Science.gov

Sample records for 125iinsulin-like growth factor

  1. Growth factors

    SciTech Connect

    Golde, D.W.; Herschman, H.R.; Lusis, A.J.; Groopman, J.E.

    1980-05-01

    Humoral regulation of somatic and hematopoietic cell growth has been intensely investigated during the past decade. Growth hormone is unique because it regulates the size of the person within the constraints of the genetic program. The somatomedins and insulin growth factors are low molecular weight polypeptides believed to mediate some functions of growth hormone. Epithelial growth factor and nerve growth factor are well-characterized polypeptides that influence the growth and differentiation of epithelial and neural tissues and interact with specific cell surface receptors. The hematopoietins are a family of polypeptide hormones that specifically regulate the proliferation and differentiation of stem cells giving rise to erythrocytes, granulocytes, monocytes, megakaryocytes, and B and T lymphocytes. Platelet-derived growth factor modulates the proliferation of fibroblasts in vitro and may have a role in the development of atherosclerosis and myelofibrosis. New knowledge on the biochemistry and physiology of growth factors will probably have a substantial impact on our understanding of human diseases involving abnormal cell growth.

  2. Growth factor signalling.

    PubMed

    de Laat, S W; Boonstra, J; Defize, L H; Kruijer, W; van der Saag, P T; Tertoolen, L G; van Zoelen, E J; den Hertog, J

    1999-01-01

    Signalling between cells in the developing vertebrate embryo is essential for normal embryonic development. In the mid 1970's, signal transduction research started at the Hubrecht Laboratory with special emphasis on analysis of the signalling mechanisms that direct cell proliferation and differentiation. The introduction of in vitro model systems contributed tremendously to the success of the signal transduction research at the Hubrecht Laboratory. Initially neuroblastoma cell lines, and later embryonal carcinoma and embryonal stem cells played an important role in identification of the molecular key players in developmental signalling. For instance, embryonal carcinoma cells were used to identify and characterise polypeptide growth factors. Growth factor signalling research was extended to analysis of growth factor receptor activation. Moreover, the second messenger systems that are linked to growth factor receptors were studied, as well as the nuclear responses to growth factor receptor activation. Finally, the role of growth factor signalling in differentiation was established using embryonal carcinoma cells. Here, we will review work that was characteristic for the growth factor receptor signalling research that was done at the Hubrecht Laboratory between 1980 and the early 1990's.

  3. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  4. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  5. Peptide growth factors, part A

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book contains information on the following topics: Epidermal Growth Factor;Transforming Growth Factors;Bone and Cartilage Growth Factors;Somatomedin/Insulin-Like Growth Factors;Techniques for the Study of Growth Factor Activity;Assays, Phosphorylation, and Surface Membrane Effects.

  6. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  7. Peptide growth factors, part B

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book discusses the following topics: Platelet-Derived Growth Factor;Nerve and Glial Growth Factors;PC12 Pheochromocytoma Cells;Techniques for the Study of Growth Factor Activity;Genetic Approaches and Biological Effects.

  8. Oncogenes, genes, and growth factors

    SciTech Connect

    Guroff, G.

    1989-01-01

    This book contains 12 chapters. Some of the chapter titles are: The Epidermal Growth Factor Receptor Gene; Structure and Expression of the Nerve Growth Factor Gene; The Erythropoietin Gene; The Interleukin-2 Gene; The Transferrin Gene; and The Transferrin Receptor Gene.

  9. Interstitial fibrosis and growth factors.

    PubMed Central

    Lasky, J A; Brody, A R

    2000-01-01

    Interstitial pulmonary fibrosis (IPF) is scarring of the lung caused by a variety of inhaled agents including mineral particles, organic dusts, and oxidant gases. The disease afflicts millions of individuals worldwide, and there are no effective therapeutic approaches. A major reason for this lack of useful treatments is that few of the molecular mechanisms of disease have been defined sufficiently to design appropriate targets for therapy. Our laboratory has focused on the molecular mechanisms through which three selected peptide growth factors could play a role in the development of IPF. Hundreds of growth factors and cytokines could be involved in the complex disease process. We are studying platelet-derived growth factor because it is the most potent mesenchymal cell mitogen yet described, transforming growth factor beta because it is a powerful inducer of extracellular matrix (scar tissue) components by mesenchymal cells, and tumor necrosis factor alpha because it is a pleiotropic cytokine that we and others have shown is essential for the development of IPF in animal models. This review describes some of the evidence from studies in humans, in animal models, and in vitro, that supports the growth factor hypothesis. The use of modern molecular and transgenic technologies could elucidate those targets that will allow effective therapeutic approaches. Images Figure 1 Figure 2 PMID:10931794

  10. Growth factors in orthopedic surgery

    PubMed Central

    Zaharia, C; Despa, N; Simionescu, M; Jinga, V; Fleseriu, I

    2010-01-01

    Growth factors have represented an essential issue of interest for the researchers and clinicians in orthopedics and trauma over the last 40 years. In the last 10 to 15 years, the advances registered in this field have permitted the identification of the most active cellular and humoral factors as well as the improvement of their use in the orthopedic and trauma surgery. Their domain of application has been continuously enlarged and the results have been visible from the beginning. The authors present their appreciation on the actual state of this subject as well as their experience with results and related conclusions. PMID:20302195

  11. Acidic fibroblast growth factor and keratinocyte growth factor stimulate fetal rat pulmonary epithelial growth.

    PubMed

    Deterding, R R; Jacoby, C R; Shannon, J M

    1996-10-01

    We have shown that pulmonary epithelial growth and differentiation can occur if pulmonary mesenchyme is replaced with a mixture of growth factors [total growth medium (TGM)] that consists of adult rat bronchoalveolar lavage fluid, insulin, epidermal growth factor (EGF), cholera toxin (CT), acidic fibroblast growth factor (aFGF), and fetal bovine serum. In the present study, we have defined the importance of specific components of TGM. Day 14 fetal rat distal lung epithelium, devoid of mesenchyme, was enrobed in growth factor-depleted Matrigel and cultured for 5 days in various soluble factors. We found that deleting aFGF or CT from TGM significantly reduced DNA synthesis. Epithelial proliferation was not significantly different when keratinocyte growth factor (KGF) replaced aFGF in TGM. KGF, however, required the presence of a basal medium containing CT, insulin, and serum for optimal proliferation. We then added specific growth factors to the basal medium and showed that aFGF and KGF were more potent mitogens than EGF, transforming growth factor-alpha, and hepatocyte growth factor. Additionally, basal medium + KGF also allowed progression to a distal alveolar phenotype. We conclude that aFGF and KGF may be important mediators in epithelial-mesenchymal interactions. PMID:8897895

  12. Transforming growth factor-beta 1 and fibroblast growth factors in rat growth plate.

    PubMed

    Jingushi, S; Scully, S P; Joyce, M E; Sugioka, Y; Bolander, M E

    1995-09-01

    Chondrocytes in the growth plate progress in an orderly fashion from resting through proliferating to hypertrophic cells. In the region of hypertrophic chondrocytes, the cartilage is invaded by capillary loops and endochondral ossification is initiated. It is currently believed that growth factors may regulate the proliferation and maturation of chondrocytes and the synthesis of extracellular matrix in the growth plate. The ordered sequence of proliferation and differentiation observed in the growth plate provides a unique opportunity to study the role of acidic fibroblast growth factor, basic fibroblast growth factor, and transforming growth factor-beta 1 in the regulation of these processes. In this study, expression of the mRNA of these growth factors was examined using total RNA extracted from the physis and epiphysis of rat tibias. Transforming growth factor-beta 1 mRNA was detected by Northern hybridization. Expression of the genes encoding acidic and basic fibroblast growth factors was demonstrated by polymerase chain reaction amplification. In addition, using polyclonal antibodies against these growth factors, we localized them by immunohistochemical analysis. Strong intracellular staining with a predominantly nuclear pattern was observed in chondrocytes from the proliferating and upper hypertrophic zones. In contrast, chondrocytes in the resting zone stained only faintly for the presence of these growth factors. Some chondrocytes in the resting zone adjacent to the proliferating zone stained with these antibodies, and the antibodies also stained cells in the zone of Ranvier, which regulates latitudinal bone growth. Lastly, the location of transforming growth factor-beta 1 was examined further with use of a polyclonal antipeptide antibody specific for its extracellular epitope.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7472755

  13. Epidermal growth factor and growth in vivo

    SciTech Connect

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of /sup 3/H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of /sup 3/H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated.

  14. Growth Factors in Proliferative Diabetic Retinopathy

    PubMed Central

    Khan, Zia Ali

    2003-01-01

    Many growth factors are implicated in the pathogenesis of proliferative diabetic retinopathy. Alteration of growth factors and their receptors in diabetes has been shown in both experimental and clinical studies. Sustained hyperglycemia resulting from long-standing diabetes leads to several biochemical abnormalities that consequently result in retinal hypoxia. Retinal oxygenation state regulates various growth factors that promote angiogenesis in order to meet the oxygen demands of the tissue. However, unregulated expression of these growth factors and induction of complex cascades leading to augmentation of other proangiogenic factors, which may not be regulated by tissue oxygenation, leads to uncontrolled retinal neovascularization and blindness in diabetic patients. PMID:14668050

  15. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  16. Epidermal growth factor receptor not equal to nerve growth factor.

    PubMed

    Williams, L R

    1989-01-01

    I am perplexed by the authors' complete lack of definition of neurotrophic factors. The agents Butcher and Woolf want to blame are neurite promoting factors, not neurotrophic factors. Treatment of Alzheimer's disease with NGF antagonists might instead exacerbate the death of both basal forebrain neurons and their cortical target neurons, accelerating the progress of dementia.

  17. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  18. Growth factor transgenes interactively regulate articular chondrocytes.

    PubMed

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair.

  19. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  20. [Growth factors in proliferative diabetic retinopathy].

    PubMed

    Ioniţă, M

    1997-01-01

    This work presents the possible implications of the angiogenic growth factors and some cell mediators in the initiation and development of the neovascular proliferation in diabetic retinopathy. According to the physiopathologic theories stated above, that are implied in the generation of proliferative diabetic retinopathy, here are some therapeutic experiments based on the action of the angiogenic growth factors. PMID:9409959

  1. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  2. growl: Growth factor and growth rate of expanding universes

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew J. S.

    2015-12-01

    Growl calculates the linear growth factor Da and its logarithmic derivative dln D/dln a in expanding Friedmann-Robertson-Walker universes with arbitrary matter and vacuum densities. It permits rapid and stable numerical evaluation.

  3. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  4. Environmental factors influencing growth and pubertal development.

    PubMed Central

    Delemarre-van de Waal, H A

    1993-01-01

    Postnatal growth is based on hereditary signals and environmental factors in a complex regulatory network. Each factor must be in an optimal state for normal growth of the child. Fetal conditions may also have consequences on postnatal height. Intrauterine growth retardation can be recovered postnatally, although postnatal growth remains depressed in about one-third of cases. After birth, the environment may exert either a positive or negative effect on growth. In underdeveloped countries, malnutrition plays a major role in inhibiting the growth process. Children from families of higher socioeconomic classes are taller than their coevals in the lower socioeconomic groups. Urbanization also has a positive effect on growth. Better child care is supported by sufficient food supply, appropriate health and sanitation services, and a higher level of education. Over the last century, these factors have induced a taller stature and a more rapid maturity in Europe, North America, and Australia; a phenomenon which has been referred to as "the secular trend" in growth. Recently, a secular trend has also been reported in some developing countries. Although urbanization in general appears to be associated with better conditions of living, this is not the case in the slums of South America or in Africa where rural children are better off than children living in the poor cities. This paper describes in more detail the different hereditary and environmental factors that act during the fetal period and postnatally, and which play a role in human growth and pubertal development. PMID:8243404

  5. Vascular growth factors in neuropsychiatry

    PubMed Central

    Newton, Samuel S.; Fournier, Neil M.; Duman, Ronald S.

    2014-01-01

    Recent advances in understanding the cellular and molecular basis of psychiatric illnesses have shed light on the important role played by trophic factors in modulating functional parameters associated with disease causality and drug action. Disease mechanisms are now thought to involve multiple cell types, including neurons and endothelial cells. These functionally distinct but interactively coupled cell types engage in cellular cross talk via shared and common signaling molecules. Dysregulation in their cellular signaling pathways influences brain function and alters behavioral performance. Multifunctional trophic factors such as VEGF and EPO that possess both neurotrophic and angiogenic actions are of particular interest due to their ability to rescue structural and plasticity deficits in neurons and vasculature. Obtaining insight into the behavioral, cellular and molecular actions of multi-functional trophic factors has the potential to open new and transformative therapeutic approaches. PMID:23475069

  6. New Clue Found to Growth Factor Action.

    ERIC Educational Resources Information Center

    Hoffman, Michelle

    1991-01-01

    Discussed is the discovery which may help to explain epidermal growth factor effects on the cell skeleton. The role of a protein called profilin in the regulation of the microfilament system is described. (CW)

  7. Predictive factors for intrauterine growth restriction

    PubMed Central

    Albu, AR; Anca, AF; Horhoianu, VV; Horhoianu, IA

    2014-01-01

    Abstract Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies. Abbreviations: SGA = small for gestational age; IUGR = intrauterine growth restriction; FGR = fetal growth restriction; IUFD = intrauterine fetal demise; HIV = human immunodeficiency virus; PAPP-A = pregnancy associated plasmatic protein A; β-hCG = beta human chorionic gonadotropin; MoM = multiple of median; ADAM-12 = A-disintegrin and metalloprotease 12; PP-13 = placental protein 13; VEGF = vascular endothelial growth factor; PlGF = placental growth factor; sFlt-1 = soluble fms-like tyrosine kinase-1; UAD = uterine arteries Doppler ultrasound; RI = resistence index; PI = pulsatility index; VOCAL = Virtual Organ Computer–Aided Analysis software; VI = vascularization index; FI = flow index; VFI = vascularization flow index; PQ = placental quotient PMID:25408721

  8. Insulin-like growth factor 1 and hair growth.

    PubMed

    Su, H Y; Hickford, J G; Bickerstaffe, R; Palmer, B R

    1999-11-01

    Insulin-like growth factor 1 (IGF-1) has been identified as an important growth factor in many biological systems.[1] It shares considerable structural homology with insulin and exerts insulin-like effects on food intake and glucose metabolism. Recently it has been suggested to play a role in regulating cellular proliferation and migration during the development of hair follicles. [2,3] To exert its biological effects, the IGF-1 is required to activate cells by binding to specific cell-surface receptors. The type I IGF receptor (IGF-1R) is the only IGF receptor to have IGF-mediated signaling functions.[1] In circulation, this growth factor mediates endocrine action of growth hormone (GH) on somatic growth and is bound to specific binding proteins (BPs). The latter control IGF transport, efflux from vascular compartments and association with cell surface receptors.[4] In tissues, IGF-1 is produced by mesenchymal type cells and acts in a paracrine and autocrine fashion by binding to the IGF-1R. This binding activates the receptor tyrosine kinase (RTK) that triggers the downstream responses and finally stimulates cell division.[5] IGF-1 may therefore be able to stimulate the proliferation of hair follicle cells through cellular signaling pathways of its receptors. Local infusion of IGF-1 into sheep has been reported to be capable of stimulating protein synthesis in the skin.[6] It may also increase the production of wool keratin. Recently, transgenic mice overexpressing IGF-1 in the skin have been shown to have earlier hair follicle development than controls.[7] In addition, this growth factor plays an important role in many cell types as a survival factor to prevent cell death.[8] This anti-apoptotic function of IGF-1 may be important to the development of follicle cells as follicles undergo a growth cycle where the regressive, catagen phase is apoptosis driven. In this review, the effects of IGF-1 on follicle cell proliferation and differentiation are discussed. In

  9. Organic growth factor requirements of some yeasts.

    PubMed

    Madan, M; Gulati, N

    1980-01-01

    Some sporogenous yeasts (Brettanomyces bruxellensis, Debaryomyces hansenii, Hansenula ciferrii, Hansenula polymorpha, Pichia polymorpha, Saccharomycopsis guttulata, and Saccharomyces chevalieri), isolated from various fruits have been examined for their organic growth factor requisites. H. ciferrii was completely deficient in thiamine, biotin, inositol, riboflavin, niacin, and partially deficient in pantothenic acid. It required an external supply of 0.1-1.0 ppm thiamine, 0.01-0.1 ppm biotin, 10.0 ppm inositol, 0.10 ppm niacin and riboflavin for its optimum growth. H. polymorpha showed partial deficiency only in xanthine. P. polymorpha gave indications of partial deficiencies in thiamine and biotin. S. guttulata was completely deficient in biotin, and partially deficient in adenine sulphate. It required 0.01 ppm biotin for optimum growth. S chevalieri was completely deficient in pyridoxine and partially deficient in thiamine. It required 0.1 ppm pyridoxine for maximum growth. D. hansenii and B bruxellensis were auxoautotrophic for the various growth factors studied. PMID:7242379

  10. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  11. Serum growth factors in asbestosis patients.

    PubMed

    Li, Yongliang; Karjalainen, Antti; Koskinen, Heikki; Vainio, Harri; Pukkala, Eero; Hemminki, Kari; Brandt-Rauf, Paul W

    2009-02-01

    Various growth factors, including platelet-derived growth factor (PDGF) and transforming growth factor (TGF)-beta, have been implicated in the pathogenesis of asbestos-induced disease. PDGF and TGF-beta levels were determined by enzyme-linked immunosorbent assays in the banked serum samples of a cohort of workers with asbestosis, and the relationships of the growth factor levels to the subsequent development of cancer and to the radiographic severity and progression of asbestosis in the cohort were examined. Serum levels of PDGF and TGF-beta were found to be unrelated to the development of cancer, and serum levels of PDGF were found to be unrelated to the severity and progression of asbestosis. However, serum levels of TGF-beta were found to be statistically significantly related to disease severity (p = 0.01), increasing approximately 2.4-fold from ILO radiographic category 0 to category 3, and they were marginally related to disease progression (p = 0.07), in multivariate analysis controlling for other contributory factors including cumulative asbestos exposure. This suggests that serum TGF-beta may be a useful biomarker for asbestos-induced fibrotic disease. PMID:19283526

  12. Epidermal Growth Factor and Intestinal Barrier Function.

    PubMed

    Tang, Xiaopeng; Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng; Fang, Rejun

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  13. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  14. Nerve growth factor promotes human hemopoietic colony growth and differentiation

    SciTech Connect

    Matsuda, H.; Coughlin, M.D.; Bienenstock, J.; Denburg, J.A. )

    1988-09-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been clones. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. These experiments indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by {sup 125}I-polyclonal and monoclonal antibodies to NGF. The authors conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, they postulate that NGF plays an important biological role in a variety of repair processes.

  15. Vascular endothelial growth factor B, a novel growth factor for endothelial cells.

    PubMed Central

    Olofsson, B; Pajusola, K; Kaipainen, A; von Euler, G; Joukov, V; Saksela, O; Orpana, A; Pettersson, R F; Alitalo, K; Eriksson, U

    1996-01-01

    We have isolated and characterized a novel growth factor for endothelial cells, vascular endothelial growth factor B (VEGF-B), with structural similarities to vascular endothelial growth factor (VEGF) and placenta growth factor. VEGF-B was particularly abundant in heart and skeletal muscle and was coexpressed with VEGF in these and other tissues. VEGF-B formed cell-surface-associated disulfide-linked homodimers and heterodimerized with VEGF when coexpressed. Conditioned medium from transfected 293EBNA cells expressing VEGF-B stimulated DNA synthesis in endothelial cells. Our results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle. Images Fig. 3 Fig. 4 Fig. 5 PMID:8637916

  16. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  17. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  18. New detection methods of growth hormone and growth factors.

    PubMed

    Bidlingmaier, Martin

    2012-01-01

    Human growth hormone (GH), but also GH related growth factors like the insulin-like growth factor-1 (IGF-1) are known to be abused in sports. Although the scientific evidence supporting a distinct effect of GH on performance in healthy trained subjects is limited, it has been repeatedly found with athletes or trainers, and the recent introduction of a first test to detect GH doping has led to a number of positive cases. Currently, there is no test for the detection of IGF-1 introduced worldwide, but confiscation of the drug from sports teams can be taken as indirect evidence for its abuse. The major biochemical difficulty for the detection of GH is that the recombinant form is identical in physicochemical properties to the endogenous GH secreted by the pituitary gland. Furthermore, the very short half-life of GH in circulation inherently shortens the window of opportunity where the drug can be detected. Two strategies have been followed for more than a decade to develop a test to detect the application of recombinant GH: the marker approach, which is based on the elevation of GH-dependent markers above the level seen under physiological conditions evoked by administration of recombinant GH, and the isoform approach, which is based on a change in the pattern of GH isoforms in circulation following the injection of recombinant GH.

  19. Dual delivery of vascular endothelial growth factor and hepatocyte growth factor coacervate displays strong angiogenic effects.

    PubMed

    Awada, Hassan K; Johnson, Noah R; Wang, Yadong

    2014-05-01

    Controlled delivery of multiple growth factors (GFs) holds great potential for the clinical treatment of ischemic diseases and might be more therapeutically effective to reestablish vasculature than the provision of a single GF. Vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) are two potent angiogenic factors. However, due to rapid degradation and dilution in the body, their clinical potential will rely on an effective mode of delivery. A coacervate, composed of heparin and a biodegradable polycation, which protects GFs from proteolysis and potentiates their bioactivities, is developed. Here, the coacervate incorporates VEGF and HGF and sustains their release for at least three weeks. Their strong angiogenic effects on endothelial cell proliferation and tube formation in vitro are confirmed. Furthermore, it is demonstrated that coacervate-based delivery of these factors has stronger effects than free application of both factors and to coacervate delivery of each GF separately.

  20. Growth hormone, insulin-like growth factor system and carcinogenesis.

    PubMed

    Boguszewski, Cesar Luiz; Boguszewski, Margaret Cristina da Silva; Kopchick, John J

    2016-01-01

    The growth hormone (GH) and insulin-like growth factor (IGF) system plays an important role in the regulation of cell proliferation, differentiation, apoptosis, and angiogenesis. In terms of cell cycle regulation, the GH-IGF system induces signalling pathways for cell growth that compete with other signalling systems that result in cell death; thus the final effect of these opposed forces is critical for normal and abnormal cell growth. The association of the GH-IGF system with carcinogenesis has long been hypothesised, mainly based on in vitro studies and the use of a variety of animal models of human cancer, and also on epidemiological and clinical evidence in humans. While ample experimental evidence supports a role of the GH-IGF system in tumour promotion and progression, with several of its components being currently tested as central targets for cancer therapy, the strength of evidence from patients with acromegaly, GH deficiency, or treated with GH is much weaker. In this review, we will attempt to consolidate this data. (Endokrynol Pol 2016; 67 (4): 414-426). PMID:27387246

  1. Epidermal growth factor receptor signaling in tissue

    SciTech Connect

    Shvartsman, Stanislav; Wiley, H. S.; Lauffenburger, Douglas A.

    2004-08-01

    Abstract: A peptide purified from the salivary gland of a mouse was shown few years ago to accelerate incisor eruption and eyelid opening in newborn mice, and was named epidermal growth factor (EGF). The members of this family of peptide growth factors had been identified in numerous physiological and pathological contexts. EGF binds to a cell surface EGF receptor, which induces a biochemical modification (phosphorylation) of the receptor's cytoplasmic tail. There is a growing consensus in the research community that, in addition to cellular and molecular studies, the dynamics of the EGFR network and its operation must be examined in tissues. A key challenge is to integrate the existing molecular and cellular information into a system-level description of the EGFR network at the tissue and organism level. In this paper, the two examples of EGFR signaling in tissues are described, and the recent efforts to model EGFR autocrine loops, which is a predominant mode of EGFR activation in vivo, are summarized.

  2. Milk Epidermal Growth Factor and Gut Protection

    PubMed Central

    Dvorak, Bohuslav

    2010-01-01

    Maternal milk is a complex fluid with multifunctional roles within the developing gastrointestinal tract. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are members of the family of EGF-related peptides. Biological actions of these growth factors are mediated via interaction with the EGF-receptor (EGF-R). In the early postnatal period, breast milk is the major source of EGF for the developing intestinal mucosa. HB-EGF is also detected in breast milk, but in concentrations 2 to 3 times lower than EGF. Under normal physiological conditions, the intestinal epithelium undergoes a continuing process of cell proliferation, differentiation and maturation. EGF plays an important role in these processes. In pathophysiologic situations, EGF contributes to epithelial protection from injury and post-injury mucosal repair. Necrotizing enterocolitis (NEC) is a devastating disease affecting prematurely born infants. The pathogenesis of NEC is not known and there is no effective treatment for this disease. In an experimental NEC model, oral administration of a physiological dose of EGF significantly reduces the incidence and severity of NEC. HB-EGF provides similar protection against NEC, but only when pharmacological doses are used. Further studies are necessary before EGF can be introduced as an efficient therapeutic approach of intestinal injury. PMID:20105663

  3. The suppression of fibroblast growth factor 2/fibroblast growth factor 4-dependent tumour angiogenesis and growth by the anti-growth factor activity of dextran derivative (CMDB7).

    PubMed Central

    Bagheri-Yarmand, R.; Kourbali, Y.; Mabilat, C.; Morère, J. F.; Martin, A.; Lu, H.; Soria, C.; Jozefonvicz, J.; Crépin, M.

    1998-01-01

    Our previous studies showed that carboxymethyl benzylamide dextran (CMDB7) blocks basic fibroblast growth factor (FGF-2)-dependent cell proliferation of a human breast epithelial line (HBL100), suggesting its potential role as a potent antiangiogenic substance. The derived cell line (HH9), which was transformed with the hst/FGF4 gene, has been shown to be highly proliferative in vitro and to induce angiogenic tumours in nude mice. We show here that CMDB7 inhibits the mitogenic activities of the conditioned media from HBL 100 and HH9 cells in a dose-dependent manner. When HH9 cells were injected s.c. into nude mice, CMDB7 treatment (300 mg kg(-1) week(-1)) suppressed the tumour take and the tumour growth by about 50% and 80% respectively. Immunohistochemical analysis showed a highly significant decrease, by more than threefold, in the endothelial density of viable tumour regions, together with a significant increase in the necrosis area. This antiangiogenic activity of CMDB7 was further demonstrated by direct inhibition of calf pulmonary artery (CPAE) and human umbilical vein (HUVEC) endothelial cell proliferation and migration in vitro. In addition, we showed that CMDB7 inhibits specifically the mitogenic effects of the growth factors that bind to heparin such as FGF-2, FGF-4, platelet-derived growth factor (PDGF-BB) and transforming growth factor (TGF-beta1), but not those of epidermal growth factor (EGF) and insulin-like growth factor (IGF-1). These results demonstrate that CMDB7 inhibits FGF-2/FGF-4-dependent tumour growth and angiogenesis, most likely by disrupting the autocrine and paracrine effects of growth factors released from the tumour cells. Images Figure 4 PMID:9662260

  4. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. PMID:27347885

  5. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition

    PubMed Central

    Järvinen, Tero A. H.; Prince, Stuart

    2015-01-01

    Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer. PMID:26697491

  6. Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor.

