Science.gov

Sample records for 125i-labelled polyvinyl pyrrolidone

  1. The effects of corticosterone and cortisone on the uptake of polyvinyl pyrrolidone and the transmission of immunoglobulin G by the small intestine in young rats.

    PubMed Central

    Morris, B; Morris, R

    1976-01-01

    1. The distribution of polyvinyl pyrrolidone along the intestinal lumen and in the intestinal wall, following oral administration to normal and corticosterone treated rats, was found to be extremely variable. Valid comparisons between the two groups of animals could not be made using this technique. 2. Three, 4 and 5 days after corticosterone treatment there was no significant change in the uptake of 125I-labelled polyvinyl pyrrolidone from standard doses injected into ligated segments of the distal small intestine; nor did the treatment induce precocious replacement of the absorptive cells in this region. Cortisone induced precocious cell replacement, a process which took up to 4 days to complete, and also led to a marked reduction in the uptake of 125I-labelled polyvinyl pyrrolidone from ligated segments of the distal intestine. 3. Three days after treatment with corticosterone (5 mg I.P. at 12 days) there was a marked reduction of labelled immunoglobulin G transport into the blood. Four and 5 days after treatment there was some recovery of the immunoglobulin G transport function. Three days after treatment with cortisone (5 mg I.P. at 12 days) there was closure of the gut to labelled immunoglobulin G. 4. The relevance of these results to antibody transmission and the termination of immunoglobulin transport is discussed. PMID:1249782

  2. The absorption of 125I-labelled immunoglobulin G by different regions of the gut in young rats

    PubMed Central

    Morris, B.; Morris, R.

    1974-01-01

    1. 125I-labelled homologous IgG was injected into different regions of the small intestine of rats aged 12, 16, 18, 20 and 22 days. At 12 days the proximal and middle regions of the intestine readily absorbed globulin and transmitted it to the circulation. The distal region of the intestine transmitted little to the circulation at all ages tested. 2. The intestine loses its ability to transmit globulin to the circulation in a distal-proximal direction. At 16 and 18 days the ability of the middle region had declined significantly, and this decline continued so that little globulin was transmitted from this region at 20 and 22 days. 3. The proximal intestine retained the ability to transmit globulin to the circulation in significant amounts up to 20 days. 4. There is a close negative correlation between body weight and total radioactivity of the sera of rats which had received doses of labelled globulin into the proximal and middle regions of the intestine. There was no such correlation after injection into the distal intestine — suggesting a restricted throughput of radioactive material by the absorptive cells of this region. 5. These results are discussed in the context of the termination of antibody absorption, and in relation to the results obtained using polyvinyl pyrrolidone. PMID:4436816

  3. Scintillation Proximity Radioimmunoassay Utilizing 125I-Labeled Ligands

    NASA Astrophysics Data System (ADS)

    Udenfriend, Sidney; Diekmann Gerber, Louise; Brink, Larry; Spector, Sydney

    1985-12-01

    A unique type of radioimmunoassay is described that does not require centrifugation or separation. Microbeads containing a fluorophor are covalently linked to antibody. When an 125I-labeled antigen is added it binds to the beads and, by its proximity, the emitted short-range electrons of the 125I excite the fluorophor in the beads. The light emitted can be measured in a standard scintillation counter. Addition of unlabeled antigen from tissue extracts displaces the labeled ligand and diminishes the fluorescent signal. Application of scintillation proximity immunoassay to tissue enkephalins, serum thyroxin, and urinary morphine is described. Applications of the principle to study the kinetics of interaction between receptors and ligands are discussed.

  4. Scintillation proximity radioimmunoassay utilizing 125I-labeled ligands

    SciTech Connect

    Udenfriend, S.; Gerber, L.D.; Brink, L.; Spector, S.

    1985-12-01

    A unique type of radioimmunoassay is described that does not require centrifugation or separation. Microbeads containing a fluorophor are covalently linked to antibody. When an /sup 125/I-labeled antigen is added it binds to the beads and, by its proximity, the emitted short-range electrons of the /sup 125/I excite the fluorophor in the beads. The light emitted can be measured in a standard scintillation counter. Addition of unlabeled antigen from tissue extracts displaces the labeled ligand and diminishes the fluorescent signal. Application of scintillation proximity immunoassay to tissue enkephalins, serum thyroxin, and urinary morphine is described. Applications of the principle to study the kinetics of interaction between receptors and ligands are discussed.

  5. Increased /sup 125/I-labelled concanavalin A binding to erythrocytes in diabetes mellitus

    SciTech Connect

    Okada, Y.; Arima, T.; Okazaki, S.; Nakata, K.; Nagashima, H.; Yamabuki, T.

    1982-03-01

    Percentage binding of /sup 125/I-labelled concanavalin A to erythrocytes in diabetic patients was significantly higher than that in normal subjects (12.2 +- 2.8 versus 8.1 +- 1.8%, mean +- SD, p < 0.001). Insulin-dependent diabetic patients showed significantly higher concanavalin A binding than non-insulin-dependent diabetic subjects (15.0 +- 1.4 versus 11.4 +- 2.5%, p < 0.01). There was a highly significant correlation between percentage binding of /sup 125/I-labelled concanavalin A and glycosylated haemoglobin.

  6. Polyvinyl Pyrrolidone-Assisted Solvothermal Synthesis of Fe3O4 Vesicular Nanospheres.

    PubMed

    Song, Hongfei; Liu, Meiying; Li, Sainan; Chen, Linlin; Lin, Chunming; Zhang, Liqing

    2015-05-01

    Monodispersed Fe3O4 vesicular nanospheres with a diameter of 160 nm have been fabricated solvothermally in the mixed solution of ethylene glycol (EG) and ethylenediamine (en) with the surfactant polyvinyl pyrrolidone (PVP). The microstructure and magnetic properties of the products were characterized by XRD, Raman, SEM, TEM, HRTEM, N2 adsorption-desorption and SQUID techniques. The HRTEM result shows that spherical Fe3O4 nanoparticles are structurally uniform with a distinct lattice spacing of 2.6 Å, which can be assigned to the (311) crystal facet of cubic Fe3O4. Besides, the as-obtained Fe3O4 vesicular nanospheres are ferromagnetic with a saturation magnetization of 86.9 emu/g as high as its bulk counterpart, demonstrating its promising applications in advanced magnetic materials and biomedicine. PMID:26505038

  7. Nitrogen-doped carbon dots derived from polyvinyl pyrrolidone and their multicolor cell imaging

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Zhang, Peng; Wang, Tian-Yi; Kong, Ji-Lie; Xiong, Huan-Ming

    2014-05-01

    Nitrogen-doped carbon dots (N-CDs) with a high quantum yield of 19.6% were prepared by calcining polyvinyl pyrrolidone (PVP, K-30), and then modified with 4,7,10-trioxa-1,13-tridecanediamine. The as-prepared N-CDs exhibited excitation-dependent and pH-sensitive photoluminescence. Transmission electron microscopy and Raman spectra demonstrated the graphitic structure of the N-CDs. Fourier transform infrared spectroscopy and x-ray diffraction studies revealed successful passivation and the presence of hydrophilic groups on the surface. Importantly, such modified quantum dots acted as good multicolor cell imaging probes due to their excellent fluorescent properties, low cytotoxicity and fine dispersity.

  8. Nitrogen-doped carbon dots derived from polyvinyl pyrrolidone and their multicolor cell imaging.

    PubMed

    Ding, Hui; Zhang, Peng; Wang, Tian-Yi; Kong, Ji-Lie; Xiong, Huan-Ming

    2014-05-23

    Nitrogen-doped carbon dots (N-CDs) with a high quantum yield of 19.6% were prepared by calcining polyvinyl pyrrolidone (PVP, K-30), and then modified with 4,7,10-trioxa-1,13-tridecanediamine. The as-prepared N-CDs exhibited excitation-dependent and pH-sensitive photoluminescence. Transmission electron microscopy and Raman spectra demonstrated the graphitic structure of the N-CDs. Fourier transform infrared spectroscopy and x-ray diffraction studies revealed successful passivation and the presence of hydrophilic groups on the surface. Importantly, such modified quantum dots acted as good multicolor cell imaging probes due to their excellent fluorescent properties, low cytotoxicity and fine dispersity. PMID:24786109

  9. New optical material europium EDTA complex in polyvinyl pyrrolidone films with fluorescence enhanced by silver plasmons

    NASA Astrophysics Data System (ADS)

    Reisfeld, Renata; Saraidarov, Tsiala; Panzer, Gerard; Levchenko, Viktoria; Gaft, Michael

    2011-12-01

    In our search for efficient Luminescent Solar Concentrators (LSC) we have prepared polyvinyl pyrrolidone (PVP) films incorporated by ethylenediamine tetraacetic acid (EDTA) complex of europium and co-doped with silver nanoparticles (NPs). Steady state fluorescence was studied under weak and strong excitation. Dynamical study was performed by second harmonic of Nd laser. Under weak excitation the fluorescence of europium co-doped with silver plasmons increased by a factor of three and excited by continuous laser by a factor of 50. The lifetimes of films doped by the complex were 755 μs and co-doped with silver nanoparticles 946 μs. This is the first finding that the photon density accumulates the number of plasmons interacting with electronic states of europium increasing its transition probability resulting in the strong intensification of fluorescence. In dynamical measurements of lifetimes a single pulse does not provide enough energy to create such number of plasmons.

  10. Radiation synthesis and characterization of stimuli-sensitive chitosan-polyvinyl pyrrolidone hydrogels

    NASA Astrophysics Data System (ADS)

    Dergunov, Sergey A.; Nam, Irina K.; Mun, Grigoriy A.; Nurkeeva, Zauresh S.; Shaikhutdinov, Erengaip M.

    2005-04-01

    Novel cationic hydrogels were synthesized by γ-irradiation copolymerization of chitosan and polyvinyl pyrrolidone (PVP). The synthesis regularities and the swelling behaviour of hydrogels have been studied. It was shown that increasing of PVP concentration in feed composition also as radiation dose accompanied of increase of yield of gel fraction and decrease of swelling degree. At dose more than 3.5 kGy increasing of swelling degree and decreasing of gel fraction yield have been observed. It was shown that the hydrogels exhibit pH-sensitive behaviour in aqueous solution. In solutions of sodium dodecyl sulfate (SDS) the hydrogels are collapsed due to complexation, however, at concentration of SDS solution equal to critical micelle concentration the gels contracted and then swollen again.

  11. Characterization of CrO2-poly-vinyl pyrrolidone magnetic nanofluid

    NASA Astrophysics Data System (ADS)

    Singh, D. K.; Pandey, D. K.; Yadav, R. R.; Singh, Devraj

    2012-11-01

    Crystalline CrO2 nanoparticles were synthesized using chemical methods. Nanofluids were synthesized by the dispersion of CrO2 nanoparticles in poly-vinyl pyrrolidone solution by an ultrasonicator. The structural properties of the nanoparticles were studied with the help of X-ray diffraction. The magnetic properties of the powdered CrO2 were measured with a vibrating sample magnetometer. The magneto-resistance and ultrasonic parameters of the nanofluid were characterized. The (a) effect of calcination temperature on crystalinity of CrO2 nanoparticles, (b) influence of sonication time on the nature of the magneto-resistance for the nanofluid, and (c) governing factor/mechanisms responsible to the ultrasonic properties are discussed.

  12. Derivatives of cyclosporin compatible with antibody-based assays. I. The generation of (/sup 125/I)-labeled cyclosporin

    SciTech Connect

    Mahoney, W.C.; Orf, J.W.

    1985-03-01

    The immunosuppressive drug cyclosporin A, has been successfully iodinated to a specific activity of 300 Ci per gram. /sup 125/I-labeled cyclosporin and (/sup 3/H)cyclosporin are nearly equivalent as tracers in a radioimmunoassay in producing standard lines (suppression by unlabeled cyclosporin) and in assigning values to clinical samples. In addition, the (/sup 125/I)-labeled cyclosporin has greater than twice the sensitivity, and it is stable to long-term storage. Use of a (/sup 125/I)-labeled cyclosporin tracer is more convenient, more reproducible, more precise, and easier than the tritiated-cyclosporin alternative in radioimmunoassay of this compound.

  13. Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide.

    PubMed

    Li, Na; Fan, Xialian; Tang, Keyong; Zheng, Xuejing; Liu, Jie; Wang, Baoshi

    2016-04-01

    In this study, three-dimensional (3D) nanocomposite scaffolds, as potential substrates for skin tissue engineering, were fabricated by freeze drying the mixture of type I collagen extracted from porcine skin and polyvinyl pyrrolidone (PVP)-coated titanium dioxide (TiO2) nanoparticles. This procedure was performed without any cross-linker or toxic reagents to generate porosity in the scaffold. Both morphology and thermal stability of the nanocomposite scaffold were examined. The swelling behavior, mechanical properties and hydrolytic degradation of the composite scaffolds were carefully investigated. Our results revealed that collagen, PVP and TiO2 are bonded together by four main hydrogen bonds, which is an essential action for the formation of nanocomposite scaffold. Using Coasts-Redfern model, we were able to calculate the thermal degradation apparent activation energy and demonstrated that the thermal stability of nanocomposites is dependent on amount of PVP incorporated. Furthermore, SEM images showed that the collagen fibers are wrapped and stabilized on scaffolds by PVP molecules, which improve the ultimate tensile strength (UTS). The UTS of PVP-contained scaffold is four times higher than that of scaffold without PVP, whereas ultimate percentage of elongation (UPE) is decreased, and PVP can enhance the degradation resistance. PMID:26764111

  14. Silver polyvinyl pyrrolidone nanoparticles exhibit a capsular polysaccharide influenced bactericidal effect against Streptococcus pneumoniae

    PubMed Central

    Bibbs, Ronda K.; Harris, Rhonda D.; Peoples, Veolanda A.; Barnett, Cleon; Singh, Shree R.; Dennis, Vida A.; Coats, Mamie T.

    2014-01-01

    Streptococcus pneumoniae remains a leading cause of morbidity and mortality worldwide. The highly adaptive nature of S. pneumoniae exemplifies the need for next generation antimicrobials designed to avoid high level resistance. Metal based nanomaterials fit this criterion. Our study examined the antimicrobial activity of gold nanospheres, silver coated polyvinyl pyrrolidone (AgPVP), and titanium dioxide (TiO2) against various serotypes of S. pneumoniae. Twenty nanometer spherical AgPVP demonstrated the highest level of killing among the tested materials. AgPVP (0.6 mg/mL) was able to kill pneumococcal serotypes 2, 3, 4, and 19F within 4 h of exposure. Detailed analysis of cultures during exposure to AgPVP showed that both the metal ions and the solid nanoparticles participate in the killing of the pneumococcus. The bactericidal effect of AgPVP was lessened in the absence of the pneumococcal capsular polysaccharide. Capsule negative strains, JD908 and RX1, were only susceptible to AgPVP at concentrations at least 33% higher than their respective capsule expressing counterparts. These findings suggest that mechanisms of killing used by nanomaterials are not serotype dependent and that the capsular polysaccharide participates in the inhibition. In the near future these mechanisms will be examined as targets for novel antimicrobials. PMID:25520713

  15. Aligned Electrospun Polyvinyl Pyrrolidone/Poly ɛ-Caprolactone Blend Nanofiber Mats for Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2016-02-01

    Electrospun nanofibrous materials are widely used in medical applications such as tissue engineering scaffolds, wound dressing material and drug delivery carriers. For tissue engineering scaffolds, the structure of the nanofiber is similar to extracellular matrix (ECM) which promotes the cell growth and proliferation. In the present study, the aligned nanofiber mats of polyvinyl pyrrolidone (PVP) blended poly ɛ-caprolactone (PCL) was successfully generated using electrospinning technique. The morphology of PVP/PCL nanofiber mats were characterized by scanning electron microspore (SEM). The chemical and crystalline structure of PVP/PCL nanofiber mats were analyzed using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffactometer (PXRD). The water contact angle of mats was investigated. Cell culture studies using normal human fibroblasts (NHF) were performed to assess cell morphology, cell alignment and cell proliferation. The results indicated that the fiber were in nanometer range. The PVP/PCL was well dispersed in nanofiber mats and was in amorphous form. The water contact angle of PVP/PCL nanofiber mats was lower than PCL nanofiber mats. The PVP/PCL nanofiber mats exhibited good biocompatibility with NHF cells. In summary, the PVP/PCL nanofiber mats had potential to be used in tissue engineering and regenerative medicine.

  16. Rheological behaviour of irradiated wound dressing poly(vinyl pyrrolidone) hydrogels

    NASA Astrophysics Data System (ADS)

    Lugão, Ademar B.; Rogero, Sizue O.; Malmonge, Sônia M.

    2002-03-01

    The use of hydrogels as biomaterials has increased lately. Poly(vinyl pyrrolidone) (PVP) is an example of polymer hydrogels applied for the synthesis of hydrogel to be used in different biomedical applications. This paper describes a study on rheological properties of PVP hydrogels obtained by gamma radiation techniques. PVP hydrogels were obtained by gamma radiation of PVP water solutions with different radiation doses. It was studied the influence of additives such as poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) and glycerol on the rheological behaviour of the gel. The rheological behaviour of hydrogel samples was characterized by measuring the shear storage modulus ( G') under dynamic shear loading. Besides this, sterility and cytotoxicity tests were performed. The study on rheological behaviour of hydrogels showed that G' of PVP gels change according to the additive used. Glycerol increases the fluidity of the gel. The influence of PEG depends on the amount and on its molecular mass. The increase on PEG amount and molecular mass cause a decrease of G' and an increase in the crosslinking density of PVP hydrogel network. The use of high molecular weight PEO allows the increase of the elasticity of the PVP gels.

  17. Intracellular modification of /sup 125/I-labeled epidermal growth factor by normal human foreskin fibroblasts

    SciTech Connect

    Schaudies, R.P.; Savage, C.R. Jr.

    1986-02-01

    Intracellular processing of /sup 125/I-labeled epidermal growth factor (EGF) in normal human foreskin fibroblasts was examined after incubation with saturating concentrations of (/sup 125/I)EGF. This report describes the column chromatographic separation of multiple processed forms of EGF generated by human foreskin fibroblasts and their structural characterization. More than 95% of the cell-bound (/sup 125/I)EGF was converted into multiple forms, which were separated into four distinct peaks of radioactivity using columns of Bio-Gel P-150 equilibrated with 0.2% sodium dodecyl sulfate. These were designated peaks 1-4. Cellular generation of these four peaks was dependent on culture conditions. Differences in absolute and relative amounts of peaks 1-4 were observed as a function of time of incubation at 37 C. In addition, chromatographic profiles of cell-associated /sup 125/I varied in relation to cell density. The radioactivity in peak 1 comigrated with /sup 125/I-labeled native EGF on nondenaturing polyacrylamide gels (pH 9.5), whereas peaks 2 and 3 exhibited more rapid electrophoretic mobilities. Electrophoretic mobilities of the radioactivity in peaks 2 and 3 were indistinguishable from those of chemically prepared derivatives of (/sup 125/I)EGF which were lacking either one or six amino acid residues from the carboxyterminus, respectively. The EGF receptor bound the radioactive material in peak 2 with an affinity equal to or greater than that of EGF; however, the radioactivity in peak 3 was bound to a much lesser extent. The radiolabel in both peaks 2 and 3 was greater than 95% precipitable by antiserum to native EGF. The labeled material in peak 4 was composed of (/sup 125/I)monoiodotyrosine, /sup 125/I-, and an unidentified peptide. None of the radiolabeled compounds in peak 4 interacted with the EGF receptor or with antiserum to native EGF.

  18. Absorption of enzymatically active sup 125 I-labeled bovine milk xanthine oxidase fed to rabbits

    SciTech Connect

    Rzucidlo, S.J. ); Zikakis, J.P. )

    1990-05-01

    Rabbits fed a regular laboratory diet supplemented with a high-fat milk containing xanthine oxidase (XO) were studied to determine the presence of active XO in the blood. A pilot feeding study, where rabbits consumed a high-fat diet containing xanthine oxidase, showed a correlation between dairy food consumption and XO activity in the blood. Antibody to dietary XO was also found. In a second study, rabbits were fed ad libitum the high-fat milk and blood serum samples were tested weekly for XO activity. No elevation in serum XO activity was found. A third study showed that serum XO activity was increased when rabbits were force fed the high-fat milk. The final study consisted of force feeding {sup 125}I-labeled XO to one rabbit to ascertain whether the observed increase in serum XO was due to dietary or endogenous XO. Isoelectric focusing of sera collected from the test rabbit strongly suggested that at least a portion of the serum XO contained the radioactive label. This is the first direct evidence showing the uptake of dietary active XO from the gut.

  19. Radioimmunoassay of salivary cyclosporine with use of /sup 125/I-labeled cyclosporine

    SciTech Connect

    Coates, J.E.; Lam, S.F.; McGaw, W.T.

    1988-08-01

    We prepared /sup 125/I-labeled cyclosporine (/sup 125/I-CS) by modifying the procedure of Mahoney and Orf and characterized it with regards to maximal immunoreactivity (greater than 90%), trichloroacetic acid precipitability (greater than 90%), and stability (90% immunoreactive after five half-lives of /sup 125/I). For a particular preparation of /sup 125/I-CS, we estimated its immunoreaction concentration (50 pmol/L) and the equilibrium constant for its reaction with Sandoz polyclonal antiserum (K = 3.9 X 10(9) L/mol). By substituting /sup 125/I-CS as tracer in the Sandoz radioimmunoassay and by modifying other aspects of the assay, we developed a procedure that is sufficiently sensitive (0.34 micrograms/L) to allow measurement of trough (lowest inter-dose) cyclosporine concentrations in parotid saliva. Of 38 kidney-transplant patients, 35 had measurable concentrations in saliva (mean 8.3, SD 5.2 micrograms/L), and these correlated moderately with paired serum concentrations (r = 0.68, P less than 0.001). We believe that measurement of salivary cyclosporine may offer a simple way of estimating the free fraction of the drug in serum or plasma.

  20. Absolute quantitative autoradiography of low concentrations of (/sup 125/I)-labeled proteins in arterial tissue

    SciTech Connect

    Schnitzer, J.J.; Morrel, E.M.; Colton, C.K.; Smith, K.A.; Stemerman, M.B.

    1987-12-01

    We developed a method for absolute quantitative autoradiographic measurement of very low concentrations of (/sup 125/I)-labeled proteins in arterial tissue using Kodak NTB-2 nuclear emulsion. A precise linear relationship between measured silver grain density and isotope concentration was obtained with uniformly labeled standard sources composed of epoxy-embedded gelatin containing glutaraldehyde-fixed (/sup 125/I)-albumin. For up to 308-day exposures of 1 micron-thick tissue sections, background grain densities ranged from about two to eight grains/1000 micron 2, and the technique was sensitive to as little as about one grain/1000 micron 2 above background, which correspond to a radioactivity concentration of about 2 x 10(4) cpm/ml. A detailed statistical analysis of variability was performed and the sum of all sources of variation quantified. The half distance for spatial resolution was 1.7 micron. Both visual and automated techniques were employed for quantitative grain density analysis. The method was illustrated by measurement of in vivo transmural (/sup 125/I)-low-density lipoprotein (( /sup 125/I)-LDL) concentration profiles in de-endothelialized rabbit thoracic aortic wall.

  1. Shape-controlled synthesis of silver nanocrystals via γ-irradiation in the presence of poly(vinyl pyrrolidone)

    NASA Astrophysics Data System (ADS)

    Zhao, Yongbin; Chen, Aihua; Liang, Shu

    2013-06-01

    Silver nanocrystals with controlled morphologies were facilely synthesized via γ-irradiation on aqueous solutions containing AgNO3 and poly(vinyl pyrrolidone)(PVP) by adjusting the adsorption dose. UV-vis spectroscopy, TEM, XRD and X-ray photoelectron spectroscopy were used to characterize these silver nanocrystals. Spherical silver nanoparticles with diameter of ˜20 nm were formed irradiated by γ-ray with dose of 12 kGy, and one-dimensional silver nanowires with average diameter of 30 nm and length up to 20-30 μm were obtained with dose increased to 36 kGy. In this process, γ-ray and PVP have synergistic effects on the formation of silver nanocrystals, leading to the formation of highly pure phase, as well as a uniform size of each structure.

  2. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  3. Dopaminergic control of 125I-labeled neurotensin binding site density in corticolimbic structures of the rat brain.

    PubMed Central

    Herve, D; Tassin, J P; Studler, J M; Dana, C; Kitabgi, P; Vincent, J P; Glowinski, J; Rostene, W

    1986-01-01

    In the rat brain, destruction of dopaminergic cell groups by injections of 6-hydroxydopamine into the ventral mesencephalic tegmentum results in large decreases in the number of neurotensin binding sites in the mesencephalon and the striatum. In contrast, these lesions produce an increase in the number of 125I-labeled neurotensin binding sites in the lateral part of the prefrontal cortex despite a large decrease in cortical dopamine levels. Increases in the number of 125I-labeled neurotensin binding sites in this cortical area as well as in the entorhinal cortex, the nucleus accumbens, and the central part of the striatum were also obtained after chronic blockade of dopamine neurotransmission by a long-acting neuroleptic pipotiazine palmitic ester. We propose that dopamine inputs regulate the density of postsynaptic neurotensin binding sites through cortical and subcortical dopamine receptors. Therefore, some of the clinical effects of neuroleptics in schizophrenic patients could be partly related to changes in neurotensin neurotransmission. Images PMID:3016745

  4. 125I-labeled anti-bFGF monoclonal antibody inhibits growth of hepatocellular carcinoma

    PubMed Central

    Hu, Peng-Hui; Pan, Lan-Hong; Wong, Patrick Ting-Yat; Chen, Wen-Hui; Yang, Yan-Qing; Wang, Hong; Xiang, Jun-Jian; Xu, Meng

    2016-01-01

    AIM: To investigate the inhibitory efficacy of 125I-labeled anti-basic fibroblast growth factor (bFGF) monoclonal antibody (mAb) in hepatocellular carcinoma (HCC). METHODS: bFGF mAb was prepared by using the 1G9B9 hybridoma cell line with hybridization technology and extracted from ascites fluid through a Protein G Sepharose affinity column. After labeling with 125I through the chloramine-T method, bFGF mAb was further purified by a Sephadex G-25 column. Gamma radiation counter GC-1200 detected radioactivity of 125I-bFGF mAb. The murine H22 HCC xenograft model was established and randomized to interventions with control (phosphate-buffered saline), 125I-bFGF mAb, 125I plus bFGF mAb, bFGF mAb, or 125I. The ratios of tumor inhibition were then calculated. Expression of bFGF, fibroblast growth factor receptor (FGFR), platelet-derived growth factor, and vascular endothelial growth factor (VEGF) mRNA was determined by quantitative reverse transcriptase real-time polymerase chain reaction. RESULTS: The purified bFGF mAb solution was 8.145 mg/mL with a titer of 1:2560000 and was stored at -20 °C. After coupling, 125I-bFGF mAb was used at a 1: 1280000 dilution, stored at 4 °C, and its specific radioactivity was 37 MBq/mg. The corresponding tumor weight in the control, 125I, bFGF mAb, 125I plus bFGF mAb, and 125I-bFGF mAb groups was 1.88 ± 0.25, 1.625 ± 0.21, 1.5 ± 0.18, 1.41 ± 0.16, and 0.98 ± 0.11 g, respectively. The tumor inhibition ratio in the 125I, bFGF mAb, 125I plus bFGF mAb, and 125I-bFGF mAb groups was 13.6%, 20.2%, 25.1%, and 47.9%, respectively. Growth of HCC xenografts was inhibited significantly more in the 125I-bFGF mAb group than in the other groups (P < 0.05). Expression of bFGF and FGFR mRNA in the 125I-bFGF mAb group was significantly decreased in comparison with other groups (P < 0.05). Groups under interventions revealed increased expression of VEGF mRNA (except for 125I group) compared with the control group. CONCLUSION: 125I-bFGF m

  5. Fabrication of high quality carbonaceous coating on Cu nanoparticle using poly(vinyl pyrrolidone) and its application for oxidation prevention

    NASA Astrophysics Data System (ADS)

    Pyo, Youngjun; Choi, Dahyun; Son, Yeon-Ho; Kang, Suhee; Yoon, Eric H.; Jung, Seung-Boo; Kim, Yongil; Sunyong Lee, Caroline

    2016-05-01

    A novel method of carbonaceous coating on the surface of copper particles was developed through a chemical vapor deposition (CVD) process to prevent the oxidation of copper nanoparticles (CNPs). The types of poly(vinyl pyrrolidone) (PVP) used were K-12 (M W 3,500) and K-30 (M W 45,000). The amounts of PVP used ranged from 10 to 50 wt %. Additionally, processing temperatures of 900 and 875 °C were tested and compared. The optimum CVD process conditions for the carbonaceous coating were as follows: 875 °C processing temperature, 50 wt % K12 PVP solution, and gas conditions of \\text{Ar}:\\text{H}2 = 1:1. The resistivity change in the fabricated copper pattern was confirmed that the initial resistivity value of the ink with a mixing ratio of carbonaceous-coated CNPs to 1-octanethiol-coated CNPs of 4:6 (w/w) maintained its initial resistivity value of 2.93 × 10‑7 Ω·m for more than 210 days.

  6. Influence of the Polyvinyl Pyrrolidone Concentration on Particle Size and Dispersion of ZnS Nanoparticles Synthesized by Microwave Irradiation

    PubMed Central

    Soltani, Nayereh; Saion, Elias; Erfani, Maryam; Rezaee, Khadijeh; Bahmanrokh, Ghazaleh; Drummen, Gregor P. C.; Bahrami, Afarin; Hussein, Mohd Zobir

    2012-01-01

    Zinc sulfide semiconductor nanoparticles were synthesized in an aqueous solution of polyvinyl pyrrolidone via a simple microwave irradiation method. The effect of the polymer concentration and the type of sulfur source on the particle size and dispersion of the final ZnS nanoparticle product was carefully examined. Microwave heating generally occurs by two main mechanisms: dipolar polarization of water and ionic conduction of precursors. The introduction of the polymer affects the heating rate by restriction of the rotational motion of dipole molecules and immobilization of ions. Consequently, our results show that the presence of the polymer strongly affects the nucleation and growth rates of the ZnS nanoparticles and therefore determines the average particle size and the dispersion. Moreover, we found that PVP adsorbed on the surface of the ZnS nanoparticles by interaction of the C–N and C=O with the nanoparticle’s surface, thereby affording protection from agglomeration by steric hindrance. Generally, with increasing PVP concentration, mono-dispersed colloidal solutions were obtained and at the optimal PVP concentration (5%), sufficiently small size and narrow size distributions were obtained from both sodium sulfide and thioacetamide sulfur sources. Finally, the sulfur source directly influences the reaction mechanism and the final particle morphology, as well as the average size. PMID:23202906

  7. Polyvinyl pyrrolidone capped fluorescent anthracene nanoparticles for sensing fluorescein sodium in aqueous solution and analytical application for ophthalmic samples.

    PubMed

    Bhopate, Dhanaji P; Mahajan, Prasad G; Garadkar, Kalyanrao M; Kolekar, Govind B; Patil, Shivajirao R

    2015-11-01

    Based on the known complexation ability between polyvinyl pyrrolidone (PVP) and fluorescein sodium (FL Na(+)), fluorescent PVP capped anthracene nanoparticles (PVP-ANPs) were prepared using a reprecipitation method for detection of fluorescein in aqueous solution using the fluorescence resonance energy transfer (FRET) approach. A dynamic light scattering histogram of PVP-ANPs showed narrower particle size distribution and the average particle size was 15 nm. The aggregation-induced enhanced emission (AIEE) of PVP-ANPs was red shifted from its monomer by 1087.22 cm(-1). The maximum emission was seen to occur at 420 nm. The presence of FL Na(+) in the vicinity of PVP-ANPs quenched the fluorescence of PVP-ANPs because of its adsorption on the surface of PVP-ANPs in aqueous suspension. The FL Na(+) and PVP-ANPs were brought close enough, typically to 7.89 nm, which was less than the distance of 10 nm that is required between the energy donor-acceptor molecule for efficient FRET. The quenching results fit into the Stern-Volmer relationship even at temperatures greater than ambient temperatures. The thermodynamic parameters determined from FRET results helped to propose binding mechanisms involving hydrophobic and electrostatic molecular interaction. The fluorescence quenching results were used further to develop an analytical method for estimation of fluorescein sodium from ophthalmic samples available commercially in the market. PMID:25736374

  8. Inductive effect of poly(vinyl pyrrolidone) on morphology and photocatalytic performance of Bi2WO6

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Jinxing; Xie, Yunyun; Wang, Mozhen; Ge, Xuewu

    2016-04-01

    Bi2WO6 has great potential applications in the field of photocatalyst due to its excellent visible-light photocatalytic performance. This work studied the detailed morphological evolution of Bi2WO6 particles synthesized in a simple hydrothermal system induced by the stabilizer poly(vinyl pyrrolidone) (PVP). The XRD and HRTEM results show PVP would not change the crystal structure of Bi2WO6, but the distribution of PVP on the initially formed Bi2WO6 nanosheets will induce the crystal growth, resulting in a distinct morphology evolution of Bi2WO6 with the increase of the concentration of PVP. At the same time, with the increase of the molecular weight of PVP, the morphology of Bi2WO6 varied from simple sheet-like (S-BWO) to some complicated morphology, such as flower-like (F-BWO), red blood cell-like (B-BWO), and square-pillar-like (SP-BWO). The photocatalytic performances of Bi2WO6 with various morphologies on the decomposition of RhB under visible light irradiation reveal that S-BWO has the best photocatalytic performance, while SP-BWO has the worst. This work not only gives the explanation of the inductive effect of PVP molecular chains on the morphological formation of Bi2WO6 particles, but also provides the controllable way to the preparation of Bi2WO6 with various morphologies taking advantage of the stabilizer PVP.

  9. The effects of shear and particle shape on the physical adsorption of polyvinyl pyrrolidone on carbon nanoparticles.

    PubMed

    Vo, Minh D; Papavassiliou, Dimitrios V

    2016-08-12

    The effects of shear and particle shape on the physical adsorption of a polymer (polyvinyl pyrrolidone, PVP) on carbon nanoparticles (CNPs) were studied with dissipative particle dynamics (DPD) methods. It was found that the conformation of the polymer during adsorption and desorption from the nanoparticle can be classified into three possible types, i.e. adsorbed, shear-affected and separated, depending on the magnitude of the shear rate in the flow. Spherical and graphene sheet-shaped particles with adsorbed PVP were manipulated in a Couette flow to determine the threshold shear rates leading to changes in the polymer adsorption state. It was found that the polymer was stably adsorbed under higher shear conditions for graphene sheets. In addition, the end-to-end distance and the radius of gyration of the polymer adsorbate was clearly related to the adsorption state, as the polymer underwent a transition from adsorbed to the separated state when the shear rate increased. The critical shear rate at which the polymer desorbed from the surface could be useful in applications where nanoparticles can be used as a molecular delivery system. The physical adsorption and desorption of the same polymer molecules on a flat surface were also investigated. The desorption of the polymer from the flat surface occurred when the shearing force was stronger than the attraction between the PVP and the surface. PMID:27364191

  10. The effects of shear and particle shape on the physical adsorption of polyvinyl pyrrolidone on carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Vo, Minh D.; Papavassiliou, Dimitrios V.

    2016-08-01

    The effects of shear and particle shape on the physical adsorption of a polymer (polyvinyl pyrrolidone, PVP) on carbon nanoparticles (CNPs) were studied with dissipative particle dynamics (DPD) methods. It was found that the conformation of the polymer during adsorption and desorption from the nanoparticle can be classified into three possible types, i.e. adsorbed, shear-affected and separated, depending on the magnitude of the shear rate in the flow. Spherical and graphene sheet-shaped particles with adsorbed PVP were manipulated in a Couette flow to determine the threshold shear rates leading to changes in the polymer adsorption state. It was found that the polymer was stably adsorbed under higher shear conditions for graphene sheets. In addition, the end-to-end distance and the radius of gyration of the polymer adsorbate was clearly related to the adsorption state, as the polymer underwent a transition from adsorbed to the separated state when the shear rate increased. The critical shear rate at which the polymer desorbed from the surface could be useful in applications where nanoparticles can be used as a molecular delivery system. The physical adsorption and desorption of the same polymer molecules on a flat surface were also investigated. The desorption of the polymer from the flat surface occurred when the shearing force was stronger than the attraction between the PVP and the surface.

  11. Fabrication and characterization of superparamagnetic poly(vinyl pyrrolidone)/poly(L-lactide)/Fe3O4 electrospun membranes

    NASA Astrophysics Data System (ADS)

    Savva, Ioanna; Constantinou, Demetris; Marinica, Oana; Vasile, Eugeniu; Vekas, Ladislau; Krasia-Christoforou, Theodora

    2014-02-01

    The fabrication of magnetoactive fibrous nanocomposite membranes based on poly(vinyl pyrrolidone) (PVP), poly(L-lactide) (PLLA) and pre-formed oleic acid coated magnetite nanoparticles (OA Fe3O4) is presented. The aforementioned materials have been prepared by means of the electrospinning technique following a single-step fabrication process. The PVP/PLLA/OA Fe3O4 nanocomposite membranes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that provided information on the fiber diameters as well as on the morphological and dimensional characteristics of the OA Fe3O4 nanoparticles embedded within the fibers. The thermal stability of these materials was evaluated by means of thermal gravimetric analysis (TGA) measurements. Finally, vibrational sample magnetometry (VSM) analysis disclosed superparamagnetic behavior at room temperature. The combination of the hydrophilic, biocompatible and photo-crosslinkable PVP with the biodegradable PLLA and the superparamagnetic OA Fe3O4 nanoparticles within these materials allows for the future development of crosslinked fibrous magnetoactive nanocomposites exhibiting high stability in aqueous solutions, with potential use in biomedical and environmental applications.

  12. Formation of complexes between 125I-labelled human or bovine somatotropins and binding proteins in vivo in rat liver and kidney.

    PubMed Central

    Bonifacino, J S; Roguin, L P; Paladini, A C

    1983-01-01

    At 5 min after intravenous injection, both 125I-labelled human somatotropin and 125I-labelled bovine somatotropin were concentrated in rat liver and kidney. When the labelled hormones were administered along with an excess of the corresponding unlabelled hormone, a significant decrease of the uptake was observed in the liver, but not in the kidney. Study of the subcellular distribution of radioiodinated somatotropins in liver revealed that most of the radioactivity was specifically concentrated in the microsomal fraction. In contrast, the kidney fraction that accounted for most of the radioactivity was the 100 000 g supernatant. After solubilization, with 1% (w/v) Triton X-100, of the microsomal fractions obtained from both organs, the radioactive material was analysed by gel filtration on Sepharose CL-6B. By using this approach, it was demonstrated that both 125I-labelled human somatotropin and 125I-labelled bovine somatotropin bind in vivo to proteins present in liver. A small proportion of 125I-labelled human somatotropin was also shown to form complexes with proteins present in kidney. The present results demonstrate that the liver uptake is mainly due to binding of somatotropins to specific proteins, in contrast with the kidney, in which binding to specific sites contributes minimally to the overall uptake. PMID:6615460

  13. Direct interaction between the catalytic subunit of the calmodulin-sensitive adenylate cyclase from bovine brain with /sup 125/I-labeled wheat germ agglutinin and /sup 125/I-labeled calmodulin

    SciTech Connect

    Minocherhomjee, A.M.; Selfe, S.; Flowers, N.J.; Storm, D.R.

    1987-07-14

    A calmodulin-sensitive adenylate cyclase has been purified to apparent homogeneity from bovine cerebral cortex using calmodulin-Sepharose followed by forskolin-Sepharose and wheat germ agglutinin-Sepharose. The final product appeared as one major polypeptide of approximately 135,000 daltons on sodium dodecyl sulfate-polyacrylamide gels. This polypeptide was a major component of the protein purified through calmodulin-Sepharose. The catalytic subunit was stimulated 3-4-fold by calmodulin (CaM) with a turnover number greater than 1000 min/sup -1/ and was directly inhibited by adenosine. The catalytic subunit of the enzyme interacted directly with /sup 125/I-CaM on a sodium dodecyl sulfate-polyacrylamide gel overlay system, and this interaction was Ca/sup 2 +/ concentration dependent. In addition, the catalytic subunit was shown to directly bind /sup 125/I-labeled wheat germ agglutinin using a sodium dodecyl sulfate-polyacrylamide gel overlay technique, and N-acetylglucosamine inhibited binding of the lectin to the catalytic subunit. Calmodulin did not inhibit binding of wheat germ agglutinin to the catalytic subunit, and the binding of calmodulin was unaffected by wheat germ agglutinin. These data illustrate that the catalytic subunit of the calmodulin-sensitive adenylate cyclase is a glycoprotein which interacts directly with calmodulin and that adenosine can inhibit the enzyme without intervening receptors or G coupling proteins. It is concluded that the catalytic subunit of adenylate cyclase is a transmembrane protein with a domain accessible from the outer surface of the cell.

  14. Growth and characterization of aligned ultralong and diameter-controlled silicon nanotubes by hot wire chemical vapor deposition using electrospun poly(vinyl pyrrolidone) nanofiber template

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Li, Ruishan; Zhou, Jinyuan; Guo, Xiaosong; Liu, Bin; Zhang, Zhenxing; Xie, Erqing

    2009-12-01

    Using aligned suspended polyvinyl pyrrolidone nanofibers array as template, aligned ultralong (about 4 mm) silicon nanotubes have been prepared by a hot wire chemical vapor deposition process. Scanning electron microscopy and transmission electron microscopy demonstrate that the inner diameter (35-200 nm) and wall thickness (20-400 nm) of Si tubes are controlled, respectively, by baking the electrospun nanofibers and by coating time. The tube wall is composed of nanoparticle or nanopillar, and the inner surface of the wall is smoother than the outer surface of the wall. The microphotoluminescence spectra of the thinner Si nanotubes show three light emission bands in the red, green, and blue regions. And the luminescence mechanism is explained according to the quantum-confinement-luminescence center process and radiative recombination from the defect centers.

  15. /sup 125/I-labeled crosslinking reagent that is hydrophilic, photoactivatable, and cleavable through an azo linkage

    SciTech Connect

    Denny, J.B.; Blobel, G.

    1984-09-01

    A radioactive crosslinking reagent, N-(4-(p-azido-m-(/sup 125/I)iodophenylazo)benzoyl)-3-aminopropyl-N'-oxysulfosuccinimide ester, has been synthesized. The reagent is photoactivatable, water-soluble, cleavable through an azo linkage, and labeled with /sup 125/I at the carrier-free specific activity of 2000 Ci/mmol. Any protein derivatized with the reagent is thus converted into an /sup 125/I-labeled photoaffinity probe. Crosslinks are formed following photolysis with 366-nm light, and cleavage by sodium dithionite results in the donation of radioactivity to the distal partner in crosslinked complexes. The newly labeled proteins are then analyzed by gel electrophoresis and autoradiography. The compound was prepared by iodination of N-(4-(p-aminophenylazo)benzoyl)-3-aminopropionic acid using carrier-free Na/sup 125/I and chloramine-T, followed by azide formation and conversion to the water-soluble sulfosuccinimide ester. As a model system, protein A-Sepharose was derivatized with the reagent under subdued light. Each derivatized protein A molecule contained only one crosslinker. The derivatized protein A-Sepharose was then photolyzed in the presence of human serum and subsequently treated with sodium dithionite. Analysis of the serum by gel electrophoresis revealed that 1.1% of the radioactive label originally present on the protein A-Sepharose was transferred to the heavy chain of IgG, which was the most intensely labeled protein in the gel. The next most intensely labeled protein was IgG light chain, which incorporated radioactivity that was lower by a factor of 3.6 than that of the heavy chain. 36 references, 3 figures.

  16. Poly(vinyl pyrrolidone)-assisted hydrothermal synthesis and enhanced visible-light photocatalytic performance of oxygen-rich bismuth oxychlorides.

    PubMed

    Chang, Fei; Luo, Jieru; Wang, Xiaofang; Xie, Yunchao; Deng, Baoqing; Hu, Xuefeng

    2015-12-01

    A series of novel oxygen-rich bismuth oxychloride (Bi12O17Cl2) were synthesized through a facile poly(vinyl pyrrolidone) (PVP)-assisted hydrothermal route. These obtained Bi12O17Cl2 samples were characterized by various physicochemical techniques. It was found that a proper addition amount of PVP could promote the transformation of Bi12O17Cl2 morphology from irregular clusters to three-dimensional hierarchical flower-like microspheres that were nominated as sample BP2. As-synthesized samples were subjected to a photocatalytic degradation of dye Rhodamine B (RhB) or 2,4-dichlorophenol (2,4-DCP) under visible light. Among all candidates, the sample BP2 with a hierarchical flower-like morphology showed the best degradation efficiency for RhB and 2,4-DCP. The apparent rate constant of sample BP2 in terms of degradation of RhB was nearly 5.7 and 45 times that of unmodified BP0 and N-TiO2. The enhanced photocatalytic performance could be ascribed to synergetic effects including unique hierarchical morphologies, large specific surface area, small particle size, good crystallinity, and suitable band structures. A possible mechanism of catalytic degradation was finally proposed basing upon the active species trapping experiments. PMID:26280163

  17. Regulation of biphasic drug release behavior by graphene oxide in polyvinyl pyrrolidone/poly(ε-caprolactone) core/sheath nanofiber mats.

    PubMed

    Yu, Hui; Yang, Peng; Jia, Yongtang; Zhang, Yumei; Ye, Qiuying; Zeng, Simin

    2016-10-01

    One of the key issues for drug delivery systems is to develop a drug carrier with a time-programmed, biphasic release behavior. Using vancomycin hydrochloride (VAN) as a model drug, polyvinyl pyrrolidone (PVP) blended with graphene oxide (GO) sheets as the core matrix, and poly(ε-caprolactone) (PCL) as the sheath polymer, core/sheath PVP/PCL nanofiber mats were fabricated via a coaxial electrospinning process. We hypothesized that the addition of GO sheets would lead to their molecular interactions with VAN molecules, thereby adjusting the VAN release behavior. Field emission scanning electron microscopy and transmission electron microscopy of the fiber mats revealed their nanofibrous structure and clear core/sheath boundary. Raman analysis demonstrated the presence of GO sheets in the PVP/PCL nanofiber mats. Fourier transform infrared spectroscopy indicated the formation of hydrogen bonds between GO sheets and VAN molecules. In vitro studies showed that the PVP/PCL nanofiber mats were biocompatible, despite the addition of GO sheets, and exhibited typical biphasic drug release profiles, which were tailored by adjusting the content of GO sheets. Furthermore, an antimicrobial test showed different antimicrobial activities of the medicated nanofiber mats, depending on the GO content. Collectively, the results of the present study provide a simple approach to obtaining time-programmed drug release profiles. PMID:27259160

  18. Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions.

    PubMed

    Xiong, Yujie; Washio, Isao; Chen, Jingyi; Cai, Honggang; Li, Zhi-Yuan; Xia, Younan

    2006-09-26

    Poly(vinyl pyrrolidone) (PVP) has been extensively used in the solution-phase synthesis of many types of colloidal particles, where it is mainly considered as a steric stabilizer or capping agent with a major role to protect the product from agglomeration. In a recent study, we discovered that the hydroxyl end groups of PVP could also serve as a very mild reductant for kinetically controlled synthesis of Ag nanoplates with yields as high as 75%. Here we further demonstrate that hydroxyl-terminated PVP is also a well-suited reductant for the aqueous synthesis of circular, triangular, and hexagonal nanoplates made of other noble metals including Pd, Au, and Pt. The reduction kinetics of a metal salt by the hydroxyl end groups of PVP can be maneuvered in at least two different ways to facilitate the evolution of plate morphology: (i) by adjusting the molar ratio of PVP to the salt precursor and (ii) by altering the molecular weight of PVP. Unlike previously reported studies of Ag and Au thin plates, light was found to have a negligible role in the present synthesis. PMID:16981776

  19. Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release.

    PubMed

    Yao, Qingqing; Li, Wei; Yu, Shanshan; Ma, Liwei; Jin, Dayong; Boccaccini, Aldo R; Liu, Yong

    2015-11-01

    Novel chitosan-polyvinyl pyrrolidone/45S5 Bioglass® (CS-PVP/BG) scaffolds were prepared via foam replication and chemical cross-linking techniques. The pristine BG, CS-PVP coated BG and genipin cross-linked CS-PVP/BG (G-CS-PVP/BG) scaffolds were synthesized and characterized in terms of chemical composition, physical structure and morphology respectively. Resistance to enzymatic degradation of the scaffold is improved significantly with the use of genipin cross-linked CS-PVP. The bio-effects of scaffolds on MC3T3-E1 osteoblast-like cells were evaluated by studying cell viability, adhesion and proliferation. The CCK-8 assay shows that cell viability on the resulting G-CS-PVP/BG scaffold is improved obviously after cross-linking of genipin. Cell skeleton images exhibit that well-stretched F-actin bundles are obtained on the G-CS-PVP/BG scaffold. SEM results present significant improvement on the cell adhesion and proliferation for cells cultured on the G-CS-PVP/BG scaffold. The drug release performance on the as-synthesized scaffold was studied in a phosphate buffered saline (PBS) solution. Vancomycin is found to be released in burst fashion within 24h from the pristine BG scaffold, however, the release period from the G-CS-PVP/BG scaffold is enhanced to 7days, indicating improved drug release properties of the G-CS-PVP/BG scaffold. Our results suggest that the G-CS-PVP/BG scaffolds possess promising physicochemical properties, sustained drug release capability and good biocompatibility for MC3T3-E1 cells' proliferation and adhesion, suggesting their potential applications in areas such as MC3T3-E1 cell stimulation and bone tissue engineering. PMID:26249617

  20. Inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure-activity relationships

    SciTech Connect

    Kim, K.H.; Martin, Y.; Otis, E.; Mao, J.

    1989-01-01

    Quantitative structure-activity relationships (QSAR) of N-Ac amino acids, N-Ac dipeptides, and N-Ac tripeptides in inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cell wall have been developed to probe the details of the binding between ristocetin and N-acetylated peptides. The correlation equations indicate that (1) the binding is stronger for peptides in which the side chain of the C-terminal amino acid has a large molar refractivity (MR) value, (2) the binding is weaker for peptides with polar than for those with nonpolar C-terminal side chains, (3) the N-terminal amino acid in N-Ac dipeptides contributes 12 times that of the C-terminal amino acid to binding affinity, and (4) the interactions between ristocetin and the N-terminal amino acid of N-acetyl tripeptides appear to be much weaker than those with the first two amino acids.

  1. Preliminary Characterization and In Vivo Studies of Structurally Identical (18)F- and (125)I-Labeled Benzyloxybenzenes for PET/SPECT Imaging of β-Amyloid Plaques.

    PubMed

    Yang, Yanping; Zhang, Xiaoyang; Cui, Mengchao; Zhang, Jinming; Guo, Zhide; Li, Yesen; Zhang, Xianzhong; Dai, Jiapei; Liu, Boli

    2015-01-01

    With the assistance of molecular docking and 3D-QSAR models established previously, structurally identical (18)F- and (125)I-labeled benzyloxybenzene derivatives were designed to achieve the early detection of Aβ plaques by PET/SPECT imaging. In competition binding assay, ligands 7a and 12a displayed high binding affinities to Aβ42 aggregates with Ki values of 19.5 nM and 23.9 nM, respectively. Specific plaque labeling was observed on the in vitro autoradiography of brain sections from AD patients and Tg mice. In biodistribution, [(125)I]7a, [(18)F]7a, [(125)I]12a and [(18)F]12a all exhibited high initial brain uptakes (>5% ID/g at 2 min). [(125)I]7a and [(125)I]12a cleared fast from the normal brain regions, while corresponding [(18)F]7a and [(18)F]12a showed slow washout rates. Dynamic microPET/CT and microSPECT/CT imaging data in normal ICR mice were in accordance with in vivo biodistribution results. In vivo metabolism results indicated that the different clearance profiles between the structurally identical (18)F- and (125)I-labeled tracers could be attributed to different biochemical characteristics of the radiometabolites. Radioiodinated benzyloxybenzene derivatives exhibited good in vivo biostability in brain. Ex vivo autoradiography further confirmed the strong in vivo Aβ labeling ability of [(125)I]7a. These new fluorinated and iodinated benzyloxybenzenes can develop into PET/SPECT dual imaging agents targeting Aβ plaques. PMID:26170205

  2. Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis

    PubMed Central

    Yilma, Abebayehu N; Singh, Shree R; Dixit, Saurabh; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a very common sexually transmissible infection in both developing and developed countries. A hallmark of C. trachomatis infection is the induction of severe inflammatory responses which play critical roles in its pathogenesis. Antibiotics are the only treatment option currently available for controlling C. trachomatis infection; however, they are efficacious only when administered early after an infection. The objectives of this study are to explore alternative strategies in the control and regulation of inflammatory responses triggered by a C. trachomatis infection. We employed silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles, which have been shown to possess anti-inflammatory properties, as our target and the in vitro mouse J774 macrophage model of C. trachomatis infection. Our hypothesis is that small sizes of Ag-PVP nanoparticles will control inflammatory mediators triggered by a C. trachomatis infection. Cytotoxicity studies using Ag-PVP nanoparticles of 10, 20, and 80 nm sizes revealed >80% macrophage viability up to a concentration of 6.25 μg/mL, with the 10 nm size being the least toxic. All sizes of Ag-PVP nanoparticles, especially the 10 nm size, reduced the levels of the prototypic cytokines, tumor necrosis factor (TNF) and interleukin (IL)-6, as elicited from C. trachomatis infected macrophages. Additionally, Ag-PVP nanoparticles (10 nm) selectively inhibited a broad spectrum of other cytokines and chemokines produced by infected macrophages. Of significance, Ag-PVP nanoparticles (10 nm) caused perturbations in a variety of upstream (toll like receptor 2 [TLR2], nucleotide-binding oligomerization-protein 2 [NOD2], cluster of differentiation [CD]40, CD80, and CD86) and downstream (IL-1 receptor-associated kinase 3 [IRAK3] and matrix metallopeptidase 9 [MMP9]) inflammatory signaling pathways by downregulating their messenger ribonucleic acid (mRNA) gene transcript expressions as induced by C. trachomatis in macrophages

  3. Lymphatic flow in humans as indicated by the clearance of /sup 125/I-labeled albumin from the subcutaneous tissue of the leg

    SciTech Connect

    Fernandez, M.J.; Davies, W.T.; Owen, G.M.; Tyler, A.

    1983-08-01

    Since the removal of albumin from the extracellular space and its return to the vascular compartment is the essential function of the lymphatic system, the rate at which it is removed from the interstitial tissue may be regarded as a means of estimating lymphatic efficiency. An objective measure of lymphatic function can be obtained by monitoring the rate of clearance following injection of /sup 125/I-labeled albumin (RIHSA) from the subcutaneous tissue of a limb. The clearance of /sup 125/I-RIHSA from lower limb was monitored in a group of patients with normal limbs, patients with unilateral edema due to deep vein thrombosis, and patients with bilateral edema due to hypoproteinemia. The mean T1/2 in normal legs was 32.7 hr, compared to 23.7 hr in edematous limbs due to deep vein thrombosis and 19.4 in edematous limbs due to hypoproteinemia. There is a clear-cut difference in clearance rate between edematous and nonedematous limbs. This suggests that lymphatic flow is increased in edema due to venous obstruction and hypoproteinemia.

  4. Measurement of cyclosporine concentrations in whole blood: HPLC and radioimmunoassay with a specific monoclonal antibody and /sup 3/H- or /sup 125/I-labeled ligand compared

    SciTech Connect

    Wolf, B.A.; Daft, M.C.; Koenig, J.W.; Flye, M.W.; Turk, J.W.; Scott, M.G.

    1989-01-01

    We compared cyclosporine concentrations in whole blood as measured by HPLC and by RIA with a monoclonal antibody specific for cyclosporine with /sup 3/H- or /sup 125/I-labeled cyclosporine ligand. The /sup 3/H-RIA kit slightly underestimated cyclosporine concentrations (greater than 600 micrograms/L) in comparison with HPLC. Over a wide range of concentrations, cyclosporine measured with the /sup 125/I-RIA kit correlated well with HPLC (slope = 0.99, n = 301, r = 0.98), observed for samples from recipients of kidney, heart, or liver allografts (respective slopes: 1.01, 0.93, and 1.00). The /sup 125/I-RIA standard curve was linear to 1000 micrograms of cyclosporine per liter. Inter- and intra-assay CVs for /sup 125/I-RIA measurements of cyclosporine were less than or equal to 7%. Evidently, the /sup 125/I-RIA kit involving a monoclonal antibody specific for cyclosporine is equivalent to the HPLC assay and can replace it for therapeutic drug monitoring of cyclosporine therapy.

  5. Macrophage function as studied by the clearance of /sup 125/I-labeled polyvinylpyrrolidone in iron-deficient and iron-replete mice

    SciTech Connect

    Kuvibidila, S.; Wade, S.

    1987-01-01

    This study evaluated the effects of iron deficiency and iron repletion on in vivo macrophage function determined by the clearance of /sup 125/I-labeled polyvinylpyrrolidone (PVP). Two experiments were done. There were four groups of C57BL/6 female mice in experiment 1: the iron-deficient (ID), pair-fed (PF), control (C) and the high iron (HI) groups. In experiment 2, there were three ID groups (severe to moderate anemia), three PF, one C and four ID groups that were fed adequate iron for 14 (R-14), 7 (R-7), 3 (R-3) days before or on the day of PVP injection (R-0). The overall rate of PVP clearance from blood was lower in ID than in C or PF groups. This clearance is expressed by a constant, K, calculated from natural log (ln) of the cpm and the time postadministration of PVP that blood was drawn. The theoretical individual macrophages function (alpha PVP), derived from K and the weights of body, spleen and liver, was also lower in ID than in C or PF groups. The impairment was most severe with the most severe iron deficiency. Repletion for 7 to 15 d before PVP administration resulted in a partial correction of the clearance. Moderate undernutrition in the PF group had no effect.

  6. The transmission of -125-I-labelled immunoglobulin G by proximal and distal regions of the small intestine of 16-day-old rats.

    PubMed Central

    Morris, B

    1975-01-01

    1. Standard doses of -125-I-labelled rat IgG were injected into the intestinal lumen of rats aged 16 days, and their sera were sampled 2 and 3 hr later. High concentration quotients were obtained after injection into the proximal small intestime, whereas very little immunoglobulin was transmitted from doses injected into the terminal 20 cm of the small intestine. 2. The villi of the terminal 18--20 cm of the small intestine of 16-day-old rats, the region from which very little transmission of IgG occurred, were lined by tall columnar absorptive cells with very larg supra-nuclear vacuoles. The extent of the terminal intestine, in which this cell type predominated in the absorptive epithelium, varied with age. The importance of defining the precise location of the region of the intestine under examination is stressed. 3. The experimental results and the histological observations are discussed in relation to (a) the results which have been obtained using PVP, which is unsuitable as an indicator of immunoglobulin transport in the rat and (b) the histological composition of the absorptive epithelium and the maturation changes which affect the epithelium between 18 and 21 days. Images A B C D PMID:1127610

  7. Direct method for detection and characterization of cell surface receptors for insulin by means of 125I-labeled autoantibodies against the insulin receptor.

    PubMed Central

    Jarrett, D B; Roth, J; Kahn, C R; Flier, J S

    1976-01-01

    Autoantibodies directed against the cell surface receptors for insulin are found in some patients with extreme insulin resistance. These antibodies specifically inhibit the binding of insulin to its receptor. A purified IgG fraction from one patient's plasma was labeled with 125I. The 125I-labeled antireceptor antibody, which initially represented about 0.3% of the total 125I-IgG, was enriched by selective adsorption and subsequent elution from cells rich in insulin receptors. The 125I-antireceptor antibody bound to cells and the binding was inhibited by whole plasma and purified IgG from this patient, as well as whole plasma from another patient with autoantibodies to the insulin receptor. Insulins that differed 300-fold in biological potency and affinity inhibited binding of 125I-antireceptor antibody in direct proportion to their ability to bind to the insulin receptor. The binding of 125I-antireceptor antibody was closely correlated with the binding of 125I-insulin over a wide range of receptor concentrations on different cell types. Experimentally induced reduction of the insulin receptor concentration was associated with parallel decreases in the binding of 125I-antireceptor antibody and 125I-insulin. The preparation of 125I-antireceptor antibody with a high specific activity by cytoadsorption and elution has provided a sensitive method for the detection of receptors and autoantibodies to cell surface components. PMID:1069300

  8. Binding of /sup 125/I-labeled endotoxin to bovine, canine, and equine platelets and endotoxin-induced agglutination of canine platelets

    SciTech Connect

    Meyers, K.M.; Boehme, M.; Inbar, O.

    1982-10-01

    Endotoxin from Escherichia coli O127:B8, Salmonella abortus-equi and S minnesota induced clumping of some canine platelets (PLT) at a final endotoxin concentration of 1 microgram/ml. Endotoxin-induced clumping of canine PLT was independent of PLT energy-requiring processes, because clumping was observed with canine PLT incubated with 2-deoxy-D-glucose and antimycin A. The PLT responded to adenosine diphosphate before, but not after, incubation with the metabolic inhibitors. Endotoxin induced a slight and inconsistant clumping of bovine and equine PLT at high (mg/ml) endotoxin concentration. High-affinity binding sites could not be demonstrated on canine, bovine, and equine PLT, using /sup 125/I-labeled E coli O127:B8 endotoxin. Nonspecific binding was observed and appeared to be due primarily to an extraneous coat on the PLT surface that was removed by gel filtration. The endotoxin that was bound to PLT did not appear to modify PLT function. An attempt to identify plasma proteins that bound physiologically relevant amounts of endotoxin was not successful. The significance of the endotoxin-induced clumping or lack of it on the pathophysiology of endotoxemia is discussed.

  9. Synthesis and evaluation of an (125)I-labeled azide prosthetic group for efficient and bioorthogonal radiolabeling of cyclooctyne-group containing molecules using copper-free click reaction.

    PubMed

    Choi, Mi Hee; Shim, Ha Eun; Nam, You Ree; Kim, Hye Rim; Kang, Jung Ae; Lee, Dong-Eun; Park, Sang Hyun; Choi, Dae Seong; Jang, Beom-Su; Jeon, Jongho

    2016-02-01

    Herein we report the radiosynthesis of a pyridine derived azide prosthetic group for iodine radioisotope labeling of dibenzocyclooctyne (DBCO) conjugated molecules. The radiolabeling of the stannylated precursor 2 was conducted using [(125)I]NaI and chloramine-T to give (125)I-labeled azide ([(125)I]1) with high radiochemical yield (72±8%, n=4) and radiochemical purity (>99%). Using (125)I-labeled azide ([(125)I]1), cyclic RGD peptide and near infrared fluorescent molecule were efficiently labeled with modest to good radiochemical yields. The biodistribution study and SPECT/CT images showed that [(125)I]1 underwent rapid renal clearance. These results clearly demonstrated that [(125)I]1 could be used as an useful radiotracer for in vivo pre-targeted imaging as well as efficient in vitro radiolabeling of DBCO containing molecules. PMID:26748695

  10. Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of /sup 75/Se-, /sup 111/In-, and /sup 125/I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice

    SciTech Connect

    Koizumi, M.; Endo, K.; Watanabe, Y.; Saga, T.; Sakahara, H.; Konishi, J.; Yamamuro, T.; Toyama, S.

    1989-04-01

    In order to know the true biodistribution of anti-tumor monoclonal antibodies, three monoclonal antibodies (OST6, OST7, and OST15) against human osteosarcoma and control antibody were internally labeled with 75Se by incubating (75Se)methionine and hybridoma cells. 75Se-labeled monoclonal antibodies were evaluated both in vitro and in vivo using the human osteogenic sarcoma cell line KT005, and the results were compared with those of 125I- and 111In-labeled antibodies. 75Se-, 125I- and 111In-labeled monoclonal antibodies had identical binding activities to KT005 cells, and the immunoreactivity was in the decreasing order of OST6, OST7, and OST15. On the contrary, in vivo tumor uptake (% injected dose/g) of 75Se- and 125I-labeled antibodies assessed using nude mice bearing human osteosarcoma KT005 was in the order of OST7, OST6, and OST15. In the case of 111In, the order was OST6, OST7, and OST15. High liver uptake was similarly seen with 75Se- and 111In-labeled antibodies, whereas 125I-labeled antibodies showed the lowest tumor and liver uptake. These data indicate that tumor targeting of antibody conjugates are not always predictable from cell binding studies due to the difference of blood clearance of labeled antibodies. Furthermore, biodistribution of both 111In- and 125I-labeled antibodies are not identical with internally labeled antibody. Admitting that internally labeled antibody is a ''gold standard'' of biodistribution of monoclonal antibody, high liver uptake of 111In-radiolabeled antibodies may be inherent to antibodies. Little, if any, increase in tumor-to-normal tissue ratios of antibody conjugates will be expected compared to those of 111In-labeled antibodies if stably coupled conjugates are administered i.v.

  11. Comparison of /sup 125/I-labeled and /sup 14/C-Labeled peptides of the major outer membrane protein of Chlamydia Trachomatis Strain L2/434 separated by high-performance liquid chromatography

    SciTech Connect

    Judd, R.C.; Caldwell, H.D.

    1985-01-01

    The objective of this study was to determine if in-gel chloramine-T radioiodination adequately labels OM proteins to allow for accurate and precise structural comparison of these molecules. Therefore, intrinsically /sup 14/C-amino acid labeled proteins and /sup 125/I-labeled proteins were cleaved with two endopeptidic reagents and the peptide fragments separated by HPLC. A comparison of retention times of the fragments, as determined by differential radiation counting, thus indicated whether /sup 125/Ilabeling identified of all the peptide peaks seen in the /sup 14/Clabeled proteins. Results demonstrated that radioiodination yields complete and accurate information about the primary structure of outer membrane proteins. In addition, it permits the use of extremely small amounts of protein allowing for method optimization and multiple separations to insure reproducibility.

  12. Distribution and binding of 18F-labeled and 125I-labeled analogues of ACI-80, a prospective molecular imaging biomarker of disease: a whole hemisphere post mortem autoradiography study in human brains obtained from Alzheimer's disease patients.

    PubMed

    Gulyás, Balázs; Spenger, Christian; Beliczai, Zsuzsa; Gulya, Károly; Kása, Péter; Jahan, Mahabuba; Jia, Zhisheng; Weber, Urs; Pfeifer, Andrea; Muhs, Andreas; Willbold, Dieter; Halldin, Christer

    2012-01-01

    One of the major pathological landmarks of Alzheimer's disease and other neurodegenerative diseases is the presence of amyloid deposits in the brain. The early non-invasive visualization of amyloid is a major objective of recent diagnostic neuroimaging approaches, including positron emission tomography (PET), with an eye on follow-up of disease progression and/or therapy efficacy. The development of molecular imaging biomarkers with binding affinity to amyloid in the brain is therefore in the forefront of imaging biomarker and radiochemistry research. Recently, a dodecamer peptide (amino acid sequence=QSHYRHISPAQV; denominated D1 or ACI-80) was identified as a prospective ligand candidate, binding with high ex vivo affinity to L-Aβ-amyloid (K(d): 0.4 μM). In order to assess the ligand's capacity to visualize amyloid in Alzheimer's disease (AD), two (125)I labeled and three (18)F labeled analogues of the peptide were synthesized and tested in post mortem human autoradiography experiments using whole hemisphere brain slices obtained from deceased AD patients and age matched control subjects. The (18)F-labeled radioligands showed more promising visualization capacity of amyloid that the (125)I-labeled radioligands. In the case of each (18)F radioligands the grey matter uptake in the AD brains was significantly higher than that in control brains. Furthermore, the grey matter: white matter uptake ratio was over ~2, the difference being significant for each (18)F-radioligands. The regional distribution of the uptake of the various radioligands systematically shows a congruent pattern between the high uptake regions and spots in the autoradiographic images and the disease specific signals obtained in adjacent or identical brain slices labeled with histological, immunohistochemical or autoradiographic stains for amyloid deposits or activated astrocytes. The present data, using post mortem human brain autoradiography in whole hemisphere human brains obtained from deceased

  13. Reagents for astatination of biomolecules. 5. Evaluation of hydrazone linkers in (211)At- and (125)I-labeled closo-decaborate(2-) conjugates of Fab' as a means of decreasing kidney retention.

    PubMed

    Wilbur, D Scott; Chyan, Ming-Kuan; Hamlin, Donald K; Nguyen, Holly; Vessella, Robert L

    2011-06-15

    benzoate substituent on the hydrazone was chosen for study with (211)At. That reagent was conjugated with 107-1A4 Fab', then labeled (separately) with (125)I and (211)At. The radiolabeled Fab' conjugates were coinjected into nude mice bearing LNCaP human tumor xenografts, and biodistribution data were obtained at 1, 4, and 24 h pi. Tumor targeting was achieved with both (125)I- and (211)At-labeled Fab', but the (211)At-labeled Fab' reached a higher concentration (25.56 ± 11.20 vs 11.97 ± 1.31%ID/g). Surprisingly, while the (125)I-labeled Fab' was cleared from kidney similar to earlier studies, the (211)At-labeled Fab'was not (i.e., kidney conc. for (125)I vs (211)At; 4 h, 13.14 ± 2.03 ID/g vs 42.28 ± 16.38%D/g; 24 h, 4.23 ± 1.57 ID/g vs 39.52 ± 15.87%ID/g). Since the Fab' conjugate is identical in both cases except for the radionuclide, it seems likely that the difference in tissue clearance seen is due to an effect that (211)At has on either the hydrazone cleavage or on the retention of a metabolite. Results from other studies in our laboratory suggest that the latter case is most likely. The hydrazone linkers tested do not provide the tissue clearance sought for (211)At, so additional hydrazones linkers will be evaluated. However, the results support the use of hydrazone linkers when Fab' conjugated with closo-decaborate(2-) reagents are radioiodinated. PMID:21513347

  14. New process for 2-pyrrolidone

    SciTech Connect

    Beekhuis, G.E.; Nieuwkamp, J.G.M.

    1983-04-01

    The Dutch States Mines process for 2-pyrrolidone is outlined. First, hydrocyanic acid is added to acrylonitrile under the catalytic influence of triethylamine, to produce succinic acid dinitrile. Second, succinic dinitrile is hydrogenated in a trickle base reactor. Third, the (gamma)-aminobutyric acid nitrile formed is hydrolyzed. Vapors distilled lead to 2-pyrrolidone. The DSM process is compared to three others: the Reppe route, the MAA route, and the acrylate route. The production of 2-pyrrolidone via the DSM route gives a cost that is about 25% lower than that of the next cheapest, the MAA route. The current market for 2-pyrrolidone is reviewed.

  15. Solid-phase enzyme immunoassay or radioimmunoassay for the detection of immune complexes based on their recognition by conglutinin: conglutinin-binding test. A comparative study with 125I-labelled C1q binding and Raji-cell RIA tests

    PubMed Central

    Casali, P.; Bossus, A.; Carpentier, Nicole A.; Lambert, P.-H.

    1977-01-01

    Bovine conglutinin was used in a solid-phase assay for the detection of immune complexes. In a first step, the tested serum sample is incubated in polypropylene tubes coated with conglutinin to allow C3-coated immune complexes to bind to solid-phase conglutinin. In a second step, the conglutinin-bound complexes are detected using an enzyme-conjugated or radiolabelled anti-immunoglobulin antibody. The conglutinin-binding (KgB) test does not suffer from the interference of DNA, heparin or endotoxins. Its limit of sensitivity for aggregated IgG is 3 μg/ml undiluted human serum. Immune complexes prepared in vitro using tetanus toxoid, or DNA, and corresponding antibodies in human sera could be detected at various antigen/antibody ratios and at antibody concentrations lower than 8 μg/ml. The KgB test allowed for the detection of immune complexes in sera from patients with systemic lupus erythematosus, rheumatoid arthritis, idiopathic vasculitis, leprosy and leukemia. These sera were also tested using the 125I-labelled Clq-binding activity (BA) test and the KgB test simultaneously, and a significant rank order correlation was observed. In patients with leukemia, a significant correlation was observed using three tests, KgB, 125I-labelled Clq BA and Raji-cell radioimmunoassay (RIA). Therefore, the KgB test appears as a simple and reproducible method, utilizing a very stable reagent, with a sensitivity and specificity comparable to the other tests studied and allowing for clinical application. PMID:332422

  16. Synthesis and bioevaluation of 125I-labeled gold nanorods

    NASA Astrophysics Data System (ADS)

    Shao, Xia; Agarwal, Ashish; Rajian, Justin R.; Kotov, Nicholas A.; Wang, Xueding

    2011-04-01

    A novel technique is described for monitoring the in vivo behavior of gold nanorods (GNRs) using γ-imaging. GNRs were radiolabeled using [125I] sodium iodide in a simple and fast manner with high yield and without disturbing their optical properties. Radiolabeled GNRs were successfully visualized by radioisotope tagging, allowing longitudinal in vivo studies to be performed repeatedly in the same animal. The preliminary biodistribution study showed that PEGylated GNRs have much longer blood circulation times and clear out faster, while bare GNRs accumulate quickly in the liver after systematic administration. The highly efficient method reported here provides an extensively useful tool for guidance of the design and development of new gold nanoparticles as target-specific agents for both diagnostics and photothermal therapy.

  17. Catalytic Preparation of Pyrrolidones from Renewable Resources

    SciTech Connect

    Frye, John G.; Zacher, Alan H.; Werpy, Todd A.; Wang, Yong

    2005-12-01

    Use of renewable resources for production of valuable chemical commodities is becoming a topic of great national interest and importance. This objective fits well with the USDOE’s objective of promoting the industrial bio-refinery concept in which a wide array of valuable chemical, fuel, food, nutraceuticals and animal feed products all result from the integrated processing of grains, oil seeds and other bio-mass materials. The bio-refinery thus serves to enhance the overall utility and profitability of the agriculture industry as well as helping to reduce the dependence on petroleum. Pyrrolidones fit well with the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refinery’s sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including as polymer intermediates, cleaners, and “green solvents” which can replace hazardous chlorinated compounds. Battelle has developed an efficient process for the thermo – catalytic conversion of succinate into pyrrolidones, especially n-methylpyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated.

  18. Catalytic Preparation of Pyrrolidones from Renewable Resources

    SciTech Connect

    Frye, John G.; Zacher, Alan H.; Werpy, Todd A.; Wang, Yong

    2005-06-01

    Abstract Use of renewable resources for production of valuable chemical commodities is becoming a topic of great national interest and importance. This objective fits well with the U.S. DOE’s objective of promoting the industrial bio-refinery concept in which a wide array of valuable chemical, fuel, food, nutraceuticals, and animal feed products all result from the integrated processing of grains, oil seeds, and other bio-mass materials. The bio-refinery thus serves to enhance the overall utility and profitability of the agriculture industry as well as helping to reduce the USA’s dependence on petroleum. Pyrrolidones fit well into the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refinery’s sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including polymer intermediates, cleaners, and “green solvents” which can replace hazardous chlorinated compounds. Battelle has developed an efficient process for the thermo-catalytic conversion of succinate into pyrrolidones, especially n-methyl-2-pyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated.

  19. 21 CFR 500.1410 - N-methyl-2-pyrrolidone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false N-methyl-2-pyrrolidone. 500.1410 Section 500.1410... Used in Food-Producing Animals § 500.1410 N-methyl-2-pyrrolidone. (a) Standard for residues. No residues of n-methyl-2-pyrrolidone may be found in the uncooked edible tissues of cattle as determined by...

  20. Solution thermodynamics of poly(vinyl pyrrolidone) in ethanol/CCl{sub 4} mixtures

    SciTech Connect

    Schwager, F.; Marand, E.; Davis, R.M.

    1996-12-31

    The Gibbs free energy, the enthalpy, and the entropy of mixing of ethanol with the polymer polyvinylpyrrolidone, PVP, and with its low molecular weight analogue, N-ethylpyrrolidone, NEP were calculated. The calculation of the free energy of mixing was achieved with the thermodynamic model for hydrogen bonded polymer systems developed by Painter, Coleman, and Graf. This model, based on the use of an association model, gives the free energy of mixing as a function of the Flory-Huggins interaction parameter, the composition of the mixture, and the association equilibrium constants. The self-association of the ethanol molecules was described by two equilibrium constants, one for the formation of dimers and one for the formation of multimers. The equilibrium constants of inter-association of PVP or NEP with ethanol were determined from the quantitative analysis of NEP/ethanol and PVP/ethanol FTIR spectra at various temperatures and compositions. The values of the equilibrium constants were then used to calculate the theoretical Gibbs free energy of mixing as a function of the composition. The enthalpic and entropic contributions to mixing were compared for the NEP/ethanol and PVP/ethanol mixtures.

  1. Inactivation of Ichthyophonus spores using sodium hypochlorite and polyvinyl pyrrolidone iodine

    USGS Publications Warehouse

    Hershberger, P.K.; Pacheco, C.A.; Gregg, J.L.

    2008-01-01

    Chlorine and iodine solutions were effective at inactivating Ichthyophonus spores in vitro. Inactivation in sea water increased directly with halogen concentration and exposure duration, with significant differences (P < 0.05) from controls occurring at all chlorine concentrations and exposure durations tested (1.5-13.3 ppm for 1-60 min) and at most iodine concentrations and exposure durations tested (1.2 ppm for 60 min and 5.9-10.7 ppm for 1-60 min). However, 10-fold reductions in spore viability occurred only after exposure to halogen solutions at higher concentrations and/or longer durations (13 ppm total chlorine for 1-60 min, 5.9 ppm total iodine for 60 min, and 10.7 ppm total iodine for 1-60 min). Inactivation efficacy was greater when halogen solutions were prepared in fresh water, presumably because of combined effects of halogen-induced inactivation and general spore instability in fresh water. The results have practical implications for disinfection and biocontainment in research laboratories and other facilities that handle live Ichthyophonus cultures and/or infected fish.

  2. 40 CFR 180.1130 - N-(n-octyl)-2-pyrrolidone and N-(n-dodecyl)-2-pyrrolidone; exemptions from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false N-(n-octyl)-2-pyrrolidone and N-(n... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1130 N-(n-octyl)-2-pyrrolidone and N-(n-dodecyl)-2-pyrrolidone; exemptions from the requirement of a tolerance....

  3. 40 CFR 180.1130 - N-(n-octyl)-2-pyrrolidone and N-(n-dodecyl)-2-pyrrolidone; exemptions from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false N-(n-octyl)-2-pyrrolidone and N-(n... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1130 N-(n-octyl)-2-pyrrolidone and N-(n-dodecyl)-2-pyrrolidone; exemptions from the requirement of a tolerance....

  4. Rapid extraction, radioiodination, and in vivo catabolism of 125I-labeled fibrinogen in the horse

    SciTech Connect

    Coyne, C.P.; Hornof, W.J.; Kelly, A.B.; O'Brien, T.R.; DeNardo, S.J.

    1985-12-01

    Two methods were analyzed for the rapid extraction of equine fibrinogen from fresh plasma, using ammonium sulfate-sodium phosphate buffer. Fibrinogen from each of these 2 methods was then radiolabeled with 125I (half-life = 60.2 days, gamma = 35 keV), using monochloroiodine reagent. Mean protein-bound activity was 98.5% and mean clottable radioactivity was 94.1%. Radiolabeled fibrinogen administered IV to 15 horses had an overall mean (+/- SD) plasma half-life of 4.95 +/- 0.44 days.

  5. Optimized method for measuring cyclosporin A with /sup 125/I-labeled cyclosporin

    SciTech Connect

    Felder, R.A.; Mifflin, T.E.; Bastani, B.

    1986-07-01

    We evaluated the use of the new iodinated ligand for the in vitro measurement of cyclosporin A by radioimmunoassay (RIA). Substitution of the iodinated cyclosporin (/sup 125/I-CyA) for the corresponding tritium-labeled analog (/sup 3/H-CyA) considerably simplifies and accelerates the currently available RIA, and improves its precision. Analysis of the respective dose-response curves showed that the 50% B0 value was lower for the /sup 125/I-CyA assay than for the /sup 3/H-CyA assay (37 vs 77 micrograms/L). Use of whole-blood specimens minimized interferences from temperature and hematocrit. We conclude that the use of /sup 125/I-CyA in a commercially available RIA for whole-blood specimens is accessible to most laboratories and provides rapid, reproducible data for management of transplant patients.

  6. 76 FR 72617 - Animal Drugs, Feeds, and Related Products; Eprinomectin; N-Methyl-2-Pyrrolidone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... Related Products; Eprinomectin; N- Methyl-2-Pyrrolidone AGENCY: Food and Drug Administration, HHS. ACTION.... The method of detection for residues of the carcinogenic excipient n-methyl-2- pyrrolidone (NMP) in... excipient n-methyl-2-pyrrolidone (NMP), is a carcinogen. As required by section 512(d)(1)(I) of the...

  7. Analysis of a vinyl pyrrolidone/poly(propylene fumarate) resorbable bone cement.

    PubMed

    Gresser, J D; Hsu, S H; Nagaoka, H; Lyons, C M; Nieratko, D P; Wise, D L; Barabino, G A; Trantolo, D J

    1995-10-01

    A resorbable bone cement was formulated from N-vinyl-2-pyrrolidinone (VP), the unsaturated polyester poly(propylene fumarate) (PPF), and the inorganic filler tribasic calcium phosphate (hydroxy apatite). Cure, initiated by benzoyl peroxide and accelerated by N,N-dimethyl-p-toluidine, resulted in the formation of VP crosslinks between polyester chains. During cure the cement hardened from a viscous moldable putty to a rigid structure with a shore D hardness of 50-60. The purpose of this study was to determine the fractions of PPF and VP incorporated into the crosslinked structure. Dissolution of the cured cement in water followed by extraction of the residue in tetrahydrofuran indicated that over 90% of the PPF was crosslinked over the range of PPF/VP ratios explored, but that the fraction of VP used in formation of crosslinks depended linearly on the PPF/VP ratio. Kinetic analysis of these data suggests that k'pp/kpf (the reactivity ratio) was approximately 2.0 where k'pp is the rate constant for the addition of VP radical to VP monomer leading to formation of poly(vinyl pyrrolidone), and kpf is for the addition of VP radical to PPF unsaturation. PMID:8557726

  8. 21 CFR 500.1410 - N-methyl-2-pyrrolidone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Director of the Federal Register under 5 U.S.C. 522(a) and 1 CFR part 51. You may obtain a copy of the..., call (202) 741-6030, or go to: http://www.archives.gov/federal-register/cfr/ibr-locations.html. (b... method entitled “Method of Analysis: N-methyl-2-pyrrolidone,” September 26, 2011, Center for...

  9. Dimethyl Sulfoxide and N-Iodosuccinimide Promoted 5-exo-dig Oxidative Cyclization of Yne-Tethered Ynamide: Access to Pyrrolidones and Spiro-pyrrolidones.

    PubMed

    Prabagar, B; Nayak, Sanatan; Prasad, Rangu; Sahoo, Akhila K

    2016-07-01

    An unprecedented metal-free dimethyl sulfoxide (DMSO) and N-iodosuccinimide mediated regioselective 5-exo-dig oxidative cyclization of an in situ generated enol equivalent of amides from ynamides bearing internal alkynes is demonstrated. The reaction allows easy access to functionalized pyrrolidone skeletons. Pyrrolidones having 3-o-biaryl motifs successfully undergo intramolecular electrophilic cyclization with the α,β-unsaturated olefin, furnishing spiro-pyrrolidone motifs. A one-pot sequential 5-exo-dig cyclization of the yne-tethered ynamides, followed by electrophilic cyclization of the pyrrolidone, is presented. The role of DMSO in the transformation is clarified, and a tentative reaction pathway is proposed. PMID:27332985

  10. 40 CFR 180.1130 - N-(n-octyl)-2-pyrrolidone and N-(n-dodecyl)-2-pyrrolidone; exemptions from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false N-(n-octyl)-2-pyrrolidone and N-(n-dodecyl)-2-pyrrolidone; exemptions from the requirement of a tolerance. 180.1130 Section 180.1130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN...

  11. 40 CFR 180.1130 - N-(n-octyl)-2-pyrrolidone and N-(n-dodecyl)-2-pyrrolidone; exemptions from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false N-(n-octyl)-2-pyrrolidone and N-(n-dodecyl)-2-pyrrolidone; exemptions from the requirement of a tolerance. 180.1130 Section 180.1130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN...

  12. Pyrrolidone - a new solvent for the methylation of humic acid

    USGS Publications Warehouse

    Wershaw, R. L.; Pinckney, D.J.; Booker, S.E.

    1975-01-01

    In the past, humic acid has been methylated by suspending it in a solution of diazomethane in diethyl ether, and degrading the partly methylated humic acid to release those parts of the molecule that were methylated. Only small fragments of the molecule have been identified by this technique. In the procedure described here the humic acid is dissolved in 2-pyrrolidone and methylated by the addition of diazomethane in diethyl ether and ethanol to the solution. Because the humic acid is completely dissolved in the reaction medium, disaggregation of the humic acid particles takes place and much more complete methylation is obtained. The methylated products may be fractionated by countercurrent distribution and analyzed by mass spectrometry.

  13. A novel crosslinker for UV copolymerization of N-vinyl pyrrolidone and methacrylates

    SciTech Connect

    Lai, Yu-Chin

    1993-12-31

    Methacryloxyethyl vinyl carbonate, a novel crosslinker containing a vinyl carbonate and a methacrylate group which is capable of copolymerizing N-vinyl pyrrolidone and methacrylates, was prepared. With this crosslinker, N-vinyl pyrrolidone and methacrylates can copolymerize efficiently under strictly UV condition. Previously, polymeric systems containing N-vinyl pyrrolidone and methacrylates were prepared using thermal initiators, or a combination of thermal and UV initiators in the presence of crosslinkers such as allyl methacrylate or ethylene glycol dimethacrylate, These processes often led to polymers with inferior properties and less controllable quality. The use of this novel crosslinker represents a sharp improvement in polymerization conditions (UV vs heat) as well as product quality.

  14. Specific uptake, dissociation, and degradation of /sup 125/I-labeled insulin in isolated turtle (Chrysemys dorbigni) thyroid glands

    SciTech Connect

    Marques, M.; da Silva, R.S.; Turyn, D.; Dellacha, J.M.

    1985-11-01

    Thyroid glands from turtles (Chrysemys dorbigni) pretreated with potassium iodide were incubated with /sup 125/I-insulin in the presence or absence of unlabeled insulin, in order to study its specific uptake. At 24 degrees, the specific uptake reached a plateau at 180 min of incubation. The dose of bovine insulin that inhibited 50% of the /sup 125/I-insulin uptake was 2 micrograms/ml of incubation medium. Most of the radioactive material (71%) extracted from the gland, after 30 min incubation with /sup 125/I-insulin, eluted in the same position as labeled insulin on Sephadex G-50. Only 24% eluted in the salt position. After 240 min incubation, increased amount of radioactivity appeared in the Na/sup 125/I position. When bovine insulin was added together with the labeled hormone, a substantial reduction of radioactivity was observed in the insulin and Na/sup 125/I elution positions. Dissociation studies were performed at 6 degrees in glands preincubated with /sup 125/I-insulin either at 24 or 6 degrees. The percentage of trichloroacetic acid (TCA)-soluble radioactive material in the dissociation medium increased with incubation time at both temperatures. However, the degradation activity was lower at 6 than at 24 degrees. The addition of bovine insulin to the incubation buffer containing /sup 125/I-insulin reduced the radioactive degradation products in the dissociated medium. Chloroquine or bacitracin inhibited the degradation activity. Incubation of thyroid glands with /sup 125/I-hGH or /sup 125/I-BSA showed values of uptake, dissociation, and degradation similar to those experiments in which an excess of bovine insulin was added together with the labeled hormone. Thus, by multiple criteria, such as specific uptake, dissociation, and degradation, the presence of insulin-binding sites in the turtle thyroid gland may be suggested.

  15. Identification of cross-reactive promastigote cell surface antigens of some leishmanial stocks by 125I labeling and immunoprecipitation.

    PubMed Central

    Gardiner, P R; Jaffe, C L; Dwyer, D M

    1984-01-01

    Externally oriented surface membrane constituents of promastigotes from several Leishmania species were radiolabeled with 125I. Autoradiographs of cell surface-labeled and sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the stocks revealed distinctive patterns of bands in the molecular weight range of 6,000 to 240,000. Immunoprecipitation of detergent extracts of the labeled promastigote stocks with anti-Leishmania donovani membrane serum demonstrated that each of the stocks contained some antigenically cross-reactive determinants. The electrophoretic patterns of these determinants serve both to distinguish the parasite stocks (by unique, species-specific patterns) and to indicate antigenic similarities in stocks thought to be different by other biochemical criteria. At least 12 cross-reactive cell surface antigens in two New World leishmanias are recognized by polyvalent anti-L. donovani serum, suggesting that these common leishmanial antigens may account for the documented serological cross-reactivities among various Leishmania species. In all stocks tested, an iodinated protein was identified which had a relative molecular weight of 65,000 under reducing conditions but which demonstrated an increase in relative mobility in sodium dodecyl sulfate-polyacrylamide gels under nonreducing conditions. Distinctive patterns of the antigens common to the several stocks were also demonstrated with the use of monoclonal antibodies. Images PMID:6363295

  16. /sup 125/I-labeled radioimmunoassay kits for progesterone evaluated for use in an in vitro fertilization program

    SciTech Connect

    Blight, L.F.; White, G.H.

    1983-06-01

    We have evaluated two commercially available /sup 125/I radioimmunoassay kits (Diagnostic Products Corp., DPC; and Radioassay Systems Laboratories, RSL) for measurement of serum or plasma progesterone, to determine their suitability for use in in vitro fertilization programs. Both kits were suitably rapid for program requirements. Results by both were linear with concentration up to 60 nmol/L, and both had acceptable lower detection limits of 0.3 nmol/L. Kit-determined progesterone concentrations (y) for 100 patients' samples correlated well with results by our existing 3H radioimmunoassay method (y . 1.11x + 0.2, r . 0.965 for the DPC kit; y . 1.01x + 1.4, r . 0.974 for the RSL kit). Mean analytical recovery for the RSL kit was 116%, that for the DPC kit, 202%. Within-batch precision, expressed as the mean CV for three concentrations of progesterone, was 6.5% for the RSL kit, and 16.4% for the DPC kit; between-day CV was 8.1% for the RSL kit, 17.7% for the DPC kit. We conclude that the RSL kit provides a rapid, precise, and accurate assay for serum progesterone, suitable for use in a fertilization program, but do not recommend the DPC kit for either this purpose or the more general purpose of tracking menstrual cycles.

  17. Binding of an ( sup 125 I) labelled thromboxane A2/prostaglandin H2 receptor agonist to baboon platelets

    SciTech Connect

    Dorn, G.W. II; De Jesus, A. )

    1989-12-01

    To characterize the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor on baboon platelets the binding of (125I)BOP was studied. (125I)BOP bound to washed baboon platelets in a saturable manner. Scatchard analysis of binding isotherms revealed a Kd of 1.12 +/- 0.08 nM and a binding capacity of 54 +/- 5 fmoles/10(8) platelets (326 sites/platelet). Several TXA2/PGH2 agonists and antagonists displaced (125I)BOP from its baboon platelet binding site with a rank order of potency similar to human platelets: I-BOP greater than SQ29548 greater than U46619 = I-PTA-OH greater than PTA-OH. I-BOP aggregated washed baboon platelets with an EC50 of 10 +/- 4 nM. The results indicate that (125I)BOP binds to the TXA2/PGH2 receptor on baboon platelets and that this receptor is similar to its human counterpart.

  18. The effects of cortisone acetate on stomach evacuation and the absorption of 125I-labelled globulins in young rats

    PubMed Central

    Morris, B.; Morris, R.

    1974-01-01

    1. After short exposure (3-5 hr) to I.P. cortisone acetate (5 mg), the reduced transmission of labelled globulin to the circulation in 14-day-old rats is due to the slow release of the oral dose from the stomach. The ability of the small intestine to absorb and transmit globulin to the circulation is comparable in control and experimental animals. 2. About 26 hr after cortisone acetate treatment (5 mg), the greatly reduced absorption of labelled globulin from oral doses administered to rats aged 15 days is due to the combined effects of the slower release of the dose from the stomach and to changes which have occurred in the small intestine. 3. About 50 hr after the administration of 5 mg cortisone acetate the effect on the rate of stomach evacuation is minimal in rats aged 16 days. When labelled globulin is introduced directly into the duodenum of these animals virtually no absorption occurs. 4. The results obtained from the experiments in which labelled globulin was injected into the duodenum support the contention that the proximal half of the small intestine is an important site for macromolecular transport. PMID:4854797

  19. Design and synthesis of [(125)I]Pyricoxib: A novel (125)I-labeled cyclooxygenase-2 (COX-2) inhibitors.

    PubMed

    Tietz, Ole; Dzandzi, James; Bhardwaj, Atul; Valliant, John F; Wuest, Frank

    2016-03-15

    Cyclooxygenase-2 (COX-2) is the key enzyme in the prostaglandin synthesis pathway which is involved in various pathophysiological conditions. The enzyme is membrane bound and located inside of the endoplasmic reticulum and nuclear membrane. Effective perfusion of inhibitors to the active site requires lipophilic drugs, which consequently display high unspecific background accumulation, for example, in fatty tissues. The objective of this work was the development of a small molecule radiolabeled with a long-lived iodine radioisotope to enable longer imaging times and better target-to-background ratios. A group of iodinated compounds (8-10) was synthesized and identified as selective COX-2 inhibitors (COX-2 IC50=0.85-13 μM). Molecular docking results provided the theoretical support for the experimental COX-2 inhibition data. Furthermore, a novel (125)I-containing trifluoro-pyrimidine compound ([(125)I]Pyricoxib) was prepared via radioiododestannylation reaction as potent and selective COX-2 inhibitor. Radiosynthesis of [(125)I]Pyricoxib was accomplished with innovative fluorous chemistry using fluorous chloroamine-T (F-CAT) as novel oxidizing agent in high radiochemical yields of 91 ± 4%. PMID:26898334

  20. (125)I labeling of clomiphene and biodistribution studies for possible use as a model in breast cancer imaging.

    PubMed

    Ibrahim, I T; El-Kolaly, M T; Aboumanei, M H; Abdelbary, A

    2016-09-01

    Clomiphene has growth-inhibitory effects of breast cancer cells, clomiphene was successfully labeled with (125)I via direct electrophilic substitution reaction with labeling yield 97%. It was obtained at optimum substrate amount of 0.5mg, Chloramine-T was used as an oxidizing agent at optimum amount of 25µg. Labeling reactions was done at pH 5 at ambient temperature. This study showed good in vitro and in vivo stability of the (125)I-clomiphene. The radiolabeled compound showed high ascetic fluid uptake of 18.12±0.27% at 30min post-injection. Solid tumor uptake of (125)I-clomiphene was 12.48±0.32% at 30min post-injection. This data revealed the localization of tracer in tumor tissue with high percent sufficient to use (125)I-clomiphene as a promising tool for the diagnosis of breast cancer. PMID:27337647

  1. Biotin radioligand assay with an /sup 125/I-labeled biotin derivative, avidin, and avidin double-antibody reagents

    SciTech Connect

    Livaniou, E.; Evangelatos, G.P.; Ithakissios, D.S.

    1987-11-01

    We describe a new radioligand assay for determining biotin in biological fluids by using a mixture of N-(beta-(4-OH-3-125I-phenyl)ethyl)- and N-(beta-(4-OH-3,5-di-125I-phenyl)ethyl)biotinamides as radiotracer, avidin as a binding protein, and an avidin double-antibody as a separation reagent. The radiotracer is synthesized by coupling (at pH 8.5, 20-22 degrees C, 90 min) N-hydroxysuccinimidobiotin to radioiodinated tyramine. The assay curve is linear and the assay itself is sensitive (less than 10 ng/L), reproducible (intra- and interassay CVs 4.1% and 7.0%, respectively), and allows the simultaneous handling of more than 100 samples in less than 4 h. Serum samples from apparently normal subjects contained 100-840 ng of biotin per liter (mean 340 ng/L). Pregnant women had low concentrations of biotin (100-300 ng/L) in their serum. Patients undergoing chronic hemodialysis treatment showed high concentrations (0.5-3.0 micrograms/L), which may be ascribable to the inability of avidin, which was used as the assay binding protein, to distinguish biotin from biotinyl derivatives with an intact ureido ring.

  2. Shock compression of polyvinyl chloride

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2016-04-01

    This study presents shock compression simulation of atactic polyvinyl chloride (PVC) using ab-initio and classical molecular dynamics. The manuscript also identifies the limits of applicability of classical molecular dynamics based shock compression simulation for PVC. The mechanism of bond dissociation under shock loading and its progression is demonstrated in this manuscript using the density functional theory based molecular dynamics simulations. The rate of dissociation of different bonds at different shock velocities is also presented in this manuscript.

  3. Fogging in Polyvinyl Toluene Scintillators

    SciTech Connect

    Cameron, Richard J.; Fritz, Brad G.; Hurlbut, Charles; Kouzes, Richard T.; Ramey, Ashley; Smola, Richard

    2015-02-01

    It has been observed that large polyvinyl toluene (PVT)-based gamma ray detectors can suffer internal “fogging” when exposed to outdoor environmental conditions over long periods of time. When observed, this change results in reduced light collection by photomultiplier tubes connected to the PVT. Investigation of the physical cause of these changes has been explored, and a root cause identified. Water penetration into the PVT from hot, high-humidity conditions results in reversible internal water condensation at room temperature, and permanent micro-fracturing of the PVT at very low environmental temperatures. Mitigation procedures and methods are being investigated.

  4. Synthesis of PbS/poly (vinyl-pyrrolidone) nanocomposite

    SciTech Connect

    Patel, Jayesh D.; Chaudhuri, Tapas K.

    2009-08-05

    A simple solution growth method for synthesis of nanocomposite of PbS nanoparticles in poly(vinyl-pyrrolidone) (PVP) polymer is described. The nanocomposite is prepared from methanolic solution of lead acetate (PbAc), thiourea (TU) and PVP at room temperature ({approx}27 deg. C). Optical absorption spectrum of PbS/PVP nanocomposite solution shows strong absorption from 300 to 650 nm with significant bands at 400 and 590 nm which is characteristic of nanoscale PbS. Spin-coated nanocomposite films on glass have an absorption edge at {approx}650 nm with band gap of 2.55 eV. Fourier transform infrared (FTIR) spectroscopy of PbS/PVP nanocomposite and PVP shows strong chemical bond between PbS nanoparticles and host PVP polymer. The transmission electron microscope (TEM) images reveal that 5-10 nm PbS particles are evenly embedded in PVP polymer. The formation of PbS is confirmed by selective area electron diffraction (SAED) of a typical nanoparticle.

  5. 76 FR 13660 - Polyvinyl Alcohol From Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... 4, 2010 (75 FR 61175). The hearing was held in Washington, DC, on January 25, 2011, and all persons... COMMISSION Polyvinyl Alcohol From Taiwan Determination On the basis of the record \\1\\ developed in the... United States is materially injured by reason of imports from Taiwan of polyvinyl alcohol, provided...

  6. Polyvinyl alcohol hydrogels for iontohporesis

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  7. Amylopectin-g-poly(N-vinyl-2-pyrrolidone): synthesis, characterization and in vitro release behavior.

    PubMed

    Ahuja, Munish; Thakur, Kanika; Kumar, Ashok

    2014-08-01

    In the present study, amylopectin-g-poly(N-vinyl-2-pyrrolidone) was synthesized by UV-assisted grafting reactions. The effect of concentrations of amylopectin, N-vinyl-pyrrolidone and ammonium persulfate on the % grafting efficiency was studied using 3-factor, 2-level factorial experimental design. The graft co-polymer was characterized by Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies. The concentrations of amylopectin, N-vinyl-2-pyrrolidone and ammonium persulfate were found to exert a significant synergistic effect on grafting efficiency. The optimized batch of graft co-polymer prepared using concentration of amylopectin (4%), N-vinyl-2-pyrrolidone (2%) and ammonium persulfate (10 mmol/L) had 83.16% grafting efficiency. On comparative evaluation of films of amylopectin-g-poly(N-vinyl-pyrrolidone) with amylopectin, the graft co-polymer film provided a prolonged release following Higuchi square release kinetics. PMID:24751256

  8. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyvinyl alcohol film. 177.1670 Section 177.1670... Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact..., in accordance with the following prescribed conditions: (a) The polyvinyl alcohol film is...

  9. Process for dissolving coke oven deposits comprising atomizing a composition containing N-methyl-2-pyrrolidone into the gas lines

    SciTech Connect

    Stafford, M.L.; Nicholson, G.M.

    1993-07-06

    A method is described for cleaning gas lines in coke oven batteries comprising atomizing a composition into the gas lines of coke oven batteries, where the composition comprises N-methyl-2-pyrrolidone.

  10. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of...

  11. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of...

  12. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of...

  13. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of...

  14. Synthesis, Characterization, and Evaluation of Cytotoxicity of Poly(3-methylene-2-pyrrolidone).

    PubMed

    Heyns, Ingrid M; Pfukwa, Rueben; Klumperman, Bert

    2016-05-01

    The homo- and copolymerization of 3-methylene-2-pyrrolidone (3M2P) is introduced. 3M2P is readily polymerized via conventional free radical polymerization, and two reversible deactivation radical polymerization methods including reversible addition-fragmentation (chain) transfer and single-electron-transfer living radical polymerization. Poly(3M2P) has a high thermal stability and a very high glass transition temperature. Poly(3M2P) does not dissolve in most common organic solvents, but it has a high aqueous solubility. Cytotoxicity tests reveal that it is nontoxic to cells, even up to concentrations of 1 mg/mL. This adds poly(3M2P) to the family of water-soluble and biocompatible pyrrolidone-based vinyl polymers. PMID:27087262

  15. N-alkyl pyrrolidone ether podands as versatile alkali metal ion chelants.

    PubMed

    Perrin, Andrea; Myers, Dominic; Fucke, Katharina; Musa, Osama M; Steed, Jonathan W

    2014-02-28

    This work explores the coordination chemistry of a bis(pyrrolidone) ether ligand. Pyrrolidones are commercially important functional groups because of the high polarity and hence high hydrophilicity and surface affinity. An array of alkali metal ion complexes of a podand bearing two pendant pyrrolidone functionalities, namely 1-{2-[2-(2-oxo-pyrrolid-1-yl)-ethoxy]-ethyl}-pyrrolid-2-one (1) are reported. Reaction of this ligand with sodium hexafluorophosphate gives two discrete species of formulae [Na(1)2]PF6 (3) and [Na3(H2O)2(μ-1)2](PF6)3 (4), and a coordination polymer {[Na3(μ3-1)3(μ2-1)](PF6)3}n (5). The same reaction in methanol gives a 1 : 1 complex, namely [Na2(μ-1)2(MeOH)2](PF6)2 (6). Use of tetraphenyl borate as a less coordinating counter ion gives [Na2(1)2(H2O)4](BPh4)2 (7) and [Na2(1)4](BPh4)2 (8). Two potassium complexes have also been isolated, a monomer [K(1)2]PF6 (9) and a cyclic tetramer [K4(μ4-H2O)2(μ-1)4](PF6)4 (10). The structures illustrate the highly polar nature of the amide carbonyl moiety within bis(pyrrolidone) ethers with longer interactions to the ether oxygen atom. The zinc complex is also reported and {[ZnCl2(μ-1)]}n (11) exhibits bonding only to the carbonyl moieties. The ether oxygen atom is not necessary for Na(+) complexation as exemplified by the structure of the sodium complex of the analogue 1,3-bis(pyrrolid-2-on-1-yl)butane (2). Reaction of compound 1 with lithium salts results in isolation of the protonated ligand. PMID:24336897

  16. Recovery of solvent in hydrocarbon processing systems. [N-methyl-2pyrrolidone

    SciTech Connect

    Sherman, P.B.

    1983-06-28

    This is a claim for a lubricating oil solvent refining process employing n-methyl-2pyrrolidone as solvent in which solvent is recovered from a solvent-oil mixture in a staged series of vaporization zones at progressively increasing pressure with external heat supplied only to the vaporization stage having the highest pressure. Control of vaporization in the lower pressure stages is effected by passing a minor portion of the vapors from the highest pressure stage to the lowest pressure stage. A high temperature vacuum flash vaporization zone may follow the high pressure vaporization stage with external heat supplied to the vacuum flash vaporization zone.

  17. In vivo biocompatibility studies of poly( n-vinyl 2-pyrrolidone/itaconic acid) hydrogels synthesized by γ-rays

    NASA Astrophysics Data System (ADS)

    Özdemir, S.; Özdemir, E.; Tunca, R.; Hazıroǧlu, R.; Şen, M.; Kantoǧlu, Ö.; Güven, O.

    2003-08-01

    In this study, poly( n-vinyl 2-pyrrolidone/itaconic acid) hydrogels have been synthesized by γ-rays in different compositions and their biocompatibility have been investigated as in vivo and some biochemical parameters of mice serum and histology of their tissues have been examined. By these purposes, poly( n-vinyl 2-pyrrolidone/itaconic acid) (P(VP/IA)) hydrogels were implanted to hypersensitive mice (BALB/c). One and a half months after implantation, hydrogel implanted animals were sacrificed by ether anesthesia and the area hydrogel contacted with tissue was investigated by light microscope for histopathological identification of the tissue. Then the total immunoglobulin E (IgE) level was determined by ELISA. Differential white cell count was also made to better understanding of reaction between hydrogel and tissue. These poly( n-vinyl 2-pyrrolidone/itaconic acid) hydrogels can be directly used as biomedical materials.

  18. Existence of B/E and E receptors on Hep-G2 cells: a study using colloidal gold- and /sup 125/I-labeled lipoproteins

    SciTech Connect

    Hesz, A.; Ingolic, E.; Krempler, F.; Kostner, G.M.

    1987-06-01

    The presence of specific receptors for apolipoprotein B (low-density lipoproteins) and apolipoprotein E (HDL-E) on Hep-G2 cells and human skin fibroblasts was studied by chemical methods and by electron microscopy using a differential gold labeling technique. Fibroblasts bound both types of lipoproteins to one and the same receptor (B/E receptor) as deduced from competition experiments with HDL-E and LDL. Labeled HDL-E, on the other hand, was only partially displaced by cold LDL but was completely displaced by unlabeled HDL-E. Scatchard analysis of lipoprotein binding to Hep-G2 cells revealed an approx 10 times higher binding affinity of apoE-containing lipoproteins as compared to apoB-containing ones. No differences between apoE- or apoB-containing lipoproteins with respect to the morphology of cell binding and intracellular processing were observed. The results are compatible with the concept that Hep-G2 cells possess two kinds of receptors, one specific for apoB- and apoE-containing lipoproteins (B/E receptor) and another specific for apoE only. From these studies we conclude that Hep-G2 cells may serve as a suitable model for studying the lipoprotein metabolism in the liver.

  19. Interaction of /sup 125/I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    SciTech Connect

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target.

  20. Simple, rapid /sup 125/I-labeled cyclosporine double antibody/polyethylene glycol radioimmunoassay used in a pediatric cardiac transplant program

    SciTech Connect

    Berk, L.S.; Webb, G.; Imperio, N.C.; Nehlsen-Cannarella, S.L.; Eby, W.C.

    1986-01-01

    We modified the Sandoz cyclosporine radioimmunoassay because of our need for frequent clinical monitoring of cyclosporine drug levels in allo- and xenograft pediatric cardiac transplant patients. With application of a commercially available (/sup 125/I)cyclosporine label in place of (/sup 3/H)cyclosporine and a second antibody/polyethylene glycol (PEG) method of separation in place of charcoal separation, we simplified and enhanced the speed and precision of assay performance. Studies of 140 whole blood samples comparing this new method to the (/sup 3/H)cyclosporine radioimmunoassay (RIA) method of Berk and colleagues yielded a coefficient of correlation of 0.96 (p less than 0.00001) with means of 626 and 667 ng/ml for (/sup 3/H)RIA and (/sup 125/I)RIA, respectively, and a regression equation of y = 28 + 1.02x. The major advantages are that total assay time is reduced to approximately 1 h; (/sup 125/I)cyclosporine label is used, avoiding the problems associated with liquid scintillation counting; and precision is enhanced by separating bound and free fractions with second antibody/PEG. These modifications should provide for greater ease of assay performance and improved clinical utility of cyclosporine monitoring not only in the pediatric but also in the adult transplant patient.

  1. Accuracy of blood volume estimations in critically ill children using 125I-labelled albumin and 51Cr-labelled red cells.

    PubMed

    Linderkamp, O; Holthausen, H; Seifert, J; Butenandt, I; Riegel, K P

    1977-06-01

    Blood volume was estimated using 51chromium labelled red cells and 125iodinated human serum albumin in 5 children with sepsis, in 6 burned children and 7 children with acute lymphoblastic leukaemia. Studies of the equilibration pattern demonstrated that the mixing time of labelled red cells was prolonged to 40 minutes or more in 5 children, indicating the existence of slowly circulating red cells. Mixing of labelled albumin was complete within 10 minutes in 15 patients and within 20 minutes in all the children studied. In a burned patient with severe sepsis, exchange transfusion improved the clinical state and normalized the equilibration pattern of labelled red cells. The mean body/venous haematocrit ratio was 0.893+/-0.018 (SD) in the children with sepsis, 0.859+/-0.052 in the burned patients, and 0.916+/-0.078 in the children with acute lymphoblastic leukaemia, increasing with spleen size in the latter group. PMID:267010

  2. Localization of /sup 111/In- and /sup 125/I-labeled monoclonal antibody in guinea pigs bearing line 10 hepatocarcinoma tumors

    SciTech Connect

    Bernhard, M.I.; Hwang, K.M.; Foon, K.A.; Keenan, A.M.; Kessler, R.M.; Frincke, J.M.; Tallam, D.J.; Hanna, M.G. Jr.; Peters, L.; Oldham, R.K.

    1983-09-01

    A murine monoclonal antibody (D3) with demonstrated specificity for the guinea pig line 10 hepatocarcinoma (L10) was radiolabeled with either /sup 125/I or /sup 111/In and used to image dermal tumors in vivo. In one set of experiments, L10 tumors were established middorsally in one group of animals, and the similarly derived, antigenically distinct line 1 tumor was established in another group of animals. In spite of background imaging of liver, kidney, and spleen, L10 tumors were visualized clearly. Incorporation of radiolabel was demonstrated to predominate in the L10 tumor. In a separate set of experiments, L10 and line 1 tumors were established in contralateral thighs in the same animals. L10 tumors were visualized clearly, and tissue uptake of radiolabel was demonstrated to reside predominantly in the L10 tumor.

  3. Altered binding of /sup 125/I-labeled calmodulin to a 46. 5-kilodalton protein in skin fibroblasts cultured from patients with cystic fibrosis

    SciTech Connect

    Tallant, E.A.; Wallace, R.W.

    1987-02-01

    The levels of calmodulin and calmodulin-binding proteins have been determined in cultured skin fibroblasts from patients with cystic fibrosis (CF) and age- and sex-matched controls. Calmodulin ranged from 0.20 to 0.76 microgram/mg protein; there was no difference between calmodulin concentration in fibroblasts from CF patients and controls. Calmodulin-binding proteins of 230, 212, 204, 164, 139, 70, 59, 46.5, and 41 kD were identified. A protein with a mobility identical to the 59-kD calmodulin-binding protein was labeled by antiserum against calmodulin-dependent phosphatase. Although Ca/sup 2 +//calmodulin-dependent phosphatase activity was detected, there was no different in activity between control and CF fibroblasts or in the level of phosphatase protein as determined by radioimmunoassay. Lower amounts of /sup 125/I-calmodulin were bound to the 46.5-kD calmodulin-binding protein in CF fibroblasts as compared with controls. The 46.5-kD calmodulin-binding protein may be reduced in CF fibroblasts or its structure may be altered resulting in a reduced binding capacity and/or affinity for calmodulin and perhaps reflecting, either directly or indirectly, the genetic defect responsible for cystic fibrosis.

  4. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    EPA Science Inventory

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  5. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Yuan, Shuaishuai; Shi, Dean; Yang, Yingkui; Jiang, Tao; Yan, Shunjie; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2016-07-01

    Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  6. Control system for an n-methyl-2-pyrrolidone refining unit receiving light sweet charge oil

    SciTech Connect

    Barger, F.L.; Sequeira, A.J.

    1980-11-04

    A refining unit treats light sweet charge oil with an n-methyl-2-pyrrolidone solvent, hereafter referred to as mp, in a refining tower to yield raffinate and extract mix. The mp is recovered from the raffinate and from the extract mix and returned to the refining tower. A system controlling the refining unit includes a gravity analyzer, a sulfur analyzer, and viscosity analyzers; all analyzing the light sweet charge oil and providing corresponding signals, sensors sense the flow rates of the charge oil and the mp flowing into the refining tower and the temperature of the extract mix and provide corresponding signals. One of the flow rates of the light sweet charge oil and the mp flow rates is controlled in accordance with the signals from all the analyzers and all the sensors, while the other flow rate of the light sweet charge oil and the mp flow rates is constant.

  7. Determination of 1-methyl-2-pyrrolidone in refinery hydrocarbons and waters by gas chromatography

    SciTech Connect

    Stephens, R.

    1984-08-01

    A new procedure has been developed for the trace and percent level determination of 1-methyl-2-pyrrolidone (NMP) in water and heavy oil refinery feedstocks. By extraction of the NMP into an aqueous phase, analysis can be quickly performed on a gas chromatograph equipped with a flame ionization detector and a nitrogen-phosphorus detector. Recycle and cleanup time is held to a minimum as heavy hydrocarbons are never directly analyzed. Quick analysis and accurate results provide the data necessary for optimal operation of the NMP extraction unit in the refinery. Percent and parts-per-million results are repeatable to 0.1% and 2.0 ppm. The large repeatability for part-per-million determinations is due to NPD instability and contamination of the gas chromatograph's injector.

  8. Control system for an n-methyl-2-pyrrolidone refining unit receiving heavy sweet charge oil

    SciTech Connect

    Barger, F.L.; Sequeira, A.J.

    1980-09-23

    A refining unit treats heavy sweet charge oil with a methyl-2pyrrolidone solvent, hereafter referred to as mp, in a refining tower to yield raffinate and extract mix. The mp is recovered from the raffinate and from the extract mix and returned to the refining tower. A system controlling the refining unit includes a gravity analyzer, a refractometer, a sulfur analyzer and viscosity analyzers; all sampling the heavy sweet charge oil and providing corresponding signals. Sensors sense the flow rates of the charge oil and the mp flowing into the refining tower and the temperature of the extract mix and provide corresponding signals. One of the flow rates of the heavy sweet charge oil and the mp flow rates is controlled in accordance with the signals from all the analyzers, the refractometer and all the sensors, while the other flow rate of the heavy sweet charge oil and the mp flow rates is constant.

  9. Orientation of cellulose nanowhiskers in polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Kvien, I.; Oksman, K.

    2007-06-01

    The goal of this study was to align cellulose nanowhiskers in a polymer using a strong magnetic field and thereby obtain a unidirectional reinforced nanocomposite. Cellulose whiskers (2 wt. %) were incorporated in a polyvinyl alcohol matrix using solution casting with water as the solvent. The suspension was cast and the water was evaporated while a homogeneous magnetic field of 7 T was applied. Different microscopy investigations of prepared nanocomposites indicated that the cellulose whiskers were oriented perpendicular to the direction of the magnetic field. Dynamic mechanical thermal analysis further strengthened the idea of alignment because the results showed that the dynamic modulus of the nanocomposite was around 2 GPa higher at room temperature in the aligned direction compared to the transverse direction.

  10. Poly(vinyl chloride) processes and products.

    PubMed Central

    Wheeler, R N

    1981-01-01

    Poly(vinyl chloride) resins are produced by four basic processes: suspension, emulsion, bulk and solution polymerization. PVC suspensions resins are usually relatively dust-free and granular with varying degrees of particle porosity. PVC emulsion resins are small particle powders containing very little free monomer. Bulk PVC resins are similar to suspension PVC resins, though the particles tend to be more porous. Solution PVC resins are smaller in particle size than suspension PVC with high porosity particles containing essentially no free monomer. The variety of PVC resin products does not lend itself to broad generalizations concerning health hazards. In studying occupational hazards the particular PVC process and the product must be considered and identified in the study. PMID:7333230

  11. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  12. Polyvinyl alcohol cross-linked with two aldehydes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1982-01-01

    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.

  13. In Situ Cross-Linking of Polyvinyl Alcohol Films

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Shu, L. C.; May, C. E.

    1984-01-01

    Films or impregnated matrices readily made from aqueous polyvinyl alcohol solution. Controlled thickness films made by casting precise quantities of aqueous polymer solution on smooth surface, allowing water to evaporate and then removing film. Composite separators formed in similar fashion by impregnating cloth matrix with polyvinyl alcohol solution and drying composite. Insoluble thin hydrophilic membranes made from aqueous systems, and use of undesirable organic solvents not required.

  14. Radiation synthesis of poly(N-vinyl 2-pyrrolidone/itaconic acid) hydrogels and their controlled release behaviours

    NASA Astrophysics Data System (ADS)

    Şen, M.; Güven, O.

    1999-06-01

    N-vinyl 2-pyrrolidone/itaconic acid copolymeric hydrogels were prepared by irradiating the ternary mixtures of N-vinyl 2-pyrrolidone/itaconic acid/water by γ-rays at ambient temperature. For the characterization of network structure of these hydrogels, swelling properties in phosphate buffer solutions and molecular weight between crosslinks were investigated. Methylene Blue was used as a model drug for the investigation of controlled release behaviour of hydrogels. Specific Methylene Blue adsorption capacity of hydrogels are found to increase from 0.36 to 47.7 (mg MB/g gel) with increasing amount of itaconic acid in the gel system. The influence of molecular weight between cross-links, the concentration of ionizable groups, ionization and concentration of MB in the hydrogel were examined. The release studies show that one of the basic parameters affecting the drug release behaviour of hydrogels is the pH of the solution.

  15. Hydrothermal carbonization of poly(vinyl chloride).

    PubMed

    Poerschmann, J; Weiner, B; Woszidlo, S; Koehler, R; Kopinke, F-D

    2015-01-01

    Poly(vinyl chloride) (PVC) was subjected to hydrothermal carbonization in subcritical water at 180-260 °C. Dehydrochlorination increased with increasing reaction temperature. The release of chlorine was almost quantitative above ∼235 °C. The fraction of organic carbon (OC) recovered in the hydrochar decreased with increasing operating temperature from 93% at 180 °C to 75% at 250 °C. A wide array of polycyclic aromatic hydrocarbons (PAHs) could be detected in the aqueous phase, but their combined concentration amounted to only ∼140 μg g(-1) PVC-substrate at 240 °C. A pathway for the formation of cyclic hydrocarbons and O-functionalized organics was proposed. Chlorinated hydrocarbons including chlorophenols could only be identified at trace levels (low ppb). Polychlorinated dibenzodioxins (PCDDs) and dibenzofurans (PCDFs) could not be detected. The sorption potential of the hydrochar turned out to be very low, in particular for polar organic pollutants. Our results provide strong evidence that hydrothermal carbonization of household organic wastes which can be tied to co-discarded PVC-plastic residues is environmentally sound regarding the formation of toxic organic products. Following these findings, hydrothermal treatment of PVC-waste beyond operating temperatures of ∼235 °C to allow complete release of organic chlorine should be further pursued. PMID:25150971

  16. Heat resistance poly(vinyl alcohol) hydrogel

    NASA Astrophysics Data System (ADS)

    Yoshii, F.; Makuuchi, K.; Darwis, D.; Iriawan, T.; Razzak, M. T.; Rosiak, Janusz M.

    1995-08-01

    Six methods were used to evaluate the heat resistance of poly(vinyl alcohol) (PVA) hydrogel prepared by a combination of electron beam irradiation and acetalization of PVA. The physical properties of the hydrogel depended on the degree of acetilization which was affected by content of water in PVA sheet of acetalization in formaldehyde solution at 60°C. It was found that the optimum water content was 20-30%. The acetalized PVA sheet gave maximum tensile strength in electron beams irradiation at 100 kGy. The tensile strength of the hydrogel film increased to 20 MPa from 14 MPa by the irradiation. Heat resistance of the hydrogel was evaluated by measuring the mechanical properties after sterilization in a steam autoclave at 121°C for 90 min. The tensile strength decreased to 10 MPa whereas the elongation at break increased to 300%. The tackiness of the hydrogel was improved by radiation grafting of acrylic acid. Wholesomeness of the hydrogel as a wound dressing was evaluated by attaching to a burn or wound of the back skin of marmots. Advantages of the hydrogel over a gauze dressing were homogeneous adhesion to the affected parts, easy removal without damage to renewed skin and slightly faster rate of reconstruction of the injured skin.

  17. Piezoresistive Properties of Polyvinyl Chloride Composites

    NASA Astrophysics Data System (ADS)

    Toprakci, Hatice Aylin Karahan

    Textile based sensors provide an interface between the user and the electronic system by converting any type of physiological or environmental signal into electrical signals. Common applications include health monitoring, rehabilitation, multimedia, and surveillance. In this research we demonstrate fabrication of piezoresistive sensors on textile fabrics through application of a screen-printed conductive nanocomposite layer of plasticized poly(vinyl chloride) (PVC), and carbon nanofiber (CNF). In order to understand the behavior of conductive plastisol, morphological, mechanical and electrical properties of composite films were investigated for different molecular weights of PVC. Homogeneous filler dispersion and good filler/polymer interphase were observed without any dominant filler orientation. Mechanical and electrical properties were found to be affected by CNF, plasticizer content and matrix molecular weight. CNFs were found to provide substantial bridging in the matrix and enhance strength. These nanostructured composite sensors were found to be sensitive under different levels of strain which can be monitored by change in electrical resistance. Finally, we demonstrate the fabrication of piezoresistive sensors on textile fabrics through application of a screen-printed conductive nanocomposite layer of conductive plastisol. Conductive plastisol was found to show good adhesion to fabric with homogeneous CNF distribution. As in composite films, samples were found to show negative piezoresistance at different levels of strain. Strain level and filler concentration were found to affect the piezoresistive behavior and sensitivity of the printed sensors.

  18. Preparation and properties of polyvinyl alcohol microspheres

    SciTech Connect

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.; Ives, B.H.

    1986-06-01

    Polyvinyl alcohol (PVA) microspheres, having a size range of approx.150- to 250-..mu..m diameter with 1- to 5-..mu..m wall thickness, have been fabricated using a solution droplet technique. The spheres were developed for possible use on the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program. PVA, a polymer chosen based on earlier survey work carried out at KMS Fusion, Inc., has good strength, low hydrogen permeability, is optically transparent, and water soluble. The latter property makes it safe and easy to use in our droplet generator system. A unique dual-orifice droplet generator was used to prepare the spheres. The droplet generator operating conditions and the column processing parameters were chosen using results from our 1-D model calculations as a guide. The polymer microsphere model is an extension of the model we developed to support the glass sphere production. After preparation, the spheres were physically characterized for surface quality, sphericity, wall thickness (and uniformity), and size. We also determined the buckling pressure for both uncoated and CH-coated spheres. Radiation stability to beta decay (from tritium) was evaluated by exposing the spheres to a 7-keV electron beam. The results from these and other physical property measurements are presented in this report.

  19. Evaluation of some regenerable sulfur dioxide absorbents for flue gas desulfurization. [Diethylenetriamine, ethylenediamine, 1-methyl-2-pyrrolidone

    SciTech Connect

    Walker, R.J.; Schwartz, C.H.; Wildman, D.J.; Gasior, S.J.

    1982-07-01

    The vapor pressure of sulfur dioxide above aqueous solutions of citric acid (2-hydroxy-1,2,3-propanetricarboxylic acid), glycolic acid (hydroxyacetic acid), 1-methyl-2-pyrrolidone, ethylenediamine (1,2 diaminoethane), and diethylenetriamine (2,2' diaminodiethylamine), as well as above pure tri-n-butyl phosphate, 1-methyl-2-pyrrolidone, and water, were measured for temperatures from 46.2/sup 0/C to 91.1/sup 0/C for possible application to regenerable flue gas desulfurization systems. Sulfur dioxide loadings in the absorbent ranged from 3.1 x 10/sup -5/ to 5.27 x 10/sup -1/ g/g. Measurements were made in a laboratory apparatus using N/sub 2//SO/sub 2/ mixtures. Results were used to estimate the steam rate and principal costs of processes for 11 of the absorbents. For sulfur dioxide absorption followed by indirect steam stripping, a 9.75% ethylenediamine solution had the lowest steam rate. The ethylenediamine steam rate was 25% of the next lowest steam rate, which was for 100% 1-methyl-2-pyrrolidone. However, cost of losses of ethylenediamine vapor up the stack were excessive, indicating that a higher-boiling-point amine would be preferable.

  20. Blend miscibility of cellulose propionate with poly(N-vinyl pyrrolidone-co-methyl methacrylate).

    PubMed

    Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2013-10-15

    The blend miscibility of cellulose propionate (CP) with poly(N-vinyl pyrrolidone-co-methyl methacrylate) (P(VP-co-MMA)) was investigated. The degree of substitution (DS) of CP used ranged from 1.6 to >2.9, and samples for the vinyl polymer component were prepared in a full range of VP:MMA compositions. Through DSC analysis and solid-state (13)C NMR and FT-IR measurements, we revealed that CPs of DS<2.7 were miscible with P(VP-co-MMA)s of VP≥~10mol% on a scale within a few nanometers, in virtue of hydrogen-bonding interactions between CP-hydroxyls and VP-carbonyls. When the DS of CP exceeded 2.7, the miscibility was restricted to the polymer pairs using P(VP-co-MMA)s of VP=ca. 10-40 mol%; the scale of mixing in the blends concerned was somewhat larger (ca. 5-20 nm), however. The appearance of such a "miscibility window" was interpretable as an effect of intramolecular repulsion in the copolymer component. Results of DMA and birefringence measurements indicated that the miscible blending of CP with the vinyl polymer invited synergistic improvements in thermomechanical and optical properties of the respective constituent polymers. Additionally, it was found that the VP:MMA composition range corresponding to the miscibility window was expanded by modification of the CP component into cellulose acetate propionate. PMID:23987378

  1. Enhancement of Mycophenolate Mofetil Permeation for Topical Use by Eucalyptol and N-Methyl-2-pyrrolidone.

    PubMed

    Amnuaikit, Thanaporn; Songkram, Chalermkiat; Pinsuwan, Sirirat

    2016-01-01

    Mycophenolate mofetil (MMF) is a prodrug of mycophenolic acid (MPA) which can be metabolized by esterase. MMF has been approved by the United States Food and Drug Administration (USFDA) for treatment of psoriasis patient with skin symptoms. However, it remains unclear whether MMF is efficiently effective to treat skin symptoms developed from psoriasis. The insufficient amount of MMF penetrating through the skin results in the treatment failure due to the difficulty in MMF penetration through the stratum corneum. Skin permeation enhancers such as eucalyptol (EUL) and N-methyl-2-pyrrolidone (NMP) potentially aid in increasing skin penetration. This study aimed to investigate the effects of a concentration ratio (% w/v) between two enhancers (EUL and NMP). The results showed that EUL enhanced MMF permeation with an enhancement ratio (ER) of 3.44 while NMP was not able to promote the penetration of MMF. Interestingly, the synergistic effect of the two enhancers was observed with a suitable ratio given that the ER was 8.21. EUL and NMP are promising enhancers for the development of MMF based skin product. PMID:27069715

  2. Toxicity Study of a Self-nanoemulsifying Drug Delivery System Containing N-methyl pyrrolidone.

    PubMed

    Agrawal, A G; Kumar, A; Gide, P S

    2015-08-01

    Recently within the lipid based formulation category, Self-nanoemulsifying drug delivery system (SNEDDS) has received considerable attention in the enhancement of bioavailability of poorly water-soluble drugs. Self-emulsifying formulation should have good solvent properties to allow appropriate solubility of the drug in the formulation. Drug incorporated in the formulation should also be readily dissolved as clear and monophasic liquid at ambient temperature when introduced to aqueous phase. N-methyl pyrrolidone (NMP) is one of the main pharmaceutical cosolvents and is a solubilizing excipient used in parenteral and oral medications. Marketed Leuprolide acetate (Sanofi-aventis, Quebec, Canada) is formulated as a solution composed of 55-66% NMP and 34-45% poly(DL-lactide-co-glycolide). Self-emulsifying oral formulation of fenofibrate containing NMP as solubilizer has been patented. Based on these reports we successfully developed SNEDDS formulation using NMP as cosolvent and found ~ 4 fold improvement in apparent permeability coefficient of model drug. To ensure the safety of the developed SNEDDS formulation, in the present study we further investigated its toxicity studies in mice and evaluated for various parameter. From the results it can be concluded that oral administration of SNEDDS formulation containing NMP did not exhibit significant toxicity in mice and further detail toxicity study is required so as to ensure the safety of this system in oral drug delivery. PMID:25823509

  3. Formulation of solid self-nanoemulsifying drug delivery systems using N-methyl pyrrolidone as cosolvent.

    PubMed

    Agrawal, Anuj G; Kumar, Ashok; Gide, Paraag S

    2015-04-01

    Atorvastatin calcium (ATRC) is a poor water soluble drug used for treatment of hypercholesterolemia. This research is aimed to improve solubility and dissolution rate of ATRC by formulating into solid self-nanoemulsifying drug delivery system (S-SNEDDS) using N-methyl pyrrolidone (NMP) as cosolvent. Solubility of ATRC was determined in various vehicles. Ternary phase diagrams were constructed to identify stable nanoemulsion region. SNEDDS formulations were evaluated for robustness to dilution, thermodynamic stability study, % transmittance, self-emulsification time, globule size and transmission electron microscopy. The optimized liquid SNEDDS showed robust to all dilutions exhibiting no signs of phase separation or precipitation for 24 h. Liquid SNEDDS was transformed into S-SNEDDS using different adsorbents. Differential scanning calorimetry and scanning electron microscopy studies unravel the transformation of native crystalline state to amorphous state/solubilized state. In vitro dissolution study of S-SNEDDS was found to be significantly higher in comparison to that from plain drug, irrespective of pH (p < 0.001). Furthermore, ex vivo permeation studies showed a 4.45-fold improvement in apparent permeability coefficient (Papp) from S-SNEDDS compared to plain drug. In conclusion, S-SNEDDS prepared using NMP as cosolvent provides an effective approach for improved oral delivery of ATRC. PMID:24517575

  4. Adsorption of α-amylase onto poly(N-vinyl 2-pyrrolidone/itaconic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Tümtürk, Hayrettin; Çaykara, Tuncer; Kantoǧlu, Ömer; Güven, Olgun

    1999-05-01

    α-Amylase enzyme was adsorbed on poly(N-vinyl 2-pyrrolidone/itaconic acid) (P(VP/IA)) hydrogels prepared by irradiating the ternary mixtures of VP/IA/water by γ-rays at ambient temperature. The adsorption capacity of the hydrogels was determined to increase from 2.30 to 3.40 mg α-amylase/g dry gel with increasing amount of IA in gel system. Kinetic parameters were calculated as 2.51 g/dm 3 for Km and 1.67 × 10 -3 g/dm 3 min for Vmax for free enzyme and in the range of 3.88-5.02 g/dm 3 for Km and 1.62 × 10 -3-2.27 × 10 -3 g/dm 3 min for Vmax depending on the amount of IA in the hydrogel. Enzyme activities were found to increase from 49.9% to 77.4% with increasing amount of IA in the gel system and retained their activities for one month storage. On the other hand, the free enzyme loses its activity completely after 20 days.

  5. Regulation of dispersion of carbon nanotubes in binary water+1-Cyclohexyl-2-pyrrolidone mixtures

    NASA Astrophysics Data System (ADS)

    Deriabina, O.; Lebovka, N.; Bulavin, L.; Goncharuk, A.

    2014-05-01

    The microstructure and electrical conductivity of suspensions of multi-walled carbon nanotubes (MWCNTs) in binary water+1-Cyclohexyl-2-pyrrolidone (CHP) liquid mixtures were studied in the temperature interval of 253-318 K, in the heating and cooling cycles. The concentration of MWCNTs was varied in the interval between 0 and 1 wt% and the content of water in a binary mixture X=[water]/([CHP]+[water]) was varied within 0-1.0. The experimental data have shown that dispersing quality of MWCNTs in a mixture of good (CHP) and bad (water) solvents may be finely regulated by adjustment of composition of the CHP+water mixtures. The aggregation ability of MWCNTs in dependence on X was discussed. The surface of MWCNT clusters was highly tortuous, its fractal dimension df increased with increase of X, approaching ≈1.9 at X→1. It was concluded that the surface tension is not suitable characteristic for prediction of dispersion ability in the mixture of good and bad solvents. The electrical conductivity data evidenced the presence of a fuzzy-type percolation with multiple thresholds in the systems under investigation. This behavior was explained by formation of different percolation networks in dependence of MWCNT concentration.

  6. Poly(N-vinyl-2-pyrrolidone) and 1-Octyl-2-pyrrolidinone Modified Ionic Microemulsions.

    PubMed

    Beitz, T.; Kötz, J.; Wolf, G.; Kleinpeter, E.; Friberg, S. E.

    2001-08-15

    The influence of the nonionic polymer poly(N-vinyl-2-pyrrolidone) (PVP) in comparison to the surfactant 1-octyl-2-pyrrolidinone (OP) on the phase behavior of the system SDS/pentanol/xylene/water was studied. In both modified systems a strong increase in the water solubilization capacity was found, accompanied by a change in the spontaneous curvature toward zero. In the polymer-modified system an isotropic phase channel is formed with increasing polymer content that connects the L1 and the L2 phase. The lamellar liquid crystalline phase is destabilized in both cases. In the L1 phase the adsorption of PVP at the surface of the microemulsion droplets and the formation of a cluster-like structure is proven by several methods like (13)C NMR T(1) relaxation time measurments, zeta potential measurements, and rheology. In the L2 phase a modification of the interface of the inverse droplets is detected by a shift in the percolation boundary (conductivity) and (13)C NMR T(1) relaxation measurements. The formation of a cluster-like structure can be assumed on the basis of our rheological measurements. Copyright 2001 Academic Press. PMID:11482969

  7. Enhancement of Mycophenolate Mofetil Permeation for Topical Use by Eucalyptol and N-Methyl-2-pyrrolidone

    PubMed Central

    Songkram, Chalermkiat

    2016-01-01

    Mycophenolate mofetil (MMF) is a prodrug of mycophenolic acid (MPA) which can be metabolized by esterase. MMF has been approved by the United States Food and Drug Administration (USFDA) for treatment of psoriasis patient with skin symptoms. However, it remains unclear whether MMF is efficiently effective to treat skin symptoms developed from psoriasis. The insufficient amount of MMF penetrating through the skin results in the treatment failure due to the difficulty in MMF penetration through the stratum corneum. Skin permeation enhancers such as eucalyptol (EUL) and N-methyl-2-pyrrolidone (NMP) potentially aid in increasing skin penetration. This study aimed to investigate the effects of a concentration ratio (% w/v) between two enhancers (EUL and NMP). The results showed that EUL enhanced MMF permeation with an enhancement ratio (ER) of 3.44 while NMP was not able to promote the penetration of MMF. Interestingly, the synergistic effect of the two enhancers was observed with a suitable ratio given that the ER was 8.21. EUL and NMP are promising enhancers for the development of MMF based skin product. PMID:27069715

  8. Evaluation of polyvinyl acetate dispersion as a sustained release polymer for tablets.

    PubMed

    Bordaweka, M S; Zia, H; Quadir, A

    2006-01-01

    Kollicoat SR 30D is a unique 30% aqueous dispersion of polyvinvyl acetate stabilized by polyvinyl-pyrrolidone intended for preparation of sustained release products. Detailed evaluation of this polymer dispersion as a sustained release coating for active pharmaceutical ingredients of two diverse classes of drugs was studied. A water insoluble drug (ibuprofen) and a water soluble drug (ascorbic acid) were selected as model active drugs. Ibuprofen was granulated using a GPCG-1 fluid bed processor prior to tableting, to improve the particle size and particle flow properties. In this process a 2(3) factorial design was implemented to evaluate the optimum process parameters such as spray rate, inlet air temperature and the inlet air velocity. The statistical model selected was Y(ijkl) = mu + tau(i) + beta(j) + theta(k) + (taubeta)ij + (betatheta)jk + (tautheta)ik + (taubetatheta)ijk + epsilon(ijkl). The factorial design showed that the spray rate, inlet air temperature, and inlet air velocity had a significant effect (p value <0.05) on the particle size. Significant improvement was observed in the flow properties of the granules. The granules were coated with Kollicoat SR30D dispersion using top spray method in the fluid bed processor. The dissolution studies showed that the release of ibuprofen decreased with an increase in the coating levels of Kollicoat SR 30 D. In the case of ascorbic acid, preparation of sustained release coated commercial granules was not possible due to the difficulty in coating a highly soluble drug particle. However, the coated granules when compressed into tablets showed some sustainability. Ibuprofen tablets manufactured with coated granules with a 15 g polymer for 300 g batch showed dissolution parameters of t50 and t90 at 4.2 hr and 7.5 hr, respectively. An approximate zero-type of release was observed when the polymer content was increased to 45 g for 300 g batch. Ascorbic acid tablets made with coated commercial granules having a total

  9. Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay.

    PubMed

    Panda, Kamal K; Achary, V Mohan M; Phaomie, Ganngam; Sahu, Hrushi K; Parinandi, Narasimham L; Panda, Brahma B

    2016-08-01

    The silver nanoparticles (AgNPs) were synthesized extracellularly from silver nitrate (AgNO3) using kernel extract from ripe mango Mengifera indica L. under four different reaction conditions of the synthesis media such as the (i) absence of the reducing agent, trisodium citrate (AgNPI), (ii) presence of the reducing agent (AgNPII), (iii) presence of the cleansing agent, polyvinyl polypyrrolidone, PVPP (AgNPIII), and (iv) presence of the capping agent, polyvinyl pyrrolidone, PVP (AgNPIV). The synthesis of the AgNPs was monitored by UV-vis spectrophotometry. The AgNPs were characterised by the energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and small-angle X-ray scattering. Functional groups on the AgNPs were established by the Fourier transform infrared spectroscopy. The AgNPs (AgNPI, AgNPII, AgNPIII and AgNPIV) were spherical in shape with the diameters and size distribution-widths of 14.0±5.4, 19.2±6.6, 18.8±6.6 and 44.6±13.2nm, respectively. Genotoxicity of the AgNPs at concentrations ranging from 1 to 100mgL(-1) was determined by the Lathyrus sativus L. root bioassay and several endpoint assays including the generation of reactive oxygen species and cell death, lipid peroxidation, mitotic index, chromosome aberrations (CA), micronucleus formation (MN), and DNA damage as determined by the Comet assay. The dose-dependent induction of genotoxicity of the silver ion (Ag(+)) and AgNPs was in the order Ag(+)>AgNPII>AgNPI>AgNPIV>AgNPIII that corresponded with their relative potencies of induction of DNA damage and oxidative stress. Furthermore, the findings underscored the CA and MN endpoint-based genotoxicity assay which demonstrated the genotoxicity of AgNPs at concentrations (≤10mgL(-1)) lower than that (≥10mgL(-1)) tested in the Comet assay. This study demonstrated the protective action of PVPP against the genotoxicity of AgNPIII which was independent of the size of the AgNPs in the L. sativus L. root bioassay

  10. Insights into the coal extractive solvent N-methyl-2-pyrrolidone + carbon disulfide

    SciTech Connect

    Santiago Aparicio; Mara J. Davila; Rafael Alcalde

    2009-03-15

    A wide set of experimental and computational tools were used to characterize the N-methyl-2-pyrrolidone (NMP) + carbon disulfide mixed solvent in the full composition range. The interest in this solvent rose from its very efficient use for coal extraction through a mechanism still not fully understood. Thermophysical properties at ambient pressure together with pressure-volume-temperature (PVT) behavior were measured with the objective of providing the required data for the industrial use of the mixed fluid and to get insight into the fluid structure at the molecular level. NMR, FTIR, and solvatochromic studies were performed together with microwave dielectric relaxation spectroscopy (DRS) measurements, thus providing more information on the fluid's structure and allowing one to relate the molecular level behavior with the measured macroscopic properties. Moreover, density functional theory (DFT) and classical molecular dynamics simulations (MD) were used to obtain a detailed picture of the intermolecular interactions within the fluid, at short and long ranges, and of other relevant features leading to the structure of the studied system. The whole study leads to a fluid's picture in which carbon disulfide hinders the development of NMP/NMP intermolecular dipolar interactions, thus increasing the monomer population. We should remark that some properties reported in this work are in remarkable disagreement with previously reported studies, the most important one being the positive excess molar volume in the whole pressure-temperature range studied, which contrasts with the negative values reported in the literature. Previously reported properties are hardly justified with a coherent molecular level picture, whereas the whole collection of properties reported in this work leads to a more reasonable fluid's structure. 56 refs., 17 figs., 2 tabs.

  11. Chemosensory effects during acute exposure to N-methyl-2-pyrrolidone (NMP).

    PubMed

    van Thriel, Christoph; Blaszkewicz, Meinolf; Schäper, Michael; Juran, Stephanie A; Kleinbeck, Stefan; Kiesswetter, Ernst; Wrbitzky, Renate; Stache, Jürgen; Golka, Klaus; Bader, Michael

    2007-12-10

    Organic solvents are still essential in many industrial applications. To improve safety and health in the working environment lower occupational thresholds limits have been established and less toxic substitutes were introduced. N-Methyl-2-pyrrolidone (NMP) is a versatile solvent that is used as a substitute for dichloromethane in paint strippers. Due to conflicting results, there is a debate whether NMP causes irritations of the upper airways/eyes or not. In a human experimental study we examined the chemosensory effects of NMP under controlled conditions. Fifteen healthy males were investigated in a cross-over study. NMP vapor concentrations were 10, 40 and 80 mg/m(3) for 2 x 4h with an exposure-free lunch break of 30 min. To maximize chemosensory effects a peak exposure scenario (25mg/m(3) baseline, 160 mg/m(3) peaks 4 x 15 min, time-weighted average: 72 mg/m(3)) was tested. The four different conditions were conducted with and without moderate physical workload. Chemosensory effects were measured physiologically by anterior rhinomanometry, eye blink rate and breathing frequency. Subjectively, ratings of acute health symptoms and intensity of olfactory and trigeminal sensations were collected repeatedly throughout the exposures. All physiological variables were unaffected by the different NMP concentrations and even the peak exposures were non-effective on these measures. Olfactory mediated health symptoms increased dose-dependently. For these symptoms a strong adaptation was observable, especially during the first 4h of the exposures. Other acute symptoms were not significantly affected. Comparable to the symptoms, only olfactory sensations increased dose-dependently. Trigeminal sensations (e.g. eye and nose irritations) were evaluated as being barely detectable during the different exposures, only during 160 mg/m(3) exposure peak weak and transient eye irritation were reported. The results clearly suggest that NMP concentrations of up to 160 mg/m(3) caused no

  12. N-methyl pyrrolidone as a potent bone morphogenetic protein enhancer for bone tissue regeneration.

    PubMed

    Miguel, Blanca San; Ghayor, Chafik; Ehrbar, Martin; Jung, Ronald E; Zwahlen, Roger A; Hortschansky, Peter; Schmoekel, Hugo G; Weber, Franz E

    2009-10-01

    In medicine, N-methyl pyrrolidone (NMP) has a long track record as a constituent in medical devices approved by the Food and Drug Administration and thus can be considered as a safe and biologically inactive small chemical. In the present study, we report on the newly discovered pharmaceutical property of NMP in enhancing bone regeneration in a rabbit calvarial defect model in vivo. At the cellular level, the pharmaceutical effect of NMP was confirmed, in particular, in combination with bone morphogenetic protein (BMP)-2, because NMP increased early and late markers for maturation of preosteoblasts and human bone marrow-derived stem cells in vitro. When we used the multipotent cell line C2C12 without autologous BMP expression, NMP alone had no effect on alkaline phosphatase activity, a marker for osteogenic transdifferentiation. Nevertheless, in combination with low BMP-2 doses, alkaline phosphatase activity was more than eight times as great. Thus, the pharmaceutical NMP mode of action is that of an enhancer of BMP activity. The dependency of the effects of NMP on BMP was confirmed in preosteoblasts because noggin, an extracellular BMP inhibitor, suppressed NMP-induced increases in early markers for osteoblast maturation in vitro. At the molecular level, NMP was shown to have no effect on the binding of BMP-2 to the ectodomain of the high-affinity BMP receptor IA. However, NMP further increased the phosphorylation of p38 and Smad1,5,8 induced by BMP-2. Thus, the small chemical NMP enhances BMP activity by increasing the kinase activity of the BMP receptor complex for Smad1,5,8 and p38 and could be employed as a potent drug for bone tissue regeneration and engineering. PMID:19320543

  13. Complexes of polyvinyl alcohol with insoluble inorganic compounds

    NASA Astrophysics Data System (ADS)

    Prosanov, I. Yu.; Bulina, N. V.; Gerasimov, K. B.

    2013-10-01

    Hybrid materials of polyvinyl alcohol-hydroxides/oxides of Be, Mg, Zn, Cd, B, Al, Cr, and Fe have been obtained. The studies have been carried out by the methods of optical spectroscopy, X-ray diffraction, and synchronous thermal analysis. Interpretation of experimental data is presented, presuming that, in systems with zinc, boron, aluminum, chromium, and iron hydroxides/oxides, interpolymeric complexes of polyvinyl alcohol with corresponding polymeric inorganic compounds are formed. They belong to a new class of materials with unusual structure containing chains of inorganic polymers isolated in the organic matrix.

  14. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  15. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., may not exceed: (i) 2000 ppm for polyvinyl chloride dispersion resins, excluding latex resins; (ii... exceed: (i) 2 g/kg (4 lb/ton) product from the stripper(s) for dispersion polyvinyl chloride resins... dispersion polyvinyl chloride resins, excluding latex resins, with the product determined on a dry...

  16. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., may not exceed: (i) 2000 ppm for polyvinyl chloride dispersion resins, excluding latex resins; (ii... exceed: (i) 2 g/kg (4 lb/ton) product from the stripper(s) for dispersion polyvinyl chloride resins... dispersion polyvinyl chloride resins, excluding latex resins, with the product determined on a dry...

  17. Hydrogen generation from hydrolytic dehydrogenation of hydrazine borane by poly(N-vinyl-2-pyrrolidone)-stabilized palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Tunç, Nihat; Abay, Bayram; Rakap, Murat

    2015-12-01

    Poly(N-vinyl-2-pyrrolidone)-stabilized palladium nanoparticles (3.5 ± 1.0 nm) are efficient catalysts in the hydrolytic dehydrogenation of hydrazine borane to give hydrogen gas. The catalyst, prepared by reduction of palladium metal ion in ethanol/water mixture by an alcohol reduction method, is durable and efficient catalysts for hydrogen generation from the hydrolytic dehydrogenation of hydrazine borane even at very low concentrations and temperature, providing an average turnover frequency of 42.9 min-1 with an activation energy of 54.5 ± 2 kJ mol-1 for the hydrolytic dehydrogenation of hydrazine borane.

  18. High performance liquid chromatographic separation of polycyclic aromatic hydrocarbons on microparticulate pyrrolidone and application to the analysis of shale oil

    SciTech Connect

    Mourey, T.H.; Siggia, S.; Uden, P.C.; Crowley, R.J.

    1980-05-01

    A chemically bonded pyrrolidone substrate is used for the high performance liquid chromatographic separation of polycyclic aromatic hydrocarbons. The cyclic amide phase interacts electronically with the polycyclic aromatic hydrocarbons in both the normal and reversed phase modes. Separation is effected according to the number of aromatic rings and the type of ring condensation. Information obtained is very different from that observed on hydrocarbon substrates, and thus these phases can be used in a complementary fashion to give a profile of polycyclic aromatics in shale oil samples. 7 figures, 1 table.

  19. EXPOSURE TO CHEMICAL ADDITIVES FROM POLYVINYL CHLORIDE POLYMER EXTRUSION PROCESSING

    EPA Science Inventory

    This report presents a model to predict worker inhalation exposure due to off-gassing of additives during polyvinyl chloride (PVC) extrusion processing. ata on off-gassing of additives were reviewed in the literature, the off-gassing at normal PVC processing temperatures was stud...

  20. 75 FR 15726 - Polyvinyl Alcohol From Taiwan; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... September 15, 2004 (69 FR 55653). The conference was held in Washington, DC, on September 28, 2004, and all....\\3\\ Notice of that determination was published on October 29, 2004. 69 FR 63177. The Commission... COMMISSION Polyvinyl Alcohol From Taiwan; Determination On the basis of the record \\1\\ developed in...

  1. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polymerization of vinyl fluoride. (b) The poly(vinyl fluoride) basic resins have an intrinsic viscosity of not... Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be... Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference; see paragraph (b)...

  2. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polymerization of vinyl fluoride. (b) The poly(vinyl fluoride) basic resins have an intrinsic viscosity of not... Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be... Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference; see paragraph (b)...

  3. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polymerization of vinyl fluoride. (b) The poly(vinyl fluoride) basic resins have an intrinsic viscosity of not... Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be... Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference; see paragraph (b)...

  4. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polymerization of vinyl fluoride. (b) The poly(vinyl fluoride) basic resins have an intrinsic viscosity of not... Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be... Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference; see paragraph (b)...

  5. Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the use of polyvinyl alcohol (PVA) cryogels to encapsulate slow-growing anammox bacteria for deammonification treatment of wastewater. The cryogel pellets were prepared by a freezing-thawing procedure at -8 oC. On average, pellets contained 11.8 mg TSS/g-pellet of enriched anamm...

  6. Human volunteer study on the inhalational and dermal absorption of N-methyl-2-pyrrolidone (NMP) from the vapour phase.

    PubMed

    Bader, Michael; Wrbitzky, Renate; Blaszkewicz, Meinolf; Schäper, Michael; van Thriel, Christoph

    2008-01-01

    N-Methyl-2-pyrrolidone (NMP) is a versatile organic solvent frequently used for surface cleaning such as paint stripping or graffiti removal. Liquid NMP is rapidly absorbed through the skin but dermal vapour phase absorption might also play an important role for the uptake of the solvent. This particular aspect was investigated in an experimental study with 16 volunteers exposed to 80 mg/m(3) NMP for 8 h under either whole-body, i.e. inhalational plus dermal, or dermal-only conditions. Additionally, the influence of moderate physical workload on the uptake of NMP was studied. The urinary concentrations of NMP and its metabolites 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) were followed for 48 h and analysed by gas chromatography-mass spectrometry (GC-MS). Percutaneous uptake delayed the elimination peak times and the apparent biological half-lives of NMP and 5-HNMP. Under resting conditions, dermal-only exposure resulted in the elimination of 71 +/- 8 mg NMP equivalents as compared to 169 +/- 15 mg for whole-body exposure. Moderate workload yielded 79 +/- 8 mg NMP (dermal-only) and 238 +/- 18 mg (whole-body). Thus, dermal absorption from the vapour phase may contribute significantly to the total uptake of NMP, e.g. from workplace atmospheres. As the concentration of airborne NMP does not reflect the body dose, biomonitoring should be carried out for surveillance purposes. PMID:17721780

  7. Enhancing effect of N-dodecyl-2-pyrrolidone on the percutaneous absorption of 5-fluorouracil derivatives.

    PubMed

    Sato, S; Hirotani, Y; Ogura, N; Sasaki, E; Kitagawa, S

    1998-05-01

    The enhancing effects of N-dodecyl-2-pyrrolidone (NDP) on the percutaneous absorption of doxifluridine (DOX), 5-fluorouracil (5-FU), tegafur (TEG) and carmofur (CAR) were examined using an in vitro penetration technique and rat skin. Phosphate buffered isotonic saline (PBS), propylene glycol (PG) and PG containing 0.4M NDP (PGNDP) were applied as the donor solution. The correlation between the n-octanol/water partition coefficients and the permeability coefficients of DOX, 5-FU and TEG was investigated using both logarithmic plots. It was determined that the permeability coefficients are significantly correlated with their n-octanol/water partition coefficients on PBS. This result suggested that the non-polar stratum corneum lipid lamella in the skin might act as a rate limiting step on the skin penetration of DOX, 5-FU and TEG. The permeability coefficient of DOX, 5-FU and TEG was increased on PGNDP. The enhancing effect of NDP on the permeability coefficient was more effective at higher hydrophilic drugs, the values of the permeability coefficient had almost the same values on PGNDP and the dependency of the permeability coefficient on the n-octanol/water partition coefficient disappeared in the presence of NDP. These results indicated that the enhancing effect of NDP on the percutaneous absorption of DOX, 5-FU and TEG might be closely related to the perturbation of stratum corneum lipid lamella. Since it has been well recognized that CAR is decomposed into 5-FU in neutral and alkaline solution, the decomposition rate of CAR was measured using PBS solution and was found to be very rapid (Kd = 3.17 h-1, t1/2 = 13.1 min). The total concentrations of CAR plus 5-FU in the acceptor compartment were used to determine the permeability coefficient of CAR. The obtained value of the permeability coefficient of CAR on PG was almost the same as that of TEG on PG (CAR: 1.11 x 10(-3) cm/h, TEG: 1.24 x 10(-3) cm/h), while that of CAR on PGNDP was smaller than that of TEG on

  8. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  9. Polyvinyl siloxane: novel material for external nasal splinting.

    PubMed

    Jayakumar, N K; Rathnaprabhu, V; Ramesh, S; Parameswaran, A

    2016-01-01

    External nasal splinting is performed routinely after nasal bone fracture reductions, osteotomies, and rhinoplasties. Materials commonly used include plaster of Paris (POP), thermoplastic splints, self-adhesive padded aluminium splints, and Orthoplast, among many others. The disadvantages of these materials are described in this paper, and polyvinyl siloxane is recommended as an effective and more readily available alternative material to counter these pitfalls. PMID:26454773

  10. DIELECTRIC PROPERTIES OF POLYVINYL ALCOHOL, POLY(METHYL METHACRYLATE), POLYVINYL BUTYRAL RESIN AND POLYIMIDE AT LOW TEMPERATURES

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R

    2008-01-01

    Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. For this reason dielectric properties of electrical insulation materials are needed for low temperature power applications. In this work we report the dielectric properties of four polymers: polyvinyl alcohol (PVA), poly(methyl methacrylate) (PMMA), polyvinyl butyral resin (PVB), and polyimide (PI--Kapton\\textregistered). The dielectric measurements are performed with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 45K to 350K. The dielectric breakdown characteristics of the polymers are measured in a liquid nitrogen bath at atmospheric pressure. It is observed that PI and \\pmma\\ dissolved in toluene have the lowest dielectric losses for temperatures lower than $100\\ \\kelvin$. \\Blx\\ and PI have the smallest spread in their breakdown strength data.

  11. Synthesis and characterization of silver/poly( N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method

    NASA Astrophysics Data System (ADS)

    Jovanović, Željka; Krklješ, Aleksandra; Stojkovska, Jasmina; Tomić, Simonida; Obradović, Bojana; Mišković-Stanković, Vesna; Kačarević-Popović, Zorica

    2011-11-01

    This work describes radiolytic synthesis of silver nanoparticles (Ag NPs) within the poly( N-vinyl-2-pyrrolidone) (PVP) hydrogel. The hydrogel matrix was obtained by gamma irradiation-induced crosslinking, while the in situ reduction of Ag + ions was performed using strong reducing species formed under water radiolysis. Absorption spectrum of the Ag/PVP nanocomposite confirmed the formation of Ag NPs, showing the surface plasmon band maxima at 405 nm. Ag/PVP nanocomposites were characterized by XRD and TEM analysis, accompanied with investigations of swelling and diffusion properties in the simulated body fluid at 37 °C, and mechanical properties in bioreactor conditions. It was shown that Ag/PVP nanocomposite exhibited higher values of equilibrium swelling degree, Young's modulus, and molar mass between crosslinks, while lower values of the diffusion coefficient and effective crosslink density were obtained, as compared to the pure PVP.

  12. Microbial degradation of N-methyl-2-pyrrolidone in surface water and bacteria responsible for the process.

    PubMed

    Růžička, Jan; Fusková, Jana; Křížek, Karel; Měrková, Markéta; Černotová, Alena; Smělík, Michal

    2016-01-01

    Due to widespread utilization in many industrial spheres and agrochemicals, N-methyl-2-pyrrolidone (NMP) is a potential contaminant of different surface water ecosystems. Hence, investigation was made into its aerobic microbial degradability in samples of water from a river, wetland area and spring. The results showed that the compound was degradable in all water types, and that the fastest NMP removal occurred in 4 days in river water, while in the wetland and spring samples the process was relatively slow, requiring several months to complete. Key bacterial degraders were successfully isolated in all cases, and their identification proved that pseudomonads played a major role in NMP degradation in river water, while the genera Rhodococcus and Patulibacter fulfilled a similar task in the wetland sample. Regarding spring water, degrading members of the Mesorhizobium and Rhizobium genera were found. PMID:26877048

  13. Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent

    PubMed Central

    2011-01-01

    Uniform bismuth nanospheres were successfully prepared from bismuth nitrate in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) by solvothermal process. The product was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray. PVP plays a critical role both as a reducing agent and a capping agent in the formation of bismuth nanospheres. Shape and size of bismuth nanospheres could be tuned by changing the employed PVP/bismuth salt ratio. It was also found the solvent had an effect on the morphologies of bismuth nanomaterials. The possible formation and growth mechanism of bismuth nanospheres were also discussed and proposed to explain the reduction step. PMID:21711606

  14. Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation

    NASA Astrophysics Data System (ADS)

    Jovanović, Željka; Radosavljević, Aleksandra; Šiljegović, Milorad; Bibić, Nataša; Mišković-Stanković, Vesna; Kačarević-Popović, Zorica

    2012-11-01

    Silver nanoparticles (AgNPs) were synthesized in situ by γ-irradiation using poly(N-vinyl-2-pyrrolidone) (PVP) as a capping agent. The concentration, molecular weight and the structure (crosslinked and interpenetrated network) of PVP were varied, in order to determine the influence of the capping agent in the radiolytic synthesis of the Ag/PVP nanosystems. Transmission electron microscopy (TEM) showed that AgNPs obtained from the solutions containing higher PVP concentration and higher molecular weight were spherical in shape, with narrow size distribution and a diameter of˜6 nm, while slightly larger rod-shaped silver agglomerates, with bimodal nanoparticle size distribution and diameters of ˜10 nm and ˜20 nm were obtained from the solutions containing lower PVP concentration and lower molecular weight. Strong plasmon coupling and extending of plasmon resonance was observed by UV-vis spectroscopy, as a result of formation of nanorod-like agglomerates. Crosslinked and interpenetrated network did not affect the structure of synthesized AgNPs. Ag/PVP nanocomposite, in the form of thin film, was obtained by solvent evaporation from Ag/PVP colloid solution with 10 wt% of PVP, and characterized by FTIR spectroscopy. The interactions in Ag/PVP nanocomposite are shown to be the result of the coordination bonding between AgNPs and nitrogen from pyrrolidone ring of PVP. The optical properties of investigated Ag/PVP nanosystems, as measured by the values of optical band gap, Eg, are mainly the consequence of the interparticle distance as a result of the concentration and the structure of surrounding PVP macromolecules.

  15. Formation of Linear Polyenes in Thermal Dehydration of Polyvinyl Alcohol, Catalyzed by Phosphotungstic Acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.

    2015-01-01

    In order to obtain linear polyenes in polyvinyl alcohol films via acid-catalyzed thermal dehydration of the polyvinyl alcohol, we used phosphotungstic acid as the catalyst: a safe and heat-stable solid chemical compound. We established that phosphotungstic acid, introduced as solid nanoparticles into polyvinyl alcohol films, is a more effective dehydration catalyst than hydrochloric acid, since in contrast to HCl it does not evaporate from the film during heat treatment.

  16. Continuous microcellular foaming of polyvinyl chloride and compatibilization of polyvinyl chloride and polylactide composites

    NASA Astrophysics Data System (ADS)

    Shah, Bhavesh

    This dissertation focuses on overcoming existing limitations of WPCs which prevent them from realizing their full market potential. These limitations include: (i) lack of a continuous extrusion process for microcellular foaming of polyvinyl chloride (PVC) and its composites using supercritical fluids to reduce the high density of the WPCs, (ii) need for an efficient coupling agent for WPCs to overcome the poor compatibility between wood and plastic, and (iii) unproven use of wood as a filler for the biopolymer polylactide (PLA) to make "green" composites. These limitations were addressed through experimentation to develop a continuous extrusion process for microcellular foaming, and through surface modification of wood flour using natural coupling agents. The effects of wood flour, acrylic modifier and plasticizer content on the rheological properties of PVC based WPCs were studied using an extrusion capillary rheometer and a two-level factorial design. Wood flour content and acrylic modifier content were the major factors affecting the die swell ratio. Addition of plasticizer decreased the true viscosity of unfilled and filled PVC, irrespective of the acrylic modifier content. However, the addition of acrylic modifier significantly increased the viscosity of unfilled PVC but decreased the composite viscosity. Results of the rheological study were used to set baseline conditions for the continuous extrusion foaming of PVC WPCs using supercritical CO 2. Effects of material composition and processing conditions on the morphology of foamed samples were investigated. Foamed samples were produced using various material compositions and processing conditions, but steady-state conditions could not be obtained for PVC. Thus the relationships could not be determined. Incompatibility between wood flour and PVC was the focus of another study. The natural polymers chitin and chitosan were used as novel coupling agents to improve interfacial adhesion between the polymer matrix

  17. Electrical and Thermal Properties of Polyvinyl Acetal Based Nanocomposites

    SciTech Connect

    Sauers, Isidor; James, David Randy; Ellis, Alvin R; Tuncer, Enis; Polyzos, Georgios; Pace, Marshall O

    2009-10-01

    A water chemistry procedure is used to synthesize titanium dioxide nanoparticles which can later be blended with a polymer to form a nanodielectric. The synthesized nanoparticles are dispersed in two grades of polyvinyl acetal (commercially available under the trade names BX-L and KS-10, manufactured by SEKISUI Chemicals). Nanocomposite materials were prepared with 15 and 33 wt% titanium dioxide. The variation of the glass transition temperature with increasing filler weight fraction is presented. The dielectric breakdown strengths of the nanodielectric samples are reported. The presented results can be employed to optimize the dielectric properties of the studied nanocomposites for potential use in cryogenic high voltage applications.

  18. Reactor-chromatographic determination of vinyl chloride in polyvinyl chloride

    SciTech Connect

    Berezkin, V.G.

    1986-08-01

    The authors carry out a chromatographic study of the volatile products that evolve when various grades of domestic polyvinyl chloride are heated, to determine the concentration of residual monomer. To find vinyl chloride in complex mixtures of air pollutants the authors used sorptive reaction concentration of impurities. This new combination of methods is based on preliminary separation at the sampling stage of impurities that interfere in the analysis, followed by concentration of the desired components in a trap with an adsorbent, and chromatographic determination of the concentrated trace materials. The method obtains low vinyl chloride concentrations (down to 10/sup -4/-10/sup -5/ wt. %) with +/-5 relative error.

  19. Memristive learning and memory functions in polyvinyl alcohol polymer memristors

    NASA Astrophysics Data System (ADS)

    Lei, Yan; Liu, Yi; Xia, Yidong; Gao, Xu; Xu, Bo; Wang, Suidong; Yin, Jiang; Liu, Zhiguo

    2014-07-01

    Polymer based memristive devices can offer simplicity in fabrication and at the same time promise functionalities for artificial neural applications. In this work, inherent learning and memory functions have been achieved in polymer memristive devices employing Polyvinyl Alcohol. The change in conduction in such polymer devices strongly depends on the pulse amplitude, duration and time interval. Through repetitive stimuli training, temporary short-term memory can transfer into consolidated long-term memory. These behaviors bear remarkable similarities to certain learning and memory functions of biological systems.

  20. Nanodielectric system for cryogenic applications: Barium titanate filled polyvinyl alcohol

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Duckworth, Robert C

    2008-01-01

    In the current study the focus is on dielectric properties (as a function of frequency and temperature) of a polymeric composite system composed of polyvinyl alcohol and barium titanate nano powder. In the investigations, the temperature range is between 50-295 K, and the frequency range is between $20\\ \\hertz-1\\ \\mega\\hertz$. Polarization and conduction processes are investigated in the linear regime. Dielectric breakdown strengths of samples are also reported. The materials presented have potential to be implemented in cryogenic capacitor or field grading applications.

  1. Starch-polyvinyl alcohol cast film-performance and biodegradation

    SciTech Connect

    Chen, Liang; Imam, S.H.; Stein, T.M.

    1996-10-01

    Starch-polyvinyl alcohol (PVOH) cast films were prepared in the absence of plasticizer. Their physical and biodegradable properties were examined. Moisture absorption by the films was similar to that of PVOH at low humidity and increased linearly as the relative humidity increased. The tensile strength of the films decreased with increased humidity and did not display significant improvement with increased PVOH content. Higher PVOH content improved elongation when the relative humidity was 80% or higher. Biodegradation studies revealed that the presence of PVOH in the films slowed the rate of degradation.

  2. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone.

    PubMed

    Luan, Shifang; Zhao, Jie; Yang, Huawei; Shi, Hengchong; Jin, Jing; Li, Xiaomeng; Liu, Jingchuan; Wang, Jianwei; Yin, Jinghua; Stagnaro, Paola

    2012-05-01

    Poly(N-vinyl pyrrolidone) (PNVP) was covalently grafted onto the surface of biomedical poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) elastomer via a technique of UV-induced graft polymerization combined with plasma pre-treatment. The surface graft polymerization of N-vinyl pyrrolidone (NVP) was confirmed by ATR-FTIR and XPS. Effect of the parameters of graft polymerization, i.e., the initiator concentration, the UV irradiation time and the monomer concentration on the grafting density was investigated. The morphology and the wettability of the PNVP-modified surfaces were characterized by AFM and DSA, respectively. Protein adsorption and platelet adhesion were obviously suppressed after PNVP was grafted onto the SEBS substrates. PMID:22264686

  3. The effect of external stimuli on the uranyl ions uptake capacity of poly( N-vinyl 2-pyrrolidone/itaconic acid) hydrogels prepared by gamma rays

    NASA Astrophysics Data System (ADS)

    Kantoğlu, Ö.; Şen, M.; Güven, O.

    1999-05-01

    The effect of external stimuli such as pH of the solution, ionic strength and temperature on the uranyl ions uptake capacity of poly( N-vinyl 2-pyrrolidone/itaconic acid) (P(VP/IA)) hydrogels was investigated. Polyelectrolyte P(VP/IA) hydrogels with varying compositions were prepared in the form of rods from ternary mixtures of N-vinyl 2-pyrrolidone/itaconic acid/water. Uranyl adsorption capacity of hydrogels were found to increase from 26.7 to 70 (mg UO 22+ /g dry gel) with decreasing pH of the swelling solution. Adsorption studies have shown that other stimuli, such as temperature and ionic strength of the swelling solution have also influence on the uranyl ions uptake capacity of P(VP/IA) hydrogels.

  4. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standard for Vinyl Chloride § 61.64 Emission standard for polyvinyl chloride plants. An owner or operator...) Reactor. The following requirements apply to reactors: (1) The concentration of vinyl chloride in each... is not to exceed 0.02 g vinyl chloride/kg (0.04 lb vinyl chloride/ton) of polyvinyl chloride...

  5. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standard for Vinyl Chloride § 61.64 Emission standard for polyvinyl chloride plants. An owner or operator...) Reactor. The following requirements apply to reactors: (1) The concentration of vinyl chloride in each... is not to exceed 0.02 g vinyl chloride/kg (0.04 lb vinyl chloride/ton) of polyvinyl chloride...

  6. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standard for Vinyl Chloride § 61.64 Emission standard for polyvinyl chloride plants. An owner or operator...) Reactor. The following requirements apply to reactors: (1) The concentration of vinyl chloride in each... is not to exceed 0.02 g vinyl chloride/kg (0.04 lb vinyl chloride/ton) of polyvinyl chloride...

  7. 77 FR 14342 - Polyvinyl Alcohol From Taiwan: Correction to Notice of Opportunity To Request Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... antidumping duty order on polyvinyl alcohol from Taiwan. See Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To Request Administrative Review, 77 FR 12559 (March 1, 2012... International Trade Administration Polyvinyl Alcohol From Taiwan: Correction to Notice of Opportunity To...

  8. 75 FR 38079 - Postponement of Preliminary Determination of Antidumping Duty Investigation: Polyvinyl Alcohol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...-Dumping Duty Investigation: Polyvinyl Alcohol From Taiwan, 69 FR 59204 (October 4, 2004). On October 22... From Taiwan; Determination, 75 FR 15726 (March 30, 2010). The ITC notified the Department of its...: Polyvinyl Alcohol From Taiwan AGENCY: Import Administration, International Trade Administration,...

  9. 76 FR 42613 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production is being extended for 14 days. DATES: Comments. The public comment period for the proposed rule published May 20, 2011 (76 FR... Polyvinyl Chloride and Copolymers Production; Extension of Comment Period AGENCY: Environmental...

  10. Preparation and application of low molecular weight poly(vinyl chloride). III mechanical properties of blended poly(vinyl chloride)

    SciTech Connect

    Yamamoto, Kikuo; Maehala, Takashi; Mitani, Katsuo; Mizutani, Yukio )

    1993-11-05

    The blending effect of poly(vinyl chloride) with relatively higher molecular weight (HMW-PVC) and relatively lower molecular weight (LMW-PVC) has been investigated by measuring various mechanical properties: melt properties, tensile strength, tensile modulus, and impact strength. The blended PVC has slightly improved melt properties in comparison with the HMW-PVC used. The tensile strength of the blended PVC is related to the weight-average polymerization degree (Pw) of LMW-PVC and the LMW-PVC content. At the LMW-PVC content of 20%, the tensile strength of blended PVC is a maximum: approximately 58 MPa.

  11. Embryotoxic potential of N-methyl-pyrrolidone (NMP) and three of its metabolites using the rat whole embryo culture system

    SciTech Connect

    Flick, Burkhard Talsness, Chris E.; Jaeckh, Rudolf; Buesen, Roland; Klug, Stephan

    2009-06-01

    N-methyl-2-pyrrolidone (NMP), which undergoes extensive biotransformation, has been shown in vivo to cause developmental toxicity and, especially after oral treatment, malformations in rats and rabbits. Data are lacking as to whether the original compound or one of its main metabolites is responsible for the toxic effects observed. Therefore, the relative embryotoxicity of the parent compound and its metabolites was evaluated using rat whole embryo culture (WEC) and the balb/c 3T3 cytotoxicity test. The resulting data were evaluated using two strategies; namely, one based on using all endpoints determined in the WEC and the other including endpoints from both the WEC and the cytotoxicity test. On basis of the first analysis, the substance with the highest embryotoxic potential is NMP, followed by 5-hydroxy-N-methyl-pyrrolidone (5-HNMP), 2-hydroxy-N-methylsuccinimide (2-HMSI) and N-methylsuccinimide (MSI). Specific dysmorphogeneses induced by NMP and 5-HNMP were aberrations in the head region of the embryos, abnormal development of the second visceral arches and open neural pores. The second evaluation strategy used only two endpoints of the WEC, i.e. the no observed adverse effect concentration (NOAEC{sub WEC}) and the lowest concentration leading to dysmorphogenesis in 100% of the cultured embryos (IC{sub MaxWEC}). In addition to these WEC endpoints the IC{sub 503T3} from the cytotoxicity test (balb/c 3T3 fibroblasts) was included in the evaluation scheme. These three endpoints were applied to a prediction model developed during a validation study of the European Centre for the Validation of Alternative Methods (ECVAM) allowing the classification of the embryotoxic potential of each compound into three classes (non-, weakly- and strongly embryotoxic). Consistent results from both evaluation strategies were observed, whereby NMP and its metabolites revealed a direct embryotoxic potential. Hereby, only NMP and 5-HNMP induced specific embryotoxic effects and were

  12. Sol–gel auto combustion synthesis of CoFe{sub 2}O{sub 4}/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: Its magnetic characterization

    SciTech Connect

    Topkaya, R.; Kurtan, U.; Junejo, Y.; Baykal, A.

    2013-09-01

    Graphical abstract: - Highlights: • CoFe{sub 2}O{sub 4} was generated by sol–gel autocombustion using 1-methyl-2-pyrrolidone and ethylene glycol. • The presence of spin-disordered surface layer on magnetic core was established. • A linear dependence of the coercivity on temperature was fitted to Kneller's law. - Abstract: Magnetic nanoparticles were generated by sol–gel auto combustion synthesis of metal salts in the presence of 1-methyl-2-pyrrolidone, a functional solvent and ethylene glycol as usual solvent. The average crystallite size was obtained by using line profile fitting as 11 ± 5 nm. The saturation magnetization value decreases with usage of the ethylene glycol in synthesis. The observed exchange bias effect further confirms the existence of the magnetically ordered core surrounded by spin-disordered surface layer and the ethylene glycol. Square-root temperature dependence of coercivity can be fitted to Kneller's law in the temperature range of 10–400 K. The reduced remanent magnetization values lower than the theoretical value of 0.5 for non-interacting single domain particles indicate the CoFe{sub 2}O{sub 4}-1-methyl-2-pyrrolidone nanocomposite to have uniaxial anisotropy instead of the expected cubic anisotropy according to the Stoner–Wohlfarth model.

  13. Radiation-induced synthesis of nanogels based on poly(N-vinyl-2-pyrrolidone)-A review

    NASA Astrophysics Data System (ADS)

    Kadlubowski, Slawomir

    2014-09-01

    Nanogels are nanometer-scale two-component systems consisting of a permanent three-dimensional network of linked polymer chains, and molecules of a solvent filling the pores of this network. A number of synthetic routes have been developed for nanogels. One of them is based on intramolecular cross-linking of individual polymer chains and ionizing radiation is a suitable tool for initiation of this process. Poly(N-vinyl-2-pyrrolidone)-PVP-was one of the first polymers used to obtain intramolecularly cross-linked macromolecules using this method called preparative pulse radiolysis. This review summarizes radiation-based techniques used for synthesis of PVP-derived nanogels starting from preparative pulse radiolysis, through irradiation of thermally collapsed PVP and cross-linking in microemulsion up to formation of PVP based interpolymer complexes. In addition, possible practical applications of PVP-based nanogels have been presented mainly in the biomedical field. Nanogels functionalized with (3-N-aminopropyl)methacrylamide hydrochloride may serve for bioconjugation and drug transportation into the cells. Nanogels of interpolymer complexes are expected to be mucoadhesive and be able to bind cationic drugs electrostatically and non-polar drugs via solubilization in the hydrophobic cores.

  14. Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels.

    PubMed

    D'Errico, Gerardino; De Lellis, Marco; Mangiapia, Gaetano; Tedeschi, Annamaria; Ortona, Ornella; Fusco, Sabato; Borzacchiello, Assunta; Ambrosio, Luigi

    2008-01-01

    Biocompatible poly( N-vinyl-2-pyrrolidone) (PVP) hydrogels have been produced by UV irradiation of aqueous polymer mixtures, using a high-pressure mercury lamp. The resulting materials have been characterized by a combination of experimental techniques, including rheology, small-angle neutron scattering (SANS), electron paramagnetic resonance (EPR), and pulsed gradient spin-echo nuclear magnetic resonance (PGSE-NMR), to put in evidence the relationship between the microstructural properties and the macrofunctional behavior of the gels. Viscoelastic measurements showed that UV photo-cross-linked PVP hydrogels present a strong gel mechanical behavior and viscoelastic moduli values similar to those of biological gels. The average distance between the cross-linking points of the polymer network was estimated from the hydrogels elastic modulus. However, SANS measurements showed that the network microstructure is highly inhomogeneous, presenting polymer-rich regions more densely cross-linked, surrounded by a water-rich environment. EPR and PGSE-NMR data further support the existence of these water-rich domains. Inclusion of a third component, such as glycerol, in the PVP aqueous mixture to be irradiated has been also investigated. A small amount of glycerol (<3% w/w) can be added keeping satisfactory properties of the hydrogel, while higher amounts significantly affect the cross-linking process. PMID:18163572

  15. Cooling Capacity Optimization: Calculation of Hardening Power of Aqueous Solution Based on Poly(N-Vinyl-2-Pyrrolidone)

    NASA Astrophysics Data System (ADS)

    Koudil, Z.; Ikkene, R.; Mouzali, M.

    2013-11-01

    Polymer quenchants are becoming increasingly popular as substitutes for traditional quenching media in hardening metallic alloys. Water-soluble organic polymer offers a number of environmental, economic, and technical advantages, as well as eliminating the quench-oil fire hazard. The close control of polymer quenchant solutions is essential for their successful applications, in order to avoid the defects of structure of steels, such as shrinkage cracks and deformations. The aim of the present paper is to evaluate and optimize the experimental parameters of polymer quenching bath which gives the best behavior quenching process and homogeneous microstructure of the final work-piece. This study has been carried out on water-soluble polymer based on poly(N-vinyl-2-pyrrolidone) PVP K30, which does not exhibit inverse solubility phenomena in water. The studied parameters include polymer concentration, bath temperature, and agitation speed. Evaluation of cooling power and hardening performance has been measured with IVF SmartQuench apparatus, using standard ISO Inconel-600 alloy. The original numerical evaluation method has been introduced in the computation software called SQ Integra. The heat transfer coefficients were used as input data for calculation of microstructural constituents and the hardness profile of cylindrical sample.

  16. Estimation of anti-D IgG in red blood cell eluates using the specific radioactivity of 125I-labeled IgG: effect of unlabeled, cytophilic IgG

    SciTech Connect

    Masouredis, S.P.; Mahan, L.C.; Sudora, E.J.; Langley, J.W.; Victoria, E.J.

    1981-01-01

    The specific radioactivity of conventionally prepared 125I IgG anti-D eluates is significantly less (from 1/5 to 1/20) than that of the 125I IgG fraction used to prepare the eluate. This discrepancy is due to the release of unlabeled, cytophilic IgG from normal red blood cells during eluate preparation and does not represent an underestimation of the eluate anti-D IgG content. Cytophilic IgG content of eluates plays an important role in reducing the nonimmunologic binding of labeled antibody IgG. The results justify the assumption used in numerous studies that the specific radioactivity of 125I IgG fractions can be used to provide a valid estimate of the anti-D IgG content of eluates.

  17. Interaction of /sup 125/I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves

    SciTech Connect

    Black, J.D.; Dolly, J.O.

    1986-01-01

    The labeling patterns produced by radioiodinated botulinum neurotoxin (/sup 125/I-BoNT) types A and B at the vertebrate neuromuscular junction were investigated using electron microscopic autoradiography. The data obtained allow the following conclusions to be made. (a) /sup 125/I-BoNT type A, applied in vivo or in vitro to mouse diaphragm or frog cutaneous pectoris muscle, interacts saturably with the motor nerve terminal only; silver grains occur on the plasma membrane, within the synaptic bouton, and in the axoplasm of the nerve trunk, suggesting internalization and retrograde intra-axonal transport of toxin or fragments thereof. (b) /sup 125/I-BoNT type B, applied in vitro to the murine neuromuscular junction, interacts likewise with the motor nerve terminal except that a lower proportion of internalized radioactivity is seen. This result is reconcilable with the similar, but not identical, pharmacological action of these toxin types. (c) The saturability of labeling in each case suggested the involvement of acceptors; on preventing the internalization step with metabolic inhibitors, their precise location became apparent. They were found on all unmyelinated areas of the nerve terminal membrane, including the preterminal axon and the synaptic bouton. (d) It is not proposed that these membrane acceptors target BoNT to the nerve terminal and mediate its delivery to an intracellular site, thus contributing to the toxin's selective inhibitory action on neurotransmitter release.

  18. Polyvinyl chloride meat-wrapping film study. Final report

    SciTech Connect

    Vandervort, R.

    1988-01-01

    As a result of worker complaints in the Baltimore, Maryland area, potential health hazards associated with the use of polyvinyl-chloride film for wrapping meat were reviewed. Fumes generated during the meat-wrapping process were causing concern among the workers as they experienced respiratory irritation and distress. It appeared that only some of the meat wrappers experienced difficulty, only some of the rolls of film-produced irritations in the affected workers, and affected workers had prior histories of respiratory difficulties. Fumes were generated during hot-wire film cutting. The amount of fume generated depended significantly on the care taken during the operation. If the dispensing machines were improperly adjusted, large amounts of fumes could be obtained during the cutting process. The author concludes that the amounts of these chemicals released during this operation does not constitute a health hazard to the employees. It may be necessary, however, to remove persons with prior respiratory irritation from this particular job location.

  19. Silver Nanoparticle Fabrication by Laser Ablation in Polyvinyl Alcohol Solutions

    NASA Astrophysics Data System (ADS)

    Halimah Mohamed., K.; Mahmoud Goodarz, Naseri; Amir, Reza Sadrolhosseini; Arash, Dehzangi; Ahmad, Kamalianfar; Elias, B. Saion; Reza, Zamiri; Hossein Abastabar, Ahangar; Burhanuddin, Y. Majlis

    2014-07-01

    A laser ablation technique is applied for synthesis of silver nanoparticles in different concentrations of polyvinyl alcohol (PVA) aqueous solution. The ablation of high pure silver plate in the solution is carried out by a nanosecond Q-switched Nd:YAG pulsed laser. X-ray diffraction and transmission electron microscopy are implemented to explore the particles sizes. The effects of PVA concentrations on the absorbance of the silver nanoparticles are studied as well, by using a UV-vis spectrophotometer. The preparation process is carried out for deionized water as a reference sample. The comparison of the obtained results with the reference sample shows that the formation efficiency of nanoparticles in PVA is much higher and the sizes of particles are also smaller.

  20. Early malfunction of polyvinyl alcohol membrane of septal occluder.

    PubMed

    Ramoğlu, Mehmet G; Uçar, Tayfun; Tutar, Ercan

    2016-03-01

    Percutaneous device closure of atrial septal defect (ASD) is now considered the choice of treatment. Numerous devices with advantages/disadvantages are currently available and under development. Cardia Ultrasept II ASD occluder has a nitinol frame covered with polyvinyl alcohol (PVA) membrane. Here, a well-documented case of early malfunction of PVA membrane detected in the first week of implantation in a 4-year-old male patient, who underwent an uneventful device closure with 20 mm Cardia Ultrasept II ASD Occluder, is presented. One week after implantation left-to-right shunt through the device was detected and the explantation of device revealed PVA membrane with multiple perforations. © 2015 Wiley Periodicals, Inc. PMID:26106065

  1. Vitrification of Polyvinyl Chloride Waste from Korean Nuclear Power Plants

    SciTech Connect

    Sheng, Jiawei; Choi, Kwansik; Yang, Kyung-Hwa; Lee, Myung-Chan; Song, Myung-Jae

    2000-02-15

    Vitrification is considered as an economical and safe treatment technology for low-level radioactive waste (LLW) generated from nuclear power plants (NPPs). Korea is in the process of preparing for its first ever vitrification plant to handle LLW from its NPPs. Polyvinyl chloride (PVC) has the largest volume of dry active wastes and is the main waste stream to treat. Glass formulation development for PVC waste is the focus of study. The minimum additive waste stabilization approach has been utilized in vitrification. It was found that glasses can incorporate a high content of PVC ash (up to 50 wt%), which results in a large volume reduction. A glass frit, KEP-A, was developed to vitrify PVC waste after the optimization of waste loading, melt viscosity, melting temperature, and chemical durability. The KEP-A could satisfactorily vitrify PVC with a waste loading of 30 to 50 wt%. The PVC-frit was tolerant of variations in waste composition.

  2. Exposure to chemical additives from polyvinyl chloride polymer extrusion processing

    SciTech Connect

    Lamb, C.S.

    1989-12-01

    The report presents a model to predict worker inhalation exposure due to off-gassing of additives during polyvinyl chloride (PVC) extrusion processing. Data on off-gassing of additives were reviewed in the literature, the off-gassing at normal PVC processing temperatures was studied in the laboratory, process variables were estimated from an equipment manufacturer survey, and worker-activities and possible exposure sources were observed in an industrial survey. The purpose of the study was to develop a theoretical model to predict worker inhalation exposure to additives used during PVC extrusion processing. A model to estimate the generation rate of the additive from the polymer extrudate was derived from the mass transport equations governing diffusion. The mass flow rate, initial additive volatile weight fraction, off-gassing time, diffusivity, and slab thickness are required to determine the generation rate from the model.

  3. Micropatterning of silver nanoclusters embedded in polyvinyl alcohol films.

    PubMed

    Karimi, Nazanin; Kunwar, Puskal; Hassinen, Jukka; Ras, Robin H A; Toivonen, Juha

    2016-08-01

    Direct laser writing has been utilized to fabricate highly photostable fluorescent nanocluster microstructures in an organic polymer poly(methacrylic acid), where the carboxyl functional group is reported to play a vital role in nanocluster stabilization. In this Letter, we demonstrate that not only the polymer containing the carboxyl functional group, but also the polymer comprising the hydroxyl group, namely polyvinyl alcohol (PVA), can act as an appropriate stabilizer matrix for laser-induced synthesis and patterning of silver nanoclusters. The as-formed nanoclusters in the PVA film exhibit broadband emission and photostability comparable to the nanoclusters formed in the poly(methacrylic acid) polymer. As PVA is a widely used, nontoxic, biocompatible and biodegradable polymer, the technique of patterning fluorescent nanoclusters in PVA thin films is expected to find numerous applications in fields like fluorescence imaging, biolabeling, and sensing. PMID:27472635

  4. Friction loss in straight pipes of unplasticized polyvinyl chloride.

    PubMed

    Iwasaki, T; Ojima, J

    1996-01-01

    In order to design proper ductwork for a local exhaust system, airflow characteristics were investigated in straight pipes of unplasticized polyvinyl chloride (PVC). A linear decrease in static pressure was observed downstream at points from the opening of the VU pipes (JIS K 6741) located at distances greater than 10 times the pipe diameter, for velocities ranging between 10.18-36.91 m/s. Roughness inside pipes with small diameters was found to be 0.0042-0.0056 mm and the friction factor was calculated on the basis of Colebrook's equation for an airflow transition zone. An extended friction chart was then constructed on the basis of the roughness value and the friction factor. This chart can be applied when designing a local exhaust system with the ducts of diameters ranging from 40 to 900 mm. The friction loss of the PVC pipe was found to be approximately 2/3 of that of a galvanized steel pipe. PMID:8768669

  5. End-of-life of starch-polyvinyl alcohol biopolymers.

    PubMed

    Guo, M; Stuckey, D C; Murphy, R J

    2013-01-01

    This study presents a life cycle assessment (LCA) model comparing the waste management options for starch-polyvinyl alcohol (PVOH) biopolymers including landfill, anaerobic digestion (AD), industrial composting and home composting. The ranking of biological treatment routes for starch-PVOH biopolymer wastes depended on their chemical compositions. AD represents the optimum choice for starch-PVOH biopolymer containing N and S elements in global warming potential (GWP(100)), acidification and eutrophication but not on the remaining impact categories, where home composting was shown to be a better option due to its low energy and resource inputs. For those starch-PVOH biopolymers with zero N and S contents home composting delivered the best environmental performance amongst biological treatment routes in most impact categories (except for GWP(100)). The landfill scenario performed generally well due largely to the 100-year time horizon and efficient energy recovery system modeled but this good performance is highly sensitive to assumptions adopted in landfill model. PMID:23131650

  6. Dancing on coke: smuggling cocaine dispersed in polyvinyl alcohol.

    PubMed

    van Nuijs, Alexander L N; Maudens, Kristof E; Lambert, Willy E; Van Calenbergh, Serge; Risseeuw, Martijn D P; Van hee, Paul; Covaci, Adrian; Neels, Hugo

    2012-01-01

    Recent trends suggest that cocaine smugglers have become more and more inventive to avoid seizures of large amounts of cocaine transported between countries. We report a case of a mail parcel containing a dance pad which was seized at the Customs Department of Brussels Airport, Belgium. After investigation, the inside of the dance pad was found to contain a thick polymer, which tested positive for cocaine. Analysis was performed using a routine colorimetric swipe test, gas chromatography coupled with mass spectrometry and nuclear magnetic resonance spectroscopy. The polymer was identified as polyvinyl alcohol (PVA) and contained 18% cocaine, corresponding to a street value of € 20,000. Laboratory experiments showed that cocaine could be easily extracted from the PVA matrix. This case report reveals a new smuggling technique for the transportation of large amounts of cocaine from one country to another. PMID:22040352

  7. Evaluation of a Polyvinyl Toluene Neutron Counter Array

    SciTech Connect

    Robert Hayes

    2008-03-01

    The purpose of this article is to simulate the performance of a neutron detector array for empirical configuration optimization and preliminary algorithm evaluation. Utilizing a compact array of borated Polyvinyl Toluene light pipes and Photomultiplier Tubes, pulse shape analysis, standard spectral histogramming, and multiplicity counting can enable neutron measurements for multiple applications. Results demonstrate that analysis with Monte Carlo N-Particle (MCNP) can be used to obtain a better understanding of field measurement results and aid in algorithm development for unfolding in conjunction with detector optimization. Use of a handheld neutron spectrometer has promise of widespread applicability. By correlating MCNP results with empirical measurements, substantial confidence can be placed on predicting detector response to sufficiently similar spectral sources under alternate experimental configurations. In addition, use of the detector has substantial promise for operational health physics applications.

  8. Polyvinyl alcohol coating of polystyrene inertial confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Lee, M. C.; Crawley, R. L.; Downs, R. L.

    1985-01-01

    An inertial confinement fusion (ICF) target made of polystyrene is first levitated in an acoustic field. The surface of the target is then etched using an appropriate solution (e.g., cyclohexane) to enhance the wetting characteristics. A specially prepared polyvinyl alcohol solution is atomized using an acoustic atomizer and deposited on the surface of the target. The solution is air dried to form a thin coating (2 microns) on the target (outside diameter of about 350-850 microns). Thicker coatings are obtained by repeated applications of the coating solutions. Preliminary results indicate that uniform coatings may be achievable on the targets with a background surface smoothness in the order of 1000 A.

  9. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  10. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  11. Growth characteristics of selected fungi on polyvinyl film

    SciTech Connect

    Roberts, W.T.; Davidson, P.M.

    1986-04-01

    The objective of this study was to determine if plasticized polyvinyl chloride film would support the growth of any of nine species of fungi. The film was suspended in distilled water with no nutrients or with glucose or ammonium sulfate. Spores of each of the test species were inoculated into the suspension medium, and the mixture was incubated at 30/sup 0/C for up to 18 weeks. Most species were found to be capable of utilizing the film for carbon or nitrogen when the other nutrient was supplied. Only two species, Aspergillus fischeri and Paecilomyces sp., were found to be capable of utilizing components of the film without added nutrients. Components of the polyvinyl chloride film were then incorporated into mineral salts medium to determine if these components could serve as carbon sources in the presence of ammonium nitrate. The only component found to be utilized by all the fungi as a carbon source was epoxidized oil, a plasticizer-stabilizer. Calcium-zinc stearate was an available carbon source for all except the Penicillium and Verticillium strains. The only other component utilized was a stearamide, which was metabolized solely by the Aspergillus sp. Only the stearamide contained enough nitrogen to serve as a primary source in the film. The compound, however, did not support growth of fungi in the presence of glucose. It was theorized that either the nitrogen of the stearamide was more readily available to the fungi in the whole film due to the presence of trace nutrients or the nitrogen was supplied by exogenous sources.

  12. In situ self cross-linking of polyvinyl alcohol battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1979-01-01

    A battery separator was produced from a polyvinyl alcohol sheet structure which was subjected to an in situ, self crosslinking process by selective oxidation of the 1,2 diol units present in the polyvinyl alcohol sheet structure. The 1,2 diol units were cleaved to form aldehyde end groups which subsequently crosslink through acetalization of the 1,3 diol units of the polyvinyl alcohol. Selective oxidation was achieved using a solution of a suitable oxidizing agent such as periodic acid or lead tetraacetate.

  13. Longer storage of dialyzers increases elution of poly(N-vinyl-2-pyrrolidone) from polysulfone-group dialysis membranes.

    PubMed

    Namekawa, Koki; Kaneko, Ami; Sakai, Kiyotaka; Kunikata, Satoru; Matsuda, Masato

    2011-03-01

    The objective of this study was to evaluate the effect of protracted storage of dialyzers on the amount of poly(N-vinyl-2-pyrrolidone) (PVP) eluted from polysulfone-group dialysis membranes. We tested five dialysis membranes: APS-15SA (Asahi Kasei Kuraray, wet), CX-1.6U (Toray, moist), FX140 (Fresenius, dry), PES-15Sα (Nipro, dry), and FDX-150GW (Nikkiso, wet). Each dialyzer was stored for 1, 3, 14, and 18 months after sterilization. The dialysis-fluid side compartment was primed with reverse osmosis (RO) water at 500 mL/min for 5 min at 310 K. The blood side compartment was primed with RO water at 200 mL/min for 5 min at 310 K. Finally, 1 L RO water was circulated through the blood side compartment at 200 mL/min for 4 h at 310 K. Eluted PVP was determined by use of the iodine method, using 0.02 N: iodine solution. PVP was mainly eluted from wet-type dialyzers during priming. Thus, the standard 5 min priming of the wet-type dialyzer according to the maker manual inhibits PVP elution during circulation. PVP was eluted in the dialysis-fluid side of the moist-type dialyzer during priming but no PVP was eluted in the blood side. PVP was mainly eluted from dry-type dialyzers during circulation. We recommend more than the standard 5 min priming, particularly for dry-type dialyzers stored for protracted periods, because 5 min insufficient to inhibit PVP elution during circulation. PMID:21286768

  14. Poly(N-vinyl-2-pyrrolidone) elution from polysulfone dialysis membranes by varying solvent and wall shear stress.

    PubMed

    Namekawa, Koki; Matsuda, Masato; Fukuda, Makoto; Kaneko, Ami; Sakai, Kiyotaka

    2012-06-01

    Some dialysis patients are treated with post-hemodiafiltration (HDF); the blood viscosity of the patients who undergo post-HDF is higher than that of the patients who undergo conventional hemodialysis. This study aims to evaluate poly(N-vinyl-2-pyrrolidone) (PVP) elution from PSf dialysis membranes by varying solvents and high wall shear stress caused by blood viscosity. We tested three commercial membranes: APS-15SA (Asahi Kasei Kuraray), CX-1.6U (Toray) and FX140 (Fresenius). Dialysate and blood sides of the dialyzers were primed with reverse osmosis (RO) water and saline. RO water, saline and dextran solution (2.9 and 5.8 mPa s) were circulated in the blood side. The amount of eluted PVP was determined by 0.02 N iodometry. The hardness and adsorption force of human serum albumin (HSA) on the membrane surfaces were measured by the atomic force microscope. When wall shear stress was increased using dextran, the amount of PVP eluted by the 2.9 mPa s solution equaled that eluted by the 5.8 mPa s solution with APS-15SA and CX-1.6U sterilized by gamma rays. The amount of PVP eluted by the 5.8 mPa s solution was higher than that eluted by the 2.9 mPa s solution with FX140 sterilized by autoclaving. The wall shear stress increased the PVP elution from the surface, hardness and adsorption force of HSA. Sufficient gamma-ray irradiation is effective in decreasing PVP elution. PMID:22311608

  15. Polyvinyl alcohol foam-Gelfoam for therapeutic embolization: a synergistic mixture.

    PubMed

    Horton, J A; Marano, G D; Kerber, C W; Jenkins, J J; Davis, S

    1983-01-01

    Gelfoam and polyvinyl alcohol foam particles each have advantages and disadvantages for therapeutic embolization. It was theorized and confirmed that a mixture of the two retains the advantages and eliminates the disadvantages of each. Two mixtures were prepared, tested in animals, and used successfully in 14 patients. It was found that the mixtures of Gelfoam and polyvinyl alcohol foam particles fulfilled the expectations and needs for particulate embolic materials. PMID:6405592

  16. The structural organization of N-methyl-2-pyrrolidone + water mixtures: A densitometry, x-ray diffraction, and molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Usula, M.; Mocci, F.; Marincola, F. Cesare; Porcedda, S.; Gontrani, L.; Caminiti, R.

    2014-03-01

    A combined approach of molecular dynamics simulations, wide angle X-ray scattering experiments, and density measurements was employed to study the structural properties of N-methyl-2-pyrrolidone (NMP) + water mixtures over the whole concentration range. Remarkably, a very good agreement between computed and experimental densities and diffraction patterns was achieved, especially if the effect of the mixture composition on NMP charges is taken into account. Analysis of the intermolecular organization, as revealed by the radial and spatial distribution functions of relevant solvent atoms, nicely explained the density maximum observed experimentally.

  17. The structural organization of N-methyl-2-pyrrolidone + water mixtures: A densitometry, x-ray diffraction, and molecular dynamics study

    SciTech Connect

    Usula, M.; Marincola, F. Cesare; Porcedda, S.; Mocci, F.; Gontrani, L.; Caminiti, R.

    2014-03-28

    A combined approach of molecular dynamics simulations, wide angle X-ray scattering experiments, and density measurements was employed to study the structural properties of N-methyl-2-pyrrolidone (NMP) + water mixtures over the whole concentration range. Remarkably, a very good agreement between computed and experimental densities and diffraction patterns was achieved, especially if the effect of the mixture composition on NMP charges is taken into account. Analysis of the intermolecular organization, as revealed by the radial and spatial distribution functions of relevant solvent atoms, nicely explained the density maximum observed experimentally.

  18. UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Khatri, Zeeshan; Ali, Shamshad; Khatri, Imran; Mayakrishnan, Gopiraman; Kim, Seong Hun; Kim, Ick-Soo

    2015-07-01

    We report UV-responsive polyvinyl alcohol (PVA) nanofibers for potential application for recording and erasing quick response (QR) codes. We incorporate 1‧-3‧-dihydro-8-methoxy-1‧,3‧,3‧-trimethyl-6-nitrospiro [2H-1-benzopyran-2,2‧-(2H)-indole] (indole) and,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3‧-[3H] phenanthr [9,10-b] (1,4) oxazine] (oxazine) into PVA polymer matrix via electrospinning technique. The resultant nanofibers were measured for recording-erasing, photo-coloration and thermal reversibility. The rate of photo-coloration of PVA-indole nanofibers was five times higher than the PVA-oxazine nanofibers, whereas the thermal reversibility found to be more than twice as fast as PVA-oxazine nanofibers. Results showed that the resultant nanofibers have very good capability of recording QR codes multiple times. The FTIR spectroscopy and SEM were employed to characterize the electrospun nanofibers. The UV-responsive PVA nanofibers have great potentials as a light-driven nanomaterials incorporated within sensors, sensitive displays and in optical devices such as erasable and rewritable optical storage.

  19. Oil reclamation from waste plastics including polyvinyl chloride

    SciTech Connect

    Tadauchi, M.

    1995-12-31

    The purpose of this report is to present the results of plant scaleup investigations for oil reclamation from waste plastics. The reclamation process examined was thermal decomposition of polypropylene (PP) and polyvinyl chloride (PVC) under alkali addition and subsequent pressurization. Thermal analyses of the two plastics was performed, indicating that hydrogen chloride evolution occurs at around 300 C and decomposition of PP and oil formation occurs occures arount 450 C. A pilot plant was built and tested with PP and PVC pellets. In accordance with thermal analyses, the temperature of the pyrolysis chamber was raised in two steps. Pilot plant results were compared with bench-scale pilot plant and laboratory experiments. The oil reclamation ratio became smaller with an increase in the volume of the pyrolysis chamber due to temperature distributions and deposition of polymer-alkali residue. Molecular weight distributions of the recovered oil were similar for all three vessels. It was also found that the chlorine concentration in the organic chlorinated compounds in the reclaimed oil stayed below 1/30 that of the oil reclaimed from PVC decomposition without alkali in a laboratory flask-scale vessel.

  20. Evaluation of Phenylephrine Stability in Polyvinyl Chloride Bags

    PubMed Central

    Oldland, Alan R.; Kiser, Tyree H.

    2014-01-01

    Abstract Purpose: Phenylephrine hydrochloride (HCl) is commonly used to maintain adequate blood pressure during shock and shocklike states. Phenylephrine is prepared in concentrated stock vials that require further dilution prior to administration. This study evaluated the physical and chemical stability of phenylephrine in extemporaneously prepared polyvinyl chloride (PVC) bags. Methods: Phenylephrine HCl 10 mg/mL solution was diluted with 0.9% sodium chloride for injection to final concentrations of 200 µg/mL and 400 µg/mL and stored at room temperature (23°C-25°C) exposed to fluorescent light. Stability of phenylephrine HCl was evaluated by high-performance liquid chromatography on days 0, 7, 14, 21, 30, 45, and 60. Results: Phenylephrine HCl 200 and 400 µg/mL solutions in PVC bags were physically stable during the entire 60-day study period. Phenylephrine HCl retained > 95% of the original concentration. Conclusion: Phenylephrine HCl diluted to 200 or 400 µg/mL with 0.9% sodium chloride for injection is both physically and chemically stable for a period of 60 days with ≤5% degradation when stored at room temperature and exposed to fluorescent lighting. PMID:24958958

  1. Preparation and flammability of poly(vinyl alcohol) composite aerogels.

    PubMed

    Chen, Hong-Bing; Wang, Yu-Zhong; Schiraldi, David A

    2014-05-14

    Poly(vinyl alcohol) (PVOH)-based aerogel composites with nanoscale silica, halloysite, montmorillonite (MMT), and laponite were prepared via a freeze-drying method. The PVOH/MMT and PVOH/laponite composites exhibit higher compressive moduli than the PVOH/SiO2 or PVOH/halloysite samples. Layered microstructures were observed for the samples except with PVOH/laponite, which showed irregular network morphologies. Thermogravimetric analysis of the aerogel samples showed increased thermal stability with the addition of nanofillers. The heat release measured by cone calorimetry, smoke release, and carbon monoxide production of the aerogel composites are all significantly decreased with the addition of nanofillers; these values are much lower than those for commercial expanded polystyrene foam. The fillers did not lead to obvious increases in the limiting oxygen index values, and the corresponding time to ignition values decrease. The ability to adjust the nanofiller levels in these foamlike aerogel composites allows for specific tuning of these products for fire safety. PMID:24731187

  2. Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Salunkhe, A. B.; Khot, V. M.; Thorat, N. D.; Phadatare, M. R.; Sathish, C. I.; Dhawale, D. S.; Pawar, S. H.

    2013-01-01

    In the present work, cobalt ferrite nanoparticles (CoFe2O4 NPs) have been synthesized by combustion method. The surface of the CoFe2O4 NPs was modified with biocompatible polyvinyl alcohol (PVA). To investigate effect and nature of coating on the surface of CoFe2O4 NPs, the NPs were characterized X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The transmission electron microscopy (TEM) and dynamic light scattering (DLS) results demonstrate the monodispersed characteristics of CoFe2O4 NPs after surface modification with PVA. The decrease in contact angle from 162° to 50° with PVA coating on NPs indicates the transition from hydrophobic nature to hydrophilic. The Magnetic properties measurement system (MPMS) results show that the NPs have ferromagnetic behavior with high magnetization of 75.04 and 71.02 emu/g of uncoated and coated CoFe2O4 NPs respectively. These PVA coated NPs exhibit less toxicity over uncoated CoFe2O4 NPs up to 1.8 mg mL-1 when tested with mouse fibroblast L929 cell line.

  3. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G.; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  4. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    PubMed

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms. PMID:21806259

  5. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing.

    PubMed

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2014-04-01

    Chitosan (CS) aqueous salt blended with polyvinyl alcohol (PVA) nanofibre mats was prepared by electrospinning. CS was dissolved with hydroxybenzotriazole (HOBt), thiamine pyrophosphate (TPP) and ethylenediaminetetraacetic acid (EDTA) in distilled water without the use of toxic or hazardous solvents. The CS aqueous salts were blended with PVA at different weight ratios, and the effect of the solution ratios was investigated. The morphologies and mechanical and swelling properties of the generated fibres were analysed. Indirect cytotoxicity studies indicated that the CS/PVA nanofibre mats were non-toxic to normal human fibroblast cells. The CS-HOBt/PVA and CS-EDTA/PVA nanofibre mats demonstrated satisfactory antibacterial activity against both gram-positive and gram-negative bacteria, and an in vivo wound healing test showed that the CS-EDTA/PVA nanofibre mats performed better than gauze in decreasing acute wound size during the first week after tissue damage. In conclusion, the biodegradable, biocompatible and antibacterial CS-EDTA/PVA nanofibre mats have potential for use as wound dressing materials. PMID:22925275

  6. Self Nucleation and Crystallization of Poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Thomas, David; Cebe, Peggy

    Polyvinyl alcohol (PVA) is a hydrophilic, biodegradable, semi-crystalline polymer with uses ranging from textiles to medicine. Film samples of PVA were investigated to assess crystallization and melting behavior during self-nucleation experiments, and thermal degradation, using differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis, respectively. TG results show that degradation occurred at temperatures close to the observed peak melting temperature of 223 C. Using conventional DSC, PVA was heated at a rate of 10 C/min to various self-nucleation temperatures, Ts, within its melting range, briefly annealed, cooled and reheated. Three distinct crystallization regimes were observed upon cooling, depending upon self nucleation temperature. At low values of Ts, below 227 C, PVA only partially melts; residual crystal anneals while new, less perfect crystals form during cooling. Between 228 C and 234 C, PVA was found to crystallize exclusively by self-nucleation. For Ts above 235 C the PVA melts completely. Fast scanning chip-based calorimetry was used to heat and cool at 2000 K/s, to prevent degradation. Results of self nucleation experiments using fast scanning and conventional DSC will be compared. NSF DMR-1206010.

  7. Electromagnetic and microwave-absorbing properties of magnetite decorated multiwalled carbon nanotubes prepared with poly(N-vinyl-2-pyrrolidone)

    SciTech Connect

    Zhao, Chunying; Zhang, Aibo; Zheng, Yaping; Luan, Jingfan

    2012-02-15

    Graphical abstract: The Fe{sub 3}O{sub 4}/MWNTs hybrids prepared with PVP achieve a maximum reflection loss is -35.8 dB at 8.56 GHz, and the bandwidth below -10 dB is more than 2.32 GHz. More importantly, a new reflection loss peak occurs at the frequency of 14.6 GHz, which indicates that the Fe{sub 3}O{sub 4}/MWNTs hybrids have better absorption properties in the high-frequency range. Highlight: Black-Right-Pointing-Pointer The Fe{sub 3}O{sub 4} decorated MWNTs hybrids were prepared using PVP as dispersant. Black-Right-Pointing-Pointer Many more Fe{sub 3}O{sub 4} particles were attached homogeneously on the surface of MWNTs. Black-Right-Pointing-Pointer The Fe{sub 3}O{sub 4}/MWNTs hybrids achieve a maximum reflection loss of -35.8 dB at 8.56 GHz. Black-Right-Pointing-Pointer A new reflection loss peak occurs at the high-frequency of 14.6 GHz. -- Abstract: The magnetite (Fe{sub 3}O{sub 4}) decorated multiwalled carbon nanotubes (MWNTs) hybrids were prepared by an in situ chemical precipitation method using poly(N-vinyl-2-pyrrolidone) (PVP) as dispersant. The structure and morphology of hybrids are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron-microscopy (TEM). The TEM investigation shows that the Fe{sub 3}O{sub 4}/MWNTs hybrids exhibit less entangled structure and many more Fe{sub 3}O{sub 4} particles are attached homogeneously on the surface of MWNTs, which indicated that PVP can indeed help MWNTs to disperse in isolated form. The electromagnetic and absorbing properties were investigated in a frequency of 2-18 GHz. The results show that the Fe{sub 3}O{sub 4}/MWNTs hybrids exhibit a superparamagnetic behavior and possess a saturation magnetization of 22.9 emu/g. The maximum reflection loss is -35.8 dB at 8.56 GHz, and the bandwidth below -10 dB is more than 2.32 GHz. More importantly, a new reflection loss peak occurs at the frequency of 14.6 GHz, which indicates that the Fe{sub 3}O{sub 4}/MWNTs

  8. [Monograph for N-Methyl-pyrrolidone (NMP) and human biomonitoring values for the metabolites 5-Hydroxy-NMP and 2-Hydroxy-N-methylsuccinimide].

    PubMed

    2015-10-01

    1-Methyl-pyrrolidone (NMP) is used as a solvent in many technical applications. The general population may be exposed to NMP from the use as ingredient in paint and graffiti remover, indoors also from use in paints and carpeting. Because of developmental toxic effects, the use of NMP in consumer products in the EU is regulated. The developmental effects accompanied by weak maternally toxic effects in animal experiments are considered as the critical effects by the German HBM Commission. Based on these effects, HBM-I values of 10 mg/l urine for children and of 15 mg/l for adults, respectively, were derived for the metabolites 5-Hydroxy-NMP and 2-Hydroxy-N-methylsuccinimide. HBM-II-values were set to 30 mg/l urine for children and 50 mg/l for adults, respectively. Because of similar effects of the structural analogue 1-ethyl-2-pyrrolidone (NEP), the possible mixed exposure to both compounds has to be taken into account when evaluating the total burden. PMID:26324095

  9. Enhancement of copolymerization of itaconic acid with N-vinyl 2-pyrrolidone by radiation in the presence of cross-linking agent

    NASA Astrophysics Data System (ADS)

    Şen, M.; Yakar, A.

    2005-06-01

    Enhancement of copolymerization of itaconic acid (IA) with N-vinyl 2-pyrrolidone (VP) by radiation in the presence of cross-linking agent was investigated. Hydrogels with varying IA content were prepared from the ternary systems N-vinyl 2-pyrrolidone/itaconic acid/water by irradiating with gamma-rays in the presence of a chemical cross-linker, ethylene glycol dimethacrylate (EGDMA) at ambient temperature. The incorporation of EGDMA into the ternary mixtures caused an increase in the amount of IA in the gel system up to a mole fraction of 13.7%. Hydrogels showed a typical pH response such as high pH swelling and low pH deswelling. Equilibrium volume swelling ratio at pH 7 was varied from 15-40 with changing the IA content in the gel system and irradiation dose. The equation recently modified by the authors for the determination of M is observed to describe the swelling behaviour of P(VP/IA/EGDMA) networks containing relatively higher amount of charged units very well. In addition to the evaluation of M from swelling data, the measurement of polymer solvent interaction parameter and the determination of the reaction yield of cross-links of the systems were examined.

  10. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone.

    PubMed

    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong

    2016-06-01

    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1kGy dose. PMID:27040205

  11. Quantifying the lubricity of mechanically tough polyvinyl alcohol hydrogels for cartilage repair.

    PubMed

    Ling, Doris; Bodugoz-Senturk, Hatice; Nanda, Salil; Braithwaite, Gavin; Muratoglu, Orhun K

    2015-12-01

    Polyvinyl alcohol hydrogels are biocompatible and can be used as synthetic articular cartilage. Their mechanical characteristics can be tailored by various techniques such as annealing or blending with other hydrophilic polymers. In this study, we quantified the coefficient of friction of various candidate polyvinyl alcohol hydrogels against cobalt-chrome alloy or swine cartilage using a new rheometer-based method. We investigated the coefficient of friction of polyvinyl alcohol-only hydrogels and blends with polyethylene glycol, polyacrylic acid, and polyacrylamide against swine cartilage and polished cobalt-chrome surfaces. The addition of the functional groups to polyvinyl alcohol, such as acrylamide (semi-interpenetrating network) and acrylic acid (blend), significantly reduced the coefficient of friction. The coefficient of friction of the polyvinyl alcohol-only hydrogel was measured as 0.4 ± 0.03 against cobalt-chrome alloy, and 0.09 ± 0.004 against cartilage, while those measurements for the polyvinyl alcohol-polyacrylic acid blends and polyvinyl alcohol-polyacrylamide semi-interpenetrating network were 0.07 ± 0.01 and 0.1 ± 0.003 against cobalt-chrome alloy, and 0.03 ± 0.001 and 0.02 ± 0.001 against cartilage, respectively. There was no significant or minimal difference in the coefficient of friction between samples from different regions of the knee, or animals, or when the cartilage samples were frozen for 1 day or 2 days before testing. However, changing lubricant from deionized water to ionic media, for example, saline or simulated body fluid, increased the coefficient of friction significantly. PMID:26614798

  12. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    PubMed

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. PMID:27153374

  13. Methods Of Making Pyrrolidones

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-12-30

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  14. Methods of making pyrrolidones

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-10-14

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  15. Methods of making pyrrolidones

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2004-03-16

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  16. Methods of making pyrrolidones

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-08-05

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  17. Polyvinyl alcohol-graft-polyethylene glycol hydrogels improve utility and biofunctionality of injectable collagen biomaterials.

    PubMed

    Hartwell, Ryan; Chan, Ben; Elliott, Keenan; Alnojeidi, Hatem; Ghahary, Aziz

    2016-01-01

    Collagen-based materials have become a staple in both research and the clinic. In wound care, collagen-based materials comprise a core gamut of biological dressings and therapeutic strategies. In research, collagen-based materials are employed in everything from 3D cultures to bioprinting. Soluble collagen is well characterized to undergo fibrillation at neutral pH and 37 °C. To remain stable, a neutralized collagen solution must be maintained at 4 °C. These physical characteristics of collagen impose limitations on its utility. In our previous work, we identified that the incorporation of a simple polyvinyl alcohol:borate hydrogel could improve the rate of collagen gel fibrillation. In this work we sought to further investigate the interactions of polyvinyl alcohol blend variants, as surfactant-like polymers, in comparison with known non-polymer surfactants. To conduct our investigations scaffold variants were created using increasing concentrations of polyvinyl alcohol, differing combinations of polymers, and non-polymer surfactants Tweens 20 and 80, and TritonX-100. Activation energy for collagen fibrillation was found to significantly decrease in the presence of polyvinyl alcohols (p  <  0.01) at and above 0.4%w/v concentration. Further, addition of polyvinyl alcohol-graft-polyethylene glycol had the greatest enhancement (2.02 fold) on the fibrillation kinetics (p  <  0.01), wetting properties and the stability of the collagen scaffolds post-freeze drying. Our results demonstrated that the addition of polyvinyl alcohol hydrogels to a collagen solution could stabilize collagen solution such that the solution could easily be lyophilized (at pH 7) and then reconstituted with water. Cells cultured in polyvinyl alcohol scaffolds also exhibited more organized F-actin, as well as a reduced abundance of pro-collagen and α-smooth actin. In conclusion, our results demonstrate for the first time that polyvinyl alcohol, preferably polyvinyl alcohol

  18. New holographic polymeric composition based on plexiglass, polyvinyl butyral, and phenanthrenquinone

    NASA Astrophysics Data System (ADS)

    Matusevich, Vladislav; Tolstik, Elen; Kowarschik, Richard; Egorova, Elena; Matusevich, Yuri I.; Krul, Leonid

    2013-05-01

    The newly developed Plexiglas films containing polyvinyl butyral resins and phenanthrenequinone molecules as photosensitive dopant, which are proposed for the practical application as interlayer of laminated safety glass, are shown for the first time. The injection of the phenanthrenequinone-poly(methyl methacrylate) into the polyvinyl butyral protective interlayer provides a homogenous distribution of the recording holographic medium in the layer and allows fixing the entire surface grating in the laminated glass. In addition, the original properties of polyvinyl butyral as a connecting material were preserved during manufacturing of the laminated glass. This allows a recording of holographic structures directly after baking of the laminated glass, thus reducing the destruction of the gratings due to the elevated temperatures. The diffractive structures in phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral polymeric layers with thicknesses of hundreds of microns are sealed between two panels of glass (so-called laminated glass) and are generated by illumination with an Argon-laser of 514 nm. Efficiently fixed and long-term stable holographic gratings recorded in the phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral layer enable to produce transparent laminated glass with inserted diffractive elements, which can be used e.g. for Head-up Displays in automobile windshields or as holographic light concentrators for solar cells.

  19. A study of local crankshaft-type mobility in vitreous polyvinyl chloride and polyacrylonitrile by the method of conformational probes

    NASA Astrophysics Data System (ADS)

    Kamalova, D. I.; Kolyadko, I. M.; Remizov, A. B.

    2009-12-01

    Secondary relaxation transitions and local conformational dynamics in polyacrylonitrile and polyvinyl chloride were studied by the method of conformational probes. Relaxation transitions at 210 and 260 K (polyvinyl chloride) and 165 K (polyacrylonitrile) were explained by freezing of “crankshaft-type” motions.

  20. Characterization and application of chondroitin sulfate/polyvinyl alcohol nanofibres prepared by electrospinning.

    PubMed

    Guo, Junxia; Zhou, Huitong; Akram, Muhammad Yasir; Mu, Xueyan; Nie, Jun; Ma, Guiping

    2016-06-01

    Composite nanofibres were prepared by electrospinning from a solution of chondroitin sulfate and polyvinyl alcohol. The chondroitin sulfate/polyvinyl alcohol (CS/PVA) mass ratios of 7/3 has a uniform and smooth morphology, and the average diameter of the nanofibres was 136nm. Combretastatin A-4 phosphate was loaded on the nanofibres and used as a model for testing drug release from the nanofibres crosslinked with glutaric dialdehyde. The morphology and structure of the nanofibres was determined using scanning electron microscopy. In order to assess their possible application to tissue engineering scaffolds, the toxicity and cytocompatibility of the nanofibres were tested by methylthiazolydiphenyl-tetrazolium bromide assay. PMID:27083365

  1. Structural and electronic properties of poly(vinyl alcohol) using density functional theory

    SciTech Connect

    Dabhi, Shweta Jha, Prafulla K.

    2014-04-24

    The first principles calculations have been carried out to investigate the structural, electronic band structure density of states along with the projected density of states for poly(vinyl alcohol). Our structural calculation suggests that the poly(vinyl alcohol) exhibits monoclinic structure. The calculated structural lattice parameters are in excellent agreement with available experimental values. The band structure calculations reveal that the direct and indirect band gaps are 5.55 eV and 5.363 eV respectively in accordance with experimental values.

  2. Effect of Hydroxyl Concentration on Chemical Sensitivity of Polyvinyl Alcohol/Carbon-Black Composite Chemiresistors

    SciTech Connect

    Hughes, Robert C.; Patel, Sanjay V.; Yelton, W. Graham

    1999-05-19

    The sensitivity and selectivity of polyvinyl alcohol (PVA) / carbon black composite films have been found to vary depending upon the hydroxylation percentage ("-OH") of the polymer. These chemiresistors made from PVA films whose polymer backbone is 88% hydroxylated (PVA88) have a high sensitivity to water, while chemiresistors made from PVA75 have a higher sensitivity to methanol. The minor differences in polymer composition result in films with different Hildebrand volubility parameters. The relative responses of several different PVA-based chemiresistors to solvents with different volubility parameters are presented. In addition, polyvinyl acetate (PVAC) films with PVA88 are used in an array to distinguish the responses to methanol-water mixtures.

  3. Synthesis and characterization of mesoporous poly(N-vinyl-2-pyrrolidone) containing palladium nanoparticles as a novel heterogeneous organocatalyst for Heck reaction

    NASA Astrophysics Data System (ADS)

    Kalbasi, Roozbeh Javad; Negahdari, Meysam

    2014-04-01

    Mesoporous poly(N-vinyl-2-pyrrolidone) (MPVP) was prepared through a nanocasting technique based on mesoporous silica KIT-6 as sacrificial templates, and served as an efficient scaffold for supporting Pd nanoparticles. The physical and chemical properties of Pd-MPVP were characterized using FT-IR, XRD, BET, DRS UV-Vis, SEM, TEM and TGA techniques. The application of this novel purely organic heterogeneous catalyst, which combine the advantage of organic polymers and mesoporous materials, was investigated for Csbnd C bond formation through the Heck coupling reaction of aryl iodides, bromides and chlorides with styrene. It was observed that the activity of this catalyst decreased just 5% after nine regeneration processes were performed. This unique result opens new perspectives for application of purely organic mesoporous polymers as structurally defined hydrophobic catalyst in catalytic reactions.

  4. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Haining; Lu, Shanfu; Guo, Zhibin; Rao, Siyuan; Xiu, Ruijie; Xiang, Yan

    2015-07-01

    A high-temperature proton exchange membrane, poly(ethersulphone)-poly(vinyl pyrrolidone) (PES-PVP) blend membrane is successfully prepared by scalable polymer blending method. The physical properties of blend membrane are characterized by DSC, TG and tensile strength test. The DSC and TG results indicate PES-PVP blend membranes possess excellent thermal stability. After phosphoric acid (PA) doping treatment, the blend membrane shows enhanced proton conductivity. PA doping level and volume swelling ratio of the blend membrane are found to be positively related to the PVP content. A high proton conductivity of 0.21 S/cm is achieved at 180 °C for PA doped PES-PVP 80% with a PA doping level of 9.1. PEM fuel cell based on PA doped PES-PVP 80% membrane shows a high power density of 850 mW/cm2 and outstanding stability at 180 °C without extra humidification.

  5. Antimicrobial Effect of An Essential Oil Blend on Surface-attached Salmonella on Polyvinyl Chloride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of drinking water lines for broilers are made of polyvinyl chloride (PVC) and surface attachment of Salmonella on the inner surface of water lines can be the initial stage of biofilm development. These biofilms can be the source of Salmonella infection in water lines and are known to re...

  6. Antimicrobial Effect of An Essential Oil Blend on Surface-attached Salmonella on Polyvinyl Chloride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyvinyl chloride (PVC) is basic material for drinking water lines for chickens. Inner surface of PVC pipe can be susceptible to surface-attachment of Salmonella, the 1st stage of biofilm development. Biofilm which can cause Salmonella infection to chickens are known to have great resistance agains...

  7. Mechanical properties and biocompatibility of co-axially electrospun polyvinyl alcohol/maghemite.

    PubMed

    Ngadiman, Nor Hasrul Akhmal; Mohd Yusof, Noordin; Idris, Ani; Kurniawan, Denni

    2016-08-01

    Electrospinning is a simple and efficient process in producing nanofibers. To fabricate nanofibers made of a blend of two constituent materials, co-axial electrospinning method is an option. In this method, the constituent materials contained in separate barrels are simultaneously injected using two syringe nozzles arranged co-axially and the materials mix during the spraying process forming core and shell of the nanofibers. In this study, co-axial electrospinning method is used to fabricate nanofibers made of polyvinyl alcohol and maghemite (γ-Fe2O3). The concentration of polyvinyl alcohol and amount of maghemite nanoparticle loading were varied, at 5 and 10 w/v% and at 1-10 v/v%, respectively. The mechanical properties (strength and Young's modulus), porosity, and biocompatibility properties (contact angle and cell viability) of the electrospun mats were evaluated, with the same mats fabricated by regular single-nozzle electrospinning method as the control. The co-axial electrospinning method is able to fabricate the expected polyvinyl alcohol/maghemite nanofiber mats. It was noticed that the polyvinyl alcohol/maghemite electrospun mats have lower mechanical properties (i.e. strength and stiffness) and porosity, more hydrophilicity (i.e. lower contact angle), and similar cell viability compared to the mats fabricated by single-nozzle electrospinning method. PMID:27194535

  8. 76 FR 30604 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... AGENCY 40 CFR Part 63 RIN 2060-AN33 National Emission Standards for Hazardous Air Pollutants for..., the proposed rule, National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and... regarding the EPA's proposed national emission standards for hazardous air pollutants, including data,...

  9. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  10. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase and lignocellulosic fibres, derived from sugarcane bagasse, apple and orange waste were moulded in a carver press in the presence of water and glycerol such as platicizers agents. Corn starch was introduced as a bio...

  11. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol.

    PubMed

    Nishiyabu, Ryuhei; Shimizu, Ai

    2016-07-28

    We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions. PMID:27311634

  12. 77 FR 22847 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ..., 2007 (72 FR 2930), the EPA promulgated NESHAP for new and existing PVC production area sources in 40... (67 FR 45886, July 10, 2002) (referred to as the ``part 63 NESHAP''). In that rulemaking, the EPA... Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production; Final Rule #0;#0;Federal...

  13. Neutron attenuation characteristics of polyethylene, polyvinyl chloride, and heavy aggregate concrete and mortars

    SciTech Connect

    Abdul-Majid, S.; Othman, F.

    1994-03-01

    Polyethylene and polyvinyl chloride pellets were introduced into concrete to improve its neutron attenuation characteristics while several types of heavy coarse aggregates were used to improve its gamma ray attenuation properties. Neutron and gamma ray attenuation were studied in concrete samples containing coarse aggregates of barite, pyrite, basalt, hematite, and marble as well as polyethylene and polyvinyl chloride pellets in narrow-beam geometry. The highest neutron attenuation was shown by polyethylene mortar, followed by polyvinyl chloride mortar; barite and pyrite concrete showed higher gamma ray attenuation than ordinary concrete. Broad-beam and continuous (infinite) medium geometries were used to study the neutron attenuation of samples containing polymers at different concentrations with and without heavy aggregates, the fitting equations were established, and from these the neutron removal coefficients were deduced. In a radiation field of neutrons and gamma rays, the appropriate concentration of polymer and heavy aggregate can be selected to give the optimum total dose attenuation depending on the relative intensities of each type of radiation. This would give much better design flexibility over ordinary concrete. The compressive strength tests performed on mortar and concrete samples showed that their value, in general, decreases as polymer concentration increases and that the polyvinyl chloride mortar showed higher values than the polyethylene mortar. For general construction purposes, the compression strength was considered acceptable in these samples. 34 refs., 16 figs., 4 tabs.

  14. Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride tedlar bags

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole air sampling using containers such as flexible bags or rigid canisters is commonly used to collect samples of volatile organic compounds (VOC) in air. The objective of this study was to compare the stability of polyester aluminum (PEA) and polyvinyl fluoride (PVF, brand name Tedlar®) bags for ...

  15. Recovery of agricultural odors and odorous compounds from polyvinyl fluoride film bags

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate sampling methods are necessary when quantifying odor and volatile organic compound emissions at agricultural facilities. The commonly accepted methodology in the U.S. has been to collect odor samples in polyvinyl fluoride bags (PVF, brand name Tedlar®) and, subsequently, analyze with human ...

  16. 78 FR 39256 - Polyvinyl Alcohol From Taiwan: Rescission of Antidumping Duty Administrative Review; 2012-2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... FR 13858 (March 1, 2013). \\2\\ See Initiation of Antidumping and Countervailing Duty Administrative Reviews and Request for Revocation in Part, 78 FR 25418 (May 1, 2013). On May 24, 2013, CCPC withdrew its... International Trade Administration Polyvinyl Alcohol From Taiwan: Rescission of Antidumping Duty...

  17. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications

    PubMed Central

    Nadeem, Muhammad; Ahmad, Munir; Akhtar, Muhammad Saeed; Shaari, Amiruddin; Riaz, Saira; Naseem, Shahzad; Masood, Misbah; Saeed, M. A.

    2016-01-01

    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery. PMID:27348436

  18. The Rheological Properties of Poly(Vinyl Alcohol) Gels from Rotational Viscometry

    ERIC Educational Resources Information Center

    Hurst, Glenn A.; Bella, Malika; Salzmann, Christoph G.

    2015-01-01

    A laboratory experiment was developed to follow the gelation of a polyvinyl alcohol (PVA) solution upon addition of borax by using rotational viscometry. The rheological properties of the gel were examined, measuring the dependence of viscosity and shear stress on the shear rate. Time-dependent studies were also conducted in which the viscosity of…

  19. Orientational photorefractive effects observed in poly(vinyl alcohol)/liquid crystal composites

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Saito, Isao; Kawatsuki, Nobuhiro

    1998-04-01

    We successfully observed orientational photorefractive gratings generated in poly(vinyl alcohol) (PVA)/liquid crystal (LC) composites doped with a fullerene (C60) as a photoconductive sensitizer under an applied dc field. Orientational photorefractivity was demonstrated by observing Raman-Nath diffraction beams with an external dc field. The photorefractive gratings were partially memorized even in the absence of the applied dc field.

  20. Electrospun nanofibers of poly(vinyl alcohol)reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly(vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on mor...

  1. Linear Dichroism of Cyanine Dyes in Stretched Polyvinyl Alcohol Films: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Natarajan, L. V.; And Others

    1983-01-01

    Provides background information, procedures, and results of an undergraduate physical chemistry experiment on the polarization of absorption spectra of cyanine dyes in stretched polyvinyl alcohol films. The experiment gives a simple demonstration of the concept of linear dichromism and the validity of the TEM method used in the analyses. (JN)

  2. Compatibility of Polyvinyl Alcohol with the 241-F/H Tank Farm Liquid Waste

    SciTech Connect

    Oji, L.N.

    1998-11-25

    This report describes results from laboratory-scale oxidative mineralization of polyvinyl alcohol (PVA), and the evaluation of the F/H Tank Farms as a storage/disposal option for PVA waste solution generated in the Canyons and B-line decontamination operations.

  3. Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment

    SciTech Connect

    Oji, L.N.

    1999-08-31

    The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

  4. Oxidative mineralization and characterization of polyvinyl alcohol for compatibility with tank farm processing chemistry

    SciTech Connect

    Oji, L.N.

    2000-01-04

    Polyvinyl alcohol (PVA) material has been evaluated for use as a cost-effective substitute for conventional cellulose-based disposal materials (decontamination mops and wipes), plastic bags, and disposable personal protection clothing, that are currently used at Savannah River Site. This study also provides process design criteria for ultraviolet/ultrasonic/hydrogen peroxide PVA reactor system.

  5. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. 61.65 Section 61.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission...

  6. Films from spruce galactoglucomannan blended with poly(vinyl alcohol), corn arabinoxylan and konjac glucomannan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The improvement of mechanical properties of spruce galactoglucomannan (GGM)-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and konjac glucomannan (KGM). The blend ratios were 3:1, 1:1, and 1:3(w/w), and in addition films were made from each o...

  7. 78 FR 20890 - Polyvinyl Alcohol From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... established in the Antidumping Duty Order: Polyvinyl Alcohol From Taiwan, 76 FR 13982 (March 15, 2011). These... Assessment Rate in Certain Antidumping Proceedings: Final Modification, 77 FR 8101, 80102 (February 14, 2012... Countervailing Duty Proceedings: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003). We intend to...

  8. FOAMED ARTICLES BASED ON POTATO STARCH, CORN AND WHEAT FIBRE, AND POLY(VINYL ALCOHOL)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continued research cooperation between USDA Laboratories (USA) and the University of Pisa, Italy, has yielded several composites based on blends of poly(vinyl alcohol) (PVA) and either corn or wheat fibres, co-product of the corn-wheat wet-milling process. Foam trays were prepared by baking the blen...

  9. An evaluation of the biocompatibility properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application.

    PubMed

    Hayes, Jennifer C; Kennedy, James E

    2016-02-01

    The treatment of irreparable knee meniscus tears remains a major challenge for the orthopaedic community. The main purpose of this research was to analyse the biocompatibility properties of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous polyvinyl alcohol was treated with a sodium sulphate solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. Cytotoxicological analysis indicates that PVA/sodium sulphate hydrogels display a non-toxic disposition and were found to be compatible with the L929 fibroblast cell line. PMID:26652445

  10. Synthesis and characterization of Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 nanocomposite as a polymer-inorganic hybrid catalyst for the Suzuki-Miyaura cross-coupling reaction

    SciTech Connect

    Kalbasi, Roozbeh Javad; Mosaddegh, Neda

    2011-11-15

    Composite poly(N-vinyl-2-pyrrolidone)/KIT-5 (PVP/KIT-5) was prepared by in situ polymerization method and used as a support for palladium nanoparticles obtained through the reduction of Pd(OAc){sub 2} by hydrazine hydrate. The physical and chemical properties of the catalyst were investigated by XRD, FT-IR, UV-vis, TG, BET, SEM, and TEM techniques. The catalytic performance of this novel heterogeneous catalyst was determined for the Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acid in the presence of water at room temperature. The stability of the nanocomposite catalyst was excellent and could be reused 8 times without much loss of activity in the Suzuki-Miyaura cross-coupling reaction. - Graphical Abstract: Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 was prepared as an organic-inorganic hybrid catalyst for the Suzuki-Miyaura reaction. The stability of the catalyst was excellent and could be reused 8 times in the Suzuki-Miyaura reaction. Highlights: > Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 was prepared as a novel nanocomposite. > Nanocomposite was prepared based on a cage-type mesoporous system. > Catalyst showed excellent activity for Suzuki-Miyaura reaction in water. > Stability of the catalyst was excellent and could be reused 8 times.

  11. Infrared absorption and vibrational circular dichroism spectra of poly(vinyl ether) containing diastereomeric menthols as pendants

    NASA Astrophysics Data System (ADS)

    McCann, Jennifer L.; Rauk, Arvi; Wieser, Hal

    1997-06-01

    The absorption and vibrational circular dichroism (VCD) spectra in the 1700 to 830 cm -1 region are reported and qualitatively interpreted for poly(vinyl ether) with (+)-menthol (I), (+)-isomenthol (II) and (+)-neomenthol (III) as pendants.

  12. Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Malikov, E. Y.; Muradov, M. B.; Akperov, O. H.; Eyvazova, G. M.; Puskás, R.; Madarász, D.; Nagy, L.; Kukovecz, Á.; Kónya, Z.

    2014-07-01

    Multiwalled carbon nanotubes were synthesized by chemical vapor deposition over an Fe-Co/alumina catalyst. Nanotubes were then oxidized and grafted with polyvinyl alcohol (PVA). The obtained nanostructure was characterized by Raman spectroscopy, XRD, FTIR, EDX, SEM, TEM and TGA methods. FTIR confirmed the presence of the characteristic peaks of the anticipated ester group. The formation of polymer nanocomposites based on polyvinyl alcohol and multiwalled carbon nanotubes was confirmed by SEM and TEM. High resolution electron micrographs revealed that the primary binding sites for PVA grafting are the sidewall defects of the nanotubes. The novelty of this work is the use of the Fischer esterification reaction for creating the permanent link between the nanotubes and the PVA matrix.

  13. Poly(vinyl alcohol)/poly(vinyl chloride) composite polymer membranes for secondary zinc electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Yang, Jen Ming; Wu, Cheng-Yeou

    A microporous composite polymer membrane composed of poly(vinyl alcohol) (PVA) and poly(vinyl chloride) (PVC), was prepared by a solution casting method and a partial dissolution process. The characteristic properties of microporous PVA/PVC composite polymer membranes containing 2.5-10 wt.% PVC polymers as fillers were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), capillary flow porometry (CFP), micro-Raman spectroscopy, dynamic mechanical analyzer (DMA) and the AC impedance method. The electrochemical properties of a secondary Zn electrode with the PVA/PVC composite polymer membrane were studied using the galvanostatic charge/discharge method. The PVA/PVC composite polymer membrane showed good thermal, mechanical and electrochemical properties. As a result, the PVA/PVC composite polymer membrane appears to be a good candidate for use on the secondary Zn electrodes.

  14. Bonding, vibrational, and electrical characteristics of CdS nanostructures embedded in polyvinyl alcohol matrix

    SciTech Connect

    Mondal, S. P.; Dhar, A.; Ray, S. K.; Chakraborty, A. K.

    2009-04-15

    CdS nanocomposites have been grown in polyvinyl alcohol matrix by a chemical synthesis process. The transmission electron micrographs of nanocomposites synthesized at 70-90 deg. C temperature showed the growth of needlelike and junctionlike nanostructures. X-ray photoelectron spectroscopy analysis revealed the growth of stoichiometric CdS without the formation of any intermediate phases at the CdS-polyvinyl alcohol interface. Raman spectra of first order longitudinal optical phonon peak has been analyzed using phonon dispersion model to detect the surface phonon modes in CdS nanoneedles and wires. The origin of negative differential resistance behavior in current-voltage characteristics for junctionlike CdS nanocomposites has been discussed.

  15. In-situ cross linking of polyvinyl alcohol. [application to battery separator films

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1981-01-01

    A method of producing a crosslinked polyvinyl alcohol structure, such as a battery separator membrane or electrode envelope is described. An aqueous solution of a film-forming polyvinyl alcohol is admixed with an aldehyde crosslinking agent a basic pH to inhibit crosslinking. The crosslinking agent, perferably a dialdehyde such as glutaraldehyde, is used in an amount of from about 1/2 to about 20% of the theoretical amount required to crosslink all of the hydroxyl groups of the polymer. The aqueous admixture is formed into a desired physical shape, such as by casting a sheet of the solution. The sheet is then dried to form a self-supporting film. Crosslinking is then effected by immersing the film in aqueous acid solution. The resultant product has excellent properties for use as a battery separator.

  16. Sorption of boric acid by hydroxylic sorbents synthesized from polyvinyl alcohol and polyvinylene glycol

    SciTech Connect

    Kisel'gof, G.V.; Arkhangel'skii, L.K.; Bochkova, N.A.

    1986-10-10

    It has been shown that sorbents synthesized from polyvinyl alcohol (PVA) and polyvinyl glycol (PVG) are the most effective agents for extraction of boron from natural waters and brines. The action of such sorbents is based on the ability of boric acid to form stable complexes with polyhydroxy compounds. In this work the authors studied hydroxylic sorbents differing in OH-group contents and in the amounts and nature of the cross-linking agent. The principal characteristics of the sorbents studied are given. The theoretical capacity was calculated on the assumption that the structural unit sorbing one boric acid molecule is -CH/sub 2/-CHOH-CH/sub 2/CHOH- in PVA and -CHOH-CHOH- in PVG.

  17. Effect of the age of the C{sub 60}/N-methyl-2-pyrrolidone solution on the structure of clusters in the C{sub 60}/N-methyl-2-pyrrolidone/water system according to the small-angle neutron scattering data

    SciTech Connect

    Aksenov, V. L. Avdeev, M. V.; Kyzyma, E. A.; Rosta, L.; Korobov, M. V.

    2007-05-15

    Fullerene clusters in the C{sub 60}/N-methyl-2-pyrrolidone (NMP)/water system have been investigated by small-angle neutron scattering. It is shown that the scattering cross section corresponding to the size range 10-100 nm depends on the water content in the mixture. Addition of water to a C{sub 60}/NMP solution in an amount exceeding 40% leads to a sharp increase in the average scattering cross section. This effect depends on the interval between the times of preparation of a C{sub 60}/NMP solution and its dilution with water: the size of the clusters formed as a result of adding water increases with increasing the age of the initial solution. The reasons for this effect are discussed.

  18. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride)

    PubMed Central

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2012-01-01

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively. PMID:24958543

  19. Vinyl chloride and polyvinyl chloride: Toxicology. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning the toxicity of vinyl chloride and polyvinyl chloride following short- and long-term exposure. The citations explore how these compounds are metabolized and consider their carcinogenic and teratogenetic potential. Methodologies to quantitate their presence in atmospheric dust and body tissues are discussed. Occupational hazards are also noted.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Preparation of the poly(vinyl alcohol)/layered double hydroxide nanocomposite

    SciTech Connect

    Li Baoguang; Hu Yuan; Zhang Rui; Chen Zuyao; Fan Weicheng

    2003-10-01

    Intercalated nanocomposite based on Mg, Al layered double hydroxide (LDH) and poly(vinyl alcohol) (PVA) was prepared using exfoliation-adsorption technique, and characterized by X-ray diffraction and thermal gravimetric analysis. The results suggest that the intercalated species are formed via the re-aggregation of the delaminated LDH lamellar with the interlayer spacing 14.5 A, and the thermal stability of the nanocomposite improved compared with the original PVA.

  1. Development of a Hypertrophic Ovarian Artery After Uterine Artery Embolization with Polyvinyl Alcohol Particles

    SciTech Connect

    Kim, Hyun S. Paxton, Ben E.

    2007-09-15

    Uterine artery embolization (UAE) for the treatment of symptomatic leiomyomata has shown excellent short-term clinical efficacy and minimal complications, yet recurrences after successful treatments at mid- and long-term follow-up have been reported. Exact etiologies for such recurrences have not been fully understood. We present a case of symptom recurrence with the development of a hypertrophic ovarian artery after successful UAE with polyvinyl alcohol particles, successfully treated with ovarian and repeat UAEs.

  2. Analysis of holographic reflection gratings recorded in polyvinyl alcohol/acrylamide photopolymer.

    PubMed

    Fernandez, Elena; Perez-Molina, Manuel; Fuentes, Rosa; Ortuño, Manuel; Neipp, Cristian; Belendez, Augusto; Pascual, Inmaculada

    2013-03-10

    Holographic reflection gratings in a polyvinyl alcohol/acrylamide based photopolymer were stored using symmetrical geometry in three different thicknesses of the material. The advantage of symmetrical geometry is that exact expressions for transmittance, reflectance, and electric fields can be obtained analytically. Using these expressions, experimental data were fitted to obtain parameters such as refractive index modulation, spatial period of the grating, optical thickness or shrinkage of the material. PMID:23478760

  3. Study of Memory Alignment of Nematic Liquid Crystals on Polyvinyl Alcohol Coatings

    NASA Astrophysics Data System (ADS)

    Vetter, Peter; Ohmura, Yoshinori; Uchida, Tatsuo

    1993-09-01

    Polymer layers can cause memory alignment of nematic liquid crystals. We describe an experimental method to characterize this effect. We studied the temperature dependence of the memory alignment on polyvinyl alcohol coatings. We also investigated the influence of the time span during which the memory alignment is generated. We propose an adsorption-desorption mechanism by which we can explain our observations in a reasonable way.

  4. Influence of water dilution on percutaneous absorption of N-vinyl-2-pyrrolidone in vivo and ex vivo in rats and ex vivo in humans.

    PubMed

    Marquet, Fabrice; Payan, Jean-Paul; Beydon, Dominique; Wathier, Ludivine; Ferrari, Elisabeth; Grandclaude, Marie-Christine

    2015-11-01

    N-vinyl-2-pyrrolidone (NVP) is mainly used as a monomer in the production of polyvinylpyrrolidone or copolymers. Percutaneous absorption is an important source of exposure in the work environment. However, few studies have investigated this route of absorption. In this study, percutaneous absorption of neat or aqueous NVP solutions was measured in vivo and ex vivo in rats, and ex vivo in humans. Penetration and absorption fluxes were very similar following in vivo exposure to neat NVP (0.54 and 0.43 mg/cm(2)/h, respectively). Exposing rats to a 50% aqueous solution of NVP increased both fluxes threefold (to 1.48 and 1.55 mg/cm(2)/h, respectively). Ex vivo, the absorption flux increased with solutions from 10 to 25% of NVP, reached a plateau (between 25 and 50% in rat, 25 and 75% in human) and then decreased with neat NVP. In vivo and ex vivo absorption fluxes measured using rat skin were similar, supporting the hypothesis that the ex vivo measurements were a good representation of what was observed in vivo. Thus, for humans, the ex vivo measurements are likely the same as would be determined in vivo. PMID:25160662

  5. Direct synthesis and characterizations of fct-structured FePt nanoparticles using poly(N-vinyl-2-pyrrolidone) as a protecting agent.

    PubMed

    Iwamoto, Takashi; Matsumoto, Kinya; Matsushita, Toru; Inokuchi, Makoto; Toshima, Naoki

    2009-08-15

    FePt alloy in a bulk state is well known as a magnetic material. FePt nanoparticles, which are protected by poly(N-vinyl-2-pyrrolidone) (PVP) and have a face-centered tetragonal (fct) structure at a size of a few nanometers in diameter, have been directly synthesized by a polyol process in high-boiling point tetraethylene glycol used as a reducing reagent for the reduction of Fe(III) acetylacetonate and Pt(II) acetylacetonate. Their magnetic properties (coercivity and saturation magnetization) were dependent on the size and made progress as their diameters increased. The size in diameter was easily controlled by altering the content of PVP, the time for refluxing, and reaction temperature. FePt nanoparticles showed diameter-dependent coercivities at room temperature and they abruptly increased at over 4 nm in diameter. Ferromagnetic FePt nanoparticles with an fct structure were also synthesized at relatively low reaction temperature without refluxing. Likewise, as-synthesized FePt nanoparticles prepared by refluxing at 251 degrees C for 3 h displayed the fct structure and clearly indicated the ferromagnetism at room temperature. Reaction kinetics such as long refluxing time and slow temperature elevation rate were found to be important key factors to synthesize the ferromagnetic FePt nanoparticles although the reaction temperature was very critical as well. PMID:19476950

  6. A study of the swelling and model protein release behaviours of radiation-formed poly(N-vinyl 2-pyrrolidone-co-acrylic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Wang, David; Hill, David J. T.; Rasoul, Firas; Whittaker, Andrew K.

    2011-02-01

    Hydrogels were prepared from poly(acrylic acid-co-N-vinyl pyrrolidone), poly(AA-co-VP) and mixtures of poly(AA-co-VP) and poly(ethylene oxide), PEO, by gamma radiolysis of aqueous solutions of the AA and VP monomers containing ethylene glycol dimethacrylate, EGDMA, as crosslinker and PEO. The AA/VP composition range of the poly(AA-co-VP) was XAA 0.7-0.9. The swelling behaviours of the hydrogels from the dry state were investigated in water (pH 6.5) and 50 mM 4-(2-hydroxyethyl)piperazine-1-ethylsulfonic acid buffer, HEPES buffer, at pH 7.4 and 295 K. The effects of poly(AA-co-VP) composition, crosslinker mole fraction and the presence of PEO on the equilibrium swelling ratio for the gels was examined. The kinetics of the release of a model protein, horseradish peroxidase, HRP, from the hydrogels in water were also studied at 295 K.

  7. Zinc l-pyrrolidone carboxylate inhibits the UVA-induced production of matrix metalloproteinase-1 by in vitro cultured skin fibroblasts, whereas it enhances their collagen synthesis.

    PubMed

    Takino, Y; Okura, F; Kitazawa, M; Iwasaki, K; Tagami, H

    2012-02-01

    Reduced collagen matrix in the dermis constitutes one of the characteristic features of chronologically aged skin, which is further enhanced on the sun-exposed portions of the body by chronic ultraviolet light (UV) irradiation, inducing the unique changes associated with skin photoageing. The zinc salt of l-pyrrolidone carboxylate (Zinc PCA) has long been used as a cosmetic ingredient, because of its astringent and anti-microbial properties. In the present study, by employing cultured normal human dermal fibroblasts, we found that Zinc PCA suppressed UVA-induced activation of activator protein-1 (AP-1) and reduced matrix metalloproteinase-1 production in these cells, which is thought to be involved in collagen degradation in photoaged skin. Moreover, Zinc PCA treatment of the cells increased the expression of an ascorbic acid transporter mRNA, SVCT2, but not SVCT1, resulting in the enhanced production of type I collagen. Based on these in vitro findings, we consider Zinc PCA to be a promising candidate for an anti-skin ageing agent. PMID:21834944

  8. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation.

    PubMed

    Eghbalifam, Naeimeh; Frounchi, Masoud; Dadbin, Susan

    2015-09-01

    Polyvinyl alcohol/sodium alginate/nano silver (PVA/SA/Ag) composite films were made by solution casting method. Gamma irradiation was used to synthesize silver nanoparticles in situ via reduction of silver nitrate without using harmful chemical agents for biomedical applications. UV-vis and XRD results demonstrated that spherical silver nanoparticles were produced even at low irradiation dose of 5 kGy. By increasing irradiation dose, more nanoparticles were synthesized while no PVA hydrogel was formed up to 15 kGy. Also the size of nanoparticles was reduced with increasing gamma dose evidenced by higher release rate of silver nanoparticles in lukewarm water and SEM images. Comparing SEM images with DLS results indicated good performance of PVA/SA as an efficient stabilizer in preventing agglomeration of the silver nanoparticles. Good miscibility of polyvinyl alcohol and sodium alginate observed on the SEM images was supported with FTIR spectroscopy. Upon addition of sodium alginate to polyvinyl alcohol and increasing silver nanoparticles, the melting peak shifted to lower temperature and crystallinity percent was decreased. Addition of sodium alginate led to remarkable increase in rigidity of PVA. The composites exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli even at very low level of silver nanoparticles. PMID:26123816

  9. Determination of residual vinyl chloride in polyvinyl chloride, vinyl chloride copolymers, and articles from polyvinyl chloride by the method of equilibrium vapor analysis

    SciTech Connect

    Kalmykova, T.A.; Konstantinova, E.I.; Lazaris, A. Ya.

    1985-11-01

    In connection with the fact that vinyl chloride (VC) has carcinogenic properties, norms for its content both in the work place and also in polyvinyl chloride (PVC) and articles made from it have been sharply reduced. The method of equilibrium vapor analysis (EVA) has been used to determine vinyl chloride; this is carried out with the aid of devices for automatic metering. In the present work, the authors have investigated the possibility of applying the EVA method to PVC resins, VC copolymers, and articles made of PVC with the objective of developing universal methods of analyzing such objects. A two-stage separation is used in which the sample is preliminarily separated in a fore-column. The separation was worked out on the model mixture of methyl chloride-VC-ethyl chloride. The limit of VC detection is shown to be 5 x 10/sup -6/ to 5 x 10/sup -7/% by wt.

  10. Conducting polymer blends: Polypyrrole and polythiophene blends with polystyrene, polycarbonate resin, poly(vinyl alcohol) and poly(vinyl methyl ketone)

    SciTech Connect

    Wang, H.L.

    1992-01-01

    Various aromatic compounds can be polymerized by electrochemical oxidation in solution containing a supporting electrolyte. Most studies have been devoted to polypyrrole and polythiophene. In situ doping during electrochemical polymerization yields free standing conductive polymer film. One major approach to making conducting polymer blends is electrochemical synthesis after coating the host polymer on a platinum electrode. In the electrolysis of pyrrole or thiophene monomer, using (t-Bu[sub 4]N)BF[sub 4] as supporting electrolyte, and acetonitrile as solvent, monomer can diffuse through the polymer film, to produce a polypyrrole or polythiophene blend in the film. Doping occurs along with polymerization to form a conducting polymer alloy. The strongest molecular interaction in polymers, and one that is central to phase behavior, is hydrogen bonding. This mixing at the molecular level enhances the degree of miscibility between two polymers and results in macroscopic properties indicative of single phase behavior. In this dissertation, the authors describes the syntheses of conducting polymer blends: polypyrrole and polythiophene blends with polystyrene, poly(bisphenol-A-carbonate), polyvinyl alcohol and poly(vinyl methyl ketone). The syntheses are performed both electrochemically and chemically. Characterization of these blends was carried out by Fourier Transform Infrared spectroscopy, Differential Scanning Calorimetry, Thermogravimetric Analysis, Scanning Electron Microscopy, and X-ray diffraction. Percolating threshold conductivities occur from 7% to 20% for different polymer blends. The low threshold conductivity is attributed to blend homogeneity enhanced by hydrogen bonding between the carbonyl group in the insulating polymer and the N-H group in polypyrrole. Thermal stability, environmental stability, mechanical properties, crystallinity and morphological structure are also discussed. The authors have also engaged in the polymerization of imidazoles.

  11. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    DOE PAGESBeta

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-03-11

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less

  12. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: influence of NaOH on the organic decomposition.

    PubMed

    Zhang, Jie; Wang, Shuzhong; Guo, Yang; Xu, Donghai; Gong, Yanmeng; Tang, Xingying

    2013-08-01

    Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. However, it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment. Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol. It appears that the OH- ion participated in the C-C bond cleavage of polyvinyl alcohol molecules, the CO2-capture reaction and the neutralization of intermediate organic acids, promoting the overall reactions moving in the forward direction. Acetaldehyde was a typical intermediate product during reaction. For supercritical water oxidation of desizing wastewater, a high destruction rate (98.25%) based on total organic carbon was achieved. In addition, cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment, but salt precipitation and blockage issues arising during the process need to be taken into account seriously. PMID:24520696

  13. Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Hong, Seok-Cheol; Zhuang, Xiaowei; Goto, Tomohisa; Shen, Y. R.

    2000-10-01

    Sum-frequency vibrational spectroscopy and second-harmonic generation have been used to measure the orientational distributions of the polymer chains and adsorbed 8CB liquid crystal molecules on a rubbed polyvinyl alcohol surface. Results show that the polymer chains at the surface appear to be well aligned by rubbing, and the adsorbed liquid crystal molecules are aligned, in turn, by the surface polymer chains. Strong correlation exists between the orientational distributions of the polymer chains and the liquid crystal molecules, indicating that the surface-induced bulk alignment of a liquid crystal film by rubbed polymer surfaces is via an orientational epitaxylike mechanism.

  14. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  15. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  16. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach

    NASA Astrophysics Data System (ADS)

    Ger, Tzong-Rong; Huang, Hao-Ting; Huang, Chen-Yu; Hu, Keng-Shiang; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

    2014-05-01

    Electrospinning technique was used to fabricate polyvinyl alcohol (PVA)-based magnetic biodegradable nanofibers. PVA solution was mixed with ferrofluid or magnetic nanoparticles (MNPs) powder and formed two individual nanofibrous membranes (PVA/ferrofluid and PVA/MNPs powder) by electrospinning. The surface morphology of the nanofibrous membrane was characterized by scanning electron microscopy and the magnetic properties were measured by vibrating sample magnetometer. Macrophages (RAW 264.7) were co-cultured with the nanofibrous membranes for 12, 24, and 48 h and exhibited good cell viability (>95%). Results showed that the PVA fibers would be degraded and the embedded Fe3O4 nanoparticles would be released and delivered to cells.

  17. Role of metal oxides in the thermal degradation of poly(vinyl chloride)

    SciTech Connect

    Gupta, M.C.; Viswanath, S.G.

    1998-07-01

    Thermal degradation of poly(vinyl chloride) has been studied in the presence of metal oxides by a thermogravimetric method. It follows a two-step mechanism. In the first step chlorine free radical is formed as in the case of pure PVC, and in the second step chlorine free radical replaces oxygen from metal oxide to form metal chloride and oxygen free radical. Subsequently, the oxygen free radical abstracts hydrogen from PVC. Formation of metal chloride is the rate-controlling step. The metal chlorides formed during the thermal degradation either volatilize or decompose simultaneously to lower metallic chlorides depending on the boiling point or the volatilization temperature.

  18. Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Bello, Abdulhakeem; Fabiane, Mopeli; Khamlich, Saleh; Momodu, Damilola; Taghizadeh, Fatemeh; Dangbegnon, Julien; Manyala, Ncholu

    2015-02-01

    We report on the synthesis and characterization of electrospun polyvinyl alcohol (PVA)/graphene nanofibers. The samples produced were characterized by Raman spectroscopy for structural and defect density analysis, scanning electron microscopy (SEM) for morphological analysis, and thermogravimetric (TGA) for thermal analysis. SEM measurements show uniform hollow PVA fibers formation and excellent graphene dispersion within the fibers, while TGA measurements show the improved thermal stability of PVA in the presence of graphene. The synthesized polymer reinforced nanofibers have potential to serve in many different applications such as thermal management, supercapacitor electrodes and biomedical materials for drug delivery.

  19. Red-green-blue laser emissions from dye-doped poly(vinyl alcohol) films.

    PubMed

    Yap, Seong-Shan; Siew, Wee-Ong; Tou, Teck-Yong; Ng, Seik-Weng

    2002-03-20

    A microscope slide acting as a passive waveguide was coated by three separate poly(vinyl alcohol) films that were doped with Coumarin 460, Disodium Fluorescein, and Rhodamine 640 perchlorate. On collinear pumping by a nitrogen laser, these dyes furnished primary red-green-blue laser emissions that were collected and waveguided by the microscope slide but exited from both ends. Frosting the waveguide exit introduced light scattering at the glass-air interface and spatially overlaid the red-green-blue laser emissions that emerged as a uniform white-light beam. PMID:11921803

  20. Flexible polyvinyl chloride neutron guides for transporting ultracold and very cold neutrons

    SciTech Connect

    Arzumanov, S. S. Bondarenko, L. N.; Geltenbort, P.; Morozov, V. I.; Nesvizhevsky, V. V.; Panin, Yu. N.; Strepetov, A. N.; Chuvilin, D. Yu.

    2011-12-15

    The transmission of ultracold neutrons (UCNs) through flexible polyvinyl chloride (PVC) tubes with lengths of up to 3 m and an internal diameter of 6-8 mm has been studied. High UCN transmission is found even for arbitrarily bent tubes (single bend, double bend, triple bend, figure eight, etc.). The transmission can be improved significantly by coating the inner surface of the tube with a thin layer of liquid fluorine polymer. The prospects of these neutron guides in fundamental and applied research are discussed.

  1. Suppression of instability by double ablation in tungsten doped polyvinyl alcohol foils

    NASA Astrophysics Data System (ADS)

    Peedikakkandy, Leshma; Chaurasia, S.

    2012-07-01

    In Inertial fusion Energy (IFE) research stable acceleration of fusion targets is a significant problem due to hydrodynamic instabilities. This paper presents the results of the experiments done to investigate the effects of doping 20% of Tungsten (W) (by weight) in Polyvinyl Alcohol (PVA) polymer foils for suppression of instability during laser ablative acceleration. A 20J, 1.060μm, 900ps, Nd: Glass laser system with a focusable intensity of 3 to 9.6×1013W/cm2 was used in the experiment. It is observed that the doped PVA targets yielded stable and enhanced foil acceleration as compared to the undoped PVA foils.

  2. Molecular vibrational dynamics in polyvinyl alcohol studied by femtosecond coherent anti-stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kozai, T.; Yamashita, S.; Hirochi, K.; Miyagawa, H.; Tsurumachi, N.; Koshiba, S.; Nakanishi, S.; Itoh, H.

    2012-11-01

    We have performed femtosecond time-resolved coherent anti-stokes Raman spectroscopy (CARS) to study the vibrational dynamics in polyvinyl alcohol (PVA) film. We observed femtosecond coherent vibrational relaxation and CARS signal beats in PVA at room temperature. We found that the coherent vibrational relaxation of anti-symmetric CH2 stretching modes in PVA is faster than that of symmetric modes, probably due to faster vibrational energy transfer. The coherent vibrational relaxation of OH stretching modes was observed to be slower than that of CH2 modes, because OH stretching modes have less resonant energy transfer rate compared to CH2 modes.

  3. Physical properties of gamma irradiated poly(vinyl alcohol) hydrogel preparations

    NASA Astrophysics Data System (ADS)

    Mondino, A. V.; González, M. E.; Romero, G. R.; Smolko, E. E.

    1999-08-01

    Poly(vinyl alcohol) films from 15% w/w aqueous solutions and a thickness of 0.2 mm were selected for this study. The films were first humidified and then acetalized and/or gamma irradiated. Then, their physical properties were tested. Tensile strength of the hydrogel films reached its maximum value in samples irradiated with a 80 kGy dose, in the case of acetalized films the dose necessary for maximum tensile strength was only 40 kGy. The combination of acetalization with formaldehyde and gamma radiation produced an elastic hydrogel with good tackiness and excellent mechanical and thermal strength.

  4. Thermotropic rod-like mesogens as stabilizers for polyolefins and polyvinyl chloride

    NASA Astrophysics Data System (ADS)

    Burmistrov, V. A.; Kuvshinova, S. A.; Koifman, O. I.

    2016-02-01

    The main approaches to stabilization of polymers and requirements to anti-ageing agents are discussed. Considerable attention is paid to the progress in the studies of the stabilizing activity of various substances in polyolefin- and polyvinyl chloride-based compositions. Particular demand for environmentally benign organic heat stabilizers and antioxidants is noted. The so-called mesogenic structures serving as effective light and heat stabilizers for polymer composites are presented. The effects of mesogens on the supramolecular structure of polyethylene, deformation and relaxation properties and thermal parameters as well as melt flow index, tribological properties and other properties of polymer materials are discussed. The bibliography includes 112 references.

  5. Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material.

    PubMed

    Li, Haoyu; Qi, Yue; Ryle, James P; Sheridan, John T

    2014-12-01

    For the first time it is demonstrated that permanent optical waveguides can be self-written in a solid acrylamide/polyvinyl alcohol photopolymer material. The novel (to our knowledge) technique used to prepare the polymeric medium used is described. It is demonstrated that the resulting waveguides formed can be used to guide different wavelengths. A standard theoretical model is used to predict both the evolution of the light intensity distribution and the channel formation inside the material during the exposure. The experimental results and the numerical simulations are compared, and good agreement is obtained. PMID:25607967

  6. Multiplexed holographic data page storage on a polyvinyl alcohol/acrylamide photopolymer memory.

    PubMed

    Fernández, Elena; Ortuño, Manuel; Gallego, Sergi; Márquez, Andrés; García, Celia; Beléndez, Augusto; Pascual, Inmaculada

    2008-09-01

    Holographic data pages were multiplexed in different thickness layers of a polyvinyl alcohol/acrylamide photopolymer. This material is formed of acrylamide photopolymers, which are considered interesting materials for recording holographic memories. A liquid crystal device was used to modify the object beam and store the data pages. A peristrophic multiplexing method is used to store a large number of data pages in the same spot in the material. The bit error rate was calculated fitting the histograms of the images to determine what parameters improve the quality of the images. PMID:18758515

  7. Photochromic and microstructural properties of methyl orange doped poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Bhajantri, R. F.; Sali, Renuka; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Rathod, Sunil G.

    2013-02-01

    The effect of Methyl Orange (MO) dye on microstructural, optical and fluorescence properties of the polymer Poly(vinyl alcohol) (PVA) is studied. The FTIR study shows the appearance of new peaks indicates the interaction of MO with PVA. The UV-Vis study shows three absorption regions with the first two shows red shift and the third one shows blue shift and hence correspondingly three optical energy band gaps. In fluorescence study, it is observed that the intensity increases with increasing wavelength. These results are understood by invoking the hydrogen bonding and hydrophobic interaction between PVA and MO, forms the charge transfer complex (CTC).

  8. A relative humidity sensing probe based on etched thin-core fiber coated with polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Yang, Zaihang; Zhou, Libin; Liu, Nan; Gang, Tingting; Qiao, Xueguang; Hu, Manli

    2015-12-01

    A relative humidity (RH) sensing probe based on etched thin-core fiber (TCF) coated with polyvinyl alcohol (PVA) is proposed and experimentally demonstrated.This sensor is constructed by splicing a section of TCF with a single mode fiber (SMF), then part of the TCF's cladding is etched by hydrofluoric acid solution and finally the tip of TCF is coated with PVA. Experimental results demonstrate that this sensor can measure the ambient RH by demodulating the power variation of reflection spectrum. The power demodulation method make this sensor can ignore the temperature cross-sensitivity and have an extensive application prospect.

  9. Impact behaviour of an innovative plasticized poly(vinyl chloride) for the automotive industry

    NASA Astrophysics Data System (ADS)

    Bernard, C. A.; Bahlouli, N.; Wagner-Kocher, C.; Ahzi, S.; Rémond, Y.

    2015-09-01

    Plasticized poly(vinyl chloride) (PPVC) is widely used in the automotive industry in the design of structural parts for crashworthiness applications. Thus, it is necessary to study and understand the influence of the mechanical response and mechanical properties of PPVC over a wide range of strain rate, from quasi-static to dynamic loadings. The process is also investigated using different sample thicknesses. In this work, the strain rate effect of a new PPVC is investigated over a wide range of strain rates at three temperatures and for three thicknesses. A modelling of the yield stress is also proposed. The numerical prediction is in good agreement with the experimental results.

  10. Determination of gelation dose of poly(vinyl acetate) by a spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Güven, Olgun; Yiǧit, Fatma

    The gelation point is an important property of polymers undergoing crosslinking when subjected to high energy radiation. This point is generally determined by viscometric and solubility methods or by mechanic measurements. When crosslinking and discoloration take place simultaneously, gelation doses can be determined spectrophotometrically. In this work it is demonstrated that the gelation dose of poly(vinyl acetate) can be determined by simply recording the u.v.-vis. spectra of the solutions of γ-irradiated polymer. The reliability of the method is verified by viscometric and solubility measurements.

  11. Sliding of poly(vinyl chloride) on metals studied by Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1974-01-01

    The sliding of polyvinyl chloride on nickel, iron and S-Monel has been studied by Auger electron spectroscopy. Polymer was not transferred to the metals, rather shear appeared to take place at the interface. The metal was progressively chlorinated as the polymer made multiple passes on the surface. The thickness of this chlorine film was the order of one atomic layer. Electron-induced desorption studies indicate that the chlorine is chemisorbed to the metal. These results are interpreted as evidence for mechanically induced and/or thermal degradation of the polymer during sliding. Degradation products of HCl and Cl2 which chemisorb to the metal are evolved near the interface.

  12. Linear and Nonlinear Optical Properties of Gold Nanoparticles Stabilized with Polyvinyl Alcohol

    NASA Astrophysics Data System (ADS)

    Hari, Misha; Joseph, Santhi Ani; Balan, Nithyaja; Mathew S; Kumar, Ravi; Mishra, Giridhar; Yadhav, R. R.; Radhakrishnan, P.; Nampoori, V. P. N.

    The nonlinear optical absorption of gold nanoparticles dispersed in polyvinyl alcohol (Au:PVA) is investigated using open aperture Z-scan technique. Au:PVA nanocomposite material is synthesized by chemical method. The characterization of the material is done by UV/Vis absorption spectroscopy, transmission electron microscopy and X-ray diffractometry (XRD). It is observed that the nature of the nonlinear absorption depends on the excitation wavelength. The optical limiting capability of the sample is also demonstrated at a wavelength of 532 nm.

  13. Carcinogenicity and epidemiological profile analysis of vinyl chloride and polyvinyl chloride

    SciTech Connect

    Kalmaz, E.E.; Kalmaz, G.D.

    1984-03-01

    The carcinogenicity of vinyl chloride and polyvinyl chloride (VC/PVC) is reviewed with specific attention to the gaps in knowledge for risk estimation and epidemiological presentation of the available data. Although experimental studies have demonstrated the carcinogenicity and mutagenicity of VC/PVC in general, the epidemiologic studies available for review do not include an assessment of carcinogenic risk among humans exposed to these chemicals. This conclusion is based on the observation that the majority of cohort studies reviewed lacked sufficient statistical power because of small sample sizes. Further, in epidemiological studies, individuals were not followed over an adequate period of time during which cancer could become clinically manifest.

  14. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    PubMed

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose. PMID:26428121

  15. Dichromated poly(vinyl alchohol)-xanthene dye systems: holographic characterization and electron spin resonance spectroscopic study

    NASA Astrophysics Data System (ADS)

    Manivannan, Gurusamy; Changkakoti, Rupak; Lessard, Roger A.; Mailhot, Gilles; Bolte, Michel

    1994-01-01

    Dichromated poly(vinyl alcohol)-xanthene dye (DCPVA-XD) systems have been employed as real-time holographic recording materials. In this paper, holographic characterization of dichromated poly(vinyl alcohol) with fluorescein (Fl), eosin Y (EY) and Rose Bengal (RB) is presented. In addition, a systematic ESR spectroscopic investigation was also performed on these systems. The photochemical evolution of Cr(V), Cr(III), polymer radical and dye radical in these systems has been monitored and a comparison is made.

  16. Rheological and Performance Research on a Regenerable Polyvinyl Alcohol Fracturing Fluid

    PubMed Central

    Shang, Xiaosen; Ding, Yunhong; Wang, Yonghui; Yang, Lifeng

    2015-01-01

    A regenerable polyvinyl alcohol/organic boron fracturing fluid system with 1.6 wt% polyvinyl alcohol (PVOH) and 1.2 wt% organic boron (OBT) was studied, and its main regeneration mechanism is the reversible cross-linking reaction between B(OH)4- and hydroxyl groups of PVOH as the change of pH. Results of rheology evaluations show that both the apparent viscosity and the thermal stability of the fracturing fluid decreased with the regeneration number of times increasing. In addition, the apparent viscosity of the fluid which was without regeneration was more sensitive to the shear action compared with that of the fluid with regeneration once or twice. When the fracturing fluid was without regeneration, the elasticity was dominating due to the three-dimensional network structure of the formed gel; the viscosity gradually occupied the advantage when the fracturing fluid was regenerated once or twice. The settling velocity of proppant was accelerated by both the regeneration process and the increasing temperature, but it was decelerated when the proppant ratio increased. Results of core damage tests indicate that less permeability damage was caused by the PVOH/OBT fracturing fluid compared with that caused by the guar gum fracturing fluid after gel breaking. PMID:26641857

  17. How To Learn and Have Fun with Poly(Vinyl Alcohol) and White Glue

    NASA Astrophysics Data System (ADS)

    de Zea Bermudez, V.; Passos de Almeida, P.; Féria Seita, J.

    1998-11-01

    The general behavior of Newtonian, shear-thinning, shear-thickening, thixotropic, negative thixotropic, and viscoelastic fluids is characterized and briefly discussed in terms of existing theoretical models. Whenever possible, examples of these types of fluids taken from everyday life are given for better understanding. This theoretical introduction is the basis for same, simple, and inexpensive laboratory work employing no special glassware and generally done by pairs of students. The work involves the synthesis of two well-known viscoelastic materials displaying unique properties: poly(vinyl alcohol) (PVA) and white glue, a poly(vinyl acetate)-based emulsion. The students are asked to perform a series of representative mechanical tests on both gels and to describe their observations in full detail. In particular, they are expected to recognize and identify the origin of the intriguing behaviors found (elasticity, spinability, self-siphoning effect, die-swell effect, Weissenberg effect). The tests include the preparation of fibers by extrusion, introducing concepts such as water solubility, hydrogen bonding, and glass transition temperature. The long list of questions, which ideally should be answered at the end of the laboratory work, allows the students to apply the new concepts acquired.

  18. Cosolvent gel-like materials from partially hydrolyzed poly(vinyl acetate)s and borax.

    PubMed

    Angelova, Lora V; Terech, Pierre; Natali, Irene; Dei, Luigi; Carretti, Emiliano; Weiss, Richard G

    2011-09-20

    A gel-like, high-viscosity polymeric dispersion (HVPD) based on cross-linked borate, partially hydrolyzed poly(vinyl acetate) (xPVAc, where x is the percent hydrolysis) is described. Unlike hydro-HVPDs prepared from poly(vinyl alcohol) (PVA) and borate, the liquid portion of these materials can be composed of up to 75% of an organic cosolvent because of the influence of residual acetate groups on the polymer backbone. The effects of the degree of hydrolysis, molecular weight, polymer and cross-linker concentrations, and type and amount of organic cosolvent on the rheological and structural properties of the materials are investigated. The stability of the systems is explored through rheological and melting-range studies. (11)B NMR and small-angle neutron scattering (SANS) are used to probe the structure of the dispersions. The addition of an organic liquid to the xPVAc-borate HVPDs results in a drastic increase in the number of cross-linked borate species as well as the agglomeration of the polymer into bundles. These effects result in an increase in the relaxation time and thermal stability of the networks. The ability to make xPVAc-borate HVPDs with very large amounts of and rather different organic liquids, with very different rheological properties that can be controlled easily, opens new possibilities for applications of PVAc-based dispersions. PMID:21848256

  19. Deep ultraviolet photoresist based on tungsten polyoxometalates and poly(vinyl alcohol) for bilayer photolithography

    SciTech Connect

    Carls, J.C.; Argitis, P.; Heller, A. )

    1992-03-01

    In this paper a negative tone deep ultraviolet resist, a mixture of phosphotungstic acid and poly(vinyl alcohol) is described. This resist has {lt}100 mJ cm{sup {minus}2} sensitivity and resolves {le}0.3 {mu}m features. Even though the photochemistry involves chemical amplification, the exposed patterns are stable and the process tolerates hours between the exposure and the post-bake steps. The resist is spun from an aqueous solutio, and its wet processing is also aqueous. This resist is used in a bilayer scheme, where advantage is taken of both the resistance of the tungsten oxide to oxygen plasmas and its easy stripping in fluorine-containing plasmas. Because poly(vinyl alcohol) is intrisincally a wetting agent, pinhole-free resist films of {approximately}1000 {Angstrom} thickness can be spun. These thin coatings provide sufficient oxygen plasma etch resistance to allow patterning of a thick 1.5 {mu}m novolac planarizing layer underneath the resist.

  20. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging

    NASA Astrophysics Data System (ADS)

    Surry, K. J. M.; Austin, H. J. B.; Fenster, A.; Peters, T. M.

    2004-12-01

    Poly(vinyl alcohol) cryogel, PVA-C, is presented as a tissue-mimicking material, suitable for application in magnetic resonance (MR) imaging and ultrasound imaging. A 10% by weight poly(vinyl alcohol) in water solution was used to form PVA-C, which is solidified through a freeze-thaw process. The number of freeze-thaw cycles affects the properties of the material. The ultrasound and MR imaging characteristics were investigated using cylindrical samples of PVA-C. The speed of sound was found to range from 1520 to 1540 m s-1, and the attenuation coefficients were in the range of 0.075-0.28 dB (cm MHz)-1. T1 and T2 relaxation values were found to be 718-1034 ms and 108-175 ms, respectively. We also present applications of this material in an anthropomorphic brain phantom, a multi-volume stenosed vessel phantom and breast biopsy phantoms. Some suggestions are made for how best to handle this material in the phantom design and development process.

  1. Evaluation of the Antimicrobial Effect of Chitosan/Polyvinyl Alcohol Electrospun Nanofibers Containing Mafenide Acetate

    PubMed Central

    Abbaspour, Mohammadreza; Sharif Makhmalzadeh, Behzad; Rezaee, Behjat; Shoja, Saeed; Ahangari, Zohreh

    2015-01-01

    Background: Chitosan, an important biodegradable and biocompatible polymer, has demonstrated wound-healing and antimicrobial properties. Objectives: This study aimed to evaluate the antimicrobial properties of mafenide acetate-loaded nanofibrous films, prepared by the electrospinning technique, using chitosan and polyvinyl alcohol (PVA). Materials and Methods: A 32 full factorial design was used for formulating electrospinning solutions. The chitosan percentage in chitosan/PVA solutions (0%, 10%, and 30%) and the drug content (0%, 20%, and 40%) were chosen as independent variables. The release rate of mafenide acetate from nanofibrous films and their microbial penetration were evaluated. The antimicrobial activity of different nanofibrous film formulations against Staphylococcus aureus and Pseudomonas aeruginosa was studied. Results: The results indicated that all nanofibrous films, with and without drug, can prevent bacterial penetration. Incorporation of mafenide acetate into chitosan/PVA nanofibers enhanced their antimicrobial activity against P. aeruginosa and S. aureus. Conclusions: Overall, the results showed that chitosan/polyvinyl alcohol (PVA) nanofibrous films are applicable for use as a wound dressing with protective, healing, and antimicrobial effects. PMID:26587214

  2. Wound healing modulation by a latex protein-containing polyvinyl alcohol biomembrane.

    PubMed

    Ramos, Márcio V; de Alencar, Nylane Maria N; de Oliveira, Raquel S B; Freitas, Lyara B N; Aragão, Karoline S; de Andrade, Thiago Antônio M; Frade, Marco Andrey C; Brito, Gerly Anne C; de Figueiredo, Ingrid Samantha T

    2016-07-01

    In a previous study, we performed the chemical characterization of a polyvinyl alcohol (PVA) membrane supplemented with latex proteins (LP) displaying wound healing activity, and its efficacy as a delivery system was demonstrated. Here, we report on aspects of the mechanism underlying the performance of the PVA-latex protein biomembrane on wound healing. LP-PVA, but not PVA, induced more intense leukocyte (neutrophil) migration and mast cell degranulation during the inflammatory phase of the cicatricial process. Likewise, LP-PVA induced an increase in key markers and mediators of the inflammatory response (myeloperoxidase activity, nitric oxide, TNF, and IL-1β). These results demonstrated that LP-PVA significantly accelerates the early phase of the inflammatory process by upregulating cytokine release. This remarkable effect improves the subsequent phases of the healing process. The polyvinyl alcohol membrane was fully absorbed as an inert support while LP was shown to be active. It is therefore concluded that the LP-PVA is a suitable bioresource for biomedical engineering. PMID:27037828

  3. Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes.

    PubMed

    Xu, Xu; Yang, Yi-Qin; Xing, Ying-Ying; Yang, Jiu-Fang; Wang, Shi-Fa

    2013-11-01

    Novel polyvinyl alcohol (PVA) blend membranes containing cellulose nanocrystals (CNs) and silver nanoparticles (AgNPs) were prepared via a simple method. CNs were prepared by sulfuric acid treatment of microcrystalline cellulose. AgNO3 aqueous solution mixed with the CNs aqueous suspension and was reduced by NaBH4 at room temperature. Purified CNs/AgNPs nanocomposites as functional fillers mixed with polyvinyl alcohol to prepare blend membrane. The morphology, mechanical properties, and antibacterial activities of PVA/CNs/AgNPs composite films were investigated. The PVA/CNs/AgNPs composite films were stable and homogeneous. The tensile strength of PVA was increased from 57.02 MPa to 81.21 MPa when filled with CNs/AgNPs. Antibacterial ratio of PVA/CNs/AgNPs composite against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus was 96.9% and 88.2%, respectively. The CNs/AgNPs nanocomposites could be applied as bi-functional nanofillers within PVA to improve the mechanical properties and antibacterial activities. PMID:24053842

  4. Rheological and Performance Research on a Regenerable Polyvinyl Alcohol Fracturing Fluid.

    PubMed

    Shang, Xiaosen; Ding, Yunhong; Wang, Yonghui; Yang, Lifeng

    2015-01-01

    A regenerable polyvinyl alcohol/organic boron fracturing fluid system with 1.6 wt% polyvinyl alcohol (PVOH) and 1.2 wt% organic boron (OBT) was studied, and its main regeneration mechanism is the reversible cross-linking reaction between B(OH)4- and hydroxyl groups of PVOH as the change of pH. Results of rheology evaluations show that both the apparent viscosity and the thermal stability of the fracturing fluid decreased with the regeneration number of times increasing. In addition, the apparent viscosity of the fluid which was without regeneration was more sensitive to the shear action compared with that of the fluid with regeneration once or twice. When the fracturing fluid was without regeneration, the elasticity was dominating due to the three-dimensional network structure of the formed gel; the viscosity gradually occupied the advantage when the fracturing fluid was regenerated once or twice. The settling velocity of proppant was accelerated by both the regeneration process and the increasing temperature, but it was decelerated when the proppant ratio increased. Results of core damage tests indicate that less permeability damage was caused by the PVOH/OBT fracturing fluid compared with that caused by the guar gum fracturing fluid after gel breaking. PMID:26641857

  5. Development and characterisation of an agar--polyvinyl alcohol blend hydrogel.

    PubMed

    Lyons, John G; Geever, Luke M; Nugent, Michael J D; Kennedy, James E; Higginbotham, Clement L

    2009-10-01

    Numerous authors have reported on hydrogel technologies providing products suitable for applications in biomedical, personal care as well as in nano-sensor applications. Hydrogels fabricated from single polymers have been extensively investigated. However, in many cases a single polymer alone cannot meet divergent demands in terms of both properties and performance. In this work, hydrogels were prepared by physically blending the natural polymer agar with polyvinyl alcohol in varying ratios to produce a new biosynthetic polymer applicable for a variety of purposes. Hydrogen bonding was observed to take place between the polyvinyl alcohol and the agar molecules in the composite materials leading to changes in the thermal, mechanical and swelling characteristics of the composite hydrogels. The composite hydrogels exhibited a slightly higher melting temperature than pure agar (116.81 degrees C). Irreversible compressive damage was found to occur at lower strain levels during compression testing of the dehydrated samples consisting of higher PVOH concentrations. Rheological analysis of hydrated sample revealed G' values of between 5000 and 10,000 Pa for the composite blends, with gels containing higher PVOH percentages exhibiting poorer mechanical strength. PMID:19627855

  6. RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers

    PubMed Central

    2016-01-01

    RAFT solution polymerization of N-(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA63–PNMEPx diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in Mn with increasing PNMEP DP. A gradual increase in Mw/Mn was also observed when targeting higher DPs. However, this problem could be minimized (Mw/Mn < 1.50) by utilizing a higher purity grade of NMEP (98% vs 96%). This suggests that the broader molecular weight distributions observed at higher DPs are simply the result of a dimethacrylate impurity causing light branching, rather than an intrinsic side reaction such as chain transfer to polymer. Kinetic studies confirmed that the RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both 1H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA63–PNMEPx particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer in a rather

  7. Fabrication and operation of a system for the PVA (polyvinyl alcohol) coating of polymer microshells with trace gas fill

    SciTech Connect

    King, K.J.

    1988-03-31

    Polymer microshells with a PVA (polyvinyl alcohol) coating are produced for the ICF Program by the Fusion Target Fabrication (FTF) Group at Lawrence Livermore National Laboratories. A PVA coating greatly reduces the permeation of gas through a polymer microshell. The equipment and procedures used in the production of PVA coated microshells are discussed. 6 figs.

  8. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work aims to extract and characterize fibrous, rod-like and spherical cellulose nanoparticles (CNs) from cottonseed hull and to investigate the structure-morphology-rheology relationships. The rheological behavior of poly(vinyl alcohol) (PVA)/CNs suspensions was also examined to guide the solve...

  9. A novel biobased plasticizer of epoxidized cardanol glycidylether: Synthesis and application in soft poly(vinyl chloride) films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel plasticizer derived from cardanol, epoxied cardanol glycidyl ether (ECGE), was synthesized and characterized by 1H-NMR and 13C-NMR. Effects of the ECGE combined with dioctyl phthalate (DOP), a commercial plasticizer, in soft poly(vinyl chloride) (PVC) films were studied. Dynamic mechanical a...

  10. VALIDATION OF AN EPA METHOD FOR THE ION CHROMATOGRAPHIC DETERMINATION OF PERCHLORATE IN FERTILIZERS USING A POLYVINYL ALCOHOL GEL RESIN.

    EPA Science Inventory

    This paper summarizes the key points of a joint study between the EPA and Metrohm-Peak, Inc., on the use of polyvinyl alcohol [PVA] columns for the ion chromatographic determination of percholorate in aqueous leachates or solutions of fertilizers. A series of fertilizer samples ...

  11. Electrical behavior of polymer hydrogel composed of poly(vinyl alcohol)/hyaluronic acid in solution

    NASA Astrophysics Data System (ADS)

    Kim, Seon Jeong; Yoon, Seoung Gil; Park, Sang Jun; Lee, Chang Kee; Shin, Su Ryon; Lee, Young Moo; Kim, In Young; Kim, Sun I.

    2003-07-01

    Interpenetrating polymer networks (IPN) composed of poly(vinyl alcohol) (PVA) and hyaluronic acid (HA) were prepared and exhibited electrical sensitive behavior. The swelling behavior of the PVA/HA IPN was studied by immersion of the gel in aqueous NaCl solutions at various concentrations and pHs. Also, the stimuli response of the PVA/HA IPN in electric fields was investigated. When swollen IPN was placed between a pair of electrodes, the PVA/HA IPN exhibited bending behavior upon the application of an electric field. The PVA/HA IPN also showed stepwise bending behavior depending on the electric stimulus. Also, for using biomedical application, the bending behavior of PVA/HA IPN has been studied in hank"s solution at pH 7.4

  12. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review.

    PubMed

    Rafique, Ammara; Mahmood Zia, Khalid; Zuber, Mohammad; Tabasum, Shazia; Rehman, Saima

    2016-06-01

    Chitin and chitosan are amino polysaccharides having multidimensional properties, such as biocompatibility, biodegradability, antibacterial properties and non-toxicity, muco-adhesivity, adsorption properties, etc., and thus they can be widely used in variety of areas. Although human history mainly relies on the biopolymers, however synthetic materials like polyvinyl alcohol (PVA) have good mechanical, chemical and physical properties. Functionalization of PVA with chitin and chitosan is considered very appropriate for the development of well-designed biomaterials such as biodegradable films, for membrane separation, for tissue engineering, for food packaging, for wound healing and dressing, hydro gels formation, gels formation, etc. Considering versatile properties of the chitin and chitosan, and wide industrial and biomedical applications of PVA, this review sheds a light on chitin and chitosan based PVA materials with their potential applications especially focusing the bio-medical field. All the technical scientific issues have been addressed highlighting the recent advancement. PMID:26893051

  13. Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride.

    PubMed

    Anwar, Mohammad S; Kapri, Anil; Chaudhry, Vasvi; Mishra, Aradhana; Ansari, Mohammad W; Souche, Yogesh; Nautiyal, Chandra S; Zaidi, M G H; Goel, Reeta

    2016-07-01

    Thermoplastic-based materials are recalcitrant in nature, which extensive use affect environmental health. Here, we attempt to compare the response of indigenously produced bacterial consortium-I and consortium-II in degrading polyvinyl chloride (PVC). These consortia were developed by using different combination of bacterial strains of Pseudomonas otitidis, Bacillus cereus, and Acanthopleurobacter pedis from waste disposal sites of Northern India after their identification via 16S rDNA sequencing. The progressive degradation of PVC by consortia was examined via scanning electron microscopy, atomic force microscopy, UV-vis, FT-IR spectra, gel permeation chromatography, and differential scanning calorimetry analysis at different incubations and time intervals. The consortium-II was superior over consortium-I in degrading the PVC. Further, the carbon source utilization analysis revealed that the extensive use of consortia has not any effect on functional diversity of native soil microbes. PMID:26231814

  14. Highly reflective and adhesive surface of aluminized polyvinyl chloride film by vacuum evaporation

    NASA Astrophysics Data System (ADS)

    Li, Denian; Tai, Qile; Feng, Qiang; Li, Qi; Xu, Xizhe; Li, Hairong; Huang, Jing; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2014-08-01

    Aluminized poly(vinyl chloride) (PVC) film with high reflectivity and strong adhesion was facilely fabricated by vacuum evaporation. The technical study revealed that both alkali-pretreatment of the PVC matrix and thermal annealing after aluminization could greatly promote the peeling adhesion force of this metal/polymer composite by producing interfacial active chemical groups and removing the inner stress, respectively. Reflectivity test and AFM study indicated that the reflecting capacitance of the aluminum coating was closely related to the surface roughness, which can be easily controlled by modulating deposition of aluminum. Moreover, the formation of aluminum layer follows an island model process, and a continuous and smooth coating with highest reflectivity and lowest surface resistance was achieved at deposition time of 60 s. We anticipate that the cost-effective metallized PVC film by this strategy may find extensive applications in light harvesting, solar energy, and flexible mirrors, among others.

  15. A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide.

    PubMed

    Silva, Fábio E F; Batista, Karla A; Di-Medeiros, Maria C B; Silva, Cassio N S; Moreira, Bruna R; Fernandes, Kátia F

    2016-01-01

    In this study, a stimuli-responsive, biodegradable and bioactive film was produced by blending cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA). The film presented malleability and mechanical properties enabling an easy handling. Wetting the film changed the optical property from opacity to levels of transparency higher than 70% and resulted in up to 2-fold increase in its superficial area. Different swelling indexes were obtained varying the pH of solvent, which allows classifying the CGP/PVA film as pH sensitive stimuli-responsive material. The bioactivity was achieved through covalent immobilization of papain, which remained active after storage of CGP/PVA-papain film for 24h in the presence of buffer or in a dry form. These results evidenced that CGP/PVA-papain film is a very promising material for biomedical applications. PMID:26478388

  16. Down shifting in poly(vinyl alcohol) gels doped with terbium complex.

    PubMed

    Di Lorenzo, Maria Laura; Cocca, Mariacristina; Avella, Maurizio; Gentile, Gennaro; Gutierrez, David; Della Pirriera, Monica; Torralba-Calleja, Elena; Kennedy, Manus; Ahmed, Hind; Doran, John

    2016-09-01

    Novel poly(vinyl alcohol) (PVA) based soft gels with luminescent properties are detailed in this contribution. Lanthanide complex of terbium ions with anthranilic acid, Tb(ant)3·2H2O, was synthesized and incorporated into a DMSO/water solution, followed by addition of PVA, to attain soft gels at room temperature. Morphological and thermal analyses revealed homogeneous distribution of Tb(ant)3·2H2O into the PVOH/DMSO/water gel, and that incorporation of the terbium complex does not alter the thermal properties of the gels. The gels are transparent and luminescent, as they exhibit Large Stokes shift down shifting (LSS DS) up to 400nm, with very high emission quantum yield, that was found to be function of Tb complex concentration. PMID:27236842

  17. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol) carbon nanotube composite films

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tao, Xiaoming; Xue, Pu; Cheng, Xiaoyin

    2005-12-01

    Tensile tests were carried out on free-standing composite films of poly(vinyl alcohol) (PVA) and multiwall carbon nanotubes (MWNTs) for different loading levels. Results show that overall mechanical properties of the composite were greatly improved as compared to the neat PVA film. For PVA-based materials at significant high loading level such as 9.1 wt.% MWNTs, considerable increases in Young's modulus, tensile strength and toughness by factors of 4.5, 2.7 and 4.1, respectively, were achieved. Raman, SEM, TEM, and DSC techniques were used to evaluate the PVA/MWNTs composite system. Strong acid-modification of the pristine MWNTs and the subsequent ultrasonication processing allowed good distribution of the nanotubes in the matrix. SEM together with DSC result shows apparent good wetting of the nanotubes by the PVA matrix, which are supportive of good interfacial bonding between the modified carbon nanotubes and the hosting polymer matrix.

  18. Fabrication and Characterization of Graphene/Graphene Oxide-Based Poly(vinyl alcohol) Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Huu; Long, Nguyen Huynh Bach Son; Kieu, Dang Thi Minh; Nhiem, Ly Tan

    2016-05-01

    Graphene (GE)- or graphene oxide (GO)-based poly(vinyl alcohol) (PVA) nanocomposite membranes have been prepared by the solution blending method. Raman spectra and atomic force microscopy images confirmed that GE and GO were synthesized with average thickness of 0.901 nm and 0.997 nm, respectively. X-ray diffraction patterns indicated good exfoliation of GE or GO in the PVA matrix. Fourier-transform infrared spectra revealed the chemical fractions of the nanocomposite membranes. Differential scanning calorimetry results proved that the thermal stability of the nanocomposite membranes was enhanced compared with neat PVA membrane. Transmission electron microscopy images revealed good dispersion of GE or GO sheets in the PVA matrix with thickness in the range of 19 nm to 39 nm. As a result, good compatibility between GE or GO and PVA was obtained at 0.5 wt.% filler content.

  19. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization

    SciTech Connect

    Jia Xin; Li Yanfeng Zhang Bo; Cheng Qiong; Zhang Shujiang

    2008-03-04

    Poly(vinyl alcohol)/kaolinite intercalated nanocomposites (Kao-PVA) were prepared via in situ intercalation radical polymerization. Vinyl acetate (VAc) was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite (Kao-DMSO) as the intermediate. Then, PVAc/kaolinite (Kao-PVAc) was obtained via radical polymerization with benzoyl peroxide (BPO) as initiator. Last, PVAc/kaolinite was saponified via direct-hydrolysis with NaOH solution in order to obtain PVA/kaolinite nanocomposites, which was characterized by Fourier-Transformation spectroscopy (FTIR), wide X-ray diffraction (WXRD) and transmission electron microscopy (TEM). Their differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of the obtained PVA/kaolinite suggested that the thermal properties had an obvious improvement.

  20. Poly(vinyl alcohol) Physical Hydrogels: Matrix-Mediated Drug Delivery Using Spontaneously Eroding Substrate.

    PubMed

    Jensen, Bettina E B; Dávila, Izaskun; Zelikin, Alexander N

    2016-07-01

    Poly(vinyl alcohol) hydrogels have a long and successful history of applications in biomedicine. Historically, these matrices were developed to be nondegradable-limiting their utility to applications as permanent implants. For tissue engineering and drug delivery, herein we develop spontaneously eroding physical hydrogels based on PVA. We characterize in detail a mild, noncryogenic method of producing PVA physical hydrogels using poly(ethylene glycol) as a gelating agent, and investigate PVA molar mass as a means to define the kinetics of erosion of these biomaterials. PVA hydrogels are characterized for associated inflammatory response in adhering macrophages, antiproliferative effects mediated through delivery of cytotoxic drugs to myoblasts, and pro-proliferative activity achieved via presentation of conjugated growth factors to endothelial cells. Together, these data present a multiangle characterization of these novel multifunctional matrices for applications in tissue engineering and drug delivery mediated by implantable biomaterials. PMID:26958864

  1. Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds.

    PubMed

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B; Srinivasan, A

    2016-12-01

    Composite nanofibrous membranes based on sol-gel derived 45SiO2 24.5CaO 24.5 Na2O 6 P2O5 (bioglass, BG) and 43SiO2 24.5CaO 24.5 Na2O 6 P2O5 2Fe2O3 (magnetic bioglass, MBG) blended with polyvinyl alcohol (PVA) have been electrospun. These low cost membranes were mostly amorphous in structure with minor crystalline (sodium calcium phosphate) precipitates. All membranes were biodegradable. Among these, the composites exhibited higher tensile strength, better proliferation of human osteosarcoma MG63 cells and higher alkaline phosphatase enzyme activity than the bare PVA membrane, indicating their potential in bone tissue engineering. The magnetic PVA-MBG scaffold was also found to be a promising candidate for magnetic hyperthermia application. PMID:27612814

  2. Studies of Poly(vinyl chloride) Based Endotracheal Tubes From the Microscopic to Macroscopic Scale

    NASA Astrophysics Data System (ADS)

    Brodie, Kristin; Ortiz, Christine

    2003-03-01

    The endotracheal tube (ET) is a polymeric conduit that forms a closed system of pulmonary ventilation that is most often used to allow delivery of air to critically ill patients via intubation. Currently used ETs cause a wide variety of clinical problems including laryngeal edema (inflammation), severe morbidity, and occasionally death. To investigate the origins of this behavior, mechanical, chemical, morphological, and biocompatibility characterization of injection-molded (Endotrol) tubes of poly(vinyl chloride) (PVC) containing 35 wtplasticizer was conducted. Experiments included fourier-transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, accelerated solvent extraction, uniaxial tensile testing, high-resolution force spectroscopy, atomic force microscopy, and plasticizer leaching. We intend for these studies to form the basis for future ET materials selection and design.

  3. Copper-containing polyvinyl alcohol composite systems: Preparation, characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Reza Hajipour, Abdol; Mohammadsaleh, Fatemeh; Reza Sabzalian, Mohammad

    2015-08-01

    The present investigation reports, the complex formation of Cu(II) with polyvinyl alcohol (PVA) and the synthesis of PVA-stabilized Cu2O particles. This PVA-Cu2O composite has been prepared via chemical reduction method using PVA-Cu(II) complex as precursor. At first, Cu(II) ions were stabilized in PVA matrix via complex formation with OH groups; subsequently, this PVA-Cu(II) macromolecular complex as precursor reacted with ascorbic acid as reducing agent at pH=12 to prepare PVA-Cu2O composite. The products were characterized by FTIR, XRD, FE-SEM, HRTEM, Visible Spectroscopy and atomic absorption. In the following, the antibacterial properties of as-prepared composites were examined against Gram-positive (Bacillus thuringiensis) and Gram-negative bacteria (Escherichia coli), and the results showed excellent antibacterial activity of these materials.

  4. Spectroelectrochemical Studies on Quinacridone by Using Poly(vinyl alcohol) Coating as Protection Layer

    PubMed Central

    Enengl, Sandra; Enengl, Christina; Stadler, Philipp; Neugebauer, Helmut; Sariciftci, Niyazi Serdar

    2015-01-01

    Spectroscopic measurements in the infrared range combined with electrochemistry are a powerful technique for investigation of organic semiconductors to track changes during oxidation and reduction (p- and n-doping) processes. For these measurements it is important that the studied material, mostly deposited as a thin film on an internal reflection element, does not dissolve during this characterization. In this study we introduce a technique that allows infrared spectroelectrochemical characterization of films of these materials for the first time. In many cases so far this has been impossible, due to solubility in the oxidized and/or reduced form. This novel technique is shown on thin films of quinacridone by adding a protection layer of poly(vinyl alcohol) (PVA). PMID:26013836

  5. Nanosize Patterning with Nanoimprint Lithography Using Poly(vinyl alcohol) Transfer Layer

    NASA Astrophysics Data System (ADS)

    Park, In-Sung; Nichols, William T.; Ahn, Jinho

    2011-06-01

    Coupling the imprint mold structure having a self-assembled monolayer (SAM) and a buffer oxide layer (BOL) with a poly(vinyl alcohol) (PVA) resin is investigated for thermal nanoimprint lithography on flexible substrates. The mold structure is SAM/BOL/Cr. Among the buffer oxides tested (SiO2, Al2O3, HfO2), SiO2 results in the most hydrophobic character at the SAM surface of the mold. Water-soluble PVA resin is shown to be an excellent pattern transfer layer due to its clean release from the hydrophobic mold and strong barrier to SF6 etching during subsequent substrate patterning. The combination of SAM/SiO2/Cr mold structure with PVA resin is demonstrated to produce high quality, defect-free nanopatterns on both rigid silicon and flexible poly(ethylene terephthalate) and polyimide substrates.

  6. Promoting Cell Survival and Proliferation in Degradable Poly(vinyl alcohol)-Tyramine Hydrogels.

    PubMed

    Lim, Khoon S; Ramaswamy, Yogambha; Roberts, Justine J; Alves, Marie-Helene; Poole-Warren, Laura A; Martens, Penny J

    2015-10-01

    A photopolymerizable-tyraminated poly(vinyl alcohol) (PVA-Tyr) system that has the ability to covalently bind proteins in their native state was evaluated as a platform for cell encapsulation. However, a key hurdle to this system is the radicals generated during the cross-linking that can cause oxidative stress to the cells. This research hypothesized that incorporation of anti-oxidative proteins (sericin and gelatin) into PVA-Tyr gels would mitigate any toxicity caused by the radicals. The results showed that although incorporation of 1 wt% sericin promoted survival of the fibroblasts, both sericin and gelatin acted synergistically to facilitate long-term 3D cell function. The encapsulated cells formed clusters with deposition of laminin and collagen, as well as remaining metabolically active after 21 d. PMID:26097045

  7. Synthesis of coprecipitated strontium hexaferrite nanoparticles in the presence of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Davoodi, A.; Hashemi, B.; Yousefi, M. H.

    2011-12-01

    Strontium hexaferrite (SrFe12O19) nanoparticles were synthesized by the chemical coprecipitation method and using polyvinyl alcohol (PVA) as a protective agent. The synthesized samples were characterized by differential thermal analysis, X-ray diffraction, scanning and transmission electron microscopy, particle size analyzer, sedimentation test and vibrating sample magnetometer. In the presence of PVA, the single-phase SrFe12O19 nanoparticles were obtained at low temperature of 650 °C. The average particle size of SrFe12O19 precursor was 15 nm, which increased to 61 nm after calcination at 650 °C. The magnetic measurements indicated that PVA decreased coercivity from 4711 to 3216 Oe with particle size reduction. The results showed that PVA as a protective agent could be effective in decreasing the particle size, calcination temperature and coercivity of SrFe12O19 nanoparticles.

  8. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Udayabhaskar, R.; Hariharan, S.

    2016-07-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  9. Poly(vinyl pyridine)-based stabilizers for aqueous polypyrrole latices

    SciTech Connect

    Armes, S.P.; Aldissi, M.; Agnew, S.F.

    1988-01-01

    The preparation and characterization of sub-micronic polypyrrole latex particles using polymeric stabilizers based on poly(vinyl pyridine) is described. These novel colloidal dispersions enhance the usually limited processability of the electroactive component, and in addition exhibit usefully high solid-state conductivity, despite the presence of the insulating stabilizer component. Furthermore, these latices exhibit reversible base/acid induced flocculation-stabilization behavior. The latter phenomenon is of fundamental interest and is expected to have commercial applications. The latices were characterized by transmission electron microscopy, visible absorption spectroscopy, FTIR and Raman spectroscopy, microanalysis, and compressed pellet dc conductivity. Base-induced particle flocculation was studied as a function of latex particle concentration. 24 refs., 4 figs., 2 tabs.

  10. Morphological analysis of Polyethersulfone/polyvinyl Acetate blend membrane synthesized at various polymer concentrations

    NASA Astrophysics Data System (ADS)

    Hadi, S. H. A. A.; Mannan, H. A.; Mukhtar, H.; Shaharun, M. S.; Murugesan, T.

    2016-06-01

    This paper reports the effect of varying polymer concentration i.e. solvent/polymer ratio on the morphology and gas transport behaviour of polyethersulfone/polyvinyl acetate blend membrane. The solvent used was dimethylformamide, while the manipulated variable was polymer concentration. The concentrations were varied from 75-90 weight % solvent. A homogeneous surface with dense cross-section structure membranes were successfully developed as deduced from FESEM images. The permeability of CO2 and CH4 gases increased with increasing polymer concentration and an improved CO2/CH4 selectivity was observed. These observation made from the characterization justified the applicability of the blend to be synthesized as membrane for gas separation.

  11. Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial.

    PubMed

    Alves, Marie-Helene; Jensen, Bettina E B; Smith, Anton A A; Zelikin, Alexander N

    2011-10-10

    Poly(vinyl alcohol), PVA, and physical hydrogels derived thereof have an excellent safety profile and a successful history of biomedical applications. However, these materials are hardly in the focus of biomedical research, largely due to poor opportunities in nano- and micro-scale design associated with PVA hydrogels in their current form. In this review we aim to demonstrate that with PVA, a (sub)molecular control over polymer chemistry translates into fine-tuned supramolecular association of chains and this, in turn, defines macroscopic properties of the material. This nano- to micro- to macro- translation of control is unique for PVA and can now be accomplished using modern tools of macromolecular design. We believe that this strategy affords functionalized PVA physical hydrogels which meet the demands of modern nanobiotechnology and have a potential to become an indispensable tool in the design of biomaterials. PMID:21793217

  12. Electro-optical properties of poly(vinyl acetate)/polyindole composite film

    NASA Astrophysics Data System (ADS)

    Bhagat, D. J.; Bajaj, N. S.; Dhokane, G. R.

    2016-05-01

    In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X-ray diffraction (XRD), UV-Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308-373 K. The DC conductivity initially increases and reaches to 2.45×10-7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DC plot.

  13. Modification of cycloolefin copolymer and poly(vinyl chloride) surfaces by superimposition of nano- and microstructures

    NASA Astrophysics Data System (ADS)

    Koponen, Hanna-Kaisa; Saarikoski, Inka; Korhonen, Tuulia; Pääkkö, Marjo; Kuisma, Risto; Pakkanen, Tuula T.; Suvanto, Mika; Pakkanen, Tapani A.

    2007-04-01

    Cycloolefin copolymer (COC) and poly(vinyl chloride) (PVC) surfaces were patterned with nanopillars or with microbumps on which nanopillars were superimposed. The area of patterned surfaces was several square centimeters. Patterning was achieved by applying nanoporous anodized aluminum oxide (AAO) membrane as a mask in injection molding or imprinting. Nanostructures superimposed on microstructures were achieved by patterning the AAO mask with microstructures before anodization. Micro- and nanometer-sized structures could then be transferred simultaneously to polymer surfaces. Structures were characterized by SEM, AFM, and contact profilometry. The effect of different-sized structures on properties of the polymer surface was studied by contact angle measurements. Relative to the smooth surface, the increase in water contact angle on a COC surface with nanostructures superimposed on microstructures was up to 50°.

  14. Method of cross-linking polyvinyl alcohol and other water soluble resins

    NASA Technical Reports Server (NTRS)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  15. Biodegradation of polyvinyl alcohol by a brown-rot fungus, Fomitopsis pinicola.

    PubMed

    Tsujiyama, S; Okada, A

    2013-11-01

    A brown-rot fungus, Fomitopsis pinicola, degraded polyvinyl alcohol (PVA) in quartz sand but not in liquid culture. From gel permeation chromatography analysis, the high-molecular-weight fraction of PVA was decreased by the action of F. pinicola but the coloration of the culture filtrate with I2 solution increased. The reason for the increase in coloration was assumed to be the increase in the low-molecular-weight fraction in degraded PVA. Diffuse reflectance infrared Fourier transform spectral analysis showed that spectral changes of the fungally degraded PVA were similar to those of PVA treated with Fenton's reagent suggesting that PVA degradation by F. pinicola was via the Fenton reaction. F. pinicola can thus be used to degrade PVA in woody wastes. PMID:23881320

  16. Crystal structures and magnetic properties of magnetite (Fe3O4)/Polyvinyl alcohol (PVA) ribbon

    NASA Astrophysics Data System (ADS)

    Ardiyanti, Harlina; Suharyadi, Edi; Kato, Takeshi; Iwata, Satoshi

    2016-04-01

    Ribbon of magnetite (Fe3O4)/Polyvinyl Alcohol (PVA) nanoparticles have been successfully fabricated with various concentration of PVA synthesized by co-precipitation method. Particle size of nanoparticles Fe3O4 sample and ribbon Fe3O4/PVA 25% sample is about 9.34 nm and 11.29 nm, respectively. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization value decreased from 76.99 emu/g to 15.01 emu/g and coercivity increased from 49.30 Oe to 158.35 Oe as increasing concentration of PVA. Atomic Force Microscopy (AFM) analysis showed that encapsulated PVA given decreasing agglomeration, controlled shape of nanoparticles Fe3O4 more spherical and dispersed. Surface roughness decreased with increasing concentration of PVA.

  17. PIXE investigation of in vitro release of chloramphenicol across polyvinyl alcohol/acrylamide hydrogel

    NASA Astrophysics Data System (ADS)

    Rihawy, M. S.; Alzier, A.; Allaf, A. W.

    2011-09-01

    Hydrogels based on polyvinyl alcohol and different amounts of acrylamide monomer were prepared by thermal cross-linking in the solid state. The hydrogels were investigated for drug delivery system applications. Chloramphenicol was adopted as a model drug to study its release behavior. Particle induced X-ray emission was utilized to study the drug release behavior across the hydrogels and a comparison study with ultraviolet measurements was performed. Fourier Transform Infrared measurements were carried out for molecular characterization. The releasing behavior of the drug exhibits a decrease and a subsequent increase in the release rate, as the acrylamide monomer increases. Characterization of the hydrogels has shown a competitive behavior between crosslinking with AAm acrylamide monomer or oligomerized version, depending on the amount added to prepare the hydrogels.

  18. Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends.

    PubMed

    Aydın, Ahmet Alper; Ilberg, Vladimir

    2016-01-20

    A series of gelatinized polyvinyl alcohol (PVA):starch blends were prepared with various polyol-based plasticizers in 5 wt%, 15 wt% and 25 wt% ratios via solution casting method. The obtained films were analyzed by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Remarkable changes have been observed in glass-transition temperature (Tg) and thermal stability of the samples containing varying concentrations of different plasticizers and they have been discussed in detail with respect to the conducted thermal and chemical analyses. The observed order of Tg point depression of the samples containing 15 wt% plasticizer is 1,4-butanediol - 1,2,6-hexanetriol--pentaerythriyol--xylitol--mannitol, which is similar to the sequence of the thermal stability changes of the samples. PMID:26572374

  19. Polyvinyl alcohol from China, Japan, Korea, and Taiwan. Export trade information

    SciTech Connect

    1995-04-01

    On the basis of the record developed in the subject investigations, the Commission unanimously determines, pursuant to section 733(a) of the Tariff Act of 1930 (19 U.S.C. Section 1673b(a)), that there is a reasonable indication that an industry in the United States is materially injured by reason of imports from China, Japan, and Taiwan of polyvinyl alcohol, provided for a subheading 3905.20.00 of the Harmonized Tariff Schedule of the United States, that are alleged to be sold in the United States at less than fair value (LTFV). Investigation No. 731-TA-728 (Preliminary) concerning Korea is terminated on the basis of the unanimous determination that imports from Korea are negligible.

  20. A polyvinyl alcohol-functionalized sorbent for extraction and determination of aminoglycoside antibiotics in honey.

    PubMed

    Wang, Yuan; Ji, Shunli; Zhang, Feng; Zhang, Feifang; Yang, Bingcheng; Liang, Xinmiao

    2015-07-17

    A novel highly hydrophilic sorbent simply prepared by coating polyvinyl alcohol (PVA) onto silica gel was used for extraction and determination of aminoglycoside antibiotics (AAs). The fabricated PVA coating is aimed to effectively protect core silica gel inside and offers good hydrophilic property. In combination of hydrophilic interaction chromatography tandem mass spectrometry, the performance of the sorbent was evaluated by selecting four model AAs (dihydrostreptomycin, streptomycin, kanamycin, spectinomycin). The sorbent was found to have effective adsorption ability to hydrophilic AAs, which was superior or comparable to those of commercial ones. Good recoveries (84-112%) of model AAs spiked in honey were obtained with good precision (<12.4%) and the limit of quantitation for the proposed method was in the range of 7.8-19.4ng/mL. PMID:26047525

  1. Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix

    NASA Astrophysics Data System (ADS)

    Kumar, Manmohan; Varshney, Lalit; Francis, Sanju

    2005-05-01

    Ag+ ions, in aqueous polyvinyl alcohol (PVA) solution and in PVA hydrogel matrix have been gamma radiolytically reduced to produce Ag clusters. UV-visible absorption spectral characteristics of Ag clusters obtained under different gamma dose, Ag+ concentration, PVA concentration and crosslinking density of the gel used have been studied. The effect of Ag+ ions on the radiation crosslinking of the PVA chains, have also been investigated by viscosity measurements. The radiation-induced Ag+ ion reduction was followed by crosslinking of the PVA chains. PVA was found to be a very efficient stabilizer to prevent aggregation of Ag clusters. The clusters produced in the hydrogel matrix were expected to be smaller than the pore size (∼2-20 nm) of the gels used in the study. These Ag clusters were unable to reduce methyl viologen (MV2+) chloride and were stable in air.

  2. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach

    SciTech Connect

    Ger, Tzong-Rong; Huang, Hao-Ting; Hu, Keng-Shiang; Huang, Chen-Yu; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

    2014-05-07

    Electrospinning technique was used to fabricate polyvinyl alcohol (PVA)-based magnetic biodegradable nanofibers. PVA solution was mixed with ferrofluid or magnetic nanoparticles (MNPs) powder and formed two individual nanofibrous membranes (PVA/ferrofluid and PVA/MNPs powder) by electrospinning. The surface morphology of the nanofibrous membrane was characterized by scanning electron microscopy and the magnetic properties were measured by vibrating sample magnetometer. Macrophages (RAW 264.7) were co-cultured with the nanofibrous membranes for 12, 24, and 48 h and exhibited good cell viability (>95%). Results showed that the PVA fibers would be degraded and the embedded Fe{sub 3}O{sub 4} nanoparticles would be released and delivered to cells.

  3. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  4. Complete Genome Sequence of Polyvinyl Alcohol-Degrading Strain Sphingopyxis sp. 113P3 (NBRC 111507)

    PubMed Central

    Nagata, Yuji; Numata, Mitsuru; Tsuchikane, Kieko; Hosoyama, Akira; Yamazoe, Atsushi; Tsuda, Masataka; Fujita, Nobuyuki; Kawai, Fusako

    2015-01-01

    Strain 113P3 was isolated from activated sludge and identified as a polyvinyl alcohol (PVA)-degrading Pseudomonas species; it was later reidentified as Sphingopyxis species. Only three genes are directly relevant to the metabolism of PVA and comprise the pva operon, which was deposited as accession no. AB190228. Here, we report the complete genome sequence of strain 113P3, which has been conserved as a stock culture (NBRC 111507) at the Biological Resource Center, National Institute of Technology and Evaluation (NITE) (Tokyo, Japan). The genome of strain 113P3 is composed of a 4.4-Mb circular chromosome and a 243-kb plasmid. The whole finishing was conducted in silico except for four PCRs. The sequence corresponding to AB190288 exists on the chromosome. PMID:26472829

  5. Oral dietary developmental toxicity study with polyvinyl acetate phthalate (PVAP) in the rat.

    PubMed

    DeMerlis, C C; Schoneker, D R; Borzelleca, J F

    2014-10-01

    Polyvinyl acetate phthalate (PVAP) was evaluated in a developmental toxicity study with Crl:CD(SD) rats. Female rats were provided continual access to the formulated diets on days 6 through 20 of presumed gestation (DGs 6 through 20) at concentrations of 0%, 0.75%, 1.5% and 3%. All surviving rats were sacrificed and Caesarean-sectioned on DG 21. The following parameters were evaluated: viability, clinical observations, body weights, feed consumption, necropsy observations, Caesarean-sectioning and litter observations, including gravid uterine weights, fetal body weights and sex, and fetal gross external, soft tissue and skeletal alterations. There were no treatment-related adverse effects reported in the developmental toxicity study. The maternal and developmental no-observable-adverse-effect level (NOAEL) of PVAP was the highest concentration administered, i.e., 3.0% (equivalent to 2324mgPVAP/kg/day). PMID:25084367

  6. Two beam photoluminescence of PbS quantum dots in polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Babu Pendyala, Naresh; Koteswara Rao, K. S. R.

    2010-11-01

    We report the effect of dual beam excitation on the photoluminescence (PL) from PbS quantum dots in polyvinyl alcohol by using two excitation lasers, namely Ar + (514.5 nm) and He-Ne laser (670 nm). Both sources of excitation gave similar PL spectra around 1.67 eV (related to shallow traps) and 1.1 eV (related to deep traps). When both lasers were used at the same time, we found that the PL induced by each of the lasers was partly quenched by the illumination of the other laser. The proposed mechanism of this quenching effect involves traps that are populated by one specific laser excitation, being photo-ionized by the presence of the other laser. Temperature, laser intensity and modulation frequency dependent quenching efficiencies are presented in this paper. This reversible modulation has potential for optical switching and memory device applications.

  7. Intensity-modulated relative humidity sensing with polyvinyl alcohol coating and optical fiber gratings.

    PubMed

    Yang, Jingyi; Dong, Xinyong; Ni, Kai; Chan, Chi Chu; Shun, Perry Ping

    2015-04-01

    A relative humidity (RH) sensor in reflection mode is proposed and experimentally demonstrated by using a polyvinyl alcohol (PVA)-coated tilted-fiber Bragg grating (TFBG) cascaded by a reflection-band-matched chirped-fiber Bragg grating (CFBG). The sensing principle is based on the RH-dependent refractive index of the PVA coating, which modulates the transmission function of the TFBG. The CFBG is properly designed to reflect a broadband of light spectrally suited at the cladding mode resonance region of the TFBG, thus the reflected optical signal passes through and is modulated by the TFBG again. As a result, RH measurements with enhanced sensitivity of ∼1.80  μW/%RH are realized and demodulated in the range from 20% RH to 85% RH. PMID:25967167

  8. Microparticulated systems based on chitosan and poly(vinyl alcohol) with potential ophthalmic applications.

    PubMed

    Cadinoiu, Anca Niculina; Peptu, Catalina Anisoara; Fache, Bernard; Chailan, Jean-François; Popa, Marcel

    2015-01-01

    Spherical microparticles for encapsulation of drugs for the treatment of diseases, with a diameter ranging between 2 and 4 µm, were obtained by double crosslinking (ionic and covalent) of chitosan and poly(vinyl alcohol) blend in a water-in-oil emulsion. Microparticles characterisation was carried out in terms of structural, morphological and swelling properties in aqueous media. The presence of chitosan in particles composition confers them a pH-sensitive character. Toxicity and hemocompatibility tests prove the biocompatible character of microparticles. The pilocarpine loading capacity is high as well as the release efficiency which increases up to 72 and 82% after 6 h. The obtained results recommend the microparticles as sustained release drug carriers for the treatment of eye diseases. PMID:26017178

  9. Ultrafast optical power limiting in free-standing Pt polyvinyl alcohol nanocomposite films synthesized in situ

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Anija, M.; Venkatesan, P.; Suchand Sandeep, C. S.; Philip, Reji

    2007-12-01

    Free-standing platinum-polyvinyl alcohol nanocomposite films have been prepared by a simple in situ method. By thermal annealing, Pt nanoparticles of different sizes and shapes have been obtained. Their optical nonlinearity is measured using ultrafast (100 fs) laser pulses at 404 nm, in the absorption wing region. A strong optical power limiting is found in the films. The timescale of this limiting action is ultrafast, as it happens within the incident laser pulsewidth. Experimental results and numerical simulation indicate that the sign of the nonlinearity can be controlled by varying the film composition and annealing temperature. Use of ultrashort laser pulses in the free-standing film configuration permits a direct and unambiguous determination of the electronic nonlinearity of the material, since accumulative effects occur at later times lying outside the sharp measurement window.

  10. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    NASA Technical Reports Server (NTRS)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  11. Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications

    PubMed Central

    Zhong, Tuhua; Oporto, Gloria S.; Jaczynski, Jacek; Jiang, Changle

    2015-01-01

    Our long-term goal is to develop a hybrid cellulose-copper nanoparticle material as a functional nanofiller to be incorporated in thermoplastic resins for efficiently improving their antimicrobial properties. In this study, copper nanoparticles were first synthesized through chemical reduction of cupric ions on TEMPO nanofibrillated cellulose (TNFC) template using borohydride as a copper reducing agent. The resulting hybrid material was embedded into a polyvinyl alcohol (PVA) matrix using a solvent casting method. The morphology of TNFC-copper nanoparticles was analyzed by transmission electron microscopy (TEM); spherical copper nanoparticles with average size of 9.2 ± 2.0 nm were determined. Thermogravimetric analysis and antimicrobial performance of the films were evaluated. Slight variations in thermal properties between the nanocomposite films and PVA resin were observed. Antimicrobial analysis demonstrated that one-week exposure of nonpathogenic Escherichia coli DH5α to the nanocomposite films results in up to 5-log microbial reduction. PMID:26137482

  12. Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    NASA Astrophysics Data System (ADS)

    Song, Wei; Markel, David C.; Wang, Sunxi; Shi, Tong; Mao, Guangzhao; Ren, Weiping

    2012-03-01

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol-collagen-hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic-organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications.

  13. Reversible flocculation of silica across the phase boundary of poly(vinyl caprolactam) in aqueous solution.

    PubMed

    Qiu, Q; Pethica, B A; Somasundaran, P

    2005-12-20

    The colloid stability of silica dispersions in water in the presence of poly(vinyl caprolactam) (PVCAP) has been studied below and above the lower consolute temperature (LCT) of its solutions. The dispersion sediments slowly without PVCAP in the temperature range studied (26-40 degrees C) or with PVCAP below the LCT ( approximately 30 degrees C). In contrast, with PVCAP above the LCT, rapid flocculation occurs at acid pH, with re-dispersal on cooling. Reversible flocculation is also obtained above the LCT by cycling the pH from alkaline to acid and back. The flocculation observed above the LCT may also be regarded as heterocoagulation between the silica particles and the aggregates of the polymer. PMID:16342979

  14. Effect of Adhesion and Contact Geometry on Scratch Behavior of Polyvinyl Alcohol

    NASA Astrophysics Data System (ADS)

    Yoder, Karl; Xia, Xinyun; Gerberich, William

    2000-03-01

    The mechanical response of a material to single-point scratch loading is complex, with contributions from contact geometry, imposed deformation rate, thermomechanical interactions, and constitutive properties. Additionally, the effect of adhesion between scratch tip and specimen is an important, yet poorly understood, variable in deformation response. In particular the effects of adhesion and contact geometry on the mode of deformation and damage morphology are difficult to experimentally separate. Using a Hysitron Triboindenter, which can perform both nanoindentation and nanoscratch tests, in a controlled environmental chamber, the effect of adhesion on scratch response of polyvinyl alcohol is investigated. In addition, by using four different diamond tips, the role of contact geometry as it pertains to adhesion and scratch response is investigated. This talk presents the effects of contact geometry and relative humidity on stylus-PVOH adhesion, and subsequent scratch deformation response in an attempt to elucidate the role played by adhesion.

  15. Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems.

    PubMed

    Pereira, André Luís S; do Nascimento, Diego M; Souza Filho, Men de Sá M; Morais, João Paulo S; Vasconcelos, Niedja F; Feitosa, Judith P A; Brígida, Ana Iraidy S; Rosa, Morsyleide de F

    2014-11-01

    Cellulose nanocrystals (CNCs) isolated from banana pseudostems fibers (BPF) of the Pacovan variety were used as fillers in a polyvinyl alcohol (PVOH) matrix to yield a nanocomposite. The fibers from the external fractions of the BPF were alkaline bleached and hydrolyzed under acidic conditions (H2SO4 62% w/w, 70 min, 45 °C) to obtain CNCs with a length (L) of 135.0 ± 12.0 nm and a diameter (D) of 7.2 ± 1.9 nm to yield an aspect ratio (L/D) of 21.2. The CNCs were applied to PVOH films at different concentrations (0%, 1%, 3%, and 5% w/w, dry basis). With higher concentrations of CNCs, the water-vapor barrier of the films increased, while the optical properties changed very little. Increasing the concentration of the CNCs up to 3% significantly improved the mechanical properties of the nanocomposite. PMID:25129731

  16. Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment.

    PubMed

    Guo, M; Trzcinski, A P; Stuckey, D C; Murphy, R J

    2011-12-01

    The digestibility of a starch-polyvinyl alcohol (PVOH) biopolymer insulated cardboard coolbox was investigated under a defined anaerobic digestion (AD) system with key parameters characterized. Laboratory results were combined with industrial operational data to develop a site-specific life cycle assessment (LCA) model. Inoculated with active bacterial trophic groups, the anaerobic biodegradability of three starch-PVOH biopolymers achieved 58-62%. The LCA modeling showed that the environmental burdens of the starch-PVOH biopolymer packaging under AD conditions on acidification, eutrophication, global warming and photochemical oxidation potential were dominated by atmospheric emissions released from substrate degradation and fuel combustion, whereas energy consumption and infrastructure requirements were the causes of abiotic depletion, ozone depletion and toxic impacts. Nevertheless, for this bio-packaging, AD of the starch-PVOH biopolymer combined with recycling of the cardboard emerged as the environmentally superior option and optimization of the energy utilization system could bring further environmental benefits to the AD process. PMID:22001054

  17. Polyvinyl alcohol-induced low temperature synthesis of CeO 2-based powders

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Jiang, Cairong; Zhou, Xiaoliang; Meng, Guangyao; Liu, Xingqin

    Ce 0.8Sm 0.2O 1.9 (SDC) powders have been synthesized by a combustion method with polyvinyl alcohol (PVA) as the fuel and nitrate as oxidizer. A calcination temperature of 350 °C was found to be sufficient for the formation of pure SDC powders. The cell parameters were calculated using the peak positions determined from the XRD patterns, and it was found that stoichiometric SDC powder could be obtained only when stoichiometric PVA fuel contents were used. The as-prepared SDC pellets exhibited 98% of the theoretical density sintered at 1300 °C. This shows that the SDC powders obtained by this combustion method have excellent sintering properties, which can densified at a relatively low sintering temperature. The powders made by this method, due to its high conductivity of 0.033 S cm -1 at 700 °C, are suitable for intermediate temperature solid oxide fuel cells (IT-SOFCs).

  18. DNA-PCR analysis of bloodstains sampled by the polyvinyl-alcohol method.

    PubMed

    Schyma, C; Huckenbeck, W; Bonte, W

    1999-01-01

    Among the usual techniques of sampling gunshot residues (GSR), the polyvinyl-alcohol method (PVAL) includes the advantage of embedding all particles, foreign bodies and stains on the surface of the shooter's hand in exact and reproducible topographic localization. The aim of the present study on ten persons killed by firearms was to check the possibility of DNA-PCR typing of blood traces embedded in the PVAL gloves in a second step following GSR analysis. The results of these examinations verify that the PVAL technique does not include factors that inhibit successful PCR typing. Thus the PVAL method can be recommended as a combination technique to secure and preserve inorganic and biological traces at the same time. PMID:9987876

  19. ESR spectrometric characterization of the methyl viologen dosimeter in poly(vinyl alcohol) film

    NASA Astrophysics Data System (ADS)

    Nishimoto, Sei-Ichi; Ye, Mu; Lu, Yiqun; Kawamura, Takashi; Kagiya, Tsutomu

    A dosimeter of poly(vinyl alcohol) (PVA) film containing methyl viologen dichloride (MV 2+ (Cl -) 2) was characterized by means of ESR and u.v. spectrometries. γ-irradiation of the MV 2+-PVA dosimeter induced one-electron reduction of MV 2+· to thecation radical (MV +), thus giving rise to blue coloration. The resulting MV +· showed an ESR signal with a g-factor of 2.0031. The yield of MV +· at a given radiation dose was estimated from duplicate integral of the ESR first-derivative spectra by reference to 1,1'-diphenyl-2-picrylhydrazyl (DPPH). The yield of MV +· thus estimated increased linearly with increasing the radiation dose up to about 1.4 Mrad. The ESR spectrometry of MV +· showed a linear correlation with the u.v. spectrometric method reported previously.

  20. Investigation of polypyrrole/polyvinyl alcohol-titanium dioxide composite films for photo-catalytic applications

    NASA Astrophysics Data System (ADS)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi

    2015-07-01

    Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.

  1. Antibacterial activity of poly(vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles.

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Kyulavska, Mariya; Bozukova, Dimitriya; Debuigne, Antoine; Detrembleur, Christophe

    2010-04-15

    A new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) (PVOH-b-PAN) copolymer obtained by selective hydrolysis of well-defined poly(vinyl acetate)-b-poly(acrylonitrile) copolymer synthesized by cobalt mediated radical polymerization was used for the preparation of PVOH-b-PAN based micelles with embedded silver nanoparticles. The successful formation of silver loaded micelles has been confirmed by UV-vis, DLS and TEM analysis and their antibacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and spore solution of Bacillus subtilis (B. subtilis) has been studied. PVOH-b-PAN based micelles with embedded silver nanoparticles showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and the minimum bactericidal concentration for each system (MBC) has been determined. PMID:20074742

  2. Manipulating the morphologies of poly(vinyl alcohol) block copolymer surfactants

    NASA Astrophysics Data System (ADS)

    Repollet-Pedrosa, Milton H.

    Amphiphilic block copolymers (ABCs) are macromolecules containing well-defined hydrophilic and hydrophobic segments that self-assemble into nanoscale aggregates such as spherical and cylindrical micelles and vesicles, when dispersed in block-selective solvents. ABCs possess a miniscule critical micelle concentration, which results in kinetically trapped and persistent assemblies in solution with slow chain exchange between aggregates. This makes them useful as rheological modifiers for personal care products, enhanced oil recovery, and drug delivery formulations. Their utility in many of these applications is crucially dependent on the ability to control the micellar morphologies that they adopt in selective solvents. Triggering ABC micellar morphological transformations, i.e. from spherical to cylindrical micelles, is important for generating "on-demand" stimuli-responsive morphologies that control the aggregate morphology and the bulk solution properties in any given application. In this thesis, we develop the straightforward synthesis of biodegradable and biocompatible ABCs comprised of poly(vinyl acetate) (PVAc) and poly(vinyl alcohol) (PVA), with narrow molecular distributions and variable yet well-defined compositions. These block copolymer amphiphiles readily form spherical micelles in aqueous dispersions. We demonstrate that the addition of a water-soluble poly(ethylene oxide) (PEO) homopolymer to these dispersions results in a rapid transformation of these spherical micelles into cylindrical micelles. Dilution of these cylindrical micelles with water induces their reversion to spherical micelles. Our results indicate that the reversible morphology change depends sensitively on the PEO homopolymer concentration and molecular weight, as well as the length of the PVA corona block of the micelles. Through a series of quantitative 1H NMR studies, we found that the preferential partitioning of PEO homopolymer into the PVAc micellar core drives this morphological

  3. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.

    PubMed

    Karki, Akchheta; Nguyen, Lien; Sharma, Bhanushee; Yan, Yan; Chen, Wei

    2016-04-01

    Adsorption of poly(vinyl alcohol) (PVOH), 99% and 88% hydrolyzed poly(vinyl acetate), to poly(dimethylsiloxane) (PDMS) substrates was studied. The substrates were prepared by covalently attaching linear PDMS polymers of 2, 9, 17, 49, and 116 kDa onto silicon wafers. As the PDMS molecular weight/thickness increases, the adsorbed PVOH thin films progressively transition from continuous to discontinuous morphologies, including honeycomb and fractal/droplet. The structures are the result of thin film dewetting that occurs upon exposure to air. The PVOH film thickness does not vary significantly on these PDMS substrates, implicating the PDMS thickness as the cause for the morphology differences. The adsorbed PVOH thin films are less stable and have a stronger tendency to dewet on thicker, more liquid-like PDMS layers. When PVOH(99%) and PVOH(88%) thin films are compared, fractal and droplet morphologies are observed on high molecular weight PDMS substrates, respectively. The formation of the unique fractal features in the PVOH(99%) thin films as well as other crystalline and semicrystalline thin films is most likely driven by crystallization during the dehydration process in a diffusion-limited aggregation fashion. The only significant enhancement in hydrophilicity via PVOH adsorption was obtained on PDMS(2k), which is completely covered with a PVOH thin film. To mimic the lower receding contact angle and less liquid-like character of the PDMS(2k) substrate, light plasma treatment of the higher molecular weight PDMS substrates was carried out. On the treated PDMS substrates, the adsorbed PVOH thin films are in the more continuous honeycomb morphology, giving rise to significantly enhanced wettability. Furthermore, hydrophobic recovery of the hydrophilized PDMS substrates was not observed during a 1 week period. Thus, light plasma oxidation and subsequent PVOH adsorption can be utilized as a means to effectively hydrophilize conventional PDMS substrates. This study

  4. Lipogels: surface-adherent composite hydrogels assembled from poly(vinyl alcohol) and liposomes

    NASA Astrophysics Data System (ADS)

    Jensen, Bettina E. B.; Hosta-Rigau, Leticia; Spycher, Philipp R.; Reimhult, Erik; Städler, Brigitte; Zelikin, Alexander N.

    2013-07-01

    Drug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels. Furthermore, the lipogels are successfully rendered cell adhesive by incorporation of poly(l-lysine) into the PVA polymer matrix or by poly(dopamine) coating of the lipogels. The successful lipid uptake from the lipogels by macrophages, hepatocytes, and myoblasts was monitored by flow cytometry. Finally, the delivery of active cargo, paclitaxel, to adherent myoblasts is shown, thus illustrating the potential of the lipogels as a drug eluting interface for biomedical applications.Drug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels. Furthermore, the lipogels are successfully rendered cell adhesive by incorporation of poly(l-lysine) into the PVA polymer matrix or by poly(dopamine) coating of the lipogels. The successful lipid uptake from the lipogels by macrophages, hepatocytes, and myoblasts was monitored by flow cytometry. Finally, the delivery of active cargo, paclitaxel, to adherent myoblasts is shown, thus

  5. Development of structure in natural silk spinning and poly(vinyl alcohol) hydrogel formation

    NASA Astrophysics Data System (ADS)

    Willcox, Patricia Jeanene

    This research involves the characterization of structure and structure formation in aqueous systems. Particularly, these studies investigate the effect of various processing variables on the structure formation that occurs upon conversion from aqueous solution to fiber or hydrogel. The two processes studied include natural silk fiber spinning and physical gelation of poly(vinyl alcohol), PVOH, in water. The techniques employed combine cryogenic technology for sample preparation and direct observation by transmission electron microscopy with electron diffraction, atomic force microscopy, optical rheometry, X-ray scattering and optical microscopy. In order to explore the full range of structure formation in natural silk spinning, studies are conducted in vivo and in vitro. In vivo structural investigations are accomplished through the cryogenic quenching and subsequent microtoming of live silk-spinning animals, Nephila clavipes (spider) and Bombyx mori (silkworm). Observations made using transmission electron microscopy, electron diffraction and atomic force microscopy indicate a cholesteric liquid crystalline mesophase of aqueous silk fibroin in both species. The mechanism of structure formation in solution is studied in vitro using optical rheometry on aqueous solutions made from regenerated Bombyx mori cocoon silk. Concentrated solutions exhibit birefringence under flow, with a wormlike conformation of the silk molecules in concentrated salt solution. Changes in salt concentration and pH of the aqueous silk solutions result in differing degrees of alignment and aggregation. These results suggest that structural control in the natural silk spinning process is accomplished by chemical manipulation of the electrostatic interactions and hydrogen bonding between chains. Application of cryogenic methods in transmission electron microscopy also provides a unique look at hydration-dependent structures in gels of poly(vinyl alcohol) produced by freeze-thaw processing

  6. Beam Damage of Poly(Vinyl Chloride) [PVC] Film as Observed by X-ray Photoelectron Spectroscopy

    SciTech Connect

    Engelhard, Mark H.; Krishna, Abhilash; Kulkarni, Pranita B.; Lee, Chi-Ying M.; Baer, Donald R.

    2003-03-08

    XPS spectra of a spin-coated film poly(vinyl chloride) (PVC) were collected over a period of 243 minutes at 303 K to determine specimen damage during long exposures to monochromatic Al Ka x-rays. For this PVC film we measured the loss of chlorine as a function of time by rastering a focused 104.6 w 100 um diameter x-ray beam over a 1.4 mm x 0.2 mm area on the sample.

  7. Enabling thermal processing of ritonavir-polyvinyl alcohol amorphous solid dispersions by KinetiSol® Dispersing.

    PubMed

    LaFountaine, Justin S; Jermain, Scott V; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; Lubda, Dieter; McGinity, James W; Williams, Robert O

    2016-04-01

    Polyvinyl alcohol has received little attention as a matrix polymer in amorphous solid dispersions (ASDs) due to its thermal and rheological limitations in extrusion processing and limited organic solubility in spray drying applications. Additionally, in extrusion processing, the high temperatures required to process often exclude thermally labile APIs. The purpose of this study was to evaluate the feasibility of processing polyvinyl alcohol amorphous solid dispersions utilizing the model compound ritonavir with KinetiSol® Dispersing (KSD) technology. The effects of KSD rotor speed and ejection temperature on the physicochemical properties of the processed material were evaluated. Powder X-ray diffraction and modulated differential scanning calorimetry were used to confirm amorphous conversion. Liquid chromatography-mass spectroscopy was used to characterize and identify degradation pathways of ritonavir during KSD processing and (13)C nuclear magnetic resonance spectroscopy was used to investigate polymer stability. An optimal range of processing conditions was found that resulted in amorphous product and minimal to no drug and polymer degradation. Drug release of the ASD produced from the optimal processing conditions was evaluated using a non-sink, pH-shift dissolution test. The ability to process amorphous solid dispersions with polyvinyl alcohol as a matrix polymer will enable further investigations of the polymer's performance in amorphous systems for poorly water-soluble compounds. PMID:26861929

  8. Biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel for knee meniscus applications, including comparison with human donor samples.

    PubMed

    Hayes, Jennifer C; Curley, Colin; Tierney, Paul; Kennedy, James E

    2016-03-01

    The primary objective of this research was the biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous polyvinyl alcohol (PVA) was treated with a sodium sulphate (Na2SO4) solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Development of a meniscal shaped mould and sample housing unit allowed the production of meniscal shaped hydrogels for direct comparison to human meniscal tissue. Results obtained show that compressive responses were slightly higher in PVA/Na2SO4 menisci, displaying maximum compressive loads of 2472N, 2482N and 2476N for samples having undergone 1, 3 and 5 freeze-thaw cycles respectively. When compared to the human meniscal tissue tested under the same conditions, an average maximum load of 2467.5N was observed. This suggests that the PVA/Na2SO4 menisci are mechanically comparable to the human meniscus. Biocompatibility analysis of PVA/Na2SO4 hydrogels revealed no acute cytotoxicity. The work described herein has innovative potential in load bearing applications, specifically as an alternative to meniscectomy as replacement of critically damaged meniscal tissue in the knee joint where repair is not viable. PMID:26700574

  9. Polyaniline coated cellulose fiber / polyvinyl alcohol composites with high dielectric permittivity and low percolation threshold

    NASA Astrophysics Data System (ADS)

    Anju, V. P.; Narayanankutty, Sunil K.

    2016-01-01

    Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.

  10. Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites.

    PubMed

    Mahmoud, K H

    2015-03-01

    Silver nanoparticles (Ag NPs) were synthesized by chemical reduction of silver salt (AgNO3) through sodium borohydride. The characteristic surface plasmon resonance band located at around 400nm in the UV-Visible absorption spectrum confirmed the formation of Ag nanoparticles. Polyvinyl alcohol-silver (PVA-Ag) nanocomposite films were prepared by the casting technique. The morphology and interaction of PVA with Ag NPs were examined by transmission electron microscopy and FTIR spectroscopy. Optical studies show that PVA exhibited indirect allowed optical transition with optical energy gap of 4.8eV, which reduced to 4.45eV under addition of Ag NPs. Optical parameters such as refractive index, complex dielectric constant and their dispersions have been analyzed using Wemple and DiDomenco model. Color properties of the nanocomposites are discussed in the framework of CIE L(∗)u(∗)v(∗) color space. The antimicrobial activity of the nanocomposite samples was tested against Gram positive bacteria (Staphylococcus aureus NCTC 7447 &Bacillus subtillis NCIB 3610), Gram negative bacteria (Escherichia coli, NTC10416 &Pseudomonas aeruginosa NCIB 9016) and fungi (Aspergillus niger Ferm - BAM C-21) using the agar diffusion technique. The antimicrobial study showed that PVA has moderate antibacterial activity against B. subtillis and the 0.04wt% Ag NPs composite sample effect was strong against S. aureus. PMID:25523046

  11. Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition.

    PubMed

    Li, Wei; Li, Xueyong; Chen, Yang; Li, Xiaoxia; Deng, Hongbing; Wang, Ting; Huang, Rong; Fan, Gang

    2013-02-15

    Poly(vinyl alcohol) (PVA)/sodium alginate (ALG)/organic rectorite (OREC) composite nanofibrous mats are fabricated by electrospinning aqueous solutions with different mixing ratios. Both good fiber shape and three-dimensional structure of nanofibrous mats can be observed by Field Emission Scanning Electron Microscopy. Energy-dispersive X-ray spectroscopy shows the existence of OREC in the as-spun composite mats. In addition, small-angle X-ray diffraction confirms that the interlayer of OREC is intercalated by ALG/PVA chains, and the distance between OREC interlayers is increased from 4.50 to 4.74 nm. Wide angle X-ray diffraction and Fourier transform infrared spectra further verify the intercalation is between polymers and layered silicate. Moreover, the thermal gravimetric analysis shows that the addition of OREC has only a small effect on the thermal stability of composites. Furthermore, the antibacterial experiments illustrate that OREC can enhance the bacterial inhibition ability of nanofibrous mats against Escherichia coli and Staphylococcus aureus. PMID:23399282

  12. Electric field-controlled benzoic acid and sulphanilamide delivery from poly(vinyl alcohol) hydrogel.

    PubMed

    Sittiwong, Jarinya; Niamlang, Sumonman; Paradee, Nophawan; Sirivat, Anuvat

    2012-12-01

    The controlled release of benzoic acid (3.31 Å) and sulphanilamide (3.47 Å) from poly(vinyl alcohol), PVA, hydrogels fabricated by solution casting at various cross-linking ratios, were investigated. The PVA hydrogels were characterized in terms of the degree of swelling, the molecular weight between cross-links, and the mesh size. The drug release experiment was carried out using a modified Franz diffusion cell, at a pH value of 5.5 and at temperature of 37°C. The amount of drug release and the diffusion coefficients of the drugs from the PVA hydrogels increased with decreasing cross-linking ratio, as a larger mesh size was obtained with lower cross-linking ratios. With the application of an electric field, the amount of drug release and the diffusion coefficient increased monotonically with increasing electric field strength, since the resultant electrostatic force drove the ionic drugs from the PVA matrix. The drug size, matrix pore size, electrode polarity, and applied electric field were shown to be influential controlling factors for the drug release rate. PMID:23065453

  13. Adsorption of Methylene Blue from Aqueous Solutions by Polyvinyl Alcohol/Graphene Oxide Composites.

    PubMed

    Yang, Xiaoxia; Li, Yanhui; Du, Qiuju; Wang, Xiaohui; Hu, Song; Chen, Long; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2016-02-01

    As a new member of the carbon family, graphene oxide (GO) has shown excellent adsorption ability to micro-pollutants in aqueous solutions. However, its tiny size makes it difficult to be removed from aqueous solutions using the conventional separation methods, which limits its practical application in the environmental protection. In this study, polyvinyl alcohol (PVA) was used as carrier immobilizing GO, and novel PVA/GO composites were prepared. The morphology and physicochemical properties of the composites were characterized by SEM, FTIR and TGA analysis. The adsorption properties of methylene blue (MB) onto the composites were studied through investigating the experimental parameters such as solution pH, adsorbent dosage, contact time and temperature. The isotherm data were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevich models. The calculated maximum adsorption capacity reached 476.2 mg/g at 50% GO content. The pseudo-first-order kinetic, pseudo-second-order kinetic and intra-particle diffusion models were used to explore the adsorption kinetics. The results showed that the dynamic data were fitted to the pseudo-second-order kinetic model. PMID:27433669

  14. The molecular interfacial structure and plasticizer migration behavior of "green" plasticized poly(vinyl chloride).

    PubMed

    Zhang, Xiaoxian; Li, Yaoxin; Hankett, Jeanne M; Chen, Zhan

    2015-02-14

    Tributyl acetyl citrate (TBAC), a widely-used "green" plasticizer, has been extensively applied in products for daily use. In this paper, a variety of analytical tools including sum frequency generation vibrational spectroscopy (SFG), coherent anti-Stokes Raman spectroscopy (CARS), contact angle goniometry (CA), and Fourier transform infrared spectroscopy (FTIR) were applied together to investigate the molecular structures of TBAC plasticized poly(vinyl chloride) (PVC) and the migration behavior of TBAC from PVC-TBAC mixtures into water. We comprehensively examine the effects of oxygen and argon plasma treatments on the surface structures of PVC-TBAC thin films containing various bulk percentages of plasticizers and the leaching behavior of TBAC into water. It was found that TBAC is a relatively stable PVC plasticizer compared to traditional non-covalent plasticizers but is also surface active. Oxygen plasma treatment increased the hydrophilicity of TBAC-PVC surfaces, but did not enhance TBAC leaching. However, argon plasma treatment greatly enhanced the leaching of TBAC molecules from PVC plastics to water. Based on our observations, we believe that oxygen plasma treatment could be applied to TBAC plasticized PVC products to enhance surface hydrophilicity for improving the biocompatibility and antibacterial properties of PVC products. The structural information obtained in this study will ultimately facilitate a molecular level understanding of plasticized polymers, aiding in the design of PVC materials with improved properties. PMID:25579625

  15. Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. H.

    2015-03-01

    Silver nanoparticles (Ag NPs) were synthesized by chemical reduction of silver salt (AgNO3) through sodium borohydride. The characteristic surface plasmon resonance band located at around 400 nm in the UV-Visible absorption spectrum confirmed the formation of Ag nanoparticles. Polyvinyl alcohol-silver (PVA-Ag) nanocomposite films were prepared by the casting technique. The morphology and interaction of PVA with Ag NPs were examined by transmission electron microscopy and FTIR spectroscopy. Optical studies show that PVA exhibited indirect allowed optical transition with optical energy gap of 4.8 eV, which reduced to 4.45 eV under addition of Ag NPs. Optical parameters such as refractive index, complex dielectric constant and their dispersions have been analyzed using Wemple and DiDomenco model. Color properties of the nanocomposites are discussed in the framework of CIE L∗u∗v∗ color space. The antimicrobial activity of the nanocomposite samples was tested against Gram positive bacteria (Staphylococcus aureus NCTC 7447 &Bacillus subtillis NCIB 3610), Gram negative bacteria (Escherichia coli, NTC10416 &Pseudomonas aeruginosa NCIB 9016) and fungi (Aspergillus niger Ferm - BAM C-21) using the agar diffusion technique. The antimicrobial study showed that PVA has moderate antibacterial activity against B. subtillis and the 0.04 wt% Ag NPs composite sample effect was strong against S. aureus.

  16. Photochromic properties of the molecule Azure A chloride in polyvinyl alcohol matrix

    NASA Astrophysics Data System (ADS)

    Shahab, Siyamak; Filippovich, Liudmila; Kumar, Rakesh; Darroudi, Mahdieh; Borzehandani, Mostafa Yousefzadeh; Gomar, Maryam; Hajikolaee, Fatemeh Haji

    2015-12-01

    In the present work, isomerization, photophysical properties and heat conductivity of the substance Azure A chloride (AZAC): 3-amino-7-(dimethlamino)phenothiazin-5-ium chloride under the action of UV radiation in the presence of polyvinyl alcohol (PVA) matrix was studied using the Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The electronic absorption spectra of AZAC in dimethylformamide (DMF) solution and in aqueous medium before and after UV radiation were calculated. The nature of absorption bands of AZAC and its tautomeric prototropic form with the transfer of the electron (AZAC1) in the visible and near UV spectral regions was interpreted. The solvent effect on the absorption spectrum of the AZAC has established. The comparison of measured FTIR, UV-Visible data allowed assignments of major special features of title molecules. The frontier molecular orbital HOMO-LUMO have been also presented that shows the charge transfer interactions taking place within these molecules. The excitation energies for both molecules AZAC and AZAC1 have also been calculated. The experimental as well as theoretical investigations of azure molecule have a close agreement and it gives other important clues about the properties of the system. Anisotropy of thermal conductivity in PVA-films containing AZAC and AZAC1 were also measured.

  17. Physicochemical and morphological properties of plasticized poly(vinyl alcohol)-agar biodegradable films.

    PubMed

    Madera-Santana, T J; Freile-Pelegrín, Y; Azamar-Barrios, J A

    2014-08-01

    The effects of the addition of glycerol (GLY) on the physicochemical and morphological properties of poly(vinyl alcohol) (PVA)-agar films were reported. PVA-agar films were prepared by solution cast method, and the addition of GLY in PVA-agar films altered the optical properties, resulting in a decrease in opacity values and in the color difference (ΔE) of the films. Structural characterization using Fourier transformation infrared (FTIR) spectroscopy and X-ray diffraction (XRD) indicated that the presence of GLY altered the intensity of the bands (from 1200 to 800cm(-1)) and crystallinity. The characterization of the thermal properties indicated that an increase in the agar content produces a decrease in the melting temperature and augments the heat of fusion. Similar tendencies were observed in plasticized films, but at different magnification. The formulation that demonstrated the lowest mechanical properties contained 25wt.% agar, whereas the formulation that contained 75wt.% agar demonstrated a significant improvement. The water vapor transmission rate (WVTR) and surface morphology analysis demonstrated that the structure of PVA-agar films is reorganized upon GLY addition. The physicochemical properties of PVA-agar films using GLY as a plasticizer provide information for the application of this formulation as packaging material for specific food applications. PMID:24875313

  18. Formation and fluidity measurement of supported lipid bilayer on polyvinyl chloride membrane

    SciTech Connect

    Kobayashi, Takuji Kono, Akiteru Sawada, Kazuaki; Futagawa, Masato; Tero, Ryugo

    2014-02-20

    We prepared an artificial lipid bilayer on a plasticized poly(vinyl chloride) (PVC) membrane on a Si3N4 layer deposited on a Si wafer. We optimized the experimental condition for the fabrication of the PVC membrane, and obtained a PVC membrane with a flat and uniform surface on the scale of several hundreds of micrometer suitable for a substrate for supported lipid bilayers (SLBs). The SLB of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was formed on the PVC membrane by the vesicle fusion method. The observation with a conventional epi-fluorescence microscope and a confocal laser scanning microscope gave geometrically uniform images of the SLB on the PVC membrane. The fluidity and the mobile fraction of the SLB was evaluated by the fluorescence recovery after photobleaching method, and compared with that on a thermally oxidized SiO{sub 2}/Si substrate. The SLB on the PVC membrane contained immobile fraction ∼30%, but the diffusion in the mobile fraction was two times faster than that in the SLB on SiO{sub 2}/Si, which had little immobile fraction.

  19. Poly(vinyl alcohol) Modified Porous Graphitic Carbon Stationary Phase for Hydrophilic Interaction Liquid Chromatography.

    PubMed

    Hou, Yanjie; Zhang, Feifang; Liang, Xinmiao; Yang, Bingcheng; Liu, Xiaodong; Dasgupta, Purnendu K

    2016-05-01

    We report a poly(vinyl alcohol) (PVA)-coated porous graphitic carbon (PGC, Hypercarb) packing as a novel stationary phase for hydrophilic interaction liquid chromatography (HILIC). The exterior and the pores of the PGC particles are coated with a thin layer of PVA by soaking the particles in a PVA solution, filtering, and thermally cross-linking the PVA. Such PVA coated PGC particles (5.7 μm diameter), hereinafter called PVA-PGC are stable at least through pH 1.0-12.7, can be made in <2 h, and exhibit different selectivity relative to six commercial HILIC phases and bare PGC. To our knowledge, this is the first fully pH-stable, completely neutral HILIC phase. Excellent efficiency stable is observed for polar analytes (∼70 000 and 118 000 plates/m for cytosine and resorcinol, respectively). Retention closely resembles standard HILIC behavior. Other substances can also be easily incorporated in the PVA layer; an anion exchange column can be readily made by incorporating diallyldimethylammonium chloride in the PVA coating solution. The ease of preparation without the requirement of synthetic skills or paraphernalia and the possibility of incorporating a variety of modifiers makes this a particularly versatile approach. PMID:27053418

  20. Formation and fluidity measurement of supported lipid bilayer on polyvinyl chloride membrane

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuji; Kono, Akiteru; Futagawa, Masato; Sawada, Kazuaki; Tero, Ryugo

    2014-02-01

    We prepared an artificial lipid bilayer on a plasticized poly(vinyl chloride) (PVC) membrane on a Si3N4 layer deposited on a Si wafer. We optimized the experimental condition for the fabrication of the PVC membrane, and obtained a PVC membrane with a flat and uniform surface on the scale of several hundreds of micrometer suitable for a substrate for supported lipid bilayers (SLBs). The SLB of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was formed on the PVC membrane by the vesicle fusion method. The observation with a conventional epi-fluorescence microscope and a confocal laser scanning microscope gave geometrically uniform images of the SLB on the PVC membrane. The fluidity and the mobile fraction of the SLB was evaluated by the fluorescence recovery after photobleaching method, and compared with that on a thermally oxidized SiO2/Si substrate. The SLB on the PVC membrane contained immobile fraction ˜30%, but the diffusion in the mobile fraction was two times faster than that in the SLB on SiO2/Si, which had little immobile fraction.

  1. Physical and chemical basics of modification of poly(vinyl chloride) by means of polyisocyanate

    NASA Astrophysics Data System (ADS)

    Islamov, Anvar; Fakhrutdinova, Venera; Abdrakhmanova, Lyailya

    2016-01-01

    This research presents data relating to polyvinyl chloride (PVC) modification by means of reactive oligomer and measures technological, physical and mechanical properties of the modified composites. Polyisocyanate (PIC) has been chosen as the modifying reactive oligomer. It has been shown that insertion of the oligomer has a double effect on PVC. Primarily, PIC produces a plasticizing effect on PVC and in particular leads to an increase in thermal stability and melt flow index at the stage of processing. In addition, the molded PVC composites possess higher strength properties and lower deformability when exposed to temperature because of chemical transformations of PIC in polymer matrix and, as the result, the formation of cross-linked systems takes place. In this case, semi-interpenetrating structures are formed based on cross-linked products of PIC chemical transformations homogeneously distributed in the PVC matrix. It has been determined by means of IR-spectroscopy that the basic products of PIC curing are compounds with urea and biuret groups which leads to modifying effect on PVC especially: increase in strength, thermal and mechanical properties, and chemical resistance.

  2. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    PubMed Central

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  3. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  4. Thermal, mechanical and dielectric properties of poly(vinyl alcohol)/graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Rathod, Sunil G.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Naik, Jagadish

    2014-04-01

    In this work the composite films of poly(vinyl alcohol) (PVA) doped with functionalized Graphene Oxide (GO) were prepared by solution casting method. The films were characterized using FT-IR, DSC, XRD, mechanical properties and dielectric studies at room temperature. FTIR spectra shows the formation of hydrogen bonds between hydroxyl groups of PVA and the hydroxy groups of GO. The DSC thermograms shows the addition of GO to PVA greatly improves the thermal stability of the composites. XRD patterns shows that the GO exfoliated and uniformly dispersed in PVA matrix. Mechanical properties are significantly improved in PVA/GO composites. The tensile strength increased from 8.2 to 13.7 MPa and the Young's modulus increased from 7.5 to 24.8 MPa for 5 wt% GO doped sample. Dielectric spectroscopy showed a highest dielectric constant for the 5 wt% GO doped PVA films. This work provides a potential design strategy on PVA/GO composite, which would lead to higher-performance, flexible dielectric materials, high charge-storage devices.

  5. Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water.

    PubMed

    Zhang, Yuanyuan; Lin, Yi-Pin

    2015-06-01

    Unplasticized polyvinyl chloride (uPVC) pipes have been used in the premise plumbing system due to their high strength, long-term durability, and low cost. uPVC pipes, however, may contain lead due to the use of lead compounds as the stabilizer during the manufacturing process. The release of lead from three locally purchased uPVC pipes was investigated in this study. The effects of various water quality parameters including pH value, temperature, and type of disinfectant on the rate of lead release were examined. The elemental mapping obtained using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) confirmed the presence of lead on the inner surfaces of the uPVC pipes and their surface lead weight percentages were determined. The leachable lead concentration for each pipe was determined using high strength acidic EDTA solutions (pH 4, EDTA = 100 mg/L). Lead leaching experiments using tap water and reconstituted tape water under static conditions showed that the rate of lead release increased with the decreasing pH value and increasing temperature. In the presence of monochloramine, lead release was faster than that in the presence of free chlorine. PMID:25539706

  6. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling.

    PubMed

    Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian

    2015-11-01

    Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry. PMID:26253330

  7. Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Aslan, M.; Weingarth, D.; Herbeck-Engel, P.; Grobelsek, I.; Presser, V.

    2015-04-01

    Mixtures of polyvinylpyrrolidone/polyvinyl butyral (PVP/PVB) are attractive binders for the preparation of carbon electrodes for aqueous electrolyte supercapacitors. The use of PVP/PVB offers several key advantages: They are soluble in ethanol and can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector. Infrared spectroscopy and contact angle measurements show that the PVP-to-PVB ratio determines the degree of binder hydrophilicity. Within our study, the most favorable performance was obtained for AC electrodes with a composition of AC + 1.5 mass% PVP + 6.0 mass% PVB; such electrodes were mechanically stabile and water resistant with a PVP release of less than 5% of total PVP while PVB itself is water insoluble. Compared to when using PVDF, the specific surface area (SSA) of the assembled electrodes was 10% higher, indicating a reduced pore blocking tendency. A good electrochemical performance was observed in different aqueous electrolytes for composite electrodes with the optimized binder composition: 160 F g-1 at 1 A g-1 for 1 M H2SO4 and 6 M KOH and 120 F g-1 for 1 M NaCl. The capacitance was slightly reduced by 2.5% after cycling to 1.2 V with 1.28 A g-1 in 1 M NaCl for 10,000 times.

  8. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. PMID:24863223

  9. Toxicity of vinyl chloride and poly(vinyl chloride): a critical review.

    PubMed Central

    Wagoner, J K

    1983-01-01

    In 1974, vinyl chloride (VC) was first reported in the open scientific literature to induce angiosarcoma of the liver both in humans and in animals. Additional research has now demonstrated the carcinogenicity of VC to other organs and at lower concentrations. The target organs for VC now clearly include the liver, brain and the lung, and probably the lymphohematopoietic system. The evidence for a carcinogenic risk has been extended to jobs associated with poly(vinyl chloride) exposure. Cases of liver angiosarcoma have been reported among individuals employed in PVC fabrication facilities and an epidemiological study has demonstrated a significant association between exposure to PVC dust and the risk of lung cancer mortality. Cases of angiosarcoma of the liver also have been reported among individuals living in near proximity to vinyl chloride-poly(vinyl chloride) plants. An association between PVC dust and pneumoconiosis also has been demonstrated. On the basis of findings, prudent control of PVC dust in the industrial setting is indicated. PMID:6360677

  10. Effect of Process Parameters on Particle Removal Efficiency in Poly(vinyl alcohol) Brush Scrubber Cleaning

    NASA Astrophysics Data System (ADS)

    An, Joonho; Lee, Hyunseop; Kim, Hyoungjae; Jeong, Haedo

    2012-02-01

    Wafer cleaning is one of the most critical processes in the semiconductor device manufacturing. Poly(vinyl alcohol) (PVA) brush scrubber cleaning is much attractive when compared with traditional wet-batch cleaning which causes the cross-contamination among the wafers in a bath and environmental issues with huge amount of chemical and deionized water (DIW) usages. The mechanical forces generated from PVA brush contact can remove the particles on a wafer surface under low concentration of chemical solution without cross-contamination. In this research, we monitored the change of the dynamic forces including normal and friction force generated by PVA brush contacts during cleaning process, and also investigated the effects of scrubbing conditions of PVA brush overlap and velocity, and the surface tension (low- or high-hydrophilic) of the wafer on the particle removal efficiency. The results show that the driving mechanism to remove the particle on a wafer surface can be changed by the PVA brush overlap and velocity condition such as the hydrodynamic drag force in the brush soft contact condition and friction force in the brush hard contact condition. The particle removal efficiency is higher under the low-hydrophilic surface having a low surface tension compared to high-hydrophilic surface.

  11. Cell adhesive and antifouling polyvinyl chloride surfaces via wet chemical modification.

    PubMed

    Gabriel, Matthias; Strand, Dennis; Vahl, Christian-Friedrich

    2012-09-01

    Polyvinyl chloride (PVC) is one of the most frequently used polymers for the manufacturing of medical devices. Limitations for its usage are based upon unfavorable surface properties of the polymer including its hydrophobicity and lack of functionalities in order to increase its versatility. To address this issue, wet chemical modification of PVC was performed through surface amination using the bifunctional compound ethylene diamine. The reaction was conducted in order to achieve maximum surface amination while leaving the bulk material unaffected. The initial activation step was characterized by means of various methods including contact angle measurements, colorimetric amine quantification, infrared spectroscopy, and gel permeation chromatography. Depth profiles were obtained by a confocal microscopic method using fluorescence labeling. Exclusive surface modification was thus confirmed. To demonstrate biological applications of the presented technique, two examples were chosen: The covalent immobilization of the cell adhesive Asp-Gly-Asp-Ser-peptide (RGD) onto PVC samples yielded a surface that strongly supported cellular adhesion and proliferation of fibroblasts. In contrast, the decoration of PVC with the hydrophilic polymer polyethylene glycol prevented cellular adhesion to a large extent. The impact of these modifications was demonstrated by cell culture experiments. PMID:22747750

  12. Characterization of poly(vinyl chloride) aged in a bromine containing electrolyte

    SciTech Connect

    Arnold, C. Jr.; Leo, A.; Tarjani, M.

    1988-01-01

    Poly(vinyl chloride) (PVC) is being considered for use as a flow frame material in a developmental zinc/bromine battery. The choice of PVC was based on its low cost and the ease with which it can be molded into complex parts. The electrolyte used in this battery is a highly corrosive mixture of bromine, zinc bromide, zinc chloride, potassium bromide, potassium chloride and a quaternary amine salt. The quaternary salt serves to reduce the concentration of free bromine in the electrolyte by virtue of its complexing capability. It is well known that aqueous bromine is capable of oxidizing organic compounds. The purpose of the current study was to investigate the effect of a bromine electrolyte on two PVC formulations, PVC-1 and PVC-4. PVC-1 is the designation given to one of B.F. Goodrich's commercial formulations and is the present baseline material for the flow frame. PVC-4 is an experimental B.F. Goodrich formulation that was developed especially for battery applications. We sought answers to such questions as (1) does oxidation and/or bromination take place. (2) does bromine penetrate into the sample and, if so, how far. (3) how are the mechanical and morphological properties affected. and (4) are there differences in stability between PVC-1 and PVC-4. To accelerate the aging processes we aged the PVC samples at an elevated temperature in an electrolyte which did not contain any complexing agent. 5 refs., 6 figs.

  13. Experimental studies on elastic cooling and pyromagnetic effect of polyvinyl chloride sheets with defects

    NASA Astrophysics Data System (ADS)

    Luo, Yingshe; Chen, Shengming; Zhang, Liang; Su, Jianxin; Zhang, Yongzhong; Luo, Shuling

    2012-09-01

    Polyvinyl Chloride (PVC) sheets were made into samples with precast defects for uniaxial tensile test. The tests are carried out under room temperature with conditions of same displacement rate but different defect sizes or of same defect but different displacement rates. The local nonuniform temperature field on whole deformation area of specimen is recorded with a thermal infrared imager and the whole coupling magnetic field with thermal changes in experiments is detected and measured by a self-developed sensors system. The experimental results show that, in a complete tensile test process of PVC samples, the temperature reduction phenomenon emerges firstly in its elastic deformation stage (areas) that temperature of specimen is cooler than room temperature. And then in viscoplastic deformation period (areas), the temperature increases sharply to be obviously higher than room temperature due to the thermo-mechanical coupling effection of tensile load and viscoplastic deformation heat. These thermal variations lead a coupling pyromagnetic effect occur and the effect intensity is dependent strongly on the strain rate and/or the size of defects. The temperature prejudgment conditions for materials yield are preliminary discussed based on this effect.

  14. FAS Grafted Electrospun Poly(vinyl alcohol) Nanofiber Membranes with Robust Superhydrophobicity for Membrane Distillation.

    PubMed

    Dong, Zhe-Qin; Wang, Bao-Juan; Ma, Xiao-hua; Wei, Yong-Ming; Xu, Zhen-Liang

    2015-10-14

    This study develops a novel type of electrospun nanofiber membranes (ENMs) with high permeability and robust superhydrophobicity for membrane distillation (MD) process by mimicking the unique unitary microstructures of ramee leaves. The superhydrophobic ENMs were fabricated by the eletrospinning of poly(vinyl alcohol) (PVA), followed by chemical cross-linking with glutaraldehyde and surface modification via low surface energy fluoroalkylsilane (FAS). The resultant FAS grafted PVA (F-PVA) nanofiber membranes were endowed with self-cleaning properties with water contact angles of 158° and sliding angles of 4° via the modification process, while retaining their high porosities and interconnected open structures. For the first time, the robust superhydrophobicity of the ENMs for MD was confirmed by testing the F-PVA nanofiber membranes under violent ultrasonic treatment and harsh chemical conditions. Furthermore, vacuum membrane distillation experiments illustrated that the F-PVA membranes presented a high and stable permeate flux of 25.2 kg/m2 h, 70% higher than those of the commercial PTFE membranes, with satisfied permeate conductivity (<5 μm/cm) during a continuous test of 16 h (3.5 wt % NaCl as the feed solution, and feed temperature and permeate pressure were set as 333 K and 9 kPa, respectively), suggesting their great potentials in myriad MD processes such as high salinity water desalination and volatile organiccompounds removal. PMID:26411526

  15. Investigation of electrochemical properties of a poly(vinyl alcohol)/poly(acrylic acid) polymer blend

    SciTech Connect

    DeSantis, C.O.; Seliskar, C.; Heineman, W.R.

    1995-12-31

    Chemical sensors have wide applications in medicine, environmental monitoring, industrial applications, and others because of their versatility, ruggedness, sensitivity, selectivity, and economy. Electrochemical sensors are constructed by using a conducting medium, in this case graphite, and applying a constant potential while measuring changes in the current. Polymers are used for electrochemical sensors to exclude interferents from the electrode surface, to preconcentrate the analyte near the electrode, and in some cases to provide a matrix for the immobilization of analytes, such as enzymes. These functions of the polymer can serve to improve the detection limit of the sensor. This project involves the evaluation of a new polymer for electrode modification. The poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) polymer was originally developed as an ion exchanger for use in space batteries. It has also been used in wastewater cleanup because it will concentrate heavy metals in the presence of calcium ion. This polymer is also optically clear, so it can potentially be used for an optical sensor. We are interested in investigating the ion exchange properties of the PVA/PAA polymer, as well as the ability of this polymer to preconcentrate and exclude analytes on the basis of size, charge, and hydrophilic/hydrophobic interactions.

  16. Coupled electron beam radiation and MBR treatment of textile wastewater containing polyvinyl alcohol.

    PubMed

    Sun, Weihua; Chen, Jun; Chen, Lujun; Wang, Jianlong; Zhang, Yongming

    2016-07-01

    Advanced oxidation processes (AOP) can be combined with biological treatments for recalcitrant organic pollutant decomposition. However, there has been no thorough investigation on the coupling of AOPs and membrane bioreactors (MBR) to treat polymer organic pollutants. This study proposes a new AOP that couples electron beam (EB) radiation and MBR treatment. This method was applied to treat real textile effluents containing polyvinyl alcohol (PVA). During the stable operation stage, 31 ± 7% (n = 28) COD was removed by the EB-MBR process. COD removal was enhanced to 45% at the end of the research period without process optimization. In addition, both the membrane flux and activated sludge system exhibited good stability. Only a 2% membrane flux decreased was observed after a 46 d operation period. PVA radiolysis and biofacies analysis mechanisms are also discussed. By contrast, PVA degradation using only the MBR treatment was ineffective in this study. This ineffectiveness was caused by membrane interception and floccule formation by PVA and activated sludge. PMID:27107385

  17. Char characterization-thermal decomposition chemistry of poly(vinyl alcohol)

    SciTech Connect

    Gilman, J.W.; VanderHart, D.L.; Kashiwagi, Takashi

    1995-12-01

    Currently, due to concerns over the environmental effects of halogenated compound, there is an international demand for the control of polymer flammability without the use of halogenated additives. An alternative to the use of halogenated fire retardants, which control flammability primarily in the gas phase, is to control polymer flammability by manipulating the condensed phase chemistry. Our approach is to increase the amount of char that forms during polymer combustion. Char formation reduces, through crosslinking reactions, the amount of small volatile polymer pyrolysis fragments, or fuel, available for burning in the gas phase; this, in turn reduces the amount of heat feedback to the polymer surface. The char also insulates the underlying virgin polymer. The polymer we chose to investigate was polyvinyl alcohol, PVA, because it is one of the few linear, non-halogenated, aliphatic, polymers with a measurable (approximately 4%) char yield. We report the CP/MAS {sup 13}C NMR characterization of the fundamental condensed phase processes and structures which lead to char formation during the pyrolysis of poly (vinyl-alcohol), PVA, and PVA with nonhalogenated additives.

  18. Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment

    SciTech Connect

    Oji, L.N.

    2003-08-07

    Photochemical and ultrasonic treatment of polyvinyl alcohol (PVA), derived from PVA fabric material, with hydrogen peroxide was evaluated as a primary method for PVA mineralization into simpler organic molecules. PVA-based waste streams have been found to be compatible with nuclear process wastewater treatment facilities only when solubilized PVA is more than 90 percent mineralized with hydrogen peroxide. No undesirable solid particles are formed with other nuclear process liquid waste when they are mixed, pH adjusted, evaporated and blended with this type of oxidized PVA waste streams. The presence of oxidized PVA in a typical nuclear process wastewater has been found to have no detrimental effect on the efficiency of ion exchange resins, inorganic, and precipitation agents used for the removal of radionuclides from nuclear waste streams. The disappearance of PVA solution in hydrogen peroxide with ultrasonic/ ultraviolet irradiation treatment was characterized by pseudo-first-order reaction kinetics. Radioactive waste contaminated PVA fabric can be solubilized and mineralized to produce processible liquid waste, hence, no bulky solid waste disposal cost can be incurred and the radionuclides can be effectively recovered. Therefore, PVA fabric materials can be considered as an effective substitute for cellulose fabrics that are currently used in radioactive waste decontamination processes.

  19. Treatment of desizing wastewater containing poly(vinyl alcohol) by wet air oxidation

    SciTech Connect

    Chen, G.; Lei, L.; Yue, P.L.; Cen, P.

    2000-05-01

    The effectiveness of wet air oxidation (WAO) is studied in a 2-L autoclave for the treatment of desizing wastewater from man-made fiber textile plants. At an oxygen pressure of less than 2 MPa, over 30-min, chemical oxygen demand (COD) removal was found to increase from 15 to 65% when the temperature was raised from 150 to 250 C. The biodegradability of the wastewater was also simultaneously increased. Up to 90% of the COD could be removed within 120 min. A simplified reaction mechanism is proposed which involves a direct mineralization step in parallel with a step in which an intermediate is formed prior to mineralization. A kinetic model for COD removal was developed based on this reaction mechanism. The model was tested with experimental COD results over the temperature range of the experiments. The dependence of the specific reaction rate constants was found to follow the Arrhenius type of equation. The direct oxidation of poly(vinyl alcohol) (PVA) to carbon dioxide and water is the dominant reaction step. The intermediates formed are not likely to be the acetic acid but may be short segments of PVA that are easily oxidized.

  20. Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide.

    PubMed

    Zhao, Yuanyuan; Lu, Jiaqi; Liu, Xuyang; Wang, Yudan; Lin, Jiuyang; Peng, Na; Li, Jingchun; Zhao, Fangbo

    2016-10-15

    A novel polyvinyl chloride (PVC) membrane was modified with graphene oxide (GO) via phase inversion method to improve its hydrophilicity and mechanical properties. The GO presented a large amount of hydrophilic groups after the modification through the modified Hummers method. It was observed that with the addition of low fraction of GO powder, the GO/PVC hybrid membranes exhibited a significant enhancement in hydrophilicity, water flux, and mechanical properties. With optimal dosage (0.1wt%), the pure water flux of GO/PVC membrane increased from 232.6L/(m(2)hbar) to 430.0L/(m(2)hbar) and the tensile strength increased from 231.3cN to 305.3cN. The improved properties of the PVC/GO hybrid membranes are mainly attributed to the strong hydrophilicity of functional groups on the GO surface, indicating that GO has a promising candidate for modification of PVC ultrafiltration membranes in wastewater treatment. PMID:27399613

  1. The effect of polyethylene glycol on the stability of pores in polyvinyl alcohol hydrogels during annealing.

    PubMed

    Bodugoz-Senturk, Hatice; Choi, Jeeyoung; Oral, Ebru; Kung, Jean H; Macias, Celia E; Braithwaite, Gavin; Muratoglu, Orhun K

    2008-01-01

    Poly(vinyl alcohol) (PVA) hydrogels are candidate biomaterials for cartilage resurfacing or interpositional arthroplasty devices requiring high-creep resistance and high water content to maintain lubricity. Annealing of PVA improves creep resistance but also reduces the water content. We hypothesized that maintaining poly(ethylene glycol) (PEG) within PVA during annealing would prevent the collapse of the pores and thus would result in high equilibrium water content (EWC). Our hypothesis tested positive. The PVA hydrogels containing PEG maintained their opacity through annealing and exhibited large pores under confocal imaging while hydrogels not containing PEG turned translucent and no pores were visible after annealing. The EWC of gels annealed with PEG (83 +/- 1.0%) was higher than that of the gels processed without PEG (55 +/- 4.8). The crystallinity of the former was 8.0 +/- 1.7% and the latter was 27.5 +/- 8.7%. The hydrogels processed in the presence of PEG exhibited a significantly higher total creep strain (69 +/- 3.4%) when compared to the PEG-free hydrogels (17 +/- 3.7) under an initial contact stress of 0.45 MPa. EWC appeared to be strongly related to the creep resistance of annealed PVA theta-gels. PMID:17950839

  2. Immobilized Horseradish Peroxidase on Discs of Polyvinyl Alcohol-Glutaraldehyde Coated with Polyaniline

    PubMed Central

    Caramori, Samantha Salomão; Fernandes, Kátia Flávia; de Carvalho Junior, Luiz Bezerra

    2012-01-01

    Discs of network polyvinyl alcohol-glutaraldehyde (PVAG) were synthesized and coated with polyaniline (PANI) using glutaraldehyde as a chemical arm (PVAG-PANIG-HRP disc). The best conditions for the immobilization were established as about 1.0 mg mL−1 of protein, for 60 min and pH 5.5. The soluble enzyme lost all of its activity after incubation at 70°C for 15 min, whereas the PVAG-PANIG-HRP disc retained about half of the initial activity for pyrogallol. The same PVAG-PANIG-HRP disc was used consecutively three times without any activity lossbut presented 25% of the initial activity after the 7th use. PVAG-PANIG-HRP disc retained approximately 80% and 60% of its initial activity after 60 and 80 days of storage, respectively. Resorcinol, m-cresol, catechol, pyrogallol, α-naphthol, βnaphthol, and 4, 4′-diaminodiphenyl benzidine were efficiently oxidized by the PVAG-PANIG-HRP disc (from about 70% to 90%), and it was less efficient towards aniline, phenol, and 2-nitrosonaphthol. PMID:22619582

  3. Steric stabilization of thermally responsive N-isopropylacrylamide particles by poly(vinyl alcohol).

    PubMed

    Lee, A; Tsai, H-Y; Yates, M Z

    2010-12-01

    Poly(vinyl alcohol) (PVA) was used as a steric stabilizer for the dispersion polymerization of cross-linked poly(N-isopropylacrylamide) (PNIPAM) in water. A series of reactions were carried out using PVA of varying molecular weight and degree of hydrolysis. Under appropriate conditions, PNIPAM particles of uniform and controllable size were produced using PVA as the stabilizer. The colloidal stability was investigated by measuring changes in particle size with temperature in aqueous suspensions of varying ionic strength. For comparison, parallel colloidal stability measurements were conducted on PNIPAM particles synthesized with low-molecular-weight ionic surfactants. PVA provides colloidal stability over a wide range of temperature and ionic strength, whereas particles produced with ionic surfactants flocculate in moderate ionic strength solutions upon collapse of the hydrogel as the temperature is increased. Experimental results and theoretical consideration indicate that sterically stabilized PNIPAM particles resulted from the grafting of PVA to the PNIPAM particle surface. The enhanced colloidal stability afforded by PVA allows the temperature-responsive PNIPAM particles to be used under physiological conditions where electrostatic stability is ineffective. PMID:21050003

  4. Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation.

    PubMed

    Swain, Basudev; Ryang Park, Jae; Yoon Shin, Dong; Park, Kyung-Soo; Hwan Hong, Myung; Gi Lee, Chan

    2015-10-01

    Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30v ol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling). PMID:26318256

  5. Clay flocculation improved by cationic poly(vinyl alcohol)/anionic polymer dual-component system.

    PubMed

    Sang, Yizhou; Xiao, Huining

    2008-10-15

    The synthesis of cationically modified poly(vinyl alcohol), CPVA, by copolymerization of vinyl acetate and diallyldimethyl ammonium chloride (DADMAC), followed by alkaline hydrolysis was systematically studied. The application of the resulting polymer to the fine clay flocculation was also reported. The charge density and the structure of the resulting CPVA were characterized by polyelectrolyte titration and NMR. A photometric dispersion analyzer was used to conduct the dynamic flocculation experiments. Under fine clay experimental conditions, the CPVA alone contributed little to inducing clay flocculation. However, in conjunction with anionic polyacrylamide-based polymer with high molecular weight and low charge density, significant improvement in the flocculation of fine clay particles was achieved. The influence of factors such as pH and shear force on clay flocculation was also investigated to identify optimum application conditions for clay flocculation. The electrostatic interactions between the clay and CPVA, as well as those between the CPVA pre-treated clay and anionic polymer, were studied to explore the flocculation mechanism. PMID:18657822

  6. Ester synthesis catalyzed by Mucor miehei lipase immobilized on magnetic polysiloxane-polyvinyl alcohol particles.

    PubMed

    Bruno, Laura M; de Lima Filho, José L; de M Melo, Eduardo H; de Castro, Heizir F

    2004-01-01

    Mucor miehei lipase was immobilized on magnetic polysiloxane-polyvinyl alcohol particles by covalent binding with high activity recovered. The performance of the resulting immobilized biocatalyst was evaluated in the synthesis of flavor esters using heptane as solvent. The impact on reaction rate was determined for enzyme concentration, molar ratio of the reactants, carbon chain length of the reactants, and alcohol structure. Ester synthesis was maximized for substrates containing excess acyl donor and lipase loading of 25 mg/mL. The biocatalyst selectivity for the carbon chain length was found to be different concerning the organic acids and alcohols. High reaction rates were achieved for organic acids with 8 or 10 carbons, whereas increasing the alcohol carbon chain length from 4 to 8 carbons gave much lower esterification yields. Optimal reaction rate was determined for the synthesis of butyl caprylate (12 carbons). Esterification performance was also dependent on the alcohol structure, with maximum activity occurring for primary alcohol. Secondary and tertiary alcohols decreased the reaction rates by more than 40%. PMID:15054206

  7. Radiation sensitive indicator based on tetrabromophenol blue dyed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Beshir, W. B.

    2013-05-01

    Radiation sensitive indicators based on dyed polyvinyl alcohol (PVA) containing acid- sensitive dye (tetrabromophenol blue, TBPB) and chloral hydrate (CCl3·CH·(OH)2, 2,2,2-trichloroethane-1,1-diol) have been developed. These plastic film dosimeters undergo color change from blue (the alkaline form of TBPB) to yellow (the acidic form of TBPB), indicating acid formation. The concentration of radiation formed acids in the films containing different concentrations of chloral hydrate was calculated at different doses. These films can be used as dosimeters for food irradiation applications where the maximum of the useful dose ranges are between 1 and 8 kGy depending on chloral hydrate concentration in the film. The films have the advantage of negligible humidity effects on response in the intermediate range of relative humidity from 0 to 70% as good post irradiation stability when stored in the dark at room temperature. The overall combined uncertainty (at 2σ) associated with measurement of response (ΔA mm-1) at 623 nm for dose range 1-8 kGy is 4.53%.

  8. Effect of gamma irradiation on the thermal, mechanical and structural properties of chlorinated polyvinyl chloride

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.

    Non isothermal studies were carried out using thermogravimetry (TG) and differential thermogravimetry (DTG) to obtain the activation energy of decomposition for chlorinated polyvinyl chloride (CPVC) before and after exposure to gamma doses at levels between 5.0 and 50.0 KGy. Thermal gravitational analysis (TGA) indicated that the CPVC polymer decomposes in one main breakdown stage and a decrease in activation energies was observed followed by an increase on increasing the gamma dose. The variation of melting temperatures with the gamma dose has been determined using differential thermal analysis (DTA). Also, mechanical and structural property studies were performed on all irradiated and non-irradiated CPVC samples using stress-strain relations and X-ray diffraction. The results indicated that the exposure to gamma doses at levels between 27.5 and 50 KGy leads to further enhancement of the thermal stability, tensile strength and isotropic character of the polymer samples due to the crosslinking phenomenon. This suggests that gamma radiation could be a suitable technique for producing a plastic material with enhanced properties that can be suitable for high temperature applications and might be a suitable candidate for dosimetric applications.

  9. A polyvinyl alcohol/ p-sulfonate phenolic resin composite proton conducting membrane

    NASA Astrophysics Data System (ADS)

    Wu, Chien-Shun; Lin, Fan-Yen; Chen, Chih-Yuan; Chu, Peter P.

    Membranes composed of poly(vinyl alcohol) (PVA) and a proton source polymer, sulfonated phenolic resin (s-Ph) displayed good proton conductivity of the order of 10 -2 S cm -1 at ambient temperatures. Upon cross-linking above 110 °C, covalent links between the sulfonate groups of the phenolic resin and the hydroxyl groups of the PVA were established. Although this sacrificed certain sulfonate groups, the conductivity value was still preserved at the 10 -2 S cm -1 level. In sharp contrast to Nafion, the current membrane (both before and after cross-linking) was also effective in reducing the methanol uptake where the swelling ratio decreased with increase of methanol concentration. Although both the methanol permeation and the proton conductivity were lower compared to Nafion, the conductivity/permeability ratio of 0.97 for the PVA/s-Ph is higher than that determined for Nafion. The results suggested the effectiveness of proton transport in the polymer-complex structure and the possibility that a high proton conductivity can be realized with less water.

  10. Improvement of Starch Digestion Using α-Amylase Entrapped in Pectin-Polyvinyl Alcohol Blend

    PubMed Central

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L−1 sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications. PMID:25949991

  11. Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, G.; Gupta, K.; Meikap, A. K.; Babu, R.; Blau, W. J.

    2011-02-01

    The dc and ac electrical transport property of polyvinyl alcohol-multiwall carbon nanotubes composites has been investigated within a temperature range 77≤T≤300 K and in the frequency range 20 Hz-1 MHz in presence as well as in absence of a transverse magnetic field up to 1 T. The dc conductivity follows variable range hopping model. The magnetoconductivity of the samples changes a sign from positive to negative with an increase in temperature which can be interpreted by the dominancy of the quantum interference effect over the wave function shrinkage effect. The ac conductivity follows a power law whereas the temperature dependence of frequency exponent s can be explained by correlated barrier hopping model. The dielectric behavior of the samples has been governed by the grain and grain boundary resistance and capacitance. The ac conductivity reduces with the application of magnetic field. Although the theoretical model to explain it, is still lacking, we may conclude that this is due to the increase in grain and grain boundary resistance by the application of magnetic field.

  12. In-Line Ultrasonic Monitoring for Sediments Stuck on Inner Wall of a Polyvinyl Chloride Pipe

    PubMed Central

    2014-01-01

    This research verified the applicability and effectiveness of the ultrasonic monitoring of sediments stuck on the inner wall of polyvinyl chloride (PVC) pipes. For identifying the transmittance of acoustic energy and the speed of sound in the PVC material, the pulse-echo ultrasonic testing was conducted for PVC sheets of different thicknesses. To simulate the solidified sediment, the hot melt adhesive (HMA) was covered on the inner wall of the PVC pipe in different heights. From the experiment, the speeds of sound in the PVC and the HMA materials were obtained as about 2258 and 2000 m/s, respectively. The thickness of the materials was calculated through the signal processing such as taking the absolute value and low pass filtering, the echo detection, and the measurement of the time of flight. The errors between actual and measured thicknesses of PVC sheets were below 5%. In the case of the substance stuck on the inner wall, the errors were below 2.5%. Since the pulse-echo ultrasonic inspection is available on the outer surface and its measurement accuracy was over 95%, it can be an efficient and effective in-service structural health monitoring for the sediment on the wall of PVC pipes. PMID:25243223

  13. Chromaticity and color saturation of ultraviolet irradiated poly(vinyl alcohol)-anthocyanin coatings

    NASA Astrophysics Data System (ADS)

    Mat Nor, N. A.; Aziz, N.; Mohd-Adnan, A. F.; Taha, R. M.; Arof, A. K.

    2016-06-01

    The purpose of this paper is to evaluate the chromaticity and color saturation of anthocyanin extraction from fruit pericarps of Ixora siamensis in a poly(vinyl alcohol) (PVA) matrix. The colored PVA matrix was exposed to UV-B irradiation for 93 days at UV intensity of 17.55 lux. Anthocyanin colorant has been extracted using methanol acidified with 0.5% trifluoroacetic acid (TFA). Different concentrations of ferulic acid (FA) (0, 1, 2, 3, 4 and 5 wt.%) have been added to the anthocyanin extractions before mixing with PVA to form a coating system. The PVA-anthocyanin-FA mixtures have been coated on glass slides and kept overnight in the dark for curing before exposure to UV-B irradiation. The FA-free sample undergoes more color degradation compared to samples containing FA. The coating with 2% FA has the most stable color with chromaticity of 41% and color saturation of 0.88 compared to other FA containing coats. The FA-free coat exhibits 29% chromaticity and color saturation of 0.38 at the end of the experiment.

  14. Mesoscopic and microscopic investigation on poly(vinyl alcohol) hydrogels in the presence of sodium decylsulfate.

    PubMed

    Mangiapia, Gaetano; Ricciardi, Rosa; Auriemma, Finizia; Rosa, Claudio De; Celso, Fabrizio Lo; Triolo, Roberto; Heenan, Richard K; Radulescu, Aurel; Tedeschi, Anna Maria; D'Errico, Gerardino; Paduano, Luigi

    2007-03-01

    The structure of poly(vinyl alcohol) (PVA) hydrogels formed as a result of freeze/thaw treatments of aqueous solutions of the polymer (11 wt % PVA) in the freshly prepared state is analyzed through the combined use of small (SANS) and ultrasmall (USANS) angle neutron scattering techniques. The structure of these hydrogels may be described in terms of polymer rich regions, with dimensions of the order of 1-2 microm, dispersed in a water rich phase, forming two bicontinuous phases. The PVA chains in the polymer rich phase form a network where the cross-linking points are mainly crystalline aggregates of PVA having average dimensions of approximately 45 A. The structural organization of freeze/thaw PVA hydrogel membranes does not change either after rehydration of dried gels or in the presence of a tensile force. Finally, addition of surfactant micelles inside the gel provides a formulation with both hydrophobic and hydrophilic regions, which demonstrates the potential of the system for drug delivery. Both SANS and EPR measurements show that sodium decylsulfate (C10OS) micelles do not significantly interact with the PVA gel. Variation of the gel structure by the number of freeze/thaw cycles should modulate the rate of release of an active constituent, for example, in a dermal patch. PMID:17295534

  15. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics.

    PubMed

    Sun, Xunwen; Lu, Canhui; Liu, Yong; Zhang, Wei; Zhang, Xinxing

    2014-01-30

    Waste cotton fabrics (WCFs), which are generated in a large volume from the textile industry, have caused serious disposal problem. Recycling WCFs into value-added products is one of the vital measures for both environmental and economic benefits. In this study, microcrystalline cellulose (MCC) was prepared by acid hydrolysis of WCFs, and used as reinforcement for melt-processed poly(vinyl alcohol) (PVA) with water and formamide as plasticizer. The microstructure and mechanical properties of the melt-processed PVA/MCC composites were characterized by Fourier transform infrared spectra, Raman spectra, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction, tensile tests and dynamic mechanical analysis. The results indicated that MCC could establish strong interfacial interaction with PVA through hydrogen bonding. As a result, the crystallization of PVA was confined and its melting temperature was decreased, which was beneficial for the melt-processing of PVA. Compared with the unfilled PVA, the PVA/MCC composites exhibited remarkable improvement in modulus and tensile strength. PMID:24299821

  16. An experimental investigation of enzyme release from poly(vinyl alcohol) crosslinked microspheres.

    PubMed

    Bachtsi, A R; Kiparissides, C

    1995-01-01

    Crosslinked poly(vinyl alcohol) particles were prepared by the addition of glutaraldehyde into a PVA methanol/water solution in the presence of 0.2 N sulphuric acid. The polymer solution was dispersed in mineral oil in a jacketed vessel, with the aid of a six-blade impeller. Spherical crosslinked particles in the size range 30-80 microns were obtained by varying the degree of agitation or/and the amount of suspending agent. The crosslinked particles, after washing and drying, were placed into a protease enzyme solution for loading. The enzyme-containing water-swollen particles were subsequently removed from the solution and the enzyme release kinetics determined by a UV spectrophotometer. The influence of the degree of crosslinking, ionic strength, pH, particle size, and degree of hydrophilicity of the polymer on the enzyme activity was retained during the adsorption-desorption studies. The release behaviour of enzymes from crosslinked PVA particles exhibited a biphasic kinetic model, with an initial fast release followed by a much slower release rate. PMID:7730954

  17. Barrier properties of poly(vinyl alcohol) membranes containing carbon nanotubes or activated carbon.

    PubMed

    Surdo, Erin M; Khan, Iftheker A; Choudhury, Atif A; Saleh, Navid B; Arnold, William A

    2011-04-15

    Carbon nanotube addition has been shown to improve the mechanical properties of some polymers. Because of their unique adsorptive properties, carbon nanotubes may also improve the barrier performance of polymers used in contaminant containment. This study compares the barrier performance of poly(vinyl alcohol) (PVA) membranes containing single-walled carbon nanotubes (SWCNTs) to that for PVA containing powdered activated carbon (PAC). Raw and surface-functionalized versions of each sorbent were tested for their abilities to adsorb 1,2,4-trichlorobenzene and Cu(2+), representing the important hydrophobic organic and heavy metal contaminant classes, as they diffused across the PVA. In both cases, PAC (for 1,2,4-trichlorobenzene) and functionalized PAC (for Cu(2+)) outperformed SWCNTs on a per mass basis by trapping more of the contaminants within the barrier membrane. Kinetics of sorption are important in evaluating barrier properties, and poor performance of SWCNT-containing membranes as 1,2,4-TCB barriers is attributed to kinetic limitations. PMID:21349636

  18. Mechanisms of diphylline release from dual-solute loaded poly(vinyl alcohol) matrices.

    PubMed

    Hasimi, Albana; Papadokostaki, Kyriaki G; Sanopoulou, Merope

    2014-01-01

    The release kinetics of the model hydrophilic drug, diphylline (DPL), from physically crosslinked poly(vinyl alcohol) (PVA) matrices, is studied in relation to the drug load and the presence of a second solute incorporated in the matrix. The second solute, a gadolinium (III) complex (Gd-DTPA), is a commonly used MRI contrast agent. The water uptake kinetics by the glassy PVA matrix was found to deviate from t(1/2) law and to occur on time scales comparable to those of diphylline release. The corresponding rate of diphylline release was found to be substantially stabilized as compared to a purely diffusion-controlled release process, in line with theoretical predictions under conditions of relaxation-controlled water uptake kinetics. The release rate of DPL was found (i) to increase with increasing DPL load and (ii) for a particular DPL load, to increase in the presence of Gd-DTPA, incorporated in the matrix. The results were interpreted on the basis of the diphylline-induced plasticization of the polymer (evidenced by the depression of Tg) and of the excess hydration of the matrix at high solute loads. The latter effect was found to be additive in the case of dual-solute loaded matrices. PMID:24268271

  19. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite. PMID:25439870

  20. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  1. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150). PMID:26724947

  2. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Bodugoz-Senturk, Hatice; Macias, Celia; Muratoglu, Orhun K.

    2007-12-01

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.

  3. Enlarged-taper tailored Fiber Bragg grating with polyvinyl alcohol coating for humidity sensing

    NASA Astrophysics Data System (ADS)

    Liang, Yanhong; Yan, Guofeng; He, Sailing

    2015-08-01

    In this paper, a novel optical fiber sensor based on an enlarged-taper tailored fiber Bragg grating (FBG) is proposed and experimentally demonstrated for the measurement of relative humidity. The enlarged-taper works as a multifunctional joint that not only excites cladding modes but also recouples the cladding modes reflected by the FBG back into the leading single mode fiber. Due to the fact that cladding modes have a strong evanescent field penetrating into the ambient medium, the intensity of the reflected cladding modes is greatly influenced by the refractive index (RI) of the ambient medium. Polyvinyl alcohol (PVA) film is plated on the fiber surface by dip-coating technique, as a humidity-to-refractive index transducer, whose RI variance from 1.49 to 1.34 when the ambient humidity increases from 20%RH to 95%RH. The relative humidity response of the sensing structure is investigated in our home-made humidity chamber with a commercial hygrometer. By monitoring the intensity of the reflected cladding modes, the RH variance can be demodulated. Experimental results show that RH sensitivity depends on the RH value, and a sensitivity up to 1.2 dB/%RH can be achieved within the RH range of 30-90%. A fast and reversible time response has also been investigated. Such a probe-type and reusable fiber-optic RH sensor is a very promising technology for biochemical sensing applications, e.g., breath analysis, chemical reaction monitoring.

  4. Dehydration of dioxane by pervaporation using filled blend membranes of polyvinyl alcohol and sodium alginate.

    PubMed

    Kuila, Sunil Baran; Ray, Samit Kumar

    2014-01-30

    Pervaporation membranes were made by solution blending of polyvinyl alcohol (PVA) and sodium alginate (SA). Accordingly, five different blends with PVA:SA weight ratio of 75:25, 50:50, 25:75, 20:80 and 10:90 designated as PS1, PS2, PS3, PS4 and PS5, respectively, were prepared. Each of these blends was crosslinked with 2, 4 and 6 wt% glutaraldehyde and the resulting fifteen (5 × 3) membranes were used for pervaporative separation of 90 wt% dioxane in water. The membranes made from PS4 and PS5 were not stable during pervaporation experiments. Among the stable membranes PS3 membrane crosslinked with 2 wt% glutaraldehyde showed the best results for flux and selectivity. Thus, it was filled with nano size sodium montmorillonite filler and used for separation of dioxane-water mixtures over the entire concentration range of 80-99.5 wt% dioxane in water. The membranes were also characterized by mechanical properties, FTIR, SEM, DTA-TGA and XRD. PMID:24299887

  5. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings

    PubMed Central

    Oliveira, R. N.; Rouzé, R.; Quilty, B.; Alves, G. G.; Soares, G. D. A.; Thiré, R. M. S. M.; McGuinness, G. B.

    2014-01-01

    Polyvinyl alcohol (PVA) hydrogels are materials for potential use in burn healing. Silver nanoparticles can be synthesized within PVA hydrogels giving antimicrobial hydrogels. Hydrogels have to be swollen prior to their application, and the common medium available for that in hospitals is saline solution, but the hydrogel could also take up some of the wound's fluid. This work developed gamma-irradiated PVA/nano-Ag hydrogels for potential use in burn dressing applications. Silver nitrate (AgNO3) was used as nano-Ag precursor agent. Saline solution, phosphate-buffered solution (PBS) pH 7.4 and solution pH 4.0 were used as swelling media. Microstructural evaluation revealed an effect of the nanoparticles on PVA crystallization. The swelling of the PVA-Ag samples in solution pH 4.0 was low, as was their silver delivery, compared with the equivalent samples swollen in the other media. The highest swelling and silver delivery were related to samples prepared with 0.50% AgNO3, and they also presented lower strength in PBS pH 7.4 and solution pH 4.0. Both PVA-Ag samples were also non-toxic and presented antimicrobial activity, confirming that 0.25% AgNO3 concentration is sufficient to establish an antimicrobial effect. Both PVA-Ag samples presented suitable mechanical and swelling properties in all media, representative of potential burn site conditions. PMID:24501677

  6. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines

    NASA Astrophysics Data System (ADS)

    Marega, Carla; Maculan, Jenny; Rizzi, Gian Andrea; Saini, Roberta; Cavaliere, Emanuele; Gavioli, Luca; Cattelan, Mattia; Giallongo, Giuseppe; Marigo, Antonio; Granozzi, Gaetano

    2015-02-01

    Polyvinyl alcohol (PVA) electrospun nanofibers containing Ag nanoparticles (NPs) have been deposited on glass substrates. The aim of the work was to test the feasibility of this approach for the detection of biogenic amines by using either the Ag localized surface plasmon resonance quenching caused by the adsorption of amines on Ag NPs or by detecting the amines by surface enhanced Raman spectroscopy (SERS) after adsorption, from the gas phase, on the metal NPs. Two different approaches have been adopted. In the first one an ethanol/water solution containing AgNO3 was used directly in the electrospinning apparatus. In this way, a simple heat treatment of the nanofibers mat was sufficient to obtain the formation of Ag NPs inside the nanofibers and a partial cross-link of PVA. In the second procedure, the Ag NPs were deposited on PVA nanofibers by using the supersonic cluster beam deposition method, so that a beam of pure Ag NPs of controlled size was obtained. Exposure of the PVA mat to the beam produced a uniform distribution of the NPs on the nanofibers surface. Ethylendiamine vapors and volatile amines released from fresh shrimp meat were chemisorbed on the nanofibers mats. A SERS spectrum characterized by a diagnostic Ag-N stretching vibration at 230 cm-1 was obtained. The results allow to compare the two different approaches in the detection of ammines.

  7. Permeability of latex and polyvinyl chloride gloves to 20 antineoplastic drugs.

    PubMed

    Laidlaw, J L; Connor, T H; Theiss, J C; Anderson, R W; Matney, T S

    1984-12-01

    Permeability of latex and polyvinyl chloride (PVC) gloves to 20 injectable antineoplastic drugs was studied. Four types of gloves were evaluated: latex surgical gloves, latex examination gloves, and PVC gloves in two thicknesses. Each glove material was exposed to each drug for 90 minutes, and permeation was tested using a mutagenicity assay. Individual fingertips of thin PVC gloves and latex surgical gloves were tested for permeability at five time points (2-30 minutes) using a doxorubicin coloration assay. All drugs permeated the thin PVC gloves. Latex surgical gloves were definitely permeable to two drugs (carmustine and thiotepa) and exhibited borderline permeability to mechlorethamine hydrochloride. The thick PVC gloves were definitely permeable to four drugs (carmustine, thiotepa, mechlorethamine hydrochloride, and daunorubicin hydrochloride) and exhibited borderline permeability to two drugs (doxorubicin and mercaptopurine). The latex examination gloves were permeable to carmustine, thiotepa, mechlorethamine hydrochloride, and cyclophosphamide. Doxorubicin permeation of individual fingertips of thin PVC gloves varied in time and amount. Doxorubicin did not permeate the latex surgical glove material, but testing with thiotepa showed that individual fingertips of this material also varied in permeability. Glove thickness was a major determinant of permeability; latex surgical gloves were the least permeable and thin PVC gloves the most permeable to the antineoplastic drugs tested. Within individual gloves and glove types, time and amount of permeation were not uniform. PMID:6440436

  8. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Akhtar, Majid Niaz; Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Al-Amiery, Ahmed A

    2015-01-01

    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA. PMID:26703542

  9. Nanostructural Features in Silica-polyvinyl Acetate Nanocomposites Characterized by Small-Angle Scattering

    SciTech Connect

    Raghavan, Aravinda N; Thiyagarajan, P.; Zhu, Dr. Ai-Jun; Ash, Dr. Benjamin J.; Shofner, M. L.; Schadler, Linda; Kumar, Sanat K; Sternstein, S. S.

    2007-01-01

    Small-angle scattering (SAS) experiments were carried out on nanocomposites of poly(vinyl acetate) (PVAc) and fumed silica nanoparticles with different surface areas and chemical treatment, in the wave-vector (Q) range: 0.0002-1 A-1 . SAS data on composites with matrices of two different molecular weights indicate that the particle aggregation is independent of the molecular weight of the matrix for a fixed filler concentration and surface treatment. Particle size distributions derived from the SAS data suggest that particle aggregation is reduced when the native surface hydroxyl groups are blocked by various surface treatments, which also reduce the bonding strength to the polymer matrix. The unified exponential/power-law analysis of the SAS data shows three levels of hierarchy in the organization of silica particles. The first level consists of small aggregates of silica particles. At the second level we observe polydispersed aggregates resembling mass-fractal objects that is corroborated by TEM. The polydispersed aggregates further associate to form agglomerates at the third level. The relevance of these findings to the mechanism of nanofiller reinforcement of linear amorphous polymers above Tg is discussed.

  10. Nonvolatile memory devices based on poly(vinyl alcohol) + graphene oxide hybrid composites.

    PubMed

    Sun, Yanmei; Lu, Junguo; Ai, Chunpeng; Wen, Dianzhong

    2016-04-20

    Nonvolatile memory devices based on active layers of poly(vinyl alcohol) (PVA) + graphene oxide (GO) hybrid composites have been fabricated. The performance of the ITO/PVA + GO/Al device was compared with that of the ITO/PVA/Al device. The ITO/PVA + GO/Al device showed excellent performance compared to the ITO/PVA/Al device (an ON/OFF resistance ratio of 1.2 × 10(2) at 1 V, VSET ∼ -1.45 V and VRESET ∼ 3.6 V), with a higher ON/OFF resistance ratio of 3 × 10(4) at 1 V and lower operating voltages of VSET ∼ -0.75 V and VRESET ∼ 3.0 V. Furthermore, endurance performance and write-read-erase-reread (WRER) cycle tests manifest that the presence of GO in ITO/PVA + GO/Al devices makes them have better stability and repeatability. The results show that the performance of hybrid devices can be effectively enhanced by the introduction of GO into the PVA matrix. PMID:27056548

  11. Thermal effects on the electrical properties of (methyl orange)/ (polyvinyl alcohol) composites

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helinando P.; de Melo, Celso P.

    2007-04-01

    We have used electrical impedance spectroscopy to determine the dielectric characteristics of polymeric films prepared by incorporating varying amounts of methyl orange (MO), an azobenzene dye, into solid films of polyvinyl alcohol (PVA), an insulating polymer. By mapping the variation of relevant parameters such as the dielectric relaxation time, we have analyzed how thermal effects would affect the charge transport and polarization processes in the MO/PVA composite samples as the frequency of an applied external field and the temperature were varied in a controlled manner. We interpret the results in terms of number and size of the dye aggregates in the polymeric matrix, by correlating thermal and polarization effects to the temperature and the relative amount of MO in the composite films. Finally, we show that the electrical characteristics of the MO/PVA samples can be modified by light incidence, a fact that confirms the possibility of using these composites in (light written)-(electrically read) solid-state memory devices.

  12. Arterial Distribution of Calibrated Tris-Acryl Gelatin and Polyvinyl Alcohol Embolization Microspheres in Sheep Uterus

    SciTech Connect

    Laurent, Alexandre; Wassef, Michel; Namur, Julien; Ghegediban, Homayra; Pelage, Jean-Pierre

    2010-10-15

    The purpose of this study was to compare, after embolization, the distribution in the uterine arterial vasculature of tris-acryl gelatin microspheres (TGMS) and polyvinyl alcohol microspheres (PVAMS). A limited bilateral uterine artery embolization was performed in six adult sheep under fluoroscopic control by injecting in each uterine artery 0.25 ml of 500- to 700-{mu}m TGMS of PVAMS suspended in 50/50 saline/contrast medium. Sacrifices were performed 1 week after embolization and uteri were analyzed histologically. The number and size of microspheres and vessels were measured, as well as the histological location according to a classification in four zones of the uterus. One hundred sixty-five vessels (69 vessels occluded with TGMS and 96 vessels occluded with PVAMS) were measured. The size of the occluded vessels decreased significantly from proximal to distal zones of the uterine vasculature (P < 0.0001). The location of TGMS and PVAMS within the vasculature was significantly different (P < 0.0001) since PVAMS blocked significantly more distally than TGMS. Deformation of the microspheres within the tissue was greater for PVAMS (18.0% {+-} 12.3%) than for TGMS (8.7% {+-} 9.2%) (P < 0.0001). In conclusion, PVAMS have a more distal distribution in the sheep uterine vasculature, compared to TGMS. Such differences in partition, already described in the kidney embolization model, can ultimately explain the different clinical outcome reported with these two types of microspheres in uterine fibroid embolization.

  13. Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use.

    PubMed

    Tunney, M M; Gorman, S P

    2002-12-01

    The associated problems of bacterial biofilm formation and encrustation that may cause obstruction or blockage of urethral catheters and ureteral stents often hinders the effective use of biomaterials within the urinary tract. In this in vitro study, we have investigated the surface properties of a hydrophilic poly(vinyl pyrollidone) (PVP)-coating applied to polyurethane and determined its suitability for use as a urinary tract biomaterial by comparing its lubricity and ability to resist bacterial adherence and encrustation with that of uncoated polyurethane and silicone. The PVP-coated polyurethane was significantly more hydrophilic and more lubricious than either uncoated polyurethane or silicone. Adherence of a hydrophilic Escherichia coli isolate to PVP-coated polyurethane and uncoated polyurethane was similar but significantly less than adherence to silicone. Adherence of a hydrophobic Enterococcus faecalis isolate to PVP-coated polyurethane and silicone was similar but was significantly less than adherence to uncoated polyurethane. Struvite encrustation was similar on the PVP-coated polyurethane and silicone but significantly less than on uncoated polyurethane. Furthermore, hydroxyapatite encrustation was significantly less on the PVP-coated polyurethane than on either uncoated polyurethane or silicone. The results suggest that the PVP-coating could be useful in preventing complications caused by bacterial biofilm formation and the deposition of encrustation on biomaterials implanted in the urinary tract and, therefore, warrants further evaluation. PMID:12322981

  14. Furanone-containing poly(vinyl alcohol) nanofibers for cell-adhesion inhibition.

    PubMed

    Gule, Nonjabulo P; de Kwaadsteniet, Michele; Cloete, Thomas E; Klumperman, Bert

    2013-03-01

    The 3(2H) furanone derivative 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) was investigated for its antimicrobial and cell-adhesion inhibition properties against Klebsiella pneumoniae Xen 39, Staphylococcus aureus Xen 36, Escherichia coli Xen 14, Pseudomonas aeruginosa Xen 5 and Salmonella typhimurium Xen 26. Nanofibers electrospun from solution blends of DMHF and poly(vinyl alcohol) (PVA) were tested for their ability to inhibit surface-attachment of bacteria. Antimicrobial and adhesion inhibition activity was determined via the plate counting technique. To quantify viable but non-culturable cells and to validate the plate counting results, bioluminescence and fluorescence studies were carried out. Nanofiber production was upscaled using the bubble electrospinning technique. To ascertain that no DMHF leached into filtered water, samples of water filtered through the nanofibrous mats were analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Scanning electron microscopy (SEM) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to characterize the electrospun nanofibers. PMID:23261340

  15. Functionalized electrospun poly(vinyl alcohol) nanofibers for on-chip concentration of E. coli cells.

    PubMed

    Matlock-Colangelo, Lauren; Coon, Barbara; Pitner, Christine L; Frey, Margaret W; Baeumner, Antje J

    2016-02-01

    Positively and negatively charged electrospun poly(vinyl alcohol) (PVA) nanofibers were incorporated into poly(methyl methacrylate) (PMMA) microchannels in order to facilitate on-chip concentration of Escherichia coli K12 cells. The effects of fiber distribution and fiber mat height on analyte retention were investigated. The 3D morphology of the mats was optimized to prevent size-related retention of the E. coli cells while also providing a large enough surface area for analyte concentration. Positively charged nanofibers produced an 87% retention and over 80-fold concentration of the bacterial cells by mere electrostatic interaction, while negatively charged nanofibers reduced nonspecific analyte retention when compared to an empty microfluidic channel. In order to take advantage of this reduction in nonspecific retention, these negatively charged nanofibers were then modified with anti-E. coli antibodies. These proof-of-principle experiments showed that antibody-functionalized negatively charged nanofiber mats were capable of the specific capture of 72% of the E. coli cells while also significantly reducing nonspecific analyte retention within the channel as expected. The ease of fabrication and immense surface area of the functionalized electrospun nanofibers make them a promising alternative for on-chip concentration of analytes. The pore size and fiber mat morphology, as well as surface functionality of the fibers, can be tailored to allow for specific capture and concentration of a wide range of analytes. PMID:26493980

  16. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method.

    PubMed

    Pereira, M M; Jones, J R; Orefice, R L; Hench, L L

    2005-11-01

    A new class of materials based on inorganic and organic species combined at a nanoscale level has received large attention recently. In this work the idea of producing hybrid materials with controllable properties is applied to obtain foams to be used as scaffolds for tissue engineering. Hybrids were synthesized by reacting poly(vinyl alcohol) in acidic solution with tetraethylorthosilicate. The inorganic phase was also modified by incorporating a calcium compound. Hydrated calcium chloride was used as precursor. A surfactant was added and a foam was produced by vigorous agitation, which was cast just before the gel point. Hydrofluoric acid solution was added in order to catalyze the gelation. The foamed hybrids were aged at 40 degrees C and vacuum dried at 40 degrees C. The hybrid foams were analyzed by Scanning Electron Microscopy, Mercury Porosimetry, Nitrogen Adsorption, X-ray Diffraction and Infra-red Spectroscopy. The mechanical behavior was evaluated by compression tests. The foams obtained had a high porosity varying from 60 to 90% and the macropore diameter ranged from 30 to 500 microm. The modal macropore diameter varied with the inorganic phase composition and with the polymer content in the hybrid. The surface area and mesopore volume decreased as polymer concentration increased in the hybrids. The strain at fracture of the hybrid foams was substantially greater than pure gel-glass foams. PMID:16388385

  17. pH sensitivity of emeraldine salt polyaniline and poly(vinyl butyral) blend

    NASA Astrophysics Data System (ADS)

    Duyen Nguyen, Hoa; Nguyen, Thi Ha; Hoang, Ngoc Vu; Ngan Le, Nguyen; Nhien Nguyen, Thi Ngoc; Chanh Tin Doan, Duc; Chien Dang, Mau

    2014-12-01

    pH sensitivity of emeraldine salt polyaniline (ES-PANI) and poly(vinyl butyral) (PVB) blend film was investigated. This blend film can be used as a pH sensing element in new-type pH sensors to replace traditional instruments based on fragile glass electrodes for pH measurement of water in aquaculture farming. Structural and optical characteristic of PANI were studied by Fourier transform infrared spectroscopy (FTIR) and ultraviolet visible spectroscopy (UV-vis). Electrical characterization of ES-PANI:PVB blend films versus pH was performed with chemiresistors fabricated by micro-lithography. A ES-PANI:PVB layer was drop-coated on comb-shaped platinum electrodes patterned on SiO2/Si substrates. Scanning electron microscope (SEM) and optical microscope were used to investigate morphology of the fabricated platinum electrodes and the coated polymer blend films. I-V measurements of the polymer-coated chemiresistors were performed at very low relative humidity after the polymer films were exposed to pH 1-8. The results showed that logarithm of electrical resistance of the ES-PANI:PVB films increased almost linearly as pH increased from 1 to 8. The initial results showed that the PANI blend-coated chemiresistors can be used as pH sensors for water quality monitoring.

  18. Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers.

    PubMed

    Santiago-Morales, Javier; Amariei, Georgiana; Letón, Pedro; Rosal, Roberto

    2016-10-01

    Electrospun nanofibers were prepared from blends of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). The fibers were stabilized by heat curing at 140°C via anhydride and ketone formation and crosslinking esterification. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form colonies and their metabolic impairment upon contact with PAA/PVA membranes. Membranes containing >35wt.% PAA displayed significant antibacterial activity, which was particularly high for the gram-positive S. aureus. All membranes were negatively charged, with surface ζ-potential in the (-34.5)-(-45.6)mV range, but the electrostatic interaction with the negatively charged cells was not the reason for the antimicrobial effect. Neither pH reduction nor the passing of non-crosslinked polymers to the solution affected microbial growth. The antibacterial activity was attributed to the chelation of the divalent cations stabilizing the outer cell membrane. The effect on gram-positive bacteria was attributed to the destabilization of the peptidoglycan layer. The sequestration of divalent cations was demonstrated with experiments in which calcium and a chelating agent were added to the cultures in contact with membranes. The damage to bacterial cells was tracked by measuring their surface charge and the evolution of intracellular calcium during the early stages after contact with PAA/PVA membranes. PMID:27318959

  19. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor.

    PubMed

    Zhang, Yanhao; Zhong, Fohua; Xia, Siqing; Wang, Xuejiang; Li, Jixiang

    2009-10-15

    A hollow fiber membrane biofilm reactor (MBfR) using polyvinyl chloride (PVC) hollow fiber was evaluated in removing nitrate form contaminated drinking water. During a 279-day operation period, the denitrification rate increased gradually with the increase of influent nitrate loading. The denitrification rate reached a maximum value of 414.72 g N/m(3)d (1.50 g N/m(2)d) at an influent NO(3)(-)-N concentration of 10mg/L and a hydraulic residence time of 37.5 min, and the influent nitrate was completely reduced. At the same time, the effluent quality analysis showed the headspace hydrogen content (3.0%) was lower enough to preclude having an explosive air. Under the condition of the influent nitrate surface loading of 1.04 g N/m(2)d, over 90% removal efficiencies of the total nitrogen and nitrate were achieved at the hydrogen pressure above 0.04 MPa. The results of denaturing gel gradient electrophoresis (DGGE), 16S rDNA gene sequence analysis, and hierarchical cluster analysis showed that the microbial community structures in MBfR were of low diversity, simple and stable at mature stages; and the beta-Proteobacteria, including Rhodocyclus, Hydrogenophaga, and beta-Proteobacteria HTCC379, probably play an important role in autohydrogenotrophic denitrification. PMID:19473764

  20. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    PubMed

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD. PMID:27166737

  1. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    PubMed

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane. PMID:22325932

  2. Tuning the Miscibility of Polystyrene / Poly(vinyl methyl ether) Blends with Electric Fields

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Roth, Connie

    2014-03-01

    Application of electric fields seem experimentally simple, as they can be switched on and off instantly and effortlessly. Nevertheless the influence of electric fields on the phase separation temperature Ts in small molecules and polymeric mixtures is not yet well understood. Available theoretical calculations use thermodynamic arguments for adding an electrostatic free energy term to the total free energy of mixing and predict changes in Ts due to external electric fields that are much smaller than what most experimental results report. To date, neither theory or experiments have found a clear consensus on whether uniform electric fields enhance mixing or demixing. As only a few experimental results have been published over the past several decades with typically only small shifts in Ts, more experiments with unambiguously large shifts in Ts are needed to better understand this effect. Using a fluorescence technique we have developed for measuring the phase separation temperature Ts of polystyrene (PS) / poly(vinyl methyl ether) (PVME) blends [J. Polym. Sci., Part B 2012, 50, 250-256], we investigate the change in Ts due to the presence of electric fields. We show that electric fields strongly enhance mixing in PS/PVME polymer blends. For example, for a 50/50 PS/PVME blend composition, Ts is increased by over 10 K for electric fields of 18 kV/mm.

  3. Improved ion-selective detection method using nanopipette with poly(vinyl chloride)-based membrane.

    PubMed

    Kang, Eun Ji; Takami, Tomohide; Deng, Xiao Long; Son, Jong Wan; Kawai, Tomoji; Park, Bae Ho

    2014-05-15

    Ion-selective electrodes (ISEs) are widely used to detect targeted ions in solution selectively. Application of an ISE to a small area detection system with a nanopipette requires a special measurement method in order to avoid the enhanced background signal problem caused by a cation-rich layer near the charged inner surface of the nanopipette and the selectivity change problem due to relatively fast saturation of the ISE inside the nanopipette. We developed a novel ion-selective detection system using a nanopipette that measures an alternating current (AC) signal mediated by saturated ionophores in a poly(vinyl chloride) (PVC) membrane located at the conical shank of the nanopipette to solve the above problems. Small but reliable K(+) and Na(+) ionic current passing through a PVC membrane containing saturated bis(benzo-15-crown-5) and bis(12-crown-4) ionophore, respectively, could be selectively detected using the AC signal measurement system equipped with a lock-in amplifier. PMID:24766420

  4. Fabrication of reactive poly(vinyl alcohol) membranes for prevention of bone cement leakage.

    PubMed

    Inoue, Motoki; Sakane, Masataka; Taguchi, Tetsushi

    2014-11-01

    Leakage of bone cement into the spinal canal has been reported to cause many adverse effects. In this study, we designed an implantable balloon kyphoplasty material that avoids cement leakage through the formation of covalent bonds with the bone cement. For this purpose, glycidyl methacrylate (GMA) was used as a reactive functional group attached to the poly(vinyl alcohol) (PVA) membrane. The prepared membrane adhered to poly(methyl methacrylate) (PMMA)-based bone cements within 10 min, which is the time required for PMMA polymerization in the bone cement. The bonding strength between the GMA-PVA membrane and the PMMA-based bone cement was higher than that for the original PVA membrane, likely because vinyl bonds form between the surface of the GMA-PVA membrane and the bone cement. Since the GMA-PVA membrane adhered firmly to the PMMA-based bone cement, the membrane was able to completely cover the PMMA-based bone cement. PMID:24700680

  5. Acoustic characterization of polyvinyl chloride and self-healing silicone as phantom materials

    NASA Astrophysics Data System (ADS)

    Ceh, Dennis; Peters, Terry M.; Chen, Elvis C. S.

    2015-03-01

    Phantoms are physical constructs used in procedure planning, training, medical imaging research, and machine calibration. Depending on the application, the material a phantom is made out of is very important. With ultrasound imaging, phantom materials used need to have similar acoustic properties, specifically speed of sound and attenuation, as a specified tissue. Phantoms used with needle insertion require a material with a similar tensile strength as tissue and, if possible, the ability to self heal increasing its overall lifespan. Soft polyvinyl chloride (PVC) and silicone were tested as possible needle insertion phantom materials. Acoustic characteristics were determined using a time of flight technique, where a pulse was passed through a sample contained in a water bath. The speed of sound and attenuation were both determined manually and through spectral analysis. Soft PVC was determined to have a speed of sound of approximately 1395 m/s and attenuation of 0.441 dB/cm (at 1 MHz). For the silicone mixture, the respective speed of sound values was within a range of 964.7 m/s and 1250.0 m/s with an attenuation of 0.547 dB/cm (at 1 MHz).

  6. Type I collagen and polyvinyl alcohol blend fiber scaffold for anterior cruciate ligament reconstruction.

    PubMed

    Cai, Changbin; Chen, Cheng; Chen, Guangxing; Wang, Fuyou; Guo, Lin; Yin, Li; Feng, Dehong; Yang, Liu

    2013-06-01

    The aim of this study was to perform an evaluation of a braided fiber scaffold for anterior cruciate ligament (ACL) reconstruction. The scaffold was composed of 50% type I collagen (Col-I) and 50% polyvinyl alcohol (PVA). First, the biocompatibility and in vitro weight loss of the scaffold were tested. Then, the scaffolds were used to reconstruct the ACL in China Bama mimi pigs. At 24 weeks post-operation, the mechanical properties and histology of the regenerated ACL were analyzed. The maximum load and tensile strength were 472.43± 15.2 N and 29.71± 0.96 MPa, respectively; both were ~75% of those of native ACL and ~90% of those of fiber scaffold. This indicated that the scaffold maintained a large portion of native ACL's mechanical properties, and tissue formation on the scaffold compensated most of the tensile strength loss caused by scaffold degradation. Histology and immunohistology analysis showed the morphology and major extracellular matrix components of the regenerated ligament resembled the native ACL. Thus, the Col-I/PVA blend fiber ACL scaffold showed good potential for clinical applications. PMID:23531980

  7. Mucoadhesive polymers: Synthesis and in vitro characterization of thiolated poly(vinyl alcohol).

    PubMed

    Suchaoin, Wongsakorn; Pereira de Sousa, Irene; Netsomboon, Kesinee; Rohrer, Julia; Hoffmann Abad, Patricia; Laffleur, Flavia; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-04-30

    The aim of this study was to synthesize thiolated poly(vinyl alcohol) (PVA) and to evaluate its mucoadhesive properties. Thiourea and 3-mercaptopropionic acid were utilized in order to obtain thiolated PVAs, namely, TPVA1 and TPVA2, respectively. TPVA1 and TPVA2 displayed 130.44±14.99 and 958.35±155.27μmol immobilized thiol groups per gram polymer, respectively, which were then evaluated regarding reactivity of thiol groups, swelling behavior and mucoadhesive properties. Both thiolated PVAs exhibited the highest reactivity at pH 8.0 whereas more than 95% of free thiol groups were preserved at pH 5.0. Thiolation of PVA decelerated water uptake and prolonged disintegration time of test discs compared to unmodified PVA. Contact time of TPVA1- and TPVA2-based test discs on porcine intestinal mucosa was 3.2- and 15.8-fold prolonged, respectively, in comparison to non-thiolated PVA as measured by rotating cylinder method. According to tensile studies on mucosa, the total work of adhesion (TWA) and the maximum detachment force (MDF) were increased when compared to PVA. Furthermore, thiolated PVAs preserved higher percentage of viable cells compared to unmodified PVA within 24h as evaluated by MTT assay. Accordingly, thiolated PVA represents a novel excipient that can likely improve the mucoadhesive properties of various pharmaceutical formulations. PMID:26965199

  8. Controlled release of retinyl acetate from β-cyclodextrin functionalized poly(vinyl alcohol) electrospun nanofibers.

    PubMed

    Lemma, Solomon M; Scampicchio, Matteo; Mahon, Peter J; Sbarski, Igor; Wang, James; Kingshott, Peter

    2015-04-01

    Retinyl acetate (RA) was effectively incorporated into electrospun nanofibers of poly(vinyl alcohol) (PVA) containing β-cyclodextrin (β-CD) in order to form inclusion complexes for encapsulation to prolong shelf life and thermal stability. The physical and thermal properties of encapsulated RA were determined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The nanofibers of PVA/RA and PVA/RA/β-CD exhibited bead free average fiber diameters of 264 ± 61 and 223 ± 49 nm, respectively. The surface chemistry of the functional nanofibers was investigated by X-ray photoelectron spectroscopy (XPS). Thermogravimetric analysis (TGA) demonstrated different thermal stabilities between the bioactive and the polymer, with and without β-CD. Square-wave voltammogram peak current changes were used to follow the release kinetics of RA from the nanofibers. Results indicate that RA coated inside PVA/β-CD nanofibers was protected against oxidation much better than RA in PVA nanofibers and should extend the shelf life. In addition, RA encapsulated in the PVA/β-CD had better thermal stability than PVA nanofibers. PMID:25779354

  9. Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement

    PubMed Central

    Ino, Julia M.; Chevallier, Pascale; Letourneur, Didier; Mantovani, Diego; Le Visage, Catherine

    2013-01-01

    Tailoring the interface interactions between a biomaterial and the surrounding tissue is a capital aspect to consider for the design of medical devices. Poly(vinyl alcohol) (PVA) hydrogels present suitable mechanical properties for various biological substitutes, however the lack of cell adhesion on their surface is often a problem. The common approach is to incorporate biomolecules, either by blending or coupling. But these modifications disrupt PVA intra- and intermolecular interactions leading therefore to a loss of its original mechanical properties. In this work, surface modification by glow discharge plasma, technique known to modify only the surface without altering the bulk properties, has been investigated to promote cell attachment on PVA substrates. N2/H2 microwave plasma treatment has been performed, and the chemical composition of PVA surface has been investigated. X-ray photoelectron and Fourier transform infrared analyses on the plasma-treated films revealed the presence of carbonyl and nitrogen species, including amine and amide groups, while the main structure of PVA was unchanged. Plasma modification induced an increase in the PVA surface wettability with no significant change in surface roughness. In contrast to untreated PVA, plasma-modified films allowed successful culture of mouse fibroblasts and human endothelial cells. These results evidenced that the grafting was stable after rehydration and that it displayed cell adhesive properties. Thus plasma amination of PVA is a promising approach to improve cell behavior on contact with synthetic hydrogels for tissue engineering. PMID:23989063

  10. Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres.

    PubMed

    Damasceno, Raquel; Roggia, Isabel; Pereira, Claudio; de Sá, Enilson

    2013-11-01

    The electrospinning technique of rhizobia immobilization in nanofibres is an innovative and promising alternative for reducing the harmful effects of environmental stress on bacteria strains in a possible inoculant nanotechnology product for use in agriculture. The use of polyvinyl alcohol (PVA) shows up as an effective polymer in cell encapsulation because of its physical characteristics, such as viscosity and power of scattering. The aim of these studies has been to evaluate the survival of rhizobia incorporated in PVA nanofibres, which were applied to soybean seed and then subjected to different storage times and exposure to fungicide. The maintenance of the symbiotic characteristics of the incorporated bacterial strains was also evaluated, noting the formation of nodules in the soybean seedlings. No significant differences in the cell survival at 0 h and after 24 h of storage were observed. After 48 h, a significant difference in the bacterial cell concentration of the seeds affixed with PVA nanofibres was observed. Exposure to the fungicide decreased the viability of the bacteria strains even when coated with the nanofibres. A larger number of nodules formed in soybean seedlings from seeds inoculated with rhizobia incorporated in PVA nanofibres than from seeds inoculated with rhizobia without PVA. Thus, the electrospinning technique is a great alternative to the usual protector inoculants because of its unprecedented capacity to control the release of bacteria. PMID:24206353

  11. Photoluminescence and electrical properties of polyvinyl alcohol films doped with CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Z. I.; Hosni, H. M.; Saleh, H. H.; Ghazy, O. A.

    2016-05-01

    In situ preparation of polyvinyl alcohol (PVA) films doped with cadmium sulfide (CdS) nanoparticles was conducted by gamma radiation. The films were characterized in terms of photoluminescence and electrical conductivity. The photoluminescence results indicated the existence of two emission peaks around 470 and 530 nm, which are due to electron-hole recombination of CdS nanoparticles and surface trapped emission due to the PVA capping, respectively. DC electrical conductivity ( σ DC) measurement in the temperature range from 303 up to 373 K reveals an increase in its value with increasing both Cd2+ ion molar concentration and irradiation dose. AC electrical conductivity ( σ AC) measurement over the same temperature range at an applied field frequency of 10, 100, 500 and 1000 kHz shows an increase behavior with increasing temperature, frequency, Cd2+ ion molar concentration and irradiation dose. Dielectric constant ( ɛ 1) exhibits an increase with temperature, whereas it shows reduced values with increasing frequency, Cd2+ ion molar concentration and irradiation dose. Also, the dielectric loss tangent (tan δ) follows an increasing trend with increasing temperature, Cd2+ ion molar concentration and irradiation dose while it has an opposite trend with increasing frequency. The CdS/PVA nanocomposite films behavior could be explained on the basis of formation of charge-transfer complexes (CTCs) by the CdS nanoparticles doped into the PVA matrix and the role of radiation in enhancing the charge carrier mobility of such CTCs.

  12. Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles

    SciTech Connect

    Shah, Chetan P.; Singh, Krishan K.; Kumar, Manmohan; Bajaj, Parma N.

    2010-01-15

    A simple wet chemical method has been developed to synthesize selenium nanoparticles (size 100-200 nm), by reaction of sodium selenosulphate precursor with different vinyl monomers, such as acrylamide, N,N'-dimethylene bis acrylamide, methyl methacrylate, sodium acrylate, etc., in aqueous medium, under ambient conditions. Polyvinyl alcohol has been used to stabilize the selenium nanoparticles. Average size of the synthesized selenium nanoparticles can be controlled by adjusting concentration of both the precursors and the stabilizer. Rate of the reaction as well as size of the resultant selenium nanoparticles have been correlated with the functional groups of the different monomers. UV-vis optical absorption spectroscopy, X-ray diffraction, energy dispersive X-rays, differential scanning calorimetry, atomic force microscopy, scanning electron microscopy and transmission electron microscopy techniques have been employed to characterize the synthesized selenium nanoparticles. Gas chromatographic analysis of the reaction mixture established the non-catalytic role of the vinyl monomers, which were found to be consumed during the course of the reaction.

  13. Structure and physical properties of high amorphous polyvinyl alcohol/clay composites

    NASA Astrophysics Data System (ADS)

    Russo, P.; Speranza, V.; Vignali, A.; Tescione, F.; Buonocore, G. G.; Lavorgna, M.

    2015-12-01

    Recently a high amorphous polyvinyl alcohol (HAVOH) which can be easily melt processed has been patented and commercialized with the trade name G-Polymer. In this work, we report on the characterization of clay-G-Polymer composites obtained by melt processing of HAVOH with two commercial chemically-modified organoclays, Cloisite 15A and Cloisite 30B. Results show that the extent of polymer intercalation in the layered clay structure as well as the thermal and mechanical properties of the obtained composites depend on the nature of clay organo-modifier, i.e a quaternary ammonium salt of dimethyl dehydrogenated tallow for Cloisite 15A and an alkyl ammonium salt of bis-(2-hydroxyethyl)methyl tallow for Cloisite 30B. In particular Cloisite 15A, which is only slightly intercalated by the polymer during melt compounding, contributes to enhance glass transition temperature and mechanical properties of the resulting composites. On the contrary, Cloisite 30B which is significantly intercalated by the interacting polymer macromolecules, disturbs to some extent the H-bonding network established within the polymeric matrix thus showing a reduction of thermal and mechanical properties.

  14. Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films

    NASA Astrophysics Data System (ADS)

    Hanafy, Taha A.

    2012-08-01

    Fourier transform infrared (FTIR) spectrum dielectric constant, ɛ', loss tangent, tan(δ), electric modulus, M*, and ac conductivity, σac, of pure polyvinyl alcohol (PVA) as well as La-, Gd-, and Er-PVA doped samples have been carried out. The dielectric properties have been studied in the temperature and frequency ranges; 300-450 K and 1 kHz-4 MHz, respectively. FTIR measurements reveal that La3+, Gd3+, and Er3+ ions form complex configuration within PVA structure. Two relaxation processes, namely, ρ and α were observed in pure PVA sample. The first process is due to the interfacial or Maxwell-Wagner-Sillers polarization. The second one is related to the micro-Brownian motion of the main chains. For doped PVA samples, α-relaxation process splits into αa and αc. This splitting is due to the segmental motion in the amorphous (αa) and crystalline (αc) phases of PVA matrix. Electric modulus analysis was discussed to understand the mechanism of the electrical transport process. The behavior of ac conductivity for all PVA samples indicates that the conduction mechanism is correlated barrier hopping.

  15. Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method.

    PubMed

    Zhu, Haibo; Liu, Zhicheng; Kong, Dejin; Wang, Yangdong; Yuan, Xiaohong; Xie, Zaiku

    2009-03-15

    Three facile routes were utilized to synthesize ZSM-5 materials with intracrystal or intercrystal mesopores, where the polyvinyl butyral gel served as mesopore directing template. The three routes were divided into two synthesis strategies: the hydrothermal treatment of silica/PVB composite and re-crystallization of preformed zeolite precursor with the assistance of PVB gel. The fabrication of silica/PVB composite was accomplished by two routes including sol-gel process and impregnation method. The resulting composite was undergone hydrothermal treatment. During the crystallization PVB was occluded in the ZSM-5 crystal, creating intracrystal mesopores in the zeolite. The last route for the synthesis of mesoporous ZSM-5 was realized by re-crystallization of preformed ZSM-5 zeolite in the presence of PVB. This route involved the pre-crystallization of the amorphous aluminosilicate to produce the pre-formed ZSM-5 precursor. Upon further crystallization of the mixture of PVB gel and pre-formed ZSM-5, the ZSM-5 precursor was transformed into ZSM-5 aggregate of nanocrystals, while the PVB gel was occluded in the ZSM-5 particles. Removal of the template generated the typical microporosity associated with ZSM-5 structure along with intercrystal mesoporosity produced from the PVB. The mesoporous ZSM-5 exhibited enhanced catalytic activity in the toluene disproportionation and transalkylation with C(9) and C(10) aromatics. PMID:19101681

  16. Electrospun polyvinyl alcohol/carbon dioxide modified polyethyleneimine composite nanofiber scaffolds.

    PubMed

    Wu, Han-Bing; Bremner, David H; Nie, Hua-Li; Quan, Jing; Zhu, Li-Min

    2015-05-01

    A novel biocompatible polyvinyl alcohol/carbon dioxide modified polyethyleneimine (PVA/PEI-CO2) composite nanofiber was fabricated by a green and facile protocol, which reduces the cytotoxicity of PEI through the surface modification of the PEI with CO2. The (13)C NMR spectrum, elemental analysis, and TGA show that CO2 has been incorporated in the PEI surface resulting in a relatively stable structure. The resulting PVA/PEI-CO2 composite nanofibers have been characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), contact angle, and scanning electron microscopy (SEM). The results show that the average diameters of the nanofibers range from 265 ± 53 nm to 423 ± 80 nm. The cytotoxicity of PVA/PEI-CO2 composite nanofibers was assessed by cytotoxicity evaluation using the growth and cell proliferation of normal mice Schwann cells. SEM and the MTT assay demonstrated the promotion of cell growth and proliferation on the PVA/PEI-CO2 composite scaffold. It suggests that PEI-CO2 can have tremendous potential applications in biological material research. PMID:25540321

  17. The influence of thermolysis time on the absorption spectra of polyvinyl chloride in acetophenone

    NASA Astrophysics Data System (ADS)

    Rasmagin, S. I.; Krasovskii, V. I.; Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtoba, V. I.; Feofanov, I. N.; Kazaryan, M. A.

    2015-12-01

    The influence of thermolysis time on the absorption spectra of partially thermally dehydrochlorinated polyvinyl chloride in acetophenone solution is studied. Strong increase in the optical density Dλ of the dehydrochlorinated PVC samples is caused by the increasing amount N-C=C- and the length of chains of conjugated double bonds of carbon -C = C-. It is noted that the optical density Dλ first increases linearly with dehydrochlorination time and then reaches saturation. The estimation of amount of double conjugated carbon bonds in 1ml versus thermolysis time t is given, which varies between N-C=C- = 4.1017 - 7.4.1018 for t from 40 to 420 minutes. The effective capture cross section of a photon on conjugated double bonds of carbon for dehydrochlorinated PVC solution in acetophenone is estimated, which was about 10-17 cm2 . The analysis is done of the absorption curves «red» shift to longer wavelengths with growth of N-C=C- upon increase of thermolysis time. It is noted that the dependence of the optical density on the wavelength in this range is well described by a simple exponential function.

  18. Chitosan and polyvinyl alcohol composite films containing nitrofurazone: preparation and evaluation

    PubMed Central

    Kouchak, Maryam; Ameri, Abdolghani; Naseri, Basireh; Kargar Boldaji, Sara

    2014-01-01

    Objective(s): The aim of this study was to insert nitrofurazone in a chitosan membrane to be used as a wound dressing. Materials and Methods: Several blend films using chitosan (Cs) and polyvinyl alcohol (PVA), containing nitrofurazone were prepared by means of casting/solvent evaporating technique. Different characteristics such as mechanical properties, water vapor transmission rate (WVTR), oxygen permeability (OP), swelling ability (SW), differential scanning calorimetric (DSC), drug release profiles and antibacterial activity of the films were investigated. Results: The results showed that nitrofurazone decreased tensile strength, OP and SW of Cs films, while increased WVTR. Addition of PVA at any concentration improved mechanical properties, reduced WVTR, and increased OP and SW of nitrofurazone-loaded Cs films. The latter films showed higher activity against Pseudomonas aeruginosa than drug-free chitosan films. Conclusion: The presence of PVA improves many properties of Cs-nitrofurazone films and makes them more desirable as dressing material for burn wounds. Although nitrofurazone alone is ineffective against P. aeruginosa, it is able to increase antibacterial effect of chitosan in composite films. PMID:24592302

  19. Polyvinyl alcohol {gamma}-ray grafted nylon 4 membrane for pervaporation and evapomeation

    SciTech Connect

    Lai, J.Y.; Chen, R.Y.; Lee, K.R

    1993-05-01

    Nylon 4, which possesses high mechanical strength and good affinity for water, can be considered as a liquid separation membrane. To improve the hydrophilicity of a Nylon 4 membrane for pervaporation and evapomeation processes, and to overcome the hydrolysis of polyvinyl alcohol (PVA), this study attempts to prepare a PVA-g-Nylon 4 membrane by {gamma}-ray irradiation grafting of vinyl acetate (VAc) onto Nylon 4 membrane, followed by hydrolysis treatment. The effects of down-stream pressure, irradiation dose, VAc monomer concentration, degree of grafting, feed composition, and size of alcohols on the separation of water-alcohol mixtures were studied. The surface properties of the prepared membrane were characterized by FTIR, ESCA, and a contact angle meter. A separation factor of 13.8 and a permeation rate of 0.352 kg/m{sup 2}-h can be obtained for a PVA-g-Nylon 4 membrane with a degree of grafting of 21.2% for a 90-wt% ethanol feed concentration. Compared to the pervaporation process, the evapomeation process has a significantly increased separation factor with a decreased permeation rate for the same PVA-g-Nylon 4 membrane. 24 refs., 9 figs., 4 tabs.

  20. Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Shaohua; Ma, Wujun; Xiang, Hengxue; Cheng, Yanhua; Yang, Shengyuan; Weng, Wei; Zhu, Meifang

    2016-07-01

    Graphene fibers based flexible supercapacitors have great potential as wearable power sources for textile electronics. However, their electrochemical performance is limited by the serious stacking of graphene sheets and their hydrophobicity in aqueous electrolytes. Meanwhile, their brittleness is unfavorable for practical application. Incorporation of nanofillers into graphene fibers has been proved effective for enhancing their capacitance, whereas often leading to deteriorated mechanical strength. Herein we demonstrate that the strength, toughness and capacitive performance of graphene-based fibers can be significantly enhanced simultaneously, simply by incorporating hydrophilic poly(vinyl alcohol) (PVA) into a non-liquid-crystalline graphene oxide (GO) dispersion before wet spinning and chemical reduction. The structure and properties of the resulted PVA/graphene hybrid fibers are systematically investigated, and the mechanism behind these enhancements is discussed in detail. The hybrid fiber with a PVA/GO weight ratio of 10/90 possesses a strength of 186 MPa, a toughness of 11.3 J cm-3, and a capacitance of 241 F cm-3 in 1 M H2SO4. A solid-state yarn supercapacitor assembled from these fibers exhibits a device energy of 5.97 mW h cm-3, and features excellent flexibility and bending stability. This device is robust enough to be integrated into textile and thus promising as wearable power supply for smart textiles.

  1. Synthesis of magnetic and multiferroic materials from polyvinyl alcohol-based gels

    NASA Astrophysics Data System (ADS)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.

    2016-01-01

    This review article summarizes results on the synthesis of the magnetic materials including modified nickel ferrite (Ni0.9Co0.1Cu0.1Fe1.9O4-δ), yttrium iron garnet (Y3Fe5O12), lanthanum-containing manganites (MxLa1-xMnO3 (M=Pb, Ba or Sr; x=0.3-0.35)), and multiferroics (BiFeO3 and BiFe0.5Mn0.5O3) from polyvinyl alcohol-based gels. It is shown that the ammonium nitrate accelerates destruction of organic components of xerogels and thus Ni0.9Co0.1Cu0.1Fe1.9O4-δ and BiFeO3 can be prepared at record low temperatures (100 and 250 °C, respectively) which are 200-300 °C lower compared to the process where air is used as an oxidizing agent. As for the synthesis of Y3Fe5O12, MxLa1-xMnO3 and BiFe0.5Mn0.5O3, the presence of NH4NO3 favors formation of foreign phases, which ultimately complicate reaction mechanisms and lead to the higher temperature to synthesize target products. Developed methods provide nanoscale magnetic and multiferroic materials with an average particle size of ∼20-50 nm.

  2. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia; Abel-Baset, Tarob; Elfadl, Azza Abou; Hassen, Arafa

    2015-05-01

    Nanosilica (NS) was synthesized by a sol-gel method and mixed with 0.98 polyvinyl alcohol (PVA)/0.02 polyaniline (PANI) in different amounts to produce nanocomposite films. High-resolution transmission electron microscopy (HR-TEM) revealed the average particle size of the NS to be ca. 15 nm. Scanning electron microscopy (SEM) showed that the NS was well-dispersed on the surface of the PVA/PNAI films. The Fourier transform infrared (FTIR) spectra of the samples showed a significant change in the intensity of the characteristic peak of the functional groups in the composite films with the amount of NS added. The absorbance and refractive index (n) of the composites were studied in the UV-vis range, and the optical energy band gap, Eg, and different optical parameters were calculated. The dielectric loss modulus, M″ and ac conductivity, σac, of the samples were studied within 300-425 K and 0.1 kHz-5 MHz, respectively. Two relaxation peaks were observed in the frequency dependence of the dielectric loss modulus, M″. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work are discussed and compared with those of previous studies of similar composites.

  3. Effects of hydrogen peroxide feeding strategies on the photochemical degradation of polyvinyl alcohol.

    PubMed

    Hamad, Dina; Dhib, Ramdhane; Mehrvar, Mehrab

    2016-11-01

    The performance of batch and fed-batch photoreactors with that of continuous photoreactor for the treatment of aqueous polyvinyl alcohol (PVA) solutions is compared. Hydrogen peroxide feeding strategies, residence time, and [H2O2]/[PVA] mass ratio are examined for their impacts on the molecular weight distribution (MWD) of PVA and the total organic carbon (TOC) removal. The results prove that a continuous addition of H2O2 during the degradation reaction ensures the utilization of the produced radicals to minimize the oxidant consumption and maximize the TOC removal and the PVA degradation in a short irradiation time. Also, the MWD of PVA is found to be bimodal and shifted towards lower molecular weights with small shoulder peak indicating a progressive disappearance of the higher molecular weight fractions that is in accordance with the random chains scission mechanism. Besides, the hydrogen peroxide feeding strategies are found to have a great effect on the reduction in H2O2 residuals in the effluent. PMID:27088453

  4. Estimated risks of water and saliva contamination by phthalate diffusion from plasticized polyvinyl chloride.

    PubMed

    Corea-Téllez, Kira S; Bustamante-Montes, Patricia; García-Fábila, Magdalena; Hernández-Valero, María A; Vázquez-Moreno, Flavio

    2008-10-01

    Phthalates are additives commonly used to convert hard polyvinyl chloride (PVC) resins into flexible and workable plastics employed in the production of chewable rubber toys and other soft-plastic products. In theory, phthalates can diffuse in small quantities to the surface of a product, and from there they can enter the environment and the human body. The purpose of this study was to determine the diffusion of phthalates from plasticized PVC in water and artificial saliva; to determine the migration of di(2-ethylhexyl) (DEHP) phthalate in human saliva using gas chromatography; to compare the experimental values with theoretical values calculated using a model based on the principles of molecular diffusion in fluids; and to use the experimental values to estimate daily doses of DEHP received by Mexican children and infants using plastic and soft-plastic products (e.g., pacifiers, chewable toys, and bottles). Our findings indicated phthalate diffusion of 0.36 microg/cm2 per hour and 4.10 microg/cm2 per hour, respectively, in water and artificial saliva. The average value of phthalate diffusion in vivo was 6.04 microg/cm2 per hour. The daily oral phthalate exposure in Mexican infants and toddlers from oral use of rubber toys and soft-plastic products is 18.12 microg/kg. These daily doses are considerably lower than the maximum daily phthalate intake recommended by an international public health committee. PMID:18990931

  5. Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite.

    PubMed

    Shanthini, G M; Sakthivel, N; Menon, Ranjini; Nabhiraj, P Y; Gómez-Tejedor, J A; Meseguer-Dueñas, J M; Gómez Ribelles, J L; Krishna, J B M; Kalkura, S Narayana

    2016-11-20

    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N(3+) ions of energy 24keV in the fluences of 1×10(15), 5×10(15) and 1×10(16)ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications. PMID:27561534

  6. Polyethylene glycol-polyvinyl alcohol grafted copolymer: study of the bioavailability after oral administration to rats.

    PubMed

    Heuschmid, Franziska F; Schuster, Paul; Lauer, Birthe; Fabian, Eric; Leibold, Edgar; van Ravenzwaay, Bennard

    2013-07-01

    The absorption, urinary excretion, and the biliary excretion of a single oral dose of 10 or 1000 mg/kg bw of (14)C-polyethylene glycol-polyvinyl alcohol (PEG-PVA) grafted copolymer were studied in adult male and female rats. In a balance/excretion experiment, the total excretion of ingested radioactivity was determined over a period of 168 h and residual radioactivity was detected in selected tissues and the carcass. In a biliary excretion experiment, excretion of radioactivity via the bile duct was determined over a period of 48 h after administration of the substance to cannulated rats. Most, if not all, of the radioactivity (>100%) was excreted within 48 h via the feces regardless of sex or dose. Urinary excretion was very limited: 0.45-0.50% of dose at the low dose and 0.22-0.27% of dose at the high dose. At both dose levels, residual radioactivity in the carcass and all organs and tissues after 168 h was ≤ 0.02% of dose. Biliary excretion was 0.01-0.02% of dose. Based on these findings, the bioavailability of PEG-PVA grafted copolymer was determined to be <1% demonstrating that absorption was virtually negligible following a single oral administration to male and female rats. PMID:23321424

  7. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Belmonte, Guilherme Kretzmann; Charles, German; Strumia, Miriam Cristina; Weibel, Daniel Eduardo

    2016-09-01

    Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35-40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, Cdbnd O, Csbnd O and Cdbnd C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  8. Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing.

    PubMed

    El-Aassar, M R; El Fawal, G F; El-Deeb, Nehal M; Hassan, H Shokry; Mo, Xiumei

    2016-04-01

    In this study, an antibacterial electrospun nanofibers for wound dressing application was successfully prepared from polyvinyl alcohol (PVA), Pluronic F127 (Plur), polyethyleneimine (PEI) blend solution with titanium dioxide nanoparticles (TiO2 NPs). PVA-Plur-PEI nanofibers containing various ratios of TiO2 NPs were obtained. The formation and presence of TiO2 in the PVA-Plu-PEI/ TiO2 composite was confirmed by X-ray diffraction (XRD). Transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), mechanical measurement, and antibacterial activity were undertaken in order to characterize the PVA-Plur-PEI/TiO2 nanofiber morphology and properties. The PVA-Plu-PEI nanofibers had a mean diameter of 220 nm, and PVA-Plur-PEI/TiO2 nanofibers had 255 nm. Moreover, the antimicrobial properties of the composite were studied by zone inhibition against Gram-negative bacteria, and the result indicates high antibacterial activity. Results of this antibacterial testing suggest that PVA-Plur-PEI/TiO2 nanofiber may be effective in topical antibacterial treatment in wound care; thus, they are very promising in the application of wound dressings. PMID:26686499

  9. Sensitivity and Response of Polyvinyl Alcohol/Tin Oxide Nanocomposite Multilayer Thin Film Sensors.

    PubMed

    Sriram, G; Dhineshbabu, N R; Nithyavathy, N; Saminathan, K; Kaler, K V I S; Rajendran, V

    2016-01-01

    Nanocrystalline Tin Oxide (SnO₂) is Non-Stoichiometric in Nature with Functional Properties Suitable for gas sensing. In this study, SnO₂nanoparticles were prepared by the sol-gel technique, which were then characterised using X-ray diffraction. The nanoparticles showed tetragonal structure with an average crystallite size of 18 nm. The stretching and vibration modes of SnO₂were confirmed using Fourier transform infrared spectroscopy. The size of SnO₂ nanoparticles was determined using particle size analyser, which was found be 60 ± 10 nm on average. The surface morphology of the nanoparticles was investigated using scanning electron microscope, which showed irregular-sized agglomerated SnO₂nanostructures. In addition, primary particle size was evaluated using high-resolution transmission electron microscopy, which was found to be 50 nm on average. The polyvinyl alcohol/SnO₂ composite thin film was prepared on a glass substrate using spin-coating method. The values of band gap energy and electrical conductance of 13-layer thin film were found to be 2.96 eV and 0.0505 mho, respectively. Sulfur dioxide (SO₂) was suitably tailored to verify the sensor response over a concentration range of 10-70 ppm at room temperature. The performance, response, and recovery time of sensors were increased by increasing the layers of the thin film. PMID:27398561

  10. Photochemical degradation study of polyvinyl acetate paints used in artworks by Py–GC/MS

    PubMed Central

    Wei, Shuya; Pintus, Valentina; Schreiner, Manfred

    2012-01-01

    Photochemical degradation of commercial polyvinyl acetate (PVAc) homopolymer and PVAc paints mixed with burnt umber, cobalt blue, cadmium red dark, nickel azo yellow and titanium white commonly used for artworks were studied by pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Py–GC/MS with single-shot technique was used for the characterization of the thermal degradation of PVAc at different temperatures, while the double-shot technique of Py–GC/MS was used to reveal the differences in the specimens before and after UV ageing, including the changes of detectable amounts of deacetylation product – acetic acid and plasticizers such as diethyl phthalate (DEP). Furthermore, the relative concentration of the pyrolysis products of the paint samples could be measured and compared in the second step of the double-shot Py–GC/MS, which are highly dependent on the presence of pigments and the ageing status of PVAc paints. PMID:23024446

  11. A Study of Specific Heat Capacity Functions of Polyvinyl Alcohol- Cassava Starch Blends

    NASA Astrophysics Data System (ADS)

    Sin, Lee Tin; Rahman, W. A. W. A.; Rahmat, A. R.; Morad, N. A.; Salleh, M. S. N.

    2010-03-01

    The specific heat capacity ( C sp) of polyvinyl alcohol (PVOH) blends with cassava starch (CSS) was studied by the differential scanning calorimetry method. Specimens of PVOH-CSS blends: PPV37 (70 mass% CSS) and PPV46 (60 mass% CSS) were prepared by a melt blending method with glycerol added as a plasticizer. The results showed that the specific heat capacity of PPV37 and PPV46 at temperatures from 330 K to 530 K increased from (2.963 to 14.995) J· g-1 · K-1 and (2.517 to 14.727) J · g-1· K-1, respectively. The specific heat capacity of PVOH-CSS depends on the amount of starch. The specific heat capacity of the specimens can be approximated by polynomial equations with a curve fitting regression > 0.992. For instance, the specific heat capacity (in J · g-1 · K-1) of PPV37 can be expressed by C sp = -17.824 + 0.063 T and PPV46 by C sp = -18.047 + 0.061 T, where T is the temperature (in K).

  12. In vitro study of the interaction of polyalkilimide and polyvinyl alcohol hydrogels with cells.

    PubMed

    Dini, L; Panzarini, E; Miccoli, M A; Miceli, V; Protopapa, C; Ramires, P A

    2005-12-01

    Hydrogels are a class of polymers that in the last decade have had a great development and application for soft tissue augmentation, due to their similarity to this tissue for their high water content. The in vitro effects of polyalkylmide hydrogel (pAI) and polyvinyl alcohol hydrogel (pVOH) on human lymphocytes and U937 cells viability, apoptosis and cell shape were investigated. Cell viability was always higher than 70%, thus showing the hydrogels were not cytotoxic for both cell lines. Some differences were, however, found. At short time, lymphocytes were very sensitive to the hydrogels incubation, while at long time, U937 cells were the most sensitive cells. Other differences on cell viability were related to the time of incubation, to the type of hydrogel and to the polymers concentration. Cell viability decreased only at the longest time of incubation and with the highest hydrogel concentration. Accordingly, cell death by apoptosis increased; necrosis was never observed in the cultures. Concentration- and hydrogel-dependent modifications of cell shape (bigger cell volume, elongations of cells) were observed in a few percentage of viable cells. In conclusion, the very high in vitro degree of biocompatibility shown by both hydrogels encourages their use as dermal fillers. PMID:16289994

  13. Development of active polyvinyl alcohol/β-cyclodextrin composites to scavenge undesirable food components.

    PubMed

    López-de-Dicastillo, Carol; Jordá, María; Catalá, Ramón; Gavara, Rafael; Hernández-Muñoz, Pilar

    2011-10-26

    Active food packaging systems based on the incorporation of agents into polymeric package walls are being designed to purposely release or retain compounds to maintain or even increase food quality. The objective of this work was to develop polyvinyl alcohol (PVOH)/β-cyclodextrin (βCD) composite films that can be applied to reduce undesirable component content such as cholesterol in foods through active retention of the compounds in the package walls during storage. Cyclodextrins were added to PVOH in a proportion of 1:1 and cross-linked with glyoxal under acidic media to reduce its water-soluble character. Three different cross-linking procedures were used: cross-linking of the polymer/polysaccharide mixture in solution and film casting, PVOH. βCD*; cross-linking of the polymer, addition of βCD, and casting of the mixture, PVOH*.CD; and casting of a PVOH film, addition of a βCD/glyoxal solution onto the film, and cross-linking during drying, PVOH.CD*. Characterization studies showed that the PVOH*.CD and PVOH.CD* films provided the best physical characteristics with the lowest release values and the highest barrier properties. As a potential application, materials were tested as potential cholesterol-scavenging films. There was a significant reduction in the cholesterol concentration in milk samples when they were exposed to the materials developed. PMID:21905652

  14. The anaerobic degradability of thermoplastic starch: polyvinyl alcohol blends: potential biodegradable food packaging materials.

    PubMed

    Russo, Melissa A L; O'Sullivan, Cathryn; Rounsefell, Beth; Halley, Peter J; Truss, Rowan; Clarke, William P

    2009-03-01

    A systematic study on the anaerobic degradability of a series of starch:polyvinyl alcohol (TPS:PVOH) blends was performed to determine their fate upon disposal in either anaerobic digesters or bioreactor landfills. The aims of the study were to measure the rate and extent of solubilisation of the plastics. The extent of substrate solubilisation on a COD basis reached 60% for a 90:10 (w/w) blend of TPS:PVOH, 40% for 75:25, 30% for 50:50 and 15% for PVOH only. The rate of substrate solubilisation was most rapid for the 90:10 blend (0.041 h(-1)) and decreased with the amount of starch in the blend in the following order 0.034 h(-1)(75:25); 0.023 h(-1)(50:50). The total solids that remained after 900 h were 10 wt.% (90:10); 23 wt.% (75:25); 55 wt.% (50:50); 90 wt.% (0:100). Starch containing substrates produced a higher concentration of volatile fatty acids (VFAs) and biogas, compared to the 0:100 substrate. The major outcome was that PVOH inhibited the degradation of the starch from the blend. PMID:18990564

  15. Physicochemical properties of biodegradable polyvinyl alcohol-agar films from the red algae Hydropuntia cornea.

    PubMed

    Madera-Santana, Tomás J; Robledo, Daniel; Freile-Pelegrín, Yolanda

    2011-08-01

    Agar obtained from the red alga Hydropuntia cornea was blended with polyvinyl alcohol (PVOH) in order to produce biodegradable films. In this study, we compare the properties of biopolymeric films formulated with agars extracted from H. cornea collected at different seasons (rainy and dry) in the Gulf of Mexico coast and PVOH as synthetic matrix. The films were prepared at different agar contents (0%, 25%, 50%, 75%, and 100%) and their optical, mechanical, thermal, and morphological properties analyzed. The tensile strength of PVOH-agar films increased when agar content was augmented. The formulation with 50% agar from rainy season (RS) had a significant higher tensile strength when compared to those from dry season (DS; p < 0.05). Tensile modulus also displayed an increasing trend and likewise, for 50% and 75% agar blends from RS showed higher values than those from DS (p < 0.05). In contrast, elongation at break decreased as the agar content increased, independently of the season. Environmental scanning electron microscopy images of PVOH-agar 75% biofilms from RS showed a homogeneous structure with good interfacial adhesion between the two components. The changes evidenced in the FTIR spectrum of this blend suggest that hydrogen bonding is taking place between the agar ether linkages (C-O-C) and the hydroxyl groups (OH) of the PVOH. Based on the above mentioned results, blends of PVOH and 75% agar from H. cornea collected in rainy season showed good properties for applications in the biodegradable packaging industry. PMID:21207092

  16. Effect of salts on the electrospinning of poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Stanger, Jonathan J.; Tucker, Nick; Staiger, Mark; Kirwan, Kerry; Coles, Stuart; Jacobs, Daniel; Larsen, Nigel

    2009-07-01

    Fibres with a diameter in the nanometer range were electrospun from aqueous poly(vinyl alcohol) (PVOH). In order to improve the mass deposition rate and decrease the final fibre diameter salts (NaCl, LiCl, LiBr and LiF) were added to the solution. The aim was to increase the charge density and hence increase the electrostatic forces on the fluid. It was found that with increasing salt concentration the charge density did increase. However the mass deposition rate was found to decrease and the final fibre diameter was found to increase. The decrease in mass deposition rate is explained by considering the concept of a virtual orifice. The increase in the final fibre diameter is explained by considering the charge distribution in the jet when it behaves like a conductor compared to when it behaves like an insulator. Both mechanisms result from the increase in conductivity of the PVOH solution without significantly modifying other solution properties when salt is added.

  17. Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery.

    PubMed

    Yan, Eryun; Cao, Minglu; Wang, Yuwei; Hao, Xiaoyuan; Pei, Shichun; Gao, Jianwei; Wang, Yan; Zhang, Zhuanfang; Zhang, Deqing

    2016-01-01

    Gold nanorods (AuNRs) that contained polyvinyl alcohol/chitosan (PVA/CS) hybrid nanofibers with dual functions are successfully fabricated by a simple electrospinning method. The results of transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) spectroscopy indicate that AuNRs are indeed encapsulated into the PVA/CS hybrid nanofibers. FTIR spectra results demonstrate that the chemical structures of PVA and CS are not affected when the AuNRs are introduced into the fibers. In vitro cytotoxicity test reveals that the hybrid fibers involving AuNRs are completely biocompatible. The as-prepared fibers can be used as a carrier for anticancer agent doxorubicin (DOX), and the drug is delivered into the cell nucleus. The AuNRs and DOX incorporated fibers are effective for inhibiting the growth and proliferation of ovary cancer cells and they can also be used as the cell imaging agent due to the unique optical properties of AuNRs. The nanofiber matrix combining two functions of cell imaging and drug delivery may be of great application potential in biomedical-related areas. PMID:26478408

  18. Exploring cell compatibility of a fibronectin-functionalized physically crosslinked poly(vinyl alcohol) hydrogel.

    PubMed

    Millon, Leonardo E; Padavan, Donna T; Hamilton, Amanda M; Boughner, Derek R; Wan, Wankei

    2012-01-01

    Physically crosslinked poly(vinyl alcohol) (PVA) hydrogels prepared using a low-temperature thermally cycled process have tunable mechanical properties that fall within the range of soft tissues, including cardiovascular tissue. An approach to render it hemocompatible is by endothelization, but its hydrophilic nature is not conducive to cell adhesion and spreading. We investigated the functionalization reaction of this class of PVA hydrogel with fibronectin (FN) for adhesion and spreading of primary porcine radial artery cells and vascular endothelial cells. These are cells relevant to small-diameter vascular graft development. FN functionalization was achieved using a multistep reaction, but the activation step involving carbonyl diimidazole normally required for chemically crosslinked PVA was found to be unnecessary. The reaction resulted in an increase in the elastic modulus of the PVA hydrogel but is still well within the range of cardiovascular tissue. Confocal microscopy confirmed the adhesion and spreading of both cell types on the PVA-FN surfaces, whereas cells failed to adhere to the PVA control. This is a first step toward an alternative for the realization of a synthetic replacement small-diameter vascular graft. PMID:21998037

  19. Heparinized poly(vinyl alcohol)--small intestinal submucosa composite membrane for coronary covered stents.

    PubMed

    Jiang, Tao; Wang, Guixue; Qiu, Juhui; Luo, Lailong; Zhang, Guoquan

    2009-04-01

    To develop a novel coating material for coronary covered stents, we prepared a kind of composite membrane which contains polyvinyl alcohol (PVA) and porcine small intestinal submucosa (SIS) powders crosslinked and heparinized by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). The amount of immobilized heparin increased with increasing ratios of EDC:heparin, and the maximum amount was approximately 60 microg heparin per milligram SIS powder at a weight ratio of EDC:heparin of 2. Uniaxial tensile and balloon inflation testing suggested that the composite membrane crosslinked by lower EDC concentration is more flexible and elastic. The clotting time (APTT and PT) of the heparinized PVA-SIS membrane was longer than that of the unheparinized membrane. The number of adherent platelets on the heparinized PVA-SIS composite membrane was about 25% of the unheparininzed, and there was no sign of accumulation and almost no pseudopodium was observed. The endothelial cells were amicable with the heparinized and unheparinized PVA-SIS composite membranes. In in vivo implantation tests, we observed a thin capsule formed by several layers of fibroblasts surrounding the implants. These results showed that the heparinized PVA-SIS composite membrane has potential biomechanical and biological properties as a coating material for coronary covered stent. PMID:19258700

  20. Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix.

    PubMed

    Gupta, Vinod K; Jain, Ajay K; Maheshwari, Gaurav

    2007-06-15

    Al(3+) selective sensor has been fabricated from poly(vinyl chloride) (PVC) matrix membranes containing neutral carrier morin as ionophore. Best performance was exhibited by the membrane having composition as morin:PVC:sodium tetraphenyl borate:tri-n-butylphosphate in the ratio 5:150:5:150 (w/w, mg). This membrane worked well over a wide activity range of 5.0x10(-7) to 1.0x10(-1)M of Al(3+) with a Nernstian slope of 19.7+/-0.1mV/decade of Al(3+) activity and a limit of detection 3.2x10(-7)M. The response time of the sensor is approximately 5s and membrane could be used over a period of 2 months with good reproducibility. The proposed sensor works well over a pH range (3.5-5.0) and demonstrates good discriminating power over a number of mono-, di- and trivalent cations. The sensor can also be used in partially non-aqueous media having up to 20% (v/v) methanol, ethanol or acetone content with no significant change in the value of slope or working activity range. The sensor has also been used in the potentiometric titration of Al(3+) with EDTA and for its determination in zinc plating mud and red mud. PMID:19071785

  1. Comparison of properties of poly(vinyl alcohol) nanocomposites containing two different clays.

    PubMed

    Chang, Jin-Hae; Ham, Miran; Kim, Jeong-Cheol

    2014-11-01

    Morphologies, thermo-optical properties, and gas barriers of poly(vinyl alcohol) (PVA) hybrid films containing two different clays are compared. Saponite (SPT) and hydrophilic bentonite (BTT) were used as the reinforcing filler in the fabrication of PVA hybrid films, which were synthesized from aqueous solutions and were solvent-cast at room temperature under vacuum, yielding 20-31-μm-thick PVA hybrid films with varying clay contents. The addition of small amounts of clay is sufficient to improve the thermal properties and gas barriers of PVA hybrid films. Even polymers with a low clay content (3-10 wt%) were found to exhibit much higher transition temperature values than pure PVA. The addition of BTT was more effective than the addition of SPT for improving the thermal properties and gas barrier in the PVA matrix. The PVA hybrid films containing 5 wt% SPT were equibiaxially stretched, with stretching ratios ranging from 150% to 250%. Clay dispersion, morphology, optical transparency, and gas permeability were then examined as a function of the equibiaxial stretching ratio. PVA hybrid films with a stretching ratio of ≥ 150% displayed homogeneously dispersed clay within the polymer matrix and exfoliated nanocomposites. PMID:25958603

  2. Composite Films of Poly(vinyl alcohol) and Bifunctional Cross-linking Cellulose Nanocrystals.

    PubMed

    Sirviö, Juho Antti; Honkaniemi, Samuli; Visanko, Miikka; Liimatainen, Henrikki

    2015-09-01

    Long and flexible cellulose nanofibrils or stiff and short cellulose nanocrystals (CNCs) are both promising lightweight materials with high strength and the potential to serve as reinforcing agents in many polymeric materials. In this study, bifunctional reactive cellulose nanocrystals (RCNCs) with carboxyl and aldehyde functionalities were used as reinforcements to prepare acetal-bonding cross-linked poly(vinyl alcohol) (PVA) films. Two RCNCs were obtained through the mechanical homogenization of partially carboxylated dialdehyde cellulose (DAC) with a residual aldehyde content of 0.55 and 1.93 mmol/g and a carboxyl content of 1.65 and 1.93 mmol/g, respectively. The mechanical, thermal, and barrier properties of PVA-RCNC films with a variable mass ratio of RCNCs (0.5-10%) were determined. Reference CNCs without reactive aldehydes were obtained through the reduction of aldehyde functionalities to primary hydroxide groups, and their reinforcing effect was compared to RCNCs. With the addition of 10% acetal-bonding RCNCs with respect to PVA weight, the tensile strength and Young's modulus were up to 2-fold greater than those of pure PVA film. An addition of only 0.5% RCNCs improved the tensile strength of the PVA film by 66% and the modulus by 61%. In comparison, a significantly lower reinforcing effect (19% with CNC loading of 0.5%) was found using reference CNCs. PVA's effective oxygen barrier and thermal properties were preserved when RCNCs were introduced into the films. PMID:26280660

  3. Surface modified electrospun poly(vinyl alcohol) membranes for extracting nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mahanta, Narahari; Valiyaveettil, Suresh

    2011-11-01

    Contamination of water from nanomaterials will be an emerging problem in the future due to incorporation of nanomaterials in many commercial products and improper disposal of waste materials. In this report, electrospun polyvinyl alcohol nanofibers (PVA NFs) with diameters ranging between 300 and 500 nm were used for the extraction of nanosized contaminants from the aqueous environment. To obtain the best extraction efficiency, surface hydroxyl groups of PVA NFs were chemically modified with functional groups, such as thiols and amines. Two model nanoparticles (silver and gold) dissolved in water were used for adsorption studies. Depending on the nature of the surface functionalities, the fibers showed unique ability to adsorb nanoparticles. The extraction studies revealed that the amine and thiol modified PVA NFs showed 90% extraction efficiency for both silver and gold nanoparticles. The thiol and amine functionalized PVA NFs showed maximum adsorption capacities (Qt) towards Au NPs, which were around 79-84 mg g-1. Similarly for Ag NP extraction, amine functionalized PVA NFs showed a value for Qt at 56 mg g-1. Our results highlight that functionalized nanofibers have high extraction efficiency for dissolved nanoparticles in water and can be used for removal of the nanocontaminants from the aqueous environment.Contamination of water from nanomaterials will be an emerging problem in the future due to incorporation of nanomaterials in many commercial products and improper disposal of waste materials. In this report, electrospun polyvinyl alcohol nanofibers (PVA NFs) with diameters ranging between 300 and 500 nm were used for the extraction of nanosized contaminants from the aqueous environment. To obtain the best extraction efficiency, surface hydroxyl groups of PVA NFs were chemically modified with functional groups, such as thiols and amines. Two model nanoparticles (silver and gold) dissolved in water were used for adsorption studies. Depending on the nature of

  4. Determination of elemental impurities in poly(vinyl chloride) by inductively coupled plasma optical emission spectrometry.

    PubMed

    Pereira, Leticia S F; Pedrotti, Matheus F; Miceli, Tatiane M; Pereira, Juliana S F; Flores, Erico M M

    2016-05-15

    In this work, a method for poly(vinyl chloride) (PVC) analysis by inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. Samples were digested by microwave-induced combustion (MIC) and thirteen elements (Ba, Cd, Co, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn) were determined by ICP-OES. Operational conditions of MIC were investigated allowing quantitative determination of all the analytes and suitable results were achieved using a 3 mol L(-1) HNO3 solution. Microwave-assisted wet digestion (MAWD) using closed quartz vessels and a single reaction chamber microwave digestion system (MAWD-SRC), were also evaluated for PVC digestion for results comparison. All the evaluated sample preparation methods were considered suitable for PVC digestion but MIC was preferable due to the possibility of using diluted HNO3 instead of concentrated reagents and due to the better digestion efficiency. The residual carbon content (RCC) in digests obtained by MIC was significantly lower in comparison with the values obtained after MAWD and by MAWD-SRC. Accuracy for the proposed method was better than 94% for all analytes by comparison of results with those obtained by neutron activation analysis (NAA). Using MIC, it was possible to digest a relatively high sample mass (500 mg) and up to 8 samples in less time (25 min) in comparison with MAWD and MAWD-SRC (about 60 min for both methods). The efficiency of digestion by MIC was higher 99% and lower limits of detection (as low as 0.1 µg g(-1)) were obtained avoiding the use of concentrated acids that is of great concern according to the current green chemistry recommendations. PMID:26992533

  5. Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system.

    PubMed

    Gani, Khalid Muzamil; Singh, Jasdeep; Singh, Nitin Kumar; Ali, Muntjeer; Rose, Vipin; Kazmi, A A

    2016-01-01

    In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems. PMID:27054722

  6. Biodegradable poly(vinyl alcohol)/polyoxalate electrospun nanofibers for hydrogen peroxide-triggered drug release.

    PubMed

    Phromviyo, Nutthakritta; Lert-Itthiporn, Aurachat; Swatsitang, Ekaphan; Chompoosor, Apiwat

    2015-01-01

    Release of drugs in a controlled and sustainable manner is of great interest for treating some inflammatory diseases, drug delivery, and cosmetics. In this work, we demonstrated the control release of a drug from composite nanofibers mediated by hydrogen peroxide. Composite nanofibers of polyvinyl alcohol (PVA)/polyoxalate (PVA/POX NFs) blended at various weight ratios were successfully prepared by electrospinning. Rhodamine B (RB) was used as a model of drug and was initially loaded into the POX portion. The morphology of NFs was characterized using scanning electron microscopy (SEM). The functional groups presented in the NFs were characterized using IR spectroscopy. In vitro release behavior and cell toxicity of nanofibers were also investigated using the MTT assay. The results indicated that POX content had a significant effect on the size and release profiles of nanofibers. Microstructure analysis revealed that sizes of PVA/POX NFs increased with increasing POX content, ranging from 214 to 422 nm. Release profiles of RB at 37 °C were non-linear and showed different release mechanisms. The mechanism of drug release depended on the chemical composition of the NFs. RB release from the NFs with highest POX content was caused by the degradation of the nanofiber matrix, whereas the RB release in lower POX content NFs was caused by diffusion. The NFs with POX showed a loss of structural integrity in the presence of hydrogen peroxide as seen using SEM. The MTT assay showed that composite nanofibers had minimal cytotoxicity. We anticipate that nanofibrous PVA/POX can potentially be used to target numerous inflammatory diseases that overproduce hydrogen peroxide and may become a potential candidate for use as a local drug delivery vehicle. PMID:26147088

  7. Mercury transformation and distribution across a polyvinyl chloride (PVC) production line in China.

    PubMed

    Ren, Wen; Duan, Lei; Zhu, Zhenwu; Du, Wen; An, Zhongyi; Xu, Lingjun; Zhang, Chi; Zhuo, Yuqun; Chen, Changhe

    2014-02-18

    The production of polyvinyl chloride (PVC) via the calcium carbide process utilizes a catalyst containing large amounts of mercury (Hg) and is therefore one of the most important sources of anthropogenic Hg in China. To measure the emission of Hg from PVC production, we established a flowchart for the calcium carbide process, for which we quantified the Hg content of the material/product at each step. Results indicated that 71.5% of the total Hg (Hg(T)) was lost from the catalyst, most of which was recovered by the Hg remover, accounting for 46.0% of the total Hg (Hg(T)). We determined that 3.7% of the Hg(T) was released into the environment, mostly in solid wastes and byproducts such as hydrochloric acid. Furthermore, no Hg has been detected in the PVC end product. However, we were only able to account for 78.1% of the Hg across the whole system, leaving 21.7% unaccounted for in the mass balance. A rough estimation indicates that most of the "missing" Hg had accumulated in deposits on the inner surface of converters and downstream pipelines; however, the emission to the atmosphere was ≤ 1% of the Hg(T). For a PVC production line equipped with a Hg remover, emissions of Hg to the atmosphere have been estimated to be 4.9 g per tonne PVC. Currently, almost all calcium carbide facilities have been equipped with a Hg remover, which may reduce the release of Hg in China by ∼ 500 t/year. PMID:24428761

  8. Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application.

    PubMed

    Thorat, N D; Shinde, K P; Pawar, S H; Barick, K C; Betty, C A; Ningthoujam, R S

    2012-03-14

    La(0.7)Sr(0.3)MnO(3) (LSMO) nanoparticles have been prepared using glycine and polyvinyl alcohol (PVA) as fuels. Their crystal structure, particle morphology and compositions are characterized using X-ray diffraction, transmission electron microscopy, field-emission electron microscopy and energy dispersive analysis of X-ray. They show a pseudo-cubic perovskite structure. The spherical particle sizes of 30 and 20 nm have been obtained from samples prepared by glycine and PVA respectively. The field cooled (FC) and zero field cooled (ZFC) magnetizations have been recorded from 5 to 375 K at 500 Oe and superparamagnetic blocking temperatures (T(B)) of 75 and 30 K are obtained from samples prepared by glycine and PVA respectively. Particle size distribution is observed from dynamic light scattering measurements. Dispersion stability of the particles in water is studied by measuring the Zeta potential with varying the pH of the medium from 1 to 12. Under induction heating experiments, a hyperthermia temperature (42-43 °C) is achieved by both the samples (3-6 mg mL(-1)) at magnetic fields of 167-335 Oe and at a frequency of 267 kHz. The bio-compatibility of the LSMO nanoparticles is studied on the L929 and HeLa cell lines by MTT assay for up to 48 h. The present work reveals the importance of synthesis technique and fuel choice on structural, morphological, magnetic, hyperthermia and biocompatible properties of LSMO and predicts the suitability for biomedical applications. PMID:22277953

  9. Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency.

    PubMed

    Zhou, Xue-Hua; Wei, Dai-Xu; Ye, Hai-Mu; Zhang, Xiaocan; Meng, Xiaoyu; Zhou, Qiong

    2016-10-01

    Hydrophilic porous polymer scaffolds have shown great application in drug controlled release, while their mechanical properties and release efficiency still need further improvement. In the current study, the porous scaffolds of polyvinyl alcohol (PVA) prepared by quenching in liquid nitrogen and freeze drying method from different original concentration aqueous solutions were fabricated. Among different PVA scaffolds, the scaffold stemming from 18wt.% PVA aqueous solution exhibited the best mechanical properties, 10.5 and 1.54MPa tensile strengths for the dry and hydrogel states respectively. The inner morphology of such PVA scaffold was unidirectional honeycomb-like structure with average microchannel section of 0.5μm, and the scaffold showed porosity of 71% and rather low ciprofloxacin (Cip) release efficiency of 54.5%. Then poly(ethylene glycol) (PEG) was incorporated to enhance the Cip release efficiency. The release efficiency reached 89.3% after introducing 10wt.% PEG, and the mechanical properties of scaffold decreased slightly. Various characterization methods demonstrated that, adding PEG could help to enlarge the microchannel, create extra holes on the channel walls, weaken the interaction between PVA chains and Cip, and miniaturize the crystal size of Cip. All these effects benefit the dissolution and diffusion of Cip from scaffold, increasing its release capability. Moreover, based on biocompatible material composition, PVA/PEG scaffold is a non-cytotoxicity and have been verified that it can promote cell growth. And PVA/PEG scaffolds loaded with Cip can completely inhibit the growth of microorganism because of Cip sustaining release. The PVA scaffold would have a good potential application in tissue engineering, demanding high strength and well drug release capability. PMID:27287128

  10. Recovery of Agricultural Odors and Odorous Compounds from Polyvinyl Fluoride Film Bags

    PubMed Central

    Parker, David B.; Perschbacher-Buser, Zena L.; Cole, N. Andy; Koziel, Jacek A.

    2010-01-01

    Accurate sampling methods are necessary when quantifying odor and volatile organic compound emissions at agricultural facilities. The commonly accepted methodology in the U.S. has been to collect odor samples in polyvinyl fluoride bags (PVF, brand name Tedlar®) and, subsequently, analyze with human panelists using dynamic triangular forced-choice olfactometry. The purpose of this research was to simultaneously quantify and compare recoveries of odor and odorous compounds from both commercial and homemade PVF sampling bags. A standard gas mixture consisting of p-cresol (40 μg m−3) and seven volatile fatty acids: acetic (2,311 μg m−3), propionic (15,800 μg m−3), isobutyric (1,686 μg m−3), butyric (1,049 μg m−3), isovaleric (1,236 μg m−3), valeric (643 μg m−3), and hexanoic (2,158 μg m−3) was placed in the PVF bags at times of 1 h, 1 d, 2 d, 3 d, and 7 d prior to compound and odor concentration analyses. Compound concentrations were quantified using sorbent tubes and gas chromatography/mass spectrometry. Odor concentration, intensity, and hedonic tone were measured using a panel of trained human subjects. Compound recoveries ranged from 2 to 40% after 1 h and 0 to 14% after 7 d. Between 1 h and 7 d, odor concentrations increased by 45% in commercial bags, and decreased by 39% in homemade bags. Minimal changes were observed in intensity and hedonic tone over the same time period. These results suggest that PVF bags can bias individual compound concentrations and odor as measured by dynamic triangular forced-choice olfactometry. PMID:22163671

  11. Composite Scaffold of Poly(Vinyl Alcohol) and Interfacial Polyelectrolyte Complexation Fibers for Controlled Biomolecule Delivery

    PubMed Central

    Cutiongco, Marie Francene A.; Choo, Royden K. T.; Shen, Nathaniel J. X.; Chua, Bryan M. X.; Sju, Ervi; Choo, Amanda W. L.; Le Visage, Catherine; Yim, Evelyn K. F.

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA–IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA–IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA–IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA–IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA–IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue

  12. Development of polyvinyl chloride biofilms for succession of selected marine bacterial populations.

    PubMed

    Balasubramanian, V; Palanichamy, S; Subramanian, G; Rajaram, R

    2012-01-01

    Present investigation was made to bring out the pattern of biofilm formation by heterotrophic bacteria on nontoxic material, polyvinyl chloride (PVC) sheet fitted wooden rack that was immersed in seawater and the study was conducted in Tuticorin coast. Samplings were made over a period of 7 days with the following time period intervals: 30 min, 1, 2, 4, 24, 48, 72, 96, 120 and 144 hr. Bacterial enumeration was made by spread plate method on nutrient agar medium and characterization of bacterial isolates up to generic level was done. Gram-negative bacteria like Pseudomonas sp., Enterobacter sp., Aeromonas sp., Cytophaga sp. and Flavobacterium sp. were found to be the pioneer in colonizing the surface within 30 min and seven genera were represented in the biofilm. Among them two genera were found belonging to Gram-positive groups which included Micrococcus and Bacillus sp. The early stage biofilm i.e. up to 24th hr was wholly constituted by Gram-negative groups. However, the population density of Pseudomonas sp. was found to be higher (315 CFU) when compared to other Gram-negative forms. Occurrence of Gram-positive group was noted only at 48th hr old biofilm (28 to 150 CFU). The period between 48 and 96th hr was the transition where both the Gram-negative and Gram-positive groups co- existed. After 96th hr, the biofilm was found constituted only by Gram-positive groups. The isolates of early stage biofilm were found to produce allelopathic substance like bacteriocin. PMID:23033644

  13. An intensive study on the optical, rheological, and electrokinetic properties of polyvinyl alcohol-capped nanogold

    NASA Astrophysics Data System (ADS)

    Behera, Manoranjan

    2015-05-01

    Low-temperature-assisted wet chemical synthesis of nanogold (NG) using gold hydroxide, a new precursor salt in the presence of a macroscopic ligand poly(vinyl alcohol) PVA in water in the form of nanofluid, is reported for the first time in this article. In the absorption spectra, the surface Plasmon resonance absorption band in the range of 520-545 nm signifies the formation of NG via a controlled Au3+ + 3e → Au reaction grafted in small assemblies with polymer. Absorption maximum increases nonlinearly with Au-contents up to 100 µM Au in Au-PVA charge-transfer complex. Marked enhancement in the peak intensity of some of the vibration bands of PVA polymer such as C-H stretching, C=O stretching, CH2 bending, and C-C in-plane bending in the presence of NG reveals an interfacial interaction between NG and oxidized PVA via C=O group. Execution of shear thinning behavior regardless of the Au-content strongly suggests that crosslinking exists between NG and PVA in Au-PVA rheo-optical nanofluids. Hydrodynamic diameter and polydispersity index draw a nonlinear path with the Au doping with 30.0 g/L PVA in water over a wide region of 5-100 μM Au covered in this study. Enhancement in the zetapotential of Au-PVA nanofluid over bare PVA in water is ascribed to buildup of nonbonding electrons of "-C=O" moieties from the oxidized PVA on the NG surface. Displaying of lattice fringes in the microscopic image of core-shell Au-PVA nanostructure confirms that crystalline nature of NG core with inter planar spacing 0.235 nm corresponds to Au (111) plane.

  14. Pregnancy Following Uterine Artery Embolization with Polyvinyl Alcohol Particles for Patients with Uterine Fibroid or Adenomyosis

    SciTech Connect

    Kim, Man Deuk Kim, Nahk Keun; Kim, Hee Jin; Lee, Mee Hwa

    2005-06-15

    Purpose:To determine whether uterine fibroid embolization (UFE) with polyvinyl alcohol (PVA) particles affects fertility in women desiring future pregnancy.Methods:Of 288 patients managed with UFE with PVA particles for uterine myoma or adenomyosis between 1998 and 2001, 94 patients were enrolled in this study. The age range of participants was 20-40 years. The data were collected through review of medical records and telephone interviews. Mean duration of follow-up duration was 35 months (range 22-60 months). Patients using contraception and single women were excluded, and the chance of infertility caused by possible spousal infertility or other factors was disregarded. Contrast-enhanced magnetic resonance imaging was performed in all patients before and after UFE, and the size of PVA particles used was 255-700 {mu}m.Results:Among 94 patients who underwent UFE with PVA, 74 were on contraceptives, 6 had been single until the point of interview, and 8 were lost to follow-up. Of the remaining 6 patients who desired future pregnancy, 5 (83%) succeeded in becoming pregnant (1 patient became pregnant twice). Of a total of 8 pregnancies, 6 were planned pregnancies and 2 occurred after contraception failed. Five deliveries were vaginal, and 2 were by elective cesarean. Artificial abortion was performed in 1 case of unplanned pregnancy. There was 1 case of premature rupture of membrane (PROM) followed by preterm labor and delivery of an infant who was small-for-gestational-age. After UFE, mean volume reduction rates of the uterus and fibroid were 36.6% (range 0 to 62.6%) and 69.3% (range 36.3% to 93.3%), respectively.Conclusion:Although the absolute number of cases was small, UFE with PVA particles ultimately did not affect fertility in the women who underwent the procedure.

  15. Soy proteins as environmentally friendly sizing agents to replace poly(vinyl alcohol).

    PubMed

    Chen, Lihong; Reddy, Narendra; Yang, Yiqi

    2013-09-01

    An environmentally friendly and inexpensive substitute to the widely used poly(vinyl alcohol) (PVA) has been developed from soy proteins for textile warp sizing. Textile processing is the major source of industrial water pollution across the world, and sizing and desizing operations account for nearly 30 % of the water consumed in a textile plant. PVA is one of the most common sizing agents used for synthetic fibers and their blends due to PVA's easy water solubility and ability to provide desired sizing performance. However, PVA does not degrade and is a major contributor to pollution in textile effluent treatment plants. Although considerable efforts have been made to replace PVA with biodegradable sizing materials, the performance properties provided by PVA on synthetic fibers and their blends have been unmatched so far. Soy proteins are inexpensive, biodegradable, and have been widely studied for potential use in food packaging, as resins and adhesives. In this research, the potential of using soy proteins as textile sizing agents to replace PVA was studied. Polyester and polyester/cotton rovings, yarns, and fabrics sized with soy protein showed a considerably better improvement in strength and abrasion resistance compared to commercially available PVA-based size. Soy protein size had a 5-day biochemical oxygen demand /chemical oxygen demand ratio of 0.57 compared to 0.01 for PVA indicating that soy protein sizes were easily biodegradable in activated sludge. The total and ammonia nitrogen released from the proteins also did not adversely impact the biodegradability. Good sizing performance and easy biodegradability demonstrate that soy protein-based sizes have potential to replace PVA-based sizes leading to substantial benefits to the textile industry and the environment. PMID:23536274

  16. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite

    PubMed Central

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  17. Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride.

    PubMed

    Kuiper, Melanie W; Wullings, Bart A; Akkermans, Antoon D L; Beumer, Rijkelt R; van der Kooij, Dick

    2004-11-01

    The need for protozoa for the proliferation of Legionella pneumophila in aquatic habitats is still not fully understood and is even questioned by some investigators. This study shows the in vivo growth of L. pneumophila in protozoa in aquatic biofilms developing at high concentrations on plasticized polyvinyl chloride in a batch system with autoclaved tap water. The inoculum, a mixed microbial community including indigenous L. pneumophila originating from a tap water system, was added in an unfiltered as well as filtered (cellulose nitrate, 3.0-microm pore size) state. Both the attached and suspended biomasses were examined for their total amounts of ATP, for culturable L. pneumophila, and for their concentrations of protozoa. L. pneumophila grew to high numbers (6.3 log CFU/cm2) only in flasks with an unfiltered inoculum. Filtration obviously removed the growth-supporting factor, but it did not affect biofilm formation, as determined by measuring ATP. Cultivation, direct counting, and 18S ribosomal DNA-targeted PCR with subsequent sequencing revealed the presence of Hartmannella vermiformis in all flasks in which L. pneumophila multiplied and also when cycloheximide had been added. Fluorescent in situ hybridization clearly demonstrated the intracellular growth of L. pneumophila in trophozoites of H. vermiformis, with 25.9% +/- 10.5% of the trophozoites containing L. pneumophila on day 10 and >90% containing L. pneumophila on day 14. Calculations confirmed that intracellular growth was most likely the only way for L. pneumophila to proliferate within the biofilm. Higher biofilm concentrations, measured as amounts of ATP, gave higher L. pneumophila concentrations, and therefore the growth of L. pneumophila within engineered water systems can be limited by controlling biofilm formation. PMID:15528550

  18. The impact of hot-melt extrusion on the tableting behaviour of polyvinyl alcohol.

    PubMed

    Grymonpré, W; De Jaeghere, W; Peeters, E; Adriaensens, P; Remon, J P; Vervaet, C

    2016-02-10

    There is evidence that processing techniques like hot-melt extrusion (HME) could alter the mechanical properties of pharmaceuticals, which may impede further processability (e.g. tableting). The purpose of this study was to evaluate if HME has an impact on the tableting behaviour of polyvinyl alcohol (PVA)-formulations. Mixtures of partially hydrolysed PVA grades (with a hydroxylation degree of 75 and 88%) and sorbitol (0, 10 and 40%) were extruded, (cryo-) milled and compressed into compacts of 350 ± 10 mg. Before compression all intermediate products were characterized for their solid-state (Tg, Tm, crystallinity) and material properties (particle size, moisture content, moisture sorption). Because both PVA-grades required higher extrusion temperatures (i.e. 180 °C), sorbitol was added to PVA as plasticizing agent to allow extrusion at 140 °C. Compaction experiments were performed on both physical mixtures and cryo-milled extrudates of PVA-sorbitol. By measuring tablet tensile strength and porosity in function of compaction pressure, tableting behaviour was compared before and after HME by means of the CTC-profiles (compressibility, tabletability, compactibility). A higher amorphous content in the formulation (as a result of HME) negatively influenced the tableting behaviour (i.e. lower tablet tensile strength). HME altered the mechanical properties towards more elastically deforming materials, thereby increasing tablet elastic recovery during decompression. The lower tensile strengths resulted from a combined effect of less interparticulate bonding areas (because of higher elastic recovery) and weaker bonding strengths per unit bonding area (between glassy particles). PMID:26691654

  19. Quasielastic neutron scattering study of hydrogen motions in an aqueous poly(vinyl methyl ether) solution

    NASA Astrophysics Data System (ADS)

    Capponi, S.; Arbe, A.; Cerveny, S.; Busselez, R.; Frick, B.; Embs, J. P.; Colmenero, J.

    2011-05-01

    We present a quasielastic neutron scattering (QENS) investigation of the component dynamics in an aqueous Poly(vinyl methyl ether) (PVME) solution (30% water content in weight). In the glassy state, an important shift in the Boson peak of PVME is found upon hydration. At higher temperatures, the diffusive-like motions of the components take place with very different characteristic times, revealing a strong dynamic asymmetry that increases with decreasing T. For both components, we observe stretching of the scattering functions with respect to those in the bulk and non-Gaussian behavior in the whole momentum transfer range investigated. To explain these observations we invoke a distribution of mobilities for both components, probably originated from structural heterogeneities. The diffusive-like motion of PVME in solution takes place faster and apparently in a more continuous way than in bulk. We find that the T-dependence of the characteristic relaxation time of water changes at T ≲ 225 K, near the temperature where a crossover from a low temperature Arrhenius to a high temperature cooperative behavior has been observed by broadband dielectric spectroscopy (BDS) [S. Cerveny, J. Colmenero and A. Alegría, Macromolecules, 38, 7056 (2005), 10.1021/ma050811t]. This observation might be a signature of the onset of confined dynamics of water due to the freezing of the PVME dynamics, that has been selectively followed by these QENS experiments. On the other hand, revisiting the BDS results on this system we could identify an additional "fast" process that can be attributed to water motions coupled with PVME local relaxations that could strongly affect the QENS results. Both kinds of interpretations, confinement effects due to the increasing dynamic asymmetry and influence of localized motions, could provide alternative scenarios to the invoked "strong-to-fragile" transition.

  20. Poly(vinyl ester) Block Copolymers Synthesized by Reversible Addition−Fragmentation Chain Transfer Polymerizations

    SciTech Connect

    Lipscomb, Corinne E.; Mahanthappa, Mahesh K.

    2009-07-31

    Homopolymerizations and block copolymerizations of vinyl acetate (VAc), vinyl pivalate (VPv), and vinyl benzoate (VBz) by reversible addition-fragmentation chain transfer (RAFT) polymerization have been studied. Polymerizations of VAc initiated with 2,2{prime}-azobis(isobutyronitrile) (AIBN) at 60 C using two different xanthate RAFT agents C{sub 2}H{sub 5}OC(=S)SR (R = -CH(CH{sub 3})CO{sub 2}C{sub 2}H{sub 5} (1) and -CH(CH{sub 3})O{sub 2}CC(CH{sub 3}){sub 3} (2)) were examined to elucidate the dependence of the polydispersities of the resulting polymers on the RAFT agent leaving group R. RAFT agent 2, in which the leaving R-group mimics a growing vinyl ester polymer chain, consistently yields poly(vinyl acetates) having broader polydispersities than those synthesized using 1 (M{sub n} = 3.6-14 kg/mol and M{sub w}/M{sub n} = 1.15-1.33). While VPv exhibits similar controlled polymerization behavior to VAc, RAFT homopolymerizations of VBz mediated by 1 indicate this electron-deficient vinyl ester requires higher temperatures to effect controlled polymerizations to yield polymers having M{sub n} = 4-14 kg/mol and M{sub w}/M{sub n} = 1.29-1.53. Chain extension reactions from xanthate-terminated vinyl ester homopolymers with VAc, VPv, and VBz proceed with variable efficiencies to furnish block copolymers that microphase separate in the melt state as determined by small-angle X-ray scattering.