the behavior of an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending, down-bending and brake roll loading conditions were applied. The structure with non-visible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole.

  13. Loads calibrations of strain gage bridges on the DAST project Aeroelastic Research Wing (ARW-2)

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1986-01-01

    Results from and details of the procedure used to calibrate strain gage bridges for measurements of wing structural loads, shear (V), bending moment (M), and torque (T), at three semispan stations on both the left and right semispans of the ARW-2 wing are presented. The ARW-2 wing has a reference area of 35 square feet, a span of 19 feet, an aspect ratio of 10.3, a midchord line sweepback angle of 25 degrees, and a taper ratio of 0.4. The ARW-2 wing was fabricated using aluminum spars and ribs covered with a fiberglass/honeycomb sandwich skin material. All strain gage bridges are mounted along with an estimate of their accuracy by means of a comparison of computed loads versus actual loads for three simulated flight conditions.

  14. The torsional strength of wings

    NASA Technical Reports Server (NTRS)

    Burgess, C P

    1930-01-01

    This report describes a simple method for calculating the position of the elastic axis of a wing structure having any number of spars. It is shown that strong drag bracing near the top and bottom of a wing greatly increases the torsional strength. An analytical procedure for finding the contribution of the drag bracing to the torsional strength and stiffness is described, based upon the principle of least work, and involving only one unknown quantity. A coefficient for comparing the torsional rigidity of different wings is derived in this report.

  15. Airplane wing vibrations due to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Pastel, R. L.; Caruthers, J. E.; Frost, W.

    1981-01-01

    The magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip was studied. It was also determined whether accelerometers mounted on the wing tip are needed to correct this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. It was found that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.

  16. Aerodynamic characteristics of a distinct wing-body configuration at Mach 6: Experiment, theory, and the hypersonic isolation principle

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Pittman, J. L.

    1985-01-01

    An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on body length) of 17.9 x 10 to the 6th power. Seven wings with leading edge sweep angles from -20 deg to 60 deg were tested on a common body over an angle of attack range from -12 deg to 10 deg. All wings had a common span, aspect ratio, taper ratio, planform area, and thickness ratio. Wings were translated longitudinally on the body to make tests possible with the total and exposed mean aerodynamic chords located at a fixed body station. Aerodynamic forces were found to be independent of wing sweep and translation, and pitching moments were constant when the exposed wing mean aerodynamic chord was located at a fixed body station. Thus, the Hypersonic Isolation Principle was verified. Theory applied with tangent wedge pressures on the wing and tangent cone pressures on the body provided excellent predictions of aerodynamic force coefficients but poor estimates of moment coefficients.

  17. Low-speed wind tunnel investigation of a semispan STOL jet transport wing body with an upper surface blown jet flap

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III; Letko, W.; Henderson, R. L.

    1973-01-01

    An investigation of the static longitudinal aerodynamic characteristics of a semispan STOL jet transport wing-body with an upper-surface blown jet flap for lift augmentation was conducted in a low-speed wind tunnel having a 12-ft octagonal test section. The semispan swept wing had an aspect ratio of 3.92 (7.84 for the full span) and had two simulated turbofan engines mounted ahead of and above the wing in a siamese pod equipped with an exhaust deflector. The purpose of the deflector was to spread the engine exhaust into a jet sheet attached to the upper surface of the wing so that it would turn downward over the flap and provide lift augmentation. The wing also had optional boundary-layer control provided by air blowing through a thin slot over a full-span plain trailing-edge flap.

  18. Wind-tunnel Investigations on Flexural-torsional Wing Flutter

    NASA Technical Reports Server (NTRS)

    Voigt, H

    1938-01-01

    For the purpose of testing the theory of an oscillating airfoil of two degrees of freedom, a wing was mounted in the wind tunnel between two walls in such a manner that it could execute vertical (flexural) oscillations as well as torsional oscillations about an arbitrary axis parallel to the span. It was possible to vary the inertia and elasticity parameters and also to increase artificially the negligibly small natural damping of the system. The oscillations were recorded to a strongly magnified scale. The experimentally determined critical (or flutter) velocities fully agree with the theoretical ones of Wagner and Kussner within the limits of computational and measuring accuracy. An extremely narrow wing without end walls (three dimensional problem) showed the same oscillations as one with end walls (two-dimensional problem).

  19. A non-linear aeroelastic model for the study of flapping-wing flight

    NASA Astrophysics Data System (ADS)

    Larijani, Rambod Fayaz

    A non-linear aeroelastic model for the study of flapping-wing flight is presented. This model has been developed to simulate the fully stalled and attached aerodynamic behaviour of a flapping wing and can account for any forcing function. An implicit unconditionally-stable time-marching method known as the Newmark method is used to accurately model the non-linear stalled and attached flow regimes. An iteration procedure is performed at each time step to eliminate any errors associated with the temporal discretization process. A finite element formulation is used to model the elastic behaviour of the wing which is composed of a leading edge composite spar and light-weight rigid ribs covered with fabric. A viscous damping model is used to simulate the structural damping of the wing. The Newmark code generates instantaneous lift and thrust values as well as torsional and bending moments along the wing span. Average lift values are in good agreement with experimental results obtained from tests performed on a scaled down model of the ornithopter at the NRC wind tunnel in Ottawa. Furthermore, bending and twisting moments obtained from strain gages embedded in the full-scale ornithopter's wing spar show that the predicted instantaneous moments are also quite accurate. Also, comparisons with experimental data show that the Newmark code can accurately predict the twisting behaviour of the wing for zero forward speed as well as cruise conditions.

  20. Aerodynamic Analysis of Flexible Flapping Wing Micro Aerial Vehicle Using Quasi-Steady Approach

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Kolandapaiyan; Chandrasekhar, Uttam; Chandrashekhar, Nagaraj

    2016-04-01

    In recent times flexible flapping-wing aerodynamics has generated a great deal of interest and is the topic of contemporary research because of its potential application in micro aerial vehicles (MAVs). The prominent features of MAVs include low Reynolds Number, changing the camber of flapping wings, development of related mechanisms, study of the suitability airfoil shape selection and other parameters. Generally, low Reynolds Number is similar to that of an insect or a bird (103-105). The primary goal of this project work is to perform CFD analysis on flexible flapping wing MAVs in order to estimate the lift and drag by using engineering methods such as quasi-steady approach. From the wind tunnel data, 3-D deformation is obtained. For CFD analysis, two types of quasi-steady methods are considered. The first method is to slice the wing section chord-wise and span wise at multiple regions, frame by frame, and obtain the 2-D corrugated camber section for each frame. This 2-D corrugated camber is analysed using CFD techniques and all the individual 2-D corrugated camber results are summed up frame by frame, to obtain the total lift and drag for one wing beat. The second method is to consider the 3D wing in entirety and perform the CFD analysis to obtain the lift and drag for five wing beat.

  1. Preliminary Weight Savings Estimate for a Commercial Transport Wing Using Rod-Stiffened Stitched Composite Technology

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.

    2015-01-01

    A structural concept called pultruded rod stitched efficient unitized structure (PRSEUS) was developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. While PRSEUS was an enabling technology for the pressurized HWB structure, limited investigation of PRSEUS for other aircraft structures, such as circular fuselages and wings, has been done. Therefore, a study was undertaken to investigate the potential weight savings afforded by using the PRSEUS concept for a commercial transport wing. The study applied PRSEUS to the Advanced Subsonic Technology (AST) Program composite semi-span test article, which was sized using three load cases. The initial PRSEUS design was developed by matching cross-sectional stiffnesses for each stringer/skin combination within the wing covers, then the design was modified to ensure that the PRSEUS design satisfied the design criteria. It was found that the PRSEUS wing design exhibited weight savings over the blade-stiffened composite AST Program wing of nearly 9%, and a weight savings of 49% and 29% for the lower and upper covers, respectively, compared to an equivalent metallic wing.

  2. A mathematical model for the thrust force generated by a flapping elastic wing

    NASA Astrophysics Data System (ADS)

    Tarasov, Alexander E.; Sumbatyan, Mezhlum A.

    2012-11-01

    The physical nature of the thrust force generated by flapping wings is of a long-time interest of many researchers. The idea of the thrust effect came from the observation of birds' flight. Apparently, Leonardo da Vinci was first who tried to explain the mechanism of the flapping wing trust, for possible engineering applications. Nevertheless, the fundamental basics of a theoretical study of wing oscillations were laid only near the beginning of the 20th century. The thrust effect of the flapping wing was explained by Knoller in 1909 and Betz in 1912, independently. The principal problem in this theory is to define an optimal deformation law which provides the flapping wing to work with highest efficiency. In the present paper we study a rectangular elastic wing of finite span as a propulsion device. We propose an analytical approach, to study harmonic oscillations of a thin elastic rectangular wing at zero attack angle in a flow of inviscid incompressible fluid. The problem is reduced to an integro-differential equation, in frames of the "plane sections" hypothesis.

  3. Origin Story: Blended Wing Body

    NASA Video Gallery

    NASA is partnering with the Boeing Company, among others, to develop and test the blended wing body aircraft. The BWB has the potential to significantly reduce fuel use and noise. In this video, Bo...

  4. Embedded Wing Propulsion Conceptual Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Saunders, John D.

    2003-01-01

    As a part of distributed propulsion work under NASA's Revolutionary Aeropropulsion Concepts or RAC project, a new propulsion-airframe integrated vehicle concept called Embedded Wing Propulsion (EWP) is developed and examined through system and computational fluid dynamics (CFD) studies. The idea behind the concept is to fully integrate a propulsion system within a wing structure so that the aircraft takes full benefits of coupling of wing aerodynamics and the propulsion thrust stream. The objective of this study is to assess the feasibility of the EWP concept applied to large transport aircraft such as the Blended-Wing-Body aircraft. In this paper, some of early analysis and current status of the study are presented. In addition, other current activities of distributed propulsion under the RAC project are briefly discussed.

  5. Validation of Vortex-Lattice Method for Loads on Wings in Lift-Generated Wakes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1995-01-01

    A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by the use of measurements made in the 80 by 120 ft Wind Tunnel of the lift, rolling moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling-moment distributions the vortex-lattice method is very reliable as long as the span of the encountering or following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts.

  6. An insect-inspired flapping wing micro air vehicle with double wing clap-fling effects and capability of sustained hovering

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc-Viet; Chan, Woei Leong; Debiasi, Marco

    2015-03-01

    We present our recent flying insect-inspired Flapping-Wing Micro Air Vehicle (FW-MAV) capable of hovering flight which we have recently achieved. The FW-MAV has wing span of 22 cm (wing tip-to-wing tip), weighs about 16.6 grams with onboard integration of radio control system including a radio receiver, an electronic speed control (ESC) for brushless motor, three servos for attitude flight controls of roll, pitch, and yaw, and a single cell lithium-polymer (LiPo) battery (3.7 V). The proposed gear box enables the FW-MAV to use one DC brushless motor to synchronously drive four wings and take advantage of the double clap-and-fling effects during one flapping cycle. Moreover, passive wing rotation is utilized to simplify the design, in addition to passive stabilizing surfaces for flight stability. Powered by a single cell LiPo battery (3.7 V), the FW-MAV flaps at 13.7 Hz and produces an average vertical force or thrust of about 28 grams, which is sufficient for take-off and hovering flight. Finally, free flight tests in terms of vertical take-off, hovering, and manual attitude control flight have been conducted to verify the performance of the FW-MAV.

  7. Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts

    NASA Technical Reports Server (NTRS)

    Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.; Maiden, J.; Neves, J.

    1996-01-01

    Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.

  8. Analytical study of takeoff and landing performance for a jet STOL transport configuration with full-span, externally blown, triple-slotted flaps

    NASA Technical Reports Server (NTRS)

    Washington, H. P.; Gibbons, J. T.

    1973-01-01

    Takeoff and landing performance characteristics and field length requirements were determined analytically for a jet STOL transport configuration with full-span, externally blown, tripleslotted flaps. The configuration had a high wing, high T-tail, and four pod-mounted high-bypass-ratio turbofan engines located under and forward of the wing. One takeoff and three approach and landing flap settings were evaluated. The effects of wing loading, thrust-to-weight ratio, weight, ambient temperature, altitude on takeoff and landing field length requirements are discussed.

  9. Newer approaches in increasing life span.

    PubMed

    Dhar, H L

    1999-09-01

    Based on ideal conditions technical life span of human kind is approximately 110-120 years. Although number of studies including calorie restriction and antiparkinsonism drug (deprenyl) have indicated increased life span in animals, it is premature to expect them to increase life span in man. However, current studies like activation of immune system with DHEA in man and anticipation of antioxidant therapy contributing to increased life span are encouraging. Practice of meditation particularly TM and balanced diet might be contributory.

  10. Life-Span Learning: A Developmental Perspective

    ERIC Educational Resources Information Center

    Thornton, James E.

    2003-01-01

    The article discusses learning as embedded processes of development and aging, and as social activity over the life course. The concept of life-span learning is proposed and outlined to discuss these processes as aspects of and propositions in life-span development and aging theory. Life-span learning processes arise and continuously develop in a…

  11. C-SPAN Networks: Professors' Guide.

    ERIC Educational Resources Information Center

    C-SPAN in the Classroom, 1993

    1993-01-01

    The intention of this guide is to serve as a forum for college faculty members to share ideas and articles about using C-SPAN programming in college classrooms and in academic research. The first article, "C-SPAN as a 'Lecture Launcher'" (Stephen Frantzich) illustrates how well-chosen segments of C-SPAN programming can be used to stimulate…

  12. Time-varying span efficiency through the wingbeat of desert locusts

    PubMed Central

    Henningsson, Per; Bomphrey, Richard J.

    2012-01-01

    The flight performance of animals depends greatly on the efficacy with which they generate aerodynamic forces. Accordingly, maximum range, load-lifting capacity and peak accelerations during manoeuvres are all constrained by the efficiency of momentum transfer to the wake. Here, we use high-speed particle image velocimetry (1 kHz) to record flow velocities in the near wake of desert locusts (Schistocerca gregaria, Forskål). We use the measured flow fields to calculate time-varying span efficiency throughout the wing stroke cycle. The locusts are found to operate at a maximum span efficiency of 79 per cent, typically at a plateau of about 60 per cent for the majority of the downstroke, but at lower values during the upstroke. Moreover, the calculated span efficiencies are highest when the largest lift forces are being generated (90% of the total lift is generated during the plateau of span efficiency) suggesting that the combination of wing kinematics and morphology in locust flight perform most efficiently when doing the most work. PMID:22112649

  13. Time-varying span efficiency through the wingbeat of desert locusts.

    PubMed

    Henningsson, Per; Bomphrey, Richard J

    2012-06-01

    The flight performance of animals depends greatly on the efficacy with which they generate aerodynamic forces. Accordingly, maximum range, load-lifting capacity and peak accelerations during manoeuvres are all constrained by the efficiency of momentum transfer to the wake. Here, we use high-speed particle image velocimetry (1 kHz) to record flow velocities in the near wake of desert locusts (Schistocerca gregaria, Forskål). We use the measured flow fields to calculate time-varying span efficiency throughout the wing stroke cycle. The locusts are found to operate at a maximum span efficiency of 79 per cent, typically at a plateau of about 60 per cent for the majority of the downstroke, but at lower values during the upstroke. Moreover, the calculated span efficiencies are highest when the largest lift forces are being generated (90% of the total lift is generated during the plateau of span efficiency) suggesting that the combination of wing kinematics and morphology in locust flight perform most efficiently when doing the most work. PMID:22112649

  14. Static aeroelastic analysis of composite wing

    NASA Technical Reports Server (NTRS)

    Lee, IN; Hong, Chang Sun; Miura, Hirokazu; Kim, Seung KO

    1990-01-01

    A static aeroelastic analysis capability that can predict aerodynamic loads for the deformed shape of the composite wing has been developed. The finite element method (FEM) was used for composite plate structural analysis, and the linear vortex lattice method (VLM) was used for steady aerodynamic analysis. The final deformed shape of the wing due to applied forces is determined by iterative manner using FEM and VLM. FEM and VLM analysis are related by a surface spline interpolation procedure. The wing with Gr/Ep composite material has been investigated to see the wing deformation effect. Aerodynamic load change due to wing flexibility has been investigated. Also, the effect of fiber orientation and sweep angle on the deformation pattern and aerodynamic coefficients are examined. For a certain fiber orientation, the deflection and aerodynamic loading of the composite wing is very much reduced. The swept forward wing has more significant effect of wing flexibility on aerodynamic coefficient than the swept back wing does.

  15. Dew-driven folding of insect wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew; Beadles, Sam; Clement, Courtney; Hu, David

    2013-11-01

    Small insect wings fold into tacos when exposed to dewfall or fog for extended times. Such shapes are tightly held together and require great force or long evaporation times for the wings to unfold. In this experimental investigation, we use time-lapse and high-speed videography on a mosquito wing exposed to fog to characterize the folding process from a flat wing to a taco. We observe a taco is formed through a series of processes involving wing bending, unbending, and subsequent tight folding of the wing following the sliding of the drop off the wing. We use a simplified 2D model to determine the forces coalescing drops exert on the wing, and present folding-resistant design suggestions for micro-aerial vehicle wings.

  16. An asymptotic theory for the interference of large aspect ratio swept wings and multiple propeller slipstreams

    NASA Technical Reports Server (NTRS)

    Prabhu, R. K.; Liu, C. H.; Tiwari, S. N.

    1985-01-01

    This paper presents an asymptotic method for the analysis of the interference of multiple tractor propeller slipstream with large aspect ratio swept wings. It is assumed that the height of the slipstream is of the order of the wing chord and its spanwise extent is of the order of the wing span. Three different flow regions are identified by employing different stretching transformations. Asymptotic expansions are made in each of the three regions, using the chord to span ratio as the small expansion parameter. The details of the nonuniform flow in the slipstream enter into the wing sectional analysis. In the outer limit, the wing shrinks to a swept lifting line, and the slipstream reduces to a thin sheet of jet carrying the momentum gain from the propeller. The curvature of this jet sheet results in a pressure difference which is represented by a vortex sheet. The governing equations are solved by discretization. Several examples are considered for which experimental data are available. Comparison of the present results with the experimental data as well as other numerical solutions showed generally good agreement.

  17. Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings.

    PubMed

    Jardin, T; David, L

    2014-07-01

    While a leading-edge vortex on an infinite translating wing is shed after a short distance of travel, its counterpart on a finite span revolving insect wing or maple seed membrane exhibits robust attachment. The latter explains the aerodynamic lift generated by such biological species. Here we analyze the mechanisms responsible for leading-edge vortex attachment. We compute the Navier-Stokes solution of the flow past a finite span wing (i) embedded in a uniform oncoming flow, (ii) embedded in a spanwise varying oncoming flow, and (iii) revolving about its root. We show that over flapping amplitudes typical of insect flight (ϕ = 120°), the spanwise gradient of the local wing speed may suffice in maintaining leading-edge vortex attachment. We correlate this result with the development of spanwise flow, driven by the spanwise gradient of pressure, and we evaluate the sensitivity of such a mechanism to the Reynolds number. It is noted, however, that leading-edge vortex attachment through the spanwise gradient of the local wing speed does not promote large lift, which ultimately arises from centrifugal and Coriolis effects. PMID:25122373

  18. Pressure distributions and oil-flow patterns for a swept circulation-control wing

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.; Sanderfer, Dwight T.; Wood, Norman J.

    1987-01-01

    Pressure distributions and photographs of oil flow patterns are presented for a circulation control wing. The model was an aspect ratio four semispan wing mounted on the side wall of the NASA Ames Transonic Wind Tunnel. The airfoil was a 20 percent thick ellipse, modified with circular leading and trailing edges of 4 percent radius, and had a 25.4 cm constant chord. This configuration does not represent a specific wing design, but is generic. A full span, tangetial, rearward blowing, circulation control slot was incorporated ahead of the trailing edge on the upper surface. The wing was tested at Mach numbers from 0.3 to 0.75 at sweep angle of 0 to 45 deg with internal to external pressure ratios of 1.0 to 3.0. Lift and pitching momemt coefficients were obtained from measured pressure distributions at five span stations. When the conventional corrections resulting from sweep angle are applied to the lift and moment of circulation control sections, no additional corrections are necessary to account for changes in blowing efficiency. This is demonstrated for an aft sweep angle of 45 deg. An empirical technique for estimating the downwash distribution of a swept wing was validated.

  19. Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings

    NASA Astrophysics Data System (ADS)

    Jardin, T.; David, L.

    2014-07-01

    While a leading-edge vortex on an infinite translating wing is shed after a short distance of travel, its counterpart on a finite span revolving insect wing or maple seed membrane exhibits robust attachment. The latter explains the aerodynamic lift generated by such biological species. Here we analyze the mechanisms responsible for leading-edge vortex attachment. We compute the Navier-Stokes solution of the flow past a finite span wing (i) embedded in a uniform oncoming flow, (ii) embedded in a spanwise varying oncoming flow, and (iii) revolving about its root. We show that over flapping amplitudes typical of insect flight (ϕ =120∘), the spanwise gradient of the local wing speed may suffice in maintaining leading-edge vortex attachment. We correlate this result with the development of spanwise flow, driven by the spanwise gradient of pressure, and we evaluate the sensitivity of such a mechanism to the Reynolds number. It is noted, however, that leading-edge vortex attachment through the spanwise gradient of the local wing speed does not promote large lift, which ultimately arises from centrifugal and Coriolis effects.

  20. The structural design of the bat wing web and its possible role in gas exchange

    PubMed Central

    Makanya, Andrew N; Mortola, Jacopo P

    2007-01-01

    The structure of the skin in the epauletted fruit bat (Epomophorus wahlbergi) wing and body trunk was studied with a view to understanding possible adaptations for gas metabolism and thermoregulation. In addition, gas exchange measurements were performed using a respirometer designed for the purpose. The body skin had an epidermis, a dermis with hair follicles and sweat glands and a fat-laden hypodermis. In contrast, the wing web skin was made up of a thin bilayered epidermis separated by a connective tissue core with collagen and elastic fibres and was devoid of hair follicles and sweat glands. The wings spanned 18–24 cm each, with about 753 cm2 of surface exposed to air. The body skin epidermis was thick (61 ± 3 µm, SEM), the stratum corneum alone taking a third of it (21 ± 3 µm). In contrast, the wing web skin epidermis was thinner at 9.8 ± 0.7 µm, with a stratum corneum measuring 4.1 ± 0.3 µm (41%). The wing capillaries in the wing web skin ran in the middle of the connective tissue core, with a resultant surface-capillary diffusion distance of 26.8 ± 3.2 µm. The rate of oxygen consumption (V˙O2) of the wings alone and of the whole animal measured under light anaesthesia at ambient temperatures of 24 ºC and 33 ºC, averaged 6% and 10% of the total, respectively. Rate of carbon dioxide production had similar values. The membrane diffusing capacity for the wing web was estimated to be 0.019 ml O2 min−1 mmHg−1. We conclude that in Epomophorus wahlbergi, the wing web has structural modifications that permit a substantial contribution to the total gas exchange. PMID:17971117

  1. The structural design of the bat wing web and its possible role in gas exchange.

    PubMed

    Makanya, Andrew N; Mortola, Jacopo P

    2007-12-01

    The structure of the skin in the epauletted fruit bat (Epomophorus wahlbergi) wing and body trunk was studied with a view to understanding possible adaptations for gas metabolism and thermoregulation. In addition, gas exchange measurements were performed using a respirometer designed for the purpose. The body skin had an epidermis, a dermis with hair follicles and sweat glands and a fat-laden hypodermis. In contrast, the wing web skin was made up of a thin bilayered epidermis separated by a connective tissue core with collagen and elastic fibres and was devoid of hair follicles and sweat glands. The wings spanned 18-24 cm each, with about 753 cm2 of surface exposed to air. The body skin epidermis was thick (61 +/- 3 microm, SEM), the stratum corneum alone taking a third of it (21 +/- 3 microm). In contrast, the wing web skin epidermis was thinner at 9.8 +/- 0.7 microm, with a stratum corneum measuring 4.1 +/- 0.3 microm (41%). The wing capillaries in the wing web skin ran in the middle of the connective tissue core, with a resultant surface-capillary diffusion distance of 26.8 +/- 3.2 microm. The rate of oxygen consumption (VO2) of the wings alone and of the whole animal measured under light anaesthesia at ambient temperatures of 24 masculineC and 33 masculineC, averaged 6% and 10% of the total, respectively. Rate of carbon dioxide production had similar values. The membrane diffusing capacity for the wing web was estimated to be 0.019 ml O2 min(-1) mmHg(-1). We conclude that in Epomophorus wahlbergi, the wing web has structural modifications that permit a substantial contribution to the total gas exchange.

  2. Investigation into the Role of Dragonfly Wing Flexibility During Passive Wing Pitch Reversal

    NASA Astrophysics Data System (ADS)

    Bajwa, Yousaf; Williams, Ventress; Ren, Yan; Dong, Haibo; Flow Simulation Research Group Team

    2013-11-01

    Wing deformation is a characteristic part of flapping wing flight. In dragonflies, a torsion wave can be observed propagating from the tip to the root during stroke reversal. In this paper, we utilize high-speed photogrammetry and 3d surface reconstruction techniques to quantify wing deformation and kinematics of a dragonfly. We then use finite elements in the absolute nodal coordinate formulation to estimate strain energy in the wing during wing pitch reversal. We use this data to analyze the role of wing structure in facilitating wing rotation and bringing about the characteristic torsion wave. The influence of the elastic force in facilitating wing rotation is then compared with inertial and aerodynamic forces as well. A quantitative look into the variation of strain energy within the insect wing during wing rotation could lead to more efficient design of dynamic wing pitching mechanisms. Supported by NSF CBET-1343154.

  3. Computations on Wings With Full-Span Oscillating Control Surfaces Using Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2013-01-01

    A dual-level parallel procedure is presented for computing large databases to support aerospace vehicle design. This procedure has been developed as a single Unix script within the Parallel Batch Submission environment utilizing MPIexec and runs MPI based analysis software. It has been developed to provide a process for aerospace designers to generate data for large numbers of cases with the highest possible fidelity and reasonable wall clock time. A single job submission environment has been created to avoid keeping track of multiple jobs and the associated system administration overhead. The process has been demonstrated for computing large databases for the design of typical aerospace configurations, a launch vehicle and a rotorcraft.

  4. Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)

    NASA Technical Reports Server (NTRS)

    Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth

    1993-01-01

    The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.

  5. Reynolds Number, Compressibility, and Leading-Edge Bluntness Effects on Delta-Wing Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2004-01-01

    An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.

  6. Calculation of unsteady transonic aerodynamics for oscillating wings with thickness (computer program)

    NASA Technical Reports Server (NTRS)

    Ruo, S. Y.

    1974-01-01

    A computer program has been developed to account approximately for the effects of finite wing thickness in the transonic potential flow over an oscillating wing of finite span. The program is based on the original sonic-box program of Rodemich and Andrew, and accounts for the nonuniform flow caused by finite thickness by application of the local linearization concept. A brief description of each subroutine is given, and the method of input is shown in detail. A sample problem as well as a complete listing of the computer program are presented.

  7. Numerical study of wingtip shed vorticity reduction by wing Boundary Layer Control

    NASA Astrophysics Data System (ADS)

    Posada, Jose Alejandro

    computed pressure coefficient values compare very well (Figure 90). The present simulations were also validated by comparison with wake survey and balance type experimental measurements done by Chometon and Laurent on a NACA 643-018 wing. Lift, induced drag, and profile drag coefficients agree very well with Chometon and Laurent data. More than one hundred simulations were performed with different BLC suction slot geometries. Suction slots were used in the chord-wise and span-wise locations near the wing tip region. Blowing slots were evaluated at the wing center line, the wing tip upper surface, and span-wise outside of the wing tip. For an elliptically loaded wing, 50% of the bound vorticity is shed at the wing tips over a length of 7% of the wing span. The turbulent boundary layer thickness for a Cessna 206 aircraft at cruise is estimated as 0.09 ft. Theoretically the power required to remove by suction all the upper and lower surface boundary layer over the tip region for this aircraft at take-off is 2.6 HP, which would be very small compared to the 70 HP induced drag power saved. This would only be true if 100% wingtip vortex elimination could be obtained.

  8. 1. From north bankup riverSpan 2 on left to Span ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. From north bank-up river-Span 2 on left to Span 6 on right. Coke Plant in distance (under Span 3). - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  9. Extended attention span training system

    NASA Technical Reports Server (NTRS)

    Pope, Alan T.; Bogart, Edward H.

    1991-01-01

    Attention Deficit Disorder (ADD) is a behavioral disorder characterized by the inability to sustain attention long enough to perform activities such as schoolwork or organized play. Treatments for this disorder include medication and brainwave biofeedback training. Brainwave biofeedback training systems feed back information to the trainee showing him how well he is producing the brainwave pattern that indicates attention. The Extended Attention Span Training (EAST) system takes the concept a step further by making a video game more difficult as the player's brainwaves indicate that attention is waning. The trainee can succeed at the game only by maintaining an adequate level of attention. The EAST system is a modification of a biocybernetic system that is currently being used to assess the extent to which automated flight management systems maintain pilot engagement. This biocybernetic system is a product of a program aimed at developing methods to evaluate automated flight deck designs for compatibility with human capabilities. The EAST technology can make a contribution in the fields of medical neuropsychology and neurology, where the emphasis is on cautious, conservative treatment of youngsters with attention disorders.

  10. SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN vSHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN - Snake River Bridge at Lyons' Ferry, State Route 261 spanning Snake River, Starbuck, Columbia County, WA

  11. Kosmoljot - Soviet wings into space

    NASA Astrophysics Data System (ADS)

    Borrowman, G. L.

    1982-02-01

    Possible configurations for a Soviet Shuttle-style vehicle, called the Kosmoljot, are discussed, along with possible developmental lines for lifting body craft. The Kosmoljot is suggested to be a delta-wing vehicle with a 7.2 m wingspan and 10.6 m long, weighing 15,000 lb. The craft would be able to change course by using retrorockets to enter the fringes of the atmosphere, maneuver aerodynamically, then boost back into orbit. Similar tactics were investigated by Northrop in the mid-1960's and were called a synergetic plane change. Concomitant plans for reusable or even lifting-body boosters are discussed, with mention made of the Rogallo wing for the short flight back to base. Soviet statements are quoted as confirming the development of a piggy-back dual-delta wing Kosmoljot for a fully recoverable system, and the economic advantages of multiple use systems are stressed.

  12. Modelling butterfly wing eyespot patterns.

    PubMed

    Dilão, Rui; Sainhas, Joaquim

    2004-08-01

    Eyespots are concentric motifs with contrasting colours on butterfly wings. Eyespots have intra- and interspecific visual signalling functions with adaptive and selective roles. We propose a reaction-diffusion model that accounts for eyespot development. The model considers two diffusive morphogens and three non-diffusive pigment precursors. The first morphogen is produced in the focus and determines the differentiation of the first eyespot ring. A second morphogen is then produced, modifying the chromatic properties of the wing background pigment precursor, inducing the differentiation of a second ring. The model simulates the general structural organization of eyespots, their phenotypic plasticity and seasonal variability, and predicts effects from microsurgical manipulations on pupal wings as reported in the literature. PMID:15306301

  13. Modelling butterfly wing eyespot patterns.

    PubMed

    Dilão, Rui; Sainhas, Joaquim

    2004-08-01

    Eyespots are concentric motifs with contrasting colours on butterfly wings. Eyespots have intra- and interspecific visual signalling functions with adaptive and selective roles. We propose a reaction-diffusion model that accounts for eyespot development. The model considers two diffusive morphogens and three non-diffusive pigment precursors. The first morphogen is produced in the focus and determines the differentiation of the first eyespot ring. A second morphogen is then produced, modifying the chromatic properties of the wing background pigment precursor, inducing the differentiation of a second ring. The model simulates the general structural organization of eyespots, their phenotypic plasticity and seasonal variability, and predicts effects from microsurgical manipulations on pupal wings as reported in the literature.

  14. Schooling of flapping wings: Simulations

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Becker, Alexander; Ristroph, Leif; Shelley, Michael

    2014-11-01

    We examine the locomotion of an infinite array of wings that heave vertically with a prescribed sinusoidal motion and are free to translate in the horizontal direction. To do this, we simulate the motion of a freely translating flapping airfoil in a domain with periodic horizontal boundary conditions. These simulations indicate that the wings can ``take advantage'' of their collectively generated wake flows. In agreement with our experiments in a rotational geometry, we find ranges of flapping frequency over which there are multiple stable states of locomotion, with one of these swimming states having both higher speeds and efficiencies than an isolated flapping and locomoting wing. A simple mathematical model, which emphasizes the importance of history dependence in vortical flows, explains this multi-stability. These results may be important to understanding the role of hydrodynamic interactions in fish schooling and bird flocking.

  15. The Development of a Lateral-control System for Use with Large-span Flaps

    NASA Technical Reports Server (NTRS)

    Ashkenas, I L

    1946-01-01

    A spoiler-type lateral-control system has been developed for use on the Northrop P-61 airplane. The lateral-control system is to be used with large-span flaps and consists of a thin circular arc spoiler, linked with a short-span plain aileron located just outboard of the spoiler. This unconventional lateral-control system has been accepted with enthusiasm by the pilots who have flown the airplane. The particularly appreciate its characteristic at high speed. The combination of light forges, favorable yawing moment, and low wing torsional moments, make it a very effective, easily applied control. The control available at and through the stall is also remarkably good, although this characteristic may be attributed, in part, to an exceptionally good wing stalling pattern rather than entirely to the use of the spoiler-type aileron. In the landing configuration, the lateral-control effectiveness increases automatically with the extension of wing flaps so that powerful control is available during the approach. There is, however, a decrease in effectiveness for the first 5 percent of the wheel travel with a resultant tendency for inexperienced pilots to overcontrol slightly at low speeds. The fact that the aileron can be fully used at the stall, however, more than compensates for this loss of effectiveness with flaps down and greatly enhances the airplane's landing performance.

  16. Incompressible Turbulent Wing-Body Junction Flow

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.

    1998-01-01

    -stream flow. The lateral curvature of the wing/strat causes the oncoming turbulent layer to skew about am axis (x-axis) parallel to the plane (xz-plane) of the mean shear. This is the principle mechanism for the generation of secondary flow. Such skew-induced secondary flows are slow to be attenuated by Reynolds stresses. Additional contribution to the generation of secondary flow comes from anisotropies in Reynolds stresses. Upstream of the strut, the mean-vorticity is directed span wise (along the y-direction). The presence of secondary flow in the vicinity of the strut causes the vorticity to stretch around the obstacle in a horse-shoe shape, with each leg having a vorticity of the opposite sense. The blockage effect of the strut imposes a severe adverse pressure gradient on the oncoming turbulent shear layer, causing boundary layer separation ahead of the leading edge, resulting in a vortex that rolls up and flows downstream into the juncture region. The separation vortices trailing in the wake of the wing can alter the lift or drag characteristics of the surfaces downstream of the wing-body juncture. Likewise, on submarines, the wake flow behind the appendage can degrade the performance of the propeller located downstream. The complex nature of this flow is caused by the presence of all six components of Reynolds stresses. Devenport and Simpson report that in the vicinity of the horse-shoe vortex there is intense recirculation with turbulent stresses being much larger than those normally observed in turbulent flows. These features contribute to making this flow a challenge to predict numerically. Some of the past studies provide useful insights into this flow that would guide our numerical efforts. In measurements reported by Shabaka and Bradshaw, the eddy viscosity tensor is seen to be non-isotropic and has negative components in certain regions. In an effort to evaluate the closure assumptions of various turbulence models, Devenport and Simpson used their own extensive

  17. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1978-01-01

    An engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blowing (USB) was developed. Potential flow models were incorporated into the prediction method: a wing and flap lifting surface model and a jet wake model. The wing-flap model used a vortex-lattice to represent the wing and flaps. The wing had an arbitrary planform and camber and twist, and the flap system was made up of a Coanda flap and other flap segments of arbitrary size. The jet wake model consisted of a series of closely spaced rectangular vortex rings. The wake was positioned such that it was tangent to the upper surface of the wing and flap between the exhaust nozzle and the flap trailing edge. It was specified such that the mass, momentum, and spreading rates were similar to actual USB jet wakes. Comparisons of measured and predicted pressure distributions, span load distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are included. A wide range of thrust coefficients and flap deflection angles were considered at angles of attack up to the onset of stall.

  18. Measured transonic unsteady pressures on an energy efficient transport wing with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Watson, J. J.; Doggett, R. V., Jr.; Sandford, M. C.; Ricketts, R. H.

    1981-01-01

    Highlight results are presented from subsonic and transonic pressure measurement studies conducted in the Langley Transonic Dynamics Tunnel on a supercritical wing model representative of an energy efficient transport design. Steady- and unsteady-pressure data were acquired on the upper and lower wing surface at an off-design Mach number of 0.60 and at the design Mach number of 0.78, for a Reynolds number of 2.2 x 10(6) (based on the wing average chord). The model configuration consisted of a sidewall-Mounted half-body fuselage and a semi-span wing with an aspect ratio of 10.76, a leading-edge sweepback angle of 28.8 degrees, and supercritical airfoil sections. The wing is instrumented with 252 static pressure orifices and 164 dynamic pressure gages. Model test variables included wing angle of attack, control-surface mean deflection angle, control-surface oscillating deflection angle and frequency, and phasing between oscillating leading-edge and trailing-edge controls when used together.

  19. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  20. Effect of Dorsal Fin on the Stability of Vortices Over a Delta Wing

    NASA Astrophysics Data System (ADS)

    Meng, Xuanshi; Qiao, Zhide; Gao, Chao; Luo, Shijun; Liu, Feng

    Cai et al.5 developed a vortex stability theory for slender conical bodies and analyzed the stability of vortex pairs over slender conical wing-body combinations under small perturbations. An experimental study is presented in this paper to verify the validity of the theoretical predictions. A sharp-edged flat-plate delta wing is tested in a low-speed wind tunnel. A smoke-laser-sheet visualization technique is used to visualize and measure the positions of the vortex pair, which are found to be symmetric and conical over the wing. The same tests are performed on an identical delta wing model but with a flat-plate dorsal fin mounted vertically in the incidence plane of the wing. Two fin heights are tested. The ratios of the local fin height to the local wing semi-span are 0.75 and 1.50. The test results clearly indicate that the vortices become asymmetric and non-conical over the model with the fin height ratio of 0.75 and recover symmetry and conicity over the model with the fin height ratio of 1.50, providing direct experimental evidence of the theoretical predictions.

  1. Investigation of aerodynamic characteristics of wings having vortex flow using different numerical codes

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.; Goglia, G. L.

    1981-01-01

    The aerodynamic characteristics of highly sweptback wings having separation-induced vortex flow were investigated by employing different numerical codes with a view to determining some of the capabilities and limitations of these codes. Flat wings of various configurations-strake wing models, cropped, diamond, arrow and double delta wings, were studied. Cambered and cranked planforms have also been tested. The theoretical results predicted by the codes were compared with the experimental data, wherever possible, and found to agree favorably for most of the configurations investigated. However, large cambered wings could not be successfully modeled by the codes. It appears that the final solution in the free vortex sheet method is affected by the selection of the initial solution. Accumulated span loadings estimated for delta and diamond wings were found to be unusual in comparison with attached flow results in that the slopes of these load curves near the leading edge do not tend to infinity as they do in the case of attached flow.

  2. Reynolds number effects on leading edge vortex development on a waving wing

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Babinsky, H.

    2011-07-01

    The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.

  3. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  4. Flow interactions of finite-span synthetic jets and a cross flow

    NASA Astrophysics Data System (ADS)

    Vasile, Joseph D.

    The interaction of a finite-span synthetic jet with a cross-flow over a swept-back finite wing was studied experimentally at a Reynolds number of 100,000 and at multiple angles of attack. The focus of the work was to explore the interaction of finite span synthetic jets with a locally attached or separated flow field in the vicinity of the synthetic jet orifice. The effect of blowing ratio and aspect ratio of the jet orifice was discussed in detail. As was shown in previous work for an unswept finite configuration, the time-averaged velocity field exhibits secondary streamwise flow structures that evolve due to the finite span of the synthetic jet orifice. Furthermore, these structures depend upon actuation level of the jet, as well as orifice geometry. Phase-averaged measurements over the swept-back finite configuration showed that in the presence of sweep the flow becomes highly three-dimensional almost immediately downstream of the synthetic jet orifice. It was demonstrated that the baseline flow field that develops over a swept-back configuration (dependent on angle of attack), which is characterized by spanwise and streamwise vorticity components, is responsible for the immediate breakdown of the coherent structures that are introduced by the synthetic jet orifice, and for the formation of the secondary flow structures that were seen in the time-averaged flow field. Furthermore, the effect of jet placement along the span of the wing was studied. A finite-span synthetic jet was placed near the tip of a finite sweptback wing. The focus of that part of the work was to explore the interaction of the synthetic jet with a spatially non-uniform velocity field (due to the presence of a tip vortex), especially the formation and advection of flow structures in the vicinity of the synthetic jet. As was shown, the time-averaged velocity field exhibited streamwise flow structures downstream of the jet. The tip vortex was found to influence the development of the flow

  5. Aerodynamic control with passively pitching wings

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  6. Evolution of the revolutionary blended-wing-body

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Page, Mark A.; Rawdon, Blaine K.

    1996-01-01

    The Blended-Wing-Body (BWB) airplane concept represents a potential revolution in subsonic transport efficiency for Very Large Airplanes (VLA's). NASA is sponsoring an advanced concept study to demonstrate feasibility and begin development of this new class of airplane. In this study, 800 passenger BWB and conventional configuration airplanes have been compared for a 7000 nautical mile design range, where both airplanes are based on technology keyed to 2015 entry into service. The BWB has been found to be superior to the conventional configuration in the following areas: Fuel Burn--31% lower, Takeoff Weight -- 1 3% lower, Operating Empty Weight -- 10% lower, Total Thrust -- 16% lower, and Lift/Drag --35% higher. The BWB advantage results from a double deck cabin that extends spanwise providing structural and aerodynamic overlap with the wing. This reduces the total wetted area of the airplane and allows a high aspect ratio to be achieved, since the deep and stiff centerbody provides efficient structural wingspan. Further synergy is realized through buried engines that ingest the wing's boundary layer, and thus reduce effective ram drag. Relaxed static stability allows optimal span loading, and an outboard leading-edge slat is the only high-lift system required.

  7. Interference drag in a simulated wing-fuselage juncture

    NASA Technical Reports Server (NTRS)

    Kubendran, L. R.; Mcmahon, H.; Hubbartt, J. E.

    1984-01-01

    The interference drag in a wing fuselage juncture as simulated by a flat plate and a body of constant thickness having a 1.5:1 elliptical leading edge is evaluated experimentally. The experimental measurements consist of mean velocity data taken with a hot wire at a streamwise location corresponding to 16 body widths downstream of the body leading edge. From these data, the interference drag is determined by calculating the total momentum deficit (momentum area) in the juncture and also in the two dimensional turbulent boundary layers on the flat plate and body at locations sufficiently far from the juncture flow effect. The interference drag caused by the juncture drag as measured at this particular streamwise station is -3% of the total drag due to the flat plate and body boundary layers in isolation. If the body is considered to be a wing having a chord and span equal to 16 body widths, the interference drag due to the juncture is only -1% of the frictional drag of one surface of such a wing.

  8. Flexible-Wing-Based Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Jenkins, David A.; Ettinger, Scott; Lian, Yong-Sheng; Shyy, Wei; Waszak, Martin R.

    2002-01-01

    This paper documents the development and evaluation of an original flexible-wing-based Micro Air Vehicle (MAV) technology that reduces adverse effects of gusty wind conditions and unsteady aerodynamics, exhibits desirable flight stability, and enhances structural durability. The flexible wing concept has been demonstrated on aircraft with wingspans ranging from 18 inches to 5 inches. Salient features of the flexible-wing-based MAV, including the vehicle concept, flexible wing design, novel fabrication methods, aerodynamic assessment, and flight data analysis are presented.

  9. Aerodynamics of dynamic wing flexion in translating wings

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Cheng, Bo; Sane, Sanjay P.; Deng, Xinyan

    2015-06-01

    We conducted a systematic experimental study to investigate the aerodynamic effects of active trailing-edge flexion on a high-aspect-ratio wing translating from rest at a high angle of attack. We varied the timing and speed of the trailing-edge flexion and measured the resulting aerodynamic effects using a combination of direct force measurements and two-dimensional PIV flow measurements. The results indicated that the force and flow characteristics depend strongly on the timing of flexion, but relatively weakly on its speed. This is because the force and vortical flow structure are more sensitive to the timing of flexion relative to the shedding of starting vortex and leading-edge vortex. When the trailing-edge flexion occurred slightly before the starting vortex was shed, the lift production was greatly improved with the instantaneous peak lift increased by 54 % and averaged lift increased by 21 % compared with the pre-flexed case where the trailing-edge flexed before wing translation. However, when the trailing-edge flexed during or slightly after the leading-edge vortex shedding, the lift was significantly reduced by the disturbed development of leading-edge vortex. The force measurement results also imply that the trailing-edge flexion prior to wing translation does not augment lift but increases drag, thus resulting in a lower lift-drag ratio as compared to the case of flat wing.

  10. X-Wing Research Vehicle

    NASA Technical Reports Server (NTRS)

    1986-01-01

    One of the most unusual experimental flight vehicles appearing at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center) in the 1980s was the Rotor Systems Research Aircraft (RSRA) X-Wing aircraft, seen here on the ramp. The craft was developed originally and then modified by Sikorsky Aircraft for a joint NASA-Defense Advanced Research Projects Agency (DARPA) program and was rolled out 19 August 1986. Taxi tests and initial low-altitude flight tests without the main rotor attached were carried out at Dryden before the program was terminated in 1988. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon

  11. Downwash in the plane of symmetry of an elliptically loaded wing

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.

    1985-01-01

    A closed-form solution for the downwash in the plane of symmetry of an elliptically loaded line is given. This theoretical result is derived from Prandtl's lifting-line theory and assumes that: (1) a three-dimensional wing can be replaced by a straight lifting line, (2) this line is elliptically loaded, and (3) the trailing wake is a flat-sheet which does not roll up. The first assumption is reasonable for distances greater than about 1 chord from the wing aerodynamic center. The second assumption is satisfied by any combination of wing twist, spanwise camber variation, or planform that approximates elliptic loading. The third assumption is justified only for high-aspect-ratio wings at low lift coefficients and downstream distances less than about 1 span from the aerodynamic center. It is shown, however, that assuming the wake to be fully rolled up gives downwash values reasonably close to those of the flat-sheet solution derived in this paper. The wing can therefore be modeled as a single horseshoe vortex with the same lift and total circulation as the equivalent ellipticity loaded line, and the predicted downwash will be a close approximation independent of aspect ratio and lift coefficient. The flat-sheet equation and the fully rolled up wake equation are both one-line formulas that predict the upwash field in front of the wing, as well as the downwash field behind it. These formulas are useful for preliminary estimates of the complex aerodynamic interaction between two wings (i.e., canard, tandem wing, and conventional aircraft) including the effects of gap and stagger.

  12. Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.

    1999-01-01

    An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.

  13. Winged bean in human nutrition.

    PubMed

    Kadam, S S; Salunkhe, D K

    1984-01-01

    Protein calorie malnutrition is prevalent in many developing countries of the tropics and subtropics. Improvement of protein supply to meet the demand of a growing population necessitates utilization of unconventional protein sources. Winged bean, a high protein crop, is one of the important underexploited legumes of the tropics. All the plant parts, viz., seeds, immature pods, leaves, flowers and tubers are edible. Mature seeds contain 29 to 37% proteins and 15 to 18% oil. It has fairly good amounts of phosphorus, iron, and vitamin B. Essential amino acid composition of winged bean is very similar to that of soybean. The fatty acid composition is very much comparable to groundnut. It contains relatively high amounts of behenic acid and parinaric acid. The trypsin inhibitor in winged bean has been shown to be heat resistant. Other toxic factors such as hemagglutinins and cyanide have also been reported. Winged bean seeds are hard to cook. Soaking of seeds in the Rockland's soak solution containing sodium bicarbonate, sodium carbonate, sodium chloride, and sodium pyrophosphate reduces cooking time significantly. The potential uses of this important crop in human nutrition and future research needs are discussed.

  14. The Wings for Angels Project

    ERIC Educational Resources Information Center

    McMillan, Liberty; McMillan, Ellen; Ayers, Ann

    2012-01-01

    How can the spirits of critically ill children be raised? Alexis Weisel (co-president of the Monarch High School National Art Honor Society, 2010-2011) had this question in mind when she initiated and developed the Wings for Angels Project after hearing about the Believe in Tomorrow (BIT) organization through her art teacher, Ellen McMillan. The…

  15. [Winged scapula in lyme borreliosis].

    PubMed

    Rausch, V; Königshausen, M; Gessmann, J; Schildhauer, T A; Seybold, D

    2016-06-01

    Here we present the case of a young patient with one-sided winged scapula and lyme borreliosis. This disease can be very delimitating in daily life. If non-operative treatment fails, dynamic or static stabilization of the scapula can be a therapeutic option.

  16. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  17. Rotary wing aerodynamically generated noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. J.; Morse, H. A.

    1982-01-01

    The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.

  18. Perspective on the span-distributed-load concept for application to large cargo aircraft design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1975-01-01

    Results of a simplified analysis of the span-distributed-load concept (in which payload is placed within the wing structure) are presented. It is shown that a design based on these principles has a high potential for application to future large air cargo transport. Significant improvements are foreseen in increased payload fraction and productivity and in reduced fuel consumption and operating costs. A review of the efforts in the 1940's to develop all-wing aircraft shows the potential of transferring those early technological developments to current design of distributed-load aircraft. Current market analyses are projected to 1990 to show the future commercial demand for large capacity freighters. Several configuration designs which would serve different market requirements for these large freighters are discussed as are some of the pacing-technology requirements.

  19. Span-Load Distribution as a Factor in Stability in Roll

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Noyes, Richard W

    1932-01-01

    This report gives the results of pressure-distribution tests made to study the effects on lateral stability of changing the span-load distribution on a rectangular monoplane wing model of fairly thick section. Three methods of changing the distribution were employed: variation in profile along the span to a thin symmetrical section at the tip, twist from +5 degrees to -15 degrees at the tip, and sweepback from +20 degrees to -20 degrees. The tests were conducted in a 5-foot closed-throat atmospheric wind tunnel. The investigation shows the following results: (1) change in profile along the span from the NACA-84 at the root to the NACA-M2 at the tip considerably reduces lateral instability, but also reduces the general effectiveness of the wing. (2) washout up to 11 degrees progressively reduces maximum lateral instability. (3) transition from sweepforward to sweepback gradually reduces the useful angle-of-attack range, but has no clearly defined effect on maximum lateral instability.

  20. F-8 oblique wing structural feasibility study

    NASA Technical Reports Server (NTRS)

    Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.

    1975-01-01

    The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.

  1. Analysis of the effects of wing interference on the tail contributions to the rolling derivatives

    NASA Technical Reports Server (NTRS)

    Michael, William H , Jr

    1952-01-01

    An analysis of the effects of wing interference on the tail contributions to the rolling stability derivatives of complete airplane configurations is made by calculating the angularity of the air stream at the vertical tail due to rolling and determining the resulting forces and moments. Some of the important factors which affect the resultant angularity on the vertical tail are wing aspect ratio and sweepback, vertical-tail span, and considerations associated with angle of attack and airplane geometry. Some calculated sidewash results for a limited range of plan forms and vertical-tail sizes are presented. Equations taking into account the sidewash results are given for determining the tail contributions to the rolling derivatives. Comparisons of estimated and experimental results indicate that a consideration of wing interference effects improves the estimated values of the tail contributions to the rolling derivatives and that fair agreement with available experimental data is obtained.

  2. Theoretical stability and control characteristics of wings with various amounts of taper and twist

    NASA Technical Reports Server (NTRS)

    Pearson, H. A.; Jones, R. T.

    1976-01-01

    Stability derivatives have been computed for twisted wings of different planforms that include variations in both the wing taper and the aspect ratio. Taper ratios of 1.0, 0.50, and 0.25 are considered for each of three aspect ratios: 6, 10, and 16. The specific derivatives for which results are given are the rolling moment and the yawing moment derivatives with respect to rolling velocity, yawing velocity, and angle of sideslip. In addition to the stability derivatives, results are included for determining the theoretical rolling moment due to aileron deflection and a series of influence lines is given by which the loading across the span may be determined for any angle-of-attack distribution that may occur on the wing planforms considered.

  3. Rotor/wing aerodynamic interactions in hover

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Light, J. S.

    1986-01-01

    An experimental and theoretical investigation of rotor/wing aerodynamic interactions in hover is described. The experimental investigation consisted of both a large-scale and small-scale test. A 0.658-scale, V-22 rotor and wing was used in the large-scale test. Wind download, wing surface pressure, rotor performance, and rotor downwash data from the large-scale test are presented. A small-scale experiment was conducted to determine how changes in the rotor/wing geometry affected the aerodynamic interactions. These geometry variations included the distance between the rotor and wing, wing incidence angle, and configurations both with the rotor axis at the tip of the wing (tilt rotor configuration) and with the rotor axis at the center of the wing (compound helicopter configuration). A wing with boundary-layer control was also tested to evaluate the effect of leading and trailing edge upper surface blowing on the wing download. A computationally efficient, semi-empirical theory was developed to predict the download on the wing. Finally, correlations between the theoretical predictions and test data are presented.

  4. Evaluation of the Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Bush, Harold G.; Lovejoy, Andrew E.

    2001-01-01

    Analytical and experimental results for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Upbending, down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.

  5. An Experimental Study of the Aerodynamics of a Swept and Unswept Semispan Wing with a Simulated Glaze Ice Accretion

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.

    1994-01-01

    Two semispan wings, one with a rectangular planform and one with 30 degrees of leading edge sweep were tested. Both had a NACA 0012 airfoil section, and both were tested clean and with simulated glaze ice shapes on their leading edges. Several surface roughness were tested. Each model geometry is documented and each surface roughness is explained. Aerodynamic performance of the wing in the form of sectional lift and integrated three-dimensional lift is documented through pressure measurements obtained from rows of surface pressure taps placed at five span locations on the wing. For the rectangular wing, sectional drag near the midspan is obtained from wake total pressure profiles. The data is presented in tabular and graphical form and is also available on computer disk.

  6. Piezoelectrically actuated insect scale flapping wing

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sujoy; Ganguli, Ranjan

    2010-04-01

    An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

  7. Wind-tunnel investigation of a Fowler flap and spoiler for an advanced general aviation wing

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.

    1976-01-01

    The wing was tested without fuselage or empennage and was fitted with approximately three-quarter span Fowler flaps and half span spoilers. The spoilers were hinged at the 70 percent chord point and vented when the flaps were deflected. Static longitudinal and lateral aerodynamic data were obtained over an angle of attack range of -8 deg to 22 deg for various flap deflections and positions, spoiler geometries, and vent lip geometries. Lateral characteristics indicate that the spoilers are generally adequate for lateral control. In general, the spoiler effectiveness increases with increasing angle of attack, increases with increasing flap deflections, and is influenced by vent lip geometry. In addition, the data show that some two-dimensional effects on spoiler effectiveness are reduced in the three-dimensional case. Results also indicate significant increase in lift coefficient as the Fowler flaps are deflected; when the flap was fully deflected, the maximum wing lift coefficient was increased about 96 percent.

  8. Wind-Tunnel Investigation of Subsonic Longitudinal Aerodynamic Characteristics of a Tiltable-Wing Vertical-Take-Off-and-Landing Supersonic Bomber Configuration Including Turbojet Power Effects

    NASA Technical Reports Server (NTRS)

    Thompson, Robert F.; Vogler, Raymond D.; Moseley, William C., Jr.

    1959-01-01

    Jet-powered model tests were made to determine the low-speed longitudinal aerodynamic characteristics of a vertical-take-off and-landing supersonic bomber configuration. The configuration has an unique engine-wing arrangement wherein six large turbojet engines (three on each side of the fuselage) are buried in a low-aspect-ratio wing which is tilted into the vertical plane for take-off. An essentially two-dimensional variable inlet, spanning the leading edge of each wing semispan, provides air for the engines. Jet flow conditions were simulated for a range of military (nonafterburner) and afterburner turbojet-powered flight at subsonic speeds. Three horizontal tails were tested at a station down-stream of the jet exit and at three heights above the jet axes. A semi-span model was used and test parameters covered wing-fuselage incidence angles from 0 deg to 15 deg, wing angles of attack from -4 deg to 36 deg, a variable range of horizontal-tail incidence angles, and some variations in power simulation conditions. Results show that, with all horizontal tails tested, there were large variations in static stability throughout the lift range. When the wing and fuselage were alined, the model was statically stable throughout the test range only with the largest tail tested (tail span of 1.25 wing span) and only when the tail was located in the low test position which placed the tail nearest to the undeflected jet. For transition flight conditions, none of the tail configurations provided satisfactory longitudinal stability or trim throughout the lift range. Jet flow was destabilizing for most of the test conditions, and varying the jet-exit flow conditions at a constant thrust coefficient had little effect on the stability of this model. Wing leading-edge simulation had some important effects on the longitudinal aerodynamic characteristics.

  9. 3. View west. North elevation Walpole span in foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View west. North elevation - Walpole span in foreground, link span; Westminster span in background. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  10. 7. DETAIL OF LATERAL BRACING OF THROUGH TRUSS SPAN (THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF LATERAL BRACING OF THROUGH TRUSS SPAN (THIS SPAN IS IMMEDIATELY SOUTH OF THE VERTICAL LIFT SPAN). - Shippingsport Bridge, Spanning Illinois River at State Route 51, La Salle, La Salle County, IL

  11. 8. General view of movable span from water level, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. General view of movable span from water level, showing piers turntable, movable span, parts of west land span and east viaduct. VIEW NORTHEAST - Broadway Bridge, Spanning Foundry Street, MBTA Yard, Fort Point Channel, & Lehigh Street, Boston, Suffolk County, MA

  12. 2. DETAIL VIEW OF ON RIGHT FOREGROUND FIXED SPAN TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL VIEW OF ON RIGHT FOREGROUND FIXED SPAN TO TRANSITIONAL MOVEABLE SPAN TO FLOATING SPAN IN MIDDLEGROUND - Lacey V. Murrow Memorial Floating Bridge, Spanning Lake Washington at I-90, Seattle, King County, WA

  13. Wing spar stress charts and wing truss proportions

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1926-01-01

    In order to simplify the calculation of beams continuous over three supports, a series of charts have been calculated giving the bending moments at all the critical points and the reactions at all supports for such members. Using these charts as a basis, calculations of equivalent bending moments, representing the total stresses acting in two bay-wing trusses of proportions varying over a wide range, have been determined, both with and without allowance for column effect. This leads finally to the determination of the best proportions for any particular truss or the best strut locations in any particular airplane. The ideal proportions are found to vary with the thickness of the wing section used, the aspect ratio, and the ratio of gap to chord.

  14. Reflection-plane tests of spoilers on an advanced technology wing with a large Fowler flap

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Volk, C. G., Jr.

    1976-01-01

    Wind tunnel experiments were conducted to determine the effectiveness of spoilers applied to a finite-span wing which utilizes the GA(W)-1 airfoil section and a 30% chord full-span Fowler flap. A series of spoiler cross sectioned shapes were tested utilizing a reflection-plane model. Five-component force characteristics and hinge moment measurements were obtained. Results confirm earlier two-dimensional tests which showed that spoilers could provide large lift increments at any flap setting, and that spoiler control reversal tendencies could be eliminated by providing a vent path from lower surface to upper surface. Performance penalties due to spoiler leakage airflow were measured.

  15. Trapezoidal Wing Experimental Repeatability and Velocity Profiles in the 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Hannon, Judith A.; Washburn, Anthony E.; Jenkins, Luther N.; Watson, Ralph D.

    2012-01-01

    The AIAA Applied Aerodynamics Technical Committee sponsored a High Lift Prediction Workshop held in June 2010. For this first workshop, data from the Trapezoidal Wing experiments were used for comparison to CFD. This paper presents long-term and short-term force and moment repeatability analyses for the Trapezoidal Wing model tested in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This configuration was chosen for its simplified high-lift geometry, publicly available set of test data, and previous CFD experience with this configuration. The Trapezoidal Wing is a three-element semi-span swept wing attached to a body pod. These analyses focus on configuration 1 tested in 1998 (Test 478), 2002 (Test 506), and 2003 (Test 513). This paper also presents model velocity profiles obtained on the main element and on the flap during the 1998 test. These velocity profiles are primarily at an angle of attack of 28 degrees and semi-span station of 83% and show confluent boundary layers and wakes.

  16. Effect of thrust on the aeroelastic instability of a composite swept wing with two engines in subsonic compressible flow

    NASA Astrophysics Data System (ADS)

    Firouz-Abadi, R. D.; Askarian, A. R.; Zarifian, P.

    2013-01-01

    This paper aims to investigate aeroelastic stability boundary of subsonic wings under the effect of thrust of two engines. The wing structure is modeled as a tapered composite box-beam. Moreover, an indicial function based model is used to calculate the unsteady lift and moment distribution along the wing span in subsonic compressible flow. The two jet engines mounted on the wing are modeled as concentrated masses and the effect of thrust of each engine is applied as a follower force. Using Hamilton's principle along with Galerkin's method, the governing equations of motion are derived, then the obtained equations are solved in frequency domain using the K-method and the aeroelastic instability conditions are determined. The flutter analysis results of four example wings are compared with the experimental and analytical results in the literature and good agreements are achieved which validate the present model. Furthermore, based on several case studies on a reference wing, some attempts are performed to analyze the effect of thrust on the stability margin of the wing and some conclusions are outlined.

  17. The aerodynamics of revolving wings I. Model hawkmoth wings.

    PubMed

    Usherwood, James R; Ellington, Charles P

    2002-06-01

    Recent work on flapping hawkmoth models has demonstrated the importance of a spiral 'leading-edge vortex' created by dynamic stall, and maintained by some aspect of spanwise flow, for creating the lift required during flight. This study uses propeller models to investigate further the forces acting on model hawkmoth wings in 'propeller-like' rotation ('revolution'). Steadily revolving model hawkmoth wings produce high vertical ( approximately lift) and horizontal ( approximately profile drag) force coefficients because of the presence of a leading-edge vortex. Both horizontal and vertical forces, at relevant angles of attack, are dominated by the pressure difference between the upper and lower surfaces; separation at the leading edge prevents 'leading-edge suction'. This allows a simple geometric relationship between vertical and horizontal forces and the geometric angle of attack to be derived for thin, flat wings. Force coefficients are remarkably unaffected by considerable variations in leading-edge detail, twist and camber. Traditional accounts of the adaptive functions of twist and camber are based on conventional attached-flow aerodynamics and are not supported. Attempts to derive conventional profile drag and lift coefficients from 'steady' propeller coefficients are relatively successful for angles of incidence up to 50 degrees and, hence, for the angles normally applicable to insect flight.

  18. Similitude relations for buffet and wing rock on delta wings

    NASA Astrophysics Data System (ADS)

    Mabey, D. G.

    1997-08-01

    Vortex flow phenomena at high angles of incidence are of great interest to the designers of advanced combat aircraft. The steady phenomena (such as steady lift and pitching moments) are understood fairly well, whereas the unsteady phenomena are still uncertain. This paper addresses two important unsteady phenomena on delta wings. With regard to the frequency parameter of the quasi-periodic excitation caused by vortex bursting, a new correlation is established covering a range of sweep back from 60 to 75°. With regard to the much lower frequency parameter of limit-cycle rigid-body wing-rock, a new experiment shows conclusively that although the motion is non-linear, the frequency parameter can be predicted by quasi-steady theory. As a consequence, for a given sweep angle, the frequency parameter is inversely proportional to the square root of the inertia in roll. This is an important observation when attempting to extrapolate from model tests in wind tunnels to predict the wing-rock characteristics of aircraft.

  19. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    PubMed

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-01

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings. PMID:26451802

  20. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    PubMed

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  1. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  2. Aerodynamic effects of flexibility in flapping wings

    PubMed Central

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  3. Aerodynamic-structural study of canard wing, dual wing, and conventional wing systems for general aviation applications

    NASA Technical Reports Server (NTRS)

    Selberg, B. P.; Cronin, D. L.

    1985-01-01

    An analytical aerodynamic-structural airplane configuration study was conducted to assess performance gains achievable through advanced design concepts. The mission specification was for 350 mph, range of 1500 st. mi., at altitudes between 30,000 and 40,000 ft. Two payload classes were studied - 1200 lb (6 passengers) and 2400 lb (12 passengers). The configurations analyzed included canard wings, closely coupled dual wings, swept forward - swept rearward wings, joined wings, and conventional wing tail arrangements. The results illustrate substantial performance gains possible with the dual wing configuration. These gains result from weight savings due to predicted structural efficiencies. The need for further studies of structural efficiencies for the various advanced configurations was highlighted.

  4. Sexual Conflict, Life Span, and Aging

    PubMed Central

    Adler, Margo I.; Bonduriansky, Russell

    2014-01-01

    The potential for sexual conflict to influence the evolution of life span and aging has been recognized for more than a decade, and recent work also suggests that variation in life span and aging can influence sexually antagonistic coevolution. However, empirical exploration of these ideas is only beginning. Here, we provide an overview of the ideas and evidence linking inter- and intralocus sexual conflicts with life span and aging. We aim to clarify the conceptual basis of this research program, examine the current state of knowledge, and suggest key questions for further investigation. PMID:24938876

  5. Sexual conflict, life span, and aging.

    PubMed

    Adler, Margo I; Bonduriansky, Russell

    2014-08-01

    The potential for sexual conflict to influence the evolution of life span and aging has been recognized for more than a decade, and recent work also suggests that variation in life span and aging can influence sexually antagonistic coevolution. However, empirical exploration of these ideas is only beginning. Here, we provide an overview of the ideas and evidence linking inter- and intralocus sexual conflicts with life span and aging. We aim to clarify the conceptual basis of this research program, examine the current state of knowledge, and suggest key questions for further investigation. PMID:24938876

  6. Complex flows over simple wings.

    NASA Astrophysics Data System (ADS)

    McArthur, John; Spedding, Geoffrey

    2006-11-01

    As the chord Reynolds number (Re) of an airfoil section drops below 10^5, the global, averaged properties such as mean lift and drag, become strongly affected by the presence/absence of separation on portions of the upper surface. Such flows are difficult to measure and difficult to compute. As Re decreases further, the lift:drag polars become increasingly odd in shape and difficult to replicate. At the same time, the amount of reliable literature data drops, so the aerodynamic performance becomes, in many ways, quite unpredictable. Since many practical small-scale flying machines, be they fixed or flapping wing designs, operate in this Re regime, there is a clear need for an improved understanding of the basic performance based on the flow physics. An experimental program is described that characterizes the instantaneous flow fields and aerodynamic forces on two-dimensional and finite wings with various profile shapes. The objective is to provide a foundation for practical wing design at moderate Re, and to provide a basis for rigorous comparisons with emerging computational capabilities.

  7. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  8. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    2009-05-01

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  9. Effects of wing deformation on aerodynamic performance of a revolving insect wing

    NASA Astrophysics Data System (ADS)

    Noda, Ryusuke; Nakata, Toshiyuki; Liu, Hao

    2014-12-01

    Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces, which is of highly nonlinear fluid-structure interaction (FSI) problems. To elucidate the novel mechanisms associated with flexible wing aerodynamics in the low Reynolds number regime, we have built up a FSI model of a hawkmoth wing undergoing revolving and made an investigation on the effects of flexible wing deformation on aerodynamic performance of the revolving wing model. To take into account the characteristics of flapping wing kinematics we designed a kinematic model for the revolving wing in two-fold: acceleration and steady rotation, which are based on hovering wing kinematics of hawkmoth, Manduca sexta. Our results show that both aerodynamic and inertial forces demonstrate a pronounced increase during acceleration phase, which results in a significant wing deformation. While the aerodynamic force turns to reduce after the wing acceleration terminates due to the burst and detachment of leading-edge vortices (LEVs), the dynamic wing deformation seem to delay the burst of LEVs and hence to augment the aerodynamic force during and even after the acceleration. During the phase of steady rotation, the flexible wing model generates more vertical force at higher angles of attack (40°-60°) but less horizontal force than those of a rigid wing model. This is because the wing twist in spanwise owing to aerodynamic forces results in a reduction in the effective angle of attack at wing tip, which leads to enhancing the aerodynamics performance by increasing the vertical force while reducing the horizontal force. Moreover, our results point out the importance of the fluid-structure interaction in evaluating flexible wing aerodynamics: the wing deformation does play a significant role in enhancing the aerodynamic performances but works differently during acceleration and steady rotation, which is mainly induced by

  10. Flexible Wing Model for Structural Sizing and Multidisciplinary Design Optimization of a Strut-Braced Wing

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.; Naghshineh, Amir H.; Sulaeman, Erwin; Kapania, Rakesh K.; Haftka, Raphael T.

    2000-01-01

    This paper describes a structural and aeroelastic model for wing sizing and weight calculation of a strut-braced wing. The wing weight is calculated using a newly developed structural weight analysis module considering the special nature of strut-braced wings. A specially developed aeroelastic model enables one to consider wing flexibility and spanload redistribution during in-flight maneuvers. The structural model uses a hexagonal wing-box featuring skin panels, stringers, and spar caps, whereas the aerodynamics part employs a linearized transonic vortex lattice method. Thus, the wing weight may be calculated from the rigid or flexible wing spanload. The calculations reveal the significant influence of the strut on the bending material weight of the wing. The use of a strut enables one to design a wing with thin airfoils without weight penalty. The strut also influences wing spanload and deformations. Weight savings are not only possible by calculation and iterative resizing of the wing structure according to the actual design loads. Moreover, as an advantage over the cantilever wing, employment of the strut twist moment for further load alleviation leads to increased savings in structural weight.

  11. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic computational fluid dynamics analysis of a wing glove attached to one wing of a business jet is presented and discussed. A wing glove placed on only one wing will produce asymmetric aerodynamic effects that will result in overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to ensure that the wing glove does not have a significant effect on the aircraft flight characteristics. TRANAIR (Calmar Research Corporation, Cato, New York), a nonlinear full potential solver, and Star-CCM+ (CD-adapco, Melville, New York), a finite volume full Reynolds-averaged Navier-Stokes computational fluid dynamics solver, are used to analyze a full aircraft with and without the glove at a variety of flight conditions, aircraft configurations, and angles of attack and sideslip. Changes in the aircraft lift, drag, and side force along with roll, pitch, and yaw are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove are discussed. Results show that the glove produces only small changes in the aerodynamic forces and moments acting on the aircraft, most of which are insignificant.

  12. A Comparison of Metallic, Composite and Nanocomposite Optimal Transonic Transport Wings

    NASA Technical Reports Server (NTRS)

    Kennedy, Graeme J.; Kenway, Gaetan K. W.; Martins, Joaquim R. R.

    2014-01-01

    Current and future composite material technologies have the potential to greatly improve the performance of large transport aircraft. However, the coupling between aerodynamics and structures makes it challenging to design optimal flexible wings, and the transonic flight regime requires high fidelity computational models. We address these challenges by solving a series of high-fidelity aerostructural optimization problems that explore the design space for the wing of a large transport aircraft. We consider three different materials: aluminum, carbon-fiber reinforced composites and an hypothetical composite based on carbon nanotubes. The design variables consist of both aerodynamic shape (including span), structural sizing, and ply angle fractions in the case of composites. Pareto fronts with respect to structural weight and fuel burn are generated. The wing performance in each case is optimized subject to stress and buckling constraints. We found that composite wings consistently resulted in lower fuel burn and lower structural weight, and that the carbon nanotube composite did not yield the increase in performance one would expect from a material with such outstanding properties. This indicates that there might be diminishing returns when it comes to the application of advanced materials to wing design, requiring further investigation.

  13. Calculation of the longitudinal aerodynamic characteristics of wing-flap configurations with externally blown flaps

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.; Nielsen, J. N.; Goodwin, F. K.

    1976-01-01

    A theoretical investigation was carried out to extend and improve an existing method for predicting the longitudinal characteristics of wing flap configurations with externally blown flaps (EBF). Two potential flow models were incorporated into the prediction method: a wing and flap lifting-surface model and a turbofan engine wake model. The wing-flap model uses a vortex-lattice approach to represent the wing and flaps. The jet wake model consists of a series of closely spaced vortex rings normal to a centerline which may have vertical and lateral curvature to conform to the local flow field beneath the wing and flaps. Comparisons of measured and predicted pressure distributions, span load distributions on each lifting surface, and total lift and pitching moment coefficients on swept and unswept EBF configurations are included. A wide range of thrust coefficients and flap deflection angles is considered at angles of attack up to the onset of stall. Results indicate that overall lift and pitching-moment coefficients are predicted reasonably well over the entire range. The predicted detailed load distributions are qualitatively correct and show the peaked loads at the jet impingement points, but the widths and heights of the load peaks are not consistently predicted.

  14. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  15. Subsonic longitudinal and lateral-directional static aerodynamic characteristics of a general research fighter model employing a strake-wing concept

    NASA Technical Reports Server (NTRS)

    Fox, C. H., Jr.

    1978-01-01

    A general research fighter model was tested in the Langley 7 by 10 foot high speed tunnel at a Mach number of 0.3. Strakes with exposed semi-spans of 10 percent, 20 percent, and 30 percent of the wing reference semi-span were tested in combination with wings having leading edge sweep angles of 30, 44, and 60 degrees. The angle of attack range was from -4 degrees to approximately 48 degrees at sideslip angles of 0, -5, and 5 degrees. The data are presented without analysis in order to expedite publication.

  16. Preliminary analysis of the span-distributed-load concept for cargo aircraft design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1975-01-01

    A simplified computer analysis of the span-distributed-load airplane (in which payload is placed within the wing structure) has shown that the span-distributed-load concept has high potential for application to future air cargo transport design. Significant increases in payload fraction over current wide-bodied freighters are shown for gross weights in excess of 0.5 Gg (1,000,000 lb). A cruise-matching calculation shows that the trend toward higher aspect ratio improves overall efficiency; that is, less thrust and fuel are required. The optimal aspect ratio probably is not determined by structural limitations. Terminal-area constraints and increasing design-payload density, however, tend to limit aspect ratio.

  17. Pressure distribution data from tests of 2.29-meter (7.5-ft.) span EET high-lift research model in Langley 4- by 7-meter tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1982-01-01

    A 2.29 m (7.5 ft.) span high-lift research model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Langley 4- by 7-Meter Tunnel to determine the low speed performance characteristics of a representative high aspect ratio suprcritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  18. Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae.

    PubMed

    Von Busse, Rhea; Hedenström, Anders; Winter, York; Johansson, L Christoffer

    2012-12-15

    The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0-7 m/s), to determine how factors affecting the lift production vary across flight speed and within wingbeats. We found that the wing area, the angle of attack and the camber, which are determinants of the lift production, decreased with increasing speed. The camber is controlled by multiple mechanisms along the span, including the deflection of the leg relative to the body, the bending of the fifth digit, the deflection of the leading edge flap and the upward bending of the wing tip. All these measures vary throughout the wing beat suggesting active or aeroelastic control. The downstroke Strouhal number, St(d), is kept relatively constant, suggesting that favorable flow characteristics are maintained during the downstroke, across the range of speeds studied. The St(d) is kept constant through changes in the stroke plane, from a strongly inclined stroke plane at low speeds to a more vertical stroke plane at high speeds. The mean angular velocity of the wing correlates with the aerodynamic performance and shows a minimum at the speed of maximum lift to drag ratio, suggesting a simple way to determine the optimal speed from kinematics alone. Taken together our results show the high degree of adjustments that the bats employ to fine tune the aerodynamics of the wings and the correlation between kinematics and aerodynamic performance. PMID:23259057

  19. Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae

    PubMed Central

    Von Busse, Rhea; Hedenström, Anders; Winter, York; Johansson, L. Christoffer

    2012-01-01

    Summary The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0–7 m/s), to determine how factors affecting the lift production vary across flight speed and within wingbeats. We found that the wing area, the angle of attack and the camber, which are determinants of the lift production, decreased with increasing speed. The camber is controlled by multiple mechanisms along the span, including the deflection of the leg relative to the body, the bending of the fifth digit, the deflection of the leading edge flap and the upward bending of the wing tip. All these measures vary throughout the wing beat suggesting active or aeroelastic control. The downstroke Strouhal number, Std, is kept relatively constant, suggesting that favorable flow characteristics are maintained during the downstroke, across the range of speeds studied. The Std is kept constant through changes in the stroke plane, from a strongly inclined stroke plane at low speeds to a more vertical stroke plane at high speeds. The mean angular velocity of the wing correlates with the aerodynamic performance and shows a minimum at the speed of maximum lift to drag ratio, suggesting a simple way to determine the optimal speed from kinematics alone. Taken together our results show the high degree of adjustments that the bats employ to fine tune the aerodynamics of the wings and the correlation between kinematics and aerodynamic performance. PMID:23259057

  20. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    NASA Astrophysics Data System (ADS)

    Yu, Meilin

    suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.

  1. Constraints on the wing morphology of pterosaurs

    PubMed Central

    Palmer, Colin; Dyke, Gareth

    2012-01-01

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine—let alone measure—optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability. PMID:21957137

  2. Constraints on the wing morphology of pterosaurs.

    PubMed

    Palmer, Colin; Dyke, Gareth

    2012-03-22

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine-let alone measure-optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability.

  3. Evaluation of installed performance of a wing-tip-mounted pusher turboprop on a semispan wing

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr.; Bartlett, Glynn R.

    1987-01-01

    An exploratory investigation has been conducted at the Langley Research Center to determine the effect of a wing-tip-mounted pusher turboprop on the aerodynamic characteristics of a semispan wing. Tests were conducted on a semispan model with an upswept, untapered wing and an airdriven motor that powered an SR-2 high-speed propeller located on the tip of the wing as a pusher propeller. All tests were conducted at a Mach number of 0.70 over an angle-of-attack range from approximately -2 to 4 deg at a Reynolds number of 3.82 x 10 to the 6th based on the wing reference chord of 13 in. The data indicate that, as a result of locating the propeller behind the wing trailing edge at the wing tip in the crossflow of the wing-tip vortex, it is possible to improve propeller performance and simultaneously reduce the lift-induced drag.

  4. A Discrete-Vortex Method for Studying the Wing Rock of Delta Wings

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    2002-01-01

    A discrete-vortex method is developed to investigate the wing rock problem associated with highly swept wings. The method uses two logarithmic vortices placed above the wing to represent the vortex flow field and uses boundary conditions based on conical flow, vortex rate of change of momentum, and other considerations to position the vortices and determine their strengths. A relationship based on the time analogy and conical-flow assumptions is used to determine the hysteretic positions of the vortices during roll oscillations. Static and dynamic vortex positions and wing rock amplitudes and frequencies calculated by using the method are generally in good agreement with available experimental data. The results verify that wing rock is caused by hysteretic deflections of the vortices and indicate that the stabilizing moments that limit wing rock amplitudes are the result of the one primary vortex moving outboard of the wing where it has little influence on the wing.

  5. Elements of the Wing Section Theory and of the Wing Theory

    NASA Technical Reports Server (NTRS)

    Munk, Max M.

    1979-01-01

    Results are presented of the theory of wings and of wing sections which are of immediate practical value. They are proven and demonstrated by the use of the simple conceptions of kinetic energy and momentum only.

  6. Conceptual design for a laminar-flying-wing aircraft

    NASA Astrophysics Data System (ADS)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  7. Flow visualization of leading-edge vortex enhancement by spanwise blowing. [swept wings - wind tunnel stability tests

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Campbell, J. F.

    1975-01-01

    Flow visualization studies were conducted in a small pilot wind tunnel to determine qualitative effects of blowing a discrete jet essentially parallel to the leading edge of a 45 deg-swept trapezoidal wing featuring leading- and trailing-edge flaps. Test parameters included wing angle-of-attack, jet momentum coefficient, leading- and trailing-edge flap deflections, and nozzle chordwise displacement. Results of this study indicate that blowing from a reflection plane over the wing enhances the leading-edge vortex and delays vortex bursting to higher angles-of-attack and greater span distances. Increased blowing rates decrease vortex size, growth rate, and vertical displacement above the wing surface at a given span station and also extend the spanwise effectiveness of lateral blowing. Deflection of a leading-edge flap delays the beneficial effects of spanwise blowing to higher angles-of-attack. Nozzle chordwise locations investigated for the wing with and without leading-edge flap deflection appear equally effective in enhancing the separated leading-edge flow.

  8. Subtractive Structural Modification of Morpho Butterfly Wings.

    PubMed

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.

  9. Veins improve fracture toughness of insect wings.

    PubMed

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  10. Projection Moire Interferometry Measurements of Micro Air Vehicle Wings

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-01-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  11. Calendar life-span versus fission life-span of Paramecium aurelia.

    PubMed

    Smith-Sonneborn, J; Reed, J C

    1976-01-01

    The hypothesis that paramecia use fissions, not days, to measure length of cell life-span was investigated. Parallel cell lines were grown at 27 C and at 24 C. The daily fission rate of the cells at 24 C was lower than at 27 C. If the cells count fissions, not days, the life-span in fissions should remain unchanged, whereas the cell life-span in days should increase in the lines with reduced daily fission rate. The results showed a significant increase in cell life-span in days when the cells were cultivated for 70-100% of their life cycle at 24 C. The life-span as measured by fissions, however, remained unchanged regardless of the time of the life cycle when cells were shifted to 24 C. The data indicate that, as a model system for cellular aging, paramecia are comparable to cells which use cell doublings to measure life-span. PMID:1244399

  12. Crossflow Stability and Transition Experiments in Swept-Wing Flow

    NASA Technical Reports Server (NTRS)

    Dagenhart, J. Ray; Saric, William S.

    1999-01-01

    An experimental examination of crossflow instability and transition on a 45deg swept wing was conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized by using both sublimating chemical and liquid-crystal coatings. Extensive hot-wire measurements were obtained at several measurement stations across a single vortex track. The mean and travelling wave disturbances were measured simultaneously. Stationary crossflow disturbance profiles were determined by subtracting either a reference or a span-averaged velocity profile from the mean velocity data. Mean, stationary crossflow, and traveling wave velocity data were presented as local boundary layer profiles and contour plots across a single stationary crossflow vortex track. Disturbance mode profiles and growth rates were determined. The experimental data are compared with predictions from linear stability theory.

  13. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  14. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2015-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this paper is on tool presentation, verification, and validation. These processes are carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  15. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2014-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio and number of control surfaces. A doublet lattice approach is taken to compute generalized forces. A rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. Although, all parameters can be easily modified if desired.The focus of this paper is on tool presentation, verification and validation. This process is carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool. Therefore the flutter speed and frequency for a clamped plate are computed using V-g and V-f analysis. The computational results are compared to a previously published computational analysis and wind tunnel results for the same structure. Finally a case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to V-g and V-f analysis. This also includes the analysis of the model in response to a 1-cos gust.

  16. Span graphics display utilities handbook, first edition

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Green, J. L.; Newman, R.

    1985-01-01

    The Space Physics Analysis Network (SPAN) is a computer network connecting scientific institutions throughout the United States. This network provides an avenue for timely, correlative research between investigators, in a multidisciplinary approach to space physics studies. An objective in the development of SPAN is to make available direct and simplified procedures that scientists can use, without specialized training, to exchange information over the network. Information exchanges include raw and processes data, analysis programs, correspondence, documents, and graphite images. This handbook details procedures that can be used to exchange graphic images over SPAN. The intent is to periodically update this handbook to reflect the constantly changing facilities available on SPAN. The utilities described within reflect an earnest attempt to provide useful descriptions of working utilities that can be used to transfer graphic images across the network. Whether graphic images are representative of satellite servations or theoretical modeling and whether graphics images are of device dependent or independent type, the SPAN graphics display utilities handbook will be the users guide to graphic image exchange.

  17. Full-scale Wind-tunnel Research on Tail Buffeting and Wing-fuselage Interference of a Low-wing Monoplane

    NASA Technical Reports Server (NTRS)

    Hood, Manley J; White, James A

    1933-01-01

    Some preliminary results of full scale wind tunnel testing to determine the best means of reducing the tail buffeting and wing-fuselage interference of a low-wing monoplane are given. Data indicating the effects of an engine cowling, fillets, auxiliary airfoils of short span, reflexes trailing edge, propeller slipstream, and various combinations of these features are included. The best all-round results were obtained by the use of fillets together with the National Advisory Committee for Aeronautics (NACA) cowling. This combination reduced the tail buffeting oscillations to one-fourth of their original amplitudes, increased the maximum lift 11 percent, decreased the minimum drag 9 percent, and increased the maximum ratio of lift to drag 19 percent.

  18. Investigating the Kookaburra's northern wing with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Mattana, Fabio; Terrier, Regis; Roberts, Mallory

    The complex of compact and extended sources called Kookaburra spans about one square degree along the Galactic plane. This region hosts a large circular radio shell surrounded by two wings, within which ASCA observations have revealed two candidate pulsar wind nebulae (PWNe): K3 in the north-east and the Rabbit in the south-west. Their PWN nature hypothesis has been recently strengthened by the H.E.S.S. discovery of two extended sources of very high energy emission, encompassing each of them. There is now little doubt that K3 is the wind nebula powered by the young PSR J1420-6048. However, despite the extensive multiwavelength followup, the morphology of the PWN and its relation with the TeV source are not assessed. Notably, it is not clear whether the nebula has experienced the crushing of an asymmetric supernova reverse shock or it is shaped by the pulsar supersonic motion in the supernova ejecta. Both the scenarios require a supernova shell for which has not been detected yet. Taking advantage of new XMM-Newton observations, we present the detailed X-ray morphology and spatially resolved spectra of the Kookaburra's northern wing, in particular of the K3 compact nebula and its putative diffuse trail at the position of HESS J1420-607.

  19. A numerical study on the effect of sweep angle on flapping-wing flight using fluid-structure interaction analysis

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kwan; Lee, Jun-Seong; Han, Jae-Hung

    2009-07-01

    The sweep-back effect of a flexible flapping wing is investigated through fluid-structure interaction analysis. The aeroelastic analysis is carried out by using an efficient fluid-structure interaction analysis tool, which is based on the modified strip theory and the flexible multibody dynamics. To investigate the sweep-back effect, the aeroelastic analysis is performed on various sweep-back wing models defined by sweep-chord ratio and sweep-span ratio, and then the sweep-back effect on the aerodynamic performance is discussed. The aeroelastic results of the sweep-back wing analysis clearly confirm that the sweep-back angle can help a flexible flapping wing to generate greater twisting motion, resulting in the aerodynamic improvement of thrust and input power for all flapping-axis angle regimes. The propulsive efficiency can also be increased by the sweep-back effect. The sweep angle of a flapping wing should be considered as an important design feature for artificial flexible flapping wings.

  20. Wind-tunnel investigation of aerodynamic efficiency of three planar elliptical wings with curvature of quarter-chord line

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Vijgen, Paul M. H. W.

    1993-01-01

    Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.

  1. Veins Improve Fracture Toughness of Insect Wings

    PubMed Central

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  2. Biaxial mechanical characterization of bat wing skin.

    PubMed

    Skulborstad, A J; Swartz, S M; Goulbourne, N C

    2015-06-01

    The highly flexible and stretchable wing skin of bats, together with the skeletal structure and musculature, enables large changes in wing shape during flight. Such compliance distinguishes bat wings from those of all other flying animals. Although several studies have investigated the aerodynamics and kinematics of bats, few have examined the complex histology and mechanical response of the wing skin. This work presents the first biaxial characterization of the local deformation, mechanical properties, and fiber kinematics of bat wing skin. Analysis of these data has provided insight into the relationships among the structural morphology, mechanical properties, and functionality of wing skin. Large spatial variations in tissue deformation and non-negligible fiber strains in the cross-fiber direction for both chordwise and spanwise fibers indicate fibers should be modeled as two-dimensional elements. The macroscopic constitutive behavior was anisotropic and nonlinear, with very low spanwise and chordwise stiffness (hundreds of kilopascals) in the toe region of the stress-strain curve. The structural arrangement of the fibers and matrix facilitates a low energy mechanism for wing deployment and extension, and we fabricate examples of skins capturing this mechanism. We propose a comprehensive deformation map for the entire loading regime. The results of this work underscore the importance of biaxial field approaches for soft heterogeneous tissue, and provide a foundation for development of bio-inspired skins to probe the effects of the wing skin properties on aerodynamic performance. PMID:25895436

  3. Wing-Design And -Analysis Code

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Carlson, Harry W.

    1990-01-01

    WINGDES2 computer program provides wing-design algorithm based on modified linear theory taking into account effects of attainable leading-edge thrust. Features improved numerical accuracy and additional capabilities. Provides analysis as well as design capability and applicable to both subsonic and supersonic flow. Replaces earlier wing-design code designated WINGDES (see LAR-13315). Written in FORTRAN V.

  4. Computer Code Aids Design Of Wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1993-01-01

    AERO2S computer code developed to aid design engineers in selection and evaluation of aerodynamically efficient wing/canard and wing/horizontal-tail configurations that includes simple hinged-flap systems. Code rapidly estimates longitudinal aerodynamic characteristics of conceptual airplane lifting-surface arrangements. Developed in FORTRAN V on CDC 6000 computer system, and ported to MS-DOS environment.

  5. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Wing flaps. 25.457 Section 25.457 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps....

  6. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Wing flaps. 25.457 Section 25.457 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps....

  7. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Wing flaps. 25.457 Section 25.457 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps....

  8. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wing flaps. 25.457 Section 25.457 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps....

  9. 14 CFR 25.457 - Wing flaps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Wing flaps. 25.457 Section 25.457 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.457 Wing flaps....

  10. Swept wing ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Bidwell, Colin S.

    1990-01-01

    An effort to develop a three-dimensional modeling method was initiated. This first step towards creation of a complete aircraft icing simulation code builds on previously developed methods for calculating three-dimensional flow fields and particle trajectories combined with a two-dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This work is a demonstration of the types of calculations necessary to predict a three-dimensional ice accretion. Results of calculations using the 3-D method for a MS-317 swept wing geometry are projected onto a 2-D plane normal to the wing leading edge and compared to 2-D results for the same geometry. It is anticipated that many modifications will be made to this approach, however, this effort will lay the groundwork for future modeling efforts. Results indicate that the flow field over the surface and the particle trajectories differed for the two calculations. This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice accumulation for the 3-D calculation.

  11. High speed flow past wings

    NASA Technical Reports Server (NTRS)

    Norstrud, H.

    1973-01-01

    The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

  12. Low-speed tests of a high-aspect-ratio, supercritical-wing transport model equipped with a high-lift flap system in the Langley 4- by 7-meter and Ames 12-foot pressure tunnels

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.; Kjelgaard, S. O.

    1983-01-01

    The Ames 12-Foot Pressure Tunnel was used to determine the effects of Reynolds number on the static longitudinal aerodynamic characteristics of an advanced, high-aspect-ratio, supercritical wing transport model equipped with a full span, leading edge slat and part span, double slotted, trailing edge flaps. The model had a wing span of 7.5 ft and was tested through a free stream Reynolds number range from 1.3 to 6.0 x 10 to 6th power per foot at a Mach number of 0.20. Prior to the Ames tests, an investigation was also conducted in the Langley 4 by 7 Meter Tunnel at a Reynolds number of 1.3 x 10 to 6th power per foot with the model mounted on an Ames strut support system and on the Langley sting support system to determine strut interference corrections. The data obtained from the Langley tests were also used to compare the aerodynamic charactertistics of the rather stiff, 7.5-ft-span steel wing model tested during this investigation and the larger, and rather flexible, 12-ft-span aluminum-wing model tested during a previous investigation. During the tests in both the Langley and Ames tunnels, the model was tested with six basic wing configurations: (1) cruise; (2) climb (slats only extended); (3) 15 deg take-off flaps; (4) 30 deg take-off flaps; (5) 45 deg landing flaps; and (6) 60 deg landing flaps.

  13. Boundary Spanning Leadership Practices for Population Health.

    PubMed

    Shirey, Maria R; White-Williams, Connie

    2015-09-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. In this article, the authors discuss boundary spanning leadership practices for achieving the Triple Aim of simultaneously improving the health of populations, improving the patient experience, and reducing per-capita cost of health care. Drawing on experience with an existing population-focused heart failure clinic borne of an academic-practice partnership, the authors discuss boundary spanning leadership practices aimed at achieving the Triple Aim concept and its intended design. PMID:26301546

  14. Strain monitoring of a composite wing

    NASA Astrophysics Data System (ADS)

    Strathman, Joseph; Watkins, Steve E.; Kaur, Amardeep; Macke, David C.

    2016-04-01

    An instrumented composite wing is described. The wing is designed to meet the load and ruggedness requirements for a fixed-wing unmanned aerial vehicle (UAV) in search-and-rescue applications. The UAV supports educational systems development and has a 2.1-m wingspan. The wing structure consists of a foam core covered by a carbon-fiber, laminate composite shell. To quantify the wing characteristics, a fiber-optic strain sensor was surface mounted to measure distributed strain. This sensor is based on Rayleigh scattering from local index variations and it is capable of high spatial resolution. The use of the Rayleigh-scattering fiber-optic sensors for distributed measurements is discussed.

  15. 47. DRAW SPAN OVER PASSAIC RIVER Drawing No. 54 General ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. DRAW SPAN OVER PASSAIC RIVER Drawing No. 54 General Details of Wedge Operating Machinery for Draw Span Scale 1-1/2'=1'; April 1897 - Jackson Street Bridge, Spanning Passaic River, Newark, Essex County, NJ

  16. 347. Caltrans, Photographer April 10, 1935 "500 FT. SPANS"; VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    347. Caltrans, Photographer April 10, 1935 "500 FT. SPANS"; VIEW OF THROUGH TRUSS (500 FT. SPANS) UNDER CONSTRUCTION. 7-613 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  17. Interior view of eastern lift span, with decking above, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of eastern lift span, with decking above, looking back from center of span, toward lift mechanism area. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  18. 3. GENERAL ELEVATION, FROM THE NORTH, SHOWING ENTIRE BASCULE SPAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL ELEVATION, FROM THE NORTH, SHOWING ENTIRE BASCULE SPAN AND FOCUSING ON FIXED SPAN IN FOREGROUND - Seddon Island Scherzer Rolling Lift Bridge, Spanning Garrison Channel from Tampa to Seddon Island, Tampa, Hillsborough County, FL

  19. Detail, south (breslau) approach span, from west, showing end block ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, south (breslau) approach span, from west, showing end block and railing at approach span - Breslau Bridge, Spanning North Branch of Susquehanna River at Hannover Street, Plymouth, Luzerne County, PA

  20. 21. VIEW SOUTHWEST, DETAIL OF TRANSITION FROM CONCRETE SPAN TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW SOUTHWEST, DETAIL OF TRANSITION FROM CONCRETE SPAN TO STEEL SPAN AT PIER NUMBER 116 - Route 1 Extension, South Street Viaduct, Spanning Conrail & Wheeler Point Road at South Street, Newark, Essex County, NJ

  1. 12. DETAIL OF UNDERSIDE OF NORTH APPROACH SPANS, SHOWING ROADWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL OF UNDERSIDE OF NORTH APPROACH SPANS, SHOWING ROADWAY DECK AND APPROACH SPAN PIERS. VIEW TO SOUTHEAST. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  2. 11. View underside of draw span, with fender in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View underside of draw span, with fender in foreground and concrete deck spans and pile visible at rear, looking northeast - Colonel Alexander Scammell Memorial Bridge, Spanning Bellamy River at U.S. Route 4, Dover, Strafford County, NH

  3. 13. OBLIQUE OF UNDERSIDE OF SOUTH TRUSS SPAN, SOUTH APPROACH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. OBLIQUE OF UNDERSIDE OF SOUTH TRUSS SPAN, SOUTH APPROACH SPAN, AND SOUTH PIER, SHOWING FLOOR SYSTEM AND BEARINGS. LOOKING NORTH. - Flintville Bridge, Spanning Broad Creek at Flintville Road (Maryland Route 623), Castleton, Harford County, MD

  4. 2. WEST ELEVATION, SHOWING ENTIRE STRUCTURE: PENNSYLVANIA TRUSS MAIN SPANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WEST ELEVATION, SHOWING ENTIRE STRUCTURE: PENNSYLVANIA TRUSS MAIN SPANS AND PONY TRUSS APPROACH SPANS - Coraopolis Bridge, Spanning Ohio River back channel at Ferree Street & Grand Avenue, Coraopolis, Allegheny County, PA

  5. 10. DETAIL, SOUTHEAST SPAN THROUGH CANAL, VIEW BLOCKED BY STEEL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL, SOUTHEAST SPAN THROUGH CANAL, VIEW BLOCKED BY STEEL, CLAD COUNTER WEIGHT, WATER SPAN RAISED OUT OF VIEW - Cape Cod Canal Lift Bridge, Spanning Cape Cod Canal, Buzzards Bay, Barnstable County, MA

  6. 42. SOUTH SIDE OF COOPER RIVER SPAN WITH PEARMAN BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SOUTH SIDE OF COOPER RIVER SPAN WITH PEARMAN BRIDGE IN FOREGROUN, VIEW NORTHWEST TOWARDS TWIN CREEK SPAN AND DRUM ISLAND - Grace Memorial Bridge, U.S. Highway 17 spanning Cooper River & Town Creek , Charleston, Charleston County, SC

  7. 40. UNDERSIDE OF TOWN CREEK SPAN (LEFT) AND PEARMAN BRIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. UNDERSIDE OF TOWN CREEK SPAN (LEFT) AND PEARMAN BRIDE (RIGHT) FROM BENEATH BRIDGES, FACING EAST TOWARDS COOPER RIVER SPAN - Grace Memorial Bridge, U.S. Highway 17 spanning Cooper River & Town Creek , Charleston, Charleston County, SC

  8. 41. OBLIQUE VIEW OF NORTH SIDE OF COOPER RIVER SPAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. OBLIQUE VIEW OF NORTH SIDE OF COOPER RIVER SPAN WITH PEARMAN BRIDGE AND TOWN CREEK SPAN IN BACKGROUND, VIEW WEST TOWARDS CHARLESTON - Grace Memorial Bridge, U.S. Highway 17 spanning Cooper River & Town Creek , Charleston, Charleston County, SC

  9. 2. THREEQUARTER VIEW FROM ADJACENT ACCESS ROAD SHOWING THREE SPANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. THREE-QUARTER VIEW FROM ADJACENT ACCESS ROAD SHOWING THREE SPANS AND NORTHWEST APPROACH SPANS, LOOKING SOUTHEAST - Red River Bridge, Spanning Red River at U.S. Highway 82, Garland, Miller County, AR

  10. Insect-like flapping wing mechanism based on a double spherical Scotch yoke

    PubMed Central

    Galiński, Cezary; Żbikowski, Rafał

    2005-01-01

    We describe the rationale, concept, design and implementation of a fixed-motion (non-adjustable) mechanism for insect-like flapping wing micro air vehicles in hover, inspired by two-winged flies (Diptera). This spatial (as opposed to planar) mechanism is based on the novel idea of a double spherical Scotch yoke. The mechanism was constructed for two main purposes: (i) as a test bed for aeromechanical research on hover in flapping flight, and (ii) as a precursor design for a future flapping wing micro air vehicle. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forwards and backwards. During this motion the wing tip approximately traces a ‘figure-of-eight’ or a ‘banana’ and the wing changes the angle of attack (pitching) significantly. The kinematic and aerodynamic data from free-flying insects are sparse and uncertain, and it is not clear what aerodynamic consequences different wing motions have. Since acquiring the necessary kinematic and dynamic data from biological experiments remains a challenge, a synthetic, controlled study of insect-like flapping is not only of engineering value, but also of biological relevance. Micro air vehicles are defined as flying vehicles approximately 150 mm in size (hand-held), weighing 50–100 g, and are developed to reconnoitre in confined spaces (inside buildings, tunnels, etc.). For this application, insect-like flapping wings are an attractive solution and hence the need to realize the functionality of insect flight by engineering means. Since the semi-span of the insect wing is constant, the kinematics are spatial; in fact, an approximate figure-of-eight/banana is traced on a sphere. Hence a natural mechanism implementing such kinematics should be (i) spherical and (ii) generate mathematically convenient curves expressing the figure-of-eight/banana shape. The double spherical Scotch yoke design has property (i) by definition and achieves (ii) by

  11. General closeup view of the swing span bridge in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General close-up view of the swing span bridge in the close position, looking upriver. The pivot/center pier is positioned in the center of Tennessee River. Note: Each arm of the continuous swing span acts as simple spans. The total span over four (4) supports is partially continuous-- the middle panel at the center pier is continuous for bending moments, but discontinuous for shears. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  12. Automated Kinematic Extraction of Wing and Body Motions of Free Flying Diptera

    NASA Astrophysics Data System (ADS)

    Kostreski, Nicholas I.

    In the quest to understand the forces generated by micro aerial systems powered by oscillating appendages, it is necessary to study the kinematics that generate those forces. Automated and manual tracking techniques were developed to extract the complex wing and body motions of dipteran insects, ideal micro aerial systems, in free flight. Video sequences were captured by three high speed cameras (7500 fps) oriented orthogonally around a clear flight test chamber. Synchronization and image-based triggering were made possible by an automated triggering circuit. A multi-camera calibration was implemented using image-based tracking techniques. Three-dimensional reconstructions of the insect were generated from the 2-D images by shape from silhouette (SFS) methods. An intensity based segmentation of the wings and body was performed using a mixture of Gaussians. In addition to geometric and cost based filtering, spectral clustering was also used to refine the reconstruction and Principal Component Analysis (PCA) was performed to find the body roll axis and wing-span axes. The unobservable roll state of the cylindrically shaped body was successfully estimated by combining observations of the wing kinematics with a wing symmetry assumption. Wing pitch was determined by a ray tracing technique to compute and minimize a point-to-line cost function. Linear estimation with assumed motion models was accomplished by discrete Kalman filtering the measured body states. Generative models were developed for different species of diptera for model based tracking, simulation, and extraction of inertial properties. Manual and automated tracking results were analyzed and insect flight simulation videos were developed to quantify ground truth errors for an assumed model. The results demonstrated the automated tracker to have comparable performance to a human digitizer, though manual techniques displayed superiority during aggressive maneuvers and image blur. Both techniques demonstrated

  13. Interior room within eastern lift span, showing auxiliary electric and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior room within eastern lift span, showing auxiliary electric and gas generators. - Connecticut Avenue Bridge, Spans Rock Creek & Potomac Parkway at Connecticut Avenue, Washington, District of Columbia, DC

  14. 2. DETAIL VIEW OF MIDDLE ARCH SPAN, LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL VIEW OF MIDDLE ARCH SPAN, LOOKING NORTHWEST. - Cumberland & Pennsylvania Railroad, Wills Creek Bridge, Spanning Wills Creek 587 feet West of Eckhart Junction, Cumberland, Allegany County, MD

  15. Perspective view of span over French Creek and east abutment, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  16. Interior of lift mechanism area of eastern lift span, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of lift mechanism area of eastern lift span, looking northwest. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  17. Interior room within eastern lift span, showing auxiliary electric generator. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior room within eastern lift span, showing auxiliary electric generator. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  18. EXTERIOR VIEW, LOOKING WEST, WITH CENTER SPAN EXTENDING ACROSS WARRIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING WEST, WITH CENTER SPAN EXTENDING ACROSS WARRIOR RIVER. - Gulf, Mobile & Ohio Railroad Bridge, Spans Black Warrior River between Northport & Tuscaloosa, Tuscaloosa, Tuscaloosa County, AL

  19. Life-Span Development of Affective Relationships.

    ERIC Educational Resources Information Center

    Takahashi, Keiko

    This paper presents a model of affective relationships and a review of a number of empirical studies based on the model. The fundamental aim of the model is to describe the life-span development of affective relationships, which are measured in terms of an individual's representation of a variety of significant interpersonal relationships. These…

  20. Sensorimotor Synchronization across the Life Span

    ERIC Educational Resources Information Center

    Drewing, Knut; Aschersleben, Gisa; Li, Shu-Chen

    2006-01-01

    The present study investigates the contribution of general processing resources as well as other more specific factors to the life-span development of sensorimotor synchronization and its component processes. Within a synchronization tapping paradigm, a group of 286 participants, 6 to 88 years of age, were asked to synchronize finger taps with…

  1. SPAN - Terminal sterilization process analysis program

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Computer program, SPAN, measures the dry heat thermal sterilization process applied to a planetary capsule and calculates the time required for heat application, steady state conditions, and cooling. The program is based on the logarithmic survival of micro-organisms. Temperature profiles must be input on tape.

  2. SPAN C - Terminal sterilization process analysis program

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Computer program, SPAN-C, measures the dry heat thermal sterilization process applied to a planetary capsule and calculates the time required for heat application, steady state conditions, and cooling. The program is based on the logarithmic survival of micro-organisms. Temperature profiles must be input on cards.

  3. Improving spanning trees by upgrading nodes

    SciTech Connect

    Krumke, S.O.; Noltemeier, H.; Wirth, H.C.

    1997-01-16

    We study budget constrained optimal network upgrading problems. Such problems aim at finding optimal strategies for improving a network under some cost measure subject to certain budget constraints. A general problem in this setting is the following. We are given an edge weighted graph G = (V, E) where nodes represent processors and edges represent bidirectional communication links. The processor at a node v {element_of} V can be upgraded at a cost of c(v). Such an upgrade reduces the delay of each link emanating from v. The goal is to find a minimum cost set of nodes to be upgraded so that the resulting network has the best performance with respect to some measure. We consider the problem under two measures, namely, the weight of a minimum spanning tree and the bottleneck weight of a minimum bottleneck spanning tree. We present approximation and hardness results for the problem. Our results are tight to within constant factors. We also show that these approximation algorithms can be used to construct good approximation algorithms for the dual versions of the problems where there is a budget constraint on the upgrading cost and the objectives are minimum weight spanning tree and minimum bottleneck weight spanning tree respectively.

  4. Spatial Abilities across the Adult Life Span

    ERIC Educational Resources Information Center

    Borella, Erika; Meneghetti, Chiara; Ronconi, Lucia; De Beni, Rossana

    2014-01-01

    The study investigates age-related effects across the adult life span on spatial abilities (testing subabilities based on a distinction between spatial visualization, mental rotation, and perspective taking) and spatial self-assessments. The sample consisted of 454 participants (223 women and 231 men) from 20 to 91 years of age. Results showed…

  5. Dentulous appliance for upper anterior edentulous span.

    PubMed

    Chalakkal, Paul; Devi, Ramisetty Sabitha; Srinivas, G Vijay; Venkataramana, Pammi

    2013-12-01

    This article discusses about a fixed dentulous appliance that was constructed to replace the primary upper anterior edentulous span in a four year old girl. It constituted a design, whereby the maxillary primary second molars were used to support the appliance through bands and a wire that contained an acrylic flange bearing trimmed acrylic teeth, anteriorly. The appliance was functionally and aesthetically compliant.

  6. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles

    NASA Astrophysics Data System (ADS)

    Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.

    2015-06-01

    Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2

  7. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  8. Kinematics and Flow Evolution of a Flexible Wing in Stall Flutter

    NASA Astrophysics Data System (ADS)

    Farnsworth, John; Akkala, James; Buchholz, James; McLaughlin, Thomas

    2014-11-01

    Large amplitude stall flutter limit cycle oscillations were observed on an aspect ratio six finite span NACA0018 flexible wing model at a free stream velocity of 23 m/s and an initial angle of attack of six degrees. The wing motion was characterized by periodic oscillations of predominately a torsional mode at a reduced frequency of k = 0.1. The kinematics were quantified via stereoscopic tracking of the wing surface with high speed camera imaging and direct linear transformation. Simultaneously acquired accelerometer measurements were used to track the wing motion and trigger the collection of two-dimensional particle image velocimetry field measurements to the phase angle of the periodic motion. Aerodynamically, the flutter motion is driven by the development and shedding of a dynamic stall vortex system, the evolution of which is characterized and discussed. This work was supported by the AFOSR Flow Interactions and Control Portfolio monitored by Dr. Douglas Smith and the AFOSR/ASEE Summer Faculty Fellowship Program (JA and JB).

  9. Pressure distribution for the wing of the YAV-8B airplane; with and without pylons

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Delfrate, John H.; Sabsay, Catherine M.; Yarger, Jill M.

    1992-01-01

    Pressure distribution data have been obtained in flight at four span stations on the wing panel of the YAV-8B airplane. Data obtained for the supercritical profiled wing, with and without pylons installed, ranged from Mach 0.46 to 0.88. The altitude ranged from approximately 20,000 to 40,000 ft and the resultant Reynolds numbers varied from approximately 7.2 million to 28.7 million based on the mean aerodynamic chord. Pressure distribution data and flow visualization results show that the full-scale flight wing performance is compromised because the lower surface cusp region experiences flow separation for some important transonic flight conditions. This condition is aggravated when local shocks occur on the lower surface of the wing (mostly between 20 and 35 percent chord) when the pylons are installed for Mach 0.8 and above. There is evidence that convex fairings, which cover the pylon attachment flanges, cause these local shocks. Pressure coefficients significantly more negative than those for sonic flow also occur farther aft on the lower surface (near 60 percent chord) whether or not the pylons are installed for Mach numbers greater than or equal to 0.8. These negative pressure coefficient peaks and associated local shocks would be expected to cause increasing wave and separation drag at transonic Mach number increases.

  10. Theoretical aerodynamics of upper-surface-blowing jet-wing interaction

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Campbell, J. F.

    1975-01-01

    A linear, inviscid subsonic compressible flow theory is formulated to treat the aerodynamic interaction between the wing and an inviscid upper-surface-blowing (USB) thick jet with Mach number nonuniformity. The predicted results show reasonably good agreement with some available lift and induced-drag data. It was also shown that the thin-jet-flap theory is inadequate for the USB configurations with thick jet. Additional theoretical results show that the lift and induced drag were reduced by increasing jet temperature and increased by increasing jet Mach number. Reducing jet aspect ratio, while holding jet area constant, caused reductions in lift, induced drag, and pitching moment at a given angle of attack but with a minimal change in the curve of lift coefficient against induced-drag coefficient. The jet-deflection effect was shown to be beneficial to cruise performance. The aerodynamic center was shifted forward by adding power or jet-deflection angle. Moving the jet away from the wing surface resulted in rapid changes in lift and induced drag. Reducing the wing span of a rectangular wing by half decreased the jet-circulation lift by only 24 percent at a thrust coefficient of 2.

  11. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2010-01-01

    The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.

  12. Theoretical stability and control characteristics of wings with various amounts of taper and twist

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A; Jones, Robert T

    1938-01-01

    Stability derivatives have been computed for twisted wings of different plan forms that include variations in both the wing taper and the aspect ratio. Taper ratios of 1.0, 0,50, and 0.25 are considered for each of three aspect ratios: 6, 10, and 16. The specific derivatives for which results are given are the rolling-moment and the yawing-moment derivatives with respect to (a) rolling velocity, (b) yawing velocity, and (c) angle of sideslip. These results are given in such a form that the effect of any initial symmetrical wing twist (such as may be produced by flaps) on the derivatives may easily be taken into account. In addition to the stability derivatives, results are included for determining the theoretical rolling moment due to aileron deflection and a series of influence lines is given by which the loading across the span may be determined for any angle-of-attack distribution that may occur on the wing plan forms considered. The report also includes incidental references to the application of the results.

  13. An integrated approach to the optimum design of actively controlled composite wings

    NASA Technical Reports Server (NTRS)

    Livne, E.

    1989-01-01

    The importance of interactions among the various disciplines in airplane wing design has been recognized for quite some time. With the introduction of high gain, high authority control systems and the design of thin, flexible, lightweight composite wings, the integrated treatment of control systems, flight mechanics and dynamic aeroelasticity became a necessity. A research program is underway now aimed at extending structural synthesis concepts and methods to the integrated synthesis of lifting surfaces, spanning the disciplines of structures, aerodynamics and control for both analysis and design. Mathematical modeling techniques are carefully selected to be accurate enough for preliminary design purposes of the complicated, built-up lifting surfaces of real aircraft with their multiple design criteria and tight constraints. The presentation opens with some observations on the multidisciplinary nature of wing design. A brief review of some available state of the art practical wing optimization programs and a brief review of current research effort in the field serve to illuminate the motivation and support the direction taken in our research. The goals of this research effort are presented, followed by a description of the analysis and behavior sensitivity techniques used. The presentation concludes with a status report and some forecast of upcoming progress.

  14. Evaluation of flexible flapping wing concept

    NASA Astrophysics Data System (ADS)

    Rakotomamonjy, Thomas; Le Moing, Thierry; Danet, Brieuc; Gadoullet, Xavier; Osmont, Daniel; Dupont, Marc

    2009-03-01

    ONERA - The French Aerospace Lab - has launched an internal program on biologically-inspired Micro Air Vehicles (MAVs), covering many research topics such as unsteady aerodynamics, actuation, structural dynamics or control. The aim is to better understand the flapping flight performed in nature by insects, and to control state of the art technologies and applications in this field. For that purpose, a flight-dynamics oriented simulation model of a flapping-wing concept has been developed. This model, called OSCAB, features a body and two wings along which the aerodynamics efforts are integrated, so as to determine the global motion of the MAV. The model has been improved by taking into account the flexibility of the wings (flexion of the leading edge and passive torsion of the wings, induced by the flapping motion itself under wing inertia). Thus, it becomes possible to estimate the coupling between flexibility and the aerodynamic forces. Furthermore, the model shows that using elastic properties of the wings allows a diminution of the mechanical energy needed for wings motion, and a reduction of the number of actuators to be implanted into the MAV.

  15. Nanostructured Antireflective and Thermoisolative Cicada Wings.

    PubMed

    Morikawa, Junko; Ryu, Meguya; Seniutinas, Gediminas; Balčytis, Armandas; Maximova, Ksenia; Wang, Xuewen; Zamengo, Massimiliano; Ivanova, Elena P; Juodkazis, Saulius

    2016-05-10

    Inter-related mechanical, thermal, and optical macroscopic properties of biomaterials are defined at the nanoscale by their constituent structures and patterns, which underpin complex functions of an entire bio-object. Here, the temperature diffusivity of a cicada (Cyclochila australasiae) wing with nanotextured surfaces was measured using two complementary techniques: a direct contact method and IR imaging. The 4-6-μm-thick wing section was shown to have a thermal diffusivity of α⊥ = (0.71 ± 0.15) × 10(-7) m(2)/s, as measured by the contact temperature wave method along the thickness of the wing; it corresponds to the inherent thermal property of the cuticle. The in-plane thermal diffusivity value of the wing was determined by IR imaging and was considerably larger at α∥ = (3.6 ± 0.2) × 10(-7) m(2)/s as a result of heat transport via air. Optical properties of wings covered with nanospikes were numerically simulated using an accurate 3D model of the wing pattern and showed that light is concentrated between spikes where intensity is enhanced by up to 3- to 4-fold. The closely packed pattern of nanospikes reduces the reflectivity of the wing throughout the visible light spectrum and over a wide range of incident angles, hence acting as an antireflection coating.

  16. Insect Wing Displacement Measurement Using Digital Holography

    SciTech Connect

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-04-15

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.

  17. Nanostructured Antireflective and Thermoisolative Cicada Wings.

    PubMed

    Morikawa, Junko; Ryu, Meguya; Seniutinas, Gediminas; Balčytis, Armandas; Maximova, Ksenia; Wang, Xuewen; Zamengo, Massimiliano; Ivanova, Elena P; Juodkazis, Saulius

    2016-05-10

    Inter-related mechanical, thermal, and optical macroscopic properties of biomaterials are defined at the nanoscale by their constituent structures and patterns, which underpin complex functions of an entire bio-object. Here, the temperature diffusivity of a cicada (Cyclochila australasiae) wing with nanotextured surfaces was measured using two complementary techniques: a direct contact method and IR imaging. The 4-6-μm-thick wing section was shown to have a thermal diffusivity of α⊥ = (0.71 ± 0.15) × 10(-7) m(2)/s, as measured by the contact temperature wave method along the thickness of the wing; it corresponds to the inherent thermal property of the cuticle. The in-plane thermal diffusivity value of the wing was determined by IR imaging and was considerably larger at α∥ = (3.6 ± 0.2) × 10(-7) m(2)/s as a result of heat transport via air. Optical properties of wings covered with nanospikes were numerically simulated using an accurate 3D model of the wing pattern and showed that light is concentrated between spikes where intensity is enhanced by up to 3- to 4-fold. The closely packed pattern of nanospikes reduces the reflectivity of the wing throughout the visible light spectrum and over a wide range of incident angles, hence acting as an antireflection coating. PMID:27101865

  18. Comparison of two-dimensional and three-dimensional droplet trajectory calculations in the vicinity of finite wings

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.; Bidwell, Colin S.

    1992-01-01

    Computational predictions of ice accretion on flying aircraft most commonly rely on modeling in two dimensions (2D). These 2D methods treat an aircraft geometry either as wing-like with infinite span, or as an axisymmetric body. Recently, fully three dimensional (3D) methods have been introduced that model an aircrafts true 3D shape. Because 3D methods are more computationally expensive than 2D methods, 2D methods continue to be widely used. However, a 3D method allows us to investigate whether it is valid to continue applying 2D methods to a finite wing. The extent of disagreement between LEWICE, a 2D method, and LEWICE3D, a 3D method, in calculating local collection efficiencies at the leading edge of finite wings is investigated in this paper.

  19. Comparison of two-dimensional and three-dimensional droplet trajectory calculations in the vicinity of finite wings

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.; Bidwell, Colin S.

    1992-01-01

    Computational predictions of ice accretion on flying aircraft most commonly rely on modeling in 2D. These 2D methods treat an aircraft geometry either as wing-like with infinite span, or as an axisymmetric body. Recently, fully 3D methods have been introduced that model an aircraft's true 3D shape. Because 3D methods are more computationally expensive than 2D methods, 2D methods continue to be widely used. However, a 3D method allows investigation of whether it is valid to continue applying 2D methods to a finite wing. The extent of disagreement between LEWICE, a 2D method, and LEWICE3D, a 3D method, in calculating local collection efficiencies at the leading edge of finite wings is investigated.

  20. Novel Control Effectors for Truss Braced Wing

    NASA Technical Reports Server (NTRS)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  1. Analytical modeling and experimental evaluation of a passively morphing ornithopter wing

    NASA Astrophysics Data System (ADS)

    Wissa, Aimy A.

    Ornithopters or flapping wing Unmanned Aerial Vehicles (UAVs) have potential applications in both civil and military sectors. Amongst all categories of UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work was to improve the steady level flight wing performance of an ornithopter by implementing the Continuous Vortex Gait (CVG) using a novel passive compliant spine. The CVG is a set of bio-inspired kinematics that natural flyers use to produce lift and thrust during steady level flight. A significant contribution of this work was the recognition that the CVG is an avian gait that could be achieved using a passive morphing mechanism. In contrast to rigid-link mechanisms and active approaches, reported by other researchers in the open literature, passive morphing mechanisms require no additional energy expenditure, while introducing minimal weight addition and complexity. During the execution of the CVG, the avian wing wrist is the primary joint responsible for the wing shape changes. Thus a compliant mechanism, called a compliant spine, was fabricated, and integrated in the ornithopter's wing leading edge spar where an avian wrist would normally exist, namely at 37% of the wing half span. Each compliant spine was designed to be flexible in bending during the wing upstroke and stiff in bending during the wing downstroke. Inserting a variable stiffness compliant mechanism in the leading edge (LE) spar of the ornithopter could affect its structural stability. An analytical model was developed to determine the structural stability of the ornithopter LE spar. The model was validated using experimental measurements. The LE spar equations of motion were then reformulated into Mathieu's equation and the LE spar was proven to be structurally stable with a

  2. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  3. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  4. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  5. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  6. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  7. Static aeroelastic analysis for generic configuration wing

    NASA Technical Reports Server (NTRS)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1991-01-01

    A static aeroelastic analysis capability that calculates flexible air loads for generic configuration wings was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used, and the aerodynamic influence coefficient matrix was computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible air loads of an oblique wing configuration including asymmetric wings can be calculated reliably by this code both in subsonic and supersonic speeds.

  8. A Miniature Controllable Flapping Wing Robot

    NASA Astrophysics Data System (ADS)

    Arabagi, Veaceslav Gheorghe

    The agility and miniature size of nature's flapping wing fliers has long baffled researchers, inspiring biological studies, aerodynamic simulations, and attempts to engineer their robotic replicas. Flapping wing flight is characterized by complex reciprocating wing kinematics, transient aerodynamic effects, and very small body lengths. These characteristics render robotic flapping wing aerial vehicles ideal for surveillance and defense applications, search and rescue missions, and environment monitoring, where their ability to hover and high maneuverability is immensely beneficial. One of the many difficulties in creating flapping wing based miniature robotic aerial vehicles lies in generating a proper wing trajectory that would result in sufficient lift forces for hovering and maneuvering. Since design of a flapping wing system is a balance between overall weight and the number of actuated inputs, we take the approach of having minimal controlled inputs, allowing passive behavior wherever possible. Hence, we propose a completely passive wing pitch reversal design that relies on wing inertial dynamics, an elastic energy storage mechanism, and low Reynolds number aerodynamic effects. Theoretical models, compiling previous research on piezoelectric actuators, four-bar transmissions, and aerodynamics effects, are developed and used as basis for a complete numerical simulation. Limitations of the model are discussed in comparison to experimental results obtained from a working prototype of the proposed passive pitch reversal flapping wing mechanism. Given that the mechanism is under-actuated, methods to control lift force generation by actively varying system parameters are proposed, discussed, and tested experimentally. A dual wing aerial platform is developed based on the passive pitch reversal wing concept. Design considerations are presented, favoring controllability and structural rigidity of the final platform. Finite element analysis and experimental

  9. Moveable Leading Edge Device for a Wing

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  10. The plane problem of the flapping wing

    NASA Technical Reports Server (NTRS)

    Birnbaum, Walter

    1954-01-01

    In connection with an earlier report on the lifting vortex sheet which forms the basis of the following investigations this will show how the methods developed there are also suitable for dealing with the air forces for a wing with a circulation variable with time. The theory of a propulsive wing flapping up and down periodically in the manner of a bird's wing is developed. This study shows how the lift and its moment result as a function of the flapping motion, what thrust is attainable, and how high is the degree of efficiency of this flapping propulsion unit if the air friction is disregarded.

  11. Sensitivity Analysis of Wing Aeroelastic Responses

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian

    1995-01-01

    Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight

  12. Wing design with attainable thrust considerations

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Shrout, B. L.; Darden, C. M.

    1984-01-01

    A CAD process that includes leading-edge thrust considerations for wings with high aerodynamic efficiencies is outlined. Rectangular grids are used for evaluation of both subsonic and supersonic pressure loadings. Account is taken of the Mach number, Re, the wing planform, the presence of camber, the airfoil geometry and the locations and forces induced by shed vortices. Optimization techniques are applied to the candidate surfaces in order to consider the attainable thrust. Inclusion of the optimization techniques permits analyses of mission-adaptive wings and various flap systems and the elimination of singularities in the flight envelope.

  13. Generic Wing-Body Aerodynamics Data Base

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  14. Aerodynamic interaction between propellers and wings

    NASA Technical Reports Server (NTRS)

    Witkowski, David; Lee, Alex K. H.; Sullivan, John P.

    1988-01-01

    A combined computational/experimental investigation has been conducted to determine the time-averaged interactive performance of a propeller and wing in tractor configuration at Mach 0.1 and Re=470,000, based on a wind tunnel model wing chord of 8 in. Wing angle-of-attack was varied from 0 to +13 deg, and propeller advance ratio ranged from 2.4 (windmilling) to 1.1 (maximum power). Both a semiempirical model and a vortex lattice simulation were used in the computational analysis. Good agreement has been obtained between theory and experiment.

  15. The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing rock motion

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.

    1989-01-01

    An experimental investigation into the fluid mechanisms responsible for wing rock on a slender delta wing with 80 deg leading edge sweep has been conducted. Time history and flow visualization data are presented for a wide angle-of-attack range. The use of an air bearing spindle has allowed the motion of the wing to be free from bearing friction or mechanical hysteresis. A bistable static condition has been found in vortex breakdown at an angle of attack of 40 deg which causes an overshoot of the steady state rocking amplitude. Flow visualization experiments also reveal a difference in static and dynamic breakdown locations on the wing. A hysteresis loop in dynamic breakdown location similar to that seen on pitching delta wings was observed as the wing was undergoing the limit cycle oscillation.

  16. The effect of over-the-wing nacelles on wing-body aerodynamics

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.

    1978-01-01

    An investigation was conducted in the Langley 16-foot transonic tunnel to further study benefits in climb and cruise performance due to blowing the jet over the wing for a transport-type wing-body configuration. In this investigation a wing-body model/powered-nacelle test rig combination was tested at Mach numbers of 0.5 and 0.8 at angles of attack from -2 to 4 deg and jet total-pressure ratios from jet off to 3 or 4 (depending on Mach number) for a variety of nacelle locations relative to the wing. Results from this investigation show that positioning of the nacelles can have very large effects on the wing-body drag (nacelles were nonmetric). Some positions yielded much higher drag than the baseline wing-body while others yielded drag which was somewhat lower than the baseline.

  17. Aerodynamic shape optimization of wing and wing-body configurations using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.

  18. Thin tailored composite wing for civil tiltrotor

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1994-01-01

    The tiltrotor aircraft is a flight vehicle which combines the efficient low speed (i.e., take-off, landing, and hover) characteristics of a helicopter with the efficient cruise speed of a turboprop airplane. A well-known example of such vehicle is the Bell-Boeing V-22 Osprey. The high cruise speed and range constraints placed on the civil tiltrotor require a relatively thin wing to increase the drag-divergence Mach number which translates into lower compressibility drag. It is required to reduce the wing maximum thickness-to-chord ratio t/c from 23% (i.e., V-22 wing) to 18%. While a reduction in wing thickness results in improved aerodynamic efficiency, it has an adverse effect on the wing structure and it tends to reduce structural stiffness. If ignored, the reduction in wing stiffness leads to susceptibility to aeroelastic and dynamic instabilities which may consequently cause a catastrophic failure. By taking advantage of the directional stiffness characteristics of composite materials the wing structure may be tailored to have the necessary stiffness, at a lower thickness, while keeping the weight low. The goal of this study is to design a wing structure for minimum weight subject to structural, dynamic and aeroelastic constraints. The structural constraints are in terms of strength and buckling allowables. The dynamic constraints are in terms of wing natural frequencies in vertical and horizontal bending and torsion. The aeroelastic constraints are in terms of frequency placement of the wing structure relative to those of the rotor system. The wing-rotor-pylon aeroelastic and dynamic interactions are limited in this design study by holding the cruise speed, rotor-pylon system, and wing geometric attributes fixed. To assure that the wing-rotor stability margins are maintained a more rigorous analysis based on a detailed model of the rotor system will need to ensue following the design study. The skin-stringer-rib type architecture is used for the wing

  19. The Strength of Shell and Tubular Spar Wings

    NASA Technical Reports Server (NTRS)

    Ebner, H

    1940-01-01

    The report is a survey of the strength problems arising on shell and tubular spar wings. The treatment of the shell wing strength is primarily confined to those questions which concern the shell wing only; those pertaining to both shell wing and shell body together have already been treated in TM 838. The discussion of stress condition and compressive strength of shell wings and tubular spar wings is prefaced by several considerations concerning the spar and shell design of metal wings from the point of view of strength.

  20. Low aspect ratio wings at high angles of attack

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.

    1986-01-01

    A comprehensive evaluation is made of experimental data compiled to date for the flowfields and aerodynamic forces that occur at high angles of attack for low aspect ratio wings with delta, rectangular, clipped delta, and strake/wing planform geometries. Attention is given to wing leading edge-generated vortex breakdown, aspect ratio and compressibility effects, and strake vortex effects on main wing areas. Although the nonlinear effects created by a wing-body combination significantly alter wing-alone aerodynamics, the wing-alone data presented are vital to the development of prediction methodologies for large angle of attack aerodynamics.

  1. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Young, L. A.; Lillie, D.; McCluer, M.; Yamauchi, G. K.; Derby, M. R.

    2001-01-01

    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics. This work was conducted in the National Full-scale Aerodynamics Complex's (NFAC) 40-by-80 Foot Wind Tunnel, at NASA Ames Research Center, on the Full-Span Tilt Rotor Aeroacoustic Model (TRAM). The full-span TRAM wind tunnel test stand is nominally based on a quarter-scale representation of the V-22 aircraft. The data acquired will enable the refinement of analytical tools for the prediction of tiltrotor aeromechanics and aeroacoustics.

  2. Detail of center of swing span rotation. Forty (40) rods ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of center of swing span rotation. Forty (40) rods radiate out from a center cap stand (like spokes on a bicycle) and hold 40 20-inch diameter wheels onto a rim bearing circular track on which they roll when swing span is opened and closed. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  3. 93. View showing erection traveler erecting 190 foot span over ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. View showing erection traveler erecting 190 foot span over Southern Pacific Company's main line track. This is the last span of the steel approach to the main bridge spans. - Carquinez Bridge, Spanning Carquinez Strait at Interstate 80, Vallejo, Solano County, CA

  4. 4. North portal of Skew Span looking south and leading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. North portal of Skew Span looking south and leading to Span 1 Main Bridge on the left and Span 1 Hot Metal Bridge on the right. - Monongahela Connecting Railroad Company, Main Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  5. 9. VIEW SHOWING JUNCTION OF CONCRETE EAST APPROACH SPAN WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW SHOWING JUNCTION OF CONCRETE EAST APPROACH SPAN WITH STEEL SPAN, LOOKING NORTH. NOTE ROCKING CAST STEEL SHOE ATTACHED TO PIER TO ALLOW FOR EXPANSION OF STEEL SPAN - Jensen Bridge, Spanning Green River at Town of Jensen, Jensen, Uintah County, UT

  6. Ocular pseudoexfoliation syndrome and life span

    PubMed Central

    Slettedal, Jon Klokk; Sandvik, Leiv; Ringvold, Amund

    2015-01-01

    Background To compare life span of persons with and without ocular pseudoexfoliation syndrome (PES). Methods The study is based on an epidemiological survey conducted in Sør-Trøndelag county, Norway, in 1985–86. All inhabitants over 64 years of age (2109 individuals) were invited. Mortality information was obtained from The Norwegian Institute of Public Health in 2014, by which time 99% of the participants were deceased. Results When adjusting for age and gender, life span was not statistically different in persons with and without PES. Following the diagnosis of PES, patients' survival was up to, and beyond, 30 years. Conclusions Our observations suggest that, despite all the systemic aberrations reported in persons with ocular PES, none or only marginal functional changes are caused in extraocular organs and tissues. The present study supports the notion that systemic PES is not a life-threatening condition. PMID:26288849

  7. The Cost of Uncertain Life Span*

    PubMed Central

    Edwards, Ryan D.

    2012-01-01

    A considerable amount of uncertainty surrounds the length of human life. The standard deviation in adult life span is about 15 years in the U.S., and theory and evidence suggest it is costly. I calibrate a utility-theoretic model of preferences over length of life and show that one fewer year in standard deviation is worth about half a mean life year. Differences in the standard deviation exacerbate cross-sectional differences in life expectancy between the U.S. and other industrialized countries, between rich and poor countries, and among poor countries. Accounting for the cost of life-span variance also appears to amplify recently discovered patterns of convergence in world average human well-being. This is partly for methodological reasons and partly because unconditional variance in human length of life, primarily the component due to infant mortality, has exhibited even more convergence than life expectancy. PMID:22368324

  8. Optimal decomposable witnesses without the spanning property

    NASA Astrophysics Data System (ADS)

    Augusiak, Remigiusz; Sarbicki, Gniewomir; Lewenstein, Maciej

    2011-11-01

    One of the unsolved problems in the characterization of the optimal entanglement witnesses is the existence of optimal witnesses acting on bipartite Hilbert spaces Hm,n=Cm⊗Cn such that the product vectors obeying =0 do not span Hm,n. So far, the only known examples of such witnesses were found among indecomposable witnesses, one of them being the witness corresponding to the Choi map. However, it remains an open question whether decomposable witnesses exist without the property of spanning. Here we answer this question affirmatively, providing systematic examples of such witnesses. Then, we generalize some of the recently obtained results on the characterization of 2⊗n optimal decomposable witnesses [R. Augusiak , J. Phys. APLRAAN1751-811310.1088/1751-8113/44/21/212001 44, 212001 (2011)] to finite-dimensional Hilbert spaces Hm,n with m,n≥3.

  9. Methionine restriction and life-span control.

    PubMed

    Lee, Byung Cheon; Kaya, Alaattin; Gladyshev, Vadim N

    2016-01-01

    Dietary restriction (DR) without malnutrition is associated with longevity in various organisms. However, it has also been shown that reduced calorie intake is often ineffective in extending life span. Selecting optimal dietary regimens for DR studies is complicated, as the same regimen may lead to different outcomes depending on genotype and environmental factors. Recent studies suggested that interventions such as moderate protein restriction with or without adequate nutrition (e.g., particular amino acids or carbohydrates) may have additional beneficial effects mediated by certain metabolic and hormonal factors implicated in the biology of aging, regardless of total calorie intake. In particular, it was shown that restriction of a single amino acid, methionine, can mimic the effects of DR and extend life span in various model organisms. We discuss the beneficial effects of a methionine-restricted diet, the molecular pathways involved, and the use of this regimen in longevity interventions.

  10. Optimal decomposable witnesses without the spanning property

    SciTech Connect

    Augusiak, Remigiusz; Sarbicki, Gniewomir; Lewenstein, Maciej

    2011-11-15

    One of the unsolved problems in the characterization of the optimal entanglement witnesses is the existence of optimal witnesses acting on bipartite Hilbert spaces H{sub m,n}=C{sup m} x C{sup n} such that the product vectors obeying =0 do not span H{sub m,n}. So far, the only known examples of such witnesses were found among indecomposable witnesses, one of them being the witness corresponding to the Choi map. However, it remains an open question whether decomposable witnesses exist without the property of spanning. Here we answer this question affirmatively, providing systematic examples of such witnesses. Then, we generalize some of the recently obtained results on the characterization of 2 x n optimal decomposable witnesses [R. Augusiak et al., J. Phys. A 44, 212001 (2011)] to finite-dimensional Hilbert spaces H{sub m,n} with m,n{>=}3.

  11. A three-dimensional visualization technique applied to flow around a delta wing

    NASA Astrophysics Data System (ADS)

    Yoda, M.; Hesselink, L.

    1990-12-01

    The visualization of flows in two dimensions by using planer laser light sheets is extended to three dimensions by rapidly scanning the laser light sheet to obtain a set of 'slices' of the flow around a full-span delta wing. The leading edge vortices, which are marked with smoke, are unburst by tangential blowing around the leading edges at angles of attack in excess of 25 deg. Since the measurement period is on the order of the smallest convection time scale, a virtually instantaneous set of planar cross sections of the flow is obtained. Software is used to stack the slices and recontruct a three-dimensional surface of the smoke-seeded fluid. This surface, which corresponds to the vortices, clearly shows the qualitative effects of blowing on the delta wing flow.

  12. On the possibility of laminar flow control on a swept wing by means of plasma actuators

    NASA Astrophysics Data System (ADS)

    Chernyshev, S. L.; Kuryachii, A. P.; Manuilovich, S. V.; Rusyanov, D. A.; Skvortsov, V. V.

    2015-06-01

    Theoretical assessment of the possibility of laminar flow control (LFC) on a swept wing owing to volumetric force and heat impact of plasma actuators is presented. The proposed approach includes numerical modeling of dielectric barrier discharge (DBD) actuators, calculation of inviscid flow over an infinite span swept wing, calculation of compressible boundary layer spatially modulated in spanwise direction, and numerical solution of linear stability problem for stationary modes of cross-flow-type disturbances. Calculations have been performed for one set of geometrical and physical parameters describing plasma actuators to estimate qualitative features of volumetric force and heat input distributions. Inviscid flow and boundary layer calculations were executed at free stream parameters corresponding to typical cruise flight conditions. Estimation of volumetric force impact necessary for noticeable influence on cross-flowtype instability is obtained.

  13. Surface pressure distributions on a delta wing undergoing large amplitude pitching oscillations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, Scott A.

    1989-01-01

    Wind tunnel experiments were performed on a 70 deg sweep delta wing to determine the effect of a sinusoidal pitching motion on the pressure field on the suction side of the wing. Twelve pressure taps were placed from 35 to 90 percent of the chord, at 60 percent of the local semi-span. Pressure coefficients were measured as a function of Reynolds number and pitch rate. The pressure coefficient was seen to vary at approximately the same frequency as the pitching frequency. The relative pressure variation at each chord location was comparable for each case. The average pressure distribution through each periodic motion was near the static distribution for the average angle of attack. Upon comparing the upstroke and downstroke pressures for a specific angle of attack, the downstroke pressures were slightly larger. Vortex breakdown was seen to have the most significant effect at the 40 to 45 percent chord location, where a decrease in pressure was apparent.

  14. Attitudes Toward Death Across the Life Span.

    ERIC Educational Resources Information Center

    Maiden, Robert; Walker, Gail

    To understand the change and development of people's attitudes toward death over the life span, a 62-item attitude questionnaire on death and dying was administered to 90 adults. Participants included five females and five males in each of nine age categories: 18-20, 20-24, 25-29, 30-34, 35-39, 40-49, 50-59, 60-64, and 65 or older. Participants…

  15. Dentulous Appliance for Upper Anterior Edentulous Span

    PubMed Central

    Chalakkal, Paul; Devi, Ramisetty Sabitha; Srinivas, G. Vijay; Venkataramana, Pammi

    2013-01-01

    This article discusses about a fixed dentulous appliance that was constructed to replace the primary upper anterior edentulous span in a four year old girl. It constituted a design, whereby the maxillary primary second molars were used to support the appliance through bands and a wire that contained an acrylic flange bearing trimmed acrylic teeth, anteriorly. The appliance was functionally and aesthetically compliant. PMID:24551736

  16. Trim angle of attack of flexible wings using non-linear aerodynamics

    NASA Astrophysics Data System (ADS)

    Cohen, David Erik

    noticeable difference both in the wing deflection and the span loading when compared to the viscous results. A crude (coarse-grain) parallel methodology was used in some of the calculations in this research. Although the codes were not parallelized, the use of modal super-position made it possible to compute the sensitivity terms on different processors of an IBM SP/2. This resulted in a decrease in wall clock time for these calculations. (Abstract shortened by UMI.)

  17. Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.

  18. Spinning Characteristics of Wings III : a Rectangular and Tapered Clark Y Monoplane Wing with Rounded Tips

    NASA Technical Reports Server (NTRS)

    Bamber, M J; House, R O

    1937-01-01

    An investigation was made to determine the spinning characteristics of Clark Y monoplane wings with different plan forms. A rectangular wing and a wing tapered 5:2, both with rounded tips, were tested on the N.A.C.A. spinning balance in the 5-foot vertical wind tunnel. The aerodynamic characteristics of the models and a prediction of the angles of sideslip for steady spins are given. Also included is an estimate of the yawning moment that must be furnished by the parts of the airplane to balance the inertia couples and wing yawing moment for spinning equilibrium. The effects on the spin of changes in plan form and of variations of some of the important parameters are discussed and the results are compared with those for a rectangular wing with square tips. It is concluded that for a conventional monoplane using Clark Y wing the sideslip will be algebraically larger for the wing with the rounded tip than for the wing with the square tip and will be largest for the tapered wing. The effect of plan form on the spin will vary with the type of airplane; and the provision of a yawing-moment coefficient of -0.025 (i.e., opposing the spin) by the tail, fuselage, and interference effects will insure against the attainment of equilibrium on a steady spin for any of the plan forms tested and for any of the parameters used in the analysis.

  19. Vision in Flies: Measuring the Attention Span.

    PubMed

    Koenig, Sebastian; Wolf, Reinhard; Heisenberg, Martin

    2016-01-01

    A visual stimulus at a particular location of the visual field may elicit a behavior while at the same time equally salient stimuli in other parts do not. This property of visual systems is known as selective visual attention (SVA). The animal is said to have a focus of attention (FoA) which it has shifted to a particular location. Visual attention normally involves an attention span at the location to which the FoA has been shifted. Here the attention span is measured in Drosophila. The fly is tethered and hence has its eyes fixed in space. It can shift its FoA internally. This shift is revealed using two simultaneous test stimuli with characteristic responses at their particular locations. In tethered flight a wild type fly keeps its FoA at a certain location for up to 4s. Flies with a mutation in the radish gene, that has been suggested to be involved in attention-like mechanisms, display a reduced attention span of only 1s.

  20. Vision in Flies: Measuring the Attention Span.

    PubMed

    Koenig, Sebastian; Wolf, Reinhard; Heisenberg, Martin

    2016-01-01

    A visual stimulus at a particular location of the visual field may elicit a behavior while at the same time equally salient stimuli in other parts do not. This property of visual systems is known as selective visual attention (SVA). The animal is said to have a focus of attention (FoA) which it has shifted to a particular location. Visual attention normally involves an attention span at the location to which the FoA has been shifted. Here the attention span is measured in Drosophila. The fly is tethered and hence has its eyes fixed in space. It can shift its FoA internally. This shift is revealed using two simultaneous test stimuli with characteristic responses at their particular locations. In tethered flight a wild type fly keeps its FoA at a certain location for up to 4s. Flies with a mutation in the radish gene, that has been suggested to be involved in attention-like mechanisms, display a reduced attention span of only 1s. PMID:26848852

  1. Vision in Flies: Measuring the Attention Span

    PubMed Central

    Koenig, Sebastian; Wolf, Reinhard; Heisenberg, Martin

    2016-01-01

    A visual stimulus at a particular location of the visual field may elicit a behavior while at the same time equally salient stimuli in other parts do not. This property of visual systems is known as selective visual attention (SVA). The animal is said to have a focus of attention (FoA) which it has shifted to a particular location. Visual attention normally involves an attention span at the location to which the FoA has been shifted. Here the attention span is measured in Drosophila. The fly is tethered and hence has its eyes fixed in space. It can shift its FoA internally. This shift is revealed using two simultaneous test stimuli with characteristic responses at their particular locations. In tethered flight a wild type fly keeps its FoA at a certain location for up to 4s. Flies with a mutation in the radish gene, that has been suggested to be involved in attention-like mechanisms, display a reduced attention span of only 1s. PMID:26848852

  2. Spanning trees and the Eurozone crisis

    NASA Astrophysics Data System (ADS)

    Dias, João

    2013-12-01

    The sovereign debt crisis in the euro area has not yet been solved and recent developments in Spain and Italy have further deteriorated the situation. In this paper we develop a new approach to analyze the ongoing Eurozone crisis. Firstly, we use Maximum Spanning Trees to analyze the topological properties of government bond rates’ dynamics. Secondly, we combine the information given by both Maximum and Minimum Spanning Trees to obtain a measure of market dissimilarity or disintegration. Thirdly, we extend this measure to include a convenient distance not limited to the interval [0, 2]. Our empirical results show that Maximum Spanning Tree gives an adequate description of the separation of the euro area into two distinct groups: those countries strongly affected by the crisis and those that have remained resilient during this period. The measures of market dissimilarity also reveal a persistent separation of these two groups and, according to our second measure, this separation strongly increased during the period July 2009-March 2012.

  3. Spanning tree generating functions and Mahler measures

    NASA Astrophysics Data System (ADS)

    Guttmann, Anthony J.; Rogers, Mathew D.

    2012-12-01

    We define the notion of a spanning tree generating function (STGF) ∑anzn, which gives the spanning tree constant when evaluated at z = 1, and gives the lattice Green function (LGF) when differentiated. By making use of known results for logarithmic Mahler measures of certain Laurent polynomials, and proving new results, we express the STGFs as hypergeometric functions for all regular two and three dimensional lattices (and one higher-dimensional lattice). This gives closed form expressions for the spanning tree constants for all such lattices, which were previously largely unknown in all but one three-dimensional case. We show for all lattices that these can also be represented as Dirichlet L-series. Making the connection between STGFs and LGFs produces integral identities and hypergeometric connections, some of which appear to be new. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.

  4. Coriolis effects enhance lift on revolving wings.

    PubMed

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects. PMID:25871040

  5. Mallard age and sex determination from wings

    USGS Publications Warehouse

    Carney, S.M.; Geis, A.D.

    1960-01-01

    This paper describes characters on the wing plumage of the mallard that indicate age and sex. A key outlines a logical order in which to check age and sex characters on wings. This method was tested and found to be more than 95 percent reliable, although it was found that considerable practice and training with known-age specimens was required to achieve this level of accuracy....The implications of this technique and the sampling procedure it permits are discussed. Wing collections could provide information on production, and, if coupled with a banding program could permit seasonal population estimates to be calculated. In addition, representative samples of wings would provide data to check the reliability of several other waterfowl surveys.

  6. Left-Wing Extremism: The Current Threat

    SciTech Connect

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  7. On the Minimum Induced Drag of Wings

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2007-01-01

    This viewgraph presentation reviews the minimum induced drag of wings. The topics include: 1) The History of Spanload Development of the optimum spanload Winglets and their implications; 2) Horten Sailplanes; and 3) Flight Mechanics & Adverse yaw.

  8. Bat wing sensors support flight control.

    PubMed

    Sterbing-D'Angelo, Susanne; Chadha, Mohit; Chiu, Chen; Falk, Ben; Xian, Wei; Barcelo, Janna; Zook, John M; Moss, Cynthia F

    2011-07-01

    Bats are the only mammals capable of powered flight, and they perform impressive aerial maneuvers like tight turns, hovering, and perching upside down. The bat wing contains five digits, and its specialized membrane is covered with stiff, microscopically small, domed hairs. We provide here unique empirical evidence that the tactile receptors associated with these hairs are involved in sensorimotor flight control by providing aerodynamic feedback. We found that neurons in bat primary somatosensory cortex respond with directional sensitivity to stimulation of the wing hairs with low-speed airflow. Wing hairs mostly preferred reversed airflow, which occurs under flight conditions when the airflow separates and vortices form. This finding suggests that the hairs act as an array of sensors to monitor flight speed and/or airflow conditions that indicate stall. Depilation of different functional regions of the bats' wing membrane altered the flight behavior in obstacle avoidance tasks by reducing aerial maneuverability, as indicated by decreased turning angles and increased flight speed.

  9. Coriolis effects enhance lift on revolving wings.

    PubMed

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  10. Territoriality in the Red-winged Blackbird

    ERIC Educational Resources Information Center

    Newhouse, Chris

    1977-01-01

    Reports findings on research in Red-winged Blackbird territoriality and describes the educational potential of use of similar studies in the classroom. Territorial mapping and observational techniques are explained. (CS)

  11. Coriolis effects enhance lift on revolving wings

    NASA Astrophysics Data System (ADS)

    Jardin, T.; David, L.

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  12. Digit Span is (mostly) related linearly to general intelligence: Every extra bit of span counts.

    PubMed

    Gignac, Gilles E; Weiss, Lawrence G

    2015-12-01

    Historically, Digit Span has been regarded as a relatively poor indicator of general intellectual functioning (g). In fact, Wechsler (1958) contended that beyond an average level of Digit Span performance, there was little benefit to possessing a greater memory span. Although Wechsler's position does not appear to have ever been tested empirically, it does appear to have become clinical lore. Consequently, the purpose of this investigation was to test Wechsler's contention on the Wechsler Adult Intelligence Scale-Fourth Edition normative sample (N = 1,800; ages: 16 - 69). Based on linear and nonlinear contrast analyses of means, as well as linear and nonlinear bifactor model analyses, all 3 Digit Span indicators (LDSF, LDSB, and LDSS) were found to exhibit primarily linear associations with FSIQ/g. Thus, the commonly held position that Digit Span performance beyond an average level is not indicative of greater intellectual functioning was not supported. The results are discussed in light of the increasing evidence across multiple domains that memory span plays an important role in intellectual functioning.

  13. Showing partial side view of swing span in closed position. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Showing partial side view of swing span in closed position. The two (2) arms act as simple spans, a small amount of negative bending is accommodated by the continous top and bottom truss chords due to a continuous condition. Note the inclined end post of each of the simple spans, the operator's house, center/pivot pier and the pivotal pole-line pole placed atop of bridge. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  14. Numerical simulation of swept-wing flows

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1991-01-01

    The transition process characteristics of flows over swept wings were computationally modelled. The crossflow instability and crossflow/T-S wave interaction are analyzed through the numerical solution of the full three dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep. The leading-edge region of a swept wing is considered in a three-dimensional spatial simulation with random disturbances as the initial conditions.

  15. Calculations Of Transonic Flow About A Wing

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Gundy, Karen L.; Flores, Jolen; Chaderjian, Neal; Kaynak, Univer; Thomas, Scott D.

    1988-01-01

    Report describes calculations of transonic airflows about wing in wind tunnel. Basic equations of flow used in study are Reynolds-averaged Navier-Stokes equations in strong conservation-law form. Equations of flow incorporated into finite-difference computer code called TNS (Transonic Navier-Stokes). Computational grid generated by solution of partial differential equations yielding smooth meshes conforming to surfaces of wing and wind tunnel.

  16. Integrated technology wing study (oral presentation)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The design of a plan for a commercial transport manufacturer to integrate advanced technology into a new wing for a derivative and/or new aircraft that could enter service in the late 1980s to early 1990s time period is proposed. The development of a new wing for a derivative or a new long range commercial aircraft and the incorporation of cost effective technologies are studied. The decision provides guidelines for the best allocation of research funds.

  17. Pathfinder aircraft being assembled - wing assembly

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Technicians easily lift a 20-foot-long wing section during assembly of the Pathfinder solar-powered research aircraft at NASA's Dryden Flight Research Center, Edwards, California. A number of upgrades were made to the unique aircraft prior to its successful checkout flight Nov. 19, 1996, among them the installation of stronger ultra-light wing ribs made of composite materials on two of the five wing panels. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  18. Aircraft noise propagation. [sound diffraction by wings

    NASA Technical Reports Server (NTRS)

    Hadden, W. J.; Pierce, A. D.

    1978-01-01

    Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.

  19. Butterfly wing color: A photonic crystal demonstration

    NASA Astrophysics Data System (ADS)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  20. Modal control of an oblique wing aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, James D.

    1989-01-01

    A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.

  1. Kinematics and dynamics of sphenisciform wings

    NASA Astrophysics Data System (ADS)

    Noca, Flavio; Crisinel, Fabien; Munier, Pierre

    2011-11-01

    Three-dimensional scans of three different species of taxidermied penguins (Aptenodytes patagonicus, Pygoscelis papua, and Spheniscus magellanicus) have been performed. A three-dimensional reproduction of an African penguin (Sphenicus demersus) wing was manufactured and tested in a hydrodynamic channel. A six-degree-of-freedom robot was programmed to perform the three dimensional kinematics, obtained from actual footage. A six-component force balance was used to retrieve the dynamics of the wing motion. Results will be presented and discussed.

  2. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  3. Full-scale wind-tunnel investigation of the effects of wing leading-edge modifications on the high angle-of-attack aerodynamic characteristics of a low-wing general aviation airplane

    NASA Technical Reports Server (NTRS)

    Johnson, J. L., Jr.; Newsom, W. A.; Satran, D. R.

    1980-01-01

    The paper presents the results of a recent investigation to determine the effects of wing leading-edge modifications on the high angle-of-attack aerodynamic characteristics of a low-wing general aviation airplane in the Langley Full-Scale Wind Tunnel. The investigation was conducted to provide aerodynamic information for correlation and analysis of flight-test results obtained for the configuration. The wind-tunnel investigation consisted of force and moment measurements, wing pressure measurements, flow surveys, and flow visualization studies utilizing a tuft grid, smoke and nonintrusive mini-tufts which were illuminated by ultra-violet light. In addition to the tunnel scale system which measured overall forces and moments, the model was equipped with an auxiliary strain-gage balance within the left wing panel to measure lift and drag forces on the outer wing panel independent of the tunnel scale system. The leading-edge modifications studied included partial- and full-span leading-edge droop arrangements as well as leading-edge slats.

  4. Effects of spanwise blowing on the pressure field and vortex-lift characteristics of a 44 deg swept trapezoidal wing. [wind tunnel stability tests - aircraft models

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1975-01-01

    Wind-tunnel data were obtained at a free-stream Mach number of 0.26 for a range of model angle of attack, jet thrust coefficient, and jet location. Results of this study show that the sectional effects to spanwise blowing are strongly dependent on angle of attack, jet thrust coefficient, and span location; the largest effects occur at the highest angles of attack and thrust coefficients and on the inboard portion of the wing. Full vortex lift was achieved at the inboard span station with a small blowing rate, but successively higher blowing rates were necessary to achieve full vortex lift at increased span distances. It is shown that spanwise blowing increases lift throughout the angle-of-attack range, delays wing stall to higher angles of attack, and improves the induced-drag polars. The leading-edge suction analogy can be used to estimate the section and total lifts resulting from spanwise blowing.

  5. Topology of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Rockwell, D.

    2016-10-01

    A trailing vortex incident upon a wing can generate different modes of vortex-wing interaction. These modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing, are classified on the basis of the present experiments together with computations at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is relatively insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic interaction modes is clarified using streamline topology with associated critical points that show compatibility between complex streamline patterns in the vicinity of the tip of the wing. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-reattachment bubble bounded by downwash at the wing tip.

  6. Aerodynamics of wings at low Reynolds numbers: Boundary layer separation and reattachment

    NASA Astrophysics Data System (ADS)

    McArthur, John

    the drag increase is really caused by the formation of a laminar separation bubble. The results clearly indicate that the reverse is true, and that the subsequent drag decrease is caused by the laminar separation bubble. Part III. The leading edge vortex. Four wings with different sweep angles were studied at Reynolds number 5x104: sweep angles of 0, 20, 40, and 60 degrees. The wings had a simple cambered plate airfoil similar to the cambered airfoil of part I above. Each wing was built to have the same aspect ratio, wing area, and streamwise airfoil shape. Previous studies on bird wings speculate that simply sweeping the wings can cause a leading edge vortex to form, which could cause substantial improvements in performance. However, these studies were not well controlled, and were conducted from a biological perspective. Qualitative and quantitative flow field measurements were combined with force measurements to conduct a well controlled engineering experiment on the formation and effect of a leading edge vortex on simple swept wings. A stable vortex was found to form over the 60 degree swept wing at one particular angle of attack, but it was not similar to the traditional notion of a leading edge vortex. The vortex has a small radius, and extends over little of the span. Force measurements indicate that the vortex has no significant impact on the forces measured. Thus, simply sweeping a wing is not sufficient to form a significant leading edge vortex, and other effects must be considered.

  7. Deformed Shape Calculation of a Full-Scale Wing Using Fiber Optic Strain Data from a Ground Loads Test

    NASA Technical Reports Server (NTRS)

    Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance

    2011-01-01

    A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included

  8. Composite transport wing technology development

    NASA Technical Reports Server (NTRS)

    Madan, Ram C.

    1988-01-01

    The design, fabrication, testing, and analysis of stiffened wing cover panels to assess damage tolerance criteria are discussed. The damage tolerance improvements were demonstrated in a test program using full-sized cover panel subcomponents. The panels utilized a hard skin concept with identical laminates of 44-percent 0-degree, 44-percent plus or minus 45-degree, and 12-percent 90-degree plies in the skins and stiffeners. The panel skins were impacted at midbay between the stiffeners, directly over the stiffener, and over the stiffener flange edge. The stiffener blades were impacted laterally. Impact energy levels of 100 ft-lb and 200 ft-lb were used. NASTRAN finite-element analyses were performed to simulate the nonvisible damage that was detected in the panels by nondestructive inspection. A closed-form solution for generalized loading was developed to evaluate the peel stresses in the bonded structure. Two-dimensional delamination growth analysis was developed using the principle of minimum potential energy in terms of closed-form solution for critical strain. An analysis was conducted to determine the residual compressive stress in the panels after impact damage, and the analytical predictions were verified by compression testing of the damaged panels.

  9. Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kwan; Han, Jae-Hung; Kwon, Ki-Jung

    2009-02-01

    In the present study, a biomimetic flexible flapping wing was developed on a real ornithopter scale by using macro-fiber composite (MFC) actuators. With the actuators, the maximum camber of the wing can be linearly changed from -2.6% to +4.4% of the maximum chord length. Aerodynamic tests were carried out in a low-speed wind tunnel to investigate the aerodynamic characteristics, particularly the camber effect, the chordwise flexibility effect and the unsteady effect. Although the chordwise wing flexibility reduces the effective angle of attack, the maximum lift coefficient can be increased by the MFC actuators up to 24.4% in a static condition. Note also that the mean values of the perpendicular force coefficient rise to a value of considerably more than 3 in an unsteady aerodynamic flow region. Additionally, particle image velocimetry (PIV) tests were performed in static and dynamic test conditions to validate the flexibility and unsteady effects. The static PIV results confirm that the effective angle of attack is reduced by the coupling of the chordwise flexibility and the aerodynamic force, resulting in a delay in the stall phenomena. In contrast to the quasi-steady flow condition of a relatively high advance ratio, the unsteady aerodynamic effect due to a leading edge vortex can be found along the wing span in a low advance ratio region. The overall results show that the chordwise wing flexibility can produce a positive effect on flapping aerodynamic characteristics in quasi-steady and unsteady flow regions; thus, wing flexibility should be considered in the design of efficient flapping wings.

  10. Theoretical damping in roll and rolling moment due to differential wing incidence for slender cruciform wings and wing-body combinations

    NASA Technical Reports Server (NTRS)

    Adams, Gaynor J; DUGAN DUANE W

    1952-01-01

    A method of analysis based on slender-wing theory is developed to investigate the characteristics in roll of slender cruciform wings and wing-body combinations. The method makes use of the conformal mapping processes of classical hydrodynamics which transform the region outside a circle and the region outside an arbitrary arrangement of line segments intersecting at the origin. The method of analysis may be utilized to solve other slender cruciform wing-body problems involving arbitrarily assigned boundary conditions. (author)

  11. Temperature spans for growth: Hypothesis and discussion

    SciTech Connect

    Wiegel, J. )

    1990-01-01

    In recent years the upper and lower temperature limits for growth of pure cultures of microorganisms have been extended at least to 110C and [minus]14C, respectively. There are no organisms which grow at both 0C and 100C and, therefore, organisms are grouped according to their ranges of growth temperatures. Thus, the questions of importance are: (1) What is the widest temperature range (temperature span) over which a single organism can grow and (2) How much can one alter the temperature spans of an organism The concept of cryptic thermophiles' is used to explain some of the published data on the latter question. A wider temperature range can be very important for organisms in various ways, since it makes an organism more versatile with regard to changes in the environment. Also, it enables the organism to utilize a wider range of ecological niches. Some aerobic and anaerobic extreme thermophiles will grow within a span of more than 40C. Furthermore, such organisms are regarded suitable for biotechnological applications as well. The following hypothesis is presented and discussed: these organisms have two sets of key enzymes, and their synthesis is regulated by temperature. Such organisms are capable of growing in two different ranges, such as the mesophilic and thermophilic ranges. The hypothesis is based on the fact that these bacteria exhibit broken Arrhenius plots, and is illustrated with 'temperature tolerant extreme thermophiles' as the major example. However, the hypothesis is not restricted to this group, but it also applicable to the 'temperature tolerant thermophiles and mesophiles'.

  12. Wing compliance in self-propelled flapping flyers

    NASA Astrophysics Data System (ADS)

    Ramananarivo, Sophie; Thiria, Benjamin; Godoy-Diana, Ramiro

    2010-11-01

    Wing flexibility governs the flying performance of flapping wing flyers. Here we use the self-propelled flapping-wing model mounted on a "merry-go-round" described by Thiria and Godoy-Diana (Phys. Rev. E 82, 015303, 2010) to investigate the effect of chord-wise wing compliance on the propulsive performance of the system. The bending of the wings, which is driven mainly by wing inertia in the present experiments, redistributes the aerodynamic forces engendered by the flapping motion and improves the efficiency of the system for a wide range of wing flexibilities and flapping frequencies. A detailed analysis of the phase dynamics between the leading and trailing edges of the wings allows us to pinpoint the mechanisms that limit the beneficial effect of wing compliance.

  13. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    PubMed

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches.

  14. Imaging and Laser Spectroscopy Investigation of Insect Wings

    NASA Astrophysics Data System (ADS)

    Shiver, Tegan; Lawhead, Carlos; Anderson, Josiah; Cooper, Nathan; Ujj, Laszlo; Pall Life Sciences Collaboration

    2014-03-01

    Measuring the surface morphology and chemical composition of insect wings is important to understand the extreme mechanical properties and the biophysical functionalities of the wings. We have measured the image of the membrane of the cicada (genus Tibicen) wing with the help of Scanning Electron Microscopy (SEM). The results confirm the existing periodic structure of the wing measured previously. The SEM imaging can be used to measure the surface morphology of any insect species wings. The physical surface structure of the cicada wing is an example of a new class of biomaterials that can kill bacteria on contact. In order to identify the chemical composition of the wing, we have measured the vibrational spectra of the wing's membrane (Raman and CARS). The measured spectra are consistent with the original assumption that the wing membrane is composed of protein, wax, and chitin. The results of these studies can be used to make artificial materials in the future.

  15. 3. N elevation, E wing; 3/4 view of W wing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. N elevation, E wing; 3/4 view of W wing showing E and N elevations; N elevation of Building 69, Plating and Tinning Shop; looking SW. (Ceronie) - Rock Island Arsenal, Building No. 66, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL

  16. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  17. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    2009-05-01

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  18. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  19. A Fundamental Study for Aerodynamic Characteristics of Supersonic Biplane Wing and Wing-Body Configurations

    NASA Astrophysics Data System (ADS)

    Odaka, Yusuke; Kusunose, Kazuhiro

    In order to develop a quiet supersonic transport, it is necessary to reduce shock waves around the transport. Shock waves, in general, are the cause of the airplane's sonic boom. Authors have been studying an aerodynamic feasibility of supersonic biplanes based on the concept of the Busemann biplane. In this paper, the three dimensional effect of wing geometries on their wave drags, including wing tip effects and the interference effects between the wing and a body (Wing-Body configurations) are investigated, using CFD code in Euler (inviscid) mode. As a result, we can conclude that the supersonic biplane wings at their design Mach number (M∞=1.7) are still capable of reducing wave drag significantly similar to that of the 2-D supersonic biplane.

  20. Effort of spanwise variation of turbulence on the normal acceleration of airplanes with small span relative to turbulence scale

    NASA Technical Reports Server (NTRS)

    Pratt, K. G.

    1975-01-01

    A rigid airplane with an unswept wing is analyzed. The results show that the power spectrum, relative to that for a one-dimensional turbulence field, is significantly attenuated at the higher frequencies even for airplanes with arbitrarily small ratios of span to scale of turbulence. This attenuation is described by a simple weighting function of frequency that depends only on aspect ratio. The weighting function, together with the attenuation due to the unsteady flow of gust penetration, allows the determination of the average rate of zero crossings for airplanes having very small spans without recourse to an integral truncation which is often required in calculations based on a one-dimensional turbulence field.

  1. Effect of canard position and wing leading-edge flap deflection on wing buffet at transonic speeds

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.; Henderson, W. P.; Huffman, J. K.

    1974-01-01

    A generalized wind-tunnel model, with canard and wing planform typical of highly maneuverable aircraft, was tested. The addition of a canard above the wing chord plane, for the configuration with leading-edge flaps undeflected, produced substantially higher total configuration lift coefficients before buffet onset than the configuration with the canard off and leading-edge flaps undeflected. The wing buffet intensity was substantially lower for the canard-wing configuration than the wing-alone configuration. The low-canard configuration generally displayed the poorest buffet characteristics. Deflecting the wing leading-edge flaps substantially improved the wing buffet characteristics for canard-off configurations. The addition of the high canard did not appear to substantially improve the wing buffet characteristics of the wing with leading-edge flaps deflected.

  2. Langley high-lift research on a high-aspect-ratio supercritical wing configuration

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.; Kjelgaard, S. O.

    1981-01-01

    To determine the low speed performance characteristics of a representative high aspect ratio supercritical wing, two low speed jet transport models were fabricated. A 12-ft. span model was used for low Reynolds number tests in the Langley 4- by 7-Meter Tunnel and the second, a 7.5-ft. span model, was used for high Reynolds number tests in the Ames 12-foot Pressure Tunnel. A brief summary of the results of the tests of these two models is presented and comparisons are made between the data obtained on these two models and other similar models. Follow-on two and three dimensional research efforts related to the EET high-lift configurations are also presented and discussed.

  3. Flow field of flexible flapping wings

    NASA Astrophysics Data System (ADS)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  4. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  5. A wing concept for supersonic maneuvering

    NASA Technical Reports Server (NTRS)

    Mason, W. H.

    1983-01-01

    A theoretical and experimental program in which a wing concept for supersonic maneuvering was developed and then demonstrated experimentally in a series of wind tunnel tests is described. For the typical fighter wing, the problem of obtaining efficient lift at supersonic maneuvering C sub 's occurs due to development of a strong crossflow shock, and boundary layer separation. A natural means of achieving efficient supersonic maneuvering is based on controlling the non-linear inviscid crossflow on the wing in a manner analogous to the supercritical aerodynamic methods developed for transonic speeds. The application of supercritical aerodynamics to supersonic speeds is carried out using Supercritical Conical Camber (SC3). This report provides an aerodynamic analysis of the effort, with emphasis on wing design using non-linear aerodynamics. The substantial experimental data base is described in three separate wind tunnel reports, while two of the computer programs used in the work are also described in a separate report. Based on the development program it appears that a controlled supercritical crossflow can be obtained reliably on fighter-type wing planforms, with an associated drag due to lift reduction of about 20% projected using this concept.

  6. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. PMID:27030773

  7. BMI Sandwich Wing Box Analysis and Test

    NASA Technical Reports Server (NTRS)

    Palm, Tod; Mahler, Mary; Shah, Chandu; Rouse, Marshall; Bush, Harold; Wu, Chauncey; Small, William J.

    2000-01-01

    A composite sandwich single bay wing box test article was developed by Northrop Grumman and tested recently at NASA Langley Research Center. The objectives for the wing box development effort were to provide a demonstration article for manufacturing scale up of structural concepts related to a high speed transport wing, and to validate the structural performance of the design. The box concept consisted of highly loaded composite sandwich wing skins, with moderately loaded composite sandwich spars. The dimensions of the box were chosen to represent a single bay of the main wing box, with a spar spacing of 30 inches, height of 20 inches constant depth, and length of 64 inches. The bismaleimide facesheet laminates and titanium honeycomb core chosen for this task are high temperature materials able to sustain a 300F service temperature. The completed test article is shown in Figure 1. The tests at NASA Langley demonstrated the structures ability to sustain axial tension and compression loads in excess of 20,000 lb/in, and to maintain integrity in the thermal environment. Test procedures, analysis failure predictions, and test results are presented.

  8. Ring Wing for an underwater missile

    NASA Astrophysics Data System (ADS)

    August, Henry; Carapezza, Edward

    Hughes Aircraft has performed exploratory wind tunnel studies of compressed carriage missile designs having extendable Ring Wing and wrap-around tail control surfaces. These force and moment data indicate that significant improvements in a missile's lift and aerodynamic efficiency can be realized. Low speed test results of these data were used to estimate potential underwater improved hydrodynamic characteristics that a Ring Wing and wrap-around tails can bring to an advanced torpedo design. Estimates of improved underwater flight performance of a heavyweight torpedo (4000 lbs.) having an extendable Ring Wing and wrap-around tails were made. The compressed volume design of this underwater missile is consistent with tube-launch constraints and techniques. Study results of this novel Ring Wing torpedo design include extended flight performance in range and endurance due to lowered speeds capable of sustaining underwater level flight. Correspondingly, reduced radiated noise for enhanced stealth qualities is projected. At high speeds, greater maneuverability and aimpoint selection can be realized by a Ring Wing underwater missile.

  9. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight.

  10. 95. PHOTOCOPY OF DRAWING, SPAN 1, DETAILS OF TURNTABLE MACHINERY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. PHOTOCOPY OF DRAWING, SPAN 1, DETAILS OF TURNTABLE MACHINERY, 3/4' and 1 1/2' = 1' (CENTER CONE, RADIAL STRUT RING, TRACK, ROLLERS, PINION GEARS) - Keokuk & Hamilton Bridge, Spanning Mississippi River, Keokuk, Lee County, IA

  11. 78. VIEW SHOWING PLACEMENT OF LIFE SPAN SHOE ON PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. VIEW SHOWING PLACEMENT OF LIFE SPAN SHOE ON PIER 6, LOOKING NORTH, March 5, 1935 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  12. 37. DRAW SPAN PASSAIC RIVER NEWARK 18M90; Sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. DRAW SPAN - PASSAIC RIVER - NEWARK 18-M-90; Sheet No. 9 Details of Portal Struts and Brackets; P, B1 and B2 Scale 1'=1'; February 1897 - Jackson Street Bridge, Spanning Passaic River, Newark, Essex County, NJ

  13. Barrel view from center span, looking east. Waterville Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Barrel view from center span, looking east. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  14. Detail view of operator's housing, northwest corner of bascule span ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of operator's housing, northwest corner of bascule span - Old Young's Bay Bridge, Spanning Young's Bay at Milepoint 6.89 on Warrenton-Astoria Highway (Highway No. 9), Astoria, Clatsop County, OR

  15. Detail view of operator's housing, northeast corner of bascule span ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of operator's housing, northeast corner of bascule span - Old Young's Bay Bridge, Spanning Young's Bay at Milepoint 6.89 on Warrenton-Astoria Highway (Highway No. 9), Astoria, Clatsop County, OR

  16. Interior room within eastern lift span, showing auxiliary electric and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior room within eastern lift span, showing auxiliary electric and gas generators. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  17. 9. Detail of truss work on southwesternmost span, looking northnortheast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail of truss work on southwesternmost span, looking north-northeast - Bridge No. 4800, Spanning Minnesota River on Trunk Highway 4 between Brown & Nicollet Counties, Sleepy Eye, Brown County, MN

  18. 14. Oblique detail; understructure beneath short span used for docking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Oblique detail; understructure beneath short span used for docking fishing boats, north of northen pillar, from northwest. - Puente Ferroviario San Antonio, Spanning San Antonio Channel at PR-1, San Juan, San Juan Municipio, PR

  19. 20. DETAIL VIEW OF MOVABLE SPAN MACHINERY UNDER GRID DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL VIEW OF MOVABLE SPAN MACHINERY UNDER GRID DECK AT CENTRAL CONCRETE SUPPORT PEDESTAL, SHOWING DRIVE GEARS, ELECTRIC MOTOR AND STEEL BEAMS (taken in January 1984) - Sharptown Bridge, Spanning Nanticoke River, State Route 313, Sharptown, Wicomico County, MD

  20. 1. GENERAL VIEW LOOKING EAST, SHOWING REINFORCED CONCRETE BRIDGE SPANNING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW LOOKING EAST, SHOWING REINFORCED CONCRETE BRIDGE SPANNING SIMPSON CREEK. - Bridgeport Lamp Chimney Company, Simpson Creek Bridge, Spanning Simpson Creek, State Route 58 vicinity, Bridgeport, Harrison County, WV