Science.gov

Sample records for 123-group neutron cross-section

  1. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  2. Neutron capture cross section of 136 Xe

    NASA Astrophysics Data System (ADS)

    Daugherty, Sean; Albert, Joshua; Johnson, Tessa; O'Conner, Thomasina; Kaufman, Lisa

    2015-04-01

    136 Xe is an important 0 νββ candidate, studied in experiments such as EXO-200 and, in the future, nEXO. These experiments require a precise study of neutron capture for their background models. The neutron capture cross section of 136 Xe has been measured at the Detector for Advanced Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to 100 keV was incident on a gas cell filled with isotopically pure 136 Xe . We will discuss the measurement of partial neutron capture cross sections at thermal and first neutron resonance energies along with corresponding capture gamma cascades.

  3. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  4. International Evaluation of Neutron Cross Section Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Smith, D. L.; Larson, N. M.; Chen, Zhenpeng; Hale, G. M.; Hambsch, F.-J.; Gai, E. V.; Oh, Soo-Youl; Badikov, S. A.; Kawano, T.; Hofmann, H. M.; Vonach, H.; Tagesen, S.

    2009-12-01

    Neutron cross section standards are the basis for the determination of most neutron cross sections. They are used for both measurements and evaluations of neutron cross sections. Not many cross sections can be obtained absolutely - most cross sections are measured relative to the cross section standards and converted using evaluations of the standards. The previous complete evaluation of the neutron cross section standards was finished in 1987 and disseminated as the NEANDC/INDC and ENDF/B-VI standards. R-matrix model fits for the light elements and non-model least-squares fits for all the cross sections in the evaluation were the basis of the combined fits for all of the data. Some important reactions and constants are not standards, but they assist greatly in the determination of the standard cross sections and reduce their uncertainties - these data were also included in the combined fits. The largest experimental database used in the evaluation was prepared by Poenitz and included about 400 sets of experimental data with covariance matrices of uncertainties that account for all cross-energy, cross-reaction and cross-material correlations. For the evaluation GMA, a least-squares code developed by Poenitz, was used to fit all types of cross sections (absolute and shape), their ratios, spectrum-averaged cross sections and thermal constants in one full analysis. But, the uncertainties derived in this manner, and especially those obtained in the R-matrix model fits, have been judged to be too low and unrealistic. These uncertainties were substantially increased prior to their release in the recommended data files of 1987. Modified percentage uncertainties were reassigned by the United States Cross Section Evaluation Working Group's Standards Subcommittee for a wide range of energies, and no covariance (or correlation) matrices were supplied at that time. The need to re-evaluate the cross section standards is based on the appearance of a significant amount of precise

  5. Neutron capture cross section of Am241

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for En<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. Γn neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553±7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  6. Neutron Capture Cross Sections for Radioactive Nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas

    2015-10-01

    Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  7. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  8. APPARATUS FOR MEASURING TOTAL NEUTRON CROSS SECTIONS

    DOEpatents

    Cranberg, L.

    1959-10-13

    An apparatus is described for measuring high-resolution total neutron cross sections at high counting rate in the range above 50-kev neutron energy. The pulsed-beam time-of-flight technique is used to identify the neutrons of interest which are produced in the target of an electrostatic accelerator. Energy modulation of the accelerator . makes it possible to make observations at 100 energy points simultaneously. 761O An apparatus is described for monitoring the proton resonance of a liquid which is particulariy useful in the continuous purity analysis of heavy water. A hollow shell with parallel sides defines a meander chamber positioned within a uniform magnetic fieid. The liquid passes through an inlet at the outer edge of the chamber and through a spiral channel to the central region of the chamber where an outlet tube extends into the chamber perpendicular to the magnetic field. The radiofrequency energy for the monitor is coupled to a coil positioned coaxially with the outlet tube at its entrance point within the chamber. The improvement lies in the compact mechanical arrangement of the monitor unit whereby the liquid under analysis is subjected to the same magnetic field in the storage and sensing areas, and the entire unit is shielded from external electrostatic influences.

  9. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  10. Thermal Neutron Capture Cross Section of 22Ne

    NASA Astrophysics Data System (ADS)

    Belgya, T.; Uberseder, E.; Petrich, D.; Käppeler, F.

    2009-01-01

    The radiative thermal neutron capture cross section of the astrophysically important 22Ne nucleus has been measured at the guided cold neutron beam of the Budapest Research Reactor. High-pressure gas-bottles filled with mixtures of enriched 22Ne and CH4 were used. The cross section was determined by means of the comparator method, and an improved decay-scheme obtained in this work. The new value for the thermal neutron cross section is 52.7±0.7 mb, 18% larger than the accepted value. The influence of the new cross section on the astrophysical reaction rate is under investigation.

  11. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  12. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  13. Thermal neutron capture cross sections of tellurium isotopes

    SciTech Connect

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  14. Modelling of reaction cross sections and prompt neutron emission

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Tudora, A.; Oberstedt, S.

    2010-10-01

    Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  15. Neutron capture cross section standards for BNL 325, Fourth Edition

    SciTech Connect

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: /sup 55/Mn(n,..gamma..), /sup 59/Co(n,..gamma..) and /sup 197/Au(n,..gamma..). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed.

  16. Neutron capture cross section of {sup 241}Am

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-15

    The neutron capture cross section of {sup 241}Am for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665{+-}33 b. Our result is in good agreement with other recent measurements. Resonance parameters for E{sub n}<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. {gamma}{sub n} neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553{+-}7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  17. ACTIV87: Fast Neutron Activation Cross Section File

    1993-08-01

    4. HISTORICAL BACKGROUND AND INFORMATION ACTIV87 is a compilation of fast neutron induced activation reaction cross-sections. The compilation covers energies from threshold to 20 MeV and is based on evaluated data taken from other evaluated data libraries and individual evaluations. The majority of these evaluations were performed by using available experimental data. The aforementioned available experimental data were used in the selection of needed parameters for theoretical computations and for normalizing the results of suchmore » computations. Theoretical calculations were also used for interpolation and extrapolation of experimental cross-section data. All of the evaluated data curves were compared with experimental data that had been reported over the four year period preceding 1987. Only those cross-sections not in contradiction with experimental data that was current in 1987 were retained in the activation file, ACTIV87. In cases of several conflicting evaluations, that evaluation was chosen which best corresponded to the experimental data. A few evaluated curves were renormalized in accordance with the results of the latest precision measurements. 5. APPLICATION OF THE DATA 6. SOURCE AND SCOPE OF DATA The following libraries and individual files of evaluated neutron cross-section data were used for the selection of the activation cross-sections: the BOSPOR Library, the Activation File of the Evaluated Nuclear Data Library, the Evaluated Neutron Data File (ENDF/B-V) Activation File, the International Reactor Dosimetry File (IRDF-82), and individual evaluations carried out under various IAEA research contracts. The file of selected reactions contains 206 evaluated cross-section curves of the (n,2n), (n,p) and (n,a) reactions which lead to radioactive products and may be used in many practical applications of neutron activation analysis. Some competing activation reactions, usually with low cross-section values, are given for completeness.« less

  18. Measurement of the 242Pu neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  19. Evaluation of the /sup 238/U neutron total cross section

    SciTech Connect

    Smith, A.; Poenitz, W.P.; Howerton, R.J.

    1982-12-01

    Experimental energy-averaged neutron total cross sections of /sup 238/U were evaluated from 0.044 to 20.0 MeV using regorous numerical methods. The evaluated results are presented together with the associated uncertainties and correlation matrix. They indicate that this energy-averaged neutron total cross section is known to better than 1% over wide energy regions. There are somwewhat larger uncertainties at low energies (e.g., less than or equal to 0.2 MeV), near 8 MeV and above 15 MeV. The present evaluation is compard with values given in ENDF/B-V.

  20. Neutron Capture Cross Sections of 236U and 234U

    NASA Astrophysics Data System (ADS)

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; Kronenberg, A.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2006-03-01

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-π solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  1. Neutron Capture Cross Sections of 236U and 234U

    SciTech Connect

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Kronenberg, A.

    2006-03-13

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-{pi} solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  2. Neutrino Cross-Section Measurements at the Spallation Neutron Source

    SciTech Connect

    Stancu, Ion

    2008-02-21

    In this paper we discuss the proposal to build a neutrino facility at the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  3. Nuclear Astrophysics and Neutron Cross Section Measurements Using the ORELA

    SciTech Connect

    Winters, R. R.

    2000-08-25

    This is the final report for a research program which has been continuously supported by the AEC, ERDA, or USDOE since 1973. The neutron total and capture cross sections for n + {sup 88}Sr have been measured over the neutron energy range 100 eV to 1 MeV. The report briefly summaries our results and the importance of this work for nucleosynthesis and the optical model.

  4. Neutron-Induced Cross Sections Measurements of Calcium

    SciTech Connect

    Guber, Klaus H; Kopecky, S.; Schillebeeckx, P.; Kauwenberghs, K.; Siegler, P.

    2013-01-01

    To support the US Department of Energy Nuclear Criticality Safety Program neutron induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Institute for Reference Material and Measurements of the Joint Research Centers, European Union. Neutron capture and transmission measurements were carried out using a metallic calcium sample. The obtained data will be used for a new calcium evaluation, which will be submitted with its covariances to the ENDBF/B nuclear data base.

  5. Stellar neutron capture cross sections of the Nd isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Reffo, G.

    1998-01-01

    The neutron capture cross sections of {sup 142}Nd, {sup 143}Nd, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, and {sup 148}Nd have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4{pi} Barium Fluoride Detector. The cross sections were determined relative to the gold standard. The experiment was difficult due to the small cross sections of the even isotopes at or near the magic neutron number N=82, and also since the isotopic enrichment of some samples was comparably low. The necessary corrections for capture of scattered neutrons and for isotopic impurities could be determined reliably thanks to the high efficiency and the spectroscopic quality of the BaF{sub 2} detector, resulting in a consistent set of (n,{gamma}) cross sections for the six stable neodymium isotopes involved in the s process with typical uncertainties of 1.5{endash}2{percent}. From these data, Maxwellian averaged cross sections were calculated between kT=10 and 100 keV. The astrophysical implications of these results were investigated in an s-process analysis, which deals with the role of the s-only isotope {sup 142}Nd for the N{sub s}{l_angle}{sigma}{r_angle} systematics near the magic neutron number N=82, the decomposition of the Nd abundances into the respective r-, s-, and p-process components, and the interpretation of isotopic anomalies in meteoritic material. {copyright} {ital 1998} {ital The American Physical Society}

  6. Thermal neutron capture cross sections of the potassium isotopes

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Krtička, M.; Révay, Zs.; Szentmiklosi, L.; Belgya, T.

    2013-02-01

    Precise thermal neutron capture γ-ray cross sections σγ for 39,40,41K were measured on a natural potassium target with the guided neutron beam at the Budapest Reactor. The cross sections were internally standardized using a stoichiometric KCl target with well-known 35Cl(n,γ) γ-ray cross sections [Révay and Molnár, Radiochimica ActaRAACAP0033-823010.1524/ract.91.6.361.20027 91, 361 (2003); Molnár, Révay, and Belgya, Nucl. Instrum. Meth. Phys. Res. BNIMBEU0168-583X10.1016/S0168-583X(03)01529-5 213, 32 (2004)]. These data were combined with γ-ray intensities from von Egidy [von Egidy, Daniel, Hungerford, Schmidt, Lieb, Krusche, Kerr, Barreau, Borner, Brissot , J. Phys. G. Nucl. Phys.JPHGBM0305-461610.1088/0305-4616/10/2/013 10, 221 (1984)] and Krusche [Krusche, Lieb, Ziegler, Daniel, von Egidy, Rascher, Barreau, Borner, and Warner, Nucl. Phys. ANUPABL0375-947410.1016/0375-9474(84)90506-2 417, 231 (1984); Krusche, Winter, Lieb, Hungerford, Schmidt, von Egidy, Scheerer, Kerr, and Borner, Nucl. Phys. ANUPABL0375-947410.1016/0375-9474(85)90429-4 439, 219 (1985)] to generate nearly complete capture γ-ray level schemes. Total radiative neutron cross sections were deduced from the total γ-ray cross section feeding the ground state, σ0=Σσγ(GS) after correction for unobserved statistical γ-ray feeding from levels near the neutron capture energy. The corrections were performed with Monte Carlo simulations of the potassium thermal neutron capture decay schemes using the computer code dicebox where the simulated populations of low-lying levels are normalized to the measured cross section depopulating those levels. Comparisons of the simulated and experimental level feeding intensities have led to proposed new spins and parities for selected levels in the potassium isotopes where direct reactions are not a significant contribution. We determined the total radiative neutron cross sections σ0(39K)=2.28±0.04 b, σ0(40K)=90±7 b, and σ0(41K)=1.62±0.03 b from the

  7. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  8. Fast-neutron scattering cross sections of elemental zirconium

    SciTech Connect

    Smith, A.B.; Guenther, P.T.

    1982-12-01

    Differential neturon-elastic-scattering cross sections of elemental zirconium are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV. Inelastic-neutron-scattering cross sections corresponding to the excitation of levels at observed energies of: 914 +- 25, 1476 +- 37, 1787 +- 23, 2101 +- 26, 2221 +- 17, 2363 +- 14, 2791 +- 15 and 3101 +- 25 keV are determined. The experimental results are interpreted in terms of the optical-statistical model and are compared with corresponding quantities given in ENDF/B-V.

  9. Stellar neutron capture cross sections of the Lu isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.

    2006-01-15

    The neutron capture cross sections of {sup 175}Lu and {sup 176}Lu have been measured in the energy range 3-225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam, and capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The cross sections were determined relative to the gold standard using isotopically enriched as well as natural lutetium oxide samples. Overall uncertainties of {approx}1% could be achieved in the final cross section ratios to the gold standard, about a factor of 5 smaller than in previous works. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 and 100 keV. These values are systematically larger by {approx}7% than those reported in recent evaluations. These results are of crucial importance for the assessment of the s-process branchings at A 175/176.

  10. Fast-neutron scattering cross sections of elemental silver

    SciTech Connect

    Smith, A.B.; Guenther, P.T.

    1982-05-01

    Differential neutron elastic- and inelastic-scattering cross sections of elemental silver are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV and at 10 to 20 scattering angles distributed between 20 and 160/sup 0/. Inelastically-scattered neutron groups are observed corresponding to the excitation of levels at; 328 +- 13, 419 +- 50, 748 +- 25, 908 +- 26, 1150 +- 38, 1286 +- 25, 1507 +- 20, 1623 +- 30, 1835 +- 20 and 1944 +- 26 keV. The experimental results are used to derive an optical-statistical model that provides a good description of the observed cross sections. The measured values are compared with corresponding quantities given in ENDF/B-V.

  11. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect

    Hawari, Ayman; Dunn, Michael

    2014-06-10

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  12. Neutron cross section standards and instrumentation. Annual report

    SciTech Connect

    Wasson, O.A.

    1993-07-01

    The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutron detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.

  13. Overview of recent U235 neutron cross section evaluation work

    SciTech Connect

    Lubitz, C.

    1998-10-01

    This report is an overview (through 1997) of the U235 neutron cross section evaluation work at Oak Ridge National Laboratory (ORNL), AEA Technology (Harwell) and Lockheed Martin Corp.-Schenectady (LMS), which has influenced, or appeared in, ENDF/B-VI through Release 5. The discussion is restricted to the thermal and resolved resonance regions, apart from some questions about the unresolved region which still need investigation. The important role which benchmark testing has played will be touched on.

  14. Summary of the Workshop on Neutron Cross Section Covariances

    SciTech Connect

    Smith, Donald L.

    2008-12-15

    A Workshop on Neutron Cross Section Covariances was held from June 24-27, 2008, in Port Jefferson, New York. This Workshop was organized by the National Nuclear Data Center, Brookhaven National Laboratory, to provide a forum for reporting on the status of the growing field of neutron cross section covariances for applications and for discussing future directions of the work in this field. The Workshop focused on the following four major topical areas: covariance methodology, recent covariance evaluations, covariance applications, and user perspectives. Attention was given to the entire spectrum of neutron cross section covariance concerns ranging from light nuclei to the actinides, and from the thermal energy region to 20 MeV. The papers presented at this conference explored topics ranging from fundamental nuclear physics concerns to very specific applications in advanced reactor design and nuclear criticality safety. This paper provides a summary of this workshop. Brief comments on the highlights of each Workshop contribution are provided. In addition, a perspective on the achievements and shortcomings of the Workshop as well as on the future direction of research in this field is offered.

  15. Neutron Capture Cross Sections for the Re/Os Clock

    SciTech Connect

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Voss, F.; Wisshak, K.; Mengoni, A.; Cennini, P.; Chiaveri, E.; Ferrari, A.; Fitzpatrick, L.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2005-05-24

    The radioactive decay of 187Re {yields} 187Os (t1/2 = 43 Gyr) is suited for dating the onset of heavy-element nucleosynthesis. The radiogenic contribution to the 187Os abundance is the difference between the natural abundance and the corresponding s-process component. This component can be obtained via the well-established {sigma}N systematics using the neighboring s-only isotope 186Os, provided the neutron-capture cross sections of both isotopes are known with sufficient accuracy. We report on a new set of experiments performed with a C6D6 detector array at the n{sub T}OF neutron spallation facility of CERN. The capture cross sections of 186Os, 187Os, and 188Os have been measured in the neutron-energy range between 1 eV and 1 MeV, and Maxwellian-averaged cross sections were deduced for the relevant thermal energies from kT=5 keV to 100 keV.

  16. Realizing the Opportunities of Neutron Cross Section Measurements at RIA

    SciTech Connect

    Ahle, L; Hausmann, M; Reifarth, R; Roberts, K; Roeben, M; Rusnak, B; Vieira, D

    2004-10-13

    The Rare Isotope Accelerator will produce many isotopes at never before seen rates. This will allow for the first time measurements on isotopes very far from stability and new measurement opportunities for unstable nuclei near stability. In fact, the production rates are such that it should be possible to collect 10 micrograms of many isotopes with a half-life of 1 day or more. This ability to make targets of short-lived nuclei enables the possibility of making neutron cross-section measurements important to the astrophysics and the stockpile stewardship communities. But to fully realize this opportunity, the appropriate infrastructure must be included at the RIA facility. This includes isotope harvesting capabilities, radiochemical areas for processing collected material, and an intense, ''mono-energetic'', tunable neutron source. As such, we have been developing a design for neutron source facility to be included at the RIA site. This facility would produce neutrons via intense beams of deuterons and protons on a variety of targets. The facility would also include the necessary radiochemical facilities for target processing. These infrastructure needs will be discussed in addition to the methods that would be employed at RIA for measuring these neutron cross-sections.

  17. Thermal neutron cross-section libraries for aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Cantargi, F.; Granada, J. R.

    2010-08-01

    Solid phases of aromatic hydrocarbons, such as benzene, toluene, mesitylene and a 3:2 mixture by volume of mesitylene and toluene, were studied as potential moderator materials for a cold neutron source. Existing information on the (lattice) translational and rotational modes of the different molecular species was used to produce generalized frequency spectra; the latter included the internal vibrational modes which in turn involved the analysis of the weights of the different modes. Cross-section libraries were generated in ENDF and ACE formats for hydrogen bounded in those materials at several temperatures, and were used in Monte Carlo calculations to analyze their neutron production compared with standard cryogenic materials like liquid hydrogen and solid methane, the best moderators in terms of cold neutron production. In particular, cross-section libraries were generated at 20 K, which is a typical operating temperature for the majority of the existing cold neutron sources. It was found that those aromatic hydrocarbons produce neutron spectra which are slightly warmer than that of solid methane while presenting a high resistance to radiation, conforming in this way a new and advantageous alternative to traditional moderator materials.

  18. Neutron average cross sections of {sup 237}Np

    SciTech Connect

    Noguere, G.

    2010-04-15

    This work reports {sup 237}Np neutron resonance parameters obtained from the simultaneous analysis of time-of-flight data measured at the GELINA, ORELA, KURRI, and LANSCE facilities. A statistical analysis of these resonances relying on average R-matrix and optical model calculations was used to establish consistent l-dependent average resonance parameters involved in the description of the unresolved resonance range of the {sup 237}Np neutron cross sections. For neutron orbital angular momentum l=0, we obtained an average radiation width =39.3+-1.0 meV, a neutron strength function 10{sup 4}S{sub 0}=1.02+-0.14, a mean level spacing D{sub 0}=0.60+-0.03 eV, and a potential scattering length R{sup '}=9.8+-0.1 fm.

  19. Neutron Cross Section Covariances for Structural Materials and Fission Products

    SciTech Connect

    Hoblit, S.; Hoblit,S.; Cho,Y.-S.; Herman,M.; Mattoon,C.M.; Mughabghab,S.F.; Oblozinsky,P.; Pigni,M.T.; Sonzogni,A.A.

    2011-12-01

    We describe neutron cross section covariances for 78 structural materials and fission products produced for the new US evaluated nuclear reaction library ENDF/B-VII.1. Neutron incident energies cover full range from 10{sup -5} eV to 20 MeV and covariances are primarily provided for capture, elastic and inelastic scattering as well as (n,2n). The list of materials follows priorities defined by the Advanced Fuel Cycle Initiative, the major application being data adjustment for advanced fast reactor systems. Thus, in addition to 28 structural materials and 49 fission products, the list includes also {sup 23}Na which is important fast reactor coolant. Due to extensive amount of materials, we adopted a variety of methodologies depending on the priority of a specific material. In the resolved resonance region we primarily used resonance parameter uncertainties given in Atlas of Neutron Resonances and either applied the kernel approximation to propagate these uncertainties into cross section uncertainties or resorted to simplified estimates based on integral quantities. For several priority materials we adopted MF32 covariances produced by SAMMY at ORNL, modified by us by adding MF33 covariances to account for systematic uncertainties. In the fast neutron region we resorted to three methods. The most sophisticated was EMPIRE-KALMAN method which combines experimental data from EXFOR library with nuclear reaction modeling and least-squares fitting. The two other methods used simplified estimates, either based on the propagation of nuclear reaction model parameter uncertainties or on a dispersion analysis of central cross section values in recent evaluated data files. All covariances were subject to quality assurance procedures adopted recently by CSEWG. In addition, tools were developed to allow inspection of processed covariances and computed integral quantities, and for comparing these values to data from the Atlas and the astrophysics database KADoNiS.

  20. Stellar (n, gamma) cross sections of neutron-rich nuclei

    SciTech Connect

    Marganiec, J.; Domingo Pardo, C.; Kaeppeler, F.

    2010-03-01

    The present measurements were performed by means of the activation technique. Neutrons were produced at the Karlsruhe Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. For proton energies just above threshold, one obtains a neutron spectrum similar to a Maxwellian distribution for kT = 25 keV. This quasi-stellar neutron spectrum allowed us to measure the Maxwellian averaged cross sections directly. The experimental results of {sup 174,176}Yb, {sup 184,186}W, {sup 190,192}Os, {sup 196,198}Pt, and {sup 202}Hg were extrapolated from kT = 25 keV to lower and higher temperatures.

  1. Neutron Fission of 235,237,239U and 241,243Pu: Cross Sections, Integral Cross Sections and Cross Sections on Excited States

    SciTech Connect

    Younes, W; Britt, H C

    2003-07-10

    In a recent paper submitted to Phys. Rev. C they have presented estimates for (n,f) cross sections on a series of Thorium, Uranium and Plutonium isotopes over the range E{sub n} = 0.1-2.5 MeV. The (n,f) cross sections for many of these isotopes are difficult or impossible to measure in the laboratory. The cross sections were obtained from previous (t,pf) reaction data invoking a model which takes into account the differences between (t,pf) and (n,f) reaction processes, and which includes improved estimates for the neutron compound formation process. The purpose of this note is: (1) to compare the estimated cross sections to current data files in both ENDF and ENDL databases; (2) to estimate ratios of cross sections relatively to {sup 235}U integrated over the ''tamped flattop'' critical assembly spectrum that was used in the earlier {sup 237}U report; and (3) to show the effect on the integral cross sections when the neutron capturing state is an excited rotational state or an isomer. The isomer and excited state results are shown for {sup 235}U and {sup 237}U.

  2. Radioactive targets for neutron-induced cross section measurements

    SciTech Connect

    Kronenberg, A.; Bond, E. M.; Glover, S. E.; Rundberg, R. S.; Vieira, D. J.; Esch, E. I.; Reifarth, R.; Ullmann, J. L.; Haight, Robert C.; Rochmann, D.

    2004-01-01

    Measurements using radioactive targets are important for the determination of key reaction path ways associated with the synthesis of the elements in nuclear astrophysics (sprocess), advanced fuel cycle initiative (transmutation of radioactive waste), and stockpile stewardship. High precision capture cross-section measurements are needed to interpret observations, predict elemental or isotopical ratios, and unobserved abundances. There are two new detector systems that are presently being commissioned at Los Alamos National Laboratory for very precise measurements of (n,{gamma}) and (n,f) cross-sections using small quantities of radioactive samples. DANCE (Detector for Advanced Neutron-Capture Experiments), a 4 {pi} gamma array made up of 160 BaF{sub 2} detectors, is designed to measure neutron capture cross-sections of unstable nuclei in the low-energy range (thermal to {approx}500 keV). The high granularity and high detection efficiency of DANCE, combined with the high TOF-neutron flux available at the Lujan Center provides a versatile tool for measuring many important cross section data using radioactive and isotopically enriched targets of about 1 milligram. Another powerful instrument is the Lead-slowing down spectrometer (LSDS), which will enable the measurement of neutron-induced fission cross-section of U-235m and other short-lived actinides in a energy range from 1-200 keV with sample sizes down to 10 nanograms. Due to the short half-life of the U-235m isomer (T{sub 1/2} = 26 minutes), the samples must be rapidly and repeatedly extracted from its {sup 239}Pu parent. Since {sup 239}Pu is itself highly fissile, the separation must not only be rapid, but must also be of very high purity (the Pu must be removed from the U with a decontamination factor >10{sup 12}). Once extracted and purified, the {sup 235m}U isomer would be electrodeposited on solar cells as a fission detector and placed within the LSDS for direct (n,f) cross section measurements. The

  3. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  4. Performing Neutron Cross-Section Measurements at RIA

    SciTech Connect

    Ahle, L E

    2003-05-20

    The Rare Isotope Accelerator (RIA) is a proposed accelerator for the low energy nuclear physics community. Its goal is to understand the natural abundances of the elements heavier than iron, explore the nuclear force in systems far from stability, and study symmetry violation and fundamental physics in nuclei. To achieve these scientific goals, RIA promises to produce isotopes far from stability in sufficient quantities to allow experiments. It would also produce near stability isotopes at never before seen production rates, as much as 10{sup 12} pps. Included in these isotopes are many that are important to stockpile stewardship, such as {sup 87}Y, {sup 146-50}Eu, and {sup 231}Th. Given the expected production rates at RIA and a reasonably intense neutron source, one can expect to make {approx} 10 {micro}g targets of nuclei with a half-life of {approx}1 day. Thus, it will be possible at RIA to obtain experimental information on the neutron cross section for isotopes that have to date only been determined by theory. There are two methods to perform neutron cross-section measurements, prompt and delayed. The prompt method tries to measure each reaction as it happens. The exact technique employed will depend on the reaction of interest, (n,2n), (n,{gamma}), (n,p), etc. The biggest challenge with this method is designing a detector system that can handle the gamma ray background from the target. The delayed method, which is the traditional radiochemistry method for determining the cross-section, irradiates the targets and then counts the reaction products after the fact. While this allows one to avoid the target background, the allowed fraction of target impurities is extremely low. This is especially true for the desired reaction product with the required impurity fraction on the order of 10{sup -9}. This is particularly problematic for (n,2n) and (n,{gamma}) reactions, whose reaction production cannot be chemically separated from the target. In either case, the

  5. Measurements of Neutron Capture Cross-Section for Tantalum at the Neutron Filtered Beams

    NASA Astrophysics Data System (ADS)

    Gritzay, Olena; Libman, Volodymyr

    2009-08-01

    The neutron capture cross sections of tantalum have been measured for the neutron energies 2 and 59 keV using the WWR-M Kyiv Research Reactor (KRR) of the Institute for Nuclear Research of the National Academy of Science of Ukraine. The cross sections of 181Ta (n, γ) 182Ta reaction were obtained by the activation method using a gamma-spectrometer with Ge(Li)-detector. The obtained neutron capture cross sections were compared with the known experimental data from database EXFOR/CSISRS and the ENDF libraries.

  6. Actinide Targets for Neutron Cross Section Measurements (C)

    SciTech Connect

    J. D. Baker; C. A. McGrath

    2006-04-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from “minor” actinides that currently have poorly known (n,g) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  7. Cross-Section Measurements in the Fast Neutron Energy Range

    NASA Astrophysics Data System (ADS)

    Plompen, Arjan

    2006-04-01

    Generation IV focuses research for advanced nuclear reactors on six concepts. Three of these concepts, the lead, gas and sodium fast reactors (LFR, GFR and SFR) have fast neutron spectra, whereas a fourth, the super-critical water reactor (SCWR), can be configured to have a fast spectrum. Such fast neutron spectra are essential to meet the sustainability objective of GenIV. Nuclear data requirements for GenIV concepts will therefore emphasize the energy region from about 1 keV to 10 MeV. Here, the potential is illustrated of the GELINA neutron time-of-flight facility and the Van de Graaff laboratory at IRMM to measure the relevant nuclear data in this energy range: the total, capture, fission and inelastic-scattering cross sections. In particular, measurement results will be shown for lead and bismuth inelastic scattering for which the need was recently expressed in a quantitative way by Aliberti et al. for Accelerator Driven Systems. Even without completion of the quantitative assessment of the data needs for GenIV concepts at ANL it is clear that this particular effort is of relevance to LFR system studies.

  8. Thermal neutron capture cross sections and neutron separation energies for 23Na(n,γ)

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.; Belgya, T.

    2014-01-01

    Prompt thermal neutron capture γ-ray cross sections σγ were measured for the 23Na(n,γ) reaction with guided cold neutron beams at the Budapest Reactor. The 24Na γ-ray cross sections were internally standardized with a stoichiometric NaCl target by using standard 35Cl(n,γ)36Cl γ-ray cross sections. Transitions were assigned to levels in 24Na based primarily upon the known nuclear structure information from the literature, producing a nearly complete neutron capture decay scheme. The total radiative thermal neutron cross section σ0 was determined from the sum of prompt γ-ray cross section populating the ground state as 0.540 (3) b, and from the activation γ-ray cross sections for the decay of 24Na as 0.542 (3) b. The isomer cross section σ0 (23Nam, t1/2=20.20ms)=0.501(3) b and the 24Na neutron separation energy Sn=6959.352(18) keV were also determined in these experiments. New level spins and parities were proposed on the basis of new transition assignments and the systematics of reduced transition probabilities for the primary γ rays.

  9. Neutron Cross Section Covariances: Recent Workshop and Advanced Reactor Systems

    NASA Astrophysics Data System (ADS)

    Oblozinsky, Pavel

    2008-10-01

    The recent Workshop on Neutron Cross Section Covariances, organized by BNL and attended by more than 50 scientists, responded to demands of many user groups, including advanced reactor systems, for uncertainty and correlation information. These demands can be explained by considerable progress in advanced neutronics simulation that probe covariances and their impact on design and operational margins of nuclear systems. The Workshop addressed evaluation methodology, recent evaluations as well as user's perspective, marking era of revival of covariance development that started some two years ago. We illustrate urgent demand for covariances in the case of advanced reactor systems, including fast actinide burner under GNEP, new generation of power reactors, Gen-IV, and reactors under AFCI. A common feature of many of these systems is presence of large amount of minor actinides and fission products that require improved nuclear data. Advanced simulation codes rely on quality input, to be obtained by adjusting the data library, such as the new ENDF/B-VII.0, by considering integral experiments as currently pursued by GNEP. To this end the nuclear data community is developing covariances for formidable amount of 112 materials (isotopes).

  10. Effect of finite range of the NN force and NN cross section on reaction cross section for neutron rich nuclei

    SciTech Connect

    Ismail, M.; Ellithi, A.Y.; Abou-Shady, H.

    2005-02-01

    The reaction cross section ({sigma}{sub R}) is calculated using the optical limit of the Glauber theory. A density-dependent effective nucleon-nucleon (NN) cross section {sigma}{sub NN} is considered. Finite and zero range NN interactions are studied. The effect of finite range and an appropriate local density can increase {sigma}{sub R} up to 20% compared to the zero range at constant density (0.16 fm{sup -3}), while a zero range calculation with free NN cross section increases {sigma}{sub R} up to 13%. These factors affect the values of the rms radii for neutron rich nuclei extracted from {sigma}{sub R}.

  11. Neutron-capture Cross Sections from Indirect Measurements

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  12. Neutron Induced Cross Sections for Radiochemistry for Isotopes of Nickel, Copper, and Zinc

    SciTech Connect

    Kelley, K; Hoffman, R D; Dietrich, F S; Mustafa, M

    2006-05-30

    We have developed a set of modeled neutron induced cross sections for use in radiochemical diagnostics. Local systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for target isotopes of nickel, copper, and zinc (28 {le} Z {le} 30) for neutron numbers 30 {le} N {le} 40.

  13. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE PAGESBeta

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; et al

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  14. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    SciTech Connect

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.

  15. Thermal Neutron Capture Cross Sections of 54,56,57Fe

    NASA Astrophysics Data System (ADS)

    Belgya, T.; Szentmiklósi, L.; Gunsing, F.; Firestone, R. B.; Krticka, M.

    2013-03-01

    Radiative neutron capture has been measured on enriched 54,56,57Fe samples. Total thermal neutron capture cross sections were determined from the observed partial γ-ray cross sections. All of the total cross sections were found to be smaller than the recent evaluation, probably due to many weak unobserved contributions. The decay scheme of 55Fe from the capture reaction was substantially enlarged.

  16. Utilizing thermal neutron total cross section to develop uses of thermal neutron transmission gauge

    SciTech Connect

    Liu Shengkang; Wu Zhihua

    1994-12-31

    The neutron gauge has been used in industry extensively. The thermal neutron total cross section data is very important for determining the content of the element through measuring the thermal neutron transmission ratio of the sample. We have developed successfully various applications of thermal neutron transmission gauge, such as moisture of pottery materials, hydrogenous index of oil core and specific surface area of powder SiO{sub 2}, gadolinium content, hydrogen atom number in {gamma}-Fe{sub 2}O{sub 3}, and others.

  17. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  18. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  19. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    SciTech Connect

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations.

  20. Determination of (n,γ) Cross Sections of 241Am by Cold Neutron Activation

    NASA Astrophysics Data System (ADS)

    Genreith, C.; Rossbach, M.; Révay, Zs.; Kudejova, P.

    2014-05-01

    Accurate cross section data of actinides are crucial for criticality calculations of GEN IV reactors and transmutation but also for analytical purposes such as nuclear waste characterization, decommissioning of nuclear installations and safeguard applications. Tabulated data are inconsistent and sometimes associated with large uncertainties. Neutron activation with external cold neutron beams from high flux reactors offers a chance for determination of accurate capture cross sections scalable to the whole 1/√{E}-region even for isotopes with low-lying resonances like 241Am. Preparation of 241Am samples for irradiation at the PGAA station of the FRM II in Garching has been optimized together with PTB in Braunschweig. Two samples were irradiated together with gold flux monitors to extract the thermal neutron capture cross section after appropriate corrections for attenuation of neutrons and photons in the sample. For one sample, the thermal ground state neutron capture cross section was measured as 663.0 ± 28.8 b. The thermal neutron capture cross section was calculated to 725.4 ± 34.4 b. For the other sample, a ground state neutron capture cross section of 649.9 ± 28.2 b was measured and a thermal neutron capture cross section of 711.1 ± 33.9 b was derived.

  1. 70 Group Neutron Fast Reactor Cross Section Set and 25 Group Neutron Fast Reactor Cross Section Set.

    1984-10-29

    Version 00 These multigroup cross sections are used in fast reactor calculations. The benchmark calculations for the 23 fast critical assemblies used in the benchmark tests of JFS-2 were performed with one-dimensional diffusion theory by using the JFS-3-J2 set.

  2. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  3. A Neutron Source Facility for Neutron Cross-Section Measurements on Radioactive Targets at RIA

    SciTech Connect

    Ahle, L E; Bernstein, L; Rusnak, B; Berio, R

    2003-05-20

    The stockpile stewardship program is interested in neutron cross-section measurements on nuclei that are a few nucleons away from stability. Since neutron targets do not exist, radioactive targets are the only way to directly perform these measurements. This requires a facility that can provide high production rates for these short-lived nuclei as well as a source of neutrons. The Rare Isotope Accelerator (RIA) promises theses high production rates. Thus, adding a co-located neutron source facility to the RIA project baseline would allow these neutron cross-section measurements to be made. A conceptual design for such a neutron source has been developed, which would use two accelerators, a Dynamitron and a linac, to create the neutrons through a variety of reactions (d-d, d-t, deuteron break-up, p-Li). This range of reactions is needed in order to provide the desired energy range from 10's of keV to 20 MeV. The facility would also have hot cells to perform chemistry on the radioactive material both before and after neutron irradiation. The present status of this design and direction of future work will be discussed.

  4. Resonance analysis and evaluation of the sup 235 U neutron induced cross sections

    SciTech Connect

    Leal, L.C.

    1990-06-01

    Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding,and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the {sup 235}U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The {Delta}{sub 3}-statistics of Dyson and Mehta, along with high-resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron-nucleus cross sections. The results of the analysis consists of a set of resonance parameters which describe the {sup 235}U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the {sub 235}U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations. 44 refs., 21 figs., 8 tabs.

  5. Determination of Unknown Neutron Cross Sections for the Production of Medical Isotopes

    SciTech Connect

    Stephen E. Binney

    2004-04-09

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory.

  6. Production cross sections of neutron rich isotopes from a 82Se beam

    NASA Astrophysics Data System (ADS)

    Tarasov, O. B.; Morrissey, D. J.; Amthor, A. M.; Bandura, L.; Baumann, T.; Bazin, D.; Berryman, J. S.; Chubarian, G.; Fukuda, N.; Gade, A.; Ginter, T. N.; Hausmann, M.; Inabe, N.; Kubo, T.; Pereira, J.; Portillo, M.; Sherrill, B. M.; Stolz, A.; Sumithrarachchi, C.; Thoennessen, M.; Weisshaar, D.

    2013-03-01

    Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 122 neutron-rich isotopes of elements 11 <= Z <= 32 were determined by varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei including several isotopes first observed in this work. These are the most neutron-rich nuclides of the elements 22 <= Z <= 25 (64Ti, 67V, 69Cr, 72Mn). One event was registered consistent with 70Cr, and another one with 75Fe. A one-body Qg systematics is used to describe the production cross sections based on thermal evaporation from excited prefragments. The current results confirm those of our previous experiment with a 76Ge beam: enhanced production cross sections for neutron-rich fragments near Z = 20.

  7. Neutron capture cross sections for /sup 86,87/Sr at Stellar temperatures

    SciTech Connect

    Bauer, R.W.; Mathews, G.J.; Becker, J.A.; Howe, R.E.

    1986-02-01

    Cross sections have been measured from 100 eV to 1 MeV by the neutron-time-of-flight technique. The capture events were recorded by detecting the prompt gamma-ray cascade with two C/sub 6/D/sub 6/ scintillators, and were normalized to standard gold cross sections. The background was determined experimentally by utilizing the ''black resonance'' technique. A /sup 6/Li-glass scintillator was used to monitor the neutron flux. A Maxwellian-averaged capture cross section at kT = 30 keV of 74 +- 3 mb for /sup 86/Sr, and 102 +- 4 mb for /sup 87/Sr. (LEW)

  8. Neutron induced inelastic cross sections of 150Sm for En = 1 to 35 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G E; Kawano, T; Becker, J A; Agvaanluvsan, U; Chadwick, M B; Cooper, J R; Devlin, M; Fotiades, N; Garrett, P E; Nelson, R O; Wu, C Y; Younes, W

    2006-08-16

    Cross-section measurements were made of prompt gamma-ray production as a function of incident neutron energy (E{sub n} = 1 to 35 MeV) on an enriched (95.6%) {sup 150}Sm sample. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the Los Alamos Neutron Science Center (LANSCE) facility. The prompt-reaction gamma rays were detected with the large-scale Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency and neutron flux (monitored with an in-line fission chamber). Partial {gamma}-ray cross sections were predicted using the Hauser-Feshbach statistical reaction code GNASH. Above E{sub n} {approx} 8 MeV the pre-equilibrium reaction process dominates the inelastic reaction. The spin distribution transferred in pre-equilibrium neutron-induced reactions was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK). These pre-equilibrium spin distributions were incorporated into a new version of GNASH and the {gamma}-ray production cross sections were calculated and compared with experimental data. The difference in the partial {gamma}-ray cross sections using spin distributions with and without pre-equilibrium effects is discussed.

  9. Measurements of Thermal Neutron Capture Cross Sections of 136Ce, 156Dy, and 168Yb

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Kim, Y. D.; Sun, G. M.

    2014-05-01

    For several low abundance stable nuclei, the thermal neutron capture cross sections are not well measured, while the cross sections for isotopes with high abundances are already well measured. Our experiments, different from the commonly used method of using gold foil as reference, are performed using natural foils for which we know the relative abundances of all isotopes and thermal neutron capture cross sections. Therefore, we can obtain the cross sections of low abundance isotopes, which are not known well, by comparing the yields of gammas from the neutron captures by various isotopes in the foils. The advantage of this method is the cancellation of potential systematic errors from thermal neutron flux, flux profile, foil thickness, foil size, and irradiation time. We have measured the thermal capture cross sections of 136Ce, 156Dy, and 168Yb isotopes, using the high thermal neutron flux from the reactor HANARO at KAERI, and have obtained new cross section values of 7.64±0.63 barn for 136Ce, 14.8±2.0 barn for 156Dy, and 1335±43 barn for 168Yb.

  10. Cross sections for fast-neutron interaction with Lu, Tb, and Ta isotopes

    SciTech Connect

    Dzysiuk, N.; Kadenko, I.; Yermolenko, R.; Koning, A. J.

    2010-01-15

    The cross sections for (n,x) reactions with Lu, Tb, and Ta isotopes were measured at (d,t) neutron energies around 14 MeV with the activation technique using metal foils of natural composition. Additionally, tantalum samples were irradiated with (d,d) neutrons and filtered neutron beams. To ensure an acceptable precision of the results all major sources of uncertainties were taken into account. Calculations of efficiency and correction factors were performed with the Monte Carlo technique. The cross section results obtained for the {sup 175}Lu(n,{alpha}){sup 172}Tm reaction at (d,t) neutron energies are reported for the first time. {sup 181}Ta(n,{gamma}){sup 182}Ta{sup m2} reaction cross sections were also measured for the first time at 1.9, 58.7, and 144.3 keV and at 2.85 MeV. The earlier evaluated cross section upper estimate for the nuclear reaction {sup 159}Tb(n,n{sup '}{alpha}){sup 155}Eu is reported in this article to be one order lower. Some other cross sections were obtained with higher precision. Theoretical calculations of excitation functions were performed with the TALYS-1.0 code and compared with the experimental cross section values.

  11. Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross Sections

    NASA Astrophysics Data System (ADS)

    Griffin, Patrick

    2016-02-01

    The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the 252Cf spontaneous fission standard neutron benchmark field, the 235U thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields.

  12. Thermal neutron capture cross section for the K isomer {sup 177}Lu{sup m}

    SciTech Connect

    Belier, G.; Roig, O.; Daugas, J.-M.; Giarmana, O.; Meot, V.; Letourneau, A.; Marie, F.; Foucher, Y.; Aupiais, J.; Abt, D.; Jutier, Ch.; Le Petit, G.; Bettoni, C.; Gaudry, A.; Veyssiere, Ch.; Barat, E.; Dautremer, T.; Trama, J.-Ch.

    2006-01-15

    The thermal neutron radiative capture cross section for the K isomeric state in {sup 177}Lu has been measured for the first time. Several {sup 177}Lu{sup m} targets have been prepared and irradiated in various neutron fluxes at the Lauee Langevin Institute in Grenoble and at the CEA reactors OSIRIS and ORPHEE in Saclay. The method consists of measuring the {sup 178}Lu activity by {gamma}-ray spectroscopy. The values obtained in four different neutron spectra have been used to calculate the resonance integral of the radiative capture cross section for {sup 177}Lu{sup m}. In addition, an indirect method leads to the determination of the {sup 177}Lu{sup g} neutron radiative capture cross section.

  13. RIA R&D for Enabling Direct Neutron Cross-Section Measurements

    SciTech Connect

    Ahle, L E; Rusnak, B; Stoyer, M

    2003-08-22

    The expected production rates at RIA imply it should be possible to collect 10-{micro}g of a one-day half-life isotope. The amount of material should be sufficient to enable direct neutron cross-section measurements for many unstable isotopes. This capability is crucial for many of the stockpile stewardship and some of the astrophysical cross-section measurements. Enabling this capability at RIA requires the ability to harvest the desired isotopes, process highly radioactive material into targets, and irradiate targets with neutrons. This paper will discuss the changes and additions to the RIA complex that are necessary in order to enable direct neutron cross-section measurements. This will include a discussion of harvesting as well as a conceptual design for a co-located experimental facility with radiochemistry capability and a variable 'mono-energetic' neutron source.

  14. Thermal neutron cross sections and resonance integrals for the 1994 handbook of chemistry and physics

    SciTech Connect

    Holden, N.E.

    1994-12-31

    A re-evaluation of all thermal neutron cross sections and neutron resonance integrals has been performed, utilizing the previous database of the ``Barn Book`` and all of the more recently published experiments. Only significant changes or previously undetermined values are recorded in this report. The source for each value is also recorded in the accompanying table.

  15. Cross section for inelastic neutron ''acceleration'' by {sup 178}Hf{sup m2}

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.

    2011-02-15

    The scattering of thermal neutrons from isomeric nuclei may include events in which the outgoing neutrons have increased kinetic energy. This process has been called inelastic neutron acceleration, or INNA, and occurs when the final nucleus, after emission of the neutron, is left in a state with lower energy than that of the isomer. The result, therefore, is an induced depletion of the isomer to the ground state. A cascade of several {gamma}'s must accompany the neutron emission to release the high angular momentum of the initial isomeric state. INNA was previously observed in a few cases, and the measured cross sections were only in modest agreement with theoretical estimates. The most recent measurement of an INNA cross section was {sigma}{sub INNA}=258{+-}58 b for neutron scattering by {sup 177}Lu{sup m}. In the present work, an INNA cross section of {sigma}{sub INNA}=168 {+-} 33 b was deduced from measurements of the total burnup of the high-spin, four-quasiparticle isomer {sup 178}Hf{sup m2} during irradiation by thermal neutrons. Statistical estimates for the probability of different reaction channels past neutron absorption were used in the analysis, and the deduced {sigma}{sub INNA} was compared to the theoretically predicted cross section.

  16. Cross-Section Measurements for Elastic and Inelastic Scattering of Neutrons from Noble Gases

    NASA Astrophysics Data System (ADS)

    Macmullin, Sean; Kidd, Mary; Tornow, Werner; Howell, Calvin; Brown, Michael; Henning, Reyco

    2010-11-01

    Neutron backgrounds are a significant concern to experiments that attempt to directly detect Weakly Interacting Massive Particle (WIMP) dark matter. Recoil nuclei produced by neutron elastic scattering can mimic WIMP signatures. There is insufficient experimental data available for the scattering cross-sections of neutrons with noble gases (Ne, Ar, Xe), which are candidate target materials for such experiments. Neutron elastic and inelastic scattering from neon of natural abundance was investigated at the Triangle Universities Nuclear Laboratory at neutron energies relevant to (α,n) and low-energy spallation neutron backgrounds in these experiments. The differential cross-section was measured using a time-of-flight technique at neutron energies of 8.0 and 5.0 MeV. Details of the experimental technique and current status of measurements will be presented.

  17. Formalism for neutron cross section covariances in the resonance region using kernel approximation

    SciTech Connect

    Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.

    2010-04-09

    We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).

  18. Neutron single particle structure in 131Sn and direct neutron capture cross sections.

    PubMed

    Kozub, R L; Arbanas, G; Adekola, A S; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Hatarik, R; Hix, W R; Jones, K L; Krolas, W; Liang, J F; Ma, Z; Matei, C; Moazen, B H; Nesaraja, C D; Pain, S D; Shapira, D; Shriner, J F; Smith, M S; Swan, T P

    2012-10-26

    Recent calculations suggest that the rate of neutron capture by (130)Sn has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of (130)Sn (4.8 MeV/u) and a (CD(2))(n) target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the (130)Sn(d, p)(131)Sn reaction are found to be very similar to those from the previously reported (132)Sn(d, p)(133)Sn reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates. PMID:23215181

  19. Neutron single particle structure in 131Sn and direct neutron capture cross sections

    SciTech Connect

    Kozub, R. L.; Arbanas, Goran; Adekola, A. S.; Bardayan, Daniel W; Blackmon, Jeffery C; Chae, Kyung Yuk; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Hatarik, Robert; Hix, William Raphael; Jones, K. L.; Krolas, W.; Liang, J Felix; Ma, Z.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.

    2012-01-01

    Recent calculations suggest that the rate of neutron capture by 130Sn has a significant impact on late-time nucleosynthesis in the r-process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r- process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d, p) reaction has been studied in inverse kinematics using a 630 MeV beam of 130Sn (4.8 MeV/u) and a (CD2)n target. An array of Si strip detectors, including SIDAR and an early implementation of the ORRUBA, was used to detect reaction products. Results for the 130Sn(d, p)131Sn reaction are found to be very similar to those from the previously reported 132Sn(d, p)133Sn reaction. Direct-semidirect (n, ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.

  20. Covariance of Neutron Cross Sections for {sup 16}O through R-matrix Analysis

    SciTech Connect

    Kunieda, S.; Kawano, T.; Paris, M.; Hale, G.M.; Shibata, K.; Fukahori, T.

    2015-01-15

    Through the R-matrix analysis, neutron cross sections as well as the covariance are estimated for {sup 16}O in the resolved resonance range. Although we consider the current results are still preliminary, we present the summary of the cross section analysis and the results of data uncertainty/covariance, including those for the differential cross sections. It is found that the values obtained highlight consequences of nature in the theory as well as knowledge from measurements, which gives a realistic quantification of evaluated nuclear data covariances.

  1. Absolute measurement of the 242Pu neutron-capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  2. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  3. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Iwase,H.; Murakami, T.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2005-12-19

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.

  4. Neutron Capture Cross Section Measurement on $^{238}$Pu at DANCE

    SciTech Connect

    Chyzh, A; Wu, C Y

    2011-02-14

    The proposed neutron capture measurement for {sup 238}Pu was carried out in Nov-Dec, 2010, using the DANCE array at LANSCE, LANL. The total beam-on-target time is about 14 days plus additional 5 days for the background measurement. The target was prepared at LLNL with the new electrplating cell capable of plating the {sup 238}Pu isotope simultaneously on both sides of the 3-{micro}m thick Ti backing foil. A total mass of 395 {micro}g with an activity of 6.8 mCi was deposited onto the area of 7 mm in diameter. The {sup 238}Pu sample was enriched to 99.35%. The target was covered by 1.4 {micro}m double-side aluminized mylar and then inserted into a specially designed vacuum-tight container, shown in Fig. 1, for the {sup 238}Pu containment. The container was tested for leaks in the vacuum chamber at LLNL. An identical container without {sup 238}Pu was made as well and used as a blank for the background measurement.

  5. Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models

    SciTech Connect

    Smith, A.B.; Guenther, P.T.; Whalen, J.F. ); Chiba, S. . Tokai Research Establishment)

    1991-07-01

    The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white-source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 MeV intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to 4.8 MeV. The measured results, combined with relevant values available in the literature, were interpreted in terms of optical-statistical and coupled-channels model using both vibrational and rotational coupling schemes. The physical implications of the experimental results nd their interpretation are discussed in the contexts of optical-statistical, dispersive-optical, and coupled-channels models. 61 refs.

  6. Measurements of neutron capture cross section for {sup 207,208}Pb

    SciTech Connect

    Segawa, M.; Toh, Y.; Harada, H.; Kitatani, F.; Koizumi, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Oshima, M.; Hatsukawa, Y.; Nagai, Y.; Igashira, M.; Kamada, S.; Tajika, M.

    2014-05-02

    The neutron capture cross sections for {sup 207,208}Pb have been measured in the neutron energy region from 10 to 110 keV. The γ-rays cascaded from a capture state to the ground state or low-lying states of {sup 208,209}Pb were observed for the first time, using an anti-Compton Nal(Tl) spectrometer and a TOF method. The observed discrete γ-ray energy spectra enabled us to determine neutron capture cross sections for {sup 207,208}Pb with small systematic errors, since we could distinguish γ-ray of {sup 207,208}Pb(n,γ) reactions from background γ-ray with use of the γ-ray spectra. The obtained cross sections include both contributions of resonance and direct capture components different from the previous TOF measurements.

  7. Parameterization of nuclear cross-sections for coupled neutronic- thermalhydraulic codes

    SciTech Connect

    Miro, R.; Verdu, G.; Barrachina, T.; Rosello, O.

    2006-07-01

    The present work consists of developing an in-house methodology, called SIMTAB, to characterize, in a simplified way, the reactor core of LWR Nuclear Power Plants. Specifically, a cross-sections and kinetic parameters set are obtained as a function of the prompt and control variables. So that, the core can be modeled using a limited number of neutronic regions, in such a way that the reactor kinetic behavior is properly characterized. This simplification of the reactor core permits, from an operative point of view, the use of few cross sections data sets in coupled 3D neutronic-thermalhydraulic codes. (authors)

  8. Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni

    SciTech Connect

    Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.

    2010-08-03

    We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.

  9. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    NASA Astrophysics Data System (ADS)

    Tan, V. H.; Son, P. N.

    2016-06-01

    The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.

  10. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  11. Error Assessment of Homogenized Cross Sections Generation for Whole Core Neutronic Calculation

    NASA Astrophysics Data System (ADS)

    Hursin, Mathieu; Kochunas, Brendan; Downar, Thomas J.

    2007-10-01

    The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronic analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions.

  12. Error Assessment of Homogenized Cross Sections Generation for Whole Core Neutronic Calculation

    SciTech Connect

    Hursin, Mathieu; Kochunas, Brendan; Downar, Thomas J.

    2007-10-26

    The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronic analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions.

  13. Thermal neutron capture cross sections for 16,171,18O and 2H

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.

    2016-04-01

    Thermal neutron capture γ -ray spectra for 16,17,18O and 2H have been measured with guided cold neutron beams from the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) reactor and the Budapest Research Reactor (BRR) on natural and O,1817 enriched D2O targets. Complete neutron capture γ -ray decay schemes for the 16,17,18O(n ,γ ) reactions were measured. Absolute transition probabilities were determined for each reaction by a least-squares fit of the γ -ray intensities to the decay schemes after accounting for the contribution from internal conversion. The transition probability for the 870.76-keV γ ray from 16O(n ,γ ) was measured as Pγ(871 )=96.6 ±0.5 % and the thermal neutron cross section for this γ ray was determined as 0.164 ±0.003 mb by internal standardization with multiple targets containing oxygen and stoichiometric quantities of hydrogen, nitrogen, and carbon whose γ -ray cross sections were previously standardized. The γ -ray cross sections for the O,1817(n ,γ ) and 2H(n ,γ ) reactions were then determined relative to the 870.76-keV γ -ray cross section after accounting for the isotopic abundances in the targets. We determined the following total radiative thermal neutron cross sections for each isotope from the γ -ray cross sections and transition probabilities; σ0(16O )=0.170 ±0.003 mb; σ0(17O )=0.67 ±0.07 mb; σ0(18O )=0.141 ±0.006 mb; and σ0(2H )=0.489 ±0.006 mb.

  14. Neutron-Induced Fission Cross Section Measurements for Full Suite of Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Laptev, Alexander; Tovesson, Fredrik; Hill, Tony

    2010-11-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans energies from sub-thermal energies up to 200 MeV by measuring both the Lujan Center and the Weapons Neutron Research center (WNR). Conventional parallel-plate fission ionization chambers with actinide deposited foils are used as a fission detector. The time-of-flight method is implemented to measure neutron energy. Counting rate ratio from investigated and standard U-235 foils is translated into fission cross section ratio. Different methods of normalization for measured ratio are employed, namely, using of actinide deposit thicknesses, normalization to evaluated data, etc. Finally, ratios are converted to cross sections based on the standard U-235 fission cross section data file. Preliminary data for newly investigated isotopes U-236 and U-234 will be reported. Those new data complete a full suite of Uranium isotopes, which were investigated with presented experimental approach. When analysis of the new measured data will is completed, data will be delivered to evaluators. Having data for full set of Uranium isotopes will increase theoretical modeling capabilities and make new data evaluations much more reliable.

  15. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGESBeta

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; et al

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the crossmore » section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.« less

  16. Measured Total Cross Sections of Slow Neutrons Scattered by Solid Deuterium and Implications for Ultracold Neutron Sources

    SciTech Connect

    Atchison, F.; Blau, B.; Brandt, B. van den; Brys, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Heule, S.; Kirch, K.; Kohlbrecher, J.; Kuehne, G.; Konter, J.A.; Pichlmaier, A.; Wokaun, A.; Bodek, K.; Kasprzak, M.; Kuzniak, M.; Geltenbort, P.; Zmeskal, J.

    2005-10-28

    The total scattering cross sections for slow neutrons with energies in the range 100 neV to 3 meV for solid ortho-{sup 2}H{sub 2} at 18 and 5 K, frozen from the liquid, have been measured. The 18 K cross sections are found to be in excellent agreement with theoretical expectations and for ultracold neutrons dominated by thermal up scattering. At 5 K the total scattering cross sections are found to be dominated by the crystal defects originating in temperature induced stress but not deteriorated by temperature cycles between 5 and 10 K.

  17. Determination of Thermal Neutron Capture Cross-Sections at Budapest PGAA Facility

    SciTech Connect

    Revay, Zsolt; Belgya, Tamas; Firestone, Richard B.

    2007-10-26

    Prompt gamma activation analysis (PGAA) is a powerful nuclear analytical technique to determine the elemental and isotopic composition of materials. The PGAA facility at Budapest, Hungary is one of the leading laboratories of the world, determining spectroscopic data for chemical analysis to be used in other laboratories. These partial gamma-ray production cross-sections and k{sub 0} values, being proportional to the analytical sensitivities of the chemical elements, can be transformed into thermal neutron capture cross-sections, i.e. the probabilities of the (n,{gamma}) reactions, which are of broader interest in different fields of nuclear physics. Some preliminary results on thermal neutron capture cross-sections are presented.

  18. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-01

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  19. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    SciTech Connect

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig.

  20. Cross Section Sensitivity and Uncertainty Analysis Including Secondary Neutron Energy and Angular Distributions.

    1991-03-12

    Version 00 SUSD calculates sensitivity coefficients for one- and two-dimensional transport problems. Variance and standard deviation of detector responses or design parameters can be obtained using cross-section covariance matrices. In neutron transport problems, this code can perform sensitivity-uncertainty analysis for secondary angular distribution (SAD) or secondary energy distribution (SED).

  1. 137 and 26 Neutron Multigroup Cross Section Library with the Bondarenko Type Shielding Table.

    1986-02-16

    Version 00 The basic function of MGCLIB is to generate effective neutron cross section sets in either 137 or 26 group structures for use in the discrete ordinates codes ANISN-JR or DOT 3.5 or in the Monte Carlo codes KENO-IV or MULTI-KENO.

  2. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  3. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    SciTech Connect

    Parker, W; Agvaanluvsan, U; Wilk, P; Becker, J; Wang, T

    2008-02-08

    We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward in capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the neutron

  4. Cross Section and Analyzing Power Measurements for Neutron Scattering from Aluminum and Cobalt and Spin - Cross Section Calculations

    NASA Astrophysics Data System (ADS)

    Nagadi, Mahmoud Mohamud

    Differential cross sections and analyzing power data have been measured for ^{27} Al and ^{59}Co at 15.5 MeV. Cross section data was also measured for ^{59}Co at 10, 12, 14, 17, and 19 MeV using standard time-of-flight techniques at the Triangle Universities Nuclear Laboratory (TUNL). Absolute normalization of the sigma(theta) data was performed using n-p scattering measurements. Both sigma(theta) and rm A_{y}(theta) were corrected for finite geometry, attenuation, relative efficiency, and multiple scattering effects using Monte Carlo techniques. A large data base was formed from our data and the existing data on ^{27}Al and ^{59}Co. This data base was used to develop a Dispersive Optical Model (DOM) and a Coupled Channels Model (CCM). The DOM model describes the data quite well above 8 MeV for ^{27 }Al and ^{59}Co. However, for data below 8 MeV the model is not as satisfactory, perhaps because of angular momentum l-dependencies in the absorptive potential. The CCM improved the description of the data over the DOM, but still does not describe the data well at low energies. The DOM and CCM for ^{27} Al and ^{59}Co were used to describe the spin-spin cross section data for ^{27}Al and ^{59}Co. We obtained a good fit for the spin-spin cross section with both the DOM and CCM with the spin-spin real surface parameters of V _{rm ss} = 0.80 MeV, r _{rm ss} = 1.00 fm and a _{rm ss} = 0.654 for both ^{27}Al and ^{59}Co. A surprising relation between the spin-spin cross section and the derivative of the total cross section with respect to energy, was discovered: sigma_{ss } = c {dsigma_{T} over dE} where c is a constant related to the slope of the real central potential and spin-spin potential strength. This observation is not yet understood.

  5. Measurements of the breakup and neutron removal cross sections for {sup 16}C

    SciTech Connect

    Ashwood, N. I.; Freer, M.; Clarke, N.M.; Curtis, N.; Soic, N.; Ziman, V.A.; Angelique, J.C.; Lecouey, J.L.; Marques, F.M.; Normand, G.; Orr, N.A.; Timis, C.; Bouchat, V.; Hanappe, F.; Kerckx, Y.; Materna, T.; Catford, W.N.; Dorvaux, O.; Stuttge, L.

    2004-12-01

    Measurements of the breakup and the neutron removal reactions of {sup 16}C have been made at 46 MeV/A and the decay cross sections measured. A correlation between the cluster breakup channels and the reaction Q value suggests that the reaction mechanism is strongly linked to quasielastic processes. No enhancement of the two-body cluster breakup cross section is seen for {sup 16}C. This result would indicate that {sup 16}C does not have a well developed cluster structure in the ground state, in agreement with recent calculations.

  6. Theoretical study of evaporation cross sections in the synthesis of very neutron-deficient nuclei

    SciTech Connect

    Wang Chengbin; Zhang Jinjuan; Ren, Z. Z.

    2011-07-15

    The synthesis of rare-earth neutron-deficient nuclei with large Z/N ratio {approx_equal}0.88 is studied within the framework of the standard statistical model. The fusion cross sections are calculated on the basis of the nuclear reaction video model. The deexcitation process is calculated with the help of the statistical code alice. It is found that the excitation functions can be predicted using a few exited experimental data by carefully choosing the input parameters in the statistical model. The results obtained show that a satisfactory description of the experimental evaporation cross sections requires a great reduction in the theoretical fission barriers.

  7. Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection

    SciTech Connect

    Chadwick, M.B.

    1998-09-10

    The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given.

  8. Neutron capture cross section measurements at the beam line 04 of J-PARC/MLF

    SciTech Connect

    Igashira, Masayuki; Harada, Hideo; Kiyanagi, Yoshiaki

    2012-11-12

    An Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) at the beam line 04 of MLF (Material and Life Sciences Experimental Facilities) of J-PARC (Japan Proton Accelerator Research Complex) was installed to measure neutron capture cross sections related to the research and development of innovative nuclear systems, the study on nuclear astrophysics, etc. ANNRI has two gamma-ray spectrometers: one is a Ge detector array placed at 22 m from the coupled type moderator of the spallation neutron source of J-PARC/MLF and the other is a pair of NaI(Tl) detectors at 28 m. Until the 11th of March, 2011, when we had big earthquakes, we measured capture cross sections of Zr-93, Tc-99, Pd-107, I-129, Cm-244, Cm-246, etc. After checking and repairing ANNRI, we restarted measurements, and ANNRI has been open to worldwide users at present.

  9. Validation of multigroup neutron cross sections for the Advanced Neutron Source against the FOEHN critical experimental measurements

    SciTech Connect

    Smith, L.A.; Gehin, J.C.; Worley, B.A.; Renier, J.P.

    1994-04-01

    The FOEHN critical experiments were analyzed to validate the use of multigroup cross sections in the design of the Advanced Neutron Source. Eleven critical configurations were evaluated using the KENO, DORT, and VENTURE neutronics codes. Eigenvalue and power density profiles were computed and show very good agreement with measured values.

  10. NEUTRON CROSS SECTION COVARIANCES FROM THERMAL ENERGY TO 20 MeV.

    SciTech Connect

    ROCHMAN,D.; HERMAN, M.; OBLOZINSKY, P.; MUGHABGHAB, S.F.; PIGNI, M.; KAWANO, T.

    2007-04-27

    We describe new method for energy-energy covariance calculation from the thermal energy up to 20 MeV. It is based on three powerful basic components: (i) Atlas of Neutron Resonances in the resonance region; (ii) the nuclear reaction model code EMPIRE in the unresolved resonance and fast neutron regions, and (iii) the Bayesian code KALMAN for correlations and error propagation. Examples for cross section uncertainties and correlations on {sup 90}Zr and {sup 193}Ir illustrate this approach in the resonance and fast neutron regions.

  11. Interactive Graphic User Interface to View Neutron and Gamma-Ray Interaction Cross Sections.

    2001-12-20

    Version 00 VIEW-CXS is an interactive, user-friendly interface to graphically view neutron and gamma-ray cross-sections of isotopes available in different data libraries. The names of isotopes for which the cross-sections are available is shown in a data base grid on the selection of a particular library. Routines have been developed in Visual Basic 6.0 to retrieve required information from each of the binary files or random access files. The present program can fetch data from:more » 1) ACE random access file used with MCNP code, 2) AMPX binary file used with KENO code, 3) ANISN group cross-sections used with discrete ordinate codes. It is possible to compare the data of cross-sections for any isotope from selected libraries. Besides it is possible to extract a particular nuclear reaction cross-section from ACE library files. Context sensitive help is an attractive feature of the program and aids the novice user to extract the required data.« less

  12. Covariances Obtained from an Evaluation of the Neutron Cross Section Standards

    SciTech Connect

    Carlson, A. D.; Badikov, S. A.; Chen, Zhenpeng; Gai, E.; Pronyaev, V. G.; Hale, G. M.; Kawano, T.; Hambsch, F.; Hoffman, H.; Larson, Nancy M; Oli, S.; Smith, D. L.; Tagesen, S.; Vonach, H.

    2008-12-01

    New measurements and an improved evaluation process were used to obtain a new evaluation of the neutron cross section standards. Efforts were made to include as much information as possible on the components of the data uncertainties that were then used to obtain the covariance matrices for the experimental data. Evaluations were produced from this process for the 6Li(n,t), 10B(n, ), 10B(n, 1 ), 197Au(n, ), 235U(n,f), and 238U(n,f) standard cross sections as well as the non-standard 6Li(n,n), 10B(n,n), 238U(n, ) and 239Pu(n,f) cross sections. There is a general increase in the cross sections for most of the new evaluations, by as much as about 5%, compared with the ENDF/B-VI results. Covariance data were obtained for the 6Li(n,t), 6Li(n,n), 10B(n, ), 10B(n, 1 ), 10B(n,n), 197Au(n, ), 235U(n,f), 238U(n,f), 238U(n, ) and 239Pu(n,f) reactions. Also an independent R-Matrix evaluation was produced for the H(n,n) standard cross-section, however, covariance data are not available for this reaction. The evaluations were used in the new ENDF/B-VII library.

  13. Study on generating of thermal neutron scattering cross sections for LiH

    SciTech Connect

    Wang, L.; Jiang, X.; Zhao, Z.; Chen, L.

    2013-07-01

    LiH is designated as a promising moderator and shielding material because of its low density, high melting point and large fraction of H atoms. However, lack of the thermal neutron cross sections of LiH makes numerical calculation deviate from experimental data to some extent. As a result, it is necessary to study LiH thermal kernel effect. The phonon property of LiH has been investigated by first-principles calculations using the plane-wave pseudo potential method with CASTEP code. The scattering law and the thermal neutron scattering cross sections for Li and H have been generated using this distribution. The results have been compared with zirconium hydride data. The GASKET and NJOY/LEAPR codes have been used in the calculation of scattering law, whose results have been compared with the reference; the discrepancy mainly comes from phonon spectrums and its expansion. LEAPR had the capability to compute scattering through larger energy and momentum transfers than GASKET did. By studying LiH phonon spectrum and constructing the model of LiH thermal kernel and scattering matrix, the ACE format LiH thermal neutron cross sections for MCNP software could be made and used for reactor Neutronics calculation. (authors)

  14. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Krticka, M.

    2005-05-24

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4{pi}BaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes.Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer.

  15. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    SciTech Connect

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  16. Proton capture cross sections on neutron-magic 144Sm at astrophysically relevant energies

    NASA Astrophysics Data System (ADS)

    Kinoshita, N.; Hayashi, K.; Ueno, S.; Yatsu, Y.; Yokoyama, A.; Takahashi, N.

    2016-02-01

    Background: The p nuclei, which are not produced by neutron capture processes, are present with a typical isotopic abundance of 0.01%-0.3%. Abundance decreases with an increase in atomic number. However, the neutron-magic isotopes of 92Mo and 144Sm exhibit unusually large abundances in comparison. A combination of proton and α -particle capture reactions and neutron emission reactions are key to understanding this issue. Currently, complex network calculations do not have access to much experimental data, and hence require theoretically predicted reaction rates in order to estimate final abundances produced in nucleosynthesis. Purpose: Few experimental cross sections of (p ,γ) reactions on heavy nuclides with mass numbers of 130-150 have been reported. The 144Sm(p ,γ )145Eu reaction is the main destruction pathway for the nucleosynthesis of the 144Sm nuclide. In the present paper, experimental cross sections of the 144Sm(p ,γ )145Eu reaction at a range including astrophysically relevant energies for the p process were determined to compare with theoretical predictions using the Hauser-Feshback statistical model. Methods: The 144Sm was deposited on a high-purity Al foil with the molecular plating method. Stacks consisting of Ta degrader foils, 144Sm targets, and Cu foils used as flux monitors were irradiated with 14.0-MeV proton beams. The 144Sm(p ,γ )145Eu cross sections were determined from the 145Eu activities and the proton fluence estimated from the 65Zn activity in the Cu monitor foil. The proton energies bombarded on each 144Sm target were estimated using srim2013. Results: We determined the 144Sm(p ,γ )145Eu cross sections at proton energies between 2.8 and 7.6 MeV. These energies encompass nucleosynthesis temperatures between 3 and 5 GK. The cross sections at energies higher than 3.8 MeV agreed well with theoretically predicted cross sections using talys using the generalized superfluid (GS) model for level densities. However, calculations using non

  17. Thermal neutron absorption cross sections for igneous rocks: Newberry Caldera, Oregon

    SciTech Connect

    Lysne, P.

    1990-01-01

    The thermal neutron absorption cross sections of geologic materials are of first-order importance to the interpretation of pulsed neutron porosity logs and of second-order importance to the interpretation of steady-state porosity logs using dual detectors. Even in the latter case, uncertainties in log response can be excessive whenever formations are encountered that possess absorption properties appreciably greater than the limestones used in most tool calibrations. These effects are of importance to logging operations directed at geothermal applications where formation vary from igneous to sedimentary and which may contain solution-deposited minerals with very large cross-section values. Most measurements of cross-section values for geologic materials have been made for hydrocarbon production applications. Hence, the specimen materials are sedimentary and clean in the sense that they are not altered by geothermal fluids. This investigation was undertaken to measure cross-section values from a sequence of igneous materials obtained from a single hole drilled in an active hydrothermal system. 3 refs., 1 fig.

  18. RSAP - A Code for Display of Neutron Cross Section Data and SAMMY Fit Results

    SciTech Connect

    Sayer, R.O.

    2001-02-02

    RSAP is a computer code for display of neutron cross section data and selected SAMMY output. SAMMY is a multilevel R-matrix code for fitting neutron time-of-flight cross-section data using Bayes' method. RSAP, which runs on the Digital Unix Alpha platform, reads ORELA Data Files (ODF) created by SAMMY and uses graphics routines from the PLPLOT package. In addition, RSAP can read data and/or computed values from ASCII files with a format specified by the user. Plot output may be displayed in an X window, sent to a postscript file (rsap.ps), or sent to a color postscript file (rsap.psc). Thirteen plot types are supported, allowing the user to display cross section data, transmission data, errors, theory, Bayes fits, and residuals in various combinations. In this document the designations theory and Bayes refer to the initial and final theoretical cross sections, respectively, as evaluated by SAMMY. Special plot types include Bayes/Data, Theory--Data, and Bayes--Data. Output from two SAMMY runs may be compared by plotting the ratios Theory2/Theory1 and Bayes2/Bayes1 or by plotting the differences (Theory2-Theory1) and (Bayes2-Bayes1).

  19. Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF).

    PubMed

    Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-10-15

    The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions.

  20. Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF).

    PubMed

    Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-10-15

    The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions. PMID:15524972

  1. Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis.

    PubMed

    Lederer, C; Massimi, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Zugec, P

    2013-01-11

    The 63Ni(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from   kT=5-100  keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of 63Cu, 64Ni, and 64Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova. PMID:23383895

  2. 238U Neutron Capture Cross Section Measurements at the GELINA Facility

    NASA Astrophysics Data System (ADS)

    Lampoudis, C.; Kopecky, S.; Becker, B.; Gunsing, F.; Schillebeeckx, P.; Wynants, R.

    2014-05-01

    A set of neutron capture experiments based on the time-of-flight technique were performed in order to determine the 238U capture cross section in the unresolved resonance region. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM) served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the uranium sample. The analysis of the experimental data is based on the total energy principle applied in combination with the pulse height weighting technique. The experimental details along with the analysis process are described. The first results in the resolved resonance region are presented and their validity provide a solid base to extend the analysis and extract the average cross section in the keV region.

  3. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    NASA Astrophysics Data System (ADS)

    Barbagallo, M.; Mastromarco, M.; Colonna, N.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2014-12-01

    The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  4. Assessment of the neutron cross section database for mercury for the ORNL spallation source

    SciTech Connect

    Leal, L.C.; Spencer, R.R.; Ingersoll, D.T.; Gabriel, T.A.

    1996-06-01

    Neutron source generation based on a high energy particle accelerator has been considered as an alternative to the canceled Advanced Neutron Source project at Oak Ridge National Laboratory. The proposed technique consists of a spallation neutron source in which neutrons are produced via the interaction of high-energy charged particles in a heavy metal target. Preliminary studies indicate that liquid mercury bombarded with GeV protons provides an excellent neutron source. Accordingly, a survey has been made of the available neutron cross-section data. Since it is expected that spectral modifiers, specifically moderators, will also be incorporated into the source design, the survey included thermal energy, resonance region, and high energy data. It was found that data of individual isotopes were almost non-existent and that the only evaluation found for the natural element had regions of missing data or discrepant data. Therefore, it appears that to achieve the desired degree of accuracy in the spallation source design it is necessary to re-evaluate the mercury database including making new measurements. During the presentation the currently available data will be presented and experiments proposed which can lead to design quality cross sections.

  5. Measurement and evaluation of selected 14-MeV neutron cross sections for fusion

    SciTech Connect

    Meadows, J.W.; Smith, D.L.; Cox, S.A.

    1985-01-01

    Experimental neutron-activation cross-section data in the vicinity of 14 MeV are evaluated for several reactions of fusion-related interest using a least-squares method. New experimental measurements are performed at 14.7 MeV for all of these considered reactions and for some commonly-used standard reactions as well. Comparison is made between measured and evaluated results.

  6. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  7. A unified Monte Carlo approach to fast neutron cross section data evaluation.

    SciTech Connect

    Smith, D.; Nuclear Engineering Division

    2008-03-03

    A unified Monte Carlo (UMC) approach to fast neutron cross section data evaluation that incorporates both model-calculated and experimental information is described. The method is based on applications of Bayes Theorem and the Principle of Maximum Entropy as well as on fundamental definitions from probability theory. This report describes the formalism, discusses various practical considerations, and examines a few numerical examples in some detail.

  8. Stellar neutron capture cross sections of Nd, Pm, and Sm isotopes

    SciTech Connect

    Toukan, K.A. ); Debus, K.; Kaeppeler, F. ); Reffo, G. )

    1995-03-01

    The neutron capture cross sections of [sup 146,148,150]Nd have been determined relative to that of gold by means of the activation method. The samples were irradiated in a quasistellar neutron spectrum for [ital kT]=25 keV using the [sup 7]Li([ital p],[ital n])[sup 7]Be reaction near threshold. Variation of the experimental conditions in different activations and the use of different samples allowed for the reliable determination of corrections and the evaluation of systematic uncertainties. The resulting stellar cross sections can be given with uncertainties around 6%, which represents a considerable improvement compared to previous measurements. These data are complemented by a new set of calculated cross sections for the unstable isotopes [sup 147]Nd, [sup 147,148,149]Pm, and [sup 151]Sm, which act as branching points in the [ital s]-process path. Based on these results, the [ital s]-process flow in the Nd-Pm-Sm region is discussed with respect to the neutron density during stellar helium burning and to isotopic anomalies in meteorites. The updated [ital s]-abundances are also used for a discussion of [ital r]- and [ital p]-process residuals.

  9. Experimental measurements with Monte Carlo corrections and theoretical calculations of neutron inelastic scattering cross section of 115In

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiao, Jun; Luo, Xiaobing

    2016-10-01

    The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.

  10. Neutron cross-section libraries in the AMPX master interface format for thermal and fast reactors

    SciTech Connect

    Bjerke, M.A.; Webster, C.C.

    1981-12-01

    Neutron cross-section libraries in the AMPX master interface format have been created for three reactor types. Included are an 84-group library for use with light-water reactors, a 27-group library for use with heavy-water CANDU reactors and a 126-group library for use with liquid metal fast breeder reactors. In general, ENDF/B data were used in the creation of these libraries, and the nuclides included in each library should be sufficient for most neutronic analyses of reactors of that type. Each library has been used successfully in fuel depletion calculations.

  11. Empirical formula on (n,(3)He) reaction cross sections at 14.6MeV neutrons.

    PubMed

    Yiğit, Mustafa

    2015-11-01

    The systematic behavior of the cross sections of (n,(3)He) nuclear reactions has been studied by various researches at neutron energy of 14.6MeV. A new empirical formula based on the Q-value dependence of the cross sections of the investigated reaction has been proposed. The cross sections obtained from the new formula are compared with the other proposed formulae results and the experimental data. It seems that the present formula based on the Q-value dependence provides the good description for cross sections of neutron-induced (n,(3)He) nuclear reactions at 14.6MeV.

  12. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    SciTech Connect

    Smith, L.A.; Gallmeier, F.X.; Gehin, J.C.

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  13. Realizing the Opportunities of Neutron Cross-Section Measurements at RIA

    SciTech Connect

    Ahle, Larry; Roberts, Kevin; Roeben, Martin; Rusnak, Brian; Hausmann, Marc; Reifarth, Rene; Vieira, Dave

    2005-05-24

    The Rare Isotope Accelerator will produce many isotopes at never before seen rates. This will allow for the first-time measurements on isotopes very far from stability and new measurement opportunities for unstable nuclei near stability. In fact, the production rates are such that it should be possible to collect 10 micrograms of many isotopes with a half-life of 1 day or more. This ability to make targets of short-lived nuclei enables the possibility of making neutron cross-section measurements important to the astrophysics and the stockpile stewardship communities. But to fully realize this opportunity, the appropriate infrastructure must be included at the RIA facility. This includes isotope harvesting capabilities, radiochemical areas for processing collected material, and an intense, ''mono-energetic,'' tunable neutron source. As such, we have been developing a design for neutron source facility to be included at the RIA site. This facility would produce neutrons via intense beams of deuterons and protons on a variety of targets. The facility would also include the necessary radiochemical facilities for target processing. These infrastructure needs will be discussed in addition to the methods that would be employed at RIA for measuring these neutron cross sections.

  14. Neutron capture and total cross sections for /sup 48/Ca: Astrophysical implications

    SciTech Connect

    Carlton, R.F.; Harvey, J.A.; Hill, N.W.; Macklin, R.L.

    1985-01-15

    Attempts to understand abundance anomalies of the Ca isotopes in the Allende meteorite via the n..beta..-process require 30-keV Maxwellian averaged capture cross sections. Experimental data on /sup 48/Ca in this energy region of astrophysical significance is important since a single resonance in this vicinity could dominate the caputre cross section. Neutron capture and total cross section measurements have been performed at ORELA on a 9.97-g sample of CaCO/sub 3/, enriched to 96% /sup 48/Ca, over the energy ranges 10 eV-500 keV (sigma..gamma..) and 10 keV-4 MeV (sigmaT). Only two small resonances were found for /sup 48/Ca in the 30-keV energy region (at 19.3 and 106.9 keV) and those only in capture. Their contribution to the 30-keV-averaged cross section is only 50 ..mu..b compared to 1.0 mb calculated from direct capture. The p-wave strength and large d/sub 5/2/ strength observed above 150 keV do no contribute significantly to the 30 keV capture.

  15. Neutron capture and total cross sections for /sup 48/Ca: astrophysical implications

    SciTech Connect

    Carlton, R.F.; Harvey, J.A.; Hill, N.W.; Macklin, R.L.

    1984-01-01

    Attempts to understand abundance anomalies of the Ca isotopes in the Allende meteorite via the n..beta..-process require 30-keV Maxwellian averaged capture cross sections. Experimental data on /sup 48/Ca in this energy region of astrophysical significance is important since a single resonance in this vicinity could dominate the capture cross section. Neutron capture and total cross section measurements have been performed at ORELA on a 9.97-g sample of CaCO/sub 3/, enriched to 96% /sup 48/Ca, over the energy ranges 10 eV to 500 keV (sigma/sub ..gamma../) and 10 keV to 4MeV (sigma/sub T/). Only two small resonances were found for /sup 48/ Ca in the 30-keV energy region (at 19.3 and 106.9 keV) and those only in capture. Their contribution to the 30-keV-averaged cross section is only 50 ..mu..b compared to 1.0 mb calculated from direct capture. The p-wave strength and large d/sub 5/2/ strength observed above 150 keV do not contribute significantly to the 30 keV capture.

  16. Measuring Neutron-Proton Radiative Capture Cross-section at Low Energy

    NASA Astrophysics Data System (ADS)

    Yu, To Chin; Kovash, Michael; Matthews, June; Yang, Hongwei; Yang, Yunjie

    2015-10-01

    The experiment aims to fill in a gap in our data for the cross-section of neutron-proton radiative capture (p(n,d γ)) at energies below 500 keV. Current measurements in this energy range are scarce and inconsistent with theoretical predictions and with each other. A well-determined cross-section of the capture reaction in the low energy range is useful in nuclear physics due to its fundamental nature. The measurement is also of interest in cosmology. Big Bang Nucleosynthesis (BBN), the process by which light elements are formed in early universe, is very sensitive to the p(n,d γ) cross-section in the low energy range. The measurement enables us to put tighter constraints on the theoretical predictions of BBN. We have conducted preliminary measurements in the van de Graaff accelerator facility at the University of Kentucky. Our array of detectors consists of three plastic scintillators to serve as proton targets and deuteron detectors, and five BGO scintillators to detect γ-rays. The combination results in an over-determination of reaction kinematics that discriminates against scattering processes and other backgrounds. We have obtained some early results which show promise for the precise measurement of the p(n,d γ) cross-section.

  17. Surrogate ratio methodology for the indirect determination of neutron capture cross sections

    SciTech Connect

    Goldblum, B. L.; Prussin, S. G.; Bernstein, L. A.; Younes, W.; Guttormsen, M.; Nyhus, H. T.

    2010-05-15

    The relative gamma-decay probabilities of the {sup 162}Dy to {sup 161}Dy and {sup 162}Dy to {sup 164}Dy residual nuclei, produced using light-ion-induced direct reactions, were measured as a function of excitation energy using the CACTUS array at the Oslo Cyclotron Laboratory. The external surrogate ratio method (SRM) was used to convert these relative gamma-decay probabilities into the {sup 161}Dy(n,gamma) cross section in an equivalent neutron energy range of 130-560 keV. The directly measured {sup 161}Dy(n,gamma) cross section, obtained from the Evaluated Nuclear Data Files (ENDF/B-VII.0), was compared to the experimentally determined surrogate {sup 161}Dy(n,gamma) cross section obtained using compound-nucleus pairs with both similar ({sup 162}Dy to {sup 164}Dy) and dissimilar ({sup 162}Dy to {sup 161}Dy) nuclear structures. A gamma-ray energy threshold was identified, based upon pairing gap parameters, that provides a first-order correction to the statistical gamma-ray tagging approach and improves the agreement between the surrogate cross-section data and the evaluated result.

  18. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    SciTech Connect

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A.; Hentati, A.

    2012-07-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

  19. Surrogate ratio methodology for the indirect determination of neutron capture cross sections

    NASA Astrophysics Data System (ADS)

    Goldblum, B. L.; Prussin, S. G.; Bernstein, L. A.; Younes, W.; Guttormsen, M.; Nyhus, H. T.

    2010-05-01

    The relative γ-decay probabilities of the Dy162 to Dy161 and Dy162 to Dy164 residual nuclei, produced using light-ion-induced direct reactions, were measured as a function of excitation energy using the CACTUS array at the Oslo Cyclotron Laboratory. The external surrogate ratio method (SRM) was used to convert these relative γ-decay probabilities into the Dy161(n,γ) cross section in an equivalent neutron energy range of 130-560 keV. The directly measured Dy161(n,γ) cross section, obtained from the Evaluated Nuclear Data Files (ENDF/B-VII.0), was compared to the experimentally determined surrogate Dy161(n,γ) cross section obtained using compound-nucleus pairs with both similar (Dy162 to Dy164) and dissimilar (Dy162 to Dy161) nuclear structures. A γ-ray energy threshold was identified, based upon pairing gap parameters, that provides a first-order correction to the statistical γ-ray tagging approach and improves the agreement between the surrogate cross-section data and the evaluated result.

  20. The Neutron Time-of-Flight Cross Section Program at the University of Kentucky - Adventures in Analysis II

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Combs, B. C.; Crider, B. P.; French, A. J.; Garza, E. A.; Henderson, S. L.; Howard, T. J.; Liu, S. H.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; McEllistrem, M. T.; Rice, B. J.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Yates, S. W.

    2015-05-01

    Elastic and inelastic neutron differential cross sections are measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator/) at incident energies in the fast neutron region. The labo- ratorys facilities and instrumentation will be described and our measurement and analysis procedures outlined. Many corrections are required for neutron scattering experiments and the analysis utilizes information from many other cross section data sets and model calculations. Exploring and understanding the limitations of the foundational information and procedures are important for controlling the accuracy of the cross section results. We are examining the limitations in neutron detection efficiency, the normalization of (n,n'γ) cross sections,background reduction, spectrum stripping techniques, and attenuation and multiple scattering corrections. The resulting differential cross sections provide information on the compound elastic and coupled channels reaction mechanisms important for advanced reactor designs

  1. Neutron capture cross section measurements for 238U in the resonance region at GELINA

    NASA Astrophysics Data System (ADS)

    Kim, H. I.; Paradela, C.; Sirakov, I.; Becker, B.; Capote, R.; Gunsing, F.; Kim, G. N.; Kopecky, S.; Lampoudis, C.; Lee, Y.-O.; Massarczyk, R.; Moens, A.; Moxon, M.; Pronyaev, V. G.; Schillebeeckx, P.; Wynants, R.

    2016-06-01

    Measurements were performed at the time-of-flight facility GELINA to determine the 238U(n, γ) cross section in the resonance region. Experiments were carried out at a 12.5 and 60m measurement station. The total energy detection principle in combination with the pulse height weighting technique was applied using C6D6 liquid scintillators as prompt γ-ray detectors. The energy dependence of the neutron flux was measured with ionisation chambers based on the 10B(n, α) reaction. The data were normalised to the isolated and saturated 238U resonance at 6.67 eV. Special procedures were applied to reduce bias effects due to the weighting function, normalization, dead time and background corrections, and corrections related to the sample properties. The total uncertainty due to the weighting function, normalization, neutron flux and sample characteristics is about 1.5%. Resonance parameters were derived from a simultaneous resonance shape analysis of the GELINA capture data and transmission data obtained previously at a 42m and 150m station of ORELA. The parameters of resonances below 500 eV are in good agreement with those resulting from an evaluation that was adopted in the main data libraries. Between 500 eV and 1200 eV a systematic difference in the neutron width is observed. Average capture cross section data were derived from the experimental capture yield in the energy region between 3.5 keV and 90 keV. The results are in good agreement with an evaluated cross section resulting from a least squares fit to experimental data available in the literature prior to this work. The average cross section data derived in this work were parameterised in terms of average resonance parameters and included in a least squares analysis together with other experimental data reported in the literature.

  2. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    SciTech Connect

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  3. Measurement of Neutron Capture Cross Section of 62Ni in the keV-Region

    NASA Astrophysics Data System (ADS)

    Alpizar-Vicente, A. M.; Bredeweg, T. A.; Esch, E.-I.; Greife, U.; Haight, R. C.; Hatarik, R.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2006-03-01

    The neutron capture cross section of 62Ni, relative to gold as a standard, was determined in the energy range from 250 eV to 100 keV. This energy range covers the region between 5 keV to 20 keV, which is not available in ENDF. Capture events are detected with the 160-fold 4π BaF2 Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. One of the challenges was to process the high count rate of 4 MHz, which required an optimization of the data acquisition software. The neutron energy was determined by the time-of-flight technique using a flight path of 20.25 m. The sample mass of the 96% enriched 62Ni target was 210 mg and it was mounted in a 1.5 μm thick Mylar foil.

  4. Measurement of Neutron Capture Cross Section of 62Ni in the keV-Region

    SciTech Connect

    Alpizar-Vicente, A. M.; Hatarik, R.; Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Greife, U.

    2006-03-13

    The neutron capture cross section of 62Ni, relative to gold as a standard, was determined in the energy range from 250 eV to 100 keV. This energy range covers the region between 5 keV to 20 keV, which is not available in ENDF. Capture events are detected with the 160-fold 4{pi} BaF2 Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. One of the challenges was to process the high count rate of 4 MHz, which required an optimization of the data acquisition software. The neutron energy was determined by the time-of-flight technique using a flight path of 20.25 m. The sample mass of the 96% enriched 62Ni target was 210 mg and it was mounted in a 1.5 {mu}m thick Mylar foil.

  5. Vibrational spectra of light and heavy water with application to neutron cross section calculations

    SciTech Connect

    Damian, J. I. Marquez; Granada, J. R.; Malaspina, D. C.

    2013-07-14

    The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

  6. Neutron total and scattering cross sections of /sup 6/Li in the few MeV region

    SciTech Connect

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of /sup 6/Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx.< 10 keV. Neutron differential elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at approx.> 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;..cap alpha..)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file.

  7. Covariances Obtained from an Evaluation of the Neutron Cross Section Standards

    SciTech Connect

    Carlson, A.D. Badikov, S.A.; Chen, Zhenpeng; Gai, E.; Hale, G.M.; Hambsch, F.-J.; Hofmann, H.M.; Kawano, T.; Larson, N.M.; Oh, S.Y.; Pronyaev, V.G.; Smith, D.L.; Tagesen, S.; Vonach, H.

    2008-12-15

    New measurements and an improved evaluation process were used to obtain a new evaluation of the neutron cross section standards. Efforts were made to include as much information as possible on the components of the data uncertainties that were then used to obtain the covariance matrices for the experimental data. Evaluations were produced from this process for the {sup 6}Li(n,t), {sup 10}B(n,{alpha}), {sup 10}B(n,{alpha}{sub 1}{gamma}), {sup 197}Au(n,{gamma}), {sup 235}U(n,f), and {sup 238}U(n,f) standard cross sections as well as the non-standard {sup 6}Li(n,n), {sup 10}B(n,n), {sup 238}U(n,{gamma}) and {sup 239}Pu(n,f) cross sections. There is a general increase in the cross sections for most of the new evaluations, by as much as about 5%, compared with the ENDF/B-VI results. Covariance data were obtained for the {sup 6}Li(n,t), {sup 6}Li(n,n), {sup 10}B(n,{alpha}), {sup 10}B(n,{alpha}{sub 1}{gamma}), {sup 10}B(n,n), {sup 197}Au(n,{gamma}), {sup 235}U(n,f), {sup 238}U(n,f), {sup 238}U(n,{gamma}) and {sup 239}Pu(n,f) reactions. Also an independent R-Matrix evaluation was produced for the H(n,n) standard cross-section, however, covariance data are not available for this reaction. The evaluations were used in the new ENDF/B-VII library.

  8. Transitions, cross sections and neutron binding energy in 186Re by Prompt Gamma Activation Analysis

    NASA Astrophysics Data System (ADS)

    Lerch, A. G.; Hurst, A. M.; Firestone, R. B.; Revay, Zs.; Szentmiklosi, L.; McHale, S. R.; McClory, J. W.; Detwiler, B.; Carroll, J. J.

    2014-03-01

    The nuclide 186Re possesses an isomer with 200,000 year half-life while its ground state has a half-life of 3.718 days. It is also odd-odd and well-deformed nucleus, so should exhibit a variety of other interesting nuclear-structure phenomena. However, the available nuclear data is rather sparse; for example, the energy of the isomer is only known to within + 7 keV and, with the exception of the J?=1- ground state, every proposed level is tentative in the ENSDF. Previously, Prompt Gamma Activation Analysis (PGAA) was utilized to study natRe with 186,188Re being produced via thermal neutron capture. Recently, an enriched 185Re target was irradiated by thermal neutrons at the Budapest Research Reactor to build on those results. Prompt (primary and secondary) and delayed gamma-ray transitions were measured with a large-volume, Compton-suppressed HPGe detector. Absolute cross sections for each gamma transition were deduced and corrected for self attenuation within the sample. Fifty-two primary gamma-ray transitions were newly identified and used to determine a revised value of the neutron binding energy. DICEBOX was used to simulate the decay scheme and the total radiative thermal neutron capture cross section was found to be 97+/-3 b Supported by DTRA (Detwiler) through HDTRA1-08-1-0014.

  9. Thermal neutron capture cross section of the radioactive isotope 60Fe

    NASA Astrophysics Data System (ADS)

    Heftrich, T.; Bichler, M.; Dressler, R.; Eberhardt, K.; Endres, A.; Glorius, J.; Göbel, K.; Hampel, G.; Heftrich, M.; Käppeler, F.; Lederer, C.; Mikorski, M.; Plag, R.; Reifarth, R.; Stieghorst, C.; Schmidt, S.; Schumann, D.; Slavkovská, Z.; Sonnabend, K.; Wallner, A.; Weigand, M.; Wiehl, N.; Zauner, S.

    2015-07-01

    Background: Fifty percent of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. Purpose: One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as 60Fe with a half-life of 2.60 ×106 yr. To reproduce this γ activity in the universe, the nucleosynthesis of 60Fe has to be understood reliably. Methods: An 60Fe sample produced at the Paul Scherrer Institut (Villigen, Switzerland) was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universität Mainz (Mainz, Germany). Results: The thermal neutron capture cross section has been measured for the first time to σth=0.226 (-0.049+0.044) b . An upper limit of σRI<0.50 b could be determined for the resonance integral. Conclusions: An extrapolation towards the astrophysically interesting energy regime between k T =10 and 100 keV illustrates that the s -wave part of the direct capture component can be neglected.

  10. Evaluation of Tungsten Neutron Cross Sections in the Resolved Resonance Regions

    SciTech Connect

    Pigni, Marco T; Leal, Luiz C; Dunn, Michael E; Guber, Klaus H; Emiliani, F.; Kopecky, S.; Lampoudis, C.; Schillebeeckx, P.; Siegler, P.

    2014-01-01

    We generated a preliminary set of resonance parameters for 182-184,186W in the neutron energy range of thermal up to several keV. The evaluation methodology uses the Reich-Moore approximation to t, with the R-matrix code SAMMY, the high-resolution measurements performed in 2010 and 2012 at the GEel LINear Accelerator (GELINA) facility. Particularly for 183W, the transmission data and the capture cross sections calculated with the set of resonance parameters are compared with the experimental values, and some of the average properties of the resonance parameters are discussed. In the analyzed energy range, this work almost doubles the existing resolved resonance evaluations in the ENDF/B-VII.1 library. The analysis of the performance of the calculated cross sections based on criticality benchmarks is still in progress and it is only briefly discussed.

  11. Evaluation of Tungsten Neutron Cross Sections in the Resolved Resonance Region

    NASA Astrophysics Data System (ADS)

    Pigni, M. T.; Leal, L. C.; Dunn, M. E.; Guber, K. H.; Trkov, A.; Žerovnik, G.; Emiliani, F.; Kopecky, S.; Lampoudis, C.; Schillebeeckx, P.; Siegler, P.

    2014-04-01

    We generated a preliminary set of resonance parameters for 182,183,184,186W in the neutron energy range of thermal up to several keV. The evaluation methodology uses the Reich-Moore approximation to fit with the R-matrix code SAMMY, the high-resolution measurements performed in 2010 and 2012 at the Geel linear accelerator facility. For 183W, the transmission data and capture cross sections calculated with the set of resonance parameters are compared with the experimental values, and some of the average properties of the resonance parameters are discussed. In the analyzed energy range, this work almost doubles the existing resolved resonance evaluations in the ENDF/B-VII.1 library. A preliminary analysis of the performance of the calculated cross sections based on Lead slowing-down benchmarks is presented and briefly discussed.

  12. Measurement of the thermal neutron capture cross section and the resonance integral of radioactive Hf182

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Bichler, M.; Wallner, A.; Kutschera, W.; Dillmann, I.; Käppeler, F.

    2008-04-01

    The neutron capture cross sections of the radioactive isotope Hf182 (t1/2=8.9×106 yr) in the thermal and epithermal energy regions have been measured by activation at the TRIGA Mark-II reactor of the Atomic Institute of the Austrian Universities in Vienna, Austria, and subsequent γ-ray spectroscopy of Hf183. High values for the thermal (kT=25 meV) cross section σ0=133±10 b and for the resonance integral I0=5850±660 b were found. Additionally, the absolute intensities of the main γ-ray transitions in the decay of Hf182 have been considerably improved.

  13. Thermal neutron radiative cross sections for Li,76,9Be,B,1110,C,1312, and N,1514

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.

    2016-05-01

    Total thermal radiative neutron cross sections have been measured on natural and enriched isotopic targets containing Li,76,9Be,B,1110,C,1312, and N,1514 with neutron beams from the Budapest Reactor. Complete neutron capture γ -ray decay schemes were measured for each isotope. Absolute transition probabilities have been determined by a least-squares fit of the transition intensities, corrected for internal conversion, to the (n ,γ ) decay schemes. The γ -ray cross sections were standardized using stoichiometric compounds containing both the isotope of interest and another element whose γ -ray cross sections are well known. Total cross sections σ0 were then determined for each isotope from the γ -ray cross sections and transition probabilities. For the 11B(n ,γ )12B reaction decay transition probabilities were determined for the γ rays from 12B (t1 /2=20.20 ms) β- decay.

  14. Development and Testing of Neutron Cross Section Covariance Data for SCALE 6.2

    SciTech Connect

    Marshall, William BJ J; Williams, Mark L; Wiarda, Dorothea; Rearden, Bradley T; Dunn, Michael E; Mueller, Don; Clarity, Justin B; Jones, Elizabeth L

    2015-01-01

    Neutron cross-section covariance data are essential for many sensitivity/uncertainty and uncertainty quantification assessments performed both within the TSUNAMI suite and more broadly throughout the SCALE code system. The release of ENDF/B-VII.1 included a more complete set of neutron cross-section covariance data: these data form the basis for a new cross-section covariance library to be released in SCALE 6.2. A range of testing is conducted to investigate the properties of these covariance data and ensure that the data are reasonable. These tests include examination of the uncertainty in critical experiment benchmark model keff values due to nuclear data uncertainties, as well as similarity assessments of irradiated pressurized water reactor (PWR) and boiling water reactor (BWR) fuel with suites of critical experiments. The contents of the new covariance library, the testing performed, and the behavior of the new covariance data are described in this paper. The neutron cross-section covariances can be combined with a sensitivity data file generated using the TSUNAMI suite of codes within SCALE to determine the uncertainty in system keff caused by nuclear data uncertainties. The Verified, Archived Library of Inputs and Data (VALID) maintained at Oak Ridge National Laboratory (ORNL) contains over 400 critical experiment benchmark models, and sensitivity data are generated for each of these models. The nuclear data uncertainty in keff is generated for each experiment, and the resulting uncertainties are tabulated and compared to the differences in measured and calculated results. The magnitude of the uncertainty for categories of nuclides (such as actinides, fission products, and structural materials) is calculated for irradiated PWR and BWR fuel to quantify the effect of covariance library changes between the SCALE 6.1 and 6.2 libraries. One of the primary applications of sensitivity/uncertainty methods within SCALE is the

  15. Neutron cross-sections for next generation reactors: new data from n_TOF.

    PubMed

    Colonna, N; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; de Albornoz, A Carrillo; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2010-01-01

    In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry.

  16. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGESBeta

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  17. Neutron cross-sections for next generation reactors: new data from n_TOF.

    PubMed

    Colonna, N; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; de Albornoz, A Carrillo; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2010-01-01

    In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry. PMID:20096595

  18. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    SciTech Connect

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2015-11-18

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  19. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Bromine and Krypton

    SciTech Connect

    Hoffman, R; Dietrich, F; Bauer, R; Kelley, K; Mustafa, M

    2004-07-23

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of bromine and krypton (34 {le} Z {le} 37, 40 {le} N {le} 47).

  20. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Samarium, Europium, and Gadolinium

    SciTech Connect

    Hoffman, R D; Kelley, K; Dietrich, F S; Bauer, R; Mustafa, M

    2004-11-30

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of samarium, europium and gadolinium (62 {le} Z {le} 64, 82 {le} N {le} 96).

  1. Fission Fragment Yield, Cross Section and Prompt Neutron and Gamma Emission Data from Actinide Isotopes

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Oberstedt, S.; Al-Adili, A.; Brys, T.; Billnert, R.; Matei, C.; Oberstedt, A.; Salvador-Castiñeira, P.; Tudora, A.; Vidali, M.

    2014-05-01

    Recent experimental investigations on major and minor actinides at the JRC-IRMM are presented. Fission-fragment distributions of isotopes with vibrational resonances in the sub-threshold fission cross section, i. e. 234,238U, have been measured. For 234U, the impact of an increased neutron multiplicity for the heavy fragments with higher incident neutron energies has been studied as observed in experiment and also recently theoretically predicted. The impact is found to be noticeable on post-neutron mass yields, which are the relevant quantities for a-priori waste assessments. The fission cross sections for 240,242Pu at threshold and in the plateau region are being investigated within the ANDES project. The results show some discrepancies to the ENDF/B-VII.1 evaluation mainly for 242Pu around 1 MeV, where the evaluation exhibits a resonance-like structure not observed so clearly in the present work. The requested target accuracy in design studies of innovative reactor concepts like Gen-IV is in the range of a few percent. In order to be able to respond to requests for measurements of prompt neutron and γ-ray emission in fission JRC-IRMM has also invested in setting up a neutron and γ-ray detector array. The neutron array is called SCINTIA and has so far been tested with 252Cf(SF). For γ-ray multiplicity and spectrum measurements of 252Cf(SF) and 235U(nth, f) lanthanum- and cerium-halide detectors were successfully used.

  2. Radiative Capture Cross Sections of 139La(n, γ) for Thermal Neutrons

    NASA Astrophysics Data System (ADS)

    Ureche, Adriana; Hurst, Aaron M.; Goldblum, Bethany L.; Vujic, Jasmina; Firestone, Richard B.; Basunia, Shamsuzzoha; Revay, Zsolt; Szentmiklosi, Laszlo; Belgya, Tamas; Summers, Neil C.; Bernstein, Lee A.; Bleuel, Darren L.; Escher, Jutta E.; Sleaford, Bradley W.; Krticka, Milan

    2014-09-01

    A set of partial-production neutron-capture γ-ray cross sections corresponding to the 139La (n , γ) reaction were measured at the Budapest Research Reactor using a supermirror-guided near-thermal neutron beam. Absolute values for these quantities were obtained through an internal-standardization procedure where the observed γ-ray intensities were normalized to well-known comparator 35Cl(n , γ) transitions using a LaCl3 . 7H2 O standard. These measurements have been used, together with statistical-model predictions calculated using the Monte Carlo program DICEBOX to simulate the thermal-capture γ-ray cascade, to evaluate the decay scheme of the compound nucleus 140La. An independent measurement of the total radiative thermal neutron-capture cross section, σ0, has also been determined; our preliminary result σ0 = 8 . 51 (43) b, is consistent with earlier literature. The total mean capture-state width is currently being investigated and may provide further insight into the validity of the Brink hypothesis in γ decay.

  3. Bayesian Evaluation Including Covariance Matrices of Neutron-induced Reaction Cross Sections of {sup 181}Ta

    SciTech Connect

    Leeb, H. Schnabel, G.; Srdinko, Th.; Wildpaner, V.

    2015-01-15

    A new evaluation of neutron-induced reactions on {sup 181}Ta using a consistent procedure based on Bayesian statistics is presented. Starting point of the evaluation is the description of nuclear reactions via nuclear models implemented in TALYS 1.4. A retrieval of experimental data was performed and covariance matrices of the experiments were generated from an extensive study of the corresponding literature. All reaction channels required for a transport file up to 200 MeV have been considered and the covariance matrices of cross section uncertainties for the most important channels are determined. The evaluation has been performed in one step including all available experimental data. A comparison of the evaluated cross sections and spectra with experimental data and available evaluations is performed. In general the evaluated cross section reflect our best knowledge and give a fair description of the observables. However, there are few deviations from expectation which clearly indicate the impact of the prior and the need to account for model defects. Using the results of the evaluation a complete ENDF-file similarly to those of the TENDL library is generated.

  4. Solid-state effects on thermal-neutron cross sections and on low-energy resonances

    SciTech Connect

    Harvey, J.A.; Mook, H.A.; Hill, N.W.; Shahal, O.

    1982-01-01

    The neutron total cross sections of several single crystals (Si, Cu, sapphire), several polycrystalline samples (Cu, Fe, Be, C, Bi, Ta), and a fine-powder copper sample have been measured from 0.002 to 5 eV. The Cu powder and polycrystalline Fe, Be and C data exhibit the expected abrupt changes in cross section. The cross section of the single crystal of Si is smooth with only small broad fluctuations. The data on two single Cu crystals, the sapphire crystal, cast Bi, and rolled samples of Ta and Cu have many narrow peaks approx. 10/sup -3/ eV wide. High resolution (0.3%) transmission measurements were made on the 1.057-eV resonance in /sup 240/Pu and the 0.433-eV resonance in /sup 180/Ta, both at room and low temperatures to study the effects of crystal binding. Although the changes in Doppler broadening with temperature were apparent, no asymmetries due to a recoilless contribution were observed.

  5. Total cross sections for neutron scattering from few nucleon systems. I. Measurements.

    NASA Astrophysics Data System (ADS)

    Abfalterer, W. P.; Bateman, F. B.; Dietrich, F. S.; Elster, Ch.; Finlay, R. W.; Glöckle, W.; Golak, J.; Haight, R. C.; Hüber, D.; Morgan, G. L.; Witala, H.

    1998-04-01

    We have recently measured neutron total cross sections for hydrogen and the total cross section difference for deuterium-hydrogen (d-h) over a wide energy range (approximately 10-600 MeV projectile energy). These measurements were made by an attenuation technique at the LANSCE/WNR facility using samples of D_2O, H_2O, C_8H_18, and CH2 with a technique similar to that applied in Ref. [1]. The results for d-h are in significant disagreement with previous measurements of this quantity (up to 9% near 80 MeV). The results have been used to test the Faddeev description of the n+d total cross section between 10 and 300 MeV as reported in the following abstract. [1mm] [1] R.W. Finlay et al., Phys. Rev. C47, 237 (1993) [2mm] ^ This work is supported in part by the U.S. Department of Energy under Contracts W-7405-ENG-48 (LLNL), W-7405-ENG-36 (LANL), and DE-FG02-93ER40756 (Ohio U.), the Deutsche Forschungsgemeinschaft (DFG), the Ohio Supercomputer Center (OSC) and the HLRZ Jülich.

  6. Generation of broad-group neutron/photon cross-section libraries for shielding applications

    SciTech Connect

    Ingersoll, D.T.; Roussin, R.W.; Fu, C.Y.; White, J.E.

    1989-01-01

    The generation and use of multigroup cross-section libraries with broad energy group structures is primarily for the economy of computer resources. Also, the establishment of reference broad-group libraries is desirable in order to avoid duplication of effort, both in terms of the data generation and verification, and to assure a common data base for all participants in a specific project. Uncertainties are inevitably introduced into the broad-group cross sections due to approximations in the grouping procedure. The dominant uncertainty is generally with regard to the energy weighting function used to average the pointwise or fine-group data within a single broad group. Intelligent choice of the weighting functions can reduce such uncertainties. Also, judicious selection of the energy group structure can help to reduce the sensitivity of the computed responses to the weighting function, at least for a selected set of problems. Two new multigroup cross section libraries have been recently generated from ENDF/B-V data for two specific shielding applications. The first library was prepared for use in sodium-cooled reactor systems and is available in both broad-group structures. The second library, just recently completed, was prepared for use in air-over-ground environments and is available in a broad-group (46-neutron, 23-photon) energy structure. The selection of the specific group structures and weighting functions was an important part of the generation of both libraries.

  7. Statistical Model Analysis of (n, α) Cross Sections for 4.0-6.5 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Khuukhenkhuu, G.; Odsuren, M.; Gledenov, Y. M.; Zhang, G. H.; Sedysheva, M. V.; Munkhsaikhan, J.; Sansarbayar, E.

    2016-02-01

    The statistical model based on the Weisskopf-Ewing theory and constant nuclear temperature approximation is used for systematical analysis of the 4.0-6.5 MeV neutron induced (n, α) reaction cross sections. The α-clusterization effect was considered in the (n, α) cross sections. A certain dependence of the (n, α) cross sections on the relative neutron excess parameter of the target nuclei was observed. The systematic regularity of the (n, α) cross sections behaviour is useful to estimate the same reaction cross sections for unstable isotopes. The results of our analysis can be used for nuclear astrophysical calculations such as helium burning and possible branching in the s-process.

  8. Deep inelastic neutron scattering from orthorhombic ordered HCl: Short-time proton dynamics and anomalous neutron cross sections

    SciTech Connect

    Senesi, R.; Colognesi, D.; Pietropaolo, A.; Abdul-Redah, T.

    2005-08-01

    Deep inelastic neutron scattering measurements from orthorhombic ordered HCl are presented and analyzed in order to clarify the problem of an anomalous deficit in the neutron-proton cross section found in previous experiments on various materials. A reliable model for the HCl short-time single-particle dynamics, including atomic vibrational anisotropies and deviations from the impulsive approximation, is set up. The model HCl response function is transformed into simulated time-of-flight spectra, taking carefully into account the effects of instrumental resolution and the filter absorption profile used for neutron energy analysis. Finally, the experimental values of the anomalous reduction factor for the neutron-proton cross section are extracted by comparing simulated and experimental data. Results show a 34% reduction of the H cross section, varying with the scattering angle in a range centered at 53 deg. In addition, the same approximate procedure used in earlier studies is also employed, providing results in reasonable agreement with the more rigorous ones, and confirming the substantial reliability of the past work on this subject.

  9. Thermal-neutron cross sections and resonance integrals of 138Ba and 141Pr using Am-Be neutron source

    NASA Astrophysics Data System (ADS)

    Panikkath, Priyada; Mohanakrishnan, P.

    2016-09-01

    The thermal-neutron capture cross sections and resonance integrals of 138Ba(n, γ)139Ba and 141Pr(n, γ)142Pr were measured by activation method using an isotopic Am-Be neutron source. The estimations were with respect to that of 55Mn(n, γ)56Mn and 197Au(n, γ)198Au reference monitors. The measured thermal-capture cross section of 138 Ba with respect to 55 Mn is 0.410±0.023 b and with respect to 197 Au is 0.386±0.019 b. The measured thermal-capture cross section of 141 Pr with respect to 55 Mn is 11.36±1.29 b and with respect to 197 Au is 10.43±1.14 b. The resonance integrals for 138 Ba are 0.380±0.033 b (55 Mn) and 0.364±0.027 b (197 Au) and for 141 Pr are 21.05±2.88 b (55 Mn) and 15.27±1.87 b (197 Au). The comparison between the present measurements and various reported values are discussed. The cross sections corresponding to the selected isotopes are measured using an Am-Be source facility for the first time.

  10. Activation cross sections for reactions induced by 14 MeV neutrons on natural tantalum

    SciTech Connect

    Luo Junhua; Tuo Fei; Kong Xiangzhong

    2009-05-15

    Cross sections for (n,2n), (n,p), (n,n{sup '}{alpha}), (n,t), (n,d{sup '}), and (n,{alpha}) reactions have been measured on tantalum isotopes at the neutron energies of 13.5 to 14.7 MeV using the activation technique. Data are reported for the following reactions: {sup 181}Ta(n,2n){sup 180}Ta{sup g}, {sup 181}Ta(n,p){sup 181}Hf, {sup 181}Ta(n,n{sup '}{alpha}){sup 177}Lu{sup m}, {sup 181}Ta(n,t){sup 179}Hf{sup m2}, {sup 181}Ta(n,d{sup '}){sup 180}Hf{sup m}, and {sup 181}Ta(n,{alpha}){sup 178}Lu{sup m}. The neutron fluences were determined using the monitor reaction {sup 27}Al(n,{alpha}){sup 24}Na. Results were discussed and compared with the previous works.

  11. EVALUATION OF TUNGSTEN ISOTOPES IN THE FAST NEUTRON RANGE INCLUDING CROSS-SECTION COVARIANCE ESTIMATION.

    SciTech Connect

    CAPOTE,R.; SIN, M.; TRKOV, A.; HERMAN, M.; CARLSON, B.V.; OBLOZINSKY, P.

    2007-04-22

    New evaluations for the tungsten isotopes {sup 180,182,183,184,186}W in the neutron energy range up to 60 MeV were produced. In the resonance range only minor adjustments to the resonance parameters were made due to a lack of adequate experimental data. Evaluations in the fast energy region were based on nuclear model calculations using the EMPIRE-2.19 code. Recently derived dispersive coupled-channel optical model potentials for W and Ta isotopes were instrumental to achieve a very good description of the available microscopic cross-section database. Model covariance data were generated with the Monte Carlo technique to produce a prior estimate for the covariance matrix. Experimental data were introduced through the GANDR system. The evaluated files were tested on selected fusion neutronics benchmarks and showed marked improvement compared to other existing evaluations.

  12. Isotopic molybdenum total neutron cross section in the unresolved resonance region

    NASA Astrophysics Data System (ADS)

    Bahran, R.; Barry, D.; Block, R.; Leinweber, G.; Rapp, M.; Daskalakis, A.; Blain, E.; Williams, D.; McDermott, B.; Leal, L.; Danon, Y.

    2015-08-01

    Accurate isotopic molybdenum nuclear data are important because molybdenum can exist in nuclear reactor components including fuel, cladding, or as a high yield fission product. High-resolution time-of-flight neutron transmission measurements on highly enriched isotopic metallic samples of 95Mo , 96Mo , 98Mo , and 100Mo were performed in the resonance energy range from 1 to 620 keV . The measurements were taken with the newly developed modular 6Li -glass transmission detector positioned at the 100-m experimental flight station. In the unresolved energy region (URR), new comprehensive methods of analysis were developed and validated in order to obtain accurate neutron total cross-section data from the measurement by correcting for background and transmission enhancement effects. Average parameters and fits to the total cross section for 95Mo were obtained using the Hauser-Feshbach statistical model code fitacs, which is currently incorporated into the sammy code. The fits to the experimental data deviate from the current evaluated nuclear data file/B-VII.1 isotopic Mo evaluations by several percent in the URR.

  13. 232Th, 233Pa, and 234U capture cross-section measurements in moderated neutron flux

    NASA Astrophysics Data System (ADS)

    Bringer, O.; Isnard, H.; AlMahamid, I.; Chartier, F.; Letourneau, A.

    2008-07-01

    The Th-U cycle was studied through the evolution of a 100 μg 232Th sample irradiated in a moderated neutron flux of 8.010 14 n/cm 2/s, intensity close to that of a thermal molten salt reactor. After 43 days of irradiation and 6 months of cooling, a precise mass spectrometric analysis, using both TIMS and MC-ICP-MS techniques, was performed, according to a rigorous methodology. The measured thorium and uranium isotopic ratios in the final irradiated sample were then compared with integral simulations based on evaluated data; an overall good agreement was seen. Four important thermal neutron-capture cross-sections were also extracted from the measurements, 232Th (7.34±0.21 b), 233Pa (38.34±1.78 b), 234U (106.12±3.34 b), and 235U (98.15±11.24 b). Our 232Th and 235U results confirmed existing values whereas the cross-sections of 233Pa and 234U (both key parameters) have been redefined.

  14. Total cross sections for neutron scattering from few nucleon systems. II. Theoretical considerations.^.

    NASA Astrophysics Data System (ADS)

    Elster, Ch.; Abfalterer, W. P.; Bateman, F. B.; Dietrich, F. S.; Finlay, R. W.; Glöckle, W.; Golak, J.; Haight, R. C.; Hüber, D.; Morgan, G. L.; Witala, H.

    1998-04-01

    New high precision measurements of the difference in neutron total cross sections of deuterium and hydrogen (d-h) were performed for neutron energies between 10 and 600 MeV. The results are compared to state-of-the-art Faddeev calculations of the n+d total cross section between 10 and 300 MeV, which systematically underpredict the experiment above 100 MeV. This result is not very sensitive to the type of modern NN interaction employed. Further, the convergence of the Faddeev multiple scattering series is demonstrated. We therefore conclude that the Faddeev description is inadequate above 100 MeV projectile energy. We also consider the first and second order terms in the multiple scattering series in the high energy limit to study shadowing effects. [1mm] ^ This work is supported in part by the U.S. Department of Energy under Contracts W-7405-ENG-48 (LLNL), W-7405-ENG-36 (LANL), and DE-FG02-93ER40756 (Ohio U.), the Deutsche Forschungsgemeinschaft (DFG), the Ohio Supercomputer Center (OSC) and the HLRZ Jülich.

  15. Secondary Neutron-Production Cross Sections from Heavy-IonInteractions between 230 and 600 MeV/nucleon

    SciTech Connect

    Heilbronn, L.H.; Zeitlin, C.J.; Iwata, Y.; Murakami, T.; Iwase,H.; Nakamura, T.; Nunomiya, T.; Sato, H.; Yashima, H.; Ronningen, R.M.; Ieki, K.

    2006-10-04

    Secondary neutron-production cross-sections have beenmeasured from interactions of 230 MeV/nucleon He, 400 MeV/nucleon N, 400MeV/nucleon Kr, 400 MeV/nucleon Xe, 500 MeV/nucleon Fe, and 600MeV/nucleon Ne interacting in a variety of elemental and compositetargets. We report the double-differential production cross sections,angular distributions, energy spectra, and total cross sections from allsystems. Neutron energies were measured using the time-of-flighttechnique, and were measured at laboratory angles between 5 deg and 80deg. The spectra exhibit behavior previously reported in otherheavy-ion-induced neutron production experiments; namely, a peak atforward angles near the energy corresponding to the beam velocity, withthe remaining spectra generated by preequilibrium and equilibriumprocesses. The double-differential spectra are fitted with amoving-source parameterization. Observations on the dependence of thetotal cross sections on target and projectile mass arediscussed.

  16. Neutron Cross Section Processing Methods for Improved Integral Benchmarking of Unresolved Resonance Region Evaluations

    NASA Astrophysics Data System (ADS)

    Walsh, Jonathan A.; Forget, Benoit; Smith, Kord S.; Brown, Forrest B.

    2016-03-01

    In this work we describe the development and application of computational methods for processing neutron cross section data in the unresolved resonance region (URR). These methods are integrated with a continuous-energy Monte Carlo neutron transport code, thereby enabling their use in high-fidelity analyses. Enhanced understanding of the effects of URR evaluation representations on calculated results is then obtained through utilization of the methods in Monte Carlo integral benchmark simulations of fast spectrum critical assemblies. First, we present a so-called on-the-fly (OTF) method for calculating and Doppler broadening URR cross sections. This method proceeds directly from ENDF-6 average unresolved resonance parameters and, thus, eliminates any need for a probability table generation pre-processing step in which tables are constructed at several energies for all desired temperatures. Significant memory reduction may be realized with the OTF method relative to a probability table treatment if many temperatures are needed. Next, we examine the effects of using a multi-level resonance formalism for resonance reconstruction in the URR. A comparison of results obtained by using the same stochastically-generated realization of resonance parameters in both the single-level Breit-Wigner (SLBW) and multi-level Breit-Wigner (MLBW) formalisms allows for the quantification of level-level interference effects on integrated tallies such as keff and energy group reaction rates. Though, as is well-known, cross section values at any given incident energy may differ significantly between single-level and multi-level formulations, the observed effects on integral results are minimal in this investigation. Finally, we demonstrate the calculation of true expected values, and the statistical spread of those values, through independent Monte Carlo simulations, each using an independent realization of URR cross section structure throughout. It is observed that both probability table

  17. (65)Cu isomeric cross sections for (n,α) reaction using approximately 14MeV neutrons.

    PubMed

    Durusoy, Ayşe; Reyhancan, Iskender Atilla; Akçalı, Özgür

    2015-05-01

    In this paper, activation cross-section measurements for the (65)Cu(n,α)(62m)Co (T1/2=13.86min.) reaction at six different neutron energies ranging from 13.6 and 14.9MeV are presented. The fast neutrons were produced via (3)H(d, n)(4)He reactions from an SAMES T-400 neutron generator. An activation technique was used to measure induced gamma activities. A high-resolution gamma-ray spectrometer with a high-purity germanium (HpGe) detector was used to acquire the data. The measured cross section data were corrected for gamma-ray attenuations, pulse pile-up effects, dead time, variations in neutron flux, and contributions from scattered low-energy neutrons. The measured cross sections were compared with statistical model calculations (TALYS 1.6 code), the experimental data available in the literature and the data obtained from TENDL.

  18. Neutron Scattering Cross Section Measurements for 169Tm via the (n,n') Technique

    SciTech Connect

    Alimeti, Afrim; Kegel, Gunter H.R.; Egan, James J.; DeSimone, David J.; McKittrick, Thomas M.; Ji, Chuncheng; Tremblay, Steven E.; Roldan, Carlos; Chen Xudong; Kim, Don S.

    2005-05-24

    The neutron physics group at the University of Massachusetts Lowell (UML) has been involved in a program of scattering cross-section measurements for highly deformed nuclei such as 159Tb, 169Tm, 232Th, 235U, 238U, and 239Pu. Ko et al. have reported neutron inelastic scattering data from 169Tm for states above 100 keV via the (n,n'{gamma}) reaction at incident energies in the 0.2 MeV to 1.0 MeV range. In the present research, in which the time-of-flight method was employed, direct (n,n') measurements of neutrons scattered from 169Tm in the 0.2 to 1.0 MeV range were taken. It requires that our 5.5-MeV Van de Graaff accelerator be operated in the pulsed and bunched beam mode producing subnanosecond pulses at a 5-MHz repetition frequency. Neutrons are produced by the 7Li(p,n)7Be reaction using a thin metallic elemental lithium target.

  19. EVALUATION OF NEUTRON CROSS SECTIONS FOR A COMPLETE SET OF Nd ISOTOPES.

    SciTech Connect

    KIM,H.; HERMAN, M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.; LEE. Y.-O.

    2007-10-29

    Neutron cross sections for a complete set of Nd isotopes, {sup 142,143,144,145,146,147,148,150}Nd, were evaluated in the incident energy range from 10{sup -5} eV to 20 MeV. In the low energy region, including thermal and resolved resonances, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. In the unresolved resonance region we performed additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data. In the fast neutron region, we used the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. The results are compared to the existing nuclear data libraries, including ENDF/B-VI.8, JENDL-3.3 and JEFF-3.1, and to the available experimental data. The new evaluations are suitable for neutron transport calculations and they were adopted by the new evaluated nuclear data file of the United States, ENDF/B-VII.0, released in December 2006.

  20. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    NASA Astrophysics Data System (ADS)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  1. R-matrix analysis of the /sup 235/U neutron cross sections

    SciTech Connect

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1988-01-01

    The ENDFB-V representation of the /sup 235/U neutron cross sections in the resolved resonance region is unsatisfactory: below 1 eV the cross sections are given by ''smooth files'' (file 3) rather than by resonance parameters; above 1 eV the single-level formalism used by ENDFB-V necessitates a structured file 3 contribution consisting of more than 1300 energy points; furthermore, information on level-spins has not been included. Indeed the ENDFB-V /sup 235/U resonance region is based on an analysis done in 1970 for ENDFB-III and therefore does not include the results of high quality measurements done in the past 18 years. The present paper presents the result of an R-matrix multilevel analysis of recent measurements as well as older data. The analysis also extends the resolved resonance region from its ENDFB-V upper limit of 81 eV to 110 eV. 13 refs., 2 figs., 1 tab

  2. Activation Cross-Sections for 14.2 MeV Neutrons on Molybdenum

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, C. V.; Lakshmana Das, N.; Thirumala Rao, B. V.; Rama Rao, J.

    1981-12-01

    Using the activation method, the cross-section for the following reactions on molybdenum were measured employing the mixed powder technique and Ge(Li) gamma-ray spectroscopy: 94Mo(n, 2n)93mMo, 3.5 ± 0.5 mbarn; 92Mo(n, 2n)91mMo, 19 ± 3 mbarn; 92Mo(n, 2n)91m+gMo, 226 ± 11 mbarn; 100Mo(n, p)100m2Nb, 9 ± 1 mbarn; 98Mo(n, p)98Nb, 10 ± 1 mbarn; 97Mo(n, p)97mNb, 5 ± 1 mbarn; 96Mo(n, p)96Nb, 12 ± 2 mbarn; 92Mo(n, α)89mZr, 2.1 ± 0.5 mbarn; and 92Mo(n, α)89m+gZr 24 ± 6 mbarn; the neutron energy was 14.2 ± 0.2 MeV. The experimental cross-sections were compared with the predictions of evaporation model and of different versions of pre-equilibrium model. The master equation approach appears to give satisfactory results.

  3. Study of Neutron-Induced Fission Cross Sections of U, Am, and Cm at n{sub T}OF

    SciTech Connect

    Milazzo, P. M.; Abbondanno, U.; Belloni, F.; Fujii, K.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Ferrant, L.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Stephan, C.; Tassan-Got, L.; Alvarez-Velarde, F.; Cano-Ott, D.

    2010-08-04

    Neutron induced fission cross sections of several isotopes have been measured at the CERN n{sub T}OF spallation neutron facility. Between them some measurements involve isotopes ({sup 233}U, {sup 241}Am, {sup 243}Am, {sup 245}Cm) relevant for applications to nuclear technologies. The n{sub T}OF facility delivers neutrons with high instantaneous flux and in a wide energy range, from thermal up to 250 MeV. The experimental apparatus consists of an ionization chamber that discriminates fission fragments and {alpha} particles coming from natural radioactivity of the samples. All the measurements were performed referring to the standard cross section of {sup 235}U.

  4. Activation cross sections for reactions induced by 14 MeV neutrons on natural ruthenium

    NASA Astrophysics Data System (ADS)

    Luo, Junhua; Liu, Gang; Tuo, Fei; Kong, Xiangzhong; Liu, Rong; Jiang, Li; Lou, Benchao

    2007-11-01

    Cross sections for (n,2n), (n,p), (n,α), and (n,d*)1 reactions have been measured on ruthenium isotopes at the neutron energies of 13.5 to 14.8 MeV using the activation technique in combination with high-resolution gamma-ray spectroscopy. Data are reported for the following reactions: Ru104(n,2n)Ru103, Ru98(n,2n)Ru97, Ru96(n,2n)Ru95, Ru96(n,p)Tc96g, Ru96(n,p)Tc96m, Ru104(n,p)Tc104, Ru102(n,p)Tc102m, Ru104(n,α)Mo101, Ru102(n,α)Mo99, Ru96(n,α)Mo93m, and Ru96(n,d*)Tc95m. Results were discussed and compared with the previous works.

  5. Interaction cross section study of the two-neutron halo nucleus 22C

    NASA Astrophysics Data System (ADS)

    Togano, Y.; Nakamura, T.; Kondo, Y.; Tostevin, J. A.; Saito, A. T.; Gibelin, J.; Orr, N. A.; Achouri, N. L.; Aumann, T.; Baba, H.; Delaunay, F.; Doornenbal, P.; Fukuda, N.; Hwang, J. W.; Inabe, N.; Isobe, T.; Kameda, D.; Kanno, D.; Kim, S.; Kobayashi, N.; Kobayashi, T.; Kubo, T.; Leblond, S.; Lee, J.; Marqués, F. M.; Minakata, R.; Motobayashi, T.; Murai, D.; Murakami, T.; Muto, K.; Nakashima, T.; Nakatsuka, N.; Navin, A.; Nishi, S.; Ogoshi, S.; Otsu, H.; Sato, H.; Satou, Y.; Shimizu, Y.; Suzuki, H.; Takahashi, K.; Takeda, H.; Takeuchi, S.; Tanaka, R.; Tuff, A. G.; Vandebrouck, M.; Yoneda, K.

    2016-10-01

    The interaction cross sections (σI) of the very neutron-rich carbon isotopes 19C, 20C and 22C have been measured on a carbon target at 307, 280, and 235 MeV/nucleon, respectively. A σI of 1.280 ± 0.023 b was obtained for 22C, significantly larger than for 19,20C, supporting the halo character of 22C. A 22C root-mean-squared matter radius of 3.44 ± 0.08 fm was deduced using a four-body Glauber reaction model. This value is smaller than an earlier estimate (of 5.4 ± 0.9 fm) derived from a σI measurement on a hydrogen target at 40 MeV/nucleon. These new, higher-precision σI data provide stronger constraints for assessing the consistency of theories describing weakly bound nuclei.

  6. Calculated cross sections for neutron induced reactions on sup 19 F and uncertainties of parameters

    SciTech Connect

    Zhao, Z.X. . Inst. of Atomic Energy); Fu, C.Y.; Larson, D.C. )

    1990-09-01

    Nuclear model codes were used to calculate cross sections for neutron-induced reactions on {sup 19}F for incident energies from 2 to 20 MeV. The model parameters in the codes were adjusted to best reproduce experimental data and are given in this report. The calculated results are compared to measured data and the evaluated values of ENDF/B-V. The covariance matrix for several of the most sensitive model parameters is given based on the scatter of measured data around the theoretical curves and the long-range correlation error of measured data. The results of these calculations form the basis for the new ENDF/B-VI fluorine evaluation. 44 refs., 64 figs., 14 tabs.

  7. Evaluation of {sup 28,29,30}Si neutron induced cross sections for ENDF/B-VI

    SciTech Connect

    Hetrick, D.M.; Larson, D.C.; Larson, N.M.; Leal, L.C.; Epperson, S.J.

    1997-04-01

    Separate evaluations have been done for the three stable isotopes of silicon for ENDF/B-VI. The evaluations are based on analysis of experimental data, supplemented by results of nuclear model calculations. The computational methods and the parameters required as input to the nuclear model codes are reviewed. Discussion of the evaluated data given for resonance parameters, neutron induced reaction cross sections, associated angular and energy distributions, and gamma-ray production cross sections is included. Extensive comparisons of the evaluated cross sections to measured data are shown in this report. The evaluations include all necessary data to allow KERMA (Kinetic Energy Released in MAterials) and displacement cross sections to be calculated directly. These quantities are fundamental to studies of neutron heating and radiation damage.

  8. Fast neutron cross section measurements. Final technical report, March 1, 1987--September 30, 1995

    SciTech Connect

    Knoll, G.F.

    1997-06-01

    The time-of-flight technique was used with the ring scattering geometry in a laboratory with low neutron scattering background to measure the angular distributions of the cross sections for elastic and inelastic scattering of 14 MeV neutrons in natural chromium, iron, nickel, and niobium. Specifically for inelastic scattering included were: the 1.43 MeV and 4.56 MeV levels of {sup 52}Cr, the 0.85 MeV level, and (2.94-3.12) MeV and (4.46-4.51) MeV level groups of {sup 56}Fe, the 1.33 MeV level of {sup 60}Ni combined with the 1.45 MeV level of {sup 58}Ni, and the 4.48 MeV level of {sup 58}Ni. Pulses of neutrons with time width of 0.9-1.1 ns were produced via the {sup 3}H(d,n){sup 4}He reaction in a 150 keV Cockcroft-Walton linear accelerator, with average intensities of 9x10{sup 8} n/s. The energy of the incident neutrons was between 14.75 MeV (at 16{degree}) and 13.48 MeV (at 160{degree}). High purity scattering ring samples were used. The scattering angles ranged from {approx}16{degree} to {approx}150{degree}, for iron, chromium, and nickel, and from {approx}16{degree} to {approx}160{degree} for niobium, with a typical step of {approx}10{degree}. High purity ring samples were used.

  9. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  10. Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

    SciTech Connect

    Maslov,V.M.; Oblozinsky, P.; Herman, M.

    2008-12-01

    In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

  11. The determination of reactor neutron spectrum-averaged cross-sections in miniature neutron source reactor facility.

    PubMed

    Jonah, S A; Ibrahim, Y V; Akaho, E H K

    2008-10-01

    A comparator method based on the resonance integral of (197)Au(n,gamma)(198)Au reaction has been used to determine fast neutron spectrum-averaged cross-section data of some dosimetry reactions in a miniature neutron source reactor (MNSR) facility. Target materials of low- and medium-mass nuclei, which are of interest in reactor dosimetry and NAA were investigated. Irradiation was performed under Cd cover in an inner irradiation channel of the Nigeria Research Reactor-1 (NIRR-1) currently fueled with highly enriched uranium (HEU). Spectrum-averaged cross-section data were calculated on the basis of the epithermal neutron flux monitored by the Al-0.1%Au foil irradiated along with the target materials. Results of (n,p) reaction on (27)Al, (28)Si, (29)Si, (46)Ti, (47)Ti, (56)Fe, (58)Ni, and (n,alpha) reaction on (30)Si were found to be in good agreement with recommended data within standard deviation. However, data obtained for the (27)Al(n,alpha) (24)Na and (64)Zn (n,p) (64)Cu reactions using the Al-0.1%Au foil as the flux monitor for both the comparator approach and the conventional method are higher than recommended data from the literature by over 25%.

  12. Influence of projectile neutron number on cross section in cold fusion reactions

    SciTech Connect

    Dragojevic, Irena; Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Folden III, C.M.; Garcia, M.A.; Gates, J.M.; Nelson, S.L.; Sudowe, R.; Nitsche, H.

    2007-09-01

    Elements 107-112 [1,2] have been discovered in reactions between {sup 208}Pb or {sup 209}Bi targets and projectiles ranging from {sup 54}Cr through {sup 70}Zn. In such reactions, the compound nucleus can be formed at excitation energies as low as {approx}12 MeV, thus this type of reaction has been referred to as 'cold fusion'. The study of cold fusion reactions is an indispensable approach to gaining a better understanding of heavy element formation and decay. A theoretical model that successfully predicts not only the magnitudes of cold fusion cross sections, but also the shapes of excitation functions and the cross section ratios between various reaction pairs was recently developed by Swiatecki, Siwek-Wilczynska, and Wilczynski [3,4]. This theoretical model, also referred to as Fusion by Diffusion, has been the guide in all of our cold fusion studies. One particularly interesting aspect of this model is the large predicted difference in cross sections between projectiles differing by two neutrons. The projectile pair where this difference is predicted to be largest is {sup 48}Ti and {sup 50}Ti. To test and extend this model, {sup 208}Pb({sup 48}Ti,n){sup 255}Rf and {sup 208}Pb({sup 50}Ti,n){sup 257}Rf excitation functions were recently measured at the Lawrence Berkeley National Laboratory's (LBNL) 88-Inch Cyclotron utilizing the Berkeley Gas-filled Separator (BGS). The {sup 50}Ti reaction was carried out with thin lead targets ({approx}100 {micro}g/cm{sup 2}), and the {sup 48}Ti reaction with both thin and thick targets ({approx}470 {micro}g/cm{sup 2}). In addition to this reaction pair, reactions with projectile pairs {sup 52}Cr and {sup 54}Cr [5], {sup 56}Fe and {sup 58}Fe [6], and {sup 62}Ni [7] and {sup 64}Ni [8] will be discussed and compared to the Fusion by Diffusion predictions. The model predictions show a very good agreement with the data.

  13. Neutron capture cross section measurements for 197Au from 3.5 to 84 keV at GELINA

    NASA Astrophysics Data System (ADS)

    Massimi, C.; Becker, B.; Dupont, E.; Kopecky, S.; Lampoudis, C.; Massarczyk, R.; Moxon, M.; Pronyaev, V.; Schillebeeckx, P.; Sirakov, I.; Wynants, R.

    2014-08-01

    Cross section measurements have been performed at the time-of-flight facility GELINA to determine the average capture cross section for 197Au in the energy region between 3.5 keV and 84 keV. Prompt γ-rays, originating from neutron-induced capture events, were detected by two C6 D6 liquid scintillators. The sample was placed at about 13m distance from the neutron source. The total energy detection principle in combination with the pulse height weighting technique was applied. The energy dependence of the neutron flux was measured with a double Frisch-gridded ionization chamber based on the 10B(n,α) reaction. The data have been normalized to the well-isolated and saturated 197Au resonance at 4.9 eV. Special care was taken to reduce bias effects due to the weighting function, normalization, dead time and background corrections. The total uncertainty due to normalization, neutron flux and weighting function is 1.0%. An additional uncertainty of 0.5% results from the correction for self-shielding and multiple interaction events. Fluctuations due to resonance structures have been studied by complementary measurements at a 30m flight path station. The results reported in this work deviate systematically by more than 5% from the cross section that is recommended as a reference for astrophysical applications. They are about 2% lower compared to an evaluation of the 197Au(n, γ) cross section, which was based on a least squares fit of experimental data available in the literature prior to this work. The average capture cross section as a function of neutron energy has been parameterized in terms of average resonance parameters. Maxwellian average cross sections at different temperatures have been calculated.

  14. Updated Users' Guide for RSAP -- A Code for Display and Manipulation of Neutron Cross Section Data and SAMMY Fit Results

    SciTech Connect

    Sayer, R.O.

    2003-07-29

    RSAP [1] is a computer code for display and manipulation of neutron cross section data and selected SAMMY output. SAMMY [2] is a multilevel R-matrix code for fitting neutron time-of-flight cross-section data using Bayes' method. This users' guide provides documentation for the recently updated RSAP code (version 6). The code has been ported to the Linux platform, and several new features have been added, including the capability to read cross section data from ASCII pointwise ENDF files as well as double-precision PLT output from SAMMY. A number of bugs have been found and corrected, and the input formats have been improved. Input items are parsed so that items may be separated by spaces or commas.

  15. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  16. MENDF71x. Multigroup Neutron Cross Section Data Tables Based upon ENDF/B-VII.1

    SciTech Connect

    Conlin, Jeremy Lloyd; Parsons, Donald Kent; Gardiner, Steven J.; Gray, Mark Girard; Lee, Mary Beth; White, Morgan Curtis

    2015-12-17

    A new multi-group neutron cross section library has been released along with the release of NDI version 2.0.20. The library is named MENDF71x and is based upon the evaluations released in ENDF/B-VII.1 which was made publicly available in December 2011. ENDF/B-VII.1 consists of 423 evaluations of which ten are excited states evaluations and 413 are ground state evaluations. MENDF71x was created by processing the 423 evaluations into 618-group, downscatter only NDI data tables. The ENDF/B evaluation files were processed using NJOY version 99.393 with the exception of 35Cl and 233U. Those two isotopes had unique properties that required that we process the evaluation using NJOY version 2012. The MENDF71x library was only processed to room temperature, i.e., 293.6 K. In the future, we plan on producing a multi-temperature library based on ENDF/B-VII.1 and compatible with MENDF71x.

  17. Comparisons of Neutron Cross Sections and Isotopic Composition Calculations for Fission-Product Evaluations

    NASA Astrophysics Data System (ADS)

    Kim, Do Heon; Gil, Choong-Sup; Chang, Jonghwa; Lee, Yong-Deok

    2005-05-01

    The neutron absorption cross sections for 18 fission products evaluated within the framework of the KAERI (Korea Atomic Energy Research Institute)-BNL (Brookhaven National Laboratory) international collaboration have been compared with ENDF/B-VI.7. Also, the influence of the new evaluations on the isotopic composition calculations of the fission products has been estimated through the OECD/NEA burnup credit criticality benchmarks (Phase 1B) and the LWR/Pu recycling benchmarks. These calculations were performed by WIMSD-5B with the 69-group libraries prepared from three evaluated nuclear data libraries: ENDF/B-VI.7, ENDF/B-VI.8 including the new evaluations in the resonance region covering the thermal region, and the expected ENDF/B-VII including those in the upper resonance region up to 20 MeV. For Xe-131, the composition calculated with ENDF/B-VI.8 shows a maximum difference of 5.02% compared to ENDF/B-VI.7. However, the isotopic compositions of all the fission products calculated with the expected ENDF/B-VII show no differences when compared to ENDF/B-VI.7 for the thermal reactor benchmark cases.

  18. Processing Neutron Cross Section Covariances using NJOY-99 and PUFF-IV

    NASA Astrophysics Data System (ADS)

    Arcilla, R.; Kahler, A. C.; Obložinský, P.; Herman, M.

    2008-12-01

    With the growing demand for multigroup covariances, the National Nuclear Data Center (NNDC) has been experiencing an upsurge in its covariance data processing activities using the two US codes NJOY-99 (LANL) and PUFF-IV (ORNL). The code NJOY-99 was upgraded by incorporating the new module ERRORJ-2.3, while the NNDC served as the active user and provided feedback. The NNDC has been primarily processing neutron cross section covariances on its 64-bit Linux cluster in support of two DOE programs, the Global Nuclear Energy Partnership (GNEP) and the Nuclear Criticality Safety Program (NCSP). For GNEP, the NNDC used NJOY-99.259 to generate multigroup covariance matrices of 56Fe, 23Na, 239Pu, 235U and 238U from the JENDL-3.3 library using the 15-, 33-, and 230-energy group structures. These covariance matrices will be used to test a new collapsing algorithm which will subsequently be employed to calculate uncertainties on integral parameters in different fast neutron-based systems. For NCSP, we used PUFF-IV 1.0.4 to verify the processability of new evaluated covariance data of 55Mn, 239Pu, 233U, 235U and 238U generated by a collaboration of ORNL and LANL. For the data end-users at large, the NNDC has made available a Web site which provides a static visualization interface for all materials with covariance data in the four major data libraries: ENDF/B-VI.8 (47 materials), ENDF/B-VII.0 (26 materials), JEFF-3.1 (37 materials) and JENDL-3.3 (20 materials).

  19. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  20. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2009-08-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete

  1. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  2. R-Matrix Evaluation of {sup 16}O neutron cross sections up to 6.3 MeV

    SciTech Connect

    Sayer, R.O.; Leal, L.C.; Larson, N.M.; Spencer, R.R.; and Wright, R.Q.

    2000-08-01

    In this paper the authors describe an evaluation of {sup 16}O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes' method, a generalized least squares technique.

  3. Charge-changing cross section measurement of neutron-rich carbon isotopes at 50 AMeV

    NASA Astrophysics Data System (ADS)

    Tran, D. T.; Nguyen, T. T.; Tanihata, I.; Ong, H. J.; Fukuda, M.; Aoi, N.; Ayyad, Y.; Sakaguchi, H.; Tanaka, J.; Chan, P. Y.; Hoang, T. H.; Hashimoto, T.; Ideguchi, E.; Inoue, A.; Kawabata, T.; Khiem, L. H.; Matsuta, K.; Mihara, M.; Momota, S.; Nagae, D.; Ozawa, A.; Ren, P. P.; Terashima, S.; Wada, R.; Lin, W. P.; Yamamoto, T.

    2016-05-01

    Charge Changing Cross Sections (CCCS or σCC) of neutron-rich carbon isotopes on carbon target were measured at low energy (50A MeV) for the first time. The consistency between Glauber calculation and experimental σCC of 12C isotope at low energy region shows that proton distribution radii can be derived from CCCS at low energy.

  4. Revised Calculations of the Production Rates for Co Isotopes in Meteorites Using New Cross Sections for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.

    2002-01-01

    New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.

  5. Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections

    SciTech Connect

    Manning, Brett

    2015-08-06

    2014 LANSCE run cycle data will provide a preliminary 239Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and 239Pu(n,f) cross section and fully quantified uncertainties

  6. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2011-09-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B3 or B1 zero-dimensional approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constants may be output in any of several standard formats including INL format, ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional (1-D) discrete-ordinate transport code, is incorporated into COMBINE7.1. As an option, the 167 fine-group constants generated by zero-dimensional COMBINE portion in the program can be

  7. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

    PubMed Central

    Farhood, Bagher

    2014-01-01

    Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582

  8. Transport analysis of measured neutron leakage spectra from spheres as tests of evaluated high energy cross sections

    NASA Technical Reports Server (NTRS)

    Bogart, D. D.; Shook, D. F.; Fieno, D.

    1973-01-01

    Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.

  9. Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Zhang, Feng-Shou

    2016-06-01

    Within the framework of a dinuclear system model, the influence of projectile and target neutron number on capture cross section, fusion probability, and survival probability for the reactions S,3634+238U and 48Ca+Pu 239 ,240 ,242 ,244 are investigated. The calculated excitation functions are in good agreement with the experimental data. To synthesize more unknown neutron-deficient isotopes of already-known superheavy elements, the possibility of using lighter calcium isotopes to induce hot fusion reactions is investigated and the maximal evaporation residual cross sections for Ca 44 ,46 ,48 -induced hot fusion reactions to produce unknown neutron-deficient superheavy nuclei with Z =112 -116 are predicted.

  10. Production cross sections from 82Se fragmentation as indications of shell effects close to the neutron drip-line

    NASA Astrophysics Data System (ADS)

    Tarasov, O. B.; Portillo, M.; Morrissey, D. J.; Amthor, A. M.; Baumann, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Chubarian, G.; Fukuda, N.; Gade, A.; Ginter, T. N.; Hausmann, M.; Inabe, N.; Kubo, T.; Pereira, J.; Sherrill, B. M.; Stolz, A.; Sumithrarachichi, C.; Thoennessen, M.; Weisshaar, D.

    2013-10-01

    Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u with beryllium and tungsten targets have been measured for a large number of nuclei. The nuclides 64Ti,67V,69Cr,72Mn, the most neutron-rich isotopes of the elements 22 <= Z <= 25 , have been observed for the first time. The measured cross sections were used to search for trends in the structure of nuclei around 54Ca and were compared with Abrasion-Ablation calculations under the assumption of various mass models. The results confirm our previous investigations from a similar measurement using a 76Ge beam and can be explained with a modified GXPF1B Hamiltonian where the energy of the f5 / 2 orbit is lowered by 0.5 MeV for neutron-rich isotopes around Z = 20. The subshell gap at N = 34 is reduced compared to the unmodified Hamiltonian.

  11. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    NASA Astrophysics Data System (ADS)

    Hutcheson, A.; Angell, C. T.; Becker, J. A.; Boswell, M.; Crowell, A. S.; Dashdorj, D.; Fallin, B.; Fotiades, N.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kiser, M.; Macri, R. A.; Nelson, R. O.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Weisel, G. J.; Wilhelmy, J. B.

    2007-08-01

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on 235,238U and 241Am using pulsed and monoenergetic neutron beams with En = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt γ rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  12. Precision Measurement of 56Fe(n,n γ) Cross Sections Using 14.1 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Koltick, David

    2016-03-01

    Integral production cross sections for 846.8 keV and 1238.3 keV prompt gamma rays from 14.1 MeV neutrons interactions on 56Fe are reported. The experimental technique takes advantage of the 1.5 nanosecond coincidence timing resolution between the neutron production time and the gamma ray detection time to reject noise, together with the large 30% solid angle gamma ray coverage. The scattering angle coverage with respect to the neutron beam direction extends from 60 degrees to 120 degrees. The neutron flux is measured using the detected associated alpha-particle from the D-T fusion reaction produced using an associated particle neutron generator. Present cross section measurements using other techniques with limited timing resolution and solid angle coverage are in agreement at neutron energies lower than 6 MeV. At higher neutron energies reported results can disagree by more than 20%. The more accurate technique used in these measurements can distinguish between the differences in the present reported results at higher neutron energies. The author would like to thank TechSource, Inc. and Advanced Physics Technologies, LLC. for their support in this work.

  13. Fragmentation cross sections and binding energies of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Lynch, W. G.; Friedman, W. A.; Mocko, M.; Sun, Z. Y.; Aoi, N.; Cook, J. M.; Delaunay, F.; Famiano, M. A.; Hui, H.; Imai, N.; Iwasaki, H.; Motobayashi, T.; Niikura, M.; Onishi, T.; Rogers, A. M.; Sakurai, H.; Suzuki, H.; Takeshita, E.; Takeuchi, S.; Wallace, M. S.

    2007-10-01

    An exponential dependence of the fragmentation cross section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross sections. From the systematics of Cu isotope cross sections, the binding energies of Cu76,77,78,79 have been extracted. They are 636.94±0.4,647.1±0.4,651.6±0.4, and 657.8±0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of Cu75 is reduced from 980 keV, as listed in the 2003 mass table of Audi, Wapstra, and Thibault to 400 keV. The predicted cross sections of two near drip-line nuclei, Na39 and Mg40 from the fragmentation of Ca48 are discussed.

  14. Fragmentation cross sections and binding energies of neutron-rich nuclei

    SciTech Connect

    Tsang, M. B.; Lynch, W. G.; Mocko, M.; Cook, J. M.; Delaunay, F.; Famiano, M. A.; Hui, H.; Rogers, A. M.; Wallace, M. S.; Friedman, W. A.; Sun, Z. Y.; Aoi, N.; Imai, N.; Motobayashi, T.; Takeuchi, S.; Iwasaki, H.; Onishi, T.; Sakurai, H.; Suzuki, H.; Niikura, M.

    2007-10-15

    An exponential dependence of the fragmentation cross section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross sections. From the systematics of Cu isotope cross sections, the binding energies of {sup 76,77,78,79}Cu have been extracted. They are 636.94{+-}0.4,647.1{+-}0.4,651.6{+-}0.4, and 657.8{+-}0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of {sup 75}Cu is reduced from 980 keV, as listed in the 2003 mass table of Audi, Wapstra, and Thibault to 400 keV. The predicted cross sections of two near drip-line nuclei, {sup 39}Na and {sup 40}Mg from the fragmentation of {sup 48}Ca are discussed.

  15. Gamma ray production cross section from energetic neutron inelastic scattering for methodical improvements in planetary gamma-ray spectroscopy

    SciTech Connect

    Castaneda, C.M.; Gearhart, R.; Sanii, B.; Englert, P.A.J.; Drake, D.M.; Reedy, R.C.

    1991-12-31

    Planetary Gamma ray spectroscopy can be used to chemically analyze the top soil from planets in future planetary missions. The production from inelastic neutron interaction plays an effective role in the determination on the C and H at the surface. The gamma ray production cross section from the strongest lines excited in the neutron bombardment of Fe have been measured by the use of a time analyzed quasi-mono-energetic neutron beam and a high purity germanium detector. The results from En=6.5, 32, 43, and 65 MeV are presented.

  16. Radiative thermal neutron-capture cross sections for the 180W(n ,γ ) reaction and determination of the neutron-separation energy

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Szentmiklósi, L.; Sleaford, B. W.; Basunia, M. S.; Belgya, T.; Escher, J. E.; Krtička, M.; Révay, Zs.; Summers, N. C.

    2015-09-01

    Prompt thermal neutron-capture partial γ -ray production cross sections were measured for the first time for the 180W(n ,γ ) reaction using a cold guided-neutron beam at the Budapest Research Reactor. Absolute 181Wγ -ray cross sections were internally standardized using well-known comparator γ -ray cross sections belonging to the other tungsten isotopes present in the 11.35% enriched 180W sample. Transitions were assigned to levels in 181W based largely upon information available in the literature. The total radiative thermal neutron-capture cross section σ0 was determined from the sum of direct prompt γ -ray cross sections populating the ground state and a modeled contribution accounting for ground-state feeding from the quasicontinuum. In this work, we find σ0=21.67 (77 ) b. A new measurement of the cross section for the 5 /2- metastable isomer at 365.6 keV, σ5 /2-(181Wm,14.6 μ s ) =19.96 (55 ) b, is also determined. Additionally, primary γ rays, observed for the first time in the 180W(n ,γ ) reaction, provide the most precise determination for the 181W neutron-separation energy, Sn=6669.02 (16 ) keV.

  17. Velocity autocorrelation by quantum simulations for direct parameter-free computations of the neutron cross sections. II. Liquid deuterium

    NASA Astrophysics Data System (ADS)

    Guarini, E.; Neumann, M.; Bafile, U.; Celli, M.; Colognesi, D.; Bellissima, S.; Farhi, E.; Calzavara, Y.

    2016-06-01

    Very recently we showed that quantum centroid molecular dynamics (CMD) simulations of the velocity autocorrelation function provide, through the Gaussian approximation (GA), an appropriate representation of the single-molecule dynamic structure factor of liquid H2, as witnessed by a straightforward absolute-scale agreement between calculated and experimental values of the total neutron cross section (TCS) at thermal and epithermal incident energies. Also, a proper quantum evaluation of the self-dynamics was found to guarantee, via the simple Sköld model, a suitable account of the distinct (intermolecular) contributions that influence the neutron TCS of para-H2 for low-energy neutrons (below 10 meV). The very different role of coherent nuclear scattering in D2 makes the neutron response from this liquid much more extensively determined by the collective dynamics, even above the cold neutron range. Here we show that the Sköld approximation maintains its effectiveness in producing the correct cross section values also in the deuterium case. This confirms that the true key point for reliable computational estimates of the neutron TCS of the hydrogen liquids is, together with a good knowledge of the static structure factor, the modeling of the self part, which must take into due account quantum delocalization effects on the translational single-molecule dynamics. We demonstrate that both CMD and ring polymer molecular dynamics (RPMD) simulations provide similar results for the velocity autocorrelation function of liquid D2 and, consequently, for the neutron double differential cross section and its integrals. This second investigation completes and reinforces the validity of the proposed quantum method for the prediction of the scattering law of these cryogenic liquids, so important for cold neutron production and related condensed matter research.

  18. Calculated neutron-induced cross sections for /sup 53/Cr from 1 to 20 MeV

    SciTech Connect

    Shibata, K.; Hetrick, D.M.

    1987-05-01

    Neutron-induced cross sections of /sup 53/Cr have been calculated in the energy regions from 1 to 20 MeV. The quantities obtained are the cross sections for the reactions (n,n'..gamma..), (n,2n), (n,np), (n,n..cap alpha..), (n,p..gamma..), (n,pn), (n,..cap alpha gamma..), (n,..cap alpha..n), (n,d), (n,t), (n,/sup 3/He), and (n,..gamma..), as well as the spectra of emitted neutrons, protons, alpha particles, and gamma rays. The precompound process was included above 5 MeV in addition to the compound process. For the inelastic scattering, the contribution of the direct interaction was calculated with DWBA. 36 refs., 23 figs., 11 tabs.

  19. How the projectile neutron number influences the evaporation cross section in complete fusion reactions with heavy ions

    SciTech Connect

    Wang Chengbin; Zhang Jinjuan; Ren, Z. Z.; Shen, C. W.

    2010-11-15

    The influence of the projectile neutron number on the evaporation residue cross sections for the reactions {sup 208}Pb({sup 52,54}Cr,n,2n){sup 258-261}Sg and {sup 208}Pb({sup 48,50}Ti,n,2n){sup 254-257}Rf has been studied within the framework of a fusion-fission statistical model. The results obtained with the kewpie2 code are compared with recent experimental data. The excitation functions represent the experimental results well both in the maximum value and the lactation of the peak. The calculations show that the projectile neutron number greatly influences both the capture cross section and the fusion probability.

  20. Neutron induced fission cross section of {sup 237}Np from 100 keV to 200 MeV

    SciTech Connect

    Tovesson, F.; Hill, T. S.

    2007-03-15

    An experimental program at Los Alamos Neutron Science Center (LANSCE) has been developed to precisely measure fission cross sections over ten decades in incident neutron energy for a range of actinides relevant to advanced nuclear reactor designs and transmutation concepts. The first completed measurement is of {sup 237}Np(n,f), and the above-reaction-threshold part of the measurement is reported here. The result is in close agreement with ENDF/B-VI in the energy region of first- and second-chance fission. The cross section ratio to {sup 235}U is shown to be constant from 30 MeV to the highest measured energy of 200 MeV.

  1. Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data.

    1996-12-19

    Version 03 The NJOY nuclear data processing system is a comprehensive computer code system for producing pointwise and multigroup cross sections and related quantities from ENDF/B evaluated nuclear data in the ENDF format, including the latest US library, ENDF/B-VI. The NJOY code works with neutrons, photons, and charged particles and produces libraries for a wide variety of particle transport and reactor analysis codes.

  2. Deformation effect on total reaction cross sections for neutron-rich Ne isotopes

    SciTech Connect

    Minomo, Kosho; Sumi, Takenori; Ogata, Kazuyuki; Shimizu, Yoshifumi R.; Yahiro, Masanobu; Kimura, Masaaki

    2011-09-15

    The isotope dependence of measured reaction cross sections in the scattering of {sup 28-32}Ne isotopes from a {sup 12}C target at 240 MeV/nucleon is analyzed by the double-folding model with the Melbourne g matrix. The density of the projectile is calculated by the mean-field model with the deformed Woods-Saxon potential. The deformation is evaluated by antisymmetrized molecular dynamics. The deformation of the projectile enhances calculated reaction cross sections to the measured values.

  3. Neutron capture and inelastic scattering cross sections for {sup 186}Os, {sup 187}Os, and {sup 189}Os and the Re-Os chronology

    SciTech Connect

    Segawa, M.; Nagai, Y.; Masaki, T.; Temma, Y.; Shima, T.; Mishima, K.; Igashira, M.; Goriely, S.; Koning, A.; Hilaire, S.

    2008-05-21

    We measured the neutron capture cross sections of {sup 186,187,189}Os taking for the first time their pulse height spectra for neutrons between 5 and 90 keV by means of an anti-Compton NaI(Tl) spectrometer. The neutron inelastic scattering cross section for {sup 187}Os as well as the neutron elastic scattering cross sections for {sup 186,187}Os were also observed with use of {sup 6}Li-glass scintillation detectors with a small systematic uncertainty.

  4. Determination of Resonance Parameters and their Covariances from Neutron Induced Reaction Cross Section Data

    SciTech Connect

    Schillebeeckx, P.; Becker, B.; Danon, Y.; Guber, K.; Harada, H.; Heyse, J.; Junghans, A.R.; Kopecky, S.; Massimi, C.; Moxon, M.C.; Otuka, N.; Sirakov, I.; Volev, K.

    2012-12-15

    Cross section data in the resolved and unresolved resonance region are represented by nuclear reaction formalisms using parameters which are determined by fitting them to experimental data. Therefore, the quality of evaluated cross sections in the resonance region strongly depends on the experimental data used in the adjustment process and an assessment of the experimental covariance data is of primary importance in determining the accuracy of evaluated cross section data. In this contribution, uncertainty components of experimental observables resulting from total and reaction cross section experiments are quantified by identifying the metrological parameters involved in the measurement, data reduction and analysis process. In addition, different methods that can be applied to propagate the covariance of the experimental observables (i.e. transmission and reaction yields) to the covariance of the resonance parameters are discussed and compared. The methods being discussed are: conventional uncertainty propagation, Monte Carlo sampling and marginalization. It is demonstrated that the final covariance matrix of the resonance parameters not only strongly depends on the type of experimental observables used in the adjustment process, the experimental conditions and the characteristics of the resonance structure, but also on the method that is used to propagate the covariances. Finally, a special data reduction concept and format is presented, which offers the possibility to store the full covariance information of experimental data in the EXFOR library and provides the information required to perform a full covariance evaluation.

  5. 70 Group Neutron Fast Reactor Cross Section Set Based on JENDL-2B.

    1984-02-06

    Version 00 These multigroup cross sections are used in fast reactor calculations. The benchmark calculations for the 23 fast critical assemblies used in the benchmark tests of JFS-2 were performed with one-dimensional diffusion theory by using the JFS-3-J2 set.

  6. Neutron-induced fission cross section measurements for uranium isotopes 236U and 234U at LANSCE

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2013-04-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard 235U foil is converted into a fission cross section ratio. In addition to previously measured data new measurements include 236U data which is being analyzed, and 234U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. Obtained data are presented in comparison with existing evaluations and previous data.

  7. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    SciTech Connect

    Kahler, A.C.; Herman, M.; Kahler,A.C.; MacFarlane,R.E.; Mosteller,R.D.; Kiedrowski,B.C.; Frankle,S.C.; Chadwick,M.B.; McKnight,R.D.; Lell,R.M.; Palmiotti,G.; Hiruta,H.; Herman,M.; Arcilla,R.; Mughabghab,S.F.; Sublet,J.C.; Trkov,A.; Trumbull,T.H.; Dunn,M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., 'ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,' Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected {sup 235}U and {sup 239}Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for

  8. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    NASA Astrophysics Data System (ADS)

    Kahler, A. C.; MacFarlane, R. E.; Mosteller, R. D.; Kiedrowski, B. C.; Frankle, S. C.; Chadwick, M. B.; McKnight, R. D.; Lell, R. M.; Palmiotti, G.; Hiruta, H.; Herman, M.; Arcilla, R.; Mughabghab, S. F.; Sublet, J. C.; Trkov, A.; Trumbull, T. H.; Dunn, M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., "ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data," Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected 235U and 239Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected

  9. Measurement of the 6Li(n,α) neutron standard cross-section at the GELINA facility

    NASA Astrophysics Data System (ADS)

    Jansson, Kaj; Al-Adili, Ali; Bevilacqua, Riccardo; Gustavsson, Cecilia; Hambsch, Franz-Josef; Pomp, Stephan; Vidali, Marzio

    2016-06-01

    The 6Li(n,α) reaction cross-section is commonly used as a reference cross section. However, it is only considered a neutron standard up to 1MeV. For higher energies, there are discrepancies of several per cents between recent measurements and evaluated data files. In order to extend and establish 6Li(n,α) as a neutron standard above 1MeV these discrepancies must be resolved. Our measurement at the GELINA facility at JRC-IRMM in Geel, Belgium is ongoing. We are using a double twin Frisch-grid setup to detect both α-particles from two 6Li targets and fission products from two 235U reference targets. Our targets have thick backings but are employed in pairs, one forward facing and one backward facing. In this way we still cover, in principle, a solid angle of 4π. We present some preliminary results showing that the existing cross-section data is well reproduced around the resonance at 240 keV. The final data taking will start in the beginning of 2016, when the GELINA facility goes online again after a few months of shut down.

  10. Measurement of activation cross-sections for high-energy neutron-induced reactions of Bi and Pb

    NASA Astrophysics Data System (ADS)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Naik, Haladhara; Shahid, Muhammad; Lee, Manwoo

    2015-08-01

    The cross-sections for 209Bi(n, 4n)206Bi, 209Bi(n, 5n)205Bi, natPb(n, xn)204mPb, natPb(n, xn)203Pb, natPb(n, xn)202mPb,natPb(n, xn)201Pb, natPb(n, xn)200Pb, natPb(n, αxn)203Hg and natPb(n, p xn)202Tl reactions were determined at the Korean Institute of Radiological and Medical Sciences (KIRAMS), Korea in the neutron energy range of 15.2 to 37.2 MeV. The above cross-sections were obtained by using the activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutron used for the above reactions are based on the 9Be(p, n) reaction. Simulations of the spectral flux from the Be target were done using the MCNPX program. The cross-sections were estimated with the TALYS 1.6 code using the default parameter. The data from the present work and literature were compared with the data from the EAF-2010 and the TENDL-2013 libraries, and calculated values of TALYS 1.6 code. It shows that appropriate level density model, the γ-ray strength function, and the spin cut-off parameter are needed to obtain a good agreement between experimental data and theoretical values from TALYS 1.6 code.

  11. MCNP Continuous-Energy Neutron Cross Section Libraries for Temperatures from 300 to 1365K.

    2001-04-19

    Version 00 UTXS is a project whereby continuous-energy cross section libraries in ACE format suitable for the MCNP code were generated using the NJOY94.105 processing code. Libraries for various materials were generated at typical operating temperatures of the US Pressurized Water Reactor (PWR), Boiling Water Reactor (BWR), and the Russian PWR (VVER) as well as libraries for other non-reactor applications such as nuclear medicine.

  12. Preliminary evaluation of neutron capture cross sections for /sup 144/Sm, /sup 145/Sm and /sup 145/Pm

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.

    1986-02-13

    We have made preliminary neutron-capture cross-section calculations of the Hauser-Feshbach type for the isotopes /sup 144/Sm, /sup 145/Sm, and /sup 145/Pm to investigate the production of radioactive /sup 145/Pm by neutron capture on the stable isotope /sup 144/Sm. The calculations were made for incident neutron energies from 2.5 MeV to about 1/sup -4/ or 10/sup -5/ MeV, wherever the first unbound resonance was estimated to occur in each case. At that energy, the calculated value was reduced by a somewhat arbitrary factor, and the excitation function extended down to thermal energy using a (E/sub n/)/sup -1/2/ energy dependence. Since very large uncertainties are associated with the position and magnitude of the first unbound resonance and the subsequent extrapolation back to thermal energy, the cross sections in this low-energy region should not be considered more accurate than +- a factor of 10. For incident neutron energies above each step, the calculations represent an average through the separated and overlapping resonance regions and may be accurate to better than +- a factor of 2. 18 refs., 7 figs., 5 tabs.

  13. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  14. Evaluated cross-section libraries and kerma factors for neutrons up to 100 MeV on {sup 12}C

    SciTech Connect

    Chadwick, M.B.; Blann, M.; Cox, L.; Young, P.G.; Meigooni, A.

    1995-04-11

    A program is being carried out at Lawrence Livermore National Laboratory to develop high-energy evaluated nuclear data libraries for use in Monte Carlo simulations of cancer radiation therapy. In this report we describe evaluated cross sections and kerma factors for neutrons with incident energies up to 100 MeV on {sup 12}C. The aim of this effort is to incorporate advanced nuclear physics modeling methods, with new experimental measurements, to generate cross section libraries needed for an accurate simulation of dose deposition in fast neutron therapy. The evaluated libraries are based mainly on nuclear model calculations, benchmarked to experimental measurements where they exist. We use the GNASH code system, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms. The libraries tabulate elastic and nonelastic cross sections, angle-energy correlated production spectra for light ejectiles with A{le}and kinetic energies given to light ejectiles and heavy recoil fragments. The major steps involved in this effort are: (1) development and validation of nuclear models for incident energies up to 100 MeV; (2) collation of experimental measurements, including new results from Louvain-la-Nueve and Los Alamos; (3) extension of the Livermore ENDL formats for representing high-energy data; (4) calculation and evaluation of nuclear data; and (5) validation of the libraries. We describe the evaluations in detail, with particular emphasis on our new high-energy modeling developments. Our evaluations agree well with experimental measurements of integrated and differential cross sections. We compare our results with the recent ENDF/B-VI evaluation which extends up to 32 MeV.

  15. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    SciTech Connect

    Kahler, A.; Macfarlane, R E; Mosteller, R D; Kiedrowski, B C; Frankle, S C; Chadwick, M. B.; Mcknight, R D; Lell, R M; Palmiotti, G; Hiruta, h; Herman, Micheal W; Arcilla, r; Mughabghab, S F; Sublet, J C; Trkov, A.; Trumbull, T H; Dunn, Michael E

    2011-01-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unrnoderated and uranium reflected (235)U and (239)Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as (236)U; (238,242)Pu and (241,243)Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical eigenvalues

  16. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    SciTech Connect

    G. Palmiotti

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 418 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected 235U and 239Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as 236U capture. Other deficiencies, such as the overprediction of Pu solution system critical eigenvalues and a decreasing trend in calculated eigenvalue for

  17. Neutron scattering cross sections from /sup 14/N and /sup 9/Be at 11, 14, and 17 MeV

    SciTech Connect

    Templon, J.A.; Dave, J.H.; Gould, C.R.; Singkarat, S.

    1985-12-01

    Neutron scattering cross sections were measured for /sup 14/N and /sup 9/Be at incident neutron energies of 11, 14, and 17 MeV using time-of-flight methods. Angular distributions for /sup 14/N and /sup 9/Be elastic scattering and /sup 9/Be inelastic scattering to the 2.429-MeV excited state were obtained betwee 20 and 160 deg in 5-deg increments. The data were corrected for finite geometry effects using a Monte Carlo simulation code. Lengendre polynomial coefficients deduced by fitting the experimental data are tabulated. The results of a spherical optical model analysis for the /sup 14/N data are reported. Coulomb correction terms are obtained from a comparison of neutron and proton elastic scattering data for /sup 14/N.

  18. Neutron-Induced Partial Gamma-Ray Cross-Section Measurements on Actinides at TUNL using a segmented Clover detector

    NASA Astrophysics Data System (ADS)

    Wolter, C.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Macri, R. A.; Tonchev, A. P.; Tornow, W.; Walter, R. L.; Pedroni, R. S.; Weisel, G. J.; Becker, J. A.; Nelson, R. O.

    2004-10-01

    An experimental program is being developed at TUNL to study (n,2n) excitation functions on actinide nuclei using monoenergetic and pulsed neutron beams in the 5 to 18 MeV energy range. Measurements have been performed on a 238U target with incident neutron energies of 6 and 10 MeV using a segmented Clover detector. A study of the detector involving the photopeak efficiency, energy and timing resolution has been performed with radioactive sources and in-beam experiments. Experimental techniques and results for neutron-induced partial gamma-ray cross-section measurements will be presented. Supported by the NNSA under the Stewardship Science Academic Alliances Program through DOE Research grant # DE-FG03-02NA00057 and NSF REU grant # NSF-0243776

  19. The 234U Neutron Capture Cross Section Measurement at the n_TOF Facility

    SciTech Connect

    Lampoudis, C.; Koehler, Paul Edward; Collaboration, n_TOF

    2008-01-01

    The neutron capture cross-section of {sup 234}U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n{_}TOF, based on a spallation source located at CERN. A 4n BaF{sub 2} array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt {gamma}-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of ENDF in the relevant energy region, indicating the good performance of the n{_}TOF facility and the TAC.

  20. Modeled Neutron and Charged-Particle Induced Nuclear Reaction Cross Sections for Radiochemistry in the Region of Yttrium, Zirconium, Niobium, and Molybdenum

    SciTech Connect

    Hoffman, R D; Kelley, K; Dietrich, F S; Bauer, R; Mustafa, M G

    2006-06-13

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron, proton, and deuteron induced nuclear reaction cross sections for targets ranging from strontium (Z = 38) to rhodium (Z = 45).

  1. Measurement of Neutron Total Cross Sections in Support of the APT Program

    SciTech Connect

    Abfalterer, W.P.; Haight, R.C.; Morgan, G.L.; Bateman, F.B.; Dietrich, F.S.; Finlay, R.W.

    1998-11-04

    The authors have completed a new set of total cross section measurements of 37 samples spanning the periodic table. The authors employed the same technique as in a previous measurement, with refinements intended to allow measurements on separated isotopes, and with improved systematic error control. The goal of the new measurement was 1% statistical accuracy in 1% energy bins with systematic errors less than 1%. This was achieved for all but the smallest samples, for which the statistical accuracy was as large as 2% in 1% bins.

  2. 66 Neutron, 22 Gamma-Ray Group Cross Sections for Radiation Transport for Neutron Energies Up to 400 MeV.

    1995-12-12

    Version 00 For a variety of applications (accelerator shielding, the use of neutrons in radiotherapy, radiation damage studies, etc.) It is necessary to carry out transport calculations involving medium-energy neutrons. HILO86R multigroup cross sections are in the form needed for the CCC-254/ANISN-ORNL and CCC-543/TORT-DORT discrete ordinates codes and in the CCC-474/MORSE-CGA Monte Carlo code.

  3. Impact of the γ _{ν }NN* Electrocoupling Parameters at High Photon Virtualities and Preliminary Cross Sections off the Neutron

    NASA Astrophysics Data System (ADS)

    Gothe, Ralf W.; Tian, Ye

    2016-10-01

    Meson-photoproduction measurements and their reaction-amplitude analyses can establish more sensitively, and in some cases in an almost model-independent way, nucleon excitations and non-resonant reaction amplitudes. However, to investigate the strong interaction from already explored—where meson-cloud degrees of freedom contribute substantially to the baryon structure—to still unexplored distance scales—where quark degrees of freedom dominate and the transition from dressed to current quarks occurs—we depend on experiments that allow us to measure observables that are probing this evolving non-perturbative QCD regime over its full range. Elastic and transition form factors are uniquely suited to trace this evolution by measuring elastic electron scattering and exclusive single-meson and double-pion electroproduction cross sections off the nucleon. These exclusive measurements will be extended to higher momentum transfers with the energy-upgraded CEBAF beam at JLab to study the quark degrees of freedom, where their strong interaction is responsible for the ground and excited nucleon state formations. After establishing unprecedented high-precision data, the imminent next challenge is a high-quality analysis to extract these relevant electrocoupling parameters for various resonances that can then be compared to state-of-the-art models and QCD-based calculations. The vast majority of the available exclusive electroproduction cross sections are off the proton. Hence flavor-dependent analyses of excited light-quark baryons are lacking experimental data off the neutron. The goal is to close this gap by providing exclusive {γ }_{ν }(n) → p+ {π }- reaction cross section off deuterium and to establish a kinematical final-state-interaction (FSI) correction factor (R) map that can be determined from the data set itself. The "e1e" Jefferson Lab CLAS data set, that is analyzed, includes both a hydrogen and deuterium target run period, which allows a combined

  4. R-Matrix Evaluation of Cl Neutron Cross Sections up to 1.2 MeV

    SciTech Connect

    Sayer, R.O.

    2003-03-27

    We have performed an evaluation of {sup 35}Cl, {sup 37}Cl, and {sup nat}Cl neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were carried out with the computer code SAMMY, which utilizes Bayes' method, a generalized least squares technique. A recent modification of SAMMY enabled us to calculate charged particle penetrabilities for the proton exit channel. Our resonance parameter representation describes the data much better than does ENDF/B-VI, and it should lead to improved criticality safety calculations for systems where Cl is present.

  5. 69-Group Thermal-Reactor Neutron Cross Section Data from ENDF/B-V in MATXS Format.

    1985-12-30

    Version: 00 The library contains 80 materials (no photon production) and includes self-shielded cross sections for the important actinides. Thermal scattering data are given for all materials, with bound scattering for the important moderators. The group structure contains 42 thermal groups extending to 4 eV. The data were generated with PSR-171/NJOY-II [2]. The energy group structure for MATXS7A is listed in Table 1, the materials with neutron scattering data in Table 2, and those withmore » thermal scattering data in Table 3.« less

  6. Impact of the γ _{ν } NN* Electrocoupling Parameters at High Photon Virtualities and Preliminary Cross Sections off the Neutron

    NASA Astrophysics Data System (ADS)

    Gothe, Ralf W.; Tian, Ye

    2016-06-01

    Meson-photoproduction measurements and their reaction-amplitude analyses can establish more sensitively, and in some cases in an almost model-independent way, nucleon excitations and non-resonant reaction amplitudes. However, to investigate the strong interaction from already explored—where meson-cloud degrees of freedom contribute substantially to the baryon structure—to still unexplored distance scales—where quark degrees of freedom dominate and the transition from dressed to current quarks occurs—we depend on experiments that allow us to measure observables that are probing this evolving non-perturbative QCD regime over its full range. Elastic and transition form factors are uniquely suited to trace this evolution by measuring elastic electron scattering and exclusive single-meson and double-pion electroproduction cross sections off the nucleon. These exclusive measurements will be extended to higher momentum transfers with the energy-upgraded CEBAF beam at JLab to study the quark degrees of freedom, where their strong interaction is responsible for the ground and excited nucleon state formations. After establishing unprecedented high-precision data, the imminent next challenge is a high-quality analysis to extract these relevant electrocoupling parameters for various resonances that can then be compared to state-of-the-art models and QCD-based calculations. The vast majority of the available exclusive electroproduction cross sections are off the proton. Hence flavor-dependent analyses of excited light-quark baryons are lacking experimental data off the neutron. The goal is to close this gap by providing exclusive {γ }_{ν }(n) → p+ {π }- reaction cross section off deuterium and to establish a kinematical final-state-interaction (FSI) correction factor (R) map that can be determined from the data set itself. The "e1e" Jefferson Lab CLAS data set, that is analyzed, includes both a hydrogen and deuterium target run period, which allows a combined

  7. Validation of HELIOS Neutron Cross-Section Library for RBMK Reactors Against the Data From the Critical Facility Experiments

    SciTech Connect

    Jasiulevicius, Audrius; Sehgal, Bal Raj

    2002-07-01

    The RBMK reactors are channel type, water-cooled and graphite moderated reactors. The first RBMK type electricity production reactor was put on-line in 1973. Currently there are 13 operating reactors of this type. Two of the RBMK-1500 reactors are at the Ignalina NPP in Lithuania. Experimental Critical Facility for RBMK reactors, located at Kurchatov Institute, Moscow was designed to carry out critical reactivity experiments on assemblies, which imitate parts of the RBMK reactor core. The facility is composed of Control and Protection Rods (CPR's), fuel assemblies with different enrichment in U-235 and other elements, typical for RBMK reactor core loadings, e.g. additional absorber assemblies, CPR imitators, etc. A simulation of a set of the experiments, performed at the Experimental Critical Facility, was carried out at the Royal Institute of Technology (RIT), Nuclear Power Safety Division, using CORETRAN 3-D neutron dynamics code. The neutron cross sections for assemblies were calculated using HELIOS code. The aim of this work was to evaluate capabilities of the HELIOS code to provide correct cross section data for the RBMK reactor. The calculation results were compared to the similar CORETRAN calculations, when employing WIMS-D4 code generated cross section data. For some of the experiments, where calculation results with CASMO-4 code generated cross sections are available, the comparison is also performed against CASMO-4 results. Eleven different experiments were simulated. Experiments differ in size of the facility core (number of assemblies loaded): from simple core loadings, composed only of a few fuel assemblies, to complicated configurations, which represent a part of the RBMK reactor core. Diverse types of measurements were carried out during these experiments: reactivity, neutron flux distributions (both axial and radial), rod reactivity worth and the voiding effects. Results of the reactivity measurements and relative neutron flux distributions were

  8. A Step Toward Physics-Based Cosmogenic Nuclide Production Rates: Measurements of High-Energy Neutron Cross Sections

    NASA Astrophysics Data System (ADS)

    Caffee, M. W.; Welten, K. C.; Ninomiya, K.; Omoto, T.; Nakagaki, R.; Takahashi, N.; Kasamatsu, Y.; Shima, T.; Sekimoto, S.; Yashima, H.; Shibata, S.; Matsumura, H.; Bajo, K.; Nagao, K.; Satoh, D.; Iwamoto, Y.; Hagiwara, M.; Shinohara, A.; Imamura, M.; Nishiizumi, K.

    2010-12-01

    Cosmic-ray produced nuclides are found in terrestrial and extraterrestrial materials. In extra-terrestrial materials it is in many instances possible to find samples with exposure times much longer than a specifc radionuclide’s half-life so the production rate for a specific geometry can be determined from the saturation activity. For most terrestrial applications this condition is not met, so an exposure age can only be determined if the production rate is independently determined. For terrestrial applications these production rates are ascertained by using geologic calibration sites. These calibrations themselves are not without ambiguity at times. Physics-based production rates are an alternative means by which production rates can be determined. Monte Carlo neutron transport codes are the essential tool in model calculations of cosmogenic nuclide production rates in terrestrial and extraterrestrial materials. However, even when the fundamental physics of neutron transport within planetary materials (atmospheres and surface materials) is modeled properly, the reliability of the results is limited by the lack of measured cross sections. Indeed, at the present time, the lack of the excitation functions for nuclides produced by high-energy neutrons that dominate the production of cosmogenic nuclides, is the largest uncertainty in cosmogenic nuclide production rate models. To improve the accuracy of cosmogenic nuclide production rates we are performing measurements of the high-energy neutron excitation functions [1]. Target materials, representing compounds found in naturally occurring minerals, were exposed to quasi-monoenergetic neutrons at the Research Center for Nuclear Physics (RCNP), Osaka University. The neutrons are produced utilizing the reaction 7Li(p, n). The first two irradiations used 300 MeV and 392 MeV primary proton beams, yielding average neutron energies of 287 MeV and 370 MeV, respectively. After bombardment by neutrons, the short half

  9. Benchmarking of the FENDL-3 Neutron Cross-section Data Starter Library for Fusion Applications

    SciTech Connect

    Fischer, U.; Angelone, M.; Bohm, T.; Kondo, K.; Konno, C.; Sawan, M.; Villari, R.; Walker, B.

    2014-06-15

    This paper summarizes the benchmark analyses performed in a joint effort of ENEA (Italy), JAEA (Japan), KIT (Germany), and the University of Wisconsin (USA) on a computational ITER benchmark and a series of 14 MeV neutron benchmark experiments. The computational benchmark revealed a modest increase of the neutron flux levels in the deep penetration regions and a substantial increase of the gas production in steel components. The comparison to experimental results showed good agreement with no substantial differences between FENDL-3.0 and FENDL-2.1 for most of the responses. In general, FENDL-3 shows an improved performance for fusion neutronics applications.

  10. Neutron Cross Section Library Based on JEFF3.1 for Use with MCNP.

    2007-03-20

    Version 00 This continuous energy cross-section data library in ACE format is for shielding and criticality applications done with MCNP. In addition to the description of the NJOY processing procedure used to create the library, the included report NEA/NSC/DOC(2006)18 contains results from the benchmarking activity aimed at testing the quality of the data for criticality and shielding applications. The library at 300K has been verified: visually (no discontinuities, correct processing in all range) and withmore » comparisons with other libraries available for the same purposes (ENDF/B-VI.8, JEF2.2, JENDL3.3, …) A set of experiments using MCNP4c are used in order to validate the processed library.« less

  11. Structure of hydrogenous liquids: separation of coherent and incoherent cross sections using polarised neutrons

    NASA Astrophysics Data System (ADS)

    Stunault, A.; Vial, S.; Pusztai, L.; Cuello, G. J.; Temleitner, L.

    2016-04-01

    The determination of the coherent structure factor of hydrogenous liquids is very difficult: while X-rays are barely sensitive to hydrogen, neutrons results still lack accuracy due to the contamination of the scattering intensities by a huge spin-incoherent signal from the 1H atoms. Using polarised neutrons with polarisation analysis, one can experimentally separate the coherent and incoherent contributions to the scattered intensity. We present the upgrade of the D3 polarised hot neutron diffractometer at ILL to study hydrogenated liquids. We show first data obtained from a test sample of water and detail the data reduction leading to an unprecedented accuracy in the extraction of the coherent signal, representative of the structure.

  12. Measurement of neutron capture cross section of Li-7 at J-PARC / MLF / ANNRI

    SciTech Connect

    Makii, H.; Ota, S.; Nishinaka, I.; Nishio, I.; Segawa, M.; Kimura, A.; Harada, H.

    2014-05-02

    We have measured the {sup 7}Li(n,γ){sup 8}Li reaction at Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) installed at the Material and Life science experimental Facility in the Japan Proton Accelerator Research Complex (J-PARC / MLF). In this experiment, we used intense pulsed neutron beam provided by J-PARC / MLF and high performance Ge spectrometer, which is one of the main detectors of the ANNRI. We clearly detected γ rays from the {sup 7}Li(n,γ){sup 8}Li reaction with sufficient signal-to-noise ratio.

  13. One-group fission cross sections for plutonium and minor actinides inserted in calculated neutron spectra of fast reactor cooled with lead-208 or lead-bismuth eutectic

    SciTech Connect

    Khorasanov, G. L.; Blokhin, A. I.

    2012-07-01

    The paper is dedicated to one-group fission cross sections of Pu and MA in LFRs spectra with the aim to increase these values by choosing a coolant which hardens neutron spectra. It is shown that replacement of coolant from Pb-Bi with Pb-208 in the fast reactor RBEC-M, designed in Russia, leads to increasing the core mean neutron energy. As concerns fuel Pu isotopes, their one-group fission cross sections become slightly changed, while more dramatically Am-241 one-group fission cross section is changed. Another situation occurs in the lateral blanket containing small quantities of minor actinides. It is shown that as a result of lateral blanket mean neutron energy hardening the one-group fission cross sections of Np-237, Am-241 and Am-243 increases up to 8-11%. This result allows reducing the time of minor actinides burning in FRs. (authors)

  14. Neutron Capture Cross Sections and Gamma Emission Spectra from Neutron Capture on 234,236,238U Measured with DANCE

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2014-05-01

    A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.

  15. 30-Group Neutron, 12-Group Photon Cross Sections from ENDF/B-VI in MATXS Format.

    1994-02-28

    Version 00 MATXS10 is useful for many high-energy calculations, including coupled neutron-photon-heating calculations in fusion systems, the analysis of fast critical assemblies like GODIVA, and some shielding calculations for which resonance self shielding effects are not too important. It has the advantage of being compact, and TRANSX2 and particle transport calculations run very fast with this library.

  16. R-Matrix Evaluation of 16O Neutron Cross Sections up to 6.3 MeV

    SciTech Connect

    Sayer, R.O.

    2000-08-21

    In this paper we describe an evaluation of {sup 16}O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes method, a generalized least squares technique. Over the years the nuclear community has developed a collection of evaluated nuclear data for applications in thermal, fast reactor, and fusion systems. However, typical neutron spectra in criticality safety applications are different from the spectra relevant to thermal, fast reactor, and fusion systems. In fact, the neutron spectra important for these non-reactor systems appear to peak in the epithermal energy range. Nuclear data play a major role in the calculation of the criticality safety margins for these systems. A thorough examination of how the present collection of nuclear data evaluations behaves in criticality safety calculations is needed. Many older evaluations will probably need to be revised, and new evaluations will be needed. Oxygen is an important element in criticality safety applications where oxides are present in significant abundance. The existing ENDF/B-VI.5 evaluation is expressed in terms of point-wise cross sections derived from the analysis of G. Hale [HA91]. Unfortunately such an evaluation is not directly useful for resonance analysis of data from samples in which oxygen is combined with other elements; for that purpose, Reich-Moore resonance parameters are needed. This paper addresses the task of providing those parameters. In the following sections we discuss the data, resonance analysis procedure, and results.

  17. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.

  18. Distinction between Proton- and Neutron-Density Distributions of Halo Nuclei at the Nuclear Surface via Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Nishimura, Daiki; Fukuda, M.; Takechi, M.; Mihara, M.; Ishikawa, D.; Matsuta, K.; Matsumiya, R.; Kuboki, T.; Suzuki, T.; Yamaguchi, T.; Hachiuma, I.; Namihira, K.; Ohtsubo, T.; Shinbara, Y.; Ohkuma, Y.; Izumikawa, T.; Tanaka, K.; Ozawa, A.; Yasuda, Y.; Moriguchi, T.; Momota, S.; Fukuda, S.; Sato, S.; Kanazawa, M.; Kitagawa, A.

    2009-10-01

    The halo and skin structures at the nuclear surface have attracted much interest for their exotic nature. By utilizing the isospin asymmetry of nucleon-nucleon total cross sections in the intermediate energy region, in principle, the proton- and neutron-density distributions can be determined independently. To demonstrate this isospin asymmetric effect, we have studied σR for the neutron-halo nucleus ^11 Be and the proton-halo nucleus ^8B on proton targets. We measured σR for ^11Be and ^8B on C and proton targets by the transmission method in the intermidiate energy region using HIMAC heavy ion synchrotron at NIRS. The present result for ^11Be is consistent with that the tail of ^11Be density consists of a neutron. On the other hand, the experimental result for ^8B is in agreement with the calculation with a proton tail in ^8B. Thus, the proton and neutron density distributions at the nuclear surface can be distinguished successfully by the σR on C and proton targets.

  19. 30-Group Neutron, 12-Group Photon Cross Sections from ENDF/B-IV in MATXS Format.

    SciTech Connect

    MACFARLANE, ROBERT

    1985-12-30

    Version: 00 The library was prepared with a fusion + fission + l/E + thermal Maxwellian weight function and has proved useful for many high energy calculations, including criticals such as GODIVA. It works reasonably well for many shielding problems where resonance selfshielding is not too important. The energy group structures for MATXSl are listed in Table 1, the materials with neutron scattering data in Table 2, those with photon production data in Table 3, and those with photon scattering data in Table 4.

  20. 30-Group Neutron, 12-Group Photon Cross Sections from ENDF/B-V in MATSX Format.

    SciTech Connect

    MACFARLANE, ROBERT

    1985-12-30

    Version: 00 The library was prepared with a fusion + fission + l/E + thermal Maxwellian weight function and has proved useful for many high energy calculations, including criticals such as GODIVA. It works reasonably well for many shielding problems where resonance selfshielding is not too important. The energy group structures for MATXSSA are listed in Table 1, the materials with neutron scattering data in Table 2, those with photon production data in Table 3, and those with photon scattering data In Table 4.

  1. Compilation and evaluation of 14-MeV neutron-activation cross sections for nuclear technology applications. Set I

    SciTech Connect

    Evain, B.P.; Smith, D.L.; Lucchese, P.

    1985-04-01

    Available 14-MeV experimental neutron activation cross sections are compiled and evaluated for the following reactions of interest for nuclear-energy technology applications: /sup 27/Al(n,p)/sup 27/Mg, Si(n,X)/sup 28/Al, Ti(n,X)/sup 46/Sc, Ti(n,X)/sup 47/Sc, Ti(n,X)/sup 48/Sc, /sup 51/V(n,p)/sup 51/Ti, /sup 51/V(n,..cap alpha..)/sup 48/Sc, Cr(n,X)/sup 52/V, /sup 55/Mn(n,..cap alpha..)/sup 52/V, /sup 55/Mn(n,2n)/sup 54/Mn, Fe(n,X)/sup 54/Mn, /sup 54/Fe(n,..cap alpha..)/sup 51/Cr, /sup 59/Co(n,p)/sup 59/Fe, /sup 59/Co(n,..cap alpha..)/sup 56/Mn, /sup 59/Co(n,2n)/sup 58/Co, /sup 65/Cu(n,p)/sup 65/Ni, Zn(n,X)/sup 64/Cu, /sup 64/Zn(n,2n)/sup 63/Zn, /sup 113/In(n,n')/sup 113m/In, /sup 115/In(n,n') /sup 115m/In. The compiled values are listed and plotted for reference without adjustments. From these collected results those values for which adequate supplementary information on nuclear constants, standards and experimental errors is provided are selected for use in reaction-by-reaction evaluations. These data are adjusted as needed to account for recent revisions in the nuclear constants and cross section standards. The adjusted results are subsequently transformed to equivalent cross sections at 14.7 MeV for the evaluation process. The evaluations are performed utilizing a least-squares method which considers correlations between the experimental data. 440 refs., 41 figs., 46 tabs.

  2. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.

  3. Evaluated 182,183,184,186W Neutron Cross Sections and Covariances in the Resolved Resonance Region

    SciTech Connect

    Pigni, Marco T; Leal, Luiz C

    2015-01-01

    Oak Ridge National Laboratory (ORNL) has recently completed the resonance parameter evaluation of four tungsten isotopes, i.e., 182,183,184,186W, in the neutron energy range of thermal up to several keV. This nuclear data work was performed with support from the US Nuclear Criticality Safety Program (NCSP) in an effort to provide improved tungsten cross section and covariance data for criticality safety analyses. The evaluation methodology uses the Reich-Moore approximation of the R-matrix formalism of the code SAMMY to fit high-resolution measurements performed in 2010 and 2012 at the Geel linear accelerator facility (GELINA), as well as other experimental data sets on natural tungsten available in the EXFOR library. In the analyzed energy range, this work nearly doubles the resolved resonance region (RRR) present in the latest US nuclear data library ENDF/B-VII.1. In view of the interest in tungsten for distinct types of nuclear applications and the relatively homogeneous distribution of the isotopic tungsten—namely, 182W(26.5%), 183W(14.31%), 184W(30.64%), and 186W(28.43%) - the completion of these four evaluations represents a significant contribution to the improvement of the ENDF library. This paper presents an overview of the evaluated resonance parameters and related covariances for total and capture cross sections on the four tungsten isotopes.

  4. 30-Group Neutron, 12-Group Photon Cross Sections from ENDF/B-V in MATSX Format.

    1985-12-30

    Version: 00 The library was prepared with a fusion + fission + l/E + thermal Maxwellian weight function and has proved useful for many high energy calculations, including criticals such as GODIVA. It works reasonably well for many shielding problems where resonance selfshielding is not too important. The energy group structures for MATXSSA are listed in Table 1, the materials with neutron scattering data in Table 2, those with photon production data in Table 3,more » and those with photon scattering data In Table 4.« less

  5. 30-Group Neutron, 12-Group Photon Cross Sections from ENDF/B-IV in MATXS Format.

    1985-12-30

    Version: 00 The library was prepared with a fusion + fission + l/E + thermal Maxwellian weight function and has proved useful for many high energy calculations, including criticals such as GODIVA. It works reasonably well for many shielding problems where resonance selfshielding is not too important. The energy group structures for MATXSl are listed in Table 1, the materials with neutron scattering data in Table 2, those with photon production data in Table 3,more » and those with photon scattering data in Table 4.« less

  6. Evaluation of cross sections for neutron-induced reactions in sodium. [10/sup -5/ eV to 20 MeV

    SciTech Connect

    Larson, D.C.

    1980-09-01

    An evaluation of the neutron-induced cross sections of /sup 23/Na has been done for the energy range from 10/sup -5/ eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V, and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables.

  7. Measurement of the keV-neutron capture cross section and capture gamma-ray spectrum of isotopes around N=82 region

    SciTech Connect

    Katabuchi, Tatsuya; Igashira, Masayuki

    2012-11-12

    The keV-neutron capture cross section and capture {gamma}-ray spectra of nuclides with a neutron magic number N= 82, {sup 139}La and {sup 142}Nd, were newly measured by the time-of-flight method. Capture {gamma}-rays were detected with an anti-Compton NaI(T1) spectrometer, and the pulse-height weighting technique was applied to derive the neutron capture cross section. The results were provided with our previous measurements of other nuclides around N= 82, {sup 140}Ce, {sup 141}Pr, {sup 143}Nd and {sup 145}Nd.

  8. Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data.

    1995-06-01

    Version 04 The NJOY nuclear data processing system is a comprehensive computer code package for producing pointwise and multigroup neutron and photon cross sections from ENDF/B evaluated nuclear data. This is the last NJOY-91 series. It uses the same module structure as the earlier versions and its graphics options depend on DISSPLA. This new release, designated NJOY91.119, includes bug fixes, improvements in several modules, and some new capabilities. Information on the changes is included inmore » the README file. A new test problem was added to test some ENDF-6 features, including Reich-Moore resonance reconstruction, energy-angle matrices in GROUPR, and energy-angle distributions in ACER. The 91.119 release is basically configured for UNIX.« less

  9. Measurement of the Neutron Induced Fission Cross Section on Transuranic (TRU) Elements at the n_TOF Facility at CERN

    SciTech Connect

    Mastinu, P. F.; Koehler, Paul Edward; Collaboration, n_TOF

    2007-01-01

    During the 2004 campaign, the n{_}TOF collaboration measured neutron fission cross sections for 233U, 241,243Am, 245Cm, as well as the fission standards 235,238U, using a sealed Fission Ionization Chamber (FIC). The setup included a total of 16 targets and 18 electrodes mounted together in a 50-cm length chamber, allowing the measurements of all isotopes at the same time, thus in the same experimental conditions. A brief description of the facility and of the detector setup will be presented followed by the preliminary results of the analysis of 235U, 233U, and 245Cm from thermal energies up to some tenths of MeV

  10. Neutron-induced fission cross section of {sup nat}Pb and {sup 209}Bi from threshold to 1 GeV: An improved parametrization

    SciTech Connect

    Tarrio, D.; Duran, I.; Paradela, C.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Trubert, D.; David, S.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.

    2011-04-15

    Neutron-induced fission cross sections for {sup nat}Pb and {sup 209}Bi were measured with a white-spectrum neutron source at the CERN Neutron Time-of-Flight (n{sub T}OF) facility. The experiment, using neutrons from threshold up to 1 GeV, provides the first results for these nuclei above 200 MeV. The cross sections were measured relative to {sup 235}U and {sup 238}U in a dedicated fission chamber with parallel plate avalanche counter detectors. Results are compared with previous experimental data. Upgraded parametrizations of the cross sections are presented, from threshold energy up to 1 GeV. The proposed new sets of fitting parameters improve former results along the whole energy range.

  11. Cross sections of ground and isomeric states for (n,p) reaction on Sm-154 between 13.57 and 14.83MeV neutrons.

    PubMed

    Reyhancan, Iskender Atilla

    2016-07-01

    In this study, the activation cross sections were measured for the (154)Sm(n,p)(154g)Pm, and (154)Sm(n,p)(154m)Pm reactions at several neutron energies between 13.57 and 14.83MeV, which were produced by the neutron generator (SAMES T-400) through the (3)H((2)H,n)(4)He reaction. The production of short-lived activity and the spectra accumulation were performed by the cyclic activation technique. Induced gamma-ray activities were measured using a high resolution gamma ray spectrometer equipped with a high-purity Germanium (HPGe) detector. In the cross section measurements, corrections were made regarding the effects of gamma-ray attenuation, dead-time, fluctuation of neutron flux, and low energy neutrons. The measured cross sections were compared with data reported in literature as well as model calculations using the code TALYS 1.6. PMID:27149398

  12. Cross sections of ground and isomeric states for (n,p) reaction on Sm-154 between 13.57 and 14.83MeV neutrons.

    PubMed

    Reyhancan, Iskender Atilla

    2016-07-01

    In this study, the activation cross sections were measured for the (154)Sm(n,p)(154g)Pm, and (154)Sm(n,p)(154m)Pm reactions at several neutron energies between 13.57 and 14.83MeV, which were produced by the neutron generator (SAMES T-400) through the (3)H((2)H,n)(4)He reaction. The production of short-lived activity and the spectra accumulation were performed by the cyclic activation technique. Induced gamma-ray activities were measured using a high resolution gamma ray spectrometer equipped with a high-purity Germanium (HPGe) detector. In the cross section measurements, corrections were made regarding the effects of gamma-ray attenuation, dead-time, fluctuation of neutron flux, and low energy neutrons. The measured cross sections were compared with data reported in literature as well as model calculations using the code TALYS 1.6.

  13. Neutron capture cross sections of /sup 178/,/sup 179/,/sup 180/Hf and the origin of nature's rarest stable isotope /sup 180/Ta

    SciTech Connect

    Beer, H.; Macklin, R.L.

    1982-01-01

    The neutron capture cross sections of /sup 178/,/sup 179/,/sup 180/Hf were measured in the energy range 2.6 keV to 2 MeV. The average capture cross sections were derived and fitted in terms of strength functions. Resonance parameters for the observed resonances below 10 keV were determined by shape analysis. Maxwellian-averaged capture cross sections were computed for thermal energies with kT between 5 and 100 keV. The cross sections for kT = 30 keV were used to determine the population probability of the 8- isomeric level in /sup 180/Hf by neutron capture as (1.24 +- 0.06)% and the r-process abundance of /sup 180/Hf as 0.0290 (Si = 10/sup 6/). These quantities served to analyze s- and r-process nucleosynthesis of /sup 180/Ta, nature's rarest stable isotope.

  14. A Modified Version of XLACS-II for Processing ENDF Data into Multigroup Neutron Cross Sections in AMPX Master Library Format.

    1982-05-07

    XLACS-IIA calculates fine-group averaged neutron cross sections from ENDF data. Its primary purpose is to produce full range multigroup libraries for the XSDRN-PM program. It also serves this purpose in the AMPX system. Provisions are included for treating fast, resonance, and thermal ENDF/B data. Fine-group energy structures and expansion orders used to represent differential cross sections for XSDRN can be arbitrarily specified by the user. Cross sections can be averaged over an arbitrary user-supplied weightingmore » function or by any of several built-in weighting functions.« less

  15. Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p + 7Li reaction in the energy range of 18-36 MeV

    NASA Astrophysics Data System (ADS)

    Majerle, M.; Bém, P.; Novák, J.; Šimečková, E.; Štefánik, M.

    2016-09-01

    Au, Bi, Co and Nb samples were irradiated several times with quasi-monoenergetic neutrons from p + 7Li reaction in the energy range of 18-36 MeV. The activities of the samples were measured with the HPGe detector and the reaction rates were calculated. The cross-sections were extracted using the SAND-II method with the reference cross-sections from the EAF-2010 database. The uncertainties of the final results are discussed.

  16. Measurement of neutron capture cross-section of the 71Ga(n, γ) 72Ga reaction at 0.0536 eV energy

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Chowdhury, M. H.; Hossain, S. M.; Latif, Sk. A.; Hafiz, M. A.; Islam, M. A.; Zakaria, A. K. M.; Yunus, S. M.; Azharul Islam, S. M.

    2008-08-01

    The neutron capture cross-section for the 71Ga(n, γ) 72Ga reaction at 0.0536 eV energy was measured using activation technique based on TRIGA Mark-II research reactor. The 197Au(n, γ) 198Au monitor reaction was used to determine the effective neutron flux. Neutron absorption and γ-ray attenuation in gallium oxide pellet were corrected in determination of cross-section. The cross-section for the above reaction at 0.0536 eV amounts to 2.75 ± 0.14 b. As far as we know there are no experimental data available at our investigated energy. So far we are the first, who carried out experiment with 0.0536 eV neutrons for cross-section measurement. The present result is larger than that of JENDL-3.3, but consistent within the uncertainty range. The value of ENDF/B-VII is higher than this work. The result of this work will be useful to observe energy dependence of neutron capture cross-sections.

  17. {sup 48}Ti(n,xnpa{gamma}) reaction cross sections using spallation neutrons for E{sub n} = 1 to 20 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Cooper, J R; Hoffman, R D; Younes, W; Devlin, N; Fotiades, N; Nelson, R O

    2005-01-06

    {gamma}-ray excitation functions have been measured for the interaction of fast neutrons with {sup 48}Ti (neutron energy from 1 MeV to 250 MeV). The Los Alamos National Laboratory spallation neutron source, at the LANSCE/WNR facility, provided a ''white'' neutron beam which is produced by bombarding a natural W target with a pulsed proton beam. The prompt-reaction {gamma} rays were measured with the large-scale Compton-suppressed Ge spectrometer, GEANIE. Neutron energies were determined by the time-of-flight technique. Excitation functions were converted to partial {gamma}-ray cross sections, taking into account the dead-time correction, the target thickness, the detector efficiency, and neutron flux (monitored with an in-line fission chamber). The data analysis is presented here for neutron energies between 1 to 20 MeV. Partial {gamma}-ray cross sections for transitions in {sup 47,48}Ti, {sup 48}Sc, and {sup 45}Ca have been determined. These results are compared to Hauser-Feshbach predictions calculated using the STAPRE code, which includes compound nuclear and pre-equilibrium emission. The partial cross sections for {gamma} rays, whose discrete {gamma}-ray cascade path leads to the ground state in {sup 48}Ti, {sup 47}Ti, {sup 48}Sc, and {sup 45}Ca have been summed to obtain estimates of the lower limits for reaction cross sections. Partial cross sections for unobserved {gamma}-rays are predicted from the STAPRE code. These lower limits are combined with Hauser-Feshbach calculations to deduce {sup 48}Ti(n,n'){sup 48}Ti, {sup 48}Ti(n,2n){sup 47}Ti, {sup 48}Ti(n,p){sup 48}Sc, and {sup 48}Ti(n,{alpha}){sup 45}Ca reaction channel cross sections.

  18. Low-Fidelity Covariances: Neutron Cross Section Covariance Estimates for 387 Materials

    DOE Data Explorer

    The Low-fidelity Covariance Project (Low-Fi) was funded in FY07-08 by DOEÆs Nuclear Criticality Safety Program (NCSP). The project was a collaboration among ANL, BNL, LANL, and ORNL. The motivation for the Low-Fi project stemmed from an imbalance in supply and demand of covariance data. The interest in, and demand for, covariance data has been in a continual uptrend over the past few years. Requirements to understand application-dependent uncertainties in simulated quantities of interest have led to the development of sensitivity / uncertainty and data adjustment software such as TSUNAMI [1] at Oak Ridge. To take full advantage of the capabilities of TSUNAMI requires general availability of covariance data. However, the supply of covariance data has not been able to keep up with the demand. This fact is highlighted by the observation that the recent release of the much-heralded ENDF/B-VII.0 included covariance data for only 26 of the 393 neutron evaluations (which is, in fact, considerably less covariance data than was included in the final ENDF/B-VI release).[Copied from R.C. Little et al., "Low-Fidelity Covariance Project", Nuclear Data Sheets 109 (2008) 2828-2833] The Low-Fi covariance data are now available at the National Nuclear Data Center. They are separate from ENDF/B-VII.0 and the NNDC warns that this information is not approved by CSEWG. NNDC describes the contents of this collection as: "Covariance data are provided for radiative capture (or (n,ch.p.) for light nuclei), elastic scattering (or total for some actinides), inelastic scattering, (n,2n) reactions, fission and nubars over the energy range from 10(-5{super}) eV to 20 MeV. The library contains 387 files including almost all (383 out of 393) materials of the ENDF/B-VII.0. Absent are data for (7{super})Li, (232{super})Th, (233,235,238{super})U and (239{super})Pu as well as (223,224,225,226{super})Ra, while (nat{super})Zn is replaced by (64,66,67,68,70{super})Zn

  19. Neutron capture cross-section measurement for the 186W(n,gamma)187W reaction at 0.0536eV energy.

    PubMed

    Uddin, M S; Chowdhury, M H; Hossain, S M; Latif, Sk A; Hafiz, M A; Islam, M A; Zakaria, A K M; Azharul Islam, S M

    2008-09-01

    The thermal neutron-induced activation cross section for the (186)W(n,gamma)(187)W reaction was measured at 0.0536eV neutron energy using TRIGA Mark-II research reactor, Atomic Energy Research Establishment, Savar, Dhaka, Bangladesh. The (197)Au(n,gamma)(198)Au monitor reaction induced in a high-purity gold foil was used to determine the effective neutron beam intensity. The activities induced in sample and monitor foils were measured nondestructively by a high-resolution HPGe gamma-ray detector. The present experimental cross-section value is the first one at 0.0536eV. The obtained new cross section that amounts to 26.6+/-1.6b is 2% higher than the recently reported data in ENDF/B-VII and 5% lower than that of JENDL-3.3. PMID:18325774

  20. Determination of the 151Eu(n,γ)152Eu and 153Eu(n,γ)154Eu Reaction Cross Sections at Thermal Neutron Energy

    NASA Astrophysics Data System (ADS)

    Basunia, M. S.; Firestone, R. B.; Révay, Zs.; Choi, H. D.; Belgya, T.; Escher, J. E.; Hurst, A. M.; Krtička, M.; Szentmiklósi, L.; Sleaford, B.; Summers, N. C.

    2014-05-01

    We have measured partial γ-ray cross sections following neutron capture in enriched 151Eu and 153Eu targets at the cold-neutron-beam facility of the Budapest Research Reactor. The cross sections were standardized using a stoichiometric natEuCl3 target with the well-known 1951-keV γ-ray cross section from the 35Cl(n,γ)36Cl reaction at the cold-neutron-beam facility of the Garching Research Reactor. The γ-ray cross sections were corrected for effective g-factors. These data were combined with the structural information of 152Eu and 154Eu given in the Evaluated Nuclear Structure Data File to produce capture γ-ray level schemes. The total radiative capture cross sections of the 151Eu(n,γ)152Eu and 153Eu(n,γ)154Eu reactions were determined by summing the experimental transition intensities from known levels with simulated intensities of transitions from higher excitations to the ground- or metastable-state. The individual 151Eu(n,γ)152Eu and 151Eu(n,γ)152gEu reaction cross sections disagree with values in the literature. However, the total cross section of the 151Eu(n,γ)152Eu reaction does agree with those values. Also, our deduced cross section for the 153Eu(n,γ)154Eu reaction closely follows the data in the literature. These results are supported by an earlier standardization experiment done at the Budapest Research Reactor using a target of Eu2O3 solution in H2SO4.

  1. 241 Am ( n ,γ) cross section in the neutron energy region between 0.02 eV and 300 keV

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2008-04-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for a neutron capture cross section measurement on 241 Am . The high granularity of the DANCE array (160 BaF2 detectors in a 4π geometry) enables an efficient detection of prompt gamma rays following neutron capture. The preliminary results on the 241 Am ( n ,γ) cross section are presented from 0.02 eV to 300 keV. The cross section at thermal energy E n = 0.0253 eV was determined to be 665±33 barns. Resonance parameters were obtained using the SAMMY7 fit to the measured cross section in the resonance region. Significant discrepancies were found between our results and data evaluations for the first three lowest lying resonances. The cross section for neutrons with E n >l keV agrees well with the ENDF/B-VII.0 and JENDL-3.3 evaluations.

  2. {sup 241}Am(n,{gamma}) cross section in the neutron energy region between 0.02 eV and 300 keV

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O' Donnell, J. M.; Haight, R. C.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2008-04-17

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for a neutron capture cross section measurement on {sup 241}Am. The high granularity of the DANCE array (160 BaF2 detectors in a 4{pi} geometry) enables an efficient detection of prompt gamma rays following neutron capture. The preliminary results on the {sup 241}Am(n,{gamma}) cross section are presented from 0.02 eV to 300 keV. The cross section at thermal energy E{sub n} = 0.0253 eV was determined to be 665{+-}33 barns. Resonance parameters were obtained using the SAMMY7 fit to the measured cross section in the resonance region. Significant discrepancies were found between our results and data evaluations for the first three lowest lying resonances. The cross section for neutrons with E{sub n}>l keV agrees well with the ENDF/B-VII.0 and JENDL-3.3 evaluations.

  3. Inelastic neutron scattering cross sections for Ge76 relevant to background in neutrinoless double- β decay experiments

    DOE PAGESBeta

    Crider, B. P.; Peters, E. E.; Allmond, J. M.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Vanhoy, J. R.; Yates, S. W.

    2015-09-11

    The experimental signature in searches for the neutrinoless double- decay of 76Ge is a peak near 2039 keV in the spectrum. Given the low probability of the process, it is important that the background in this region be well understood. Moreover, inelastic scattering reactions with neutrons from muon-induced interactions and ( ,n) reactions in the surrounding materials or in the detector can provide contributions to the background. We also measured the production cross sections for rays from the 76Ge(n,n ) reaction in the 2039-keV region at incident neutron energies up to 4.9 MeV. In addition to determining that the crossmore » sections of a previously known 2040.7-keV ray from the 3952-keV level in 76 Ge are rather small, we find that a larger contribution arises from a 2037.5-keV ray which is attributed to a newly identified level at 3147 keV in 76Ge. Finally, a third contribution is also possible from another new level at 3577 keV. These results indicate that the 2039-keV region in 76Ge neutrinoless double- decay searches is more complex than was previously thought.« less

  4. Insight into the Narrow Structure in η Photoproduction on the Neutron from Helicity-Dependent Cross Sections

    NASA Astrophysics Data System (ADS)

    Witthauer, L.; Dieterle, M.; Abt, S.; Achenbach, P.; Afzal, F.; Ahmed, Z.; Annand, J. R. M.; Arends, H. J.; Bashkanov, M.; Beck, R.; Biroth, M.; Borisov, N. S.; Braghieri, A.; Briscoe, W. J.; Cividini, F.; Costanza, S.; Collicott, C.; Denig, A.; Downie, E. J.; Drexler, P.; Ferretti-Bondy, M. I.; Gardner, S.; Garni, S.; Glazier, D. I.; Glowa, D.; Gradl, W.; Günther, M.; Gurevich, G. M.; Hamilton, D.; Hornidge, D.; Huber, G. M.; Käser, A.; Kashevarov, V. L.; Kay, S.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krusche, B.; Lazarev, A. B.; Linturi, J. M.; Lisin, V.; Livingston, K.; Lutterer, S.; MacGregor, I. J. D.; Mancell, J.; Manley, D. M.; Martel, P. P.; Metag, V.; Meyer, W.; Miskimen, R.; Mornacchi, E.; Mushkarenkov, A.; Neganov, A. B.; Neiser, A.; Oberle, M.; Ostrick, M.; Otte, P. B.; Paudyal, D.; Pedroni, P.; Polonski, A.; Prakhov, S. N.; Rajabi, A.; Reicherz, G.; Ron, G.; Rostomyan, T.; Sarty, A.; Sfienti, C.; Sikora, M. H.; Sokhoyan, V.; Spieker, K.; Steffen, O.; Strakovski, I. I.; Strub, Th.; Supek, I.; Thiel, A.; Thiel, M.; Thomas, A.; Unverzagt, M.; Usov, Yu. A.; Wagner, S.; Walford, N. K.; Watts, D. P.; Werthmüller, D.; Wettig, J.; Wolfes, M.; Zana, L.; A2 Collaboration at MAMI

    2016-09-01

    The double polarization observable E and the helicity dependent cross sections σ1 /2 and σ3 /2 were measured for η photoproduction from quasifree protons and neutrons. The circularly polarized tagged photon beam of the A2 experiment at the Mainz MAMI accelerator was used in combination with a longitudinally polarized deuterated butanol target. The almost 4 π detector setup of the Crystal Ball and TAPS is ideally suited to detect the recoil nucleons and the decay photons from η →2 γ and η →3 π0. The results show that the narrow structure previously observed in η photoproduction from the neutron is only apparent in σ1 /2 and hence, most likely related to a spin-1 /2 amplitude. Nucleon resonances that contribute to this partial wave in η production are only N 1 /2- (S11) and N 1 /2+ (P11). Furthermore, the extracted Legendre coefficients of the angular distributions for σ1 /2 are in good agreement with recent reaction model predictions assuming a narrow resonance in the P11 wave as the origin of this structure.

  5. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    SciTech Connect

    Yang, W. S.; Lee, C. H.

    2008-05-16

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies

  6. Validation Analyses of IEAF-2001 Activation Cross-Section Data for SS-316 and F82H Steels Irradiated in a White d-Li Neutron Field

    NASA Astrophysics Data System (ADS)

    Simakov, S. P.; Fischer, U.; v. Möllendorff, U.; Schmuck, I.; Tsige-Tamirat, H.; Wilson, P. P. H.

    2005-05-01

    The evaluated intermediate-energy activation cross-section library IEAF-2001 has been tested against integral experiments with SS-316 and F82H steels exposed to a white neutron flux spectrum extending up to 55 MeV. By making use of the ALARA inventory code the expected γ-active product nuclide inventories were calculated and compared with the measured one. It was found that IEAF-2001 reasonably agrees with experimental data for most of the detected radioisotopes. The reasons for some larger disagreements were found to be the uncertainty of the sample elemental composition, non-validated neutron activation reaction cross sections, and sequential charge particle reactions.

  7. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  8. Thermal neutron capture cross-section to 113Cd isomer for the study of s-process origin of 115Sn

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takehito; Shizuma, Toshiyuki; Chiba, Satoshi; Kajino, Toshitaka; Hatsukawa, Yuichi; Iwamoto, Nobuyuki; Shinohara, Nobuo; Harada, Hideo

    2010-06-01

    The astrophysical origin of a p-nucleus 115Sn has remained still an open question. The nucleus 115Sn may be produced by a weak branch of the s-process through a β-unstable isomer in 113Cd. However, a neutron capture cross-section to this isomer has not been measured with high accuracy at any energy. A neutron capture cross-section for the 112Cd(n,γ)113Cdm reaction has been measured with neutrons provided from a nuclear reactor. The nucleus 115Sn may be produced by a nucleosynthesis flow through 113Cdm in the s-process. We have obtained the thermal neutron capture cross-section of 0.028+/-0.009 [b] and the resonance integral of 1.1+/-0.3 [b] using a cadmium difference method. The cross-section ratio of the isomer to the ground state has been calculated as a function of the incident neutron energy, E, by using a statistical model. The calculated ratios are almost constant over a wide range of E<100 keV. We have evaluated the s-process contribution to the solar abundance of 115Sn using the classical steady-flow model. This calculated result has shown that the production through 113Cdm may be minor contribution to 115Sn.

  9. Neutron capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 189}Os for the Re-Os chronology

    SciTech Connect

    Segawa, M.; Masaki, T.; Nagai, Y.; Temma, Y.; Shima, T.; Mishima, K.; Igashira, M.; Goriely, S.; Koning, A.; Hilaire, S.

    2007-08-15

    Discrete as well as continuum {gamma}-ray energy spectra from the neutron capture by {sup 186}Os, {sup 187}Os, and {sup 189}Os have been taken for the first time at 5{<=}E{sub n}{<=}90 keV by an anti-Compton NaI(Tl) spectrometer. The detection of a weak discrete {gamma}-ray, about 0.5% of total {gamma}-ray strength, demonstrates the high sensitivity of the present measurement. The energy spectra enabled us to accurately determine the reaction cross sections with a small systematic uncertainty. Based on the new cross sections, we reestimate on the basis of a careful reaction cross section calculation the correction factor F{sub {sigma}} for the neutron capture on the 9.75-keV first excited state in {sup 187}Os as a function of stellar temperature, as required to derive the age of the galaxy within the Re-Os chronology.

  10. Predicted levels of Be9 based on a theoretical analysis of neutron double-differential cross sections at En=14.1 and 18 MeV

    NASA Astrophysics Data System (ADS)

    Duan, Junfeng; Zhang, Jingshang; Wu, Haicheng; Sun, Xiaojun

    2009-12-01

    By using the statistical theory for neutron-induced light nucleus reaction, the calculation of the neutron double-differential cross sections for n+Be9 reactions is performed. The secondary outgoing neutrons only coming from the (n,2n)2α reaction channel through six different emission processes are illustrated in detail in this article. Based on the theoretical analysis of neutron double-differential cross sections at En=14.1 and 18 MeV, two predicted levels of Be9, i.e., E(Jπ)Γ=9((5)/(2)+)1000 and 10((5)/(2)+)1000, have been recommended. The calculated results indicate that the fittings would be improved obviously while the predicted levels have been employed.

  11. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    SciTech Connect

    Ullmann, John Leonard; Kawano, Toshihiko; Bredeweg, Todd Allen; Baramsai, Bayarbadrakh; Couture, Aaron Joseph; Haight, Robert Cameron; Jandel, Marian; Mosby, Shea Morgan; O'Donnell, John M.; Rundberg, Robert S.; Vieira, David J.; Wilhelmy, Jerry B.; Becker, John A.; Wu, Ching-Yen; Krticka, Milan

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  12. Cross sections of proton- and neutron-induced reactions by the Liège intranuclear cascade model

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Dong, Tiekuang; Ren, Zhongzhou

    2016-06-01

    The purpose of the paper is mainly to test the validity of the Liège intranuclear cascade (INCL) model in calculating the cross sections of proton-induced reactions for cosmogenic nuclei using the newly compiled database of proton cross sections. The model calculations of 3He display the rising tendency of cross sections with the increase of energy, in accordance with the experimental data. Meanwhile, the differences between the theoretical results and experimental data of production cross sections (10Be and 26Al) are generally within a factor of 3, meaning that the INCL model works quite well for the proton-induced reactions. Based on the good agreement, we predict the production cross sections of 26Al from reactions n + 27Al, n + 28Si, and n + 40Ca and those of 10Be from reactions n + 16O and n + 28Si. The results also show a good agreement with a posteriori excitation functions.

  13. Measurement of reaction cross-sections for 89Y at average neutron energies of 7.24-24.83 MeV

    NASA Astrophysics Data System (ADS)

    Zaman, Muhammad; Kim, Guinyun; Naik, Haladhara; Kim, Kwangsoo; Shahid, Muhammad

    2015-05-01

    We measured neutron-induced reaction cross-sections for 89Y(n,γ)90mY and 89Y(n,α)86Rb reactions with the average neutron energy region from 7.45 to 24.83 MeV by an activation and off-line γ-ray spectrometric technique using the MC-50 Cyclotron at Korea Institute of Radiological and Medical Sciences. The neutron-induced reaction cross-sections of 89Y as a function of neutron energy were taken from the TENDL-2013 library. The flux-weighted average cross-sections for 89Y(n,γ)90mY and 89Y(n,α)86Rb reactions were calculated from the TENDL-2013 values based on mono-energetic neutron and by using the neutron energy spectrum from MCNPX 2.6.0 code. The present results are compared with the flux-weighted values of TENDL-2013 and are found to be in good agreement

  14. Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis

    SciTech Connect

    Firestone, Richard B; Revay, Zsolt

    2009-12-01

    Independent databases of nuclear constants for Neutron Activation Analysis (NAA) have been independently maintained by the physics and chemistry communities for many year. They contain thermal neturon cross sections s0, standardization values k0, and transition probabilities Pg. Chemistry databases tend to rely upon direct measurements of the nuclear constants k0 and Pg which are often published in chemistry journals while the physics databases typically include evaluated s0 and Pg data from a variety of experiments published mainly in physics journals. The IAEA/LBNL Evaluated Gamma-ray Activation File (EGAF) also contains prompt and delayed g-ray cross sections sg from Prompt Gamma-ray Activation Analysis (PGAA) measurements that can also be used to determine k0 and s0 values. As a result several independent databases of fundamental constants for NAA have evolved containing slightly different and sometimes discrepant results. An IAEA CRP for a Reference Database for Neutron Activation Analysis was established to compare these databases and investigate the possibilitiy of producing a self-consistent set of s0, k0, sg, and Pg values for NAA and other applications. Preliminary results of this IAEA CRP comparison are given in this paper.

  15. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    SciTech Connect

    Youinou, Gilles Jean-Michel

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  16. Recent fission cross section standards measurements

    SciTech Connect

    Wasson, O.A.

    1985-01-01

    The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.

  17. Neutron-induced fission cross section of 237Np in the keV to MeV range at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Ioannidis, K.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Konovalov, V.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2016-03-01

    The neutron-induced fission cross section of 237Np was experimentally determined at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the 235U(n ,f ) and 238U(n ,f ) cross section standards below and above 2 MeV, respectively. A fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of α spectroscopy and Rutherford backscattering spectroscopy respectively. Theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the empire code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.

  18. Neutron-induced fission cross section of Np237 in the keV to MeV range at the CERN n_TOF facility

    DOE PAGESBeta

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; et al

    2016-03-17

    We experimentally determined the neutron-induced fission cross section of Np-237 at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. Moreover, a fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Finally, theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, andmore » the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.« less

  19. The Neutron Capture Cross Sections of 237NP(n,{gamma}) and 240Pu(n,{gamma}) and Its Relevance in the Transmutation of Nuclear Waste

    SciTech Connect

    Guerrero, C.; Koehler, Paul Edward; Collaboration, n_TOF

    2008-01-01

    Neutron capture cross sections of actinides are of great relevance for the Transmutation of Nuclear Waste in Accelerator Driven Systems (ADS) and Generation-IV reactors. The neutron capture cross sections of {sup 237}Np and {sup 240}Pu were measured at the n{_}TOF facility with a Total Absorption Calorimeter. The data have been analyzed with the SAMMY code. The corresponding covariance matrices have been generated. The final cross sections are presented and compared to the previously existing ones.

  20. Neutron-induced fission cross section of {sup 234}U and {sup 237}Np measured at the CERN Neutron Time-of-Flight (n{sub T}OF) facility

    SciTech Connect

    Paradela, C.; Duran, I.; Tarrio, D.; Alvarez, H.; Tassan-Got, L.; Berthier, B.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Trubert, D.; David, S.; Abbondanno, U.; Fujii, K.; Milazzo, P. M.; Moreau, C.; Aerts, G.

    2010-09-15

    A high-resolution measurement of the neutron-induced fission cross section of {sup 234}U and {sup 237}Np has been performed at the CERN Neutron Time-of-Flight facility. The cross sections have been determined in a wide energy range from 1 eV to 1 GeV using the evaluated {sup 235}U cross section as reference. In these measurements the energy determination for the {sup 234}U resonances could be improved, whereas previous discrepancies for the {sup 237}Np resonances were confirmed. New cross-section data are provided for high neutron energies that go beyond the limits of prior evaluations, obtaining important differences in the case of {sup 237}Np.

  1. R-matrix analysis of the {sup 240}Pu neutron cross sections in the thermal to 5700 eV energy range

    SciTech Connect

    Derrien, H.; Bouland, O.; Larson, N.M.; Leal, L.C.

    1997-08-01

    Resonance analysis of high resolution neutron transmission data and of fission cross sections were performed in the neutron energy range from the thermal regions to 5,700 eV by using the Reich-Moore Bayesian code SAMMY. The experimental data base is described and the method of analysis is given. The experimental data were carefully examined in order to identify more resonances than those found in the current evaluated data files. The statistical properties of the resonance parameters are given. A new set of the average values of the parameters is proposed, which could be used for calculation of the average cross sections in the unresolved resonance region. The resonance parameters are available IN ENDF-6 format at the national or international data centers.

  2. Production cross sections from 82Se fragmentation as indications of shell effects in neutron-rich isotopes close to the drip-line

    NASA Astrophysics Data System (ADS)

    Tarasov, O. B.; Portillo, M.; Morrissey, D. J.; Amthor, A. M.; Bandura, L.; Baumann, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Chubarian, G.; Fukuda, N.; Gade, A.; Ginter, T. N.; Hausmann, M.; Inabe, N.; Kubo, T.; Pereira, J.; Sherrill, B. M.; Stolz, A.; Sumithrarachichi, C.; Thoennessen, M.; Weisshaar, D.

    2013-05-01

    Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 126 neutron-rich isotopes of elements 11≤Z≤32 were scanned using an experimental approach of varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei including several isotopes first observed in this work. These are the most neutron-rich nuclides of the elements 22≤Z≤25 (64Ti, 67V, 69Cr, and 72Mn). One event was registered consistent with 70Cr and another one with 75Fe. The production cross sections are correlated with Qg systematics to reveal trends in the data. The results presented here confirm our previous results from a similar measurement using a 76Ge beam and can be explained with a shell model that predicts a subshell closure at N=34 around Z=20. This is demonstrated by systematic trends and calculations with the abrasion-ablation model that are sensitive to separation energies.

  3. Cross Section Measurements of Neutron Induced Reactions on GaAs using Monoenergetic Beams from 7.5 to 15 MeV

    NASA Astrophysics Data System (ADS)

    Raut, R.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Huibregtse, C.; Kelley, J. H.; Kawano, T.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2011-09-01

    Cross section measurements for the neutron induced reactions on GaAs have been carried out at ten different neutron energies from 7.5 to 15 MeV, using the activation technique. The monoenergetic neutron beams were produced via the 2H(d,n)3He reaction, known for it's high neutron yield in the chosen energy regime. GaAs samples were activated along with the Au and Al monitor foils, for estimating the incident neutron flux. The induced activiy was measured using high resolution γ-ray spectroscopy. Five reaction channels viz., 69Ga(n, 2n) Ga, 69Ga(n,p)69mZn, 71Ga(n,p)71mZn, 75As(n, 2n)74As and 75As(n,p)75Ge, have been reported for the comprehensive cross section measurements. The results are compared with the existing literature data and the available evaluations. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS and EMPIRE codes and are compared with the experimental values.

  4. ANSL-V: ENDF/B-V based multigroup cross-section libraries for Advanced Neutron Source (ANS) reactor studies. Supplement 1

    SciTech Connect

    Wright, R.Q.; Renier, J.P.; Bucholz, J.A.

    1995-08-01

    The original ANSL-V cross-section libraries (ORNL-6618) were developed over a period of several years for the physics analysis of the ANS reactor, with little thought toward including the materials commonly needed for shielding applications. Materials commonly used for shielding applications include calcium barium, sulfur, phosphorous, and bismuth. These materials, as well as {sup 6}Li, {sup 7}Li, and the naturally occurring isotopes of hafnium, have been added to the ANSL-V libraries. The gamma-ray production and gamma-ray interaction cross sections were completely regenerated for the ANSL-V 99n/44g library which did not exist previously. The MALOCS module was used to collapse the 99n/44g coupled library to the 39n/44g broad- group library. COMET was used to renormalize the two-dimensional (2- D) neutron matrix sums to agree with the one-dimensional (1-D) averaged values. The FRESH module was used to adjust the thermal scattering matrices on the 99n/44g and 39n/44g ANSL-V libraries. PERFUME was used to correct the original XLACS Legendre polynomial fits to produce acceptable distributions. The final ANSL-V 99n/44g and 39n/44g cross-section libraries were both checked by running RADE. The AIM module was used to convert the master cross-section libraries from binary coded decimal to binary format (or vice versa).

  5. Neutron-Induced Partial Gamma-Ray Cross-Section Measurements on 238U Using a Monoenergetic and Pulsed Beam at TUNL

    NASA Astrophysics Data System (ADS)

    Hutcheson, A.; Pedroni, R. S.; Weisel, G. J.; Becker, J. A.; Fotiades, N.; Lantuejoul, I.

    2005-04-01

    An experimental program is being developed at TUNL to study (n,2n) excitation functions on actinide nuclei using monoenergetic neutrons in the 5 to 18 MeV energy range with the goal of improving the partial cross-section data for the NNSA Stockpile Stewardship Program. Measurements have been performed on a ^238U target in the TUNL shielded neutron source area using a pulsed neutron beam with incident neutron energies of 6, 8, 10, and 14 MeV. The emitted gamma rays were measured using different types of HPGe detectors. The pulsed beam permitted the use of time-of-flight techniques to distinguish (n,2n) events from background events. Experimental techniques and analysis of the measurements will be presented.

  6. Cross-section measurements of neutron-induced reactions on GaAs using monoenergetic beams from 7.5 to 15 MeV

    NASA Astrophysics Data System (ADS)

    Raut, R.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Huibregtse, C.; Kelley, J. H.; Kawano, T.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2011-04-01

    Cross-section measurements for neutron-induced reactions on GaAs have been carried out at twelve different neutron energies from 7.5 to 15 MeV using the activation technique. The monoenergetic neutron beams were produced via the H2(d,n)He3 reaction. GaAs samples were activated along with Au and Al monitor foils to determine the incident neutron flux. The activities induced by the reaction products were measured using high-resolution γ-ray spectroscopy. Cross sections for five reaction channels, viz., Ga69(n,2n)Ga68, Ga69(n,p)Zn69m, Ga71(n,p)Zn71m, As75(n,2n)As74, and As75(n,p)Ge75, are reported. The results are compared with the previous measurements and available data evaluations. Statistical-model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS and the COH3 codes and are compared with the experimental results.

  7. Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb-Pb collisions at sqrt[s(NN)] = 2.76 TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Aystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Bock, N; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Böttger, S; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Bugaiev, K; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa Del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Cotallo, M E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Erasmo, G D; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; de Rooij, R; Del Castillo Sanchez, E; Delagrange, H; Deloff, A; Demanov, V; Dénes, E; Deppman, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Diaz Corchero, M A; Dietel, T; Divià, R; Djuvsland, O; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, O; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harmanova, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jancurová, L; Jang, H J; Jangal, S; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kanaki, K; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, B; Kim, D J; Kim, D W; Kim, J H; Kim, J S; Kim, M; Kim, S; Kim, S H; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladrón de Guevara, P; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lazzeroni, C; Le Bornec, Y; Lea, R; Lechman, M; Lee, K S; Lee, S C; Lefèvre, F; Lehnert, J; Leistam, L; Lemmon, R C; Lenhardt, M; Lenti, V; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Mal'kevich, D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, A K; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Piyarathna, D B; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pujol Teixido, J; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Sgura, I; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, J; Song, M; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Sumbera, M; Susa, T; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Tagridis, C; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Tosello, F; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; van Leeuwen, M; Vande Vyvre, P; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Ovrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, D; Wang, M; Wang, Y; Wang, Y; Watanabe, K; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhou, D; Zhou, F; Zhou, Y; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M

    2012-12-21

    The first measurement of neutron emission in electromagnetic dissociation of ^{208}Pb nuclei at the LHC is presented. The measurement is performed using the neutron zero degree calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at sqrt[s(NN)]=2.76 TeV with neutron emission are σ(singleEMD)=187.4 ± 0.2(stat)(-11.2)(+13.2) (syst) b and σ(mutualEMD) = 5.7 ± 0.1(stat) ± 0.4(syst) b, respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model. PMID:23368454

  8. Slow neutron total cross-section, transmission and reflection calculation for poly- and mono-NaCl and PbF2 crystals

    NASA Astrophysics Data System (ADS)

    Mansy, Muhammad S.; Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.

    2016-10-01

    A detailed study about the calculation of total neutron cross-section, transmission and reflection from crystalline materials was performed. The developed computer code is approved to be sufficient for the required calculations, also an excellent agreement has been shown when comparing the code results with the other calculated and measured values. The optimal monochromator and filter parameters were discussed in terms of crystal orientation, mosaic spread, and thickness. Calculations show that 30 cm thick of PbF2 poly-crystal is an excellent cold neutron filter producing neutron wavelengths longer than 0.66 nm needed for the investigation of magnetic structure experiments. While mono-crystal filter PbF2 cut along its (1 1 1), having mosaic spread (η = 0.5°) and thickness 10 cm can only transmit thermal neutrons of the desired wavelengths and suppress epithermal and γ-rays forming unwanted background, when it is cooled to liquid nitrogen temperature. NaCl (2 0 0) and PbF2 (1 1 1) monochromator crystals having mosaic spread (η = 0.5°) and thickness 10 mm shows high neutron reflectivity for neutron wavelengths (λ = 0.114 nm and λ = 0.43 nm) when they used as a thermal and cold neutron monochromators respectively with very low contamination from higher order reflections.

  9. The impact of updated Zr neutron-capture cross sections and new asymptotic giant branch models on our understanding of the S process and the origin of stardust

    SciTech Connect

    Lugaro, Maria; Tagliente, Giuseppe; Karakas, Amanda I.; Milazzo, Paolo M.; Käppeler, Franz; Davis, Andrew M.; Savina, Michael R. E-mail: giuseppe.tagliente@ba.infn.it E-mail: paolo.milazzo@ts.infn.it E-mail: a-davis@uchicago.edu

    2014-01-01

    We present model predictions for the Zr isotopic ratios produced by slow neutron captures in C-rich asymptotic giant branch (AGB) stars of masses 1.25-4 M {sub ☉} and metallicities Z = 0.01-0.03, and compare them to data from single meteoritic stardust silicon carbide (SiC) and high-density graphite grains that condensed in the outflows of these stars. We compare predictions produced using the Zr neutron-capture cross sections from Bao et al. and from n{sub T}OF experiments at CERN, and present a new evaluation for the neutron-capture cross section of the unstable isotope {sup 95}Zr, the branching point leading to the production of {sup 96}Zr. The new cross sections generally present an improved match with the observational data, except for the {sup 92}Zr/{sup 94}Zr ratios, which are on average still substantially higher than predicted. The {sup 96}Zr/{sup 94}Zr ratios can be explained using our range of initial stellar masses, with the most {sup 96}Zr-depleted grains originating from AGB stars of masses 1.8-3 M {sub ☉} and the others from either lower or higher masses. The {sup 90,} {sup 91}Zr/{sup 94}Zr variations measured in the grains are well reproduced by the range of stellar metallicities considered here, which is the same needed to cover the Si composition of the grains produced by the chemical evolution of the Galaxy. The {sup 92}Zr/{sup 94}Zr versus {sup 29}Si/{sup 28}Si positive correlation observed in the available data suggests that stellar metallicity rather than rotation plays the major role in covering the {sup 90,} {sup 91,} {sup 92}Zr/{sup 94}Zr spread.

  10. Measurement of Neutron-Induced Fission Cross Sections of {sup 229}Th and {sup 231}Pa Using Linac-Driven Lead Slowing-Down Spectrometer

    SciTech Connect

    Kobayashi, Katsuhei; Yamamoto, Shuji; Lee, Samyol; Cho, Hyun-Je; Yamana, Hajimu; Moriyama, Hirotake; Fujita, Yoshiaki; Mitsugashira, Toshiaki

    2001-11-15

    Use is made of a back-to-back type of double fission chamber and an electron linear accelerator-driven lead slowing-down spectrometer to measure the neutron-induced fission cross sections of {sup 229}Th and {sup 231}Pa below 10 keV relative to that of {sup 235}U. A measurement relative to the {sup 10}B(n, {alpha}) reaction is also made using a BF{sub 3} counter at energies below 1 keV and normalized to the absolute value obtained by using the cross section of the {sup 235}U(n,f) reaction between 200 eV and 1 keV.The experimental data of the {sup 229}Th(n,f) reaction, which was measured by Konakhovich et al., show higher cross-section values, especially at energies of 0.1 to 0.4 eV. The data by Gokhberg et al. seem to be lower than the current measurement above 6 keV. Although the evaluated data in JENDL-3.2 are in general agreement with the measurement, the evaluation is higher from 0.25 to 5 eV and lower above 10 eV. The ENDF/B-VI data evaluated above 10 eV are also lower. The current thermal neutron-induced fission cross section at 0.0253 eV is 32.4 {+-} 10.7 b, which is in good agreement with results of Gindler et al., Mughabghab, and JENDL-3.2.The mean value of the {sup 231}Pa(n,f) cross sections between 0.37 and 0.52 eV, which were measured by Leonard and Odegaarden, is close to the current measurement. The evaluated data in ENDF/B-VI are lower below 0.15 eV and higher above {approx}30 eV. The ENDF/B-VI and the JEF-2.2 are extremely higher above 1 keV. The JENDL-3.2 data are in general agreement with the measurement, although they are lower above {approx}100 eV.

  11. Measurement of gamma-ray production cross sections in neutron-induced reactions for Al and Pb

    SciTech Connect

    Pavlik, A.; Vonach, H.; Hitzenberger, H.; Nelson, R.O.; Haight, R.C.; Wender, S.A.; Young, P.G.; Chadwick, M.B.

    1995-02-01

    The prompt gamma-radiation from the interaction of fast neutrons with aluminum and lead was measured using the white neutron beam of the WNR facility at the Los Alamos National Laboratory. The samples (Al and isotopically enriched {sup 207}Pb and {sup 208}Pb) were positioned at about 20 m or 41 m distance from the neutron production target. The spectra of the emitted gamma-rays were measured with a high-resolution HPGe detector. The incident neutron energy was determined by the time-of-flight method and the neutron fluence was measured with a U fission chamber. From the aluminum gamma-ray spectra excitation functions for prominent gamma-transitions in various residual nuclei (in the range from O to Al) were derived for neutron energies from 3 MeV to 400 MeV. For lead (n,xn{gamma}) reactions were studied for neutron energies up to 200 MeV by analyzing prominent gamma-transitions in the residual nuclei {sup 200,202,204,206,207,208}Pb. The experimental results were compared with nuclear model calculations using the code GNASH. A good overall agreement was obtained without special parameter adjustments.

  12. Calculations of Nuclear Astrophysics and Californium Fission Neutron Spectrum Averaged Cross Section Uncertainties Using ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-fidelity Covariances

    SciTech Connect

    Pritychenko, B.

    2015-01-15

    Nuclear astrophysics and californium fission neutron spectrum averaged cross sections and their uncertainties for ENDF materials have been calculated. Absolute values were deduced with Maxwellian and Mannhart spectra, while uncertainties are based on ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-Fidelity covariances. These quantities are compared with available data, independent benchmarks, EXFOR library, and analyzed for a wide range of cases. Recommendations for neutron cross section covariances are given and implications are discussed.

  13. Calculations of Nuclear Astrophysics and Californium Fission Neutron Spectrum Averaged Cross Section Uncertainties Using ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-fidelity Covariances

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.

    2015-01-01

    Nuclear astrophysics and californium fission neutron spectrum averaged cross sections and their uncertainties for ENDF materials have been calculated. Absolute values were deduced with Maxwellian and Mannhart spectra, while uncertainties are based on ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-Fidelity covariances. These quantities are compared with available data, independent benchmarks, EXFOR library, and analyzed for a wide range of cases. Recommendations for neutron cross section covariances are given and implications are discussed.

  14. Neutron-induced fission cross sections of 242Pu from 0.3 MeV to 3 MeV

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2015-10-01

    The majority of the next generation of nuclear power plants (GEN-IV) will work in the fast-neutron-energy region, as opposed to present day thermal reactors. This leads to new and more accurate nuclear-data needs for some minor actinides and structural materials. Following those upcoming demands, the Organisation for Economic Cooperation and Development Nuclear Energy Agency performed a sensitivity study. Based on the latter, an improvement in accuracy from the present 20% to 5% is required for the 242Pu(n ,f ) cross section. Within the same project both the 240Pu(n ,f ) cross section and the 242Pu(n ,f ) cross section were measured at the Van de Graaff accelerator of the Joint Research Centre at the Institute for Reference Materials and Measurements, where quasimonoenergetic neutrons were produced in an energy range from 0.3 MeV up to 3 MeV. A twin Frisch-grid ionization chamber has been used in a back-to-back configuration as fission-fragment detector. The 242Pu(n ,f ) cross section has been normalized to three different isotopes: 237Np(n ,f ) , 235U(n ,f ) , and 238U(n ,f ) . A comprehensive study of the corrections applied to the data and the uncertainties associated is given. The results obtained are in agreement with previous experimental data at the threshold region up to 0.8 MeV. The resonance-like structure at 0.8 to 1.1 MeV, visible in the evaluations and in most previous experimental values, was not reproduced with the same intensity in this experiment. For neutron energies higher than 1.1 MeV, the results of this experiment are slightly lower than the Evaluated Nuclear Data File/B-VII.1 evaluation but in agreement with the experiment of Tovesson et al. (2009) as well as Staples and Morley (1998). Finally, for energies above 1.5 MeV, the results show consistency with the present evaluations.

  15. Gogny-Hartree-Fock-Bogolyubov plus quasiparticle random-phase approximation predictions of the M 1 strength function and its impact on radiative neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Hilaire, S.; Péru, S.; Martini, M.; Deloncle, I.; Lechaftois, F.

    2016-10-01

    Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we extend our large-scale calculations of the E 1 γ -ray strength function, obtained in the framework of the axially- symmetric-deformed quasiparticle random phase approximation (QRPA) based on the finite-range D1M Gogny force, to the calculation of the M 1 strength function. We compare our QRPA prediction of the M 1 strength with available experimental data and show that a relatively good agreement is obtained provided the strength is shifted globally by about 2 MeV and increased by an empirical factor of 2. Predictions of the M 1 strength function for spherical and deformed nuclei within the valley of β stability as well as in the neutron-rich region are discussed. Its impact on the radiative neutron capture cross section is also analyzed.

  16. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,gamma) cross sections of {sup 186,187,188}Os

    SciTech Connect

    Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    Neutron resonance analyses have been performed for the capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os measured at the n{sub T}OF facility at cern. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the sammy code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the {sup 187}Os abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.

  17. Neutron cross-sections above 20 MeV for design and modeling of accelerator driven systems

    NASA Astrophysics Data System (ADS)

    Blomgren, J.

    2007-02-01

    One of the outstanding new developments in the field of partitioning and transmutation (P{&}T) concerns accelerator-driven systems (ADS) which consist of a combination of a high-power, high-energy accelerator, a spallation target for neutron production and a sub-critical reactor core. The development of the commercial critical reactors of today motivated a large effort on nuclear data up to about 20 MeV, and presently several million data points can be found in various data libraries. At higher energies, data are scarce or even non-existent. With the development of nuclear techniques based on neutrons at higher energies, nowadays there is a need also for higher-energy nuclear data. To provide alternative to this lack of data, a wide program on neutron-induced data related to ADS for P{&}T is running at the 20-180 MeV neutron beam facility at `The Svedberg Laboratory' (TSL), Uppsala. The programme encompasses studies of elastic scattering, inelastic neutron production, i.e., (n, xn') reactions, light-ion production, fission and production of heavy residues. Recent results are presented and future program of development is outlined.

  18. Cross sections for neutron-producing reactions induced by 14. 1 MeV neutrons incident on /sup 6/Li, /sup 7/Li, /sup 10/B, /sup 11/B, and carbon

    SciTech Connect

    Drosg, M.; Lisowski, P.W.; Drake, D.M.; Hardekopf, R.A.; Muellner, M.

    1988-10-01

    Using the time-of-flight technique, we have measured neutron emission spectra for /sup 6/Li, /sup 7/Li, /sup 10/B, /sup 11/B and carbon at an incident neutron energy of 14.1 MeV and at 10 angles between 30/degree/ and 143/degree/. Double differential cross sections and their integrated values have been extracted and are presented in tables and graphs. The nonelastic portion of the neutron emission spectra is noticeably higher than expected which may be due to uncertainties in the input library (ENDF/B-IV) used in the Monte Carlo correction for multiple scattering. In particular, the library for /sup 11/B appears to be very unrealistic with an integrated elastic cross section which should be higher by 50%. 20 refs., 1 fig., 12 tabs.

  19. Extracting the photoproduction cross sections off the neutron, via the γn→π-p reaction, from deuteron data with final-state interaction effects

    NASA Astrophysics Data System (ADS)

    Tarasov, V. E.; Briscoe, W. J.; Gao, H.; Kudryavtsev, A. E.; Strakovsky, I. I.

    2011-09-01

    The incoherent pion photoproduction reaction γd→π-pp is considered theoretically in a wide energy region Eth≤Eγ≤2700 MeV. The model applied contains the impulse approximation as well as the NN and πN final-state-interaction (FSI) amplitudes. The aim of the paper is to study a reliable way for getting the information on elementary γn→π-p reaction cross sections beyond the impulse approximation for γd→π-pp. For the elementary γN→πN, NN→NN, and πN→πN amplitudes, the results of The George Washington University (GW) Data Analysis Center (DAC) are used. There are no additional theoretical constraints. The calculated cross sections dσ/dΩ(γd→π-pp) are compared with existing data. The procedure used to extract information on the differential cross section dσ/dΩ(γn→π-p) on the neutron from the deuteron data using the FSI correction factor R is discussed. The calculations for R versus π-p center-of-mass (CM) angle θ1 of the outgoing pion are performed at different photon-beam energies with kinematic cuts for a “quasifree” process γn→π-p. The results show a sizable FSI effect R≠1 from the S-wave part of pp-FSI at small angles close to θ1˜0: this region narrows as the photon energy increases. At larger angles, the effect is small (|R-1|≪1) and agrees with estimations of FSI in the Glauber approach.

  20. Graphs of the cross sections in the recommended Monte Carlo cross-section library at the Los Alamos Scientific Laboratory

    SciTech Connect

    Soran, P.D.; Seamon, R.E.

    1980-05-01

    Graphs of all neutron cross sections and photon production cross sections on the Recommended Monte Carlo Cross Section (RMCCS) library have been plotted along with local neutron heating numbers. Values for anti ..nu.., the average number of neutrons per fission, are also given.

  1. Calculation of pre-equilibrium effects in neutron-induced cross section on 32,34S isotopes using the EMPIRE 3.2 code

    NASA Astrophysics Data System (ADS)

    Yettou, Leila; Belgaid, Mohamed

    2015-07-01

    In this study, a new version EMPIRE 3.2 code was used in the cross section calculations of (n,p) reactions and in the calculation of proton emission spectra produced by (n,xp) reactions. Exciton model predictions combined with the Kalbach angular distribution systematics were used and some parameters such as those of mean free path, cluster emission in terms of Iwamoto-Harada model, optical model potentials of Morillon for neutrons and protons in the energy range up to 20 MeV, level density for spherical nuclei of Gilbert-Cameron model and width fluctuation correction in terms of compound nucleus have been investigated our calculations. The excitation functions and the proton emission spectra for 32,34S nuclei were calculated, discussed and found in good agreement with available experimental data.

  2. Differential cross section of γn→K+Σ- on bound neutrons with incident photons from 1.1 to 3.6 GeV

    DOE PAGESBeta

    Pereira, S. Anefalos; Mirazita, M.; Rossi, P.; De Sanctis, E.; Niculescu, G.; Niculescu, I.; Stepanyan, S.; Adhikari, K. P.; Aghasyan, M.; Anghinolfi, M.; et al

    2010-05-01

    Differential cross sections of the reaction γd → K+Σ–(p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to Eγ ~ 1.8 GeV, the shape of the angular distribution is suggestive of the presence of s -channel production mechanisms. For Eγ > 1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributions from t-channel production mechanisms.more » Furthermore, these data can be used to constrain future analysis of this reaction.« less

  3. Program GROUPIE (version 79-1): calculation of Bondarenko self-shielded neutron cross sections and multiband parameters from data in the ENDF/B format

    SciTech Connect

    Cullen, D.E.

    1980-07-04

    Program GROUPIE reads evaluated data in the ENDF/B format and uses these data to calculate Bondarenko self-shielded cross sections and multiband parameters. To give as much generality as possible, the program allows the user to specify arbitrary energy groups and an arbitrary energy groups and an arbitrary energy-dependent neutron spectrum (weighing function). To guarantee the accuracy of the results, all integrals are performed analytically; in no case is iteration or any approximate form of integration used. The output from this program includes both listings and multiband parameters suitable for use either in a normal multigroup transport calculation or in a multiband transport calculation. A listing of the source deck is available on request.

  4. Time features of delayed neutrons and partial emissive-fission cross sections for the neutron-induced fission of {sup 232}Th nuclei in the energy range 3.2-17.9 MeV

    SciTech Connect

    Roshchenko, V. A. Piksaikin, V. M. Korolev, G. G.; Egorov, A. S.

    2010-06-15

    The energy dependence of the relative abundances of delayed neutrons and the energy dependence of the half-lives of their precursors in the neutron-induced fission of {sup 232}Th nuclei in the energy range 3.2-17.9 MeV were measured for the first time. A systematics of the time features of delayed neutrons is developed. This systematics makes it possible to estimate the half-life of delayed-neutron precursors as a function of the nucleonic composition of fissile nuclei by using a single parameter set for all nuclides. The energy dependence of the partial cross sections for emissive fission in the reaction {sup 232}Th(n, f) was analyzed on the basis of data obtained for the relative abundances of delayed neutrons and the aforementioned half-lives and on the basis of the created systematics of the time features of delayed neutrons. It was shown experimentally for the first time that the decrease in the cross section after the reaction threshold in the fission of {sup 232}Th nuclei (it has a pronounced first-chance plateau) is not an exclusion among the already studied uranium, plutonium, and curium isotopes and complies with theoretical predictions obtained for the respective nuclei with allowance for shell, superfluid, and collective effects in the nuclear-level density and with allowance for preequilibrium neutron emission

  5. A PROPOSAL TO MEASURE THE CROSS SECTION OF THE SPACE STAR IN NEUTRON-DEUTERON BREAKUP IN A RECOIL GEOMETRY SETUP

    SciTech Connect

    Benjamin J. Crowe III

    2009-09-30

    Nucleon-deuteron (Nd) breakup is an important tool for obtaining a better understanding of three-nucleon (3N) dynamics and for developing meson exchange descriptions of nuclear systems. The kinematics of the nd breakup reaction enable observables to be studied in a variety of exit-channel configurations that show sensitivity to realistic nucleon-nucleon (NN) potential models and three-nucleon force (3NF) models. Rigorous 3N calculations give very good descriptions of most 3N reaction data. However, there are still some serious discrepancies between data and theory. The largest discrepancy observed between theory and data for nd breakup is for the cross section for the space-star configuration. This discrepancy is known as the “Space star Anomaly”. Several experimental groups have obtained results consistent with the “Space Star Anomaly”, but it is important to note that they all used essentially the same experimental setup and so their experimental results are subject to the same systematic errors. We propose to measure the space-star cross-section at the Triangle Universities Nuclear Laboratory (TUNL) using an experimental technique that is significantly different from the one used in previous breakup experiments. This technique has been used by a research group from the University of Bonn to measure the neutron-neutron scattering length. There are three possible scenarios for the outcome of this work: 1) the new data are consistent with previous measurements; 2) the new data are not in agreement with previous measurements, but are in agreement with theory; and 3) the new data are not in agreement with either theory or previous measurements. Any one of the three scenarios will provide valuable insight on the Space Star Anomaly.

  6. Neutron capture by Ru: Neutron cross sections of {sup 96,102,104}Ru and gamma-ray spectroscopy in the decays of {sup 97,103,105}Ru

    SciTech Connect

    Krane, K. S.

    2010-04-15

    Cross sections for radiative capture of neutrons have been measured for stable isotopes of Ru with mass numbers 96,102, and 104. From separate irradiations using thermal and epithermal neutrons, independent values for the thermal cross section and effective resonance integral have been determined. Spectroscopic studies of the gamma rays emitted in the decays of {sup 97,103,105}Ru have enabled improvements in the precision of the energies and intensities of the radiations along with corresponding improvements in the beta-decay feeding intensities and the energies of the levels in the respective daughter nuclei. Similar spectroscopic measurements of the decays of {sup 105}Rh (daughter of {sup 105}Ru) and {sup 96}Tc (produced from n,p reactions on {sup 96}Ru) have resulted in improved gamma-ray energies and intensities in those decays.

  7. Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data.

    1998-05-13

    Version 00 The NJOY nuclear data processing system is a modular computer code used for converting evaluated nuclear data in the ENDF format into libraries useful for applications calculations. Because the Evaluated Nuclear Data File (ENDF) format is used all around the world (e.g., ENDF/B-VI in the US, JEF-2.2 in Europe, JENDL-3.2 in Japan, BROND-2.2 in Russia), NJOY gives its users access to a wide variety of the most up-to-date nuclear data. NJOY provides comprehensivemore » capabilities for processing evaluated data, and it can serve applications ranging from continuous-energy Monte Carlo (MCNP), through deterministic transport codes (DANT, ANISN, DORT), to reactor lattice codes (WIMS, EPRI). NJOY handles a wide variety of nuclear effects, including resonances, Doppler broadening, heating (KERMA), radiation damage, thermal scattering (even cold moderators), gas production, neutrons and charged particles, photoatomic interactions, self shielding, probability tables, photon production, and high-energy interactions (to 150 MeV). Output can include printed listings, special library files for applications, and Postscript graphics (plus color). More information on NJOY is available from the developer's home page at http://t2.lanl.gov. Follow the Tourbus section of the Tour area to find notes from the ICTP lectures held at Trieste in March 1998 on the ENDF format and on the NJOY code.« less

  8. Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data.

    2000-03-28

    Version 00 The NJOY nuclear data processing system is a modular computer code used for converting evaluated nuclear data in the ENDF format into libraries useful for applications calculations. Because the Evaluated Nuclear Data File (ENDF) format is used all around the world (e.g., ENDF/B‑VI in the US, JEF‑2.2 in Europe, JENDL‑3.2 in Japan, BROND‑2.2 in Russia), NJOY gives its users access to a wide variety of the most up‑to‑date nuclear data. NJOY provides comprehensivemore » capabilities for processing evaluated data, and it can serve applications ranging from continuous‑energy Monte Carlo (MCNP), through deterministic transport codes (DANT, ANISN, DORT), to reactor lattice codes (WIMS, EPRI). NJOY handles a wide variety of nuclear effects, including resonances, Doppler broadening, heating (KERMA), radiation damage, thermal scattering (even cold moderators), gas production, neutrons and charged particles, photoatomic interactions, self shielding, probability tables, photon production, and high‑energy interactions (to 150 MeV). Output can include printed listings, special library files for applications, and Postscript graphics (plus color).« less

  9. Recommended Dosimetry Cross Section Compendium.

    1994-07-11

    Version 00 The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross sections in a wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-547) and MCNP (CCC-200), in order to compare calculated and measured activities formore » benchmark reactor experiments.« less

  10. Neutron Resonance Parameters of 238U and the Calculated Cross Sections from the Reich-Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV

    SciTech Connect

    Derrien, H

    2005-12-05

    The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.

  11. A measurement of. Delta. sigma. sub L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states

    SciTech Connect

    Beddo, M.E.

    1990-10-01

    A measurement off {Delta}{sigma}{sub L}(np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD{sub 2}). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0{degree}. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD{sub 2} target. The experimental values of {Delta}{sigma}{sub L}(np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from {Delta}{sigma}{sub L}(np) using existing pp data (I = 1), with the unexpected result that {Delta}{sigma}{sub L}(I = 0) was found to be essentially identical in shape to {Delta}{sigma}{sub L}(I = 1). The significance of this is not yet understood.

  12. Determination of the 233Pa(n, f) reaction cross section from 0.5 to 10 MeV neutron energy using the transfer reaction 232Th( 3He, p) 234Pa

    NASA Astrophysics Data System (ADS)

    Petit, M.; Aiche, M.; Barreau, G.; Boyer, S.; Carjan, N.; Czajkowski, S.; Dassié, D.; Grosjean, C.; Guiral, A.; Haas, B.; Karamanis, D.; Misicu, S.; Rizea, C.; Saintamon, F.; Andriamonje, S.; Bouchez, E.; Gunsing, F.; Hurstel, A.; Lecoz, Y.; Lucas, R.; Theisen, Ch.; Billebaud, A.; Perrot, L.; Bauge, E.

    2004-05-01

    The fission probability distributions of 232, 233, 234 Pa and 231Th have been measured up to an excitation energy of 15 MeV, using the transfer reactions 232Th( 3He, t) 232Pa, 232Th( 3He, d) 233Pa, 232Th( 3He, p) 234Pa and 232Th( 3He, 4He) 231Th. From these measurements, the neutron induced fission cross sections of 231Pa, 233Pa and 230Th have been determined from the product of the fission probabilities of 232Pa, 233Pa and 231Th respectively with the calculated compound nucleus formation cross sections in the 231Pa+n, 233Pa+n and 230Th+n reactions. The validity of the applied method has been successfully tested with the existing neutron induced fission cross sections of 230Th and 231Pa. Special emphasis is put on the 233Pa(n, f) reaction which is of importance for thorium fueled nuclear reactors. Based on a statistical model analysis of the neutron induced fission cross section as a function of neutron energy, it has been possible to determine the barrier parameters of the 234Pa fissioning nucleus. Cross sections for the compound nucleus inelastic scatttering 233Pa(n, n') and radiative capture 233Pa(n, γ) reactions have also been calculated and compared with recent evaluations.

  13. Development of Ionisation Chambers for the Simultaneous Measurement of the Neutron-induced Capture and Fission Cross Section of 233U

    NASA Astrophysics Data System (ADS)

    Mathieu, L.; Companis, I.; Aiche, M.; Schillebeeckx, P.; Heyse, J.; Barreau, G.; Boutoux, G.; Czajkowski, S.; Gunsing, F.; Jurado, B.; Kessedjian, G.; Plompen, A. J. M.; Tsekhanovitch, I.

    2014-05-01

    A new simultaneous measurement of σ(n,f) and σ(n, γ) will be performed at the neutron time-of-flight facility GELINA in Geel (Belgium). The fission events will be detected by a multi-plate high-efficiency ionisation chamber (IC). An efficient array of C6D6 scintillators will be used for the detection of gamma-rays. The disentanglement between fission and capture gamma-rays can be achieved by using anticoincidence events between the IC and the C6D6 detectors. Given the difference in the fission and capture cross sections, the assignment of a gamma-ray to one or the other reaction type has to be very efficient and reliable. The IC efficiency is not 100 % and a correction has to be applied to take into account the undetected fission events. To keep this correction factor low and reliable, the efficiency parameter of the IC should be high and known with a high degree of accuracy. The IC efficiency towards fission can be defined as a ratio between the number of detected neutrons in coincidence or not with fission fragments. It is therefore a value directly extractable from the experimental data. Results from test experiments of the IC will be presented and discussed, along with IC MCNPX simulations.

  14. Neutron-Induced Partial Cross-Section Measurements on ^76Ge Motivated by The Majorana Project 0νββ Decay Search

    NASA Astrophysics Data System (ADS)

    Hilderbrand, S.; Kwan, E.; Angell, C.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Tonchev, A. P.; Tornow, W.; Masters, D. B.; Pedroni, R. S.; Weisel, G. J.

    2007-10-01

    The goal of the Majorana Collaboration is to study 0νββ in order to verify that the neutrino is its own anti-particle; and if so, what is the mass ofthe electron neutrino. Observation of a sharp peak at the ββ endpoint energy will confirm 0νββ as a decay mode, and determination of the partial width will determine the matrix element which depends directly on the electron neutrino mass. In order to observe and verify the existence of 0νββ, it is important to reduce intrinsic, extrinsic,& cosmogenic backgrounds. The Majorana Project will operate with HPGe detectors deep underground to achieve a low-background environment. Recent advances in signal processing and detector design have also enabled scientists to further understand background sources. γ-ray spectra from the interaction of pulsed mono-energetic neutrons with ^76Ge were measured at TUNL using segmented HPGe clover detectors. The neutron-induced partial cross-sections for γ transitions in ^76Ge were measured at En = 8 and 12MeV.

  15. High-Resolution Neutron Capture and Total Cross-Section Measurements, and the Astrophysical 95Mo(n,gamma) Reaction Rate at s-process Temperatures

    SciTech Connect

    Koehler, Paul Edward; Guber, Klaus H; Harvey, John A; Wiarda, Dorothea

    2008-01-01

    Abundances of Mo isotopes predicted by stellar models of the s process are, except for {sup 95}Mo, in good agreement with data from single grains of mainstream presolar SiC. Because the meteorite data seemed sound and no reasonable modification to stellar theory resulted in good agreement for {sup 95}Mo, it has been suggested that the recommended neutron capture reaction rate for this nuclide is 30% too low. Therefore, we have made a new determination of the {sup 95}Mo(n,{gamma}) reaction rate via high-resolution measurements of the neutron-capture and total cross sections of {sup 95}Mo at the Oak Ridge Electron Linear Accelerator. These data were analyzed with the R-matrix code SAMMY to obtain parameters for resonances up to E{sub n} = 10 keV. Also, a small change to our capture apparatus allowed us to employ a new technique to vastly improve resonance spin and parity assignments. These new resonance parameters, together with our data in the unresolved range, were used to calculate the {sup 95}Mo(n,{gamma}) reaction rate at s-process temperatures. We compare the currently recommended rate to our new results and discuss their astrophysical impact.

  16. Measurement of thermal neutron cross-sections and resonance integrals for 164Dy(n,γ) 165Dy and 180Hf(n,γ) 181Hf reactions

    NASA Astrophysics Data System (ADS)

    Cho, Hyun-Je; Kobayashi, Katsuhei; Yamamoto, Shuji; Seo, Kyung-Won; Hwang, Han Yull; Nha, Sang Kyun; Ko, Seung Kook

    2001-04-01

    The thermal neutron cross-sections for the 164Dy(n,γ) 165Dy and the 180Hf(n,γ) 181Hf reactions have been measured by the activation method at the heavy water thermal neutron facility of the Kyoto University Reactor, KUR. The results measured at 0.0253 eV are 2656±98 b for the 164Dy(n,γ) 165Dy reaction and 13.04±0.47 b for the 180Hf(n,γ) 181Hf reaction, respectively. The results have been obtained relative to the reference value of 98.65±0.09 b for the 197Au(n,γ) 198Au reaction. For dysprosium, most of the experimental data and the evaluated ones in ENDF/B-VI and JEF-2.2 are in good agreement with the present value. For hafnium, the previous measurements and the evaluated ones in ENDF/B-VI and JENDL-3.2 are in good agreement with the present result. The resonance integrals for the 164Dy(n,γ) 165Dy and the 180Hf(n,γ) 181Hf reactions have also been measured relative to the reference value of 1550±28 b for the 197Au(n,γ) 198Au reaction using a 1/ E standard neutron spectrum field of the Kinki University Reactor, UTR-KINKI. The present resonance integral for the 164Dy(n,γ) 165Dy reaction is 649±24 b, and the existing experimental and the evaluated data are distributed from 335 to 820 b. The present result for the 180Hf(n,γ) 181Hf reaction is 32.4±1.2 b, and most of the previous measurements and the evaluated values are close to the present measurement. Gryntakis et al. reported the resonance integrals for both reactions, whose results were also in good agreement with the measurements.

  17. Cross-section measurement of the 18F(alpha,p)21Ne reaction and possible implication for neutron production in explosive helium burning

    SciTech Connect

    Couture, Aaron Joseph; Lee, Hye Young; Couder, Manoel; Falahat, Sascha; Gorres, Joachim; Lamm, Larry O; Le Blanc, P J; O' Brien, Shawn P; Palumbo, Annalia; Stech, Edward J; Strandberg, Elizabeth; Tan, Wanpeng; Ugalde, Claudio; Wiescher, Michael C. F.

    2009-01-01

    At the high temperature and density conditions of hot or explosive helium burning, the {sup 18}F({alpha},p){sup 21}Ne reaction may compete successfully wilh the {sup 18}F({beta}{sup +}{nu}) decay. This suggesls {sup 21}Ne({alpha},n) as an alternative neutron source in Ihe r-process. We have determined the total cross section of the {sup 18}F({alpha},p){sup 21}Ne reaction by studying the time-reverse reaction {sup 21}Ne(p,{alpha}){sup 18}F. Using the activation technique, the total reaction yield was measured in the proton beam energy range of 2.3-4.0 MeV, which corresponds to energies of 0.5-2.1 MeV in the {sup 18}F + {alpha} system. The resulting yield curve was analyzed in terms of the thick target formalism and the R-matrix theory. The reaction rate was deduced experimentally for the first time for the temperature of 0.1 < T{sub 9} < I. The experimemal reaction rate was compared with Hauser-Feshbach predictions. The astrophysical implications of the new rate are discussed.

  18. A Code For Calculating Self-Shielded Multigroup Neutron Cross Sections and Self-Shielding Factors From Preprocessed ENDF/B Basic Data Files.

    1990-11-20

    Version 00 REX2-87 is a computer code developed for the calculation of self-shielded multigroup average cross sections, and self-shielding factors for total, elastic, fission and capture processes from an ENDF/B formatted nuclear data file in which the tabulated cross sections follow linear interpolation throughout.

  19. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  20. A nuclear cross section data handbook

    SciTech Connect

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  1. Measurement of the argon-38(n,2n)argon-37 and calcium- 40(n,alpha)argon-37 cross sections, and National Ignition Facility concrete activation using the rotating target neutron source. The design of an experiment to measure the beryllium-9(n,gamma)beryllium-10 cross section at 14 MeV

    NASA Astrophysics Data System (ADS)

    Belian, Anthony Paul

    The Rotating Target Neutron Source (RTNS) was used in experiments to measure neutron induced cross sections at 14 MeV, and the activation properties of a specific mix of concrete. The RTNS is an accelerator based DT fusion neutron source located at the University of California, Berkeley. Two of the experiments performed for this thesis were specifically of interest for the construction and operation of the National Ignition Facility (NIF), they were the 38Ar(n,2n)37Ar cross section measurement, and the concrete activation measurement. The NIF is a large multi-beam laser facility that will study the effects of age on the nation's stockpile of nuclear weapons. The NIF, when fully operational, will focus the energy of 192 Neodymium glass lasers onto a 1 mm diameter pellet filled with deuterium and tritium fuel. This pellet is compressed by the laser energy giving some of the individual atoms of deuterium and tritium enough kinetic energy to overcome the coulomb barrier and fuse. The energy output from these pellet implosions will be in the range of tens of mega-joules (MJ). The 38Ar(n,2n)37Ar reaction will be useful to NIF scientists to measure important parameters such as target energy yield and areal density. In order to make these measurements precise, an accurate 38Ar(n,2n)37Ar cross section was necessary. The cross sections measured were: 74.9 +/- 3.8 millibarns (mb) at 13.3 +/- 0.01 MeV, 89.2 +/- 4.0 mb at 14.0 +/- 0.03 MeV, and 123.57 +/- 6.4 mb at 15.0 +/- 0.06 MeV. With anticipated energy yields in the tens of mega-joules per pellet implosion, the number of neutrons released is in the range of 1019 to 1020 neutrons per implosion. With such a large number of neutrons, minimizing the activation of the surrounding structure is very much of interest for the sake of personnel radiation safety. To benchmark the computer codes used to calculate the anticipated neutron activation of target bay concrete, samples were irradiated at the RTNS. Dose rates from each sample

  2. Cross Section Evaluations for Arsenic Isotopes

    SciTech Connect

    Pruet, J; McNabb, D P; Ormand, W E

    2005-03-10

    The authors present an evaluation of cross sections describing reactions with neutrons incident on the arsenic isotopes with mass numbers 75 and 74. Particular attention is paid to (n,2n) reactions. The evaluation for {sup 75}As, the only stable As isotope, is guided largely by experimental data. Evaluation for {sup 74}As is made through calculations with the EMPIRE statistical-model reaction code. Cross sections describing the production and destruction of the 26.8 ns isomer in {sup 74}As are explicitly considered. Uncertainties and covariances in some evaluated cross sections are also estimated.

  3. Cross sections for (n, 2n), (n, p) and (n, ) reactions on osmium isotopes in the neutron energy range of 13.5-14.8 MeV.

    PubMed

    Zhao, Liangyong; Yuan, Jilong; Tuo, Fei; Zhang, Yanbin; Kong, Xiangzhong; Liu, Rong; Jiang, Li

    2008-10-01

    Cross sections for (n, 2n), (n, p) and (n, alpha) reactions on the osmium isotopes were measured in the neutron energies 13.5-14.8 MeV by the activation technique with the monitor reaction (93)Nb(n, 2n)(92 m)Nb. Our measurements were carried out by gamma-detection using a coaxial high-purity germanium (HPGe) detector. Natural high-purity osmium powder (99.9%) was fabricated as the samples. The neutron energies were determined by the cross-section ratios for (93)Nb(n, 2n)(92 m)Nb and (90)Zr(n, 2n)(89 m+g)Zr reactions. The fast neutrons were produced by the T(d, n)(4)He reaction. The results obtained were compared with previous data.

  4. Measurement and analysis of the neutron-induced fission cross sections of {sup 247}Cm, {sup 250}Cr and {sup 254}Es

    SciTech Connect

    Danon, Y.; Moore, M.S.; Koehler, P.E.; Lougheed, R.W.; Hoff, R.W.; Hill, N.W.

    1994-05-01

    A series of fission cross section measurements were performed on {sup 247}Cm, {sup 250}Cf and {sup 254}Es. This paper summarizes the most recent results and details the resonance parameter analysis done on {sup 247}Cm.

  5. Thermal neutron calibration of a tritium extraction facility using the /sup 6/Li(n,t)/sup 4/He//sup 197/Au(n,. gamma. )/sup 198/Au cross section ratio for standardization

    SciTech Connect

    Bretscher, M.M.; Smith, D.L.

    1980-08-01

    Absolute tritium activities in a neutron-activated metallic lithium samples have been measured by liquid scintillation methods to provide data needed for the determination of capture-to-fission ratios in fast breeder reactor spectra and for recent measurements of the /sup 7/Li(n,n't)/sup 4/He cross section. The tritium extraction facility used for all these experiments has now been calibrated by measuring the /sup 6/Li(n,t)/sup 4/He//sup 197/Au/n,..gamma..)/sup 198/Au activity ratio for thermal neutrons and comparing the result with the well-known cross sections. The calculated-to-measured activity ratio was found to be 1.033 +- 0.018. 2 figures, 20 tables.

  6. Actinide cross section program at ORELA

    SciTech Connect

    Dabbs, J. W.T.

    1980-01-01

    The actinide cross section program at ORELA, the Oak Ridge Electron Linear Accelerator, is aimed at obtaining accurate neutron cross sections (primarily fission, capture, and total) for actinide nuclides which occur in fission reactors. Such cross sections, measured as a function of neutron energy over as wide a range of energies as feasible, comprise a data base that permits calculated predictions of the formation and removal of these nuclides in reactors. The present program is funded by the Division of Basic Energy Sciences of DOE, and has components in several divisions at ORNL. For intensively ..cap alpha..-active nuclides, many of the existing fission cross section data have been provided by underground explosions. New measurement techniques, developed at ORELA, now permit linac measurements on fissionable nuclides with alpha half-lives as short as 28 years. Capture and capture-plus-fission measurements utilize scintillation detectors (of capture ..gamma.. rays and fission neutrons) in which pulse shape discrimination plays an important role. Total cross sections can be measured at ORELA on samples of only a few milligrams. A simultaneous program of chemical and isotopic analyses of samples irradiated in EBR-II is in progress to provide benchmarks for the existing differential measurements. These analyses are being studied with updated versions of ORIGEN and with sensitivity determinations. Calculations of the sensitivity to cross section changes of various aspects of the nuclear fuel cycle are also being made. Even in this relatively mature field, many cross sections still require improvements to provide an adequate data base. Examples of recent techniques and measurements are presented. 12 figures, 3 tables.

  7. Determination of the {sup 233}Pa(n,f) reaction cross section from 11.5 to 16.5 MeV neutron energy by the hybrid surrogate ratio approach

    SciTech Connect

    Nayak, B. K.; Saxena, A.; Biswas, D. C.; Mirgule, E. T.; John, B. V.; Santra, S.; Vind, R. P.; Choudhury, R. K.; Ganesan, S.

    2008-12-15

    A new hybrid surrogate ratio approach has been employed to determine neutron-induced fission cross sections of {sup 233}Pa in the energy range of 11.5 to 16.5 MeV for the first time. The fission probability of {sup 234}Pa and {sup 236}U compound nuclei produced in {sup 232}Th({sup 6}Li, {alpha}){sup 234}Pa and {sup 232}Th({sup 6}Li, d){sup 236}U transfer reaction channels has been measured at E{sub lab}=38.0 MeV in the excitation energy range of 17.0 to 22.0 MeV within the framework of the absolute surrogate method. The {sup 233}Pa(n,f) cross sections are then deduced from the measured fission decay probability ratios of {sup 234}Pa and {sup 236}U compound nuclei using the surrogate ratio method. The {sup 233}Pa(n,f) cross section data from the present experiment along with the data from the literature, covering the neutron energy range of 1.0 to 16.5 MeV have been compared with the predictions of statistical model code EMPIRE-2.19. While the present data are consistent with the model predictions, there is a discrepancy between the earlier experimental data and EMPIRE-2.19 predictions in the neutron energy range of 7.0 to 10.0 MeV.

  8. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  9. NEUTRON TOTAL CROSS SECTIONS OF 235U FROM TRANSMISSION MEASUREMENTS IN THE ENERGY RANGE 2 keV to 300 keV AND STATISTICAL MODEL ANALYSIS OF THE DATA

    SciTech Connect

    Derrien, H.

    2000-05-22

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample. The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al. in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code was used for a statistical model analysis of the total cross section, selected fission cross sections and {alpha} data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  10. Cross sections required for FMIT dosimetry

    SciTech Connect

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  11. Absolute np and pp Cross Section Determinations Aimed At Improving The Standard For Cross Section Measurements

    SciTech Connect

    Laptev, A. B.; Haight, R. C.; Tovesson, F.; Arndt, R. A.; Briscoe, W. J.; Paris, M. W.; Strakovsky, I. I.; Workman, R. L.

    2011-06-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1 GeV are determined based on partial-wave analyses (PWAs) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-VII.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  12. Absolute np and pp cross section determinations aimed at improving the standard for cross section measurements

    SciTech Connect

    Laptev, Alexander B; Haight, Robert C; Tovesson, Fredrik; Arndt, Richard A; Briscoe, William J; Paris, Mark W; Strakovsky, Igor I; Workman, Ron L

    2010-01-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PW As) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-V11.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  13. Photonuclear absorption cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Neutron multiplicity in photonuclear reactions; invariance of classical electromagnetism; momentum transfer models in ion collisions; cosmic ray electromagnetic interactions; quadrupole excitations in nucleus-nucleus collisons and Y-89 interactions with relativistic nuclei; and the Weizsacker-Williams theory for nucleon emission via electromagnetic excitations in nucleus-nucleus collisions are discussed.

  14. Neutron physics of the Re/Os clock. I. Measurement of the (n,gamma) cross sections of {sup 186,187,188}Os at the CERN n{sub T}OF facility

    SciTech Connect

    Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    The precise determination of the neutron capture cross sections of {sup 186}Os and {sup 187}Os is important to define the s-process abundance of {sup 187}Os at the formation of the solar system. This quantity can be used to evaluate the radiogenic component of the abundance of {sup 187}Os due to the decay of the unstable {sup 187}Re (t{sub 1/2}=41.2 Gyr) and from this to infer the time duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os have been measured at the CERN n{sub T}OF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. The measurement has been performed by time-of-flight technique using isotopically enriched samples and two C{sub 6}D{sub 6} scintillation detectors for recording the prompt gamma rays emitted in the capture events. Maxwellian averaged capture cross sections have been determined for thermal energies between kT=5 and 100 keV corresponding to all possible s-process scenarios. The estimated uncertainties for the values at 30 keV are 4.1, 3.3, and 4.7% for {sup 186}Os, {sup 187}Os, and {sup 188}Os, respectively.

  15. AMPX-77: A modular code system for generating coupled multigroup neutron-gamma cross-section libraries from ENDF/B-IV and/or ENDF/B-V

    SciTech Connect

    Greene, N.M.; Ford, W.E. III; Petrie, L.M.; Arwood, J.W.

    1992-10-01

    AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all written in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.

  16. Measurement of the cross section for the reaction {sup 20}Ne(n,{alpha}){sup 17}O in the neutron-energy between 4 and 7 MeV

    SciTech Connect

    Khryachkov, V. A.; Bondarenko, I. P.; Kuzminov, B. D.; Semenova, N. N.; Sergachev, A. I.

    2012-04-15

    The cross section for the reaction {sup 20}Ne(n, {alpha}){sup 17}O was measured in the neutron-energy range 4-7 MeV. An ionization chamber equipped with a Frisch grid combined with a pulse-shape digitizer was used as a detector. Gaseous neon that served as a target on which the reaction being studied proceeded was added to the gas filling the ionization chamber. The partial cross sections for the {alpha}{sub 0}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 3} channels of the reaction {sup 20}Ne(n, {alpha}){sup 17}O were obtained for the first time.

  17. Fission cross section measurements of actinides at LANSCE

    SciTech Connect

    Tovesson, Fredrik; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  18. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  19. Uncertainty Quantification in Fission Cross Section Measurements at LANSCE

    SciTech Connect

    Tovesson, F.

    2015-01-15

    Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.

  20. Uncertainty quantification in fission cross section measurements at LANSCE

    DOE PAGESBeta

    Tovesson, F.

    2015-01-09

    Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.

  1. Cross sections for production of 70 discrete-energy gamma rays created by neutron interactions with sup 56 Fe for E sub n to 40 MeV: Tabulated data

    SciTech Connect

    Dickens, J.K.; Todd, J.H.; Larson, D.C.

    1990-09-01

    Inelastic and nonelastic neutron interactions with {sup 56}Fe have been studied for incident neutron energies between 0.8 and 41 MeV. An iron sample isotopically enriched in the mass 56 isotope was used. Gamma rays representing 70 transitions among levels in residual nuclei were identified, and production cross sections were deduced. The reactions studied were {sup 56}Fe(n,n{prime}){sup 56}Fe, {sup 56}Fe(n,p){sup 56}Mn, {sup 56}Fe(n,2n){sup 55}Fe, {sup 56}Fe(n,d + n,np){sup 55}Mn, {sup 56}Fe(n,t + n,nd + n,2np){sup 54}Mn, {sup 56}Fe(n,{alpha}){sup 53}Cr, {sup 56}Fe(n,n{alpha}){sup 52}Cr, and {sup 56}Fe(n,3n){sup 54}Fe. Values obtained for production cross sections as functions of incident neutron energy are presented in tabular form. 38 refs., 7 figs., 12 tabs.

  2. Re-evaluation of the 16O(N, γ)17O Cross Section at Astrophysical Energies and Its Role as a Neutron Poison in the s-process

    NASA Astrophysics Data System (ADS)

    Mohr, Peter; Heinz, Christian; Pignatari, Marco; Dillmann, Iris; Mengoni, Alberto; Käppeler, Franz

    2016-08-01

    The doubly magic nucleus 16O has a small neutron-capture cross section of just a few tens of microbarns in the astrophysical energy region. Despite this, 16O plays an important role as a neutron poison in the astrophysical slow neutron capture (s) process due to its high abundance. We present in this paper a re-evaluation of the available experimental data for 16O(n,γ )17O and derive a new recommendation for the Maxwellian-averaged cross sections between kT = 5 and 100 keV. Our new recommendations are lower up to kT = 60 keV compared to the previously recommended values but up to 14% higher at kT = 100 keV. We explore the impact of this different energy dependence on the weak s-process during core helium burning (kT = 26 keV) and shell carbon burning (kT = 90 keV) in massive stars where 16O is the most abundant isotope.

  3. Three-Dimensional (X,Y,Z) Deterministic Analysis of the PCA-Replica Neutron Shielding Benchmark Experiment using the TORT-3.2 Code and Group Cross Section Libraries for LWR Shielding and Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela

    2016-02-01

    The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the ORNL TORT-3.2 3D SN code. PCA-Replica, specifically conceived to test the accuracy of nuclear data and transport codes employed in LWR shielding and radiation damage calculations, reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a PWR pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ) and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1) and BUGENDF70.BOLIB (ENDF/B-VII.0) libraries and the ORNL BUGLE-96 (ENDF/B-VI.3) library. Dosimeter cross sections derived from the IAEA IRDF-2002 dosimetry file were employed. The calculated reaction rates for the Rh-103(n,n')Rh-103 m, In-115(n,n')In-115m and S-32(n,p)P-32 threshold activation dosimeters and the calculated neutron spectra are compared with the corresponding experimental results.

  4. Thermal neutron capture cross sections for the 152Sm(n,γ) 153Sm and 154Sm(n,γ) 155Sm reactions at 0.0536 eV energy

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Chowdhury, M. H.; Hossain, S. M.; Latif, Sk. A.; Islam, M. A.; Hafiz, M. A.; Mubin, S. H.; Zakaria, A. K. M.; Yunus, S. M.; Azharul Islam, S. M.

    2008-11-01

    The neutron capture cross sections for the 152Sm(n,γ) 153Sm and 154Sm(n,γ) 155Sm reactions at 0.0536 eV neutron energy were measured using an activation technique based on the TRIGA Mark-II research reactor, relative to the reference reaction 197Au(n,γ) 198Au. The activity was measured nondestructively using gamma-ray spectroscopy. Our measured values at this neutron energy are the first ones and are compared with 1/ v based evaluated cross sections reported in the ENDF/B-VII and JENDL-3.3 libraries. The measured value for the 152Sm(n,γ) 153Sm reaction is 0.28% lower than JENDL-3.3 and 0.48% higher than ENDF/B-VII. Our value for the production of 155Sm is about 3% and 2.3% higher than the evaluated value with ENDF/B-VII and JENDL-3.3 at 0.0536 eV, respectively.

  5. Determination of the cross section of the proton, pion and neutron inelastic interaction with lead and carbon nuclei at 0.5 - 5.0 TeV energies (PION experiment)

    NASA Technical Reports Server (NTRS)

    Avakian, V. V.; Karagjozian, G. V.; Mamidjanian, E. A.; Keropian, M. I.; Martirosov, R. M.; Ovsepian, G. G.; Sokhoyan, S. O.

    1985-01-01

    Experimental results on the cross section of the single pion, proton and neutron inelastic interaction with carbon and lead nuclei in the 0.5 to 5.0 TeV energy interval obtained on the PION installation (Mount Aragats, Armenia, 3250 m) are presented. For this purpose the (N pi)/(N p) and inelastic (p Fe)/(pi Fe) ratios measured directly on the installation as well as the calculated inelastic (p A)/(pi A) dependence on the target nucleus atomic numbers were used.

  6. XCOM: Photon Cross Sections Database

    National Institute of Standards and Technology Data Gateway

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  7. Cross sections of the (n ,p ) reaction on the 78Se and 80Se isotopes measured for 13.73 MeV to 14.77 MeV and estimated for 10 MeV to 20 MeV neutron energies

    NASA Astrophysics Data System (ADS)

    Attar, F. M. D.; Dhole, S. D.; Bhoraskar, V. N.

    2014-12-01

    The cross sections of 78Se(n ,p ) 78As and 80Se(n ,p ) 80As reactions were measured at five neutron energies over the range 13.73 MeV to 14.77 MeV using 56Fe and 19F as monitor elements, respectively. The cross sections were also theoretically estimated using EMPIRE-II and TALYS codes over 10 MeV to 20 MeV neutrons and matched with the experimental cross sections by making proper choice of the model parameters. The theoretical and experimental cross sections of 80Se(n ,p ) 80As reaction are smaller as compared to the 78Se(n ,p ) 78As reaction at each neutron energy. This difference is attributed to the competing 80Se(n ,2 n )79Se and 80Se( n ,α )Ge77m reactions, which effectively decrease the cross sections of 80Se(n ,p ) 80As reaction as compared to that of the 78Se(n ,p ) 78As reaction over the neutron energy range used in the present work. The cross sections of 78Se(n ,p ) 78As and 80Se(n ,p ) 80As reactions estimated by the EMPIRE-II code initially increase but later on decrease with neutron energy, respectively, above 16 MeV and 19 MeV, whereas those estimated by the TALYS code continuously increase with neutron energy. The present results indicate that the trends in the variation of cross section with neutron energy depend on the model used in the calculations. The cross sections of the 80Se(n ,p ) 80As reaction at different neutron energies reported in the present work can be added as a new data in the nuclear data library.

  8. A Multigroup Library of Neutron and Gamma Cross Sections and Response Functions in the Energy Range up to 800 MeV.

    1987-05-20

    Version 00 The energy range of the library, from thermal to 800 MeV is relevant to the solution of shielding, nuclear heating, and other radiation protection problems connected with the accelerator neutron sources e.g. spallation target. The data contains 10 elements of shielding and biological importance. They can be easily implemented to the neutron transport codes like ANISN and DOT by using the activity option.

  9. Inelastic neutron scattering cross sections for Ge76 relevant to background in neutrinoless double- β decay experiments

    SciTech Connect

    Crider, B. P.; Peters, E. E.; Allmond, J. M.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Vanhoy, J. R.; Yates, S. W.

    2015-09-11

    The experimental signature in searches for the neutrinoless double- decay of 76Ge is a peak near 2039 keV in the spectrum. Given the low probability of the process, it is important that the background in this region be well understood. Moreover, inelastic scattering reactions with neutrons from muon-induced interactions and ( ,n) reactions in the surrounding materials or in the detector can provide contributions to the background. We also measured the production cross sections for rays from the 76Ge(n,n ) reaction in the 2039-keV region at incident neutron energies up to 4.9 MeV. In addition to determining that the cross sections of a previously known 2040.7-keV ray from the 3952-keV level in 76 Ge are rather small, we find that a larger contribution arises from a 2037.5-keV ray which is attributed to a newly identified level at 3147 keV in 76Ge. Finally, a third contribution is also possible from another new level at 3577 keV. These results indicate that the 2039-keV region in 76Ge neutrinoless double- decay searches is more complex than was previously thought.

  10. Documentation of Uncertainties in Experimental Cross Sections for EXFOR

    SciTech Connect

    Otuka, N.; Smith, D.L.

    2014-06-15

    Documentation of uncertainties and covariances in experimental nuclear reaction cross sections has been assessed. Following consideration of the importance of covariances for nuclear data in various nuclear applications, and presentation of a simple numerical example to demonstrate this point, the minimum basic concepts (mean, covariance, standard derivation, partial uncertainties, micro- and macro-correlation coefficients) are introduced. A deterministic approach to propagating the covariances in primary measured parameters (e.g., counts) to the derived cross sections is discussed, using a neutron-induced activation cross section measurement as an example. Finally, various approaches to documentation (publication, compilation) of experimental cross sections to facilitate their use in future evaluations are mentioned.

  11. Inelastic cross sections from gamma-ray measurements

    SciTech Connect

    Nelson, Ronald Owen

    2010-12-06

    Measurements of gamma rays following neutron induced reactions have been studied with the Germanium Array for Neutron-induced Excitations (GEANIE) at the Los Alamos Neutron Science Center (LANSCE) for many years. Gamma-ray excitation functions and coincidence studies provide insight into nuclear reaction mechanisms as well as expanding our knowledge of energy levels and gamma-rays. Samples studied with Ge detectors at LANSCE range from Be to Pu. Fe, Cr and Ti have been considered for use as reference cross sections. An overview of the measurements and efforts to create a reliable neutron-induced gamma-ray reference cross section will be presented.

  12. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  13. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    SciTech Connect

    Morgan C. White

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to

  14. Absolute photoneutron cross sections of Sm isotopes

    SciTech Connect

    Gheorghe, I.; Glodariu, T.; Utsunomiya, H.; Filipescu, D.; Nyhus, H.-T.; Renstrom, T.; Tesileanu, O.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  15. Production and Testing of the VITAMIN-B6 Fine Group and the BUGLE-93 Broad-Group Neutron/Photon Cross-Section Libraries Derived from ENDF/B-VI Nuclear Data

    SciTech Connect

    White, J.E.

    2001-04-19

    A revised multigroup cross-section library based on Release 3 of ENDF/B-VI data has been produced and tested for light-water-reactor shielding and reactor pressure vessel dosimetry applications. This new broad-group library, which is designated BUGLE-96, represents an improvement over the BUGLE-93 data library released in February 1994 and replaces the data package for BUGLE-93 in the Radiation Safety Information Computational Center (formerly RSIC). The processing methodology is the same as that used for producing BUGLE-93 and is consistent with ANSI/ANS 6.1.2. The ENDF data were first processed into a fine-group, pseudo-problem-independent format and then collapsed into the final broad-group format. The fine-group library, which is designated VITAMIN-B6, contains 120 nuclides. The BUGLE-96 47-neutron-group/20-gamma-ray-group library contains the same 120 nuclides processed as infinitely dilute and collapsed using a weighting spectrum typical of a concrete shield. Additionally, nuclides processed with resonance self-shielding and weighted using spectra specific to BWR and PWR material compositions and reactor models are available. As an added feature of BUGLE-96, cross-section sets having upscatter data for four thermal neutron groups are included. The upscattering data should improve the application of BUGLE-96 to the calculation of more accurate thermal fluences, although more computer time will be required. Several new dosimetry response functions and kerma factors for all 120 nuclides are also included in the library. The incorporation of feedback from users has resulted in a data library that addresses a wider spectrum of user needs.

  16. Accurate Cross Sections for Microanalysis

    PubMed Central

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V. PMID:27446747

  17. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  18. Nucleon-nucleus interaction data base: Total nuclear and absorption cross sections

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.; Buck, W. W.; Chun, S. Y.; Hong, B. S.; Lamkin, S. L.

    1988-01-01

    Neutron total cross sections are represented for Li to Pu targets at energies above 0.1 MeV and less than 100 MeV using a modified nuclear Ramsauer formalism. The formalism is derived for energies above 100 MeV by fitting theoretical cross sections. Neutron absorption cross sections are represented by analytic expressions of similar form, but shape resonance phenomena of the Ramsauer effect is not present. Elastic differential cross sections are given as a renormalized impulse approximation. These cross section data bases are useful for nucleon transport applications.

  19. Cross Section Sensitivity and Propagated Errors in HZE Exposures

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Wilson, John W.; Blatnig, Steve R.; Qualls, Garry D.; Badavi, Francis F.; Cucinotta, Francis A.

    2005-01-01

    It has long been recognized that galactic cosmic rays are of such high energy that they tend to pass through available shielding materials resulting in exposure of astronauts and equipment within space vehicles and habitats. Any protection provided by shielding materials result not so much from stopping such particles but by changing their physical character in interaction with shielding material nuclei forming, hopefully, less dangerous species. Clearly, the fidelity of the nuclear cross-sections is essential to correct specification of shield design and sensitivity to cross-section error is important in guiding experimental validation of cross-section models and database. We examine the Boltzmann transport equation which is used to calculate dose equivalent during solar minimum, with units (cSv/yr), associated with various depths of shielding materials. The dose equivalent is a weighted sum of contributions from neutrons, protons, light ions, medium ions and heavy ions. We investigate the sensitivity of dose equivalent calculations due to errors in nuclear fragmentation cross-sections. We do this error analysis for all possible projectile-fragment combinations (14,365 such combinations) to estimate the sensitivity of the shielding calculations to errors in the nuclear fragmentation cross-sections. Numerical differentiation with respect to the cross-sections will be evaluated in a broad class of materials including polyethylene, aluminum and copper. We will identify the most important cross-sections for further experimental study and evaluate their impact on propagated errors in shielding estimates.

  20. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  1. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  2. 63Ni (n ,γ ) cross sections measured with DANCE

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Bredeweg, T. A.; Couture, A.; Göbel, K.; Heftrich, T.; Jandel, M.; Käppeler, F.; Lederer, C.; Kivel, N.; Korschinek, G.; Krtička, M.; O'Donnell, J. M.; Ostermöller, J.; Plag, R.; Reifarth, R.; Schumann, D.; Ullmann, J. L.; Wallner, A.

    2015-10-01

    The neutron capture cross section of the s -process branch nucleus 63Ni affects the abundances of other nuclei in its region, especially 63Cu and 64Zn. In order to determine the energy-dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4 π BaF2 array DANCE. The (n ,γ ) cross section of 63Ni has been determined relative to the well-known 197Au standard with uncertainties below 15%. Various 63Ni resonances have been identified based on the Q value. Furthermore, the s -process sensitivity of the new values was analyzed with the new network calculation tool NETZ.

  3. Double-differential heavy-ion production cross sections.

    PubMed

    Miller, T M; Townsend, L W

    2004-01-01

    Current computational tools used for space or accelerator shielding studies transport energetic heavy ions either using a one-dimensional straight-ahead approximation or by dissociating the nuclei into protons and neutrons and then performing neutron and proton transport using Monte Carlo techniques. Although the heavy secondary particles generally travel close to the beam direction, a proper treatment of the light ions produced in these reactions requires that double-differential cross sections should be utilised. Unfortunately, no fundamental nuclear model capable of serving as an event generator to provide these cross sections for all ions and energies of interest exists currently. Herein, we present a model for producing double-differential heavy-ion production cross sections that uses heavy-ion fragmentation yields produced by the NUCFRG2 fragmentation code coupled with a model of energy degradation in nucleus-nucleus collisions and systematics of momentum distributions to provide energy and angular dependences of the heavy-ion production.

  4. Terahertz radar cross section measurements.

    PubMed

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  5. Striking behavior of photoneutron cross sections for {sup 90}Zr near threshold

    SciTech Connect

    Utsunomiya, H.; Akimune, H.; Yamagata, T.; Kondo, T.; Iwamoto, C.; Itoh, O.; Kamata, M.; Io, M.; Kususe, K.; Teramoto, T.; Goriely, S.; Harada, H.; Kitatani, F.; Goko, S.; Toyokawa, H.; Yamada, K.; Lui, Y.-W.

    2011-10-28

    Photoneutron cross sections for {sup 90}Zr near neutron threshold were examined with a photon difference technique using laser Compton scattering {gamma}-ray beams. The cross section decreasing in the vicinity of neutron threshold exhibited a steep rise within 150 keV above the threshold. We draw attention to a possible relation of this striking behavior to the 3P valence neutron resonance known in neutron capture in the mass region A{approx_equal}90.

  6. Partial (gamma)-Ray Cross Sections for the Reaction 239Pu(n,2n(gamma)i) and the 239Pu(n,2n) Cross Section

    SciTech Connect

    Beacker, J.A.; Bernstein, L.A.; Younes, W.; McNabb, D.P.; Garrett, P.E.; Archer, D.; McGrath, C.A.; Stoyer, M.A.; Chen, H.; Ormand, W.E.; Nelson, R.O.; Chadwick, M.B.; Johns, G.D.; Drake, D.; Young, P.G.; Devlin, M.; Fotiades, N.; Wilburn, W.S.

    2001-09-14

    Absolute partial {gamma}-ray cross sections for production of discrete {gamma} rays in the {sup 239}Pu(n,2n{gamma}i){sup 238}Pu reaction have been measured. The experiments were performed at LANSCE/WNR on the 60R flight line. Reaction {gamma}-rays were measured using the large-scale Compton-suppressed array of Ge detectors, GEANIE. The motivation for this experiment, an overview of the partial {gamma}-ray cross-section measurement, and an introduction to the main experimental issues will be presented. The energy resolution of the Ge detectors allowed identification of reaction {gamma} rays above the background of sample radioactivity and fission {gamma} rays. The use of planar Ge detectors with their reduced sensitivity to neutron interactions and improved line shape was also important to the success of this experiment. Absolute partial {gamma}-ray cross sections are presented for the 6{sub 1}{sup +} {yields} 4{sub 1}{sup +} member of the ground state rotational band in {sup 238}Pu, together with miscellaneous other {gamma}-ray partial cross sections. The n,2n reaction cross section shape and magnitude as a function of neutron energy was extracted from these partial cross sections using nuclear modeling (enhanced Hauser-Feshbach) to relate partial {gamma}-ray cross sections to the n,2n cross section. The critical nuclear modeling issue is the ratio of a partial cross section to the reaction channel cross section, and not the prediction of the absolute magnitude.

  7. Electromagnetic Dissociation Cross Sections using Weisskopf-Ewing Theory

    NASA Technical Reports Server (NTRS)

    Adamczyk, Anne M.; Norbury, John W.

    2011-01-01

    It is important that accurate estimates of crew exposure to radiation are obtained for future long-term space missions. Presently, several space radiation transport codes exist to predict the radiation environment, all of which take as input particle interaction cross sections that describe the nuclear interactions between the particles and the shielding material. The space radiation transport code HZETRN uses the nuclear fragmentation model NUCFRG2 to calculate Electromagnetic Dissociation (EMD) cross sections. Currently, NUCFRG2 employs energy independent branching ratios to calculate these cross sections. Using Weisskopf-Ewing (WE) theory to calculate branching ratios, however, is more advantageous than the method currently employed in NUCFRG2. The WE theory can calculate not only neutron and proton emission, as in the energy independent branching ratio formalism used in NUCFRG2, but also deuteron, triton, helion, and alpha particle emission. These particles can contribute significantly to total exposure estimates. In this work, photonuclear cross sections are calculated using WE theory and the energy independent branching ratios used in NUCFRG2 and then compared to experimental data. It is found that the WE theory gives comparable, but mainly better agreement with data than the energy independent branching ratio. Furthermore, EMD cross sections for single neutron, proton, and alpha particle removal are calculated using WE theory and an energy independent branching ratio used in NUCFRG2 and compared to experimental data.

  8. Review of (n; n',. gamma. ) cross-section data on actinide nuclei

    SciTech Connect

    Olsen, D.K.

    1981-01-01

    The available high-resolution (n;n',..gamma..) cross section data on actinide nuclei, essentially /sup 238/U and /sup 232/Th, are reviewed by dividing the measurement process into two steps. First, the measurement of discrete photon production cross sections is discussed by comparing white and monoenergetic neutron source techniques. Resultant cross sections are compared and their accuracies assessed. Second, the step of inferring inelastic scattering cross sections from photon production cross sections is discussed with particular emphasis on the problems connected with monopole transitions, low-energy transitions, prompt fission photons, and simple rotational models. The uncertainties introduced in this step are probably larger than those of the first.

  9. Electron Photon Interaction Cross Sections

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text formatmore » that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).« less

  10. Electron Photon Interaction Cross Sections

    SciTech Connect

    Cullen, D. E.

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text format that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).

  11. A Multigroup Reaction Cross-Section Collapsing Code and Library of 154-Group Fission-Product Cross Sections.

    1983-03-23

    Version 01/02 The code reads multigroup cross sections from a compatible data file and collapses user-selected reaction cross sections to any few-group structure using one of a variety of user neutron flux spectrum options given below: Option Flux description 1 Built-in function including Maxwellian, fission, fusion and slowing-down regions and requiring user-specified parameters and energy-region boundaries. 2 Set of log-log flux-energy interpolation points read from input cross-section data file. 3 Set of log-log flux-energy interpolationmore » points read from user-supplied card input. 4 - 6 Histogram flux values read from user-supplied card input in arbitrary group structure in units of flux-per unit-energy, flux-per-unit lethargy, or integral group flux. LAFPX-E may be used to collapse any set of multigroup reaction cross sections furnished in the required format. However, the code was developed for, and is furnished with, a library of 154-group fission-product cross sections processed from ENDF/B-IV with a typical light water reactor (LWR) flux spectrum and temperature. Four-group radiative capture cross sections produced for LWR calculations are tabulated in the code documentation and are incorporated in the EPRI-CINDER data library, RSIC Code Package CCC-309.« less

  12. Extension of the Bgl Broad Group Cross Section Library

    NASA Astrophysics Data System (ADS)

    Kirilova, Desislava; Belousov, Sergey; Ilieva, Krassimira

    2009-08-01

    The broad group cross-section libraries BUGLE and BGL are applied for reactor shielding calculation using the DOORS package based on discrete ordinates method and multigroup approximation of the neutron cross-sections. BUGLE and BGL libraries are problem oriented for PWR or VVER type of reactors respectively. They had been generated by collapsing the problem independent fine group library VITAMIN-B6 applying PWR and VVER one-dimensional radial model of the reactor middle plane using the SCALE software package. The surveillance assemblies (SA) of VVER-1000/320 are located on the baffle above the reactor core upper edge in a region where geometry and materials differ from those of the middle plane and the neutron field gradient is very high which would result in a different neutron spectrum. That is why the application of the fore-mentioned libraries for the neutron fluence calculation in the region of SA could lead to an additional inaccuracy. This was the main reason to study the necessity for an extension of the BGL library with cross-sections appropriate for the SA region. Comparative analysis of the neutron spectra of the SA region calculated by the VITAMIN-B6 and BGL libraries using the two-dimensional code DORT have been done with purpose to evaluate the BGL applicability for SA calculation.

  13. Dosimetry and cross section measurements at RTNS II

    SciTech Connect

    Greenwood, L.R.; Kneff, D.W.

    1987-01-01

    Numerous measurements have been conducted at TRNS-II in order to map the neutron field for materials irradiations, to measure activation cross sections, and to measure helium production cross sections. Experiments of up to two weeks duration irradiated large numbers of activation dosimetry and helium samples both close to the source and throughout the target room. Many other samples have been irradiated in piggy-back positions over periods lasting many months. All of these experiments fall into four main classes, namely, fluence-mapping, activation dosimetry, the production of long-lived isotopes, and helium generation measurements. Radiometric dosimetry and activation cross section measurements were performed at Argonne National Laboratory; helium production was measured at Rockwell International Corporation. This paper briefly summarizes the principal results of our measurements at RTNS-II; references are given for more detailed publications. 14 refs., 4 figs.

  14. Pion Total Cross Section in Nucleon - Nucleon Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2009-01-01

    Total cross section parameterizations for neutral and charged pion production in nucleon - nucleon collisions are compared to experimental data over the projectile momentum range from threshold to 300 GeV. Both proton - proton and proton - neutron reactions are considered. Overall excellent agreement between parameterizations and experiment is found, except for notable disagreements near threshold. In addition, the hypothesis that the neutral pion production cross section can be obtained from the average charged pion cross section is checked. The theoretical formulas presented in the paper obey this hypothesis for projectile momenta below 500 GeV. The results presented provide a test of engineering tools used to calculate the pion component of space radiation.

  15. Recent advances in modeling fission cross sections over intermediate structures

    SciTech Connect

    Bouland, Olivier; Lynn, J. Eric; Talou, Patrick

    2009-01-01

    More accurate fission cross section calculations in presence of underlying intermediate structure are strongly desired. This paper recalls the common approximations used below the fission threshold and quantifies their impact. In particular, an exact expanded R-matrix Monte Carlo calculation of the intermediate structure, deeply mixed with the fluctuations of the class-I and II decay amplitudes, is shown. This paper also insists on the microscopic structure of the level densities as a function of the nucleus deformation and show preliminary neutron induced fission cross section calculations for {sup 239}Pu and {sup 240}Pu using newly calculated combinatorial level densities. Comparisons with recent evaluated and measured fission cross sections are made.

  16. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  17. Photo-neutron reaction cross-sections for natMo in the bremsstrahlung end-point energies of 12-16 and 45-70 MeV

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kapote Noy, R.; Schwengner, R.; Kim, K.; Zaman, M.; Shin, S. G.; Gey, Y.; Massarczyk, R.; John, R.; Junghans, A.; Wagner, A.; Cho, M.-H.

    2016-07-01

    The natMo( γ, xn)90, 91, 99Mo reaction cross-sections were experimentally determined for the bremsstrahlung end-point energies of 12, 14, 16, 45, 50, 55, 60 and 70MeV by activation and off-line γ -ray spectrometric technique and using the 20MeV electron linac (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The natMo( γ, xn)88, 89, 90, 91, 99Mo reaction cross-sections as a function of photon energy were also calculated using the computer code TALYS 1.6. The flux-weighted average cross-sections were obtained from the literature data and the calculated values of TALYS based on mono-energetic photons and are found to be in general agreement with the present results. The flux-weighted average experimental and theoretical cross-sections for the natMo( γ, xn)88, 89, 90, 91, 99Mo reactions increase with the bremsstrahlung end-point energy, which indicates the role of excitation energy. After a certain energy, the individual natMo( γ, xn) reaction cross-sections decrease with the increase of bremsstrahlung energy due to opening of other reactions, which indicates sharing of energy in different reaction channels. The 100Mo( γ, n) reaction cross-section is important for the production of 99Mo , which is a probable alternative to the 98Mo(n, γ) and 235U(n, f ) reactions.

  18. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  19. Theoretical antideuteron-nucleus absorptive cross sections

    NASA Technical Reports Server (NTRS)

    Buck, W. W.; Norbury, J. W.; Townsend, L. W.; Wilson, J. W.

    1993-01-01

    Antideuteron-nucleus absorptive cross sections for intermediate to high energies are calculated using an ion-ion optical model. Good agreement with experiment (within 15 percent) is obtained in this same model for (bar p)-nucleus cross sections at laboratory energies up to 15 GeV. We describe a technique for estimating antinucleus-nucleus cross sections from NN data and suggest that further cosmic ray studies to search for antideuterons and other antinuclei be undertaken.

  20. Cross Sections for Electron Collisions with Methane

    SciTech Connect

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  1. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    SciTech Connect

    Ullmann, John L; Couture, A J; Keksis, A L; Vieira, D J; O' Donnell, J M; Jandel, M; Haight, R C; Rundberg, R S; Kawano, T; Chyzh, A; Baramsai, B; Wu, C Y; Mitchell, G E; Becker, J A; Krticka, M

    2010-01-01

    A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  2. One-Dimensional, Multigroup Cross Section and Design Sensitivity and Uncertainty Analysis Code System - Generalized Perturbation Theory.

    1981-02-02

    Version: 00 SENSIT computes the sensitivity and uncertainty of a calculated integral response (such as a dose rate) due to input cross sections and their uncertainties. Sensitivity profiles are computed for neutron and gamma-ray reaction cross sections (of standard multigroup cross-section sets) and for secondary energy distributions (SED's) of multigroup scattering matrices.

  3. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  4. EGAF: Measurement and Analysis of Gamma-ray Cross Sections

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Abusaleem, K.; Basunia, M. S.; Bečvář, F.; Belgya, T.; Bernstein, L. A.; Choi, H. D.; Escher, J. E.; Genreith, C.; Hurst, A. M.; Krtička, M.; Renne, P. R.; Révay, Zs.; Rogers, A. M.; Rossbach, M.; Siem, S.; Sleaford, B.; Summers, N. C.; Szentmiklosi, L.; van Bibber, K.; Wiedeking, M.

    2014-05-01

    The Evaluated Gamma-ray Activation File (EGAF) is the result of a 2000-2007 IAEA Coordinated Research Project to develop a database of thermal, prompt γ-ray cross sections, σγ, for all elemental and selected radioactive targets. No previous database of this kind had existed. EGAF was originally based on measurements using guided neutron beams from the Budapest Reactor on all elemental targets from Z=1-82, 90 and 92, except for He and Pm. The EGAF σγ data were published in the Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis [1]. An international collaboration has formed to continue the EGAF measurements with isotopically enriched targets, derive total radiative thermal neutron cross sections, σ0, extend the σγ data from thermal to 20 MeV neutrons, compile a completed activation data file, improve sections of the Reference Input Parameter Library (RIPL) with more complete and up to date level and γ-ray data, evaluate statistical γ-ray data from reaction studies, and determine recommended neutron separations energies, Sn, for atomic mass evaluations. A new guided neutron beam facility has become available at the Garching (Munich) FRM II Reactor, and high energy neutron experimental facilities are being developed by a Berkeley area collaboration where 5-33 MeV neutron beams are available at the LBNL 88” cyclotron, 2.5 and 14 MeV beams at the University of California, Berkeley neutron generator laboratory, and high flux, 10 nṡcmṡ-2 s-1, neutron pulses available from the LLNL National Ignition Facility (NIF).

  5. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions andmore » extends up to several hundreds of MeV for the Heavy Ion induced reactions.« less

  6. Silicon Detector System for Cross Section Measurements

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to estimate the radiation shielding effectiveness of materials it is necessary to know cosmic ray particles are broken up as they pass though these materials. The breakup of cosmic ray particles is characterized by the nuclear fragmentation cross sections, i.e. an effective geometrical cross section assigned to each target nucleus that represents its apparent size for fragmenting the incident particle. The values of these cross sections depend on the details of nuclear physics and cannot be calculated from first principles owing to the many-body nature of the interactions. The only way to determine them is to measure them. Once a sufficient number of cross sections have been measured, the systematic nature of the interactions allows other cross-sections to be estimated. The number of cross sections that contribute to the estimation of shielding effectiveness is very large 10,000. Fortunately most make minor contributions. These can be estimated from nuclear systematics. Only those who's uncertainties make significant contributions to the error in the shielding effectiveness estimations need to be measured. In the past it has proven difficult to measure light fragment production cross sections from the interactions of heavy cosmic rays owing to the size of the detectors used. We have developed a highly pixilated silicon (Si) detector system that can individually identify these light fragments while making efficient use of costly accelerator time. This system is an outgrowth of detector technology developed under a CDDF and a Code S sponsored cosmic ray experiment.

  7. Differential cross-sections with hard targets

    NASA Astrophysics Data System (ADS)

    Brun, J. L.; Pacheco, A. F.

    2005-09-01

    When the concept of scattering differential cross-section is introduced in classical mechanics textbooks, usually it is first supposed that the target is a fixed, hard sphere. In this paper we calculate the scattering differential cross-section in the case of the hard target being a fixed figure of revolution of any shape. When the target is a paraboloid of revolution, we find the well-known formula corresponding to Rutherford's scattering. In addition, we analyse the inverse problem, i.e. given a differential cross-section, what is the profile of the corresponding hard target?

  8. Bibliography of photoabsorption cross-section data

    NASA Technical Reports Server (NTRS)

    Hudson, R. D.; Kieffer, L. J.

    1970-01-01

    This bibliography contains only references which report a measured or calculated photoabsorption cross section (relative or normalized) in regions of continuous absorption. The bibliography is current as of January 1, 1970.

  9. Absorption cross section of canonical acoustic holes

    SciTech Connect

    Crispino, Luis C. B.; Oliveira, Ednilton S.; Matsas, George E. A.

    2007-11-15

    We compute numerically the absorption cross section of a canonical acoustic hole for sound waves with arbitrary frequencies. Our outputs are in full agreement with the expected low- and high-frequency limits.

  10. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  11. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  12. QuickSite Cross Section Processing

    2003-05-27

    This AGEM-developed system produces cross sections by inputting data in both standard and custom file formats and outputting a graphic file that can be printed or further modified in a commercial graphic program. The system has evolved over several years in order to combine and visualize a changing set of field data more rapidly than was possible with commercially available cross section software packages. It uses some commercial packages to produce the input and tomore » modify the output files. Flexibility is provided by a dynamic set of programs that are customized to accept varying input and accomodate varying output requirements. There are two basic types of routines: conversion routines and cross section generation routines. The conversion routines convery various data files to logger file format which is compatible with a standard file format for LogPlot 98, a commonly used commercial log plotting program. The cross section routines generate cross sections and apply topography to these cross sections. All of the generation routines produce a standard graphic DXF file, which is the format used in AutoCAD and can then be modified in a number of available graphics programs.« less

  13. Fission cross section uncertainties with the NIFFTE TPC

    NASA Astrophysics Data System (ADS)

    Sangiorgio, Samuele; Niffte Collaboration

    2014-09-01

    Nuclear data such as neutron-induced fission cross sections play a fundamental role in nuclear energy and defense applications. In recent years, understanding of these systems has become increasingly dependent upon advanced simulation and modeling, where uncertainties in nuclear data propagate in the expected performances of existing and future systems. It is important therefore that uncertainties in nuclear data are minimized and fully understood. For this reason, the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure energy-differential (n,f) cross sections with unprecedented precision. The presentation will discuss how the capabilities of the NIFFTE TPC allow to directly measures systematic uncertainties in fission cross sections, in particular for what concerns fission-fragment identification, and target and beam uniformity. Preliminary results from recent analysis of 238U/235U and 239Pu/235U data collected with the TPC will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Measurement of 139La(n,γ) Cross Section

    NASA Astrophysics Data System (ADS)

    Terlizzi, R.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-03-01

    We measured the neutron capture cross section of 139La relative to 197Au in the energy range of 0.6 eV to 9 keV at n_TOF, the neutron time-of-flight facility at CERN. After a description of the experimental apparatus, we discuss data analysis procedures. The data were fitted using R-matrix formalism to extract resonance parameters which, in turn, were used to calculate average level spacings D0 = 268 ± 22 eV and D1 < 250 eV, and neutron strength functions S0 = (0.79 ± 0.03)×10-4 and S1 = (0.73 ± 0.05)×10-4 for s- and p-wave resonances. The data also were used to determine Maxwellian-averaged neutron capture cross sections which, in turn, were used to calculate the 139La abundance synthesized in a stellar model of the main component of the s process.

  15. NIFFTE Time Projection Chamber for Fission Cross Section Measurements

    NASA Astrophysics Data System (ADS)

    Castillo, Ryan; Neutron Induced Fission Fragment Tracking Experiment Collaboration

    2011-10-01

    In order to design safer and more efficient Generation IV nuclear reactors, more accurate knowledge of fission cross sections is needed. The goal of the Time Projection Chamber (TPC) used by the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration is to measure the cross sections of several fissile materials to within 1% uncertainty. The ability of the TPC to produce 3D ``pictures'' of charged particle trajectories will eliminate unwanted alpha particles in the data. Another important source of error is the normalization of data the U-235 standard. NIFFTE will use the H(n,n)H reaction instead, which is known to better than 0.2%. The run control and monitoring system will eventually allow for nearly complete automation and off-site monitoring of the experiment. This presentation will cover the need for precision measurements and an overview of the experiment. This work was supported by the U.S. Department of Energy Division of Energy Research.

  16. Improved activation cross sections for vanadium and titanium

    SciTech Connect

    Muir, D.W.; Arthur, E.D.

    1983-01-01

    Vanadium alloys such as V-20Ti and V-Cr-Ti are attractive candidates for use as structural materials in fusion-reactor blankets. The virtual absence of long-lived activation products in these alloys suggest the possibility of reprocessing on an intermediate time scale. We have employed the modern Hauser-Feshbach nuclear-model code GNASH to calculate cross sections for neutron-activation reactions in /sup 50/V and /sup 51/V, to allow a more accurate assessment of induced radioactivity in vanadium alloys. In addition, cross sections are calculated for the reactions /sup 46/Ti(n,2n) and /sup 45/Ti(n,2n) in order to estimate the production of /sup 44/Ti, a 1.2-MeV gamma-ray source with a half-life of 47 years.

  17. Determination of (n,{gamma}) cross sections in the rare-earth region using the surrogate ratio method

    SciTech Connect

    Goldblum, B. L.; Prussin, S. G.; Agvaanluvsan, U.; Bernstein, L. A.; Bleuel, D. L.; Younes, W.; Guttormsen, M.

    2008-12-15

    The surrogate ratio method was used to convert experimentally determined relative {gamma}-decay probabilities for excited {sup 171}Yb and {sup 161}Dy nuclei, populated using ({sup 3}He, {sup 3}He{sup '}) and ({sup 3}He, {alpha}) reactions, into neutron-induced {gamma}-decay cross sections in an equivalent neutron energy range of 165-465 keV. The relative {gamma}-decay probabilities were measured using the CACTUS array at the Oslo Cyclotron Laboratory and were found to agree with the ratio of neutron-induced {gamma}-decay cross sections for the same compound nuclei over the range of excitation energies measured. No significant entrance-channel effects on the extracted (n,{gamma}) cross sections were observed. The cross sections obtained using the surrogate ratio method were compared to directly measured neutron-capture cross sections and found to agree within the total estimated uncertainty over the range of equivalent neutron energies measured.

  18. Cross sections for n+{sup 14}N from an R-matrix analysis of the {sup 15}N system

    SciTech Connect

    Hale, G.M.; Young, P.G.; Chadwick, M.B.

    1994-06-01

    As part of the Hiroshima-Nagasaki Dose Reevaluation Program, a new evaluation of the neutron cross sections for {sup 14}N was made for ENDF/B-VI, based at energies below 2.5 MeV on a multichannel R-matrix analysis of reactions in the {sup 15}N system. The types of data used in the analysis, and the resulting cross sections and resonance structure for {sup 15}N are briefly described. The resonant features of the neutron cross sections were especially well determined by including precise, high-resolution neutron total cross section measurements from ORNL. While the new evaluated cross section appear to be significant improvements over the earlier ones, they still need to be tested more extensively against recent measurements of the differential elastic cross section from Oak Ridge.

  19. 102Pd(n, {gamma}) Cross Section Measurement Using DANCE

    SciTech Connect

    Hatarik, R.; Alpizar-Vicente, A. M.; Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Greife, U.

    2006-03-13

    The neutron capture cross section of the proton rich nucleus 102Pd was measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. The target was a 2 mg Pd foil with 78% enriched 102Pd. It was held by a 0.9 {mu}m thick Mylar bag which was selected after comparing different thicknesses of Kapton and Mylar for their scattering background. To identify the contribution of the other Pd isotopes the data of a natural Pd sample was compared to the data of the 102Pd enriched sample. A 12C sample was used to determine the scattering background. The 102Pd(n, {gamma}) rate is of importance for the p-process nucleosynthesis.

  20. Simulated (n,f) cross section of isomeric 235m-U

    SciTech Connect

    Becker, J; Britt, H; Younes, W

    2003-12-18

    The neutron-induced fission cross section on the {sup 235}U, T{sub 1/2} {approx} 26 min isomer has been deduced for incident neutron energies in the range E{sub n}=0.1-2.5 MeV, using the surrogate-reaction technique. In this technique, {sup 236}U fission probabilities measured in the {sup 234}U(t, pf) reaction have been converted into {sup 235}U(n,f) and {sup 235m}U(n,f) cross sections, using reaction theory to compensate for the differences in angular-momentum and parity distributions in the fissioning systems, transferred by the (t,p) and neutron-induced reactions. Based on the comparison between the {sup 235}U(n,f) cross section extracted in this work and independent experimental data, the deduced {sup 235m}U(n,f) cross section is believed to be reliable to 20% below E{sub n} {approx} 0.5 MeV and 10% at higher energies. The surrogate-reaction technique, its validation in the case of the {sup 235}U(n,f) cross section, and the deduced {sup 235m}U(n,f) cross section are discussed. Validation of this method allows (n,f) cross sections for many short-lived nuclei, as well as isomeric nuclei, to be extracted from measured fission probabilities.

  1. Capture cross section measurement analysis in the Californium-252 spectrum with the Monte Carlo method.

    PubMed

    Manojlovič, Stanko; Trkov, Andrej; Žerovnik, Gašper; Snoj, Luka

    2015-07-01

    Absolute average capture cross sections of gold, thorium, tantalum, molybdenum, copper and strontium in (252)Cf spontaneous fission neutron spectrum were simulated for two types of experiment setups preformed by Z. Dezso and J. Csikai and by L. Green. The experiments were simulated with MCNP5 using cross section data from the ENDF/B-VII.0 library. The determination of neutron backscattering was calculated with the use of neutron flagging. Correction factors to experimentally measured values were determined to obtain average cross sections in a pure (252)Cf spontaneous fission spectrum. Influence of concrete wall thickness, air moisture and room size on the average cross section was analyzed. Correction factors amounted to about 30%. Corrected values corresponding to average cross sections in a pure (252)Cf spectrum were calculated for (197)Au, (232)Th, (181)Ta, (98)Mo, (65)Cu and (84)Sr. Average cross sections were also calculated with the RR_UNC software using IRDFF-v.1.05 and ENDF/B-VII.0 libraries. The revised average radiative capture cross sections are 75.5±0.1 mb for (197)Au, 87.0±1.6 mb for (232)Th , 98.0±4.5 mb for (181)Ta, 21.2±0.5 mb for (98)Mo, 10.3±0.3 mb for (63)Cu, and 34.9±6.5 mb for (84)Sr.

  2. Photodisintegration Cross Section of 241Am

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Hammond, S.; Howell, C. R.; Huibregtse, C.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Kwan, E.; Rusev, G.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2009-03-01

    The photodisintegration cross section of radioactive 241Am has been obtained for the first time using monoenergetic γ-ray beams from the HIγS facility. The induced activity of 240Am produced via the 241Am(γ,n) reaction in the γ-ray energy range from 9.5 to 16 MeV was measured by the activation technique utilizing high resolution HPGe detectors. The 241Am(γ,n) cross section was determined both by measuring the absolute γ-ray flux and by comparison to the 197Au(γ,n) and 58Ni(γ,n) cross section standards. The experimental data for the 241Am(γ,n) reaction in the giant dipole resonance energy region is compared with statistical nuclear-model calculations.

  3. Top differential cross section measurements (Tevatron)

    SciTech Connect

    Jung, Andreas W.

    2012-01-01

    Differential cross sections in the top quark sector measured at the Fermilab Tevatron collider are presented. CDF used 2.7 fb{sup -1} of data and measured the differential cross section as a function of the invariant mass of the t{bar t} system. The measurement shows good agreement with the standard model and furthermore is used to derive limits on the ratio {kappa}/M{sub Pl} for gravitons which decay to top quarks in the Randall-Sundrum model. D0 used 1.0 fb{sup -1} of data to measure the differential cross section as a function of the transverse momentum of the top-quark. The measurement shows a good agreement to the next-to-leading order perturbative QCD prediction and various other standard model predictions.

  4. Algorithmic analysis of quantum radar cross sections

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Venegas-Andraca, Salvador

    2015-05-01

    Sidelobe structures on classical radar cross section graphs are a consequence of discontinuities in the surface currents. In contrast, quantum radar theory states that sidelobe structures on quantum radar cross section graphs are due to quantum interference. Moreover, it is conjectured that quantum sidelobe structures may be used to detect targets oriented off the specular direction. Because of the high data bandwidth expected from quantum radar, it may be necessary to use sophisticated quantum signal analysis algorithms to determine the presence of stealth targets through the sidelobe structures. In this paper we introduce three potential quantum algorithmic techniques to compute classical and quantum radar cross sections. It is our purpose to develop a computer science-oriented tool for further physical analysis of quantum radar models as well as applications of quantum radar technology in various fields.

  5. The cross section for double Compton scattering

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1984-01-01

    Employing elementary methods in nonrelativistic quantum electrodynamics, the cross section for gamma sub 0 + e yields e + gamma + gamma is computed for arbitrary energy in the spectrum of the outgoing photons. The final result is given, differential in the energy of one of these photons, for the case where the incident photon is unpolarized and has energy E sub 0 much less than mc-squared, a polarization sum and angular integration being performed for the final-state photons. The cross section has a simple algebraic form resulting from contributions from the sum of squared direct and exchange amplitudes; interference terms from these amplitudes do not contribute to the angular-integrated cross section.

  6. Total quadruple photoionization cross section of beryllium

    SciTech Connect

    Emmanouilidou, Agapi

    2007-11-15

    In a quasiclassical framework, we formulate the quadruple ionization by single-photon absorption of the Coulomb five-body problem. We present the quadruple photoionization total cross section of the ground state of beryllium for energies up to 620 eV. Our results for energies close to threshold are in agreement with the Wannier threshold law for four-electron escape. In addition, the agreement of our results with a shape formula provides support for the overall shape of our total quadruple cross section. Finally, we find that the photon energy where the maximum of the total photoionization cross section occurs for single, double, triple, and quadruple photoionization of H, He, Li, and Be, respectively, seems to follow a linear relation with the threshold energy for complete breakup of the respective element.

  7. Production and testing of the VITAMIN-B6 fine-group and the BUGLE-93 broad-group neutron/photon cross-section libraries derived from ENDF/B-VI nuclear data

    SciTech Connect

    Ingersoll, D.T.; White, J.E.; Wright, R.Q.; Hunter, H.T.; Slater, C.O.; Greene, N.M.; MacFarlane, R.E.

    1993-11-01

    A new multigroup cross-section library based on ENDF/B-VI data has been produced and tested for light water reactor shielding and reactor pressure vessel dosimetry applications. The broad-group library is designated BUGLE-93. The processing methodology is consistent with ANSI/ANS 6.1.2, since the ENDF data were first processed into a fine-group, ``pseudo problem-independent`` format and then collapsed into the final broad-group format. The fine-group library is designated VITAMIN-B6. An extensive integral data testing effort was also performed. In general, results using the new data show significant improvements relative to earlier ENDF data.

  8. Infrared absorption cross sections of alternative CFCs

    NASA Technical Reports Server (NTRS)

    Clerbaux, Cathy; Colin, Reginald; Simon, Paul C.

    1994-01-01

    Absorption cross sections have obtained in the infrared atmospheric window, between 600 and 1500 cm(exp -1), for 10 alternative hydrohalocarbons: HCFC-22, HCFC-123, HCFC-124, HCFC-141b, HCFC-142b, HCFC-225ca, HCFC-225cb, HFC-125, HFC-134a, and HFC-152a. The measurements were made at three temperatures (287K, 270K and 253K) with a Fourier transform spectrometer operating at 0.03 cm(exp -1) apodized resolution. Integrated cross sections are also derived for use in radiative models to calculate the global warming potentials.

  9. Detailed photonuclear cross-section calculations and astrophysical applications

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.; Hoff, R.W.

    1989-06-15

    We have investigated the role of an isomeric state and its coupling to the ground state (g.s.) via photons and neutron inelastic scattering in a stellar environment by making detailed photonuclear and neutron cross-section calculations for /sup 176/Lu and /sup 210/Bi. In the case of /sup 176/Lu, the g.s. would function as an excellent galactic slow- (s-) process chronometer were it not for the 3.7-h isomer at 123 keV. Our calculations predicted much larger photon cross sections for production of the isomer, as well as a lower threshold, than had been assumed based on earlier measurements. These two factors combine to indicate that an enormous correction, a factor of 10/sup 7/, must be applied to shorten the current estimate of the half-life against photoexcitation of /sup 176/Lu as a function of temperature. This severely limits the use of /sup 176/Lu as a stellar chronometer and indicates a significantly lower temperature at which the two states reach thermal equilibrium. For /sup 210/Bi, our preliminary calculations of the production and destruction of the 3 /times/ 10/sup 6/ y isomeric state by neutrons and photons suggest that the /sup 210/Bi isomer may not be destroyed by photons as rapidly as assumed in certain stellar environments. This leads to an alternate production path of /sup 207/Pb and significantly affects presently interpreted lead isotopic abundances. We have been able to make such detailed nuclear cross-section calculations using: modern statistical-model codes of the Hauser-Feshbach type, with complete conservation of angular momentum and parity; reliable systematics of the input parameters required by these codes, including knowledge of the absolute gamma-ray strength-functions for E1, M1, and E2 transitions; and codes developed to compute large, discrete, nuclear level sets, their associated gamma-ray branchings, and the presence and location of isomeric states. 7 refs., 2 figs.

  10. Study of Exotic Nuclear Structures via Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Takechi, Maya

    2009-10-01

    Nuclear radius is one of the most basic physical quantities to study unknown exotic nuclei. A number of radii for unstable nuclei were studied through measurements of interaction cross sections (σI) at high energies, using the Glauber-type calculation (Optical-Limit approximation (OLA) of Glauber theory) to investigate halo and skin structures of exotic nuclei. On the other hand, it was indicated that reaction cross sections (σR) at intermediate energies (from several tens to hundreds of MeV/nucleon) were more sensitive to dilute nucleon density distribution owing to large nucleon-nucleon total cross sections (σNN) compared to high-energy region. Recently, we developed a new method to deduce nucleon density distributions from the energy dependences of σ R, through the precise measurements of σ R for various nuclei and some modifications of Glauber-type calculation. Using this method, we studied nucleon density distributions of light nuclei by measuring σ R for those nuclei at HIMAC (Heavy ion Medical Accelerator in CHIBA), NIRS (National Institute of Radiological Sciences). And very recently, we deduced nuclear radii of neutron-rich Ne isotopes (^28-32Ne) which are in the island-of-inversion region by measuring σI using BigRIPS at RIBF (RI Beam Factory) to study nuclear structures of those isotopes using our method. In this workshop, results of nucleon density distributions obtained at HIMAC and results of the studies of Ne isotopes at RIBF will be introduced and discussed.

  11. Deuterium target data for precision neutrino-nucleus cross sections

    DOE PAGESBeta

    Meyer, Aaron S.; Betancourt, Minerba; Gran, Richard; Hill, Richard J.

    2016-06-23

    Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, FA(q2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of FA from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of FA. A complete error budget for the nucleon isovector axial radius leads to rA2 = 0.46(22)fm2, with a much larger uncertainty than determined inmore » the original analyses. The quasielastic neutrino-neutron cross section is determined as σ(νμn → μ-p)|Ev=1GeV = 10.1(0.9)×10-39cm2. The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. Furthermore, these techniques can be readily extended to other amplitudes and processes.« less

  12. Parameter-free calculation of charge-changing cross sections at high energy

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Horiuchi, W.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Tanihata, I.; Vargas, J.; Weick, H.; Winfield, J. S.

    2016-07-01

    Charge-changing cross sections at high energies are expected to provide useful information on nuclear charge radii. No reliable theory to calculate the cross section has yet been available. We develop a formula using Glauber and eikonal approximations and test its validity with recent new data on carbon isotopes measured at around 900 A MeV. We first confirm that our theory reproduces the cross sections of 12,13,14C+12C consistently with the known charge radii. Next we show that the cross sections of C-1912 on a proton target are all well reproduced provided the role of neutrons is accounted for. We also discuss the energy dependence of the charge-changing cross sections.

  13. Testing (Validating?) Cross Sections with ICSBEP Benchmarks

    SciTech Connect

    Kahler, Albert C. III

    2012-06-28

    We discuss how to use critical benchmarks from the International Handbook of Evaluated Criticality Safety Benchmark Experiments to determine the applicability of specific cross sections to the end-user's problem of interest. Particular attention is paid to making sure the selected suite of benchmarks includes the user's range of applicability (ROA).

  14. Cross Sections From Scalar Field Theory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel

    2008-01-01

    A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.

  15. Cross sections relevant to gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Dyer, P.; Bodansky, D.; Maxson, D. R.

    1978-01-01

    Gamma-ray production cross sections were measured for protons and alpha particles incident on targets consisting of nuclei of high cosmic abundance: C-12, N-14, O-16, Ne-20, Mg-24, Si-28 and Fe-56. Solid or gaseous targets were bombarded by monoenergetic beams of protons and alpha particles, and gamma rays were detected by two Ge(Li) detectors. The proton energy for each target was varied from threshold to about 24 MeV (lab); for alphas the range was from threshold to about 27 MeV. For most transitions, it was possible to measure the total cross section by placing the detectors at 30.5 deg and 109.9 deg where the fourth-order Legendre polynomial is zero. For the case of the 16O (E sub gamma = 6.13 MeV, multipolarity E3) cross sections, yields were measured at four angles. Absolute cross sections were obtained by integrating the beam current and by measuring target thicknesses and detector efficiencies. The Ge(Li) detector resolution was a few keV (although the peak widths were greater, due to Doppler broadening).

  16. Neutrino-Induced Neutral-Current Reaction Cross Sections for r-PROCESS Nuclei

    NASA Astrophysics Data System (ADS)

    Langanke, K.; Kolbe, E.

    2002-11-01

    Neutrino-induced reactions play an important role during and after the r-process, if the latter occurs in an environment with extreme neutrino fluxes such as the neutrino-driven wind model or neutron star mergers. Recently we have evaluated the charged-current neutrino-nucleus cross sections relevant for r-process simulations. We extend our approach here to the neutral-current cross sections. Our tabulation considers neutron-rich nuclei with neutron numbers N=41-135 and charge numbers Z=21-82 and lists total as well as partial neutron spallation cross sections. The calculations have been performed within the random phase approximation considering multipole transitions with J<=3 and both parities. The supernova neutrino spectrum is described by a Fermi-Dirac distribution with various temperature parameters between T=2.8 MeV and T=10 MeV and with the degeneracy parameters α=0 and α=3.

  17. Precision measurement of the 238Pu(n,γ) cross section

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Wu, C. Y.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2013-10-01

    The neutron-capture cross section for 238Pu was measured by using the detector for advanced neutron-capture experiments (DANCE) array, which is a highly segmented and highly efficient 4π γ-ray calorimeter. The neutron-capture events were recognized by the total γ-ray energy deposited in DANCE, which is equal to the reaction Q value plus the incident neutron energy. The absolute neutron-capture cross section was derived as a function of incident neutron energy from thermal to about 30 keV. The measured cross section for incident neutron energy below 18 eV was performed for the first time by using the direct method and does not support the most recently adopted changes in endf/b-vii.1 where the neutron-capture cross section was lowered by as much as a factor of ˜3 in the neighborhood of 0.3 eV from those evaluated in endf/b-vii.0.

  18. BOXER: Fine-flux Cross Section Condensation, 2D Few Group Diffusion and Transport Burnup Calculations

    2010-02-01

    Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).

  19. NASA-Lewis experiences with multigroup cross sections and shielding calculations

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.

  20. A Time Projection Chamber for precision 239Pu(n,f) cross section measurement

    SciTech Connect

    Heffner, M

    2008-01-14

    High precision measurements of the {sup 239}Pu(n,f) cross section have been identified as important for the Global Nuclear Energy Partnership (GNEP) and other programs. Currently the uncertainty on this cross section is of the order 2-3% for neutron energies below 14 MeV and the goal is to reduce this to less than 1%. The Time Projection Chamber (TPC) has been identified as a possible tool to make this high precision measurement.

  1. Calculation of the Reaction Cross Section for Several Actinides

    SciTech Connect

    Hambsch, Franz-Josef; Oberstedt, Stephan; Vladuca, Gheorghita; Tudora, Anabella; Filipescu, Dan

    2005-05-24

    New, self-consistent, neutron-induced reaction cross-section calculations for 235,238U, 237Np, and 231,232,233Pa have been performed. The statistical model code STATIS was extended to take into account the multi-modality of the fission process. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes, and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for these modes in 235,238U(n,f) and 237Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235U(n,f) and 233Pa(n,f), the calculations being made up to 50 MeV and 20 MeV incident neutron energy, respectively, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes.As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged.

  2. CROSS SECTION EVALUATIONS FOR ENDF/B-VII.

    SciTech Connect

    HERMAN, M.; ROCHMAN, D.; OBLOZINSKY, P.

    2006-06-05

    This is the final report of the work performed under the LANL contract on neutron cross section evaluations for ENDF/B-VII (April 2005-May 2006). The purpose of the contract was to ensure seamless integration of the LANL neutron cross section evaluations in the new ENDF/B-VII library. The following work was performed: (1) LANL evaluated data files submitted for inclusion in ENDF/B-VII were checked and, when necessary, formal formatting errors were corrected. As a consequence, ENDF checking codes, run on all LANL files, do not report any errors that would rise concern. (2) LANL dosimetry evaluations for {sup 191}Ir and {sup 193}Ir were completed to match ENDF requirements for the general purpose library suitable for transport calculations. A set of covariances for both isotopes is included in the ENDF files. (3) Library of fission products was assembled and successfully tested with ENDF checking codes, processed with NJOY-99.125 and simple MCNP calculations. (4) KALMAN code has been integrated with the EMPIRE system to allow estimation of covariances based on the combination of measurements and model calculations. Covariances were produced for 155,157-Gd and also for 6 remaining isotopes of Gd.

  3. Many-Group Cross-Section Adjustment Techniques for Boiling Water Reactor Adaptive Simulation

    SciTech Connect

    Jessee, Matthew Anderson

    2011-01-01

    Computational capability has been developed to adjust multigroup neutron cross sections, including self-shielding correction factors, to improve the fidelity of boiling water reactor (BWR) core modeling and simulation. The method involves propagating multigroup neutron cross-section uncertainties through various BWR computational models to evaluate uncertainties in key core attributes such as core k{sub eff}, nodal power distributions, thermal margins, and in-core detector readings. Uncertainty-based inverse theory methods are then employed to adjust multigroup cross sections to minimize the disagreement between BWR core modeling predictions and observed (i.e., measured) plant data. For this paper, observed plant data are virtually simulated in the form of perturbed three-dimensional nodal power distributions with the perturbations sized to represent actual discrepancies between predictions and real plant data. The major focus of this work is to efficiently propagate multigroup neutron cross-section uncertainty through BWR lattice physics and core simulator calculations. The data adjustment equations are developed using a subspace approach that exploits the ill-conditioning of the multigroup cross-section covariance matrix to minimize computation and storage burden. Tikhonov regularization is also employed to improve the conditioning of the data adjustment equations. Expressions are also provided for posterior covariance matrices of both the multigroup cross-section and core attributes uncertainties.

  4. Inclusive jet cross section at the Tevatron

    SciTech Connect

    1998-01-01

    The authors report preliminary measurements of the central inclusive jet cross section at 1.8 TeV by the D0 and the CDF collaborations at the p{anti p} Fermilab collider. They are based on an integrated luminosity of 92 and 87 pb-1, respectively. The cross sections are measured as a function of jet transverse energy in the pseudorapidity interval 0.1 < 1,711 < 0.7 (CDF), and the two pseudorapidity ranges 1,711 < 0.5 and 0.1 < Inj < 0.7 (D0). D0 reports good agreement with the Next-to-Leading Order QCD predictions currently available. CDF observes an excess above 200 GeV, which can be accommodated with a modification in the gluon distribution function at high x.

  5. Proton Pair Production Cross Sections at BESIII

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaorong

    Using data samples collected with the BESIII detector at the BEPCII collider, the Born cross section of e + e - to pbar{p} at 12 center-of-mass energies from 2232.4 to 3671.0 MeV is provided. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal. In addition, the ratio of electric to magnetic form factors are extracted for the data samples with larger statistics. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30%. The |GE/GM| ratios are close to unity and consistent with BaBar results in the same q2 region.

  6. Rotational averaging of multiphoton absorption cross sections

    SciTech Connect

    Friese, Daniel H. Beerepoot, Maarten T. P.; Ruud, Kenneth

    2014-11-28

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  7. Inclusive jet cross section measurement at CDF

    SciTech Connect

    Pagliarone, C.

    1996-08-01

    The CDF Collaboration has measured the inclusive jet cross section using 1992-93 collider data at 1.8 TeV. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However, it is systematically higher than NLO QCD predictions for E{sub T} above 200 GeV.

  8. {sup 231}Pa photofission cross section

    SciTech Connect

    Soldatov, A.S.; Rudnikov, V.E.; Smirenkin, G.N.

    1995-12-01

    The measurements of the {sup 231}Pa yield and cross section photofission in the energy range 7-9 MeV are presented. These measurements are a continuation of similar measurements performed for the {gamma}-ray energy range 4.8-7 MeV. The entire collection of experimental data which combine the results obtained in the present work and in Ref. 1 was analyzed.

  9. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  10. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  11. How to Calculate Colourful Cross Sections Efficiently

    SciTech Connect

    Gleisberg, Tanju; Hoeche, Stefan; Krauss, Frank

    2008-09-03

    Different methods for the calculation of cross sections with many QCD particles are compared. To this end, CSW vertex rules, Berends-Giele recursion and Feynman-diagram based techniques are implemented as well as various methods for the treatment of colours and phase space integration. We find that typically there is only a small window of jet multiplicities, where the CSW technique has efficiencies comparable or better than both of the other two methods.

  12. Nonperturbative corrections in resummed cross sections

    NASA Astrophysics Data System (ADS)

    Korchemsky, Gregory P.; Sterman, George

    1995-02-01

    We show that the resummation of large perturbative corrections in QCD leads to ambiguities in high energy cross sections that are suppressed by powers of large momentum scales. These ambiguities are caused by infrared renormalons, which are a general feature of resummed hardscattering functions in perturbative QCD, even though these functions are infrared safe order-by-order in perturbation theory. As in the case of the operator product expansion, the contributions of infrared renormalons to coefficient functions may be absorbed into the definition of higher-dimensional operators, which induce nonperturbative corrections that are power-suppressed at high energies. The strength of the suppression is determined by the location of the dominant infrared renormalon, which may be identified explicitly in the resummed series. In contrast to the operator product expansion, however, the relevant operators in factorized hadron-hadron scattering and jet cross sections are generally nonlocal in QCD, although they may be expressed as local operators in an effective theory for eikonalized quarks. In this context, we verify and interpret the presence of 1 / Q corrections to the inclusive Drell-Yan cross section with Q the pair mass. In a similar manner, we find exp (- b2 In Q) corrections in the impact parameter space of the transverse momentum distributions of the Drell-Yan process and e +6 - annihilation. We also show that the dominant nonperturbative corrections to cone-based jet cross sections behave as 1 /( Qδ), with δ the opening angle of the jet and Q the center of mass energy.

  13. KLOE results on hadronic cross section

    NASA Astrophysics Data System (ADS)

    Mandaglio, Giuseppe; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Archilli, F.; Balwierz, I.; Bencivenni, G.; Bini, C.; Bloise, C; . Bocchetta, S.; Bossi, F.; Branchini, P.; Capon, G.; Capussela, T.; Ceradini, F.; Ciambrone, P.; Czerwiński, E.; De Lucia, E.; De Santis, A.; De Simone, P.; De Zorzi, G.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Micco, B.; Dreucci, M.; Felici, G.; Fiore, S.; Franzini, P.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Graziani, E.; Jacewicz, M.; Kluge, W.; Lee-Franzini, J.; Lukin, P.; Martemianov, M.; Martini, M.; Massarotti, P.; Meola, S.; Miscetti, S.; Morello, G.; Moulson, M.; Müller, S; . Napolitano, M.; Nguyen, F.; Palutan, M.; Passeri, A.; Patera, V.; Prado Longhi, I.; Santangelo, P.; Sciascia, B.; Silarski, M.; Spadaro, T.; Taccini, C.; Tortora, L.; Venanzoni, G.; Versaci, R.; Xu, G.; Zdebik, J.; Babusci, D.; Badoni, D.; Bocci, V.; Budano, A.; Bulychjev, S. A; .; Caldeira Balkeståhl, L.; Campana, P.; Dané, E.; De Robertis, G.; Domenici, D.; Erriquez, O.; Fanizzi, G.; Giardina, G.; Gonnella, F.; Happacher, F.; Höistad, B.; Iafolla, L.; Iarocci, E.; Johansson, T.; Kowalewska, A.; Kulikov, V.; Kupsc, A.; Loddo, F.; Mandaglio, G.; Mascolo, M.; Matsyuk, M.; Messi, R.; Moricciani, D.; Ranieri, A.; Redmer, C. F.; Sarra, I.; Schioppa, M.; Sciubba, A.; Wiślicki, W.; Wolke, M.; KLOE/KLOE-2 Collaborations

    2012-03-01

    The KLOE experiment at the phi - factory DAΦNE is the first to have exploited Initial State Radiation (ISR) to precisely determine the e+e- → π+π-(γ) cross section below 1 GeV, representing the 70% of the leading order contribution to the muon anomaly. The leading order contribution ahloμ is presently the main source of uncertainty in the theoretical evaluation of the muon anomaly, and it can be evaluated by dispersion integral using the experimental measurement of hadronic cross section. A persistent discrepancy of about 3 σ between standard model (SM) prediction and experimental measurements of the muon anomalous magnetic moment has been up to now observed. The KLOE collaboration published two measurements of the π+π- cross section with the photon in the initial state emitted at small polar angle in Phys. Lett. B vol. 606 pg. 12 and vol. 670 pg. 285, and an independent measurement with the photon emitted at large polar angle in Phys. Lett. B vol. 700 pg. 102. These measurements were normalized to the DAΦNE luminosity. Recently, a new analysis deriving the pion form factor directly from measuring the bin-by-bin π+πγ and μ+μγ final states ratio has been performed. In this paper, the preliminary results of this new measurement and the comparison to the previous published ones, the impact on the evaluation of the hadronic contribution to the muon anomaly, the preliminary μ+μγ cross section measurement and the comparison with the PHOKHARA-MC prediction are presented.

  14. Quality Quantification of Evaluated Cross Section Covariances

    SciTech Connect

    Varet, S.; Dossantos-Uzarralde, P.

    2015-01-15

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the {sup 85}Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations.

  15. Proton Radiography: Cross Section Measurements and Detector Development

    SciTech Connect

    Michael J. Longo; H. R. Gustafson: Durga Rajaram; Turgun Nigmanov

    2010-04-16

    Proton radiography has become an important tool for predicting the performance of stockpiled nuclear weapons. Current proton radiography experiments at LANSCE are confined to relatively small targets on the order of centimeters in size because of the low beam energy. LANL scientists have made radiographs with 12 and 24 GeV protons produced by the accelerator at Brookhaven National Laboratory. These energies are in the range required for hydrotest radiography. The design of a facility for hydrotest radiography requires knowledge of the cross sections for producing high-energy particles in the forward direction, which are incorporated into the Monte Carlo simulation used in designing the beam and detectors. There are few existing measurements of neutron production cross sections for proton-nuclei interactions in the 50 GeV range, and almost no data exist for forward neutron production, especially for heavy target nuclei. Thus the data from the MIPP EMCAL and HCAL, for which our group was responsible, are critical to proton radiography. Since neutrons and photons cannot be focused by magnets, they cause a background “fog” on the images. This problem can be minimized by careful design of the focusing system and detectors. The purpose of our research was to measure forward production of neutrons produced by high-energy proton beams striking a variety of targets. The forward-going particles carry most of the energy from a high-energy proton interaction, so these are the most important to proton radiography. This work was carried out in conjunction with the Fermilab E-907 (MIPP) collaboration. Our group was responsible for designing and building the E907 forward neutron and photon calorimeters. With the support of our Stewardship Science Academic Alliances grants, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. The MIPP experiment accumulated a large amount of data in the first run that ended in early 2006. Our group has

  16. Validation of Cross Sections with Criticality Experiment and Reaction Rates: the Neptunium Case

    NASA Astrophysics Data System (ADS)

    Leong, L. S.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Le Naour, C.; Stéphan, C.; Paradela, C.; Tarrío, D.; Duran, I.

    2014-04-01

    The 237Np neutron-induced fission cross section has been recently measured in a large energy range (from eV to GeV) at the n_TOF facility at CERN. When compared to previous measurements the n_TOF fission cross section appears to be higher by 5-7% beyond the fission threshold. To check the relevance of the n_TOF data, we considered a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np, surrounded by uranium highly enriched in 235U so as to approach criticality with fast neutrons. The multiplication factor keff of the calculation is in better agreement with the experiment when we replace the ENDF/B-VII.0 evaluation of the 237Np fission cross section by the n_TOF data. We also explored the hypothesis of deficiencies of the inelastic cross section in 235U which has been invoked by some authors to explain the deviation of 750 pcm. The large modification needed to reduce the deviation seems to be incompatible with existing inelastic cross section measurements. Also we show that the νbar of 237Np can hardly be incriminated because of the high accuracy of the existing data. Fission rate ratios or averaged fission cross sections measured in several fast neutron fields seem to give contradictory results on the validation of the 237Np cross section but at least one of the benchmark experiments, where the active deposits have been well calibrated for the number of atoms, favors the n_TOF data set. These outcomes support the hypothesis of a higher fission cross section of 237Np.

  17. New Measurement of the Thermal-capture Cross Section for the Minor Isotope 180W

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Szentmiklósi, L.; Révay, Zs.; Basunia, M. S.; Belgya, T.; Escher, J. E.; Krtička, M.; Summers, N. C.; Sleaford, B. W.

    2014-05-01

    Tungsten occurs naturally in five isotopic forms; four of them, 182,183,184,186W, contribute significantly to the overall elemental abundance (with each contribution between 14 and 30 %), whereas 180W only occurs at the 0.12 % level and is a minor isotope. Given its very low abundance, a precise measurement of the thermal neutron-capture cross section is extremely challenging. This work reports a new value of the thermal neutron-capture cross section from a direct 180W(n,γ) measurement using a guided-thermal beam at the Budapest Research Reactor, incident upon an 11.35 % enriched sample to induce prompt γ-ray activation within the sample. The thermal-capture cross section was determined as the sum of experimentally observed partial neutron-capture γ-ray cross sections feeding the ground state directly, and, the modeled contribution from the (unobserved) ground-state feeding predicted from statistical-model calculations using the Monte Carlo program DICEBOX. The preliminary value of the 180W(n,γ) thermal neutron-capture cross section is 20.5(42) b.

  18. Cross section measurements at LANSCE for defense, science and applications

    DOE PAGESBeta

    Nelson, Ronald O.; Schwengner, R.; Zuber, K.

    2015-05-28

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays,more » fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.« less

  19. Cross section measurements at LANSCE for defense, science and applications

    SciTech Connect

    Nelson, Ronald O.; Schwengner, R.; Zuber, K.

    2015-05-28

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays, fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.

  20. Cross Section Measurements at LANSCE for Defense, Science and Applications

    NASA Astrophysics Data System (ADS)

    Nelson, Ronald O.

    2015-05-01

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays, fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. Highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.

  1. Averaging cross section data so we can fit it

    SciTech Connect

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  2. Measurement of inelastic cross sections in relativistic deuteron-on-lead reactions

    SciTech Connect

    Zamani, M.; Stoulos, S.; Fragopoulou, M.; Krivopustov, M.

    2010-10-15

    The inelastic cross section of deuterons hitting a lead target has been determined by the beam attenuation technique. A spallation neutron source based on a lead target was irradiated with 1.6- and 2.5-GeV deuterons. Solid-state nuclear track detectors as well as the activation method were used to obtain the neutron and proton distribution along the surface of the source. The attenuation coefficient was estimated by fitting the experimental data and taking into account the buildup effect and the beam attenuation. Using the attenuation coefficient, the interaction length and then the inelastic cross section of deuterons on lead reaction were determined.

  3. Infrared absorption cross sections for trifluoromethane

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2013-11-01

    High-resolution infrared absorption cross sections for trifluoromethane have been determined over the range 950-1500 cm-1 from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125HR) and a 26-cm-pathlength cell. Spectra of trifluoromethane/dry synthetic air mixtures were recorded at 0.015 cm-1 resolution (calculated as 0.9/MOPD) at a number of temperatures and pressures (23-762 Torr and 188-294 K) appropriate for atmospheric conditions. Intensities were calibrated using composite trifluoromethane spectra taken from the Pacific Northwest National Laboratory (PNNL) IR database.

  4. Multicollinearity in cross-sectional regressions

    NASA Astrophysics Data System (ADS)

    Lauridsen, Jørgen; Mur, Jesùs

    2006-10-01

    The paper examines robustness of results from cross-sectional regression paying attention to the impact of multicollinearity. It is well known that the reliability of estimators (least-squares or maximum-likelihood) gets worse as the linear relationships between the regressors become more acute. We resolve the discussion in a spatial context, looking closely into the behaviour shown, under several unfavourable conditions, by the most outstanding misspecification tests when collinear variables are added to the regression. A Monte Carlo simulation is performed. The conclusions point to the fact that these statistics react in different ways to the problems posed.

  5. The calculation of radar cross sections

    NASA Astrophysics Data System (ADS)

    Pizer, R.

    1980-04-01

    The FORTRAN program CHAOS, used for calculating cross sections is described including the physical approximations used to simplify Maxwell's equations. The scattering bodies are extended to both open and closed surfaces. The numerical methods used are supplied. The problems of wire junctions, of finite conductivity and the attaching of lumped loads to the structure are considered. Techniques for dealing with bodies having rotational or left-right symmetries are examined as well as the sparse matrix approximation and the complex frequency version of CHAOS. The formula used to calculate the impedance matrix elements, and the conventions adopted concerning coordinate systems and polarization are included.

  6. Deducing the 237U destruction cross-sections using the Surrogate Ratio Method

    SciTech Connect

    Bernstein, L A; Burke, J T; Ahle, L; Church, J A; Escher, J; Dietrich, F S; Lyles, B F; Norman, E B; Phair, L W; Bleuel, D L; Clark, R M; Fallon, P; Lee, I Y; Macchiavelli, A O; McMahan, M A; Moretto, L G; Rodriguez-Vieitez, E; Ai, H C; Beausang, C W; Crider, B

    2006-03-31

    We have deduced the destruction cross section of {sup 237}U via the (n, {gamma}) and (n,2n) reactions over an equivalent neutron energy range of 0 to 20 MeV using a new form of the Surrogate Ratio method [1-4] . The relative fission and neutron-evaporation decay probabilities of excited {sup 238}U populated via the ({alpha},{alpha}{prime}) inelastic scattering were measured using the silicon telescope array for reaction studies (STARS) coupled to the Livermore Berkeley array for collaborative experiments (LIBERACE). These relative probabilities were then combined with the {sup 237} U(n,f) cross section deduced by Burke et al., [4] to deduce the (n, {gamma}) and (n,2n) cross sections in a model independent fashion. These cross sections are then compared to the compound reaction cross section calculated using an optical model calculation tuned to reproduce scattering data in the transactinide region. Our results presented and the prospects for using this technique to deduce (n,x) cross sections on radioactive nuclei are discussed.

  7. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    SciTech Connect

    Harvel, G.D. |; Hori, K.; Kawanishi, K.

    1995-09-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.

  8. Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

    SciTech Connect

    Gauld, I.C.

    2005-08-12

    U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k{sub eff}) to determine the net importance of cross sections to k{sub eff}. The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: {sup 151}Sm, {sup 103}Rh, {sup 155}Eu, {sup 150}Sm, {sup 152}Sm, {sup 153}Eu, {sup 154}Eu, and {sup 143}Nd.

  9. ENDF/B-VII.1 Beta4 Temperature Dependent Cross Section Library.

    2011-07-22

    Version 00 As distributed, the ENDF/B-VII.1 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in applications the ENDF/B-VII.1 library has been processed into the form of temperature dependent cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin (the exception being 293.6 Kelvin, for exact room temperature atmore » 20 Celsius). It has also been processed to five astrophysics like temperatures—1, 10, and 100 eV; and 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy.« less

  10. ENDF/B-VII.1 Beta4 Temperature Dependent Cross Section Library.

    2011-11-13

    Version 01 As distributed, the ENDF/B-VII.1 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in applications the ENDF/B-VII.1 library has been processed into the form of temperature dependent cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin (the exception being 293.6 Kelvin, for exact room temperature atmore » 20 Celsius). It has also been processed to five astrophysics like temperatures—1, 10, and 100 eV; and 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy.« less

  11. ENDF/B-VII.1 Beta4 Temperature Dependent Cross Section Library.

    2008-12-03

    Version 00 As distributed, the ENDF/B-VII.1 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in applications the ENDF/B-VII.1 library has been processed into the form of temperature dependent cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin (the exception being 293.6 Kelvin, for exact room temperature atmore » 20 Celsius). It has also been processed to five astrophysics like temperatures—1, 10, and 100 eV; and 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy.« less

  12. A new compilation of experimental nuclear data for total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Lantz, Mattias; Sihver, L.

    The nucleon-nucleus and nucleus-nucleus total reaction cross sections are of importance in many different fields, both for a better theoretical understanding as well as for a number of applications, including space radiation dosimetry. We have performed a comprehensive literature study in order to find all available experimental data on total reaction cross sections, σR , and interaction cross sections, σI , for neutrons, protons, and all stable and exotic heavy ions. Excluded from the data base are measurements where the cross sections have been derived through model-dependent calculations from other kinds of measurements. The objective of the study is to identify where more measurements are needed in view of different applications, and to make the data easily available for model developers and experimentalists. We will present some examples from the study, which is in the stage of quality control of all the gathered data.

  13. SENSIT: a cross-section and design sensitivity and uncertainty analysis code. [In FORTRAN for CDC-7600, IBM 360

    SciTech Connect

    Gerstl, S.A.W.

    1980-01-01

    SENSIT computes the sensitivity and uncertainty of a calculated integral response (such as a dose rate) due to input cross sections and their uncertainties. Sensitivity profiles are computed for neutron and gamma-ray reaction cross sections of standard multigroup cross section sets and for secondary energy distributions (SEDs) of multigroup scattering matrices. In the design sensitivity mode, SENSIT computes changes in an integral response due to design changes and gives the appropriate sensitivity coefficients. Cross section uncertainty analyses are performed for three types of input data uncertainties: cross-section covariance matrices for pairs of multigroup reaction cross sections, spectral shape uncertainty parameters for secondary energy distributions (integral SED uncertainties), and covariance matrices for energy-dependent response functions. For all three types of data uncertainties SENSIT computes the resulting variance and estimated standard deviation in an integral response of interest, on the basis of generalized perturbation theory. SENSIT attempts to be more comprehensive than earlier sensitivity analysis codes, such as SWANLAKE.

  14. The 75As(n,2n) Cross Sections into the 74As Isomer and Ground State

    SciTech Connect

    Younes, W; Garrett, P E; Becker, J A; Bernstein, L A; Ormand, W E; Dietrich, F S; Nelson, R O; Devlin, M; Fotiades, N

    2003-06-30

    The {sup 75}As(n, 2n) cross section for the population of the T{sub 1/2} = 26.8-ns isomer at E{sub x} = 259.3 keV in {sup 74}As has been measured as a function of incident neutron energy, from threshold to E{sub n} = 20 MeV. The cross section was measured using the GEANIE spectrometer at LANSCE/WNR. For convenience, the {sup 75}As(n, 2n) population cross section for the {sup 74}As ground state has been deduced as the difference between the previously-known (n, 2n) reaction cross section and the newly measured {sup 75}As(n, 2n){sup 74}As{sup m} cross section. The (n, 2n) reaction, ground-state, and isomer population cross sections are tabulated in this paper.

  15. Criticality experiments and benchmarks for cross section evaluation: the neptunium case

    NASA Astrophysics Data System (ADS)

    Leong, L. S.; Tassan-Got, L.; Audouin, L.; Paradela, C.; Wilson, J. N.; Tarrio, D.; Berthier, B.; Duran, I.; Le Naour, C.; Stéphan, C.

    2013-03-01

    The 237Np neutron-induced fission cross section has been recently measured in a large energy range (from eV to GeV) at the n_TOF facility at CERN. When compared to previous measurement the n_TOF fission cross section appears to be higher by 5-7% beyond the fission threshold. To check the relevance of n_TOF data, we apply a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np, surrounded by enriched uranium 235U so as to approach criticality with fast neutrons. The multiplication factor ke f f of the calculation is in better agreement with the experiment (the deviation of 750 pcm is reduced to 250 pcm) when we replace the ENDF/B-VII.0 evaluation of the 237Np fission cross section by the n_TOF data. We also explore the hypothesis of deficiencies of the inelastic cross section in 235U which has been invoked by some authors to explain the deviation of 750 pcm. With compare to inelastic large distortion calculation, it is incompatible with existing measurements. Also we show that the v of 237Np can hardly be incriminated because of the high accuracy of the existing data. Fission rate ratios or averaged fission cross sections measured in several fast neutron fields seem to give contradictory results on the validation of the 237Np cross section but at least one of the benchmark experiments, where the active deposits have been well calibrated for the number of atoms, favors the n_TOF data set. These outcomes support the hypothesis of a higher fission cross section of 237Np.

  16. Alpha Induced Reaction Cross Section Calculations of Tantalum Nucleus

    NASA Astrophysics Data System (ADS)

    Tel, E.; Ugur, F. A.; Gokce, A. A.

    2013-04-01

    The fusion energy is attractive as an energy source because the fusion will not produce CO2 or SO2 and so fusion will not contribute to environmental problems, such as particulate pollution and excessive CO2 in the atmosphere. The fusion reaction does not produce radioactive nuclides and it is not self-sustaining, as is a fission reaction when a critical mass of fissionable material is assembled. Since the fusion reaction is easily and quickly quenched the primary sources of heat to drive such an accident are heat from radioactive decay and heat from chemical reactions. Both the magnitude and time dependence of the generation of heat from radioactive decay can be controlled by proper selection and design of materials. Tantalum is one of the candidate materials for the first wall of fusion reactors and for component parts of irradiation chambers. Accurate experimental cross-section data of alpha induced reactions on Tantalum are also of great importance for thermonuclear reaction rate determinations since the models used in the study of stellar nucleosynthesis are strongly dependent on these rates (Santos et al. in J Phys G 26:301, 2000). In this study, neutron-production cross sections for target nuclei 181Ta have been investigated up to 100 MeV alpha energy. The excitation functions for (α, xn) reactions (x = 1, 2, 3) have been calculated by pre-equilibrium reaction mechanism. And also neutron emission spectra for 181Ta (α, xn) reactions at 26.8 and 45.2 MeV have been calculated. The mean free path multiplier parameters has been investigated. The pre-equilibrium results have been calculated by using the hybrid model, the geometry dependent hybrid (GDH) model. Calculation results have been also compared with the available measurements in literature.

  17. Surrogate measurement of the {sup 238}Pu(n,f) cross section

    SciTech Connect

    Ressler, J. J.; Burke, J. T.; Escher, J. E.; Bernstein, L. A.; Bleuel, D. L.; Casperson, R. J.; Gostic, J.; Henderson, R.; Scielzo, N. D.; Thompson, I. J.; Wiedeking, M.; Angell, C. T.; Goldblum, B. L.; Munson, J.; Basunia, M. S.; Phair, L. W.; Beausang, C. W.; Hughes, R. O.; Hatarik, R.; Ross, T. J.

    2011-05-15

    The neutron-induced fission cross section of {sup 238}Pu was determined using the surrogate ratio method. The (n,f) cross section over an equivalent neutron energy range 5-20 MeV was deduced from inelastic {alpha}-induced fission reactions on {sup 239}Pu, with {sup 235}U({alpha},{alpha}{sup '}f) and {sup 236}U({alpha},{alpha}{sup '}f) used as references. These reference reactions reflect {sup 234}U(n,f) and {sup 235}U(n,f) yields, respectively. The deduced {sup 238}Pu(n,f) cross section agrees well with standard data libraries up to {approx}10 MeV, although larger values are seen at higher energies. The difference at higher energies is less than 20%.

  18. The {sup 237}Np(n,f) cross section at the CERN n-TOF facility

    SciTech Connect

    Karadimos, D.; Vlastou, R.; Diakaki, M.; Papadopoulos, C.; Vlachoudis, V.; Chiaveri, E.; Ferrari, A.; Fitzpatrick, L.; Cennini, P.; Herrera-Martinez, A.; Kadi, Y.; Mengoni, A.; Sarchiapone, L.; Wendler, H.; Pavlopoulos, P.; Konovalov, V.; Furman, W.; Sedysheva, M.; Abbondanno, U.; Milazzo, P. M.

    2011-10-28

    The {sup 237}Np(n,f) cross sections have been measured at the n-TOF facility relative to the {sup 235}U and {sup 238}U fission cross sections. The n-TOF spallation neutron source at CERN is characterized by a high intensity flux, an excellent time resolution and an extensive neutron energy range (from eV to GeV). A fast ionization chamber was used as a fission fragment detector with efficiency better than 97%. Preliminary {sup 237}Np(n,f) cross sections have been deduced in the energy range from 20 keV to 10 MeV and are found in good agreement with data from literature.

  19. Lunar Radar Cross Section at Low Frequency

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  20. Correlation cross sections along the international border

    SciTech Connect

    Martiniuk, C.D. ); Le Fever, J.A.; Anderson, S.B. )

    1991-06-01

    The Manitoba-North Dakota (Canada-US) stratigraphic correlation project is a joint study between the Petroleum Branch of Manitoba Energy and Mines and the North Dakota Geological Survey. It is an attempt to correlate the differing stratigraphic terminologies established in the two jurisdictions by providing a reference cross section across the international boundary. The study involves the subsurface correlation of logs of the Paleozoic and Mesozoic sequences in the Manitoba and North Dakota portions of the Williston basin. The Paleozoic and Mesozoic sequences are subdivided for presentation into the following stratigraphic intervals: (a) Cambrian-Ordovician-Silurian, (b) Devonian, (c) Mississippian, (d) Jurassic, and (e) Cretaceous. Wireline logs show the actual stratigraphic correlations. A nomenclature chart is also presented from each sequence. In addition, the sections include a generalized description of lithologies, thicknesses, environments of deposition, and petroleum potential for each geographic area.

  1. Collision cross sections for structural proteomics.

    PubMed

    Marklund, Erik G; Degiacomi, Matteo T; Robinson, Carol V; Baldwin, Andrew J; Benesch, Justin L P

    2015-04-01

    Ion mobility mass spectrometry (IM-MS) allows the structural interrogation of biomolecules by reporting their collision cross sections (CCSs). The major bottleneck for exploiting IM-MS in structural proteomics lies in the lack of speed at which structures and models can be related to experimental data. Here we present IMPACT (Ion Mobility Projection Approximation Calculation Tool), which overcomes these twin challenges, providing accurate CCSs up to 10(6) times faster than alternative methods. This allows us to assess the CCS space presented by the entire structural proteome, interrogate ensembles of protein conformers, and monitor molecular dynamics trajectories. Our data demonstrate that the CCS is a highly informative parameter and that IM-MS is of considerable practical value to structural biologists. PMID:25800554

  2. ^241Am(n,γ) absolute cross sections measured with DANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Macri, R. A.; Sheets, S. A.; Wu, C. Y.; Becker, J. A.

    2007-10-01

    ^241Am is present in plutonium due to the beta decay of ^241Pu (t1/2=14.38 years). As such ^241Am can be used as a detector for nuclear forensics. A precise measurement of ^241Am(n,γ) cross section is thus needed for this application. The measurement is also of interest for advanced reactor design as part of the Global Nuclear Energy Partnership (GNEP). The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^241Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following a neutron capture. DANCE is located on the 20.26 m neutron flight path 14(FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The absolute ^241Am(n,γ) cross sections were obtained in the range of neutron energies from 0.02 eV to 320 keV. The results will be compared to existing evaluations in detail.

  3. Preliminary cross section of Englebright Lake sediments

    USGS Publications Warehouse

    Snyder, Noah P.; Hampton, Margaret A.

    2003-01-01

    Overview -- The Upper Yuba River Studies Program is a CALFED-funded, multidisciplinary investigation of the feasibility of introducing anadromous fish species to the Yuba River system upstream of Englebright Dam. Englebright Lake (Figure 1 on poster) is a narrow, 14-km-long reservoir located in the northern Sierra Nevada, northeast of Marysville, CA. The dam was completed in 1941 for the primary purpose of trapping sediment derived from mining operations in the Yuba River watershed. Possible management scenarios include lowering or removing Englebright Dam, which could cause the release of stored sediments and associated contaminants, such as mercury used extensively in 19th-century hydraulic gold mining. Transport of released sediment to downstream areas could increase existing problems including flooding and mercury bioaccumulation in sport fish. To characterize the extent, grain size, and chemistry of this sediment, a coring campaign was done in Englebright Lake in May and June 2002. More than twenty holes were drilled at 7 different locations along the longitudinal axis of the reservoir (Figure 4 on poster), recovering 6 complete sequences of post-reservoir deposition and progradation. Here, a longitudinal cross section of Englebright Lake is presented (Figure 5 on poster), including pre-dam and present-day topographic profiles, and sedimentologic sections for each coring site. This figure shows the deltaic form of the reservoir deposit, with a thick upper section consisting of sand and gravel overlying silt, a steep front, and a thinner lower section dominated by silt. The methodologies used to create the reservoir cross section are discussed in the lower part of this poster.

  4. The correction of pebble bed reactor nodal cross sections for the effects of leakage and depletion history

    NASA Astrophysics Data System (ADS)

    Hudson, Nathanael Harrison

    An accurate and computationally fast method to generate nodal cross sections for the Pebble Bed Reactor (PBR) was presented. In this method, named Spectral History Correction (SHC), a set of fine group microscopic cross section libraries, pre-computed at specified depletion and moderation states, was coupled with the nodal nuclide densities and group bucklings to compute the new fine group spectrum for each node. The relevant fine group cross-section library was then recollapsed to the local broad group cross-section structure with this new fine group spectrum. This library set was tracked in terms of fuel isotopic densities. Fine group modulation factors (to correct the homogeneous flux for heterogeneous effects) and fission spectra were also stored with the cross section library. As the PBR simulation converges to a steady state fuel cycle, the initial nodal cross section library becomes inaccurate due to the burnup of the fuel and the neutron leakage into and out of the node. Because of the recirculation of discharged fuel pebbles with fresh fuel pebbles, a node can consist of a collection of pebbles at various burnup stages. To account for the nodal burnup, the microscopic cross sections were combined with nodal averaged atom densities to approximate the fine group macroscopic cross-sections for that node. These constructed, homogeneous macroscopic cross sections within the node were used to calculate a numerical solution for the fine group spectrum with B1 theory. This new fine spectrum was used to collapse the pre-computed microscopic cross section library to the broad group structure employed by the fuel cycle code. This SHC technique was developed and practically implemented as a subroutine within the PBR fuel cycle code PEBBED. The SHC subroutine was called to recalculate the broad group cross sections during the code convergence. The result was a fast method that compared favorably to the benchmark scheme of cross section calculation with the lattice

  5. Measurements of gamma-ray production cross sections for shielding materials of space nuclear systems

    NASA Technical Reports Server (NTRS)

    Orphan, V. J.; John, J.; Hoot, C. G.

    1972-01-01

    Measurements of secondary gamma ray production from neutron interactions have been made over the entire energy range of interest in shielding applications. The epithermal capture gamma ray yields for both resolved gamma ray lines and continuum have been measured from thermal energies to 100 KeV for natural tungsten and U-238, two important candidate shield materials in SNAP reactor systems. Data are presented to illustrate the variation of epithermal capture gamma ray yields with neutron energy. The gamma ray production cross sections from (n,xy) reactions have been measured for Fe and Al from the threshold energies for inelastic scattering to approximately 16 MeV. Typical Fe and Al cross sections obtained with high-neutron energy resolution and averaged over broad neutron-energy groups are presented.

  6. A Code to Produce Cell Averaged Cross Sections for Fast Critical Assemblies and Fast Power Reactors.

    1987-05-14

    Version 00 SLAROM solves the neutron integral transport equations to determine the flux distribution and spectra in a fast reactor lattice and calculates cell averaged effective cross sections. The code uses multigroup data of the type in DLC-111/JFS that use Bondarenko factors for resonance effects.

  7. Indirect (n,γ) cross sections of thorium cycle nuclei using the surrogate method

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Gunsing, F.; Bernstein, L. A.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A.-C.; Mansouri, P.; Renstrøm, T.; Rose, S. J.; Semchenkov, A.; Siem, S.; Syed, N. U. H.; Toft, H. K.; Wiedeking, M.; Wiborg-Hagen, T.

    2012-03-01

    Indirect neutron capture (n,γ) cross sections have been extracted for the key thorium cycle nuclei 232Th, 231Pa, and 230Th using the surrogate reaction method. Final nucleus γ-decay probabilities were measured between the neutron binding energy and around 1 MeV above it using the 232Th(d,p)233Th, 232Th(3He,t)232Pa, and 232Th(3He,α)231Th reactions in experiments with the CACTUS γ-detector array and Silicon Ring charged-particle detectors at the Oslo Cyclotron Laboratory. Because the neutron capture cross section for 232Th is already well known from direct measurements a comparison with these results provides a stringent test of the applicability of the surrogate method in the actinide region for indirect (n,γ) cross-section measurements. In addition, a new technique for correcting measured γ-ray decay probabilities below the neutron emission energy threshold is proposed and used. We find good agreement between indirect and direct (n,γ) cross-section measurements in the range 500 keV-1 MeV, but large discrepancies outside this range. Explanations for the observed differences are proposed.

  8. Experiments on Antiprotons: Antiproton-Nucleon Cross Sections

    DOE R&D Accomplishments Database

    Chamberlain, Owen; Keller, Donald V.; Mermond, Ronald; Segre, Emilio; Steiner, Herbert M.; Ypsilantis, Tom

    1957-07-22

    In this paper experiments are reported on annihilation and scattering of antiprotons in H{sub 2}O , D{sub 2}O, and O{sub 2}. From the data measured it is possible to obtain an antiproton-proton and an antiproton-deuteron cross section at 457 Mev (lab). Further analysis gives the p-p and p-n cross sections as 104 mb for the p-p reaction cross section and 113 mb for the p-n reaction cross section. The respective annihilation cross sections are 89 and 74 mb. The Glauber correction necessary in order to pass from the p-d to the p-n cross section by subtraction of the p-p cross section is unfortunately large and somewhat uncertain. The data are compared with the p-p and p-n cross sections and with other results on p-p collisions.

  9. Single-level resonance parameters fit nuclear cross-sections

    NASA Technical Reports Server (NTRS)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  10. Electron Elastic-Scattering Cross-Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge)   This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).

  11. Status update on the NIFFTE high precision fission cross section measurement program

    SciTech Connect

    Laptev, Alexander B; Tovesson, Fredrik; Burgett, Eric; Greife, Uwe; Grimes, Steven; Heffner, Michael D; Hertel, Nolan E; Hill, Tony; Isenhower, Donald; Klay, Jennifer L; Kornilov, Nickolay; Kudo, Ryuho; Loveland, Walter; Massey, Thomas; Mc Grath, Chris; Pickle, Nathan; Qu, Hai; Sharma, Sarvagya; Snyder, Lucas; Thornton, Tyler; Towell, Rusty S; Watson, Shon

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ({sup 235}U, {sup 239}Pu, {sup 238}U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of {sup 235}U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in {sup 235}U.

  12. Viscous Flow through Pipes of Various Cross-Sections

    ERIC Educational Resources Information Center

    Lekner, John

    2007-01-01

    An interesting variety of pipe cross-sectional shapes can be generated, for which the Navier-Stokes equations can be solved exactly. The simplest cases include the known solutions for elliptical and equilateral triangle cross-sections. Students can find pipe cross-sections from solutions of Laplace's equation in two dimensions, and then plot the…

  13. Mental Visualization of Objects from Cross-Sectional Images

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George D.

    2012-01-01

    We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object…

  14. How to Use Benchmark and Cross-section Studies to Improve Data Libraries and Models

    NASA Astrophysics Data System (ADS)

    Wagner, V.; Suchopár, M.; Vrzalová, J.; Chudoba, P.; Svoboda, O.; Tichý, P.; Krása, A.; Majerle, M.; Kugler, A.; Adam, J.; Baldin, A.; Furman, W.; Kadykov, M.; Solnyshkin, A.; Tsoupko-Sitnikov, S.; Tyutyunikov, S.; Vladimirovna, N.; Závorka, L.

    2016-06-01

    Improvements of the Monte Carlo transport codes and cross-section libraries are very important steps towards usage of the accelerator-driven transmutation systems. We have conducted a lot of benchmark experiments with different set-ups consisting of lead, natural uranium and moderator irradiated by relativistic protons and deuterons within framework of the collaboration “Energy and Transmutation of Radioactive Waste”. Unfortunately, the knowledge of the total or partial cross-sections of important reactions is insufficient. Due to this reason we have started extensive studies of different reaction cross-sections. We measure cross-sections of important neutron reactions by means of the quasi-monoenergetic neutron sources based on the cyclotrons at Nuclear Physics Institute in Řež and at The Svedberg Laboratory in Uppsala. Measurements of partial cross-sections of relativistic deuteron reactions were the second direction of our studies. The new results obtained during last years will be shown. Possible use of these data for improvement of libraries, models and benchmark studies will be discussed.

  15. Total and Capture Cross Sections of Dysprosium Isotopes up to 20 MeV

    SciTech Connect

    Lee, Y.D.; Oh, S.Y.; Chang, J.H.

    2005-11-15

    Neutron data for total and capture cross sections were evaluated on {sup 160}Dy, {sup 161}Dy, {sup 162}Dy, {sup 163}Dy, and {sup 164}Dy up to 20 MeV. The resolved resonance parameters were adopted from the Mughabghab compilation, but one bound level resonance for each isotope except {sup 162}Dy was invoked to reproduce the reference thermal cross sections. The average resonance parameters for s-wave neutrons were obtained from the analysis of the statistical behavior of resolved resonance parameters. Recent measurements of the capture cross sections were taken into account in adjusting the average resonance parameters for p- and d-waves. From the first excited energy to 20 MeV, the optical model, Hauser-Feshbach model, and quantum mechanical models were used to produce total, elastic scattering, and capture cross sections. The energy-dependent optical model potential was decided based on the recent experimental data. The calculated cross sections were in good agreement with the experimental data. The present evaluation resulted in improvement over the ENDF/B-VI.7 code.

  16. Abdominal sarcoidosis: cross-sectional imaging findings

    PubMed Central

    Gezer, Naciye Sinem; Başara, Işıl; Altay, Canan; Harman, Mustafa; Rocher, Laurence; Karabulut, Nevzat; Seçil, Mustafa

    2015-01-01

    Sarcoidosis is a multisystem inflammatory disease of unknown etiology. The lungs and the lymphoid system are the most commonly involved organs. Extrapulmonary involvement is reported in 30% of patients, and the abdomen is the most common extrapulmonary site with a frequency of 50%–70%. Although intra-abdominal sarcoidosis is usually asymptomatic, its presence may affect the prognosis and treatment options. The lesions are less characteristic and may mimick neoplastic or infectious diseases such as lymphoma, diffuse metastasis, and granulomatous inflammation. The liver and spleen are the most common abdominal sites of involvement. Sarcoidosis of the gastrointestinal system, pancreas, and kidneys are extremely rare. Adenopathy which is most commonly found in the porta hepatis, exudative ascites, and multiple granulomatous nodules studding the peritoneum are the reported manifestations of abdominal sarcoidosis. Since abdominal sarcoidosis is less common and long-standing, unrecognized disease can result in significant morbidity and mortality. Imaging contributes to diagnosis and management of intra-abdominal sarcoidosis. In this report we reviewed the cross-sectional imaging findings of hepatobiliary, gastrointestinal, and genitourinary sarcoidosis. PMID:25512071

  17. The hadronic cross section measurement at KLOE

    NASA Astrophysics Data System (ADS)

    Valeriani, B.; KLOE Collaboration

    2004-04-01

    KLOE uses the radiative return to measure the hadronic cross section e+e- → π +- at DANE. Theemission of one or more hard photons in the initial state ( ISR) reduces the collision energy, otherwise fixed at 1020 MeV, and allows to perform an effective scan of the two pions invariant mass squared, sπ, in the whole sπ, region from threshold to mφ2. An extremely accurate knowledge of experimental systematics, background, luminosity and, on the theoretical side, a precise description of initial state radiation are needed to perform a competitive measurement. We present here the status of the analysis of 140 pb -1 collected in 2001. A preliminary evaluation of the hadronic contribution to aμ in the sπ range between 0.37 GeV 2 and 0.93 GeV 2 yields aμ = 378.4 ± 0.8 stat ± 4.5 syst ± 3.0 theo ± 3.8 FSR, consistent with the CMD-2 result and confirming the present discrepancy between e+e - and τ data.

  18. Electron-impact-ionization cross section for the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Hu, W.; Fang, D.; Wang, Y.; Yang, F.

    1994-02-01

    A distorted-wave Born exchange approximation was used to calculate the cross section for electron-impact ionization of the hydrogen atoms. Both the integral and energy-differential cross section were calculated. The results were compared with the latest experimental data and other theoretical calculations. Comparison shows that the calculations agree with differential cross-section measurements in general. For integral cross sections the calculation shows a better agreement with an earlier measurement [M.B. Shah, D. S. Elliott, and H. B. Gilbody, J. Phys. B 20, 3501 (1987)] in which the cross sections are normalized to the first Born approximation.

  19. New precision measurements of the 235U(n,γ) cross section.

    PubMed

    Jandel, M; Bredeweg, T A; Bond, E M; Chadwick, M B; Couture, A; O'Donnell, J M; Fowler, M; Haight, R C; Kawano, T; Reifarth, R; Rundberg, R S; Ullmann, J L; Vieira, D J; Wouters, J M; Wilhelmy, J B; Wu, C Y; Becker, J A

    2012-11-16

    The neutron capture cross section of (235)U was measured for the neutron incident energy region between 4 eV and 1 MeV at the DANCE facility at the Los Alamos Neutron Science Center with an unprecedented accuracy of 2-3% at 1 keV. The new methodology combined three independent measurements. In the main experiment, a thick actinide sample was used to determine neutron capture and neutron-induced fission rates simultaneously. In the second measurement, a fission tagging detector was used with a thin actinide sample and detailed characteristics of the prompt-fission gamma rays were obtained. In the third measurement, the neutron scattering background was characterized using a sample of (208)Pb. The relative capture cross section was obtained from the experiment with the thick (235)U sample using a ratio method after the subtraction of the fission and neutron scattering backgrounds. Our result indicates errors that are as large as 30% in the 0.5-2.5 keV region, in the current knowledge of neutron capture as embodied in major nuclear data evaluations. Future modifications of these databases using the improved precision data given herein will have significant impacts in neutronics calculations for a variety of nuclear technologies.

  20. New Precision Measurements of the U235(n,γ) Cross Section

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Couture, A.; O'Donnell, J. M.; Fowler, M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.

    2012-11-01

    The neutron capture cross section of U235 was measured for the neutron incident energy region between 4 eV and 1 MeV at the DANCE facility at the Los Alamos Neutron Science Center with an unprecedented accuracy of 2-3% at 1 keV. The new methodology combined three independent measurements. In the main experiment, a thick actinide sample was used to determine neutron capture and neutron-induced fission rates simultaneously. In the second measurement, a fission tagging detector was used with a thin actinide sample and detailed characteristics of the prompt-fission gamma rays were obtained. In the third measurement, the neutron scattering background was characterized using a sample of Pb208. The relative capture cross section was obtained from the experiment with the thick U235 sample using a ratio method after the subtraction of the fission and neutron scattering backgrounds. Our result indicates errors that are as large as 30% in the 0.5-2.5 keV region, in the current knowledge of neutron capture as embodied in major nuclear data evaluations. Future modifications of these databases using the improved precision data given herein will have significant impacts in neutronics calculations for a variety of nuclear technologies.