    PubMed

    Reznik, Thomas E; Sang, Yingying; Ma, Yongxian; Abounader, Roger; Rosen, Eliot M; Xia, Shuli; Laterra, John

    2008-01-01

    The mechanisms and biological implications of coordinated receptor tyrosine kinase coactivation remain poorly appreciated. Epidermal growth factor receptor (EGFR) and c-Met are frequently coexpressed in cancers, including those associated with hepatocyte growth factor (HGF) overexpression, such as malignant astrocytoma. In a previous analysis of the HGF-induced transcriptome, we found that two EGFR agonists, transforming growth factor-alpha and heparin-binding epidermal growth factor-like growth factor (HB-EGF), are prominently up-regulated by HGF in human glioma cells. We now report that stimulating human glioblastoma cells with recombinant HGF induces biologically relevant EGFR activation. EGFR phosphorylation at Tyr(845) and Tyr(1068) increased 6 to 24 h after cell stimulation with HGF and temporally coincided with the induction of transforming growth factor-alpha (~5-fold) and HB-EGF (~23-fold) expression. Tyr(845) and Tyr(1068) phosphorylation, in response to HGF, was inhibited by cycloheximide and actinomycin D, consistent with a requirement for DNA transcription and RNA translation. Specifically, blocking HB-EGF binding to EGFR with the antagonist CRM197 inhibited HGF-induced EGFR phosphorylation by 60% to 80% and inhibited HGF-induced S-G(2)-M transition. CRM197 also inhibited HGF-induced anchorage-dependent cell proliferation but had no effect on HGF-mediated cytoprotection. These findings establish that EGFR can be activated with functional consequences by HGF as a result of EGFR ligand expression. This transcription-dependent cross-talk between the HGF receptor c-Met and EGFR expands our understanding of receptor tyrosine kinase signaling networks and may have considerable consequences for oncogenic mechanisms and cancer therapeutics.

  7. Keratinocyte growth factor and hepatocyte growth factor/scatter factor are heparin-binding growth factors for alveolar type II cells in fibroblast-conditioned medium.

    PubMed Central

    Panos, R J; Rubin, J S; Csaky, K G; Aaronson, S A; Mason, R J

    1993-01-01

    Epithelial-mesenchymal interactions mediate aspects of normal lung growth and development and are important in the restoration of normal alveolar architecture after lung injury. To determine if fibroblasts are a source of soluble growth factors for alveolar type II cells, we investigated the effect of fibroblast-conditioned medium (CM) on alveolar type II cell DNA synthesis. Serum-free CM from confluent adult human lung fibroblasts was concentrated fivefold by lyophilization. Type II cells were isolated from adult rats by elastase dissociation and incubated with [3H]thymidine and varying dilutions of concentrated CM and serum from day 1 to 3 of culture. Stimulation of type II cell DNA synthesis by fibroblast-CM was maximal after 48 h of conditioning and required the presence of serum. The activity of the CM was eliminated by boiling and by treatment with trypsin, pepsin, or dithiothreitol and was additive with saturating concentrations of acidic fibroblast growth factor, epidermal growth factor, and insulin. The growth factor activity bound to heparin-Sepharose and was eluted with 0.6 and 1.0 M NaCl. Neutralizing antibody studies demonstrated that the primary mitogens isolated in the 0.6 and 1.0 M NaCl fractions were keratinocyte growth factor (KGF, fibroblast growth factor 7) and hepatocyte growth factor/scatter factor (HGF/SF), respectively. HGF/SF was demonstrated in the crude CM and KGF was detected in the 0.6 M NaCl eluent by immunoblotting. Northern blot analysis confirmed that the lung fibroblasts expressed both KGF and HGF/SF transcripts. Human recombinant KGF and HGF/SF induced a concentration- and serum-dependent increase in rat alveolar type II cell DNA synthesis. We conclude that adult human lung fibroblasts produce at least two soluble heparin-binding growth factors, KGF and HGF/SF, which promote DNA synthesis and proliferation of rat alveolar type II cells in primary culture. KGF and HGF/SF may be important stimuli for alveolar type II cell

  8. Autologous Growth Factor Injections in Chronic Tendinopathy

    PubMed Central

    Sandrey, Michelle A.

    2014-01-01

    Reference: de Vos RJ, van Veldhoven PLJ, Moen MH, Weir A, Tol JL. Autologous growth factor injections in chronic tendinopathy: a systematic review. Br Med Bull. 2010;95:63–77. Clinical Question: The authors of this systematic review evaluated the literature to critically consider the effects of growth factors delivered through autologous whole-blood and platelet-rich–plasma (PRP) injections in managing wrist-flexor and -extensor tendinopathies, plantar fasciopathy, and patellar tendinopathy. The primary question was, according to the published literature, is there sufficient evidence to support the use of growth factors delivered through autologous whole-blood and PRP injections for chronic tendinopathy? Data Sources: The authors performed a comprehensive, systematic literature search in October 2009 using PubMed, MEDLINE, EMBASE, CINAHL, and the Cochrane library without time limits. The following key words were used in different combinations: tendinopathy, tendinosis, tendinitis, tendons, tennis elbow, plantar fasciitis, platelet rich plasma, platelet transfusion, and autologous blood or injection. The search was limited to human studies in English. All bibliographies from the initial literature search were also viewed to identify additional relevant studies. Study Selection: Studies were eligible based on the following criteria: (1) Articles were suitable (inclusion criteria) if the participants had been clinically diagnosed as having chronic tendinopathy; (2) the design had to be a prospective clinical study, randomized controlled trial, nonrandomized clinical trial, or prospective case series; (3) a well-described intervention in the form of a growth factor injection with either PRP or autologous whole blood was used; and (4) the outcome was reported in terms of pain or function (or both). Data Extraction: All titles and abstracts were assessed by 2 researchers, and all relevant articles were obtained. Two researchers independently read the full text of

  9. Systems Biology of Vascular Endothelial Growth Factors

    PubMed Central

    Mac Gabhann, Feilim; Popel, Aleksander S.

    2009-01-01

    Several cytokine families have roles in development, maintenance and remodeling of the microcirculation. Of these, the VEGF family is one of the best studied and one of the most complex. Five VEGF ligand genes and five cell surface receptor genes are known in the human, and each of these may be transcribed as multiple splice isoforms to generate an extensive family of proteins, many of which are subject to further proteolytic processing. Using the VEGF family as an example, we describe the current knowledge of growth factor expression, processing and transport in vivo. Experimental studies and computational simulations are being used to measure and predict the activity of these molecules, and we describe avenues of research that seek to fill the remaining gaps in our understanding of VEGF family behavior. PMID:18608994

  10. Epidermal growth factor (urogastrone) in human tissues.

    PubMed

    Hirata, Y; Orth, D N

    1979-04-01

    Human epidermal growth factor (hEGF), which stimulates the growth of a variety of tissues, was first isolated from mouse submandibular glands, but is also excreted in large amounts (about 50 micrograms/day) in human urine and is probably identical to human beta-urogastrone (hUG), a potent inhibitor of stimulated gastric acid secretion. However, the primary tissue source of hEGF/hUG is as yet unknown. The hEGF/hUG in homogenates of human salivary glands and a wide variety of other endocrine and nonendocrine tissues was extracted by Amberlite CG-50 cation exchange chromatography and immune affinity chromatography using the immunoglobulin fraction of rabbit anti-hEGF serum covalently bound to agarose. The extracts were subjected to homologous hEGF RIA. Immunoreactive hEGF was found in extracts of adult submandibular gland, thyroid gland, duodenum, jejunum, and kidney, but not in several fetal tissues. The tissue immunoreactive hEGF was similar to standard hEGF in terms of immunoreactivity and elution from Sephadex G-50 Fine resin, but its concentrations were very low (1.3-5.5 ng/g wet tissue). Thus, it is not certain that these tissues represent the only source of the large amounts of hEGF/hUG that appear to be filtered by the kidneys each day.

  11. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  12. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented. PMID:24356290

  13. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented.

  14. Polyelectrolyte Complex for Heparin Binding Domain Osteogenic Growth Factor Delivery.

    PubMed

    Wing Moon Lam, Raymond; Abbah, Sunny Akogwu; Ming, Wang; Naidu, Mathanapriya; Ng, Felly; Tao, Hu; Goh Cho Hong, James; Ting, Kang; Hee Kit, Wong

    2016-01-01

    During reconstructive bone surgeries, supraphysiological amounts of growth factors are empirically loaded onto scaffolds to promote successful bone fusion. Large doses of highly potent biological agents are required due to growth factor instability as a result of rapid enzymatic degradation as well as carrier inefficiencies in localizing sufficient amounts of growth factor at implant sites. Hence, strategies that prolong the stability of growth factors such as BMP-2/NELL-1, and control their release could actually lower their efficacious dose and thus reduce the need for larger doses during future bone regeneration surgeries. This in turn will reduce side effects and growth factor costs. Self-assembled PECs have been fabricated to provide better control of BMP-2/NELL-1 delivery via heparin binding and further potentiate growth factor bioactivity by enhancing in vivo stability. Here we illustrate the simplicity of PEC fabrication which aids in the delivery of a variety of growth factors during reconstructive bone surgeries. PMID:27585207

  15. Transforming growth factor-β and fibrosis

    PubMed Central

    Verrecchia, Franck; Mauviel, Alain

    2007-01-01

    Transforming growth factor-β (TGF-β), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-β isoforms have the ability to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. Elevated TGF-β expression in affected organs, and subsequent deregulation of TGF-β functions, correlates with the abnormal connective tissue deposition observed during the onset of fibrotic diseases. During the last few years, tremendous progress has been made in the understanding of the molecular aspects of intracellular signaling downstream of the TGF-β receptors. In particular, Smad proteins, TGF-β receptor kinase substrates that translocate into the cell nucleus to act as transcription factors, have been studied extensively. The role of Smad3 in the transcriptional regulation of typeIcollagen gene expression and in the development of fibrosis, demonstrated both in vitro and in animal models with a targeted deletion of Smad3, is of critical importance because it may lead to novel therapeutic strategies against these diseases. This review focuses on the mechanisms underlying Smad modulation of fibrillar collagen expression and how it relates to fibrotic processes. PMID:17589920

  16. Design of Growth Factor Sequestering Biomaterials

    PubMed Central

    Belair, David G.; Le, Ngoc Nhi; Murphy, William L.

    2014-01-01

    Growth factors (GFs) are major regulatory proteins that can govern cell fate, migration, and organization. Numerous aspects of the cell milieu can modulate cell responses to GFs, and GF regulation is often achieved by the native extracellular matrix (ECM). For example, the ECM can sequester GFs and thereby control GF bioavailability. In addition, GFs can exert distinct effects depending on whether they are sequestered in solution, at two-dimensional interfaces, or within three-dimensional matrices. Understanding how the context of GF sequestering impacts cell function in the native ECM can instruct the design of soluble or insoluble GF sequestering moieties, which can then be used in a variety of bioengineering applications. This Feature Article provides an overview of the natural mechanisms of GF sequestering in the cell milieu, and reviews the recent bioengineering approaches that have sequestered GFs to modulate cell function. Results to date demonstrate that the cell response to GF sequestering depends on the affinity of the sequestering interaction, the spatial proximity of sequestering in relation to cells, the source of the GF (supplemented or endogenous), and the phase of the sequestering moiety (soluble or insoluble). We highlight the importance of context for the future design of biomaterials that can leverage endogenous molecules in the cell milieu and mitigate the need for supplemented factors. PMID:25182455

  17. Growth factors and cardiovascular structure. Implications for calcium antagonist therapy.

    PubMed

    Re, R N; Chen, L

    1991-07-01

    Abnormalities of cellular growth regulation are integral to the development of cardiovascular disorders such as atherogenesis, ventricular hypertrophy, and diabetic glomerulopathy. Moreover, cellular growth is in large measure controlled by peptide and nonpeptide growth factors that mediate their actions, in part, through the transcriptional regulation of normal cellular genes called protooncogenes. Because angiotensin II is one such growth regulatory factor and because changes in intracellular calcium are intimately involved in the action of angiotensin and other growth factors, it is likely that inhibitors of angiotensin action and calcium-channel-blocking agents will be found to have useful growth regulatory properties. PMID:1910639

  18. Transcriptional down-regulation of epidermal growth factor receptors by nerve growth factor treatment of PC12 cells.

    PubMed

    Shibutani, M; Lazarovici, P; Johnson, A C; Katagiri, Y; Guroff, G

    1998-03-20

    Treatment of PC12 cells with nerve growth factor leads to a decrease in the number of epidermal growth factor receptors on the cell membrane. The mRNA for the epidermal growth factor receptor decreases in a comparable fashion. This decrease appears due to a decrease in the transcription of the epidermal growth factor receptor gene because first, there is no difference in the stability of the epidermal growth factor receptor mRNA, second, newly transcribed epidermal growth factor receptor mRNA is decreased in nerve growth factor-differentiated cells, and third, constructs containing the promoter region of the epidermal growth factor receptor gene are transcribed much less readily in nerve growth factor-differentiated cells than in untreated cells. The decreases in mRNA are not seen in the p140(trk)-deficient variant PC12nnr5 cells nor in cells containing either dominant-negative Ras or dominant-negative Src. Treatment with nerve growth factor also increases the cellular content of GCF2, a putative transcription factor inhibitory for the transcription of the epidermal growth factor receptor gene. The increase in GCF2, like the decrease in the epidermal growth factor receptor mRNA, is not seen in PC12nnr5 cells nor in cells expressing either dominant-negative Ras or dominant-negative Src. The results suggest that nerve growth factor-induced down-regulation of the epidermal growth factor receptor is under transcriptional control, is p140(trk)-, Ras-, and Src-dependent, and may involve transcriptional repression by GCF2.

  19. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  20. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  1. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  2. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  3. Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair.

    PubMed Central

    Wenczak, B A; Lynch, J B; Nanney, L B

    1992-01-01

    Epidermal growth factor (EGF) along with several related peptide growth factors has been shown both in vivo and in vitro to accelerate events associated with epidermal wound repair. EGF and transforming growth factor alpha act by binding to a common EGF receptor tyrosine kinase thereby initiating a series of events which ultimately regulate cell proliferation. This study examined the immunohistochemical localization of EGF receptor (EGF-R) in burn wound margins, adjacent proliferating epithelium, and closely associated sweat ducts, sebaceous glands, and hair follicles. Tissue specimens removed during surgical debridement were obtained from full and partial thickness burn wounds in 32 patients with total body surface area burns ranging from 2 to 88%. In the early postburn period (days 2-4), prominent staining for EGF-R was found in undifferentiated, marginal keratinocytes, adjacent proliferating, hypertrophic epithelium, and both marginal and nonmarginal hair follicles, sweat ducts, and sebaceous glands. During the late postburn period (days 5-16), EGF-R was depleted along leading epithelial margins; however, immunoreactive EGF-R remained intensely positive in the hypertrophic epithelium and all skin appendages. Increased detection of immunoreactive EGF-R and the presence of [125I]EGF binding in the hypertrophic epithelium correlated positively with proliferating cell nuclear antigen distributions. Thus, the presence of EGF-R in the appropriate keratinocyte populations suggests a functional role for this receptor during wound repair. Dynamic modulation in EGF receptor distribution during the temporal sequence of repair provides further evidence that an EGF/transforming growth factor alpha/EGF-R-mediated pathway is activated during human wound repair. Images PMID:1361495

  4. Transcriptional modulation of transin gene expression by epidermal growth factor and transforming growth factor beta

    SciTech Connect

    Machida, C.M.; Muldoon, L.L.; Rodland, K.D.; Magun, B.E.

    1988-06-01

    Transin is a transformation-associated gene which is expressed constitutively in rat fibroblasts transformed by a variety of oncogenes and in malignant mouse skin carcinomas but not benign papillomas or normal skin. It has been demonstrated that, in nontransformed Rat-1 cells, transin RNA expression is modulated positively by epidermal growth factor (EGF) and negatively by transforming growth factor beta (TGF-BETA); other peptide growth factors were found to have no effect on transin expression. Results presented here indicate that both protein synthesis and continuous occupancy of the EGF receptor by EGF were required for sustained induction of transin RNA. Treatment with TGF-BETA inhibited the ability of EGF to induce transin, whether assayed at the transcriptional level by nuclear run-on analysis or at the level of transin RNA accumulation by Northern (RNA) blot analysis of cellular RNA. TGF-BETA both blocked initial production of transin transcription by EGF and halted established production of transin transcripts during prolonged treatment. These results suggest that TGF-BETA acts at the transcriptional level to antagonize EGF-mediated induction of transin gene expression.

  5. Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6

    PubMed Central

    Volz, Yvonne; Koschut, David; Matzke-Ogi, Alexandra; Dietz, Marina S.; Karathanasis, Christos; Richert, Ludovic; Wagner, Moritz G.; Mély, Yves; Heilemann, Mike; Niemann, Hartmut H.; Orian-Rousseau, Véronique

    2015-01-01

    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs. PMID:26181364

  6. Epidermal growth factor receptors in the oesophagus.

    PubMed Central

    Jankowski, J; Murphy, S; Coghill, G; Grant, A; Wormsley, K G; Sanders, D S; Kerr, M; Hopwood, D

    1992-01-01

    The quantity and distribution of epidermal growth factor receptors (EGF-R) in oesophageal mucosa was studied in the oesophagus in order to determine its role in oesophageal disease. Fifty five biopsies were taken from different levels of the oesophagus in 25 consecutive patients undergoing endoscopy. Another group of eight patients with histologically proven Barrett's oesophagitis had a biopsy taken from the area of columnar lined oesophagus. A peripheral, membranous pattern was seen predominantly confined to the basal and immediately suprabasal cells in all of the first group of patients. In the superficial cells a few granular cytoplasmic structures were positive. All patients with Barrett's oesophagitis showed EGF-R staining of the surface epithelium. A computerised planimeter was used to determine the proportion of stained areas of squamous cells which were expressed as a percentage of the total area of squamous cells. The difference in the area of cells stained for EGF-R between normal and inflamed oesophageal mucosa (29.5% and 43.1% respectively) was significant (p less than 0.001). Images Figure 1 PMID:1582583

  7. Nerve growth factor actions on the brain

    SciTech Connect

    Martinez, H.J.

    1989-01-01

    We examined the effect of the trophic protein, nerve growth factor (NGF), on cultures of fetal rat neostriatum and basal forebrain-medial septal area (BF-MS) to define its role in brain development. Treatment of cultures with NGF resulted in an increase in the specific activity of the cholinergic enzyme choline acetyltransferase (CAT) in both brain areas. CAT was immunocytochemically localized to neurons. In the BF-MS, NGF treatment elicited a marked increase in staining intensity and an apparent increase in the number of CAT-positive neurons. Moreover, treatment of BF-MS cultures with NGF increased the activity of acetylcholinesterase, suggesting that the cholinergic neuron as a whole was affected. To begin defining mechanisms of action of NGF in the BF-MS, we detected NGF receptors by two independent methods. Receptors were localized to two different cellular populations: neuron-like cells, and non-neuron-like cells. Dissociation studies with ({sup 125}I)NGF suggested that high affinity receptors were localized to the neuron-like population. Only low-affinity receptors were localized to the non-neuron-like cells. Moreover, employing combined immunocytochemistry and ({sup 125}I)NGF autoradiography, we detected a subpopulation of CAT-containing neutrons that exhibited high-affinity binding. Unexpectedly, a gamma-aminobutyric acid (GABA)-containing cell group also expressed high affinity binding. However, only subsets of cholinergic or GABA neurons expressed high-affinity biding, suggesting that these transmitter populations are composed of differentially response subpopulations.

  8. [Epidermal growth factor, innovation and safety].

    PubMed

    Esquirol Caussa, Jordi; Herrero Vila, Elisabeth

    2015-10-01

    Bioidentical recombinant human epidermal growth factor (rhEGF) is available in concentrations and purity suitable for therapeutic use in long time stable formulations. Beneficial effects in several skin pathologies and lesions have been reported (traumatic and surgical wound healing, laser induced wounds, abnormal scars, keloids, radiation or chemotherapy induced dermatitis, post inflammatory hyperpigmentation or for skin aging damage repairing) and also may be considered for the treatment of several oropharingeal and high gastroesophageal tract mucosa diseases (mouth sores, pharyngeal fistulas, ulcers), and several corneal or conjunctive mucosa lesions. rhEGF has not shown any important side or collateral effects in humans or in laboratory experimentation animals, showing optimal tolerability and safety with continuous use for months. Compounding gives advantages of versatility, individualization, personalization, molecular stability, safety and effectiveness in ideal conditions, showing good tissue penetration, both on intact skin and skin lesions that expose the lower planes to the surface. rhEGF compounds can be considered for prevention or as a treatment of diverse skin and mucosa diseases and conditions through compounding preparations.

  9. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    PubMed

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  10. [Growth factors in human tooth development].

    PubMed

    Bellone, C; Barni, T; Pagni, L; Balboni, G C; Vannelli, G B

    1990-03-01

    Our research concerns the immunohistochemical localization of EGF and IGF-I receptors in the tooth germ, using monoclonal antibodies. The results show that in the early phases of human tooth development EGF and IGF-I receptors are present. At bud stage both receptors are localized at dental laminae level, in some epithelial cells of the tooth bud and in some mesenchymal cells. At cap stage the receptors are present in the outer and inner enamel epithelium, and in some cells of stellate reticulum. As far as concerns the mesenchymal cells, some cells of dental papilla in contact with enamel organ, are intensely positive. The immunopositivity is present also in some mesenchymal cells at follicular level. At late cap stage and at early bell stage receptors are not present at inner enamel epithelium level but they can be detectable in the mesenchyma of dental papilla and in some cells of the follicle. On the basis of these results it may be hypothesized that EGF and IGF-I can act as growth factors in the modulation of cellular proliferation and differentiation during the human tooth morphogenesis. Moreover, it is possible that these substances can play a role in the mesenchymal-epithelial interaction in the developing human tooth.

  11. Transforming growth factor beta1 and aldosterone

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Chang, Albert S.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Purpose of review It is well established that blocking renin-angiotensin II-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone. Recent findings TGFbeta1 suppresses adrenal production of aldosterone and renal tubular sodium reabsorption. We have generated mice with TGFbeta1 mRNA expression graded in five steps from 10% to 300% normal, and found that blood pressure and plasma volume are negatively regulated by TGFbeta1. Notably, the 10 % hypomorph exhibits primary aldosteronism and sodium and water retention due to markedly impaired urinary excretion of water and electrolytes. Summary These results identify TGFbeta signaling as an important counterregulatory system against aldosterone. Understanding the molecular mechanisms for the suppressive effects of TGFbeta1 on adrenocortical and renal function may further our understanding of primary aldosteronism as well as assist in the development of novel therapeutic strategies for hypertension. PMID:25587902

  12. Fibroblast Growth Factor Homologous Factors Modulate Cardiac Calcium Channels

    PubMed Central

    Hennessey, Jessica A.; Wei, Eric Q.; Pitt, Geoffrey S.

    2013-01-01

    Rationale Fibroblast growth factor (FGF) homologous factors (FHFs, FGF11-14) are intracellular modulators of voltage-gated Na+ channels, but their cellular distribution in cardiomyocytes indicated that they performed other functions. Objective We aimed to uncover novel roles for FHFs in cardiomyocytes starting with a proteomic approach to identify novel interacting proteins. Methods and Results Affinity purification of FGF13 from rodent ventricular lysates followed by mass spectroscopy revealed an interaction with Junctophilin-2, a protein that organizes the close apposition of the L-type Ca2+ channel, CaV1.2, and the ryanodine receptor, RyR2, in the dyad. Immunocytochemical analysis revealed overall T-tubule structure and localization RyR2 were unaffected by FGF13 knockdown in adult ventricular cardiomyocytes, but localization of CaV1.2 was affected. FGF13 knockdown decreased CaV1.2 current density, and reduced the amount of CaV1.2 at the surface due to aberrant localization of the channels. CaV1.2 current density and channel localization were rescued by expression of an shRNA-insensitive FGF13, indicating a specific role for FGF13. Consistent with these newly discovered effects on CaV1.2, we demonstrated that FGF13 also regulated Ca2+-induced Ca2+ release, indicated by a smaller Ca2+ transient after FGF13 knockdown. Further, FGF13 knockdown caused a profound decrease in the cardiac action potential half width. Conclusions This study demonstrates that FHFs are not only potent modulators voltage-gated Na+ channels, but also affect Ca2+ channels and their function. We predict that FHF loss-of-function mutations would adversely affect currents through both Na+ and Ca2+ channels, suggesting that FHFs may be arrhythmogenic loci, leading to arrhythmias through a novel, dual-ion channel mechanism. PMID:23804213

  13. Vascular endothelial growth factor in central nervous system injuries - a vascular growth factor getting nervous?

    PubMed

    Sköld, Mattias K; Kanje, Martin

    2008-11-01

    Vascular Endothelial Growth Factor (VEGF) is recognized as a central factor in growth, survival and permeability of blood vessels in both physiological and pathological conditions. It is as such of importance for vascular responses in various central nervous system (CNS) disorders. Accumulating evidence suggest that VEGF may also act as a neuroprotective and neurotrophic factor supporting neuronal survival and neuronal regeneration. Findings of neuropilins as shared co-receptors between molecules with such seemingly different functions as the axon guidance molecules semaphorins and VEGF has further boosted the interest in the role of VEGF in neural tissue injury and repair mechanisms. Thus, VEGF most likely act in parallel or concurrent on cells in both the vascular and nervous system. The present review gives a summary of known or potential aspects of the VEGF system in the healthy and diseased nervous system. The potential benefits but also problems and pitfalls in intervening in the actions of such a multifunctional factor as VEGF in the disordered CNS are also covered.

  14. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  15. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  16. Growth factor array fabrication using a color ink jet printer.

    PubMed

    Watanabe, Kohei; Miyazaki, Takeshi; Matsuda, Ryoichi

    2003-04-01

    We have developed a novel method for growth factor analysis using a commercial color ink jet printer to fabricate substrata patterned with growth factors. We prepared substrata with insulin printed in a simple pattern or containing multiple areas of varying quantities of printed insulin. When we cultured the mouse myoblast cell line, C2C12, on the insulin-patterned substrata, the cells were grown in the same pattern with the insulin-printed pattern. Cell culture with the latter substrata demonstrated that quantity control of insulin deposition by a color ink jet printer is possible. For further applications, we developed substrata with insulin-like growth factor-I (IGF-I) and basic fibroblast growth factor (bFGF) spotted in 16 different areas in varying combinations and concentrations (growth factor array). With this growth factor array, C2C12 cells were cultured, and the onset of muscle cell differentiation was monitored for the expression of the myogenic regulator myogenin. The ratio of cells expressing myogenin varied with the doses of IGF-I and bFGF in the sections, demonstrating a feasibility of growth factor array fabrication by a color ink jet printer. Since a printer manipulates several colors, this method can be easily applied to multivariate analyses of growth factors and attachment factors affecting cell growth and differentiation. This method may provide a powerful tool for cell biology and tissue engineering, especially for stem cell research in investigating unknown conditions for differentiation.

  17. Presence of growth factors in palmar and plantar fibromatoses.

    PubMed

    Zamora, R L; Heights, R; Kraemer, B A; Erlich, H P; Groner, J P

    1994-05-01

    Palmar and plantar fibromatoses are disease processes in which the presence of certain growth factors has not been defined. Monoclonal antibodies against transforming growth factor-beta, epidermal growth factor, procollagen type 1, fibronectin, phosphotyrosine residues, and CD41 platelet antigen were used in standard immunoperoxidase staining to study 36 nodules and 24 cords obtained from patients with fibromatoses. The specimens were studied via light microscopy, and staining intensity was quantitated using a computer-enhanced video system. Transforming growth factor-beta staining paralleled procollagen I, fibronectin, and phosphotyrosine staining within the nodule (early stages) but not the cord (late stages) tissue. These factors showed significant increased staining in the early stage of fibromatosis when compared to the late stage. This study is a preliminary demonstration of the presence of transforming growth factor-beta in palmar and plantar fibromatoses.

  18. Clinical application of growth factors and cytokines in wound healing.

    PubMed

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2014-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of nonhealing wounds (e.g., pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted an online search of Medline/PubMed and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies, and future research possibilities. In this review, we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include granulocyte-macrophage colony-stimulating factor, platelet-derived growth factor, vascular endothelial growth factor, and basic fibroblast growth factor. While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy.

  19. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage.

    PubMed

    Johns, D E; Athanasiou, K A

    2008-09-01

    Tissue-engineered fibrocartilage could become a feasible option for replacing tissues such as the knee meniscus or temporomandibular joint disc. This study employed five growth factors (insulin-like growth factor-I, transforming growth factor-beta1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor) in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs had lower biomechanical and biochemical properties than the controls with no growth factors, suggesting a detrimental effect, but the treatment with insulin-like growth factor-I tended to improve the constructs. Additionally, the 6-week time point was consistently better than that at 3 weeks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  20. Delivery of growth factors for tissue regeneration and wound healing.

    PubMed

    Koria, Piyush

    2012-06-01

    Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.

  1. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth

    PubMed Central

    1992-01-01

    Hepatocyte Growth Factor (HGF, also known as Scatter Factor) is a powerful mitogen or motility factor in different cells, acting through the tyrosine kinase receptor encoded by the MET protooncogene. Endothelial cells express the MET gene and expose at the cell surface the mature protein (p190MET) made of a 50 kD (alpha) subunit disulfide linked to a 145-kD (beta) subunit. HGF binding to endothelial cells identifies two sites with different affinities. The higher affinity binding site (Kd = 0.35 nM) corresponds to the p190MET receptor. Sub- nanomolar concentrations of HGF, but not of a recombinant inactive precursor, stimulate the receptor kinase activity, cell proliferation and motility. HGF induces repairs of a wound in endothelial cell monolayer. HGF stimulates the scatter of endothelial cells grown on three-dimensional collagen gels, inducing an elongated phenotype. In the rabbit cornea, highly purified HGF promotes neovascularization at sub-nanomolar concentrations. HGF lacks activities related to hemostasis-thrombosis, inflammation and endothelial cells accessory functions. These data show that HGF is an in vivo potent angiogenic factor and in vitro induces endothelial cells to proliferate and migrate. PMID:1383237

  2. Expression of vascular endothelial growth factor and basic fibroblast growth factor in extramammary Paget disease

    PubMed Central

    Xu, Xiaoyun; Shao, Ning; Qiao, Di; Wang, Zengjun; Song, Ningjing; Song, Ninghong

    2015-01-01

    Extramammary Paget’s disease (EMPD) is a special type of cancers. The etiology of the disease is still unclear. We aimed to study the expression differences of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in EMPD tissues and corresponding adjacent normal tissues. The mRNA expression was detected by RT-PCR and the protein expression was explored by immunohistochemistry. Higher immunostaining signal scores of bFGF and VEGF in EMPD tissues had been found (z = -3.827, P < 0.001, z = -3.729, P < 0.001, respectively). In addition, the mRNA expression of bFGF and VEGF was higher in EMPD tissues, which had been validated by RT-PCR (t = 5.771, P < 0.001, t = 3.304, P = 0.004, respectively). The VEGF and bFGF might be the key signaling proteins in angiogenesis of EMPD. How to block the VEGF and bFGF in EMPD and to destroy the blood supply of the tumor cells becomes the focus of our future research. PMID:26045818

  3. Vascular Endothelial Growth Factor is a Secreted Angiogenic Mitogen

    NASA Astrophysics Data System (ADS)

    Leung, David W.; Cachianes, George; Kuang, Wun-Jing; Goeddel, David V.; Ferrara, Napoleone

    1989-12-01

    Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.

  4. Material factors influencing metallic whisker growth

    NASA Astrophysics Data System (ADS)

    Rodekohr, Chad L.

    Whiskering refers to the formation of slender, long, metallic filaments, much thinner than a human hair, that grow on a metallic thin film surface. They are readily observed for pure and alloyed zinc (Zn), silver (Ag), cadmium (Cd), indium (In), and tin (Sn) surfaces. The longest reported whisker length is 4.5 mm long but most high-aspect ratio whiskers range from 1-500 mum. The focus of this research is upon Sn whiskers. Sn whiskers pose serious reliability problems for the electronics industry and are known to be the source of failure in a wide range of electronic devices, such as nuclear power facilities, heart pacemakers, commercial satellites, aviation radar, telecommunication equipment, and desktop computers. The problem with whiskering has been recently exacerbated by the worldwide shift to lead (Pb) free electronics and the continuing reduction in electrical contact pitches. A thorough understanding of the growth mechanism of Sn whiskers is urgently needed. Currently, there is no universally accepted model that explains the broad range of observations on whiskering. The goals of this research are: (1) to develop a more detailed understanding of the physical mechanisms leading to the initiation and growth of Sn whiskers and (2) to outline reasonable mitigation strategies that could be followed to reduce or eliminate the problem of Sn whiskers. The major contributions of this work are: (1) A reliable method for growing Sn whiskers with predictable incubation times has been developed and tested. (2) A surface oxide is not necessary for whisker growth. (3) Intermetallic compounds (IMC) are not necessary for whisker growth. (4) Smoother, not rougher, substrate surfaces promote whisker growth. (5) Whiskers grow under both compressive and tensile thin film stress states. (6) Whisker growth increases with externally applied compression and tension forces. (7) Sn whiskers are composed of pure Sn except for the expected thin, native Sn oxide on their surface. (8) For

  5. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  6. The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies.

    PubMed

    Ribatti, Domenico; Vacca, Angelo; Rusnati, Marco; Presta, Marco

    2007-01-01

    Basic fibroblast growth factor/fibroblast growth factor-2 is one of the best characterized of the pro-angiogenic cytokines. This review describes its history, as well as its role in tumor angiogenesis associated with haematological malignancies, as traced by the main contributions to the international medical literature.

  7. Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors.

    PubMed

    Sánchez-Ilárduya, María Belén; Trouche, Elodie; Tejero, Ricardo; Orive, Gorka; Reviakine, Ilya; Anitua, Eduardo

    2013-05-01

    Plasma rich in growth factors (PRGFs) technology is an autologous platelet-rich plasma approach that provides a pool of growth factors and cytokines that have been shown to increase tissue regeneration and accelerate dental implant osseointegration. In this framework, the spatiotemporal release of growth factors and the establishment of a provisional fibrin matrix are likely to be key aspects governing the stimulation of the early phases of tissue regeneration around implants. We investigated the kinetics of growth factor release at implant surfaces functionalized either with PRGFs or platelet-poor plasma and correlated the results obtained with the morphology of the resulting interfaces. Our main finding is that activation and clot formation favors longer residence times of the growth factors at the interfaces studied, probably due to their retention in the adsorbed fibrin matrix. The concentration of the platelet-derived growth factors above the interfaces becomes negligible after 2-4 days and is significantly higher in the case of activated interfaces than in the case of nonactivated ones, whereas that of the plasmatic hepatocyte growth factor is independent of platelet concentration and activation, and remains significant for up to 9 days. Platelet-rich plasma preparations should be activated to permit growth factor release and thereby facilitate implant surface osseointegration.

  8. EDUCATION AS A FACTOR IN ECONOMIC GROWTH.

    ERIC Educational Resources Information Center

    MACKERTICH, ALEX

    THE VALUE OF AN EDUCATION IN THE ECONOMIC GROWTH OF AN UNDERDEVELOPED COUNTRY (INDIA) WAS INVESTIGATED USING THE CASE STUDY APPROACH. DATA WERE GATHERED AT BOTH THE CENTRAL GOVERNMENT AND VILLAGE LEVELS THROUGH INTERVIEWS WITH INDIAN GOVERNMENT OFFICIALS AND FROM OFFICIAL GOVERNMENT PUBLICATIONS CONCERNING THE NATION'S EDUCATIONAL EFFORTS, AS…

  9. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    SciTech Connect

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.; Russell, J.D.; Trupin, J.S.

    1988-01-01

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloid fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.

  10. Growth Factors Regulate Expression of Mineral Associated Genes in Cementoblasts

    PubMed Central

    Saygin, N. Esra; Tokiyasu, Yoshihiko; Giannobile, William V.; Somerman, Martha J.

    2008-01-01

    Background Knowledge of the responsiveness of cells within the periodontal region to specific bioactive agents is important for improving regenerative therapies. The aim of this study was to determine the effect of specific growth factors, insulin-like growth factor-I (IGF-I), platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) on cementoblasts in vitro and ex vivo. Methods Osteocalcin (OC) promoter driven SV40 transgenic mice were used to obtain immortalized cementoblasts. Growth factor effects on DNA synthesis were assayed by [3H]-thymidine incorporation. Northern analysis was used to determine the effects of growth factors on gene expression profile. Effects of growth factors on cementoblast induced biomineralization were determined in vitro (von Kossa stain) and ex vivo (re-implantation of cells in immunodeficient (SCID) mice). Results All growth factors stimulated DNA synthesis compared to control. Twenty-four hour exposure of cells to PDGF-BB or TGF-β resulted in a decrease in bone sialoprotein (BSP) and osteocalcin (OCN) mRNAs while PDGF-BB also increased osteopontin (OPN) mRNA. Cells exposed to IGF-I for 24 hours exhibited decreased transcripts for OCN and OPN with an upregulation of BSP mRNA noted at 72 hours. In vitro mineralization was inhibited by continuous application of PDGF-BB or TGF-β, while cells exposed to these factors prior to implantation into SCID mice still promoted biomineralization. Conclusions These data indicate IGF-I, PDGF-BB, and TGF-β influence mitogenesis, phenotypic gene expression profile, and biomineralization potential of cementoblasts suggesting that such factors alone or in combination with other agents may provide trigger factors required for regenerating periodontal tissues. PMID:11063392

  11. High-growth-factor implosions (HEP4)

    SciTech Connect

    Landen, O.L.; Keane, C.J.; Hammel, B.A.

    1996-06-01

    In inertial confinement fusion (ICF), the kinetic energy of an ablating, inward-driven, solid spherical shell is used to compressionally heat the low-density fuel inside. For a given drive, the maximum achievable compressed fuel density and temperature - and hence the maximum neutron production rate depend on the degree of shell isentropy and integrity maintained during the compression. Shell integrity will be degraded by hydrodynamic instability growth of areal density imperfections in the capsule. Surface imperfections on the shell grow as a result of the Richtmyer-Meshkov and Rayleigh-Taylor (RT) instabilities when the shell is accelerated by the ablating lower-density plasma. Perturbations at the outer capsule surface are transferred hydrodynamically to the inner surface, where deceleration of the shell by the lower-density fuel gives rise to further RT growth at the pusher-fuel interface.

  12. Targeting the Insulin Growth Factor and the Vascular Endothelial Growth Factor Pathways in Ovarian Cancer

    PubMed Central

    Shao, Minghai; Hollar, Stacy; Chambliss, Daphne; Schmitt, Jordan; Emerson, Robert; Chelladurai, Bhadrani; Perkins, Susan; Ivan, Mircea; Matei, Daniela

    2015-01-01

    Antiangiogenic therapy is emerging as a highly promising strategy for the treatment of ovarian cancer, but the clinical benefits are usually transitory. The purpose of this study was to identify and target alternative angiogenic pathways that are upregulated in ovarian xenografts during treatment with bevacizumab. For this, angiogenesis-focused gene expression arrays were used to measure gene expression levels in SKOV3 and A2780 serous ovarian xenografts treated with bevacizumab or control. Reverse transcription-PCR was used for results validation. The insulin growth factor 1 (IGF-1) was found upregulated in tumor and stromal cells in the two ovarian xenograft models treated with bevacizumab. Cixutumumab was used to block IGF-1 signaling in vivo. Dual anti-VEGF and IGF blockade with bevacizumab and cixutumumab resulted in increased inhibition of tumor growth. Immunohistochemistry measured multivessel density, Akt activation, and cell proliferation, whereas terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling (TUNEL) assay measured apoptosis in ovarian cancer xenografts. Bevacizumab and cixutumumab combination increased tumor cell apoptosis in vivo compared with therapy targeting either individual pathway. The combination blocked angiogenesis and cell proliferation but not more significantly than each antibody alone. In summary, IGF-1 activation represents an important mechanism of adaptive escape during anti-VEGF therapy in ovarian cancer. This study provides the rationale for designing bevacizumab-based combination regimens to enhance antitumor activity. PMID:22700681

  13. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability.

    PubMed

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C; Levine, Kara L; Dabovic, Branka; Jung, Christine; Davis, Elaine C; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-07-15

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling.

  14. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability

    PubMed Central

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C.; Levine, Kara L.; Dabovic, Branka; Jung, Christine; Davis, Elaine C.; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-01-01

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling. PMID:25882708

  15. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  16. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  17. Platelet-rich growth factor in oral and maxillofacial surgery

    PubMed Central

    Pal, Uma Shanker; Mohammad, Shadab; Singh, Rakesh K.; Das, Somdipto; Singh, Nimisha; Singh, Mayank

    2012-01-01

    Platelet-rich growth factor is an innovative regenerative therapy used to promote hard and soft tissue healing. It involves the application of autologous platelet-leukocyte-rich plasma containing growth factors and thrombin directly to the site of treatment. It is the intrinsic growth factors released by activated platelets which are concentrated in a topical gel formula. Clinically, it is an affordable treatment with potentially broad spectrum of applications in maxillofacial surgery especially in the treatment of complex or refractory wounds. The present article reviews its various applications not only in the specialization of oral and maxillofacial surgery but also in regenerative medicine. PMID:23833484

  18. Novel biodegradable polymers for local growth factor delivery.

    PubMed

    Amsden, Brian

    2015-11-01

    Growth factors represent an important therapeutic protein drug class, and would benefit significantly from formulations that provide sustained, local release to realize their full clinical potential. Biodegradable polymer-based delivery platforms have been examined to achieve this end; however, formulations based on conventional polymers have yet to yield a clinical product. This review examines new polymer biomaterials that have been developed for growth factor delivery. The dosage forms are discussed in terms of their mechanism of release, the stability of the released growth factor, their method of preparation, and their potential for clinical translation. PMID:26614555

  19. Co-stimulation of gastrointestinal tumour cell growth by gastrin, transforming growth factor alpha and insulin like growth factor-I.

    PubMed Central

    Durrant, L. G.; Watson, S. A.; Hall, A.; Morris, D. L.

    1991-01-01

    Epidermal growth factor receptors and insulin like growth factor-I receptors were co-expressed on two gastric and three colorectal tumour cell lines. Previous studies have shown that gastrin receptors were also expressed at a low level or two of these cell lines. Both TGF alpha and IGF-I promoted cell growth in all of the cell lines tested. The cell doubling time of a colorectal cell line was reduced from 48 to 30-34 h. Furthermore the effects of the growth factors were additive. Each growth factor also increased the response of the cells to gastrin, but a combination of both growth factors and gastrin did not further increase growth. PMID:1846553

  20. Therapeutic modulation of growth factors and cytokines in regenerative medicine.

    PubMed

    Ioannidou, Effie

    2006-01-01

    Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations

  1. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma.

  2. Visualization of growth factor receptor sites in rat forebrain

    SciTech Connect

    Quirion, R.; Araujo, D.; Nair, N.P.; Chabot, J.G.

    1988-01-01

    It is now known that various growth factors may also act in the central nervous system. Among them, it has recently been shown that epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) may possess trophic effects in the mammalian brain. We report here on the respective autoradiographic distribution of (/sup 125/I)EGF and (/sup 125/I)IGF-I receptor binding sites in the rat brain, both during ontogeny and in adulthood. It appears that (/sup 125/I)EGF sites are mostly found in the rat forebrain during brain development. On the other hand, (/sup 125/I)IGF-I sites are more widely distributed both during ontogeny and in adulthood. These results reveal the plasticity of the expression of EGF and IGF-I receptor sites in the mammalian brain. This could be relevant for the respective role of these two growth factors in the development and maintenance of neuronal function.

  3. Abnormal Growth Factor/Cytokine Network in Gastric Cancer

    PubMed Central

    2008-01-01

    Gastric cancer cells express a broad spectrum of the growth factor/cytokine receptor systems that organize the complex interaction between cancer cells and stromal cells in tumor microenvironment, which confers cell growth, apoptosis, morphogenesis, angiogenesis, progression and metastasis. However, these abnormal growth factor/cytokine networks differ in the two histological types of gastric cancer. Importantly, activation of nuclear factor-kB pathway by Helicobacter pylori infection may act as a key player for induction of growth factor/cytokine networks in gastritis and pathogenesis of gastric cancer. Better understanding of these events will no doubt provide new approaches for biomarkers of diagnosis and effective therapeutic targeting of gastric cancer. PMID:19308687

  4. Cardiac Regeneration using Growth Factors: Advances and Challenges

    PubMed Central

    Rebouças, Juliana de Souza; Santos-Magalhães, Nereide Stela; Formiga, Fabio Rocha

    2016-01-01

    Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others. Together, these mechanisms promote myocardial repair and improvement of the cardiac function. This review aims to address the strategic role of growth factor therapy in cardiac regeneration, considering its innovative and multifactorial character in myocardial repair after ischemic injury. Different issues will be discussed, with emphasis on the regeneration mechanisms as a potential therapeutic resource mediated by growth factors, and the challenges to make these proteins therapeutically viable in the field of cardiology and regenerative medicine. PMID:27355588

  5. Regulation of human amnion cell growth and morphology by sera, plasma, and growth factors.

    PubMed

    Gaffney, E V; Grimaldi, M A

    1981-01-01

    The requirements of human epithelial cells derived from the amnion membrane for serum factors were investigated. The growth promoting effects of human whole blood serum (WBS), platelet-poor defibrinogenated plasma, and plasma-derived serum (PDS) were examined in primary cultures of these ectodermal cells. The numbers of population doublings recorded after 10 days in the presence of 10% WBS, defibrinogenated plasma, or PDS were 2.3, 2.0 or 1.5, respectively. Although dialysis of sera or plasma had little effect on growth promotion, it markedly decreased the capacity of plasma to maintain cells in culture beyond 10 days. The differences in growth activities could not be attributed to the presence of anticoagulant in plasma and PDS or to the presence of excess calcium in PDS. Platelet lysates and purified platelet-derived growth factor had no effect on growth. Amnion cell growth was enhanced by epidermal growth factor (EGF) or hydrocortisone, but the glucocorticoid did not condition cells to respond to growth factors. Insulin and fibroblast growth factor singly or in combination had no effect on cell replication. Giant cell formation accompanied maintenance in hydrocortisone with defibrinogenated plasma and PDS. Discrete regions of dense population appeared in the presence of hydrocortisone, EGF, and undialyzed supplements.

  6. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    PubMed

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations.

  7. Distribution of insulin-like growth factors in condylar hyperplasia.

    PubMed

    Götz, Werner; Lehmann, Tim Sebastian; Appel, Thorsten Robin; Rath-Deschner, Birgit; Dettmeyer, Reinhard; Luder, Hans-Ulrich; Reich, Rudolf H; Jäger, Andreas

    2007-01-01

    Condylar hyperplasia (CH) is a local overgrowth of the condylar process of the temporomandibular joint (TMJ) of unknown etiology. Probably, growth factors like the insulin-like growth factors (IGFs) are involved in its pathogenesis. Specimens from 12 patients were investigated histologically and immunohistochemically to obtain the distribution of the IGFs-I and -II and the IGF1 receptor. The results revealed juvenile and adult subtypes. While generally IGF-II could only be detected weakly, in the juvenile cases strong immunostaining for IGF-I in cartilage and bone supposes an influence on pathological growth processes. PMID:17695990

  8. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  9. [Novel role of growth factors in ovary function].

    PubMed

    Amsterdam, Abraham

    2010-12-01

    The development of the DNA microarray technique facilitated systematic studies of the modulation of gene function. Considerable attention has been focused on members of the growth factor family to elucidate the main regulators of oocyte maturation and ovarian follicle rupture. Among these growth factors, it was found, both in rodents and in humans, that amphiregulin (Ar) and epiregulin (Ep) of the epidermal growth factor (EGF) family were dramatically up-regulated by gonadotrophins in the intact ovary and in primary granulosa cells, respectively. Their role in cumulus expansion and oocyte maturation was established in rodents, and their synthesis under LH stimulation in granulosa cells was demonstrated in humans. To be activated, Ar and Ep must be cleaved by a disintegrin and metalloproteinases (ADAMs) family. However, the precise processing of Ar and Ep by the cumulus cells is still obscure. Future investigations using DNA microarray technique may reveal the repertoire of genes activated in Ar- and Ep-stimulated cumulus cells and may help elucidate the molecular basis of ovulation. EFG-like factors are also involved in triggering ovarian cancer The author hypothesized that the normal ovary maintains cyclicity in the formation of these growth factors preventing the ovary from developing ovarian cancer In ovarian cancer these growth factors are continuously formed in an autocrine manner, leading to transformation and subsequently to ovarian cancer. These growth factors are essential for both normal and neoplastic transformation of the ovary. Taking into consideration these growth factors in the treatment of ovarian malfunction may be one way of curing ovarian cancer. PMID:21916103

  10. Insulin-like 3-induced rat preantral follicular growth is mediated by growth differentiation factor 9.

    PubMed

    Xue, Kai; Kim, Ji Young; Liu, Jia-yin; Tsang, Benjamin K

    2014-01-01

    The communication of somatic cells and oocytes by intrafollicular paracrine factors is essential for follicular growth in the ovary. Insulin-like 3 (INSL3) is a theca cell-secreted paracrine factor. Androgens and growth differentiation factor 9 (GDF9), an oocyte-derived growth factor, are essential for follicular development. Using a rat preantral follicle culture model, we examined in the present study the influence of INSL3 on preantral follicular growth and the molecular mechanisms involved. We have observed that the receptor for INSL3, relaxin/insulin-like family peptide receptor 2 (RXFP2), was exclusively expressed in oocytes. Recombinant INSL3 stimulated Gdf9 expression, preantral follicular growth, and testosterone synthesis in vitro. Inhibition of the cAMP/protein kinase A signaling pathway (with cAMP antagonist, 8-bromoadenosine 3',5'-cyclic monophosphorothioate, Rp-isomer) attenuated INSL3-induced Gdf9 expression and preantral follicular growth. Moreover, knocking down Gdf9 expression (with small interfering RNA) or inhibiting GDF9 signaling (with SB431542, an activin receptor-like kinase receptor 5 inhibitor, or specific inhibitor of mothers against decapentaplegic homolog 3) or androgen action (with flutamide, an androgen receptor antagonist) suppressed INSL3-induced preantral follicular growth. In addition, LH and DHT regulated the expression of Insl3 mRNA in preantral follicles. These observations suggest that INSL3 is a key theca cell-derived growth factor for preantral follicle and that its action is mediated by GDF9.

  11. Cutaneous adverse reactions specific to epidermal growth factor receptor inhibitors

    PubMed Central

    Lupu, I; Voiculescu, VM; Bacalbasa, N; Prie, BE; Cojocaru, I; Giurcaneanu, C

    2015-01-01

    Classical antineoplastic therapy is encumbered by extensively studied adverse reactions, most often of systemic nature. The emergence of new generations of anticancer treatments, including epidermal growth factor receptor inhibitors, besides improving the response to treatment and the survival rate, is accompanied by the occurrence of new specific side effects, incompletely studied. These side effects are most often cutaneous (hand foot syndrome, acneiform reactions), and in some cases are extremely severe, requiring dose reduction or drug discontinuation. The prevention of the cutaneous adverse effects and their treatment require a close collaboration between the oncologist and the dermatologist. The occurrence of some of these skin adverse effects may be a favorable prognostic factor for the response to the cancer treatment and the overall survival. Abbreviations: EGFR = epidermal growth factor receptors; EGFRI = epidermal growth factor receptors inhibitors PMID:26361513

  12. Hepatocyte growth factor, hepatocyte growth factor activator and arginine in a rat fulminant colitis model

    PubMed Central

    Zwintscher, Nathan P.; Shah, Puja M.; Salgar, Shashikumar K.; Newton, Christopher R.; Maykel, Justin A.; Samy, Ahmed; Jabir, Murad; Steele, Scott R.

    2016-01-01

    Introduction Dextran sodium sulfate (DSS) is commonly used to induce a murine fulminant colitis model. Hepatocyte growth factor (HGF) has been shown to decrease the symptoms of inflammatory bowel disease (IBD) but the effect of its activator, HGFA, is not well characterized. Arginine reduces effects of oxidative stress but its effect on IBD is not well known. The primary aim is to determine whether HGF and HGFA, or arginine will decrease IBD symptoms such as pain and diarrhea in a DSS-induced fulminant colitis murine model. Methods A severe colitis was induced in young, male Fischer 344 rats with 4% (w/v) DSS oral solution for seven days; rats were sacrificed on day 10. Rats were divided into five groups of 8 animals: control, HGF (700 mcg/kg/dose), HGF and HGFA (10 mcg/dose), HGF and arginine, and high dose HGF (2800 mcg/kg/dose). Main clinical outcomes were pain, diarrhea and weight loss. Blinded pathologists scored the terminal ileum and distal colon. Results DSS reliably induced severe active colitis in 90% of animals (n = 36/40). There were no differences in injury scores between control and treatment animals. HGF led to 1.38 fewer days in pain (p = 0.036), while arginine led to 1.88 fewer days of diarrhea (P = 0.017) compared to controls. 88% of HGFA-treated rats started regaining weight (P < 0.001). Discussion/Conclusion Although treatment was unable to reverse fulminant disease, HGF and arginine were associated with decreased days of pain and diarrhea. These clinical interventions may reduce associated symptoms for severe IBD patients, even when urgent surgical intervention remains the only viable option. PMID:27144006

  13. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    PubMed

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  14. Cytokine and Growth Factor Responses After Radiotherapy for Localized Ependymoma

    SciTech Connect

    Merchant, Thomas E. Li Chenghong; Xiong Xiaoping; Gaber, M. Waleed

    2009-05-01

    Purpose: To determine the time course and clinical significance of cytokines and peptide growth factors in pediatric patients with ependymoma treated with postoperative radiotherapy (RT). Methods and Materials: We measured 15 cytokines and growth factors (fibroblast growth factor, epidermal growth factor, vascular endothelial growth factor [VEGF], interleukin [IL]-1{beta}, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, interferon-{gamma}, tumor necrosis factor-{alpha}, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and macrophage inflammatory protein-{alpha}) from 30 patients before RT and 2 and 24 h, weekly for 6 weeks, and at 3, 6, 9, and 12 months after the initiation of RT. Two longitudinal models for the trend of log-transformed measurements were fitted, one during treatment and one through 12 months. Results: During RT, log IL-8 declined at a rate of -0.10389/wk (p = 0.0068). The rate of decline was greater (p = 0.028) for patients with an infratentorial tumor location. The decline in IL-8 after RT was significant when stratified by infratentorial tumor location (p = 0.0345) and more than one surgical procedure (p = 0.0272). During RT, the decline in log VEGF was significant when stratified by the presence of a ventriculoperitoneal shunt. After RT, the log VEGF declined significantly at a rate of -0.06207/mo. The decline was significant for males (p = 0.0222), supratentorial tumors (p = 0.0158), one surgical procedure (p = 0.0222), no ventriculoperitoneal shunt (p = 0.0005), and the absence of treatment failure (p = 0.0028). Conclusion: The pro-inflammatory cytokine IL-8 declined significantly during RT and the decline differed according to tumor location. The angiogenesis factor VEGF declined significantly during the 12 months after RT. The decline was greater in males, those without a ventriculoperitoneal shunt, and in those with favorable disease factors, including one surgical procedure, supratentorial tumor location, and

  15. Growth factors in porcine full and partial thickness burn repair. Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-BB, epidermal growth factor, and neu differentiation factor.

    PubMed Central

    Danilenko, D. M.; Ring, B. D.; Tarpley, J. E.; Morris, B.; Van, G. Y.; Morawiecki, A.; Callahan, W.; Goldenberg, M.; Hershenson, S.; Pierce, G. F.

    1995-01-01

    The topical application of recombinant growth factors such as epidermal growth factor, platelet-derived growth factor-BB homodimer (rPDGF-BB), keratinocyte growth factor (rKGF), and neu differentiation factor has resulted in significant acceleration of healing in several animal models of wound repair. In this study, we established highly reproducible and quantifiable full and deep partial thickness porcine burn models in which burns were escharectomized 4 or 5 days postburn and covered with an occlusive dressing to replicate the standard treatment in human burn patients. We then applied these growth factors to assess their efficacy on several parameters of wound repair: extracellular matrix and granulation tissue production, percent reepithelialization, and new epithelial area. In full thickness burns, only rPDGF-BB and the combination of rPDGF-BB and rKGF induced significant changes in burn repair. rPDGF-BB induced marked extracellular matrix and granulation tissue production (P = 0.013) such that the burn defect was filled within several days of escharectomy, but had no effect on new epithelial area or reepithelialization. The combination of rPDGF-BB and rKGF in full thickness burns resulted in a highly significant increase in extracellular matrix and granulation tissue area (P = 0.0009) and a significant increase in new epithelial area (P = 0.007), but had no effect on reepithelialization. In deep partial thickness burns, rKGF induced the most consistent changes. Daily application of rKGF induced a highly significant increase in new epithelial area (P < 0.0001) but induced only a modest increase in reepithelialization (83.7% rKGF-treated versus 70.2% control; P = 0.016) 12 days postburn. rKGF also doubled the number of fully reepithelialized burns (P = 0.02) at 13 days postburn, at least partially because of marked stimulation of both epidermal and follicular proliferation as assessed by proliferating cell nuclear antigen expression. In situ hybridization for

  16. Autocrine growth factors for human tumor clonogenic cells.

    PubMed

    Hamburger, A W; White, C P

    1985-11-01

    A human epithelial-derived cell line, SW-13, releases a soluble substance that functions as an autocrine growth factor. SW-13 cells, derived from a human adenocarcinoma of the adrenal cortex, form a few small colonies when suspended in soft agar at low densities. The number of colonies increased significantly when either viable SW-13 cells or serum-free medium conditioned by SW-13 cells (CM) was added to agar underlayers. CM increased colony formation in a dose-dependent fashion. Clonal growth at low cell densities was dependent on the presence of both horse serum and SW-13 CM. Neither activity alone was capable of sustaining growth. Even when cells were plated at high densities CM could not substitute for serum, but could reduce the threshold serum concentration. The results suggest that autocrine and serum-derived factors act in concert to maintain clonal growth of epithelial tumor cells in soft agar.

  17. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  18. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  19. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  20. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  1. Epidermal growth factor, from gene organization to bedside

    PubMed Central

    Zeng, Fenghua; Harris, Raymond C.

    2014-01-01

    In 1962, epidermal growth factor (EGF) was discovered by Dr. Stanley Cohen while studying nerve growth factor (NGF). It was soon recognized that EGF is the prototypical member of a family of peptide growth factors that activate the EGF receptors, and that the EGF/EGF receptor signaling pathway plays important roles in proliferation, differentiation and migration of a variety of cell types, especially in epithelial cells. After the basic characterization of EGF function in the first decade or so after its discovery, the studies related to EGF and its signaling pathway have extended to a broad range of investigations concerning its biological and pathophysiological roles in development and in human diseases. In this review, we briefly describe the gene organization and tissue distribution of EGF, with emphasis on its biological and pathological roles in human diseases. PMID:24513230

  2. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    SciTech Connect

    Story, M.T. )

    1989-05-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue.

  3. Expression and localization of epidermal growth factor, transforming growth factor-α and epidermal growth factor receptor in the canine testis

    PubMed Central

    TAMADA, Hiromichi; TAKEMOTO, Kohei; TOMINAGA, Masato; KAWATE, Noritoshi; TAKAHASHI, Masahiro; HATOYA, Shingo; MATSUYAMA, Satoshi; INABA, Toshio; SAWADA, Tsutomu

    2015-01-01

    Gene expression of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor (EGF-R) and the localization of the corresponding proteins in the canine testis were studied. Levels of mRNA expressions were determined by semiquantitative reverse transcription polymerase chain reaction in the testes of the peripubertal (4–6 months), young adult (3–4 years), advanced adult (7–8 years) and senescent (11–16 years) groups. The EGF-R mRNA level in the testes of the peripubertal group was significantly higher than those in the other groups, whereas there was no difference in EGF and TGF-α mRNA levels among groups. Immunohistochemical stainings for EGF, TGF-α and EGF-R in the testis revealed that immunoreactivity in the seminiferous epithelium and Sertoli cell was weak and nonspecific for the stage of spermatogenesis, and distinct staining was found in Leydig cells. These results suggest that the EGF family of growth factors may be involved in testicular maturation and function in the dog. PMID:26498203

  4. Effects of growth factors on temporomandibular joint disc cells.

    PubMed

    Detamore, Michael S; Athanasiou, Kyriacos A

    2004-07-01

    The effects of growth factors on cartilaginous tissues are well documented. An exception is the temporomandibular joint (TMJ) disc, where data for growth factor effects on proliferation and biosynthesis are very limited. The purpose of this study was to quantify proliferation of and synthesis by TMJ disc cells cultured in monolayer with either platelet derived growth factor-AB (PDGF), basic fibroblast growth factor (bFGF) or insulin-like growth factor-I (IGF), at either a low (10 ng/ml) or high (100 ng/ml) concentration. Proliferation was assessed with a DNA quantitation technique, collagen synthesis was measured via a hydroxyproline assay, and GAG synthesis was determined with a dimethylmethylene blue dye binding assay at 14 days. Overall, the most beneficial growth factor was bFGF, which was most potent in increasing proliferation and GAG synthesis, and also effective in promoting collagen synthesis. At the high concentration, bFGF resulted in 96% more cells than the control and 30 to 45% more cells than PDGF and IGF. PDGF and bFGF were the most potent upregulators of GAG synthesis, producing 2-3 times more GAG than the control. IGF had no significant effect on GAG production, although at its higher concentration it increased collagen production by 4.5 times over the control. Collagen synthesis was promoted by bFGF at its lower concentration, with levels 4.2 times higher than the control, whereas PDGF had no significant effect on collagen production. In general, higher concentrations increased proliferation, whereas lower concentrations favoured biosynthesis. PMID:15126139

  5. Epidermal Growth Factor-Like Growth Factors in the Follicular Fluid: Role in Oocyte Development and Maturation

    PubMed Central

    Hsieh, Minnie; Zamah, A. Musa; Conti, Marco

    2015-01-01

    The growth and maturation of the ovarian follicle requires the coordinate function of somatic cells and the oocyte. Over the past three decades, numerous growth factors involved in the bidirectional signals between the somatic and germ cells have been identified. A possible function of epidermal growth factor (EGF) signaling at selected stages of follicle maturation had been proposed early on and is supported by many observations of in vitro effects of this growth factor on steroidogenesis, oocyte maturation, and cumulus expansion. However, attempts to link EGF levels in the follicular fluid with the state of follicle and oocyte maturation have been inconclusive. More recently, data generated using mouse genetic models perturbing ovulation and fertility indicate that EGF-like growth factors, rather than EGF itself, accumulate in the follicle at the time of ovulation. EGF-like growth factor mRNA is regulated by the luteinizing hormone surge, and corresponding proteins are detected in the follicle. The EGF-like growth factors amphiregulin, epiregulin, and betacellulin are potent stimulators of oocyte maturation and cumulus expansion, and perturbation of this EGF network in vivo impairs ovulation. Similar findings in species other than the mouse confirm an important physiological role for this network at the time of ovulation. Whether this network also plays a critical role in humans and whether it can be used as a biological marker of follicle development or for the improvement of fertility remains to be determined. This review summarizes the most recent findings on the EGF network during ovulation and the potential clinical applications of manipulating this intercellular communication pathway in the control of fertility. PMID:19197805

  6. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  7. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  8. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis.

    PubMed Central

    Connolly, D T; Heuvelman, D M; Nelson, R; Olander, J V; Eppley, B L; Delfino, J J; Siegel, N R; Leimgruber, R M; Feder, J

    1989-01-01

    Vascular permeability factor (VPF) is an Mr 40-kD protein that has been purified from the conditioned medium of guinea pig line 10 tumor cells grown in vitro, and increases fluid permeability from blood vessels when injected intradermally. Addition of VPF to cultures of vascular endothelial cells in vitro unexpectedly stimulated cellular proliferation. VPF promoted the growth of new blood vessels when administered into healing rabbit bone grafts or rat corneas. The identity of the growth factor activity with VPF was established in four ways: (a) the molecular weight of the activity in preparative SDS-PAGE was the same as VPF (Mr approximately 40 kD); (b) multiple isoforms (pI greater than or equal to 8) for both VPF and the growth-promoting activity were observed; (c) a single, unique NH2-terminal amino acid sequence was obtained; (d) both growth factor and permeability-enhancing activities were immunoadsorbed using antipeptide IgG that recognized the amino terminus of VPF. Furthermore, 125I-VPF was shown to bind specifically and with high affinity to endothelial cells in vitro and could be chemically cross-linked to a high-molecular weight cell surface receptor, thus demonstrating a mechanism whereby VPF can interact directly with endothelial cells. Unlike other endothelial cell growth factors, VPF did not stimulate [3H]thymidine incorporation or promote growth of other cell types including mouse 3T3 fibroblasts or bovine smooth muscle cells. VPF, therefore, appears to be unique in its ability to specifically promote increased vascular permeability, endothelial cell growth, and angio-genesis. Images PMID:2478587

  9. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed.

  10. Growth factors in the treatment of early osteoarthritis

    PubMed Central

    Civinini, Roberto; Nistri, Lorenzo; Martini, Caterina; Redl, Birgit; Ristori, Gabriele; Innocenti, Massimo

    2013-01-01

    Summary Regenerative medicine is the science that studies the regeneration of biological tissues obtained through use of cells, with the aid of support structures and with biomolecules such as growth factors. As regards the growth factors the PRP, or the platelet-rich plasma, obtained from a withdrawal of autologous blood, concentrating the platelets, represents a safe, economical, easy to prepare and easy to apply source of growth factors. Numerous growth factors are in fact within the platelets and in particular a large number of them have a specific activity on neo-proliferation, on cartilage regeneration and in particular also an antiapoptotic effect on chondroblasts: - The PDGF which regulates the secretion and synthesis of collagen;- The EGF that causes cellular proliferation, endothelial chemotaxis and angiogenesis;- The VEGF that increases angiogenesis and vascular permeability;- The TGF-beta that stimulates the proliferation of undifferentiated MSC, stimulates chemotaxis of endothelial cells and angiogenesis;- The bFGF that promotes the growth and differentiation of chondrocytes and osteoblasts stimulates mitogenesis of mesenchymal cells, chondrocytes and osteoblasts. These properties have led to the development of studies that evaluated the efficacy of treatment of infiltrations in the knee and hip with platelet-derived growth factors. Regarding the knee it was demonstrated that in patients with moderate degree of gonarthrosis, the PRP is able to significantly reduce the pain and improve joint function, both on placebo and towards infiltrations with hyaluronic acid. The success of the treatment was proportional to the age of and inversely proportional to the severity of osteoarthritis according to Kellgren and Lawrence classification. The possibility of infiltrations guided with ultrasound into the hip led us to extend the indications also to hip arthrosis, as already showed by Sanchez. Even in coxarthrosis preliminary results at 6 and 12 months show that

  11. Factors affecting Staphylococcus epidermidis growth in peritoneal dialysis solutions.

    PubMed Central

    McDonald, W A; Watts, J; Bowmer, M I

    1986-01-01

    Staphylococcus epidermidis is the most frequent cause of peritonitis complicating continuous ambulatory peritoneal dialysis. We studied factors that might influence the growth of S. epidermidis in commercially available peritoneal dialysis solution (PDS). Test strains were inoculated into PDS and incubated overnight at 37 degrees C. Samples were removed at appropriate intervals, bacterial counts were performed, and growth curves were constructed. We studied the effects of various osmolarities, the neutralization and acidification of fresh and spent PDS, and the effect of intraperitoneal dwell time on the ability PDS to support growth of S. epidermidis. In fresh PDS, numbers of bacteria remained constant after 24 h. No significant differences in growth were observed among PDS with 0.5, 1.5, 2.5, and 4.25% glucose. Neutralizing acidic fresh PDS had no effect on bacterial growth. However, growth did occur in spent PDS. PDS which was recovered after only 2 h in the peritoneal cavity supported growth to the same extent as did PDS recovered after 4 to 6 h. Mean log10 changes after 24 h of incubation were as follows: for fresh PDS, -1.3; after 2 h dwell time, 2.9; after 4 h dwell time, 1.9; and after 6 h dwell time, 1.3. Acidification of spent PDS to less than pH 6.35 produced less rapid growth; mean log10 increases after 24 h of incubation were 1.9 for pH 7.75, 1.6 for pH 6.35, 0.6 for pH 5.75, and 0.7 for pH 4.95. Fresh PDS of all available osmolarities neither supported the growth of S. epidermidis nor was bactericidal. Spent PDS supported bacterial growth, and this growth was partly independent of the neutralization which occurred during the dialysis. PMID:3722356

  12. Binding, sequestration, and processing of epidermal growth factor and nerve growth factor by PC12 cells. [Rats

    SciTech Connect

    Chandler, C.E.; Herschman, H.R.

    1983-03-01

    Th rat PC12 pheochromocytoma cell line exhibits biological responses to both nerve growth factor (NGF) and epidermal growth factor (EGF). The existence of receptors and biological responses on a common cell for these two well-characterized polypeptide growth factors makes this an attractive system for comparison of ligand binding and processing. Both NGF and EGF are bound to PC12 cells in a competable form at 4/sup 0/C. At 37/sup 0/C both ligands are ''sequestered,'' but at different rates and to different extents. While sequestration happens rapidly and nearly quantitatively for bound EGF, the dissociation reaction appears to compete favorably with NFG sequestration. Both EGF and NGF are degraded by PC12 cells. Sequestered EGF, however, is degraded to a greater extent than sequestered NGF.

  13. Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability.

    PubMed

    Sengle, Gerhard; Ono, Robert N; Sasaki, Takako; Sakai, Lynn Y

    2011-02-18

    The specific functions of the prodomains of TGFβ superfamily members are largely unknown. Interactions are known between prodomains of TGFβ-1-3 and latent TGFβ-binding proteins and between prodomains of BMP-2, -4, -7, and -10 and GDF-5 and fibrillins, raising the possibility that latent TGFβ-binding proteins and fibrillins may mediate interactions with all other prodomains of this superfamily. This possibility is tested in this study. Results show that the prodomain of BMP-5 interacts with the N-terminal regions of fibrillin-1 and -2 in a site similar to the binding sites for other bone morphogenetic proteins. However, in contrast, the prodomain of GDF-8 (myostatin) interacts with the glycosaminoglycan side chains of perlecan. The binding site for the GDF-8 prodomain is likely the heparan sulfate chain present on perlecan domain V. These results support and extend the emerging concept that TGFβ superfamily prodomains target their growth factor dimers to extracellular matrix macromolecules. In addition, biochemical studies of prodomain·growth factor complexes were performed to identify inactive complexes. For some members of the superfamily, the prodomain is noncovalently associated with its growth factor dimer in an inactive complex; for others, the prodomain·growth factor complex is active, even though the prodomain is noncovalently associated with its growth factor dimer. Results show that the BMP-10 prodomain, in contrast to BMP-4, -5, and -7 prodomains, can inhibit the bioactivity of the BMP-10 growth factor and suggest that the BMP-10 complex is like TGFβ and GDF-8 complexes, which can be activated by cleavage of the associated prodomain.

  14. An ideal preparation for dermal regeneration: skin renewal growth factors, the growth factor composites from porcine platelets.

    PubMed

    Wang, Kuo-Hsien; Wu, Yo-Ping Greg; Lo, Wen-Cheng

    2012-12-01

    The use of growth factor composites from platelets has been introduced to many areas of clinical applications and studies. With the richest source of growth factors (GFs), beneficial effects have been shown on tissue regeneration and wound healing. However, animal and clinical studies have revealed inconsistent outcomes with the use of platelet-derived growth factors (PDGFs), which were likely due to variations in the presence and concentrations of GFs between various sources. Autologous PDGFs are considered to be safer, but they are limited by the feasibility of large-scale production to be used extensively in the acute phase, greater surface area, or general cosmetic applications. This study employed a simple process to obtain growth factor composites from activated platelets of porcine origin, namely skin renewal growth factors (SRGF). The functions of SRGF were subsequently evaluated on cultured human fibroblasts, keratinocytes, and melanocytes. Our data revealed that SRGF significantly promoted the proliferation of fibroblasts, accompanied by increased expression of collagens (types I, III, IV, and VIII) and proteoglycans. Diminished proliferation and arrested differentiation of keratinocytes were evidenced by the attenuated expression of laminin V and keratin 10. In addition, SRGF also suppressed the growth of melanocytes and reduced the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and paired box 3 (PAX3), which mediates melanogensis. Our results suggest that SRGF possesses beneficial properties and is a promising and cost-effective composition for the development of a safe cosmetic agent or topical products for skin regeneration. The development of SRGF may also provide an alternative strategy for tissue engineering.

  15. Functional upregulation of system xc- by fibroblast growth factor-2.

    PubMed

    Liu, Xiaoqian; Resch, Jon; Rush, Travis; Lobner, Doug

    2012-02-01

    The cystine/glutamate antiporter (system xc-) is a Na(+)-independent amino acid transport system. Disruption of this system may lead to multiple effects in the CNS including decreased cellular glutathione. Since multiple neurological diseases involve glutathione depletion, and disruption of growth factor signaling has also been implicated in these diseases, it is possible that some growth factors effects are mediated by regulation of system xc-. We tested the growth factors fibroblast growth factor-2 (FGF-2), insulin-like growth factor-1 (IGF-1), neuregulin-1 (NRG), neurotrophin-4 (NT-4), and brain derived neurotrophic factor (BDNF) on system xc- mediated 14C-cystine uptake in mixed neuronal and glial cortical cultures. Only FGF-2 significantly increased cystine uptake. The effect was observed in astrocyte-enriched cultures, but not in cultures of neurons or microglia. The increase was blocked by the system xc- inhibitor (s)-4-carboxyphenylglycine, required at least 12 h FGF-2 treatment, and was prevented by the protein synthesis inhibitor cycloheximide. Kinetic analysis indicated FGF-2 treatment increased the V(max) for cystine uptake while the K(m) remained the same. Quantitative PCR showed an increase in mRNA for xCT, the functional subunit of system xc-, beginning at 3 h of FGF-2 treatment, with a dramatic increase after 12 h. Blocking FGFR1 with PD 166866 blocked the FGF-2 effect. Treatment with a PI3-kinase inhibitor (LY-294002) or a MEK/ERK inhibitor (U0126) for 1 h prior to and during the FGF-2 treatment, each partially blocked the increased cystine uptake. The upregulation of system xc- by FGF-2 may be responsible for some of the known physiological actions of FGF-2. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  16. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF.

  17. Therapeutic potential of growth factors and their antagonists.

    PubMed Central

    Garner, A.

    1992-01-01

    This article describes studies with four peptides, epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), gastrin-releasing peptide/bombesin (GRP), and gastrin. The mitogenic and anti-secretory activities of EGF/TGF alpha appear to be mediated by a single class of high-affinity membrane receptors but may involve different signal transducing mechanisms. Biological activity of EGF resides in the N-terminal 42 amino acid fragment with the C-terminal undecapeptide determining binding affinity. A parenteral depot formulation of an EGF-related peptide or a small molecule agonist of the EGF receptor could have utility in treating various ulcerative disorders of the gut. Although antagonism of EGF (and thus TGF alpha) receptors and/or transducing mechanisms is frequently cited as a potential therapeutic approach to hyperproliferative diseases, blocking the action of TGF alpha, GRP, or gastrin with neutralizing antibodies or receptor antagonists did not influence the growth of a wide range of solid tumors in nude mice. These findings suggest that, unless tumor growth displays absolute dependency on one particular mitogen, antagonism of a specific growth factor is unlikely to have great effect in cancer therapy. PMID:1341074

  18. Assessing the Factors of Regional Growth Decline of Sugar Maple

    NASA Astrophysics Data System (ADS)

    Bishop, D. A.; Beier, C. M.; Pederson, N.; Lawrence, G. B.; Stella, J. C.; Sullivan, T. J.

    2014-12-01

    Sugar maple (Acer saccharum Marsh) is among the most ecologically, economically and culturally important trees in North America, but has experienced a decline disease across much of its range. We investigated the climatic and edaphic factors associated with A. saccharum growth in the Adirondack Mountains (USA) using a well-replicated tree-ring network incorporating a range of soil fertility (base cation availability). We found that nearly 3 in 4 A. saccharum trees exhibited declining growth rates during the last several decades, regardless of tree age or size. Although diameter growth was consistently higher on base-rich soils, the negative trends in growth were largely consistent across the soil chemistry gradient. Sensitivity of sugar maple growth to climatic variability was overall weaker than expected, but were also non-stationary during the 20th century. We observed increasingly positive responses to late-winter precipitation, increasingly negative responses to growing season temperatures, and strong positive responses to moisture availability during the 1960s drought that became much weaker during the recent pluvial. Further study is needed of these factors and their interactions as potential mechanisms for sugar maple growth decline.

  19. Assaying binding of nerve growth factor to cell surface receptors

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1985-01-01

    The paper describes methods both for the radioiodination of nerve growth factor (NGF) and for assaying NFG receptors by reversible binding techniques. Preparation of (/sup 125/I)NGF along with a rapid method for determining the amount of cell-bound ligand have allowed the detection of NGF receptors on a number of cell types.

  20. Role of fibroblast growth factors in organ regeneration and repair.

    PubMed

    El Agha, Elie; Kosanovic, Djuro; Schermuly, Ralph T; Bellusci, Saverio

    2016-05-01

    In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.

  1. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  2. Immunocytochemical expression of growth factors by odontogenic jaw cysts.

    PubMed Central

    Li, T.; Browne, R. M.; Matthews, J. B.

    1997-01-01

    AIM: To determine the immunocytochemical pattern of expression of transforming growth factor (TGF) alpha, epidermal growth factor (EGF), and TGF beta in the three most common types of odontogenic jaw cyst. METHODS: Growth factor expression was detected in paraffin wax sections of odontogenic cysts (27 odontogenic keratocysts, 10 dentigerous cysts, and 10 radicular cysts) using a streptavidin-biotin peroxidase technique with monoclonal antibodies directed against TGF alpha (clone 213-4.4) and TGF beta (clone TB21) and a polyclonal antibody directed against EGF (Z-12). RESULTS: The epithelial linings of all cysts showed reactivity for TGF alpha which was mainly localised to basal and suprabasal layers. Odontogenic keratocyst linings expressed higher levels of TGF alpha than those of dentigerous and radicular cysts, with 89% (24/27) of odontogenic keratocysts exhibiting a strong positive reaction compared with 50% (five of 10) of dentigerous and radicular cysts, respectively. EGF reactivity was similar in all cyst groups, weaker than that for TGF alpha and predominantly suprabasal. TGF alpha and EGF were also detected in endothelial cells, fibroblasts and inflammatory cells within the cyst walls. The most intense TGF beta staining in odontogenic cysts was extracellular within the fibrous tissue capsules, irrespective of cyst type. CONCLUSIONS: These results, together with previous studies of EGF receptor, indicate differential expression of TGF alpha, EGF and their common receptor between the different types of odontogenic cyst, suggesting that these growth factors (via autocrine or paracrine, or both, pathways) may be involved in their pathogenesis. Images PMID:9208810

  3. Fibroblast Growth Factor-2 Alters the Nature of Extinction

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2011-01-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…

  4. Total Chemical Synthesis of Biologically Active Vascular Endothelial Growth Factor

    SciTech Connect

    Mandal, Kalyaneswar; Kent, Stephen B.H.

    2011-09-15

    The 204-residue covalent-dimer vascular endothelial growth factor (VEGF, see picture) with full mitogenic activity was prepared from three unprotected peptide segments by one-pot native chemical ligations. The covalent structure of the synthetic VEGF was confirmed by precise mass measurement, and the three-dimensional structure of the synthetic protein was determined by high-resolution X-ray crystallography.

  5. Megakaryocyte growth and development factor is a potent growth factor for primitive hematopoietic progenitors in the human fetus.

    PubMed

    Muench, Marcus O; Bárcena, Alicia

    2004-06-01

    Megakaryocyte growth and development factor (MGDF), or thrombopoietin, has received considerable attention as a therapeutic agent for treating thrombocytopenia or for its use in the ex vivo culture of hematopoietic stem cells. MGDF is known to support the growth of a broad spectrum of hematopoietic precursors obtained from adult or neonatal tissues, but its effects on the growth of fetal progenitors and stem cells has not been studied. Human CD38(+)CD34(2+) progenitors and CD38(-)CD34(2+) cells, a population that contains stem cells, were isolated from midgestation liver and grown under defined conditions with MGDF and various cytokines known to support the growth of primitive hematopoietic precursors. In clonal assays of colony-forming cells (CFCs), MGDF supported the growth of 15-25% of candidate stem cells when combined with granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor (GM-CSF), flk-2/flt3 ligand, or stem cell factor. MGDF was observed to strongly support the early stages of hematopoiesis and expansion of high proliferative potential CFCs. More mature progenitors were expanded nearly 78-fold in 1 wk of culture with MGDF+SCF+GM-CSF. MGDF alone was also found to support the short-term (2 d) survival of CD38(-)CD34(2+) high proliferative potential CFCs. The effects of MGDF were more modest on CD38(+)CD34(2+) progenitors with only additive increases in colony formation being observed. These findings suggest that MGDF administration in fetuses and neonates may strongly affect the growth and mobilization of primitive hematopoietic progenitors and that MGDF may find use in the ex vivo growth and expansion of fetal stem cells.

  6. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  7. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  8. Hematopoietic growth factors in drug-induced agranulocytosis.

    PubMed

    Pavithran, K; Thomas, M

    2002-05-01

    Drug-induced agranulocytosis (DIA) is a potentially fatal disorder. Hematopoietic growth factors have been used in the treatment of DIA. We report nine cases of DIA treated with granulocyte macrophage - colony stimulating factor (GM-CSF) in a dose of 300 microg/day. All the patients had evidence of systemic infection. Mean time to reach an absolute neutrophil count of 0.5 x 10(9)/L was three days. One patient succumbed to the disease. The cause of death was multiorgan failure. No adverse events were observed with GM-CSF. We conclude that hematopoietic growth factors are useful in shortening the period of neutropenia and reducing morbidity and mortality in these patients.

  9. Extrinsic Factors Influencing Fetal Deformations and Intrauterine Growth Restriction

    PubMed Central

    Moh, Wendy; Graham, John M.; Wadhawan, Isha; Sanchez-Lara, Pedro A.

    2012-01-01

    The causes of intrauterine growth restriction (IUGR) are multifactorial with both intrinsic and extrinsic influences. While many studies focus on the intrinsic pathological causes, the possible long-term consequences resulting from extrinsic intrauterine physiological constraints merit additional consideration and further investigation. Infants with IUGR can exhibit early symmetric or late asymmetric growth abnormality patterns depending on the fetal stage of development, of which the latter is most common occurring in 70–80% of growth-restricted infants. Deformation is the consequence of extrinsic biomechanical factors interfering with normal growth, functioning, or positioning of the fetus in utero, typically arising during late gestation. Biomechanical forces play a critical role in the normal morphogenesis of most tissues. The magnitude and direction of force impact the form of the developing fetus, with a specific tissue response depending on its pliability and stage of development. Major uterine constraining factors include primigravida, small maternal size, uterine malformation, uterine fibromata, early pelvic engagement of the fetal head, aberrant fetal position, oligohydramnios, and multifetal gestation. Corrective mechanical forces similar to those that gave rise to the deformation to reshape the deformed structures are often used and should take advantage of the rapid postnatal growth to correct form. PMID:22888434

  10. Human epidermal growth factor and the proliferation of human fibroblasts.

    PubMed

    Carpenter, G; Cohen, S

    1976-06-01

    The effect of human epidermal growth factor (hEGF), a 5,400 molecular weight polypeptide isolated from human urine, on the growth of human foreskin fibroblasts (HF cells) was studied by measuring cell numbers and the incorporation of labeled thymidine. The addition of hEGF to HF cells growing in a medium containing 10% calf serum resulted in a 4-fold increase in the final density. The presence of hEGF also promoted the growth of HF cells in media containing either 1% calf serum or 10% gamma globulin-free serum. The addition of hEGF to quiescent confluent monolayers of HF cells, maintained in a medium with 1% calf serum for 48 hours, resulted in a 10- to 20-fold increase in the amount of 3H-thymidine incorporation after 20-24 hours. The stimulation of thymidine incorporation was maximal at an hEGF concentration of 2 ng/ml, was dependent on the presence of serum, and was enhanced by the addition of ascorbic acid. In confluent cultures of HF cells, subject to density dependent inhibition of growth, hEGF was able to stimulate DNA synthesis more effectively than fresh calf serum. Human EGF stimulated DNA synthesis in quiescent cultures, however, regardless of cell density. The addition of rabbit anti-hEGF inhibited all effects of this growth factor on HF cells.

  11. Vascular Endothelial Growth Factor Acts Primarily via Platelet-Derived Growth Factor Receptor α to Promote Proliferative Vitreoretinopathy

    PubMed Central

    Pennock, Steven; Haddock, Luis J.; Mukai, Shizuo; Kazlauskas, Andrius

    2015-01-01

    Proliferative vitreoretinopathy (PVR) is a nonneovascular blinding disease and the leading cause for failure in surgical repair of rhegmatogenous retinal detachments. Once formed, PVR is difficult to treat. Hence, there is an acute interest in developing approaches to prevent PVR. Of the many growth factors and cytokines that accumulate in vitreous as PVR develops, neutralizing vascular endothelial growth factor (VEGF) A has recently been found to prevent PVR in at least one animal model. The goal of this study was to test if Food and Drug Administration–approved agents could protect the eye from PVR in multiple animal models and to further investigate the underlying mechanisms. Neutralizing VEGF with aflibercept (VEGF Trap-Eye) safely and effectively protected rabbits from PVR in multiple models of disease. Furthermore, aflibercept reduced the bioactivity of both experimental and clinical PVR vitreous. Finally, although VEGF could promote some PVR-associated cellular responses via VEGF receptors expressed on the retinal pigment epithelial cells that drive this disease, VEGF's major contribution to vitreal bioactivity occurred via platelet-derived growth factor receptor α. Thus, VEGF promotes PVR by a noncanonical ability to engage platelet-derived growth factor receptor α. These findings indicate that VEGF contributes to nonangiogenic diseases and that anti–VEGF-based therapies may be effective on a wider spectrum of diseases than previously appreciated. PMID:25261788

  12. Nutrition and the insulin-like growth factor system.

    PubMed

    Estívariz, C F; Ziegler, T R

    1997-08-01

    Nutritional status is a key regulator of the circulating and tissue insulin-like growth factor (IGF) system. IGF-I mRNA and protein levels decrease in tissues such as liver and intestine with fasting and are restored with refeeding. Additional studies suggest that the level of protein and calorie intake independently regulate plasma IGF-I concentrations in man. The level of nutrition effects the biological actions of recombinant growth hormone (GH) and IGF-I administration in humans. Limited data demonstrate that plasma and tissue levels of the insulin-like growth factor binding proteins (IGFBPs) are also sensitive to nutrient intake. Specific micronutrients, such as potassium, magnesium and zinc also appear to be important for optimal IGF-I synthesis and anabolic effects in animal models. Malnutrition is common in elderly patients, however, the interaction between specific nutrients, general nutritional status and the aging process on the IGF system is incompletely understood. Mechanisms of nutrient-IGF system interactions which may affect the biological actions of IGF-I, IGF-II, and the IGFBPs are increasingly being determined in basic studies. The effects of underlying nutritional status and responses to dietary intake will be important to evaluate in clinical studies of the IGF system and exogenous growth factor therapy.

  13. Transforming growth factor (TGF)-. alpha. in human milk

    SciTech Connect

    Okada, Masaki; Wakai, Kae; Shizume, Kazuo ); Iwashita, Mitsutoshi ); Ohmura, Eiji; Kamiya, Yoshinobu; Murakami, Hitomi; Onoda, Noritaka; Tsushima, Toshio

    1991-01-01

    Transforming growth factor (TGF)-{alpha} and epidermal growth factor (EGF) were measured in human milk by means of homologous radioimmunoassay. As previously reported, EGF concentration in the colostrum was approximately 200 ng/ml and decreased to 50 ng/ml by day 7 postpartum. The value of immunoreactive (IR)-TGF-{alpha} was 2.2-7.2 ng/ml, much lower than that of EGF. In contrast to EGF, the concentration of IR-TGF-{alpha} was fairly stable during the 7 postpartum days. There was no relationship between the concentrations of IR-TGF-{alpha} and IR-EGF, suggesting that the regulatory mechanism in the release of the two growth factors is different. On gel-chromatography using a Sephadex G-50 column, IR-EGF appeared in the fraction corresponding to that of authentic human EGF, while 70%-80% of the IR-TGF-{alpha} was eluted as a species with a molecular weight greater than that of authentic human TGF-{alpha}. Although the physiological role of TGF-{alpha} in milk is not known, it is possible that it is involved in the development of the mammary gland and/or the growth of newborn infants.

  14. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas.

    PubMed Central

    Hatva, E.; Böhling, T.; Jääskeläinen, J.; Persico, M. G.; Haltia, M.; Alitalo, K.

    1996-01-01

    Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8774132

  15. Therapeutic Targeting of Fibroblast Growth Factor Receptors in Gastric Cancer

    PubMed Central

    Fujimori, Yoshitaka; Otsuki, Sho; Sato, Yuya; Nakagawa, Masatoshi

    2015-01-01

    Chemotherapy has become the global standard treatment for patients with metastatic or unresectable gastric cancer (GC), although outcomes remain unfavorable. Many molecular-targeted therapies inhibiting signaling pathways of various tyrosine kinase receptors have been developed, and monoclonal antibodies targeting human epidermal growth factor receptor 2 (HER2) have become standard therapy for HER2-positive GC. An inhibitor of vascular endothelial growth factor receptor 2 or MET has also produced promising results in patients with GC. Fibroblast growth factor receptors (FGFR) play key roles in tumor growth via activated signaling pathways in GC. Genomic amplification of FGFR2 leads to the aberrant activation found in GC tumors and is related to survival in patients with GC. This review discusses the clinical relevance of FGFR in GC and examines FGFR as a potential therapeutic target in patients with GC. Preclinical studies in animal models suggest that multitargeted tyrosine kinase inhibitors (TKIs), including FGFR inhibitor, suppress tumor cell proliferation and delay tumor progression. Several TKIs are now being evaluated in clinical trials as treatment for metastatic or unresectable GC harboring FGFR2 amplification. PMID:26000013

  16. FGF19 functions as autocrine growth factor for hepatoblastoma

    PubMed Central

    Elzi, David J.; Song, Meihua; Blackman, Barron; Weintraub, Susan T.; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E.; Shiio, Yuzuru

    2016-01-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma. PMID:27382436

  17. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    PubMed

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations. PMID:22108854

  18. Very-high-growth-factor Planar Ablative Rayleigh Taylor Experiments

    SciTech Connect

    Bradley, D K; Braun, D G; Glendinning, S G; Edwards, M J; Milovich, J L; Sorce, C M; Collins, G W; Haan, S W; Page, R H

    2006-10-30

    The Rayleigh-Taylor (RT) instability is an important factor in bounding the performance envelope of ignition targets. This paper describes an experiment for ablative RT instability that for the first time achieves growth factors close to those expected to occur in ignition targets at the National Ignition Facility (NIF). The large growth allows small seed perturbations to be detected and can be used to place an upper bound on perturbation growth at the ablation front resulting from microstructure in the preferred Be ablator. The experiments were performed on the Omega laser using a halfraum 1.2 mm long by 2 mm diameter with a 75% laser entrance hole. The halfraum was filled with {approx} 1 atm of neopentane to delay gold plasma from closing the diagnostic line of sight down the axis of the halfraum. The ablator was mounted at the base of the halfraum, and was accelerated by a two stepped X-ray pulse consisting of an early time section {approx} 100 eV to emulate the NIF foot followed by an approximately constant {approx} 150 eV drive sustained over an additional 5-7ns. It is this long pulse duration and late time observation that distinguishes the present work from previous experiments, and is responsible for the large growth that is achieved. The growth of a 2D sinusoidal perturbation machined on the drive side of the ablator was measured using face-on radiography. The diagnostic view remained open until {approx} 11 ns with maximum growth factors measured to be {approx} 200. The trajectory of the ablator was measured using streaked backlit radiography. The design and analysis of the experiments is described, and implications for experiments on ignition target ablators are discussed.

  19. GH responses to growth hormone releasing factor in depression.

    PubMed

    Thomas, R; Beer, R; Harris, B; John, R; Scanlon, M

    1989-01-01

    The growth hormone (GH), thyrotrophin (TSH) and prolactin response to growth hormone releasing factor (GRF) was investigated in 18 patients suffering from major depression with melancholia and in 18 age- and sex-matched normal controls. There was no significant difference in the GH response to GRF stimulation between the patients and controls and in neither subject group was there a demonstrable TSH or prolactin response to GRF. These findings indicate that the pathophysiology underlying the blunted GH response to pharmacological challenge, demonstrated in other studies, must lie at a suprapituitary level.

  20. Expression of neu protein, epidermal growth factor receptor, and transforming growth factor alpha in breast cancer. Correlation with clinicopathologic parameters.

    PubMed Central

    Lundy, J.; Schuss, A.; Stanick, D.; McCormack, E. S.; Kramer, S.; Sorvillo, J. M.

    1991-01-01

    The major objectives of this study were twofold: to determine 1) if growth factors or growth factor receptors were expressed similarly or differently in a clinically well-characterized group of breast cancer patients and 2) if these phenotypic characteristics were associated with any of the commonly used prognostic parameters. Formalin-fixed paraffin-embedded tumor tissue from 51 node-positive breast cancer patients were analyzed for the expression of neu, epidermal growth factor-receptor (EGF-R), and transforming growth factor alpha (TGF alpha) using immunoperoxidase staining. Positive membranous staining for neu was observed in 15 (29%) tumors. Over-expression of neu was observed in high-grade, estrogen-receptor-negative tumors (P less than 0.05). Epidermal growth factor receptor was expressed in 22 (43%) of the tumors analyzed and found to a greater degree in estrogen-receptor-negative and high-grade tumors (P less than 0.025). A significant correlation between neu and EGF-R expression was also noted. Tumors expressing membranous staining of neu had a greater than 70% chance of expressing EGF-R (P less than 0.01). Expression of TGF alpha was found in 68% of tumors and TGF alpha was detected in grade 1 and 2 tumor to a greater degree than EGF-R. The authors conclude that assaying tumors for these antigens may give additional phenotypic characteristics that can give further insight into the biology of breast cancer. Images Figure 1 Figure 2 Figure 3 PMID:1711294

  1. Divergent effects of epidermal growth factor and transforming growth factors on a human endometrial carcinoma cell line.

    PubMed

    Korc, M; Haussler, C A; Trookman, N S

    1987-09-15

    Epidermal growth factor (EGF), at concentrations ranging from 0.83 to 4.98 nM, markedly inhibited the proliferation of RL95-2 cells that were seeded at low plating densities (4.7 X 10(3) cells/cm2). Under the same incubation conditions, 16.6 pM EGF enhanced cell proliferation. At high plating densities (2.5 X 10(4) cells/cm2) 0.83 nM EGF also stimulated cell proliferation. Both the inhibitory and stimulatory effects of EGF were mimicked by transforming growth factor-alpha (TGF-alpha). However, the inhibitory action of TGF-alpha was always greater that of EGF. Binding studies with 125I-labeled TGF-alpha indicated that maximal cell surface binding of TGF-alpha occurred at 15 min, whereas maximal internalization occurred at 45 min. Both cell surface and internalized radioactivity declined sharply thereafter. Analysis of radioactivity released into the incubation medium during pulse-chase experiments indicated that RL95-2 cells extensively degraded both TGF-alpha and EGF. The lysosomotropic compound methylamine arrested the generation of low-molecular-weight degradation products of EGF, but not of TGF-alpha. In contrast to EGF and TGF-alpha, transforming growth factor-beta (TGF-beta) inhibited the proliferation of RL95-2 cells that were seeded at either low or high plating densities. Further, transforming growth factor-beta induced the appearance of large cuboidal cells that were readily distinguished from cells treated with either EGF or TGF-alpha. These findings point to complex regulatory actions of growth factors on the proliferation of RL95-2 cells and suggest that the processing of TGF-alpha following EGF receptor activation is distinct from the processing of EGF. PMID:3497713

  2. Insulin-like growth factor II mediates epidermal growth factor-induced mitogenesis in cervical cancer cells.

    PubMed Central

    Steller, M A; Delgado, C H; Zou, Z

    1995-01-01

    There is increasing evidence that activation of the insulin-like growth factor I (IGF-I) receptor plays a major role in the control of cellular proliferation of many cell types. We studied the mitogenic effects of IGF-I, IGF-II, and epidermal growth factor (EGF) on growth-arrested HT-3 cells, a human cervical cancer cell line. All three growth factors promoted dose-dependent increases in cell proliferation. In untransformed cells, EGF usually requires stimulation by a "progression" factor such as IGF-I, IGF-II, or insulin (in supraphysiologic concentrations) in order to exert a mitogenic effect. Accordingly, we investigated whether an autocrine pathway involving IGF-I or IGF-II participated in the EGF-induced mitogenesis of HT-3 cells. With the RNase protection assay, IGF-I mRNA was not detected. However, IGF-II mRNA increased in a time-dependent manner following EGF stimulation. The EGF-induced mitogenesis was abrogated in a dose-dependent manner by IGF-binding protein 5 (IGFBP-5), which binds to IGF-II and neutralizes it. An antisense oligonucleotide to IGF-II also inhibited the proliferative response to EGF. In addition, prolonged, but not short-term, stimulation with EGF resulted in autophosphorylation of the IGF-I receptor, and coincubations with both EGF and IGFBP-5 attenuated this effect. These data demonstrate that autocrine secretion of IGF-II in HT-3 cervical cancer cells can participate in EGF-induced mitogenesis and suggest that autocrine signals involving the IGF-I receptor occur "downstream" of competence growth factor receptors such as the EGF receptor. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8618825

  3. Growth factor choice is critical for successful functionalization of nanoparticles

    PubMed Central

    Pinkernelle, Josephine; Raffa, Vittoria; Calatayud, Maria P.; Goya, Gerado F.; Riggio, Cristina; Keilhoff, Gerburg

    2015-01-01

    Nanoparticles (NPs) show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with bio-functional molecules. In our study, we functionalized self-made PEI-coated iron oxide NPs with nerve growth factor (NGF) and glial cell-line derived neurotrophic factor (GDNF). Next, we tested the bio-functionality of NGF in a rat pheochromocytoma cell line (PC12) and the bio-functionality of GDNF in an organotypic spinal cord culture. Covalent binding of NGF to PEI-NPs impaired bio-functionality of NGF, but non-covalent approach differentiated PC12 cells reliably. Non-covalent binding of GDNF showed a satisfying bio-functionality of GDNF:PEI-NPs, but turned out to be unstable in conjugation to the PEI-NPs. Taken together, our study showed the importance of assessing bio-functionality and binding stability of functionalized growth factors using proper biological models. It also shows that successful functionalization of magnetic NPs with growth factors is dependent on the used binding chemistry and that it is hardly predictable. For use as therapeutics, functionalization strategies have to be reproducible and future studies are needed. PMID:26388717

  4. Juvenile nasopharyngeal angiofibroma contain an angiogenic growth factor: basic FGF.

    PubMed

    Schiff, M; Gonzalez, A M; Ong, M; Baird, A

    1992-08-01

    The presence of an angiogenic protein basic fibroblast growth factor (FGF) was established in juvenile nasopharyngeal angiofibroma (JNF). Extracts of these tumors have the capacity to stimulate endothelial cell proliferation. This activity is indistinguishable from basic FGF. The biological activity contained in the extracts binds to heparin-Sepharose columns and is eluted with a characteristic 2 mol sodium chloride. The exact fraction of the biological activity corresponds to the location where an immunoreactive basic FGF can be detected by radioimmunoassay. These same fractions contain an 18,000-d molecule which is identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting with an antibody to basic FGF. Indeed, immunohistochemical studies localize the growth factor to the endothelium of JNF. Although these findings do not establish that basic FGF mediates the development of this angiofibroma, they do support the possibility that the pathogenesis of JNF is associated with the presence of angiogenic factors like basic FGF. If this is the case, a comprehensive study of the etiology of JNF may lead to a better understanding of how locally produced growth factors mediate proliferative disease and how its modification might lead to better treatment on a biological basis.

  5. Key roles of necroptotic factors in promoting tumor growth

    PubMed Central

    Liu, Xinjian; Zhou, Min; Mei, Ling; Ruan, Jiaying; Hu, Qian; Peng, Jing; Su, Hang; Liao, Hong; Liu, Shanling; Liu, WeiPing; Wang, He; Huang, Qian; Li, Fang; Li, Chuan-Yuan

    2016-01-01

    Necroptotic factors are generally assumed to play a positive role in tumor therapy by eliminating damaged tumor cells. Here we show that, contrary to expectation, necroptotic factors RIPK1, RIPK3, and MLKL promote tumor growth. We demonstrate that genetic knockout of necroptotic genes RIPK1, RIPK3, or MLKL in cancer cells significantly attenuated their abilities to grow in an anchorage-independent manner. In addition, they exhibited significantly enhanced radiosensitivity. The knockout cells also showed greatly reduced ability to form tumors in mice. Moreover, necrosulfonamide (NSA), a previously identified chemical inhibitor of necroptosis, could significantly delay tumor growth in a xenograft model. Mechanistically, we show that necroptoic factors play a significant role in maintaining the activity of NF-κB. Finally, we found that high levels of phosphorylated MLKL in human esophageal and colon cancers are associated with poor overall survival. Taken together, we conclude that pro-necroptic factors such as RIPK1, RIPK3, and MLKL may play a role in supporting tumor growth, and MLKL may be a promising target for cancer treatment. PMID:26959742

  6. Impact of epidermal growth factor receptor and transforming growth factor-α on hepatitis C virus-induced hepatocarcinogenesis.

    PubMed

    Badawy, Afkar Abdel-Ghany; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Gabal, Samia; Said, Noha

    2015-10-01

    Epidermal growth factor receptor system plays a central hepato-protective and pro-regenerative role in liver. Transforming growth factor-α (TGF-α) is an important autocrine growth regulator of hepatocytes that plays a role in development of hepatocellular carcinoma (HCC) among patients with chronic hepatitis C (CHC). This study was done on 40 core liver biopsies from patients with CHC, 20 liver specimens from HCC cases on top of CHC as well as five normal controls. All were immunohistochemically stained with epidermal growth factor receptor (EGFR) and TGF-α antibodies. Some selected HCC cases were submitted for FISH technique to detect EGFR gene alteration. By immunohistochemistry EGFR and TGF-α were overexpressed in HCC and cirrhotic cases compared to CHC cases without cirrhosis. Also, their expression was stronger in CHC cases with higher grades of activity and stages of fibrosis compared to lower ones. FISH positive results for EGFR were detected in 33.3% of the examined HCC cases. EGFR and TGF-α can be used as predictive markers for activity, fibrosis, and carcinogenesis in CHC patients. Overexpression of EGFR in HCC patients can be promising in selecting those who can get benefit from anti-EGFR target therapy. PMID:26279457

  7. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    PubMed

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  8. Myoferlin is required for insulin-like growth factor response and muscle growth.

    PubMed

    Demonbreun, Alexis R; Posey, Avery D; Heretis, Konstantina; Swaggart, Kayleigh A; Earley, Judy U; Pytel, Peter; McNally, Elizabeth M

    2010-04-01

    Insulin-like growth factor (IGF) is a potent stimulus of muscle growth. Myoferlin is a membrane-associated protein important for muscle development and regeneration. Myoferlin-null mice have smaller muscles and defective myoblast fusion. To understand the mechanism by which myoferlin loss retards muscle growth, we found that myoferlin-null muscle does not respond to IGF1. In vivo after IGF1 infusion, control muscle increased myofiber diameter by 25%, but myoferlin-null muscle was unresponsive. Myoblasts cultured from myoferlin-null muscle and treated with IGF1 also failed to show the expected increase in fusion to multinucleate myotubes. The IGF1 receptor colocalized with myoferlin at sites of myoblast fusion. The lack of IGF1 responsiveness in myoferlin-null myoblasts was linked directly to IGF1 receptor mistrafficking as well as decreased IGF1 signaling. In myoferlin-null myoblasts, the IGF1 receptor accumulated into large vesicular structures. These vesicles colocalized with a marker of late endosomes/lysosomes, LAMP2, specifying redirection from a recycling to a degradative pathway. Furthermore, ultrastructural analysis showed a marked increase in vacuoles in myoferlin-null muscle. These data demonstrate that IGF1 receptor recycling is required for normal myogenesis and that myoferlin is a critical mediator of postnatal muscle growth mediated by IGF1.-Demonbreun, A. R., Posey, A. D., Heretis, K., Swaggart, K. A., Earley, J. U., Pytel, P., McNally, E. M. Myoferlin is required for insulin-like growth factor response and muscle growth.

  9. Growth Factor Liberation and DPSC Response Following Dentine Conditioning.

    PubMed

    Sadaghiani, L; Gleeson, H B; Youde, S; Waddington, R J; Lynch, C D; Sloan, A J

    2016-10-01

    Liberation of the sequestrated bioactive molecules from dentine by the action of applied dental materials has been proposed as an important mechanism in inducing a dentinogenic response in teeth with viable pulps. Although adhesive restorations and dentine-bonding procedures are routinely practiced, clinical protocols to improve pulp protection and dentine regeneration are not currently driven by biological knowledge. This study investigated the effect of dentine (powder and slice) conditioning by etchants/conditioners relevant to adhesive restorative systems on growth factor solubilization and odontoblast-like cell differentiation of human dental pulp progenitor cells (DPSCs). The agents included ethylenediaminetetraacetic acid (EDTA; 10%, pH 7.2), phosphoric acid (37%, pH <1), citric acid (10%, pH 1.5), and polyacrylic acid (25%, pH 3.9). Growth factors were detected in dentine matrix extracts drawn by EDTA, phosphoric acid, and citric acid from powdered dentine. The dentine matrix extracts were shown to be bioactive, capable of stimulating odontogenic/osteogenic differentiation as observed by gene expression and phenotypic changes in DPSCs cultured in monolayer on plastic. Polyacrylic acid failed to solubilize proteins from powdered dentine and was therefore considered ineffective in triggering a growth factor-mediated response in cells. The study went on to investigate the effect of conditioning dentine slices on growth factor liberation and DPSC behavior. Conditioning by EDTA, phosphoric acid, and citric acid exposed growth factors on dentine and triggered an upregulation in genes associated with mineralized differentiation, osteopontin, and alkaline phosphatase in DPSCs cultured on dentine. The cells demonstrated odontoblast-like appearances with elongated bodies and long extracellular processes extending on dentine surface. However, phosphoric acid-treated dentine appeared strikingly less populated with cells, suggesting a detrimental impact on cell

  10. Fibroblast Growth Factor 23 in Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Bokhari, R.; Zwart, S. R.; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.

    2015-01-01

    Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight.

  11. Nerve Growth Factor: A Focus on Neuroscience and Therapy

    PubMed Central

    Aloe, Luigi; Rocco, Maria Luisa; Omar Balzamino, Bijorn; Micera, Alessandra

    2015-01-01

    Nerve growth factor (NGF) is the firstly discovered and best characterized neurotrophic factor, known to play a critical protective role in the development and survival of sympathetic, sensory and forebrain cholinergic neurons. NGF promotes neuritis outgrowth both in vivo and in vitro and nerve cell recovery after ischemic, surgical or chemical injuries. Recently, the therapeutic property of NGF has been demonstrated on human cutaneous and corneal ulcers, pressure ulcer, glaucoma, maculopathy and retinitis pigmentosa. NGF eye drops administration is well tolerated, with no detectable clinical evidence of systemic or local adverse effects. The aim of this review is to summarize these biological properties and the potential clinical development of NGF. PMID:26411962

  12. Skeletal effects of growth hormone and insulin-like growth factor-I therapy.

    PubMed

    Lindsey, Richard C; Mohan, Subburaman

    2016-09-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis.

  13. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  14. Fibrochondrogenesis of hESCs: growth factor combinations and cocultures.

    PubMed

    Hoben, Gwendolyn M; Willard, Vincent P; Athanasiou, Kyriacos A

    2009-03-01

    The successful differentiation of human embryonic stem cells (hESCs) to fibrochondrocyte-like cells and characterization of these differentiated cells is a critical step toward tissue engineering of musculoskeletal fibrocartilages (e.g., knee meniscus, temporomandibular joint disc, and intervertebral disc). In this study, growth factors and primary cell cocultures were applied to hESC embryoid bodies (EBs) for 3 weeks and evaluated for their effect on the synthesis of critical fibrocartilage matrix components: glycosaminoglycans (GAG) and collagens (types I, II, and VI). Changes in surface markers (CD105, CD44, SSEA, PDGFR alpha) after the differentiation treatments were also analyzed. The study was conducted in three phases: (1) examination of growth factors (TGF-beta 3, BMP-2, BMP-4, BMP-6, PDGF-BB, sonic hedgehog protein); (2) comparison of two cocultures (primary chondrocytes or fibrochondrocytes); and (3) the combination of the most effective growth factor and coculture regimen. TGF-beta 3 with BMP-4 yielded EBs positive for collagens I, II, and VI, with up to 6.7- and 4.8-fold increases in GAG and collagen, respectively. Analysis of cell surface markers showed a significant increase in CD44 with the TGF-beta 3 + BMP-4 treatment compared to the controls. Coculture with fibrochondrocytes resulted in up to a 9.8-fold increase in collagen II production. The combination of the growth factors BMP-4 + TGF-beta 3 with the fibrochondrocyte coculture led to an increase in cell proliferation and GAG production compared to either treatment alone. This study determined two powerful treatments for inducing fibrocartilaginous differentiation of hESCs and provides a foundation for using flow cytometry to purify these differentiated cells. PMID:18454697

  15. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation.

    PubMed

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins ("contractile phenotype"). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins ("proliferative phenotype"). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  16. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation

    PubMed Central

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins (“contractile phenotype”). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins (“proliferative phenotype”). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  17. Synergistic Action of Fibroblast Growth Factor-2 and Transforming Growth Factor-beta1 Enhances Bioprinted Human Neocartilage Formation

    PubMed Central

    Cui, Xiaofeng; Breitenkamp, Kurt; Lotz, Martin; D’Lima, Darryl

    2012-01-01

    Bioprinting as a promising but unexplored approach for cartilage tissue engineering has the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the targeted 3D locations with simultaneous polymerization. This study tested feasibility of using bioprinting for cartilage engineering and examined the influence of cell density, growth and differentiation factors. Human articular chondrocytes were printed at various densities, stimulated transiently with growth factors and subsequently with chondrogenic factors. Samples were cultured for up to 4 weeks to evaluate cell proliferation and viability, mechanical properties, mass swelling ratio, water content, gene expression, ECM production, DNA content, and histology. Bioprinted samples treated with FGF-2/TGF-β1 had the best chondrogenic properties among all groups apparently due to synergistic stimulation of cell proliferation and chondrogenic phenotype. ECM production per chondrocyte in low cell density was much higher than that in high cell seeding density. This finding was also verified by mechanical testing and histology. In conclusion, cell seeding density that is feasible for bioprinting also appears optimal for human neocartilage formation when combined with appropriate growth and differentiation factors. PMID:22508498

  18. Measuring growth hormone and insulin-like growth factor-I in infants: what is normal?

    PubMed

    Hawkes, Colin Patrick; Grimberg, Adda

    2013-12-01

    The role of growth hormone (GH) and insulinlike growth factor-I (IGF-I) change through early childhood. Whereas poor growth is a later presenting feature, infants with isolated GH deficiency have a normal birth weight and length, and often present with hypoglycemia. IGF-I plays an important role antenatally and post-natally in somatic and brain growth. In order to evaluate the GH/IGF-I axis in infancy, an understanding of the normal physiology is required. Measurements of GH and IGF-I in this population should be interpreted in the context of the assays used, as well as their limitations. In this review, we summarize our current understanding of normal GH and IGF-I secretion in children under 18 months of age, and describe variations in the reported assay-specific measurements.

  19. Measuring Growth Hormone and Insulin-like Growth Factor-I in Infants: What is Normal?

    PubMed Central

    Hawkes, Colin Patrick; Grimberg, Adda

    2014-01-01

    The role of growth hormone (GH) and insulin-like growth factor-I (IGF-I) change through early childhood. Whereas poor growth is a later presenting feature, infants with isolated GH deficiency have a normal birth weight and length, and often present with hypoglycemia. IGF-I plays an important role antenatally and post-natally in somatic and brain growth. In order to evaluate the GH/IGF-I axis in infancy, an understanding of the normal physiology is required. Measurements of GH and IGF-I in this population should be interpreted in the context of the assays used, as well as their limitations. In this review, we summarize our current understanding of normal GH and IGF-I secretion in children under 18 months of age, and describe variations in the reported assay-specific measurements. PMID:24575549

  20. Epidermal growth factor receptor inhibitor therapy for recurrent respiratory papillomatosis

    PubMed Central

    Sidman, James D.

    2013-01-01

    The epidermal growth factor pathway has been implicated in various tumors, including human papillomavirus (HPV) lesions such as recurrent respiratory papillomatosis (RRP). Due to the presence of epidermal growth factor receptors in RRP, epidermal growth factor receptor (EGFR) inhibitors have been utilized as adjuvant therapy. This case series examines the response to EGFR inhibitors in RRP. Four patients with life-threatening RRP were treated with EGFR inhibitors. Operative frequency and anatomical Derkay scores were calculated prior to, and following EGFR inhibitor treatment via retrospective chart review. The anatomical Derkay score decreased for all four patients after initiation of EGFR inhibitor therapy. In one patient, the operative frequency increased after switching to an intravenous inhibitor after loss of control with an oral inhibitor. In the other patients there was a greater than 20% decrease in operative frequency in one and a more than doubling in the time between procedures in two.  This study suggests that EGFR inhibitors are a potential adjuvant therapy in RRP and deserve further study in a larger number of patients. PMID:24795806

  1. In vivo cartilage formation from growth factor modulated articular chondrocytes.

    PubMed

    Bradham, D M; Horton, W E

    1998-07-01

    Recent procedures for autologous repair of cartilage defects may be difficult in elderly patients because of the loss of stem cells and chondrocytes that occurs with age and the slow in vitro proliferation of chondrocytes from aged cartilage. In this study secondary chondroprogenitor cells were obtained by modulating the phenotype of articular chondrocytes with growth factors and stimulating the proliferation of these cells in culture. Chondrocytes isolated from the articular cartilage of mature New Zealand White rabbits were exposed to a combination of transforming growth factor beta and basic fibroblast growth factor treatment. These cells ceased the production of Collagen II (a marker for the chondrocyte phenotype) and underwent a 136-fold increase in cell number. Next, the cells were placed in high density culture and reexpressed the chondrocyte phenotype in vitro and formed hyaline cartilage in an in vivo assay. Primary chondrocytes obtained from articular cartilage of elderly humans could be manipulated in a similar fashion in vitro. These human secondary chondroprogenitor cells formed only cartilage tissue when assayed in vivo and in tissue bioreactors. This approach may be essential for autologous repair of degenerated articular cartilage in elderly patients with osteoarthritis.

  2. Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer

    PubMed Central

    O'Byrne, K J; Koukourakis, M I; Giatromanolaki, A; Cox, G; Turley, H; Steward, W P; Gatter, K; Harris, A L

    2000-01-01

    High microvessel density, an indirect measure of angiogenesis, has been shown to correlate with increased tumour size, lymph node involvement and poor prognosis in non-small-cell lung cancer (NSCLC). Tumour cell vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PD-ECGF) expression correlate with angiogenesis and a poor outcome in this disease. In a retrospective study VEGF and PD-ECGF expression and microvessel density were evaluated immunohistochemically in surgically resected specimens (T1–3, N0–2) from 223 patients with operable NSCLC using the VG1, P-GF.44C and JC70 monoclonal antibodies respectively. High VEGF immunoreactivity was seen in 104 (46.6%) and PD-ECGF in 72 (32.3%) cases and both were associated with high vascular grade tumours (P = 0.009 and P = 0.05 respectively). Linear regression analysis revealed a weak positive correlation between VEGF and PD-ECGF expression in cancer cells (r = 0.21;P = 0.002). Co-expression of VEGF and PD-ECGF was not associated with a higher microvessel density than VEGF or PD-ECGF only expressing tumours. Furthermore a proportion of high vascular grade tumours expressed neither growth factor. Univariate analysis revealed tumour size, nodal status, microvessel density and VEGF and PD-ECGF expression as significant prognostic factors. Tumour size (P< 0.02) and microvessel density (P< 0.04) remained significant on multivariate analysis. In conclusion, VEGF and PD-ECGF are important angiogenic growth factors and have prognostic significance in NSCLC. Furthermore the study underlines the prognostic significance of microvessel density in operable NSCLC. © 2000 Cancer Research Campaign PMID:10780522

  3. Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue.

    PubMed

    Sciore, P; Boykiw, R; Hart, D A

    1998-07-01

    Growth factors and their receptors play an essential role in the development, maturation, and response to injury of all tissues. A number of studies have explored the possibility of improving ligament healing with exogenous growth factors. However, limited data is available regarding the endogenous growth factor network in ligaments on which any exogenous growth factors must impact. The purpose of this study was to assess the endogenous growth factor network with molecular techniques. By the sensitive reverse transcription-polymerase chain reaction technique, transcripts for a number of growth factors and receptors were detected with RNA isolated from normal and healing rabbit medial collateral ligament tissues. These include transforming growth factor-beta1, insulin-like growth factors I and II, basic fibroblast growth factor, endothelin-1, and the receptors for insulin and insulin-like growth factor II. Semiquantitative reverse transcription-polymerase chain reaction analysis of RNA from normal and scar tissues from the medial collateral ligament revealed that the levels of several transcripts were elevated in the scar tissue. It was not possible to confirm biological activity because of the hypocellularity of the tissues; however, the results obtained indicate that the reverse transcription-polymerase chain reaction approach to defining the endogenous growth factor-receptor phenotype is feasible, and further definition should contribute to the development of rational approaches to exogenous therapy to improve healing.

  4. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system.

    PubMed

    Fuentes, Eduardo N; Valdés, Juan Antonio; Molina, Alfredo; Björnsson, Björn Thrandur

    2013-10-01

    The growth hormone (GH)-insulin-like growth factor (IGF) system is the key promoter of growth in vertebrates; however, how this system modulates muscle mass in fish is just recently becoming elucidated. In fish, the GH induces muscle growth by modulating the expression of several genes belonging to the myostatin (MSTN), atrophy, GH, and IGF systems as well as myogenic regulatory factors (MRFs). The GH controls the expression of igf1 via Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 5 (STAT5) signaling pathway, but it seems that it is not the major regulator. These mild effects of the GH on igf1 expression in fish muscle seem to be related with the presence of higher contents of truncated GH receptor1 (tGHR1) than full length GHR (flGHR1). IGFs in fish stimulate myogenic cell proliferation, differentiation, and protein synthesis through the MAPK/ERK and PI3K/AKT/TOR signaling pathways, concomitant with abolishing protein degradation and atrophy via the PI3K/AKT/FOXO signaling pathway. Besides these signaling pathways control the expression of several genes belonging to the atrophy and IGF systems. Particularly, IGFs and amino acid control the expression of igf1, thus, suggesting other of alternative signaling pathways regulating the transcription of this growth factor. The possible role of IGF binding proteins (IGFBPs) and the contribution of muscle-derived versus hepatic-produced IGF1 on fish muscle growth is also addressed. Thus, a comprehensive overview on the GH-IGF system regulating fish skeletal muscle growth is presented, as well as perspectives for future research in this field.

  5. Roles of insulinlike growth factor 1 (IGF-1) and the IGF-1 receptor in epidermal growth factor-stimulated growth of 3T3 cells.

    PubMed Central

    Pietrzkowski, Z; Sell, C; Lammers, R; Ullrich, A; Baserga, R

    1992-01-01

    BALB/c3T3 cells are exquisitely growth regulated and require platelet-derived growth factor, epidermal growth factor (EGF), and insulinlike growth factor 1 (IGF-1) for growth. When BALB/c3T3 cells are transfected with plasmids constitutively expressing both EGF and the human IGF-1 receptor mRNAs, the cells are capable of growing in serum-free medium without the addition of any exogenous growth factor. These cells, called p5 cells, can grow for prolonged periods in serum-free medium. BALB/c3T3 cells transfected with only the IGF-1 receptor expression plasmid (p6 cells) do not grow in serum-free medium but do grow if IGF-1 (or insulin in supraphysiological concentrations) is added. p6 cells also grow in response to EGF, confirming that the combination of EGF and an overexpressed IGF-1 receptor is sufficient for the growth of 3T3 cells. We have found that in EGF-stimulated p6 cells there is an increase in the expression of IGF-1 mRNA, that IGF-1 is secreted into the medium, and that the growth of p5 cells and EGF-stimulated p6 cells is inhibited by exposure to antisense oligodeoxynucleotides to IGF-1 receptor RNA. Finally, while cells constitutively expressing both EGF and EGF receptor RNAs grow, albeit modestly, in serum-free medium, their growth is also inhibited by an antisense oligodeoxynucleotide to IGF-1 receptor RNA. In contrast, in cells overexpressing the IGF-1 receptor, IGF-1-mediated cell growth occurs independently of the platelet-derived growth factor and EGF receptors (Z. Pietrzkowski, R. Lammers, G. Carpenter, A. M. Soderquist, M. Limardo, P. D. Phillips, A. Ullrich, and R. Baserga, Cell Growth Differ. 3:199-205, 1992, and this paper). These data indicate that an important role for EGF is participation in the activation of an autocrine loop based on the IGF-1-IGF-1 receptor interaction, which is obligatory for the proliferation of 3T3 cells. Images PMID:1324408

  6. Processing, secretion, and biological properties of a novel growth factor of the fibroblast growth factor family with oncogenic potential.

    PubMed Central

    Delli-Bovi, P; Curatola, A M; Newman, K M; Sato, Y; Moscatelli, D; Hewick, R M; Rifkin, D B; Basilico, C

    1988-01-01

    We recently reported that the protein encoded in a novel human oncogene isolated from Kaposi sarcoma DNA was a growth factor with significant homology to basic and acidic fibroblast growth factors (FGFs). To study the properties of this growth factor (referred to as K-FGF) and the mechanism by which the K-fgf oncogene transforms cells, we have studied the production and processing of K-FGF in COS-1 cells transfected with a plasmid encoding the K-fgf cDNA. The results show that, unlike basic and acidic FGFs, the K-FGF protein is cleaved after a signal peptide, glycosylated, and efficiently secreted as a mature protein of 176 or 175 amino acids. Inhibition of glycosylation impaired secretion, and the stability of the secreted K-FGF was greatly enhanced by the presence of heparin in the cultured medium. We have used the conditioned medium from transfected COS-1 cells to test K-FGF biological activity. Similar to basic FGF, the K-FGF protein was mitogenic for fibroblasts and endothelial cells and induced the growth of NIH 3T3 mouse cells in serum-free medium. Accordingly, K-fgf-transformed NIH 3T3 cells grew in serum-free medium, consistent with an autocrine mechanism of growth. We have also expressed the protein encoded in the K-fgf protooncogene in COS-1 cells, and it was indistinguishable in its molecular weight, glycosylation, secretion, and biological activity from K-FGF. Taken together, these results suggest that the mechanism of activation of this oncogene is due to overexpression rather than to mutations in the coding sequences. Images PMID:3043199

  7. Maternal parity, fetal and childhood growth, and cardiometabolic risk factors.

    PubMed

    Gaillard, Romy; Rurangirwa, Akashi A; Williams, Michelle A; Hofman, Albert; Mackenbach, Johan P; Franco, Oscar H; Steegers, Eric A P; Jaddoe, Vincent W V

    2014-08-01

    We examined the associations of maternal parity with fetal and childhood growth characteristics and childhood cardiometabolic risk factors in a population-based prospective cohort study among 9031 mothers and their children. Fetal and childhood growth were repeatedly measured. We measured childhood anthropometrics, body fat distribution, left ventricular mass, blood pressure, blood lipids, and insulin levels at the age of 6 years. Compared with nulliparous mothers, multiparous mothers had children with higher third trimester fetal head circumference, length and weight growth, and lower risks of preterm birth and small-size-for-gestational-age at birth but a higher risk of large-size-for-gestational-age at birth (P<0.05). Children from multiparous mothers had lower rates of accelerated infant growth and lower levels of childhood body mass index, total fat mass percentage, and total and low-density lipoprotein cholesterol than children of nulliparous mothers (P<0.05). They also had a lower risk of childhood overweight (odds ratio, 0.75 [95% confidence interval, 0.63–0.88]). The risk of childhood clustering of cardiometabolic risk factors was not statistically significantly different (odds ratio, 0.82; 95% confidence interval, 0.64–1.05). Among children from multiparous mothers only, we observed consistent trends toward a lower risk of childhood overweight and lower cholesterol levels with increasing parity (P<0.05). In conclusion, offspring from nulliparous mothers have lower fetal but higher infant growth rates and higher risks of childhood overweight and adverse metabolic profile. Maternal nulliparity may have persistent cardiometabolic consequences for the offspring. PMID:24866145

  8. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-10-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells.

  9. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  10. Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system.

    PubMed

    Khan, Amir S; Sane, David C; Wannenburg, Thomas; Sonntag, William E

    2002-04-01

    There is a large body of evidence that biological aging is related to a series of long-term catabolic processes resulting in decreased function and structural integrity of several physiological systems, among which is the cardiovascular system. These changes in the aging phenotype are correlated with a decline in the amplitude of pulsatile growth hormone secretion and the resulting decrease in plasma levels of its anabolic mediator, insulin like growth factor-1 (IGF-1). The relationship between growth hormone and biological aging is supported by studies demonstrating that growth hormone administration to old animals and humans raises plasma IGF-1 and results in increases in skeletal muscle and lean body mass, a decrease in adiposity, increased immune function, improvements in learning and memory, and increases in cardiovascular function. Since growth hormone and IGF-1 exert potent effects on the heart and vasculature, the relationship between age-related changes in cardiovascular function and the decline in growth hormone levels with age have become of interest. Among the age-related changes in the cardiovascular system are decreases in myocyte number, accumulation of fibrosis and collagen, decreases in stress-induced cardiac function through deterioration of the myocardial conduction system and beta-adrenergic receptor function, decreases in exercise capacity, vessel rarefaction, decreased arterial compliance and endothelial dysfunction leading to alterations in blood flow. Growth hormone has been found to exert potent effects on cardiovascular function in young animals and reverses many of the deficits in cardiovascular function in aged animals and humans. Nevertheless, it has been difficult to separate the effects of growth hormone deficiency from age-related diseases and associated pathologies. The development of novel animal models and additional research are required in order to elucidate the specific effects of growth hormone deficiency and assess its

  11. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  12. Role of membrane-anchored heparin-binding epidermal growth factor-like growth factor and CD9 on macrophages.

    PubMed Central

    Ouchi, N; Kihara, S; Yamashita, S; Higashiyama, S; Nakagawa, T; Shimomura, I; Funahashi, T; Kameda-Takemura, K; Kawata, S; Taniguchi, N; Matsuzawa, Y

    1997-01-01

    Heparin-binding epidermal-growth-factor-like growth factor (HB-EGF) is a potent mitogen for smooth-muscle cells (SMCs) belonging to the EGF family. We have previously determined that HB-EGF is expressed in macrophages and SMCs of human atherosclerotic lesions and that its membrane-anchored precursor, proHB-EGF, also has a juxtacrine mitogenic activity which is markedly enhanced by CD9, a surface marker of lymphohaemopoietic cells. Therefore, when both proHB-EGF and CD9 are expressed on macrophages, they may strongly promote the development of atherosclerosis. In the present study we have investigated the changes in proHB-EGF and CD9 in THP-1 cells during differentiation into macrophages and by the addition of oxidized low-density lipoproteins (OxLDL) and assessed juxtacrine growth activity of THP-1 macrophages for human aortic SMCs. HB-EGF and CD9 at both the mRNA and the protein level were up-regulated after differentiation into macrophages, and further expression of HB-EGF was induced by the addition of OxLDL or lysophosphatidylcholine. Juxtacrine induction by formalin-fixed growth was suppressed to control levels by an inhibitor of HB-EGF and was partially decreased by anti-CD9 antibodies. These results suggest that co-expression of proHB-EGF and CD9 on macrophages plays an important role in the development of atherosclerosis by a juxtacrine mechanism. PMID:9396739

  13. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo.

    PubMed

    Hoe Kim, Jeong; Tsukaya, Hirokazu

    2015-10-01

    Transcription factors are key regulators of gene expression and play pivotal roles in all aspects of living organisms. Therefore, identification and functional characterization of transcription factors is a prerequisite step toward understanding life. This article reviews molecular and biological functions of the two transcription regulator families, GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF), which have only recently been recognized. A myriad of experimental evidence clearly illustrates that GRF and GIF are bona fide partner proteins and form a plant-specific transcriptional complex. One of the most conspicuous outcomes from this research field is that the GRF-GIF duo endows the primordial cells of vegetative and reproductive organs with a meristematic specification state, guaranteeing the supply of cells for organogenesis and successful reproduction. It has recently been shown that GIF1 proteins, also known as ANGUSTIFOLIA3, recruit chromatin remodelling complexes to target genes, and that AtGRF expression is directly activated by the floral identity factors, APETALA1 and SEPALLATA3, providing an important insight into understanding of the action of GRF-GIF. Moreover, GRF genes are extensively subjected to post-transcriptional control by microRNA396, revealing the presence of a complex regulatory circuit in regulation of plant growth and development by the GRF-GIF duo.

  14. Growth and differentiation in cultured human thyroid cells: effects of epidermal growth factor and thyrotropin.

    PubMed

    Errick, J E; Ing, K W; Eggo, M C; Burrow, G N

    1986-01-01

    Human thyroid cells were grown and subcultured in vitro to examine their responses to known hormones and growth factors, and to serum. The cells were obtained from surgical specimens and were either neoplastic or nonneoplastic. The effects of culture conditions on cell growth were measured by changes in cell numbers and by stimulation of [3H]thymidine incorporation. The results showed that serum (0.5%) was essential for cell proliferation, and that a mixture of insulin (10 micrograms/ml), transferrin (5 micrograms/ml), hydrocortisone (10 micrograms/ml), somatostatin (10 ng/ml), and glycyl-histidyl-lysine (10 ng/ml) enhanced the effect of serum. Maximum growth of the cells was obtained when epidermal growth factor was present at 10(-9) M. Differentiation was measured by production of thyroglobulin, which was found to be stimulated by thyrotropin. This system provides a means to study the hormonal control of growth and differentiation in human thyroid cells. PMID:3511027

  15. Astrocyte growth is regulated by neuropeptides through Tis 8 and basic fibroblast growth factor.

    PubMed Central

    Hu, R M; Levin, E R

    1994-01-01

    The important intracellular mechanisms of astrocyte growth are not well defined. Using an inhibitor of astrocyte proliferation, atrial natriuretic peptide (ANP), and the glial mitogen endothelin (ET-3), we sought a common pathway for growth regulation in these neural cells. In cultured fetal rat diencephalic astrocytes, ANP selectively and rapidly inhibited the Tis 8 immediate early gene and protein. After 4 h, ANP selectively inhibited the basic fibroblast growth factor (bFGF) gene and protein. ET-3 significantly stimulated both Tis 8 and bFGF mRNAs and protein, but also stimulated several other immediate early and growth factor/receptor genes. An antisense oligonucleotide to Tis 8 strongly prevented ET-stimulated thymidine incorporation, while the inhibitory action of ANP was enhanced. The Tis 8 antisense oligonucleotide also significantly reversed ET-stimulated bFGF transcription and enhanced the bFGF inhibition caused by ANP. In addition, an antisense oligonucleotide to bFGF significantly reversed the ET-stimulated thymidine incorporation and enhanced the ANP inhibition of DNA synthesis. The sequential modulation of Tis 8, followed by bFGF, provides a novel mechanism for both positive and negative regulation of astrocyte growth by endogenous neuropeptides. Images PMID:8163680

  16. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  17. Vascular Endothelial Growth Factor A Regulates the Secretion of Different Angiogenic Factors in Lung Cancer Cells.

    PubMed

    Frezzetti, Daniela; Gallo, Marianna; Roma, Cristin; D'Alessio, Amelia; Maiello, Monica R; Bevilacqua, Simona; Normanno, Nicola; De Luca, Antonella

    2016-07-01

    Vascular endothelial growth factor A (VEGFA) is one of the main mediators of angiogenesis in non-small cell lung cancer (NSCLC). Recently, it has been described an autocrine feed-forward loop in NSCLC cells in which tumor-derived VEGFA promoted the secretion of VEGFA itself, amplifying the proangiogenic signal. In order to investigate the role of VEGFA in lung cancer progression, we assessed the effects of recombinant VEGFA on proliferation, migration, and secretion of other angiogenic factors in A549, H1975, and HCC827 NSCLC cell lines. We found that VEGFA did not affect NSCLC cell proliferation and migration. On the other hand, we demonstrated that VEGFA not only produced a strong and persistent increase of VEGFA itself but also significantly induced the secretion of a variety of angiogenic factors, including follistatin (FST), hepatocyte growth factor (HGF), angiopoietin-2 (ANGPT2), granulocyte-colony stimulating factor (G-CSF), interleukin (IL)-8, leptin (LEP), platelet/endothelial cell adhesion molecule 1 (PECAM-1), and platelet-derived growth factor bb (PDGF-BB). PI3K/AKT, RAS/ERK, and STAT3 signalling pathways were found to mediate the effects of VEGFA in NSCLC cell lines. We also observed that VEGFA regulation mainly occurred at post-transcriptional level and that NSCLC cells expressed different isoforms of VEGFA. Collectively, our data suggested that VEGFA contributes to lung cancer progression by inducing a network of angiogenic factors, which might offer potential for therapeutic intervention. PMID:26542886

  18. Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury.

    PubMed

    De Laporte, Laura; des Rieux, Anne; Tuinstra, Hannah M; Zelivyanskaya, Marina L; De Clerck, Nora M; Postnov, Andrei A; Préat, Véronique; Shea, Lonnie D

    2011-09-01

    The host response to spinal cord injury can lead to an ischemic environment that can induce cell death and limits cell transplantation approaches to promote spinal cord regeneration. Spinal cord bridges that provide a localized and sustained release of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) were investigated for their ability to promote angiogenesis and nerve growth within the injury. Bridges were fabricated by fusion of poly(lactide-co-glycolide) microspheres using a gas foaming/particulate leaching technique, and proteins were incorporated by encapsulation into the microspheres and/or mixing with the microspheres before foaming. Compared to the mixing method, encapsulation reduced the losses during leaching and had a slower protein release, while VEGF was released more rapidly than FGF-2. In vivo implantation of bridges loaded with VEGF enhanced the levels of VEGF within the injury at 1 week, and bridges releasing VEGF and FGF-2 increased the infiltration of endothelial cells and the formation of blood vessel at 6 weeks postimplantation. Additionally, substantial neurofilament staining was observed within the bridge; however, no significant difference was observed between bridges with or without protein. Bridges releasing angiogenic factors may provide an approach to overcome an ischemic environment that limits regeneration and cell transplantation-based approaches.

  19. [Metabolic and hemodynamic effects of the growth hormone system - insulin-like growth factor].

    PubMed

    Manhylova, T A; Gafarova, N H

    2015-01-01

    Significant congenital deficiency of growth factor (GF) results in pituitary nanism (dwarfism) and its substantial excess is accompanied by the development of gigantism or acromegaly. Its impact on the growth of the whole body or its individual parts is impossible without affecting metabolic processes and hemodynamic parameters. A number of investigations have proven that GF has a direct lipolytic effect: adequate replacement therapy for pituitary nanism gives rise to a reduction in fat depots. Since the concentration of GF is lower in obesity, Whether it may be used to treat this abnormality is considered. PMID:27035002

  20. Transcription factor LSF (TFCP2) inhibits melanoma growth

    PubMed Central

    Goto, Yuji; Yajima, Ichiro; Kumasaka, Mayuko; Ohgami, Nobutaka; Tanaka, Asami; Tsuzuki, Toyonori; Inoue, Yuji; Fukushima, Satoshi; Ihn, Hironobu; Kyoya, Mikiko; Ohashi, Hiroyuki; Kawakami, Tamihiro; Bennett, Dorothy C.; Kato, Masashi

    2016-01-01

    Late SV40 factor 3 (LSF), a transcription factor, contributes to human hepatocellular carcinoma (HCC). However, decreased expression level of LSF in skin melanoma compared to that in benign melanocytic tumors and nevi in mice and humans was found in this study. Anchorage-dependent and -independent growth of melanoma cells was suppressed by LSF overexpression through an increased percentage of G1 phase cells and an increased p21CIP1 expression level in vitro and in vivo. Anchorage-dependent growth in LSF-overexpressed melanoma cells was promoted by depletion of LSF in the LSF-overexpressed cells. Integrated results of our EMSA and chromatin immunoprecipitation assays showed binding of LSF within a 150-bp upstream region of the transcription start site of p21CIP1 in melanoma cells. Taken together, our results suggest potential roles of LSF as a growth regulator through control of the transcription of p21CIP1 in melanocytes and melanoma cells as well as a biomarker for nevus. PMID:26506241

  1. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  2. Extracellular vimentin interacts with insulin-like growth factor 1 receptor to promote axonal growth.

    PubMed

    Shigyo, Michiko; Kuboyama, Tomoharu; Sawai, Yusuke; Tada-Umezaki, Masahito; Tohda, Chihiro

    2015-01-01

    Vimentin, an intermediate filament protein, is generally recognised as an intracellular protein. Previously, we reported that vimentin was secreted from astrocytes and promoted axonal growth. The effect of extracellular vimentin in neurons was a new finding, but its signalling pathway was unknown. In this study, we aimed to determine the signalling mechanism of extracellular vimentin that facilitates axonal growth. We first identified insulin-like growth factor 1 receptor (IGF1R) as a receptor that is highly phosphorylated by vimentin stimulation. IGF1R blockades diminished vimentin- or IGF1-induced axonal growth in cultured cortical neurons. IGF1, IGF2 and insulin were not detected in the neuron culture medium after vimentin treatment. The combined drug affinity responsive target stability method and western blotting analysis showed that vimentin and IGF1 interacted with IGF1R directly. In addition, immunoprecipitation and western blotting analyses confirmed that recombinant IGF1R bound to vimentin. The results of a molecular dynamics simulation revealed that C-terminal residues (residue number 330-407) in vimentin are the most appropriate binding sites with IGF1R. Thus, extracellular vimentin may be a novel ligand of IGF1R that promotes axonal growth in a similar manner to IGF1. Our results provide novel findings regarding the role of extracellular vimentin and IGF1R in axonal growth. PMID:26170015

  3. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems. PMID:12009194

  4. Growth-hormone-releasing factor immunoreactivity in human endocrine tumors.

    PubMed Central

    Bostwick, D. G.; Quan, R.; Hoffman, A. R.; Webber, R. J.; Chang, J. K.; Bensch, K. G.

    1984-01-01

    Seventy-three human tumors and adjacent nonneoplastic tissues were analyzed immunohistochemically for the presence of growth-hormone-releasing factor (GRF). Four of 9 pancreatic endocrine tumors, 2 of 3 appendiceal carcinoids, and 1 of 5 cecal carcinoids were immunoreactive for GRF. One of the GRF-containing pancreatic tumors was associated with acromegaly. Histologically, the growth patterns of these tumors were variable, and the distribution of immunoreactive cells was patchy and irregular. There were no normal cells that contained GRF. These results indicate that GRF production by human tumors is more common than previously thought, although clinical acromegaly may not be apparent in patients who harbor such neoplasms. Images Figure 1 PMID:6093542

  5. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems.

  6. Nerve growth factor regulates gene expression by several distinct mechanisms

    SciTech Connect

    Cho, K.O.; Skarnes, W.C. ); Minsk, B.; Palmier, S. ); Jackson-Grusby, L.; Wagner, J.A. . Dept. of Biological Chemistry)

    1989-01-01

    To help elucidate the mechanisms by which nerve growth factor (NGF) regulates gene expression, the authors have identified and studied four genes (a-2, d-2, d-4, and d-5) that are positively regulated by NGF in PC12 cells, including one (d-2) which has previously been identified as a putative transcription factor (NGF I-A). Three of these genes, including d-2, were induced very rapidly at the transcriptional level, but the relative time courses of transcription and mRNA accumulation of each of these three genes were distinct. The fourth gene (d-4) displayed no apparent increase in transcription that corresponded to the increase in its mRNA, suggesting that NGF may regulate its expression at a posttranscriptional level. Thus NGF positively regulates gene expression by more than one mechanism. The study of the regulation of the expression of these and other NGF-inducible genes should provide valuable new information concerning how NGF and other growth factors cause neural differentiation.

  7. Fibroblast growth factor 15 deficiency impairs liver regeneration in mice.

    PubMed

    Kong, Bo; Huang, Jiansheng; Zhu, Yan; Li, Guodong; Williams, Jessica; Shen, Steven; Aleksunes, Lauren M; Richardson, Jason R; Apte, Udayan; Rudnick, David A; Guo, Grace L

    2014-05-15

    Fibroblast growth factor (FGF) 15 (human homolog, FGF19) is an endocrine FGF highly expressed in the small intestine of mice. Emerging evidence suggests that FGF15 is critical for regulating hepatic functions; however, the role of FGF15 in liver regeneration is unclear. This study assessed whether liver regeneration is altered in FGF15 knockout (KO) mice following 2/3 partial hepatectomy (PHx). The results showed that FGF15 KO mice had marked mortality, with the survival rate influenced by genetic background. Compared with wild-type mice, the KO mice displayed extensive liver necrosis and marked elevation of serum bile acids and bilirubin. Furthermore, hepatocyte proliferation was reduced in the KO mice because of impaired cell cycle progression. After PHx, the KO mice had weaker activation of signaling pathways that are important for liver regeneration, including signal transducer and activator of transcription 3, nuclear factor-κB, and mitogen-activated protein kinase. Examination of the KO mice at early time points after PHx revealed a reduced and/or delayed induction of immediate-early response genes, including growth-control transcription factors that are critical for liver regeneration. In conclusion, the results suggest that FGF15 deficiency severely impairs liver regeneration in mice after PHx. The underlying mechanism is likely the result of disrupted bile acid homeostasis and impaired priming of hepatocyte proliferation.

  8. Growth properties and growth factor responsiveness in skin fibroblasts from centenarians.

    PubMed

    Tesco, G; Vergelli, M; Grassilli, E; Salomoni, P; Bellesia, E; Sikora, E; Radziszewska, E; Barbieri, D; Latorraca, S; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Franceschi, C; Sorbi, S

    1998-03-27

    Human fibroblast cultures, which have a finite replicative lifespan in vitro, are the most widely used model for the study of senescence at the cellular level. An inverse relationship between replicative capability and donor age has been reported in human fibroblast strains. We studied the growth capacity of fibroblast primary cultures derived from people whose lifespan was as closer as possible to the expected maximum human lifespan, i.e. people over one hundred. Our data suggest that outgrowth of fibroblasts from biopsies, growth kinetics at different population doubling levels, capability to respond to a classical mitogenic stimulus (such as 20% serum) and a variety of growth factors, were remarkably similar in fibroblasts from centenarians and young controls. On the whole, our data challenge the tenet of a simple and strict relationship between in vivo aging and in vitro proliferative capability of human fibroblasts, at least at the individual level. PMID:9535767

  9. Effects of Hypergravity Rearing on Growth Hormone and Insulin-Like Growth Factor in Rat Pups

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.

    2003-01-01

    Body weights of rat pups reared during exposure to hypergravity (hg) are significantly reduced relative to 1 g controls. In the present study, we examined in hg-reared rat pups two major contributors to growth and development, namely growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Beginning on Gestational day (G)11 of the rats 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g or 2.0-g. On Postnatal day (P)l0, plasma GH and IGF-1 were analyzed using radioimmunoassay (RIA). Both hormones were significantly elevated in hg pups relative to 1-g control pups. Together, these findings suggest that GH and IGF-1 are not primary determinants of reduced body weights observed in hg-reared pups. The significant elevations in pup GH and IGF-1 may be related to increased physical stimulation in hypergravity.

  10. Environmental estrogens inhibit growth of rainbow trout (Oncorhynchus mykiss) by modulating the growth hormone-insulin-like growth factor system.

    PubMed

    Hanson, Andrea M; Kittilson, Jeffrey D; Martin, Lincoln E; Sheridan, Mark A

    2014-01-15

    Although environmental estrogens (EE) have been found to disrupt a wide variety of developmental and reproductive processes in vertebrates, there is a paucity of information concerning their effects on organismal growth, particularly postembryonic growth. In this study, we exposed juvenile rainbow trout (Oncorhynchus mykiss) to 17β-estradiol (E2) β-sitosterol (βS), or 4-n-nonylphenol (NP) to assess the effects of EE on overall organismal growth and on the growth hormone-insulin-like-growth factor (GH-IGF) system. EE treatment significantly reduced food conversion, body condition, and body growth. EE-inhibited growth resulted from alterations in peripheral elements of the GH-IGF system, which includes multiple GH receptors (GHRs), IGFs, and IGF receptors (IGFRs). In general, E2, βS, and NP reduced the expression of GHRs, IGFs, and IGFRs; however, the effects varied in an EE-, tissue-, element type-specific manner. For example, in liver, E2 was more efficacious than either βS, and NP in reducing GHR expression, and the effect of E2 was greater on GHR 1 than GHR2 mRNA. By contrast, in gill, all EEs affected GHR expression in a similar manner and there was no difference in the effect on GHR1 and GHR 2 mRNA. With regard to IGF expression, all EEs reduced hepatic IGF1 and IGF2 mRNA levels, whereas as in gill, only E2 and NP significantly reduced IGF1 and IGF2 expression. Lastly, E2 and NP reduced the expression of IGFR1A and IGFR1B mRNA expression similarly in gill and red and white muscle, whereas βS had no effect on expression of IGFR mRNAs. These findings indicate that EEs disrupt post-embryonic growth by reducing GH sensitivity, IGF production, and IGF sensitivity.

  11. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta.

    PubMed Central

    Coffey, R J; Bascom, C C; Sipes, N J; Graves-Deal, R; Weissman, B E; Moses, H L

    1988-01-01

    Transforming growth factor beta (TGF beta) is a potent inhibitor of epithelial cell proliferation. A nontumorigenic epidermal growth factor (EGF)-dependent epithelial cell line, BALB/MK, is reversibly growth arrested by TGF beta. TGF beta will also abrogate EGF-stimulated mitogenesis of quiescent BALB/MK cells. Increased levels of calcium (greater than 1.0 mM) will induce differentiation in BALB/MK cells; in contrast, TGF beta-mediated growth inhibition does not result in induction of terminal differentiation. In the present study, the effects of TGF beta and calcium on growth factor-inducible gene expression were examined. TGF beta markedly decreased c-myc and KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction of c-myc and KC in a quiescent population of cells. TGF beta exerted its control over c-myc expression at a posttranscriptional level, and this inhibitory effect was dependent on protein synthesis. TGF beta had no effect on c-fos gene expression, whereas 1.5 mM calcium attenuated EGF-induced c-fos expression in quiescent cells. Expression of beta-actin, however, was slightly increased in both rapidly growing and EGF-restimulated quiescent BALB/MK cells treated with TGF beta. Thus, in this system, TGF beta selectively reduced expression of certain genes associated with cell proliferation (c-myc and KC), and at least part of the TGF beta effect was at a posttranscriptional level. Images PMID:2463471

  12. Myoferlin is required for insulin-like growth factor response and muscle growth

    PubMed Central

    Demonbreun, Alexis R.; Posey, Avery D.; Heretis, Konstantina; Swaggart, Kayleigh A.; Earley, Judy U.; Pytel, Peter; McNally, Elizabeth M.

    2010-01-01

    Insulin-like growth factor (IGF) is a potent stimulus of muscle growth. Myoferlin is a membrane-associated protein important for muscle development and regeneration. Myoferlin-null mice have smaller muscles and defective myoblast fusion. To understand the mechanism by which myoferlin loss retards muscle growth, we found that myoferlin-null muscle does not respond to IGF1. In vivo after IGF1 infusion, control muscle increased myofiber diameter by 25%, but myoferlin-null muscle was unresponsive. Myoblasts cultured from myoferlin-null muscle and treated with IGF1 also failed to show the expected increase in fusion to multinucleate myotubes. The IGF1 receptor colocalized with myoferlin at sites of myoblast fusion. The lack of IGF1 responsiveness in myoferlin-null myoblasts was linked directly to IGF1 receptor mistrafficking as well as decreased IGF1 signaling. In myoferlin-null myoblasts, the IGF1 receptor accumulated into large vesicular structures. These vesicles colocalized with a marker of late endosomes/lysosomes, LAMP2, specifying redirection from a recycling to a degradative pathway. Furthermore, ultrastructural analysis showed a marked increase in vacuoles in myoferlin-null muscle. These data demonstrate that IGF1 receptor recycling is required for normal myogenesis and that myoferlin is a critical mediator of postnatal muscle growth mediated by IGF1.—Demonbreun, A. R., Posey, A. D., Heretis, K., Swaggart, K. A., Earley, J. U., Pytel, P., McNally, E. M. Myoferlin is required for insulin-like growth factor response and muscle growth. PMID:20008164

  13. Growth Factors Outside the PDGF Family Drive Experimental PVR

    PubMed Central

    Lei, Hetian; Velez, Gisela; Hovland, Peter; Hirose, Tatsuo; Gilbertson, Debra; Kazlauskas, Andrius

    2009-01-01

    Purpose Proliferative vitreoretinopathy (PVR) is a recurring and problematic disease for which there is no pharmacologic treatment. Platelet-derived growth factor (PDGF) in the vitreous is associated with experimental and clinical PVR. Furthermore, PDGF receptors (PDGFRs) are present and activated in epiretinal membranes of patient donors, and they are essential for experimental PVR. These observations suggest that PVR arises at least in part from PDGF/PDGFR-driven events. The goal of this study was to determine whether PDGFs were a potential therapeutic target for PVR. Methods Experimental PVR was induced in rabbits by injecting fibroblasts. Vitreous specimens were collected from experimental rabbits or from patients undergoing vitrectomy to repair retinal detachment. A neutralizing PDGF antibody and a PDGF Trap were tested for their ability to prevent experimental PVR. Activation of PDGFR was monitored by antiphosphotyrosine Western blot analysis of immunoprecipitated PDGFRs. Contraction of collagen gels was monitored in vitro. Results Neutralizing vitreal PDGFs did not effectively attenuate PVR, even though the reagents used potently blocked PDGF-dependent activation of the PDGF α receptor (PDGFRα). Vitreal growth factors outside the PDGF family modestly activated PDGFRα and appeared to do so without engaging the ligand-binding domain of PDGFRα. This indirect route to activate PDGFRα had profound functional consequences. It promoted the contraction of collagen gels and appeared sufficient to drive experimental PVR. Conclusions Although PDGF appears to be a poor therapeutic target, PDGFRα is particularly attractive because it can be activated by a much larger spectrum of vitreal growth factors than previously appreciated. PMID:19324843

  14. Growth factors and stem cells as treatments for stroke recovery.

    PubMed

    Cairns, Kevin; Finklestein, Seth P

    2003-02-01

    Both polypeptide growth factors and stem cell populations from bone marrow and umbilical cord blood hold promise as treatments to enhance neurologic recovery after stroke. Growth factors may exert their effects through stimulation of neural sprouting and enhancement of endogenous progenitor cell proliferation, migration, and differentiation in brain. Exogenous stem cells may exert their effects by acting as miniature "factories" for trophic substances in the poststroke brain. The combination of growth factors and stem cells may be more effective than either treatment alone. Stroke recovery represents a new and relatively untested target for stroke therapeutics. Whereas acute stroke treatments focus on agents that dissolve blot clots (thrombolytics) and antagonize cell death (neuroprotective agents), stroke recovery treatments are likely to enhance structural and functional reorganization (plasticity) of the damaged brain. Successful clinical trials of stroke recovery-promoting agents are likely to be quite different from trials testing acute stroke therapies. In particular, the time window of effective treatment to enhance stroke recovery is likely to be far longer than that for acute stroke treatments, perhaps days or weeks rather than minutes or hours after stroke. This longer time window means that time is available for careful screening and testing of potential subjects for stroke recovery trials, both in terms of size and location of cerebral infarcts and in type and severity of neurologic deficits. Detailed baseline information can be obtained for each patient against which eventual clinical outcome can be compared. Finally, separate and detailed outcome measures can be obtained in both the sensorimotor and cognitive neurologic spheres, because it is possible that these two kinds of function may recover differently or be differentially responsive to recovery-promoting treatments. Stroke recovery represents an important and underexplored opportunity for the

  15. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  16. Modulation of growth and differentiation in normal human keratinocytes by transforming growth factor-beta

    SciTech Connect

    Matsumoto, K.; Hashimoto, K.; Hashiro, M.; Yoshimasa, H.; Yoshikawa, K. )

    1990-10-01

    The effect of transforming growth factor-type beta 1(TGF-beta) on the growth and differentiation of normal human skin keratinocytes cultured in serum-free medium was investigated. TGF-beta markedly inhibited the growth of keratinocytes at the concentrations greater than 2 ng/ml under low Ca2+ conditions (0.1 mM). Growth inhibition was accompanied by changes in cell functions related to proliferation. Remarkable inhibition of DNA synthesis was demonstrated by the decrease of (3H)thymidine incorporation. The decrease of (3H)thymidine incorporation was observed as early as 3 hr after addition of TGF-beta. TGF-beta also decreased c-myc messenger RNA (mRNA) expression 30 min after addition of TGF-beta. This rapid reduction of c-myc mRNA expression by TGF-beta treatment is possibly one of the main factors in the process of TGF-beta-induced growth inhibition of human keratinocytes. Since growth inhibition and induction of differentiation are closely related in human keratinocytes, the growth-inhibitory effect of TGF-beta under high Ca2+ conditions was examined. TGF-beta inhibited the growth of keratinocytes under high Ca2+ conditions in the same manner as under low Ca2+ conditions, suggesting that it is a strong growth inhibitor in both low and high Ca2+ environments. The induction of keratinocyte differentiation was evaluated by measuring involucrin expression and cornified envelope formation: TGF-beta at 20 ng/ml increased involucrin expression from 9.3% to 18.8% under high Ca2+ conditions, while it decreased involucrin expression from 7.0% to 3.3% under low Ca2+ conditions. Cornified envelope formation was modulated in a similar way by addition of TGF-beta: TGF-beta at 20 ng/ml decreased cornified envelope formation by 53% under low Ca2+ conditions, while it enhanced cornified envelope formation by 30.7% under high Ca2+ conditions.

  17. Platelet Derived Growth Factor-B and Human Epidermal Growth Factor Receptor-2 Polymorphisms in Gall Bladder Cancer.

    PubMed

    Mishra, Kumudesh; Behari, Anu; Kapoor, Vinay Kumar; Khan, M Salman; Prakash, Swayam; Agrawal, Suraksha

    2015-01-01

    Gall bladder cancer (GBC) is a gastro-intestinal cancer with high prevalence among north Indian women. Platelet derived growth factor-B (PDGFB) and human epidermal growth factor receptor-2 (HER2) may play roles in the etiology of GBC through the inflammation-hyperplasia-dysplasia-carcinoma pathway. To study the association of PDGFB and HER2 polymorphisms with risk of GBC, 200 cases and 300 controls were considered. PDGFB +286A>G and +1135A>C polymorphisms were investigated with an amplification refractory mutation system and the HER2 Ile655Val polymorphism by restriction fragment length polymorphism. Significant risk associations for PDGFB +286 GG (OR=5.25) and PDGFB +1135 CC (OR=3.19) genotypes were observed for GBC. Gender wise stratification revealed susceptibility for recessive models of PDGFB +1135A>C (OR=3.00) and HER2 Ile655Val (OR=2.52) polymorphisms among female GBC cases. GBC cases with gall stones were predisposed to homozygous +286 GG and +1135 CC genotypes. Significant risk associations were found for ACIle (OR=1.48), GAVal (OR=1.70), GAIle (OR=2.00) haplotypes with GBC cases and GCIle haplotype with female GBC cases (OR=10.37, P=<0.0001). Pair-wise linkage disequilibrium revealed negative associations among variant alleles. On multi-dimensional reduction analysis, a three factor model revealed significant gene-gene interaction for PDGFB +286A>G, PDGFB +1135A>C and HER2 Ile165Val SNPs with GBC. Protein-protein interaction showed significant association of PDGFB and HER2 with the epidermal growth factor receptor signaling pathway. PMID:26320430

  18. Biomarkers of gene expression: growth factors and oncoproteins.

    PubMed Central

    Brandt-Rauf, P W

    1997-01-01

    This article reviews the literature on the application of methods for the detection of growth factors, oncogene proteins, and tumor-suppressor gene proteins in the blood of humans with cancer or who are at risk for the development of cancer. The research summarized here suggests that many of these biomarker assays can be used to distinguish between diseased and nondiseased states and in some instances may be able to predict susceptibility for future disease. Thus, these biomarkers could be valuable tools for monitoring at-risk populations for purposes of disease prevention and control. PMID:9255565

  19. Stochastic contribution to the growth factor in the LCDM model

    SciTech Connect

    Ribeiro, A. L.B.; Andrade, A. P.A.; Letelier, P. S.

    2009-01-01

    We study the effect of noise on the evolution of the growth factor of density perturbations in the context of the LCDM model. Stochasticity is introduced as a Wiener process amplified by an intensity parameter alpha. By comparing the evolution of deterministic and stochastic cases for different values of alpha we estimate the intensity level necessary to make noise relevant for cosmological tests based on large-scale structure data. Our results indicate that the presence of random forces underlying the fluid description can lead to significant deviations from the nonstochastic solution at late times for alpha>0.001.

  20. Growth factors: potential for the management of solid epithelial tumours.

    PubMed

    Jankowski, J A

    1996-03-01

    At present we are on the threshold of an enormous change in clinical practice. The application of molecular medicine has already started and the area of growth factor biology is particularly relevant to this endeavor (Figure 6) (Jankowski and Polak 1996). Perhaps the major limitation to this process is the rate at which the clinician can comprehend and then undertake carefully designed molecular studies in gastroenterology. In time monographs that specifically address the issue of molecular medicine in clinical gene analysis and manipulation may perhaps replace standard text books (see Jankowski and Polak, 1996). PMID:8732307

  1. Epidermal growth factor receptors in the canine antrum

    SciTech Connect

    Zimmerman, R.P.; Gates, T.S.; Boehmer, C.G.; Mantyh, P.W.

    1988-11-01

    In this study we localized receptor binding sites for /sup 125/I-human epidermal growth factor (hEGF) in the antrum of the adult canine stomach. High levels of specific /sup 125/I-hEGF binding sites were observed over the mucosa and muscularis mucosa, whereas specific binding sites were not detectable over the submucosa, external circular and longitudinal muscle or myenteric neurons. These results are in agreement with previous studies which indicated that EGF stimulates the proliferation of cultured epithelial cells and inhibits gastric acid secretion. This suggests that EGF may be a useful therapeutic agent in the healing of gastric ulcers.

  2. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells.

    PubMed Central

    Kuwabara, K; Ogawa, S; Matsumoto, M; Koga, S; Clauss, M; Pinsky, D J; Lyn, P; Leavy, J; Witte, L; Joseph-Silverstein, J

    1995-01-01

    Wound repair and tumor vascularization depend upon blood vessel growth into hypoxic tissue. Although hypoxia slows endothelial cell (EC) proliferation and suppresses EC basic fibroblast growth factor (bFGF) expression, we report that macrophages (MPs) exposed to PO2 approximately 12-14 torr (1 torr = 133.3 Pa) synthesize and release in a time-dependent manner platelet-derived growth factor (PDGF) and acidic/basic FGFs (a/bFGFs), which stimulate the growth of hypoxic ECs. Chromatography of hypoxic MP-conditioned medium on immobilized heparin with an ascending NaCl gradient resolved three peaks of mitogenic activity: activity of the first peak was neutralized by antibody to PDGF; activity of the second peak was neutralized by antibody to aFGF; and activity of the third peak was neutralized by antibody to bFGF. Metabolically labeled lysates and supernatants from MPs exposed to hypoxia showed increased synthesis and release of immunoprecipitable PDGF and a/bFGF in the absence of changes in cell viability. Possible involvement of a heme-containing oxygen sensor in MP elaboration of growth factors was suggested by the induction of bFGF and PDGF by normoxic MPs exposed to nickel or cobalt, although metabolic inhibitors such as sodium azide were without effect. These results suggest a paracrine model in which hypoxia stimulates MP release of PDGF and a/bFGF, inducing EC proliferation and potentially promoting angiogenesis in hypoxic environments. Images Fig. 1 Fig. 3 Fig. 4 PMID:7538678

  3. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  4. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  5. Nordihydroguaiaretic acid inhibits insulin-like growth factor signaling, growth, and survival in human neuroblastoma cells.

    PubMed

    Meyer, Gary E; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A; Goldenberg, David D; Youngren, Jack F; Goldfine, Ira D; Weiss, William A; Matthay, Katherine K; Rosenthal, Stephen M

    2007-12-15

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling.

  6. Extracellular matrix and growth factors in corneal wound healing.

    PubMed

    Nishida, T; Tanaka, T

    1996-08-01

    The crystal clear cornea has been challenged by refractive surgeries. The surgical outcome depends on the healing responses of the cornea. The factors responsible for the corneal wound healing have been characterized. The orchestrated action of extracellular matrix proteins, growth factors, cytokines, and their receptors have been investigated extensively over the past decade. The clinical results with refractive surgeries provide us various important information with regard to the physiology and pathology of the cornea. The role of basement membrane or Bowman's membrane is now challenged for the maintenance and repair of the epithelium. Furthermore, the interactions between epithelium and stroma is another field to be investigated. The regulatory mechanisms of the maintenance of stromal collagen by keratocytes is also studied. This review discusses the current advancement in the healing responses of the cornea to various injuries and refractive surgeries.

  7. [Connective tissue growth factor (CTGF): a key factor in the onset and progression of kidney damage].

    PubMed

    Sánchez-López, E; Rodrigues Díez, R; Rodríguez Vita, J; Rayego Mateos, S; Rodrigues Díez, R R; Rodríguez García, E; Lavoz Barria, C; Mezzano, S; Egido, J; Ortiz, A; Ruiz-Ortega, M; Selgas, R

    2009-01-01

    Connective tissue growth factor (CTGF) is increased in several pathologies associated with fibrosis, including multiple renal diseases. CTGF is involved in biological processes such as cell cycle regulation, migration, adhesion and angiogenesis. Its expression is regulated by various factors involved in renal damage, such as transforming growth factor- , Angiotensin II, high concentrations of glucose and cellular stress. CTGF is involved in the initiation and progression of renal damage to be able to induce an inflammatory response and promote fibrosis, identified as a potential therapeutic target in the treatment of kidney diseases. In this paper we review the main actions of CTGF in renal disease, the intracellular action mechanisms and therapeutic strategies for its blocking.

  8. Electrospinning Growth Factor Releasing Microspheres into Fibrous Scaffolds

    PubMed Central

    Whitehead, Tonya J.; Sundararaghavan, Harini G.

    2014-01-01

    This procedure describes a method to fabricate a multifaceted substrate to direct nerve cell growth. This system incorporates mechanical, topographical, adhesive and chemical signals. Mechanical properties are controlled by the type of material used to fabricate the electrospun fibers. In this protocol we use 30% methacrylated Hyaluronic Acid (HA), which has a tensile modulus of ~500 Pa, to produce a soft fibrous scaffold. Electrospinning on to a rotating mandrel produces aligned fibers to create a topographical cue. Adhesion is achieved by coating the scaffold with fibronectin. The primary challenge addressed herein is providing a chemical signal throughout the depth of the scaffold for extended periods. This procedure describes fabricating poly(lactic-co-glycolic acid) (PLGA) microspheres that contain Nerve Growth Factor (NGF) and directly impregnating the scaffold with these microspheres during the electrospinning process. Due to the harsh production environment, including high sheer forces and electrical charges, protein viability is measured after production. The system provides protein release for over 60 days and has been shown to promote primary nerve cell growth. PMID:25178038

  9. Psychosocial factors and intrauterine fetal growth: a prospective study.

    PubMed

    Aarts, M C; Vingerhoets, A J

    1993-12-01

    This study focused on the possible role of psychosocial factors on intrauterine fetal growth. Pregnant women (n = 236) completed questionnaires on daily stressors and psychosomatic symptoms three times during pregnancy; in the 11-12th week, the 23-24th week and the 35-36th week. In addition, information was obtained on the quality of the marital relationship, social support, social class, physical work load, weight of the biological parents and life-style variables (including smoking, alcohol and coffee consumption). Birth weight corrected for gestational age, sex and parity was utilized as an index of intrauterine fetal growth. This dependent measure did not appear to be affected by exposure to daily stressors or disturbed maternal well-being on any of the measuring points. Smoking appeared to be the best predictor of fetal growth, together with maternal weight and the family's socioeconomic status. These variables accounted for 10.6% of the variance. It is postulated that the absence of a relationship between stressors and fetal development may be due to the buffering effects of adequate emotional support provided by the partners and the further social network. PMID:8142979

  10. Effect of factor VIII on tissue factor-initiated spatial clot growth.

    PubMed

    Ovanesov, Mikhail V; Lopatina, Elena G; Saenko, Evgueni L; Ananyeva, Natalya M; Ul'yanova, Ljudmila I; Plyushch, Olga P; Butilin, Andrey A; Ataullakhanov, Fazly I

    2003-02-01

    Using time-lapse videomicroscopy, we studied the role of coagulation factor VIII (fVIII) in tissue factor-initiated spatial clot growth on fibroblast monolayers in a thin layer of non-stirred recalcified plasma from healthy donors or patients with severe Haemophilia A. Analysis of temporal evolution of light-scattering profiles from a growing clot revealed existence of two phases in the clot growth-initiation phase in a narrow (0.2 mm) zone adjacent to activator surface and elongation phase in plasma volume. While the initiation phase did not differ in normal and haemophilic plasmas, the rate of clot growth in the elongation phase in haemophilic plasma constituted only 30% of that in normal plasma. Supplementation of haemophilic plasma with 0.05 U/ml fVIII restored the normal clot growth rate (44.9 +/- 2.5 microm/min) at high but not at low fibroblast density. Our results indicate that the functioning of the intrinsic tenase complex is critical for normal spatial clot growth.

  11. Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis.

    PubMed

    Chu, Hunghao; Gao, Jin; Chen, Chien-Wen; Huard, Johnny; Wang, Yadong

    2011-08-16

    Enhancing the maturity of the newly formed blood vessels is critical for the success of therapeutic angiogenesis. The maturation of vasculature relies on active participation of mural cells to stabilize endothelium and a basal level of relevant growth factors. We set out to design and successfully achieved robust angiogenesis using an injectable polyvalent coacervate of a polycation, heparin, and fibroblast growth factor-2 (FGF2). FGF2 was loaded into the coacervate at nearly 100% efficiency. In vitro assays demonstrated that the matrix protected FGF2 from proteolytic degradations. FGF2 released from the coacervate was more effective in the differentiation of endothelial cells and chemotaxis of pericytes than free FGF2. One injection of 500 ng of FGF2 in the coacervate elicited comprehensive angiogenesis in vivo. The number of endothelial and mural cells increased significantly, and the local tissue contained more and larger blood vessels with increased circulation. Mural cells actively participated during the whole angiogenic process: Within 7 d of the injection, pericytes were recruited to close proximity of the endothelial cells. Mature vasculature stabilized by vascular smooth muscle cells persisted till at least 4 wk. On the other hand, bolus injection of an identical amount of free FGF2 induced weak angiogenic responses. These results demonstrate the potential of polyvalent coacervate as a new controlled delivery platform.

  12. Growth factor receptor interplay and resistance in cancer.

    PubMed

    Jones, Helen E; Gee, Julia M W; Hutcheson, Iain R; Knowlden, Janice M; Barrow, Denise; Nicholson, Robert I

    2006-12-01

    Aberrant signalling through the epidermal growth factor receptor (EGFR) plays a major role in the progression and maintenance of the malignant phenotype and the receptor is therefore a rational anti-cancer target. A variety of approaches have been developed to specifically target the EGFR which include monoclonal antibodies and small molecule tyrosine kinase inhibitors, such as gefitinib (Iressa). However, the recent clinical experience across a range of cancer types is revealing that despite the anti-EGFR agents demonstrating some anti-tumour activity, there is a high level of de novo and acquired resistance to such treatments and moreover, overexpression of the EGFR is clearly not the sole determinant of response to such therapies. Such adverse phenomena, which serve to limit the overall therapeutic impact of these new agents, implies the existence of a greater complexity involved in the regulation of EGFR signalling than was previously assumed. Indeed, evidence is accumulating which demonstrates that signalling interplay occurs between the EGFR, and the IGF-1 receptor (IGF-1R) and the review will focus on the emerging concept of growth factor pathway switching between these two receptors as a means of influencing the effectiveness of anti-EGFR agents such as gefitinib.

  13. Development of neural crest cells expressing nerve growth factor receptors

    SciTech Connect

    Greiner, C.A.

    1987-01-01

    The present study examines the ontogeny of the nerve growth factor receptor of neural crest cells in vitro and the phenotypic nature of the neural crest cells expressing this receptor. /sup 125/I-NGF binding assays and autoradiographic and immunofluorescence techniques have demonstrated the presence of a subpopulation of quail neural crest cells that express specific NGF receptors after 3-4 days in vitro. This subpopulations represents approximately 28% of the cells in 5-day primary cultures and 30-35% of the cells in secondary cultures; these cells generally exhibited a flattened, phase-dark morphology. Approximately one-third of these cells also labeled with a 2 hr pulse of /sup 3/H thymidine. Catecholamine-containing neural crest cells generally lacked NGF receptors. NGF receptor-positive cells also failed to demonstrate somatostatin-, neuron-specific enolase-, or S-100-like immunoreactivity. Melanocytes do not appear to express NGF receptors. Exogenous nerve growth factor did not influence the morphology or mitotic status of the cells in culture.

  14. Redundancy of myostatin and growth/differentiation factor 11 function

    PubMed Central

    McPherron, Alexandra C; Huynh, Thanh V; Lee, Se-Jin

    2009-01-01

    Background Myostatin (Mstn) and growth/differentiation factor 11 (Gdf11) are highly related transforming growth factor β (TGFβ) family members that play important roles in regulating embryonic development and adult tissue homeostasis. Despite their high degree of sequence identity, targeted mutations in these genes result in non-overlapping phenotypes affecting distinct biological processes. Loss of Mstn in mice causes a doubling of skeletal muscle mass while loss of Gdf11 in mice causes dramatic anterior homeotic transformations of the axial skeleton, kidney agenesis, and an increase in progenitor cell number in several tissues. In order to investigate the possible functional redundancy of myostatin and Gdf11, we analyzed the effect of eliminating the functions of both of these signaling molecules. Results We show that Mstn-/- Gdf11-/- mice have more extensive homeotic transformations of the axial skeleton than Gdf11-/- mice in addition to skeletal defects not seen in single mutants such as extra forelimbs. We also show that deletion of Gdf11 specifically in skeletal muscle in either Mstn+/+ or Mstn-/- mice does not affect muscle size, fiber number, or fiber type. Conclusion These results provide evidence that myostatin and Gdf11 have redundant functions in regulating skeletal patterning in mice but most likely not in regulating muscle size. PMID:19298661

  15. Upregulation of epidermal growth factor receptor 4 in oral leukoplakia

    PubMed Central

    Kobayashi, Hiroshi; Kumagai, Kenichi; Gotoh, Akito; Eguchi, Takanori; Yamada, Hiroyuki; Hamada, Yoshiki; Suzuki, Satsuki; Suzuki, Ryuji

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP. PMID:23492901

  16. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF)

    PubMed Central

    He, Yonghua; Schmidt, Monica A.; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W.; Herman, Eliot M.

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother’s breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N’ terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  17. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF).

    PubMed

    He, Yonghua; Schmidt, Monica A; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W; Herman, Eliot M

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  18. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis

    PubMed Central

    Calvo, Charles-Félix; Fontaine, Romain H.; Soueid, Jihane; Tammela, Tuomas; Makinen, Taija; Alfaro-Cervello, Clara; Bonnaud, Fabien; Miguez, Andres; Benhaim, Lucile; Xu, Yunling; Barallobre, Maria-José; Moutkine, Imane; Lyytikkä, Johannes; Tatlisumak, Turgut; Pytowski, Bronislaw; Zalc, Bernard; Richardson, William; Kessaris, Nicoletta; Garcia-Verdugo, Jose Manuel; Alitalo, Kari; Eichmann, Anne; Thomas, Jean-Léon

    2011-01-01

    Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases. PMID:21498572

  19. Epidermal growth factor receptor in adult human dorsal root ganglia.

    PubMed

    Huerta, J J; Diaz-Trelles, R; Naves, F J; Llamosas, M M; Del Valle, M E; Vega, J A

    1996-09-01

    Transforming growth factor-alpha (TGFalpha) enhances neuronal survival and neurite outgrowth in cultured dorsal root ganglia (DRG) sensory neurons. It binds a membrane protein, denominated epidermal growth factor receptor (EGFr). EGFr has been localized in developing and adult human DRG. However, it remains to be elucidated whether all DRG neurons express EGFr or whether differences exist among neuronal subtypes. This study was undertaken to investigate these topics in adult human DRG using immunoblotting, and combined immunohistochemistry and image analysis techniques. A mouse monoclonal antibody (clone F4) mapping within the intracytoplasmic domain of EGFr was used. Immunoblotting revealed two main proteins with estimated molecular masses of approximately/equal to 65 kDa and 170 kDa, and thus consistent with the full-length EGFr. Additional protein bands were also encountered. Light immunohistochemistry revealed specific immunoreactivity (IR) for EGFr-like proteins in most (86%) primary sensory neurons, the intensity of immunostaining being stronger in the small- and intermediate-sized ones. Furthermore, EGFr-like IR was also observed in the satellite glial cells of the ganglia as well as in the intraganglionic and dorsal root Schwann cells. Taken together, our findings demonstrate that EGFr, and other related proteins containing the epitope labeled with the antibody F4, are responsible for the EGFr IR reported in DRG. Furthermore, we demonstrated heterogeneity in the expression of EGFr-like IR in adult human primary sensory neurons, which suggests different responsiveness to their ligands.

  20. Early signaling dynamics of the epidermal growth factor receptor

    PubMed Central

    Gajadhar, Aaron S.; Swenson, Eric J.; Rothenberg, Daniel A.; Curran, Timothy G.; White, Forest M.

    2016-01-01

    Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patterns are representative of separate timescales for physical association with the receptor. Inhibition of phosphatases with vanadate reveals site-specific regulatory mechanisms and also uncovers primed activating components in the network, including Src family kinases, whose inhibition affects only a subset of proteins within the network. The results presented highlight the complexity of signaling initiation and provide a window into exploring mechanistic hypotheses about receptor tyrosine kinase (RTK) biology. PMID:26929352

  1. Fibroblast growth factor receptors, developmental corruption and malignant disease.

    PubMed

    Kelleher, Fergal C; O'Sullivan, Hazel; Smyth, Elizabeth; McDermott, Ray; Viterbo, Antonella

    2013-10-01

    Fibroblast growth factors (FGF) are a family of ligands that bind to four different types of cell surface receptor entitled, FGFR1, FGFR2, FGFR3 and FGFR4. These receptors differ in their ligand binding affinity and tissue distribution. The prototypical receptor structure is that of an extracellular region comprising three immunoglobulin (Ig)-like domains, a hydrophobic transmembrane segment and a split intracellular tyrosine kinase domain. Alternative gene splicing affecting the extracellular third Ig loop also creates different receptor isoforms entitled FGFRIIIb and FGFRIIIc. Somatic fibroblast growth factor receptor (FGFR) mutations are implicated in different types of cancer and germline FGFR mutations occur in developmental syndromes particularly those in which craniosynostosis is a feature. The mutations found in both conditions are often identical. Many somatic FGFR mutations in cancer are gain-of-function mutations of established preclinical oncogenic potential. Gene amplification can also occur with 19-22% of squamous cell lung cancers for example having amplification of FGFR1. Ontologic comparators can be informative such as aberrant spermatogenesis being implicated in both spermatocytic seminomas and Apert syndrome. The former arises from somatic FGFR3 mutations and Apert syndrome arises from germline FGFR2 mutations. Finally, therapeutics directed at inhibiting the FGF/FGFR interaction are a promising subject for clinical trials.

  2. Nerve growth factor enhances Clara cell proliferation after lung injury.

    PubMed

    Sonar, S S; Schwinge, D; Kilic, A; Yildirim, A O; Conrad, M L; Seidler, K; Müller, B; Renz, H; Nockher, W A

    2010-07-01

    The lung epithelia facilitate wound closure by secretion of various cytokines and growth factors. Nerve growth factor (NGF) has been well described in airway inflammation; however, its likely role in lung repair has not been examined thus far. To investigate the repair function of NGF, experiments were performed in vitro using cultured alveolar epithelial cells and in vivo using a naphthalene-induced model of Clara epithelial cell injury. Both in vitro and in vivo experiments revealed airway epithelial cell proliferation following injury to be dependent on NGF and the expression of its receptor, tropomyosin-receptor-kinase A. Additionally, NGF also augmented in vitro migration of alveolar type II cells. In vivo, transgenic mice over-expressing NGF in Clara cells (NGFtg) did not reveal any proliferation or alteration in Clara cell phenotype. However, following Clara cell specific injury, proliferation was increased in NGFtg and impaired upon inhibition of NGF. Furthermore, NGF also promoted the expression of collagen I and fibronectin in vitro and in vivo during repair, where significantly higher levels were measured in re-epithelialising NGFtg mice. Our study demonstrates that NGF promotes the proliferation of lung epithelium in vitro and the renewal of Clara cells following lung injury in vivo.

  3. Early signaling dynamics of the epidermal growth factor receptor.

    PubMed

    Reddy, Raven J; Gajadhar, Aaron S; Swenson, Eric J; Rothenberg, Daniel A; Curran, Timothy G; White, Forest M

    2016-03-15

    Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patterns are representative of separate timescales for physical association with the receptor. Inhibition of phosphatases with vanadate reveals site-specific regulatory mechanisms and also uncovers primed activating components in the network, including Src family kinases, whose inhibition affects only a subset of proteins within the network. The results presented highlight the complexity of signaling initiation and provide a window into exploring mechanistic hypotheses about receptor tyrosine kinase (RTK) biology. PMID:26929352

  4. Insulin-like growth factors and fish reproduction.

    PubMed

    Reinecke, Manfred

    2010-04-01

    Knowledge of fish reproduction is of high relevance to basic fish biology and comparative evolution. Furthermore, fish are excellent biomedical models, and the impact of aquaculture on worldwide food production is steadily increasing. Consequently, research on fish reproduction and the potential modes of its manipulation has become more and more important. Reproduction in fish is regulated by the integration of endogenous neuroendocrine (gonadotropins), endocrine, and autocrine/paracrine signals with exogenous (environmental) factors. The main endocrine regulators of gonadal sex differentiation and function are steroid hormones. However, recent studies suggest that other hormones are also involved. Most prominent among these hormones are the insulin-like growth factors (Igfs), i.e., Igf1, Igf2, and, most recently, Igf3. Thus, the present review deals with the expression patterns and potential physiological functions of Igf1 and Igf2 in male and female gonads. It further considers the potential involvement of growth hormone (Gh) and balances the reasons for endocrine vs. autocrine/paracrine action of the Igfs on the gonads of fish. Finally, this review discusses the early and late development of gonadal Igf1 and Igf2 and whether they are targets of endocrine-disrupting compounds. Future topics for novel research investigation on Igfs and fish reproduction are presented. PMID:19864315

  5. Role of fibroblast growth factor receptors in astrocytic stem cells

    PubMed Central

    Galvez-Contreras, Alma Y.; Gonzalez-Castaneda, Rocio E; Luquin, Sonia; Gonzalez-Perez, Oscar

    2012-01-01

    There are two well-defined neurogenic regions in the adult brain, the subventricular zone (SVZ) lining the lateral wall of the lateral ventricles and, the subgranular zone (SGZ) in the dentate gyrus at the hippocampus. Within these neurogenic regions, there are neural stem cells with astrocytic characteristics, which actively respond to the basic fibroblast growth factor (bFGF, FGF2 or FGF-β) by increasing their proliferation, survival and differentiation, both in vivo and in vitro. FGF2 binds to fibroblast growth factor receptors 1 to 4 (FGFR1, FGFR2, FGFR3, FGFR4). Interestingly, these receptors are differentially expressed in neurogenic progenitors. During development, FGFR-1 and FGFR-2 drive oligodendrocytes and motor neuron specification. In particular, FGFR-1 determines oligodendroglial and neuronal cell fate, whereas FGFR-2 is related to oligodendrocyte specification. In the adult SVZ, FGF-2 promotes oligodendrogliogenesis and myelination. FGF-2 deficient mice show a reduction in the number of new neurons in the SGZ, which suggests that FGFR-1 is important for neuronal cell fate in the adult hippocampus. In human brain, FGF-2 appears to be an important component in the anti-depressive effect of drugs. In summary, FGF2 is an important modulator of the cell fate of neural precursor and, promotes oligodendrogenesis. In this review, we describe the expression pattern of FGFR2 and its role in neural precursors derived from the SVZ and the SGZ. PMID:22347841

  6. Early signaling dynamics of the epidermal growth factor receptor.

    PubMed

    Reddy, Raven J; Gajadhar, Aaron S; Swenson, Eric J; Rothenberg, Daniel A; Curran, Timothy G; White, Forest M

    2016-03-15

    Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patterns are representative of separate timescales for physical association with the receptor. Inhibition of phosphatases with vanadate reveals site-specific regulatory mechanisms and also uncovers primed activating components in the network, including Src family kinases, whose inhibition affects only a subset of proteins within the network. The results presented highlight the complexity of signaling initiation and provide a window into exploring mechanistic hypotheses about receptor tyrosine kinase (RTK) biology.

  7. Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors

    PubMed Central

    Shaheen, R M; Ahmad, S A; Liu, W; Reinmuth, N; Jung, Y D; Tseng, W W; Drazan, K E; Bucana, C D; Hicklin, D J; Ellis, L M

    2001-01-01

    Vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) regulate colon cancer growth and metastasis. Previous studies utilizing antibodies against the VEGF receptor (DC101) or EGF receptor (C225) have demonstrated independently that these agents can inhibit tumour growth and induce apoptosis in colon cancer in in vivo and in vitro systems. We hypothesized that simultaneous blockade of the VEGF and EGF receptors would enhance the therapy of colon cancer in a mouse model of peritoneal carcinomatosis. Nude mice were given intraperitoneal injection of KM12L4 human colon cancer cells to generate peritoneal metastases. Mice were then randomized into one of four treatment groups: control, anti-VEGFR (DC101), anti-EGFR (C225), or DC101 and C225. Relative to the control group, treatment with DC101 or with DC101+C225 decreased tumour vascularity, growth, proliferation, formation of ascites and increased apoptosis of both tumour cells and endothelial cells. Although C225 therapy did not change any of the above parameters, C225 combined with DC101 led to a significant decrease in tumour vascularity and increases in tumour cell and endothelial cell apoptosis (vs the DC101 group). These findings suggest that DC101 inhibits angiogenesis, endothelial cell survival, and VEGF-mediated ascites formation in a murine model of colon cancer carcinomatosis. The addition of C225 to DC101 appears to lead to a further decrease in angiogenesis and ascites formation. Combination anti-VEGF and anti-EGFR therapy may represent a novel therapeutic strategy for the management of colon peritoneal carcinomatosis. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11506500

  8. Nerve growth factor mRNA in brain: localization by in situ hybridization

    SciTech Connect

    Rennert, P.D.; Heinrich, G.

    1986-07-31

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons.

  9. Extracellular matrix-inspired growth factor delivery systems for bone regeneration

    SciTech Connect

    Martino, Mikaël M.; Briquez, Priscilla S.; Maruyama, Kenta; Hubbell, Jeffrey A.

    2015-04-17

    Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatio-temporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM.

  10. Extracellular matrix-inspired growth factor delivery systems for bone regeneration.

    PubMed

    Martino, Mikaël M; Briquez, Priscilla S; Maruyama, Kenta; Hubbell, Jeffrey A

    2015-11-01

    Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatiotemporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM.

  11. Immunohistochemical localization of the epidermal growth factor, transforming growth factor alpha, and their receptor in the human mesonephros and metanephros.

    PubMed

    Bernardini, N; Bianchi, F; Lupetti, M; Dolfi, A

    1996-07-01

    The distribution of epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and EGF/TGF alpha receptor were studied by means of immunohistochemical methods starting from the very early stages of human embryonic kidney development. Mesonephros and metanephros were examined in order to detect immunoreactive staining in serial sectioned embryos and fetal kidneys. Anti-EGF immunoprecipitates were found in the S-shaped mesonephric vesicles of 6-week old embryos as well as in the mesonephric duct albeit with a lower degree of reactivity. Intense reactivity was observed in the metanephros within the blastemic caps of the same gestational period; the reaction was weaker within the ureteric bud branches. Bowman's capsule, proximal tubules, and collecting ducts were also reactive in the fetal kidney to varying degrees. The distribution of TGF alpha reactivity in the mesonephros was similar to that observed for EGF but with a lower intensity. In contrast, there was no reactivity in the metanephros, at least during the embyronic periods examined. By the 11th week of gestation, an intense reactivity for TGF alpha polipeptide was shown in the fetal kidney at the level of the proximal tubules and Bowman's capsule; distal tubules as well as all urinary structures from the collecting ducts to the pelvis were less reactive. Finally, EGF/TGF alpha receptor reactivity was identified by the 6th week of development, being more intense in the mesonephros at the level of the mesonephric duct cells. In the metanephros, the ureteric bud-derived branches were reactive, whereas most of the blastemic tissue did not stain. By the 11th week, only the collecting ducts and the remaining urinary structures contained reaction products: Reactivity was distributed to the tissues originating from the ureteric bud branching. Taking into account recent advances in knowledge about the biology of growth factors, the hypothesis is proposed that the secretory components (vesicles

  12. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    PubMed

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  13. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    PubMed

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  14. Water Activity Limits the Hygroscopic Growth Factor of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Cabrera, J. A.; Golden, D.; Tabazadeh, A.

    2007-12-01

    In this work we study the hygroscopic behavior of organic aerosols, which has important implications for Earth's climate. The hygroscopic growth factor (HGF) is defined as the ratio of the diameter of a spherical particle when it is exposed to dry conditions to that at humid conditions. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aw) in the aqueous phase. This new formulation matches reported HGFs for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidities (RH). Many studies use tandem differential mobility analyzers (TDMA) to determine the HGF of organic aerosols. For example, Brooks et al. used a TDMA to measure a HGF of 1.2 for 2 μm phthalic acid (PA) particles at 90% RH (aw= 0.9). However, water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aw of aqueous solutions at room temperature. Measured water activities for PA, used in our growth formulation, yield a HGF of ~ 1.0005 for 2 μm PA particles at 90% RH. Comparing our results against Brooks et al. suggests that TDMA experiments may grossly overestimate the HGF of PA particles since water activity limits this growth to below 1.0005. Alternatively, we suggest that the adsorption of a negligible mass of water by a highly porous PA particle can lead to an apparent growth in particle size by changing its morphology. Other studies also use TDMAs to measure HGFs of secondary organic aerosols (SOAs). HGFs reported for SOAs are very similar to PA, suggesting that the observed growth may be due to morphological changes in particle size rather than water uptake as commonly assumed. We built a smog chamber where an organic precursor, such as d-limonene, reacts with nitrogen oxides under UV radiation to produce SOAs. We compare the HGFs for SOAs obtained with our method to those obtained with

  15. Peroxiredoxin I, platelet-derived growth factor A, and platelet-derived growth factor receptor alpha are overexpressed in carcinoma ex pleomorphic adenoma: association with malignant transformation.

    PubMed

    Demasi, Ana Paula Dias; Furuse, Cristiane; Soares, Andresa B; Altemani, Albina; Araújo, Vera C

    2009-03-01

    Carcinoma ex pleomorphic adenoma is a rare salivary gland malignancy. It constitutes an important model for the study of carcinogenesis, as it can display the tumor in different stages of progression, from benign pleomorphic adenoma to frankly invasive carcinoma. Growth signaling pathways undergo continuous activation in human tumors, commonly as a consequence of the overexpression of ligands and receptors such as platelet-derived growth factor and platelet-derived growth factor receptor. Hydrogen peroxide is produced after platelet-derived growth factor receptor activation, and it is essential for the sequential phosphorylation cascade that drives cell proliferation and migration. By their ability to degrade hydrogen peroxide, peroxiredoxins are involved in growth factor signaling regulation and in the oxidative stress response. To verify the potential association of peroxiredoxin I, platelet-derived growth factor-A, and platelet-derived growth factor receptor-alpha with carcinoma ex pleomorphic adenoma progression, we investigated the expression of these molecules in carcinoma ex pleomorphic adenoma showing different degrees of invasion. The peroxiredoxin I, platelet-derived growth factor-A, and platelet-derived growth factor receptor-alpha proteins were present in remnant pleomorphic adenoma to only a small extent, but, collectively, they were highly expressed as soon as the malignant phenotype was achieved and remained at elevated concentrations during progression to the advanced stages of carcinoma ex pleomorphic adenoma. In addition, their locations overlapped significantly, strengthening their connection to this growth-signaling pathway. Our results indicate that carcinoma ex pleomorphic adenoma cells acquire at least 2 significant advantages relative to their normal counterparts: resistance to oxidative stress-induced apoptosis, conferred by high peroxiredoxin I concentrations, and sustained growth, reflecting platelet-derived growth factor-A and platelet

  16. Growth differentiation factor 15 stimulates rapamycin-sensitive ovarian cancer cell growth and invasion

    PubMed Central

    Griner, Samantha E.; Joshi, Jayashree P.; Nahta, Rita

    2015-01-01

    Identification of novel molecular markers and therapeutic targets may improve survival rates for patients with ovarian cancer. In the current study, immunohistochemical (IHC) analysis of two human ovarian tumor tissue arrays showed high staining for GDF15 in a majority of tissues. Exogenous stimulation of ovarian cancer cell lines with recombinant human GDF15 (rhGDF15) or stable overexpression of a GDF15 expression plasmid promoted anchorage-independent growth, increased invasion, and up-regulation of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF). MMP inhibition suppressed GDF15-mediated invasion. In addition, IHC analysis of human ovarian tumor tissue arrays indicated that GDF15 expression correlated significantly with high MMP2 and MMP9 expression. Exogenous and endogenous GDF15 over-expression stimulated phosphorylation of p38, Erk1/2, and Akt. Pharmacologic inhibition of p38, MEK, or PI3K suppressed GDF15-stimulated growth. Further, proliferation, growth, and invasion of GDF15 stable clones were blocked by rapamycin. IHC analysis demonstrated significant correlation between GDF15 expression and phosphorylation of mTOR. Finally, knockdown of endogenous GDF15 or neutralization of secreted GDF15 suppressed invasion and growth of a GDF15-over-expressing ovarian cancer cell line. These data indicate that GDF15 over-expression, which occurred in a majority of human ovarian cancers, promoted rapamycin-sensitive invasion and growth of ovarian cancer cells. Inhibition of mTOR may be an effective therapeutic strategy for ovarian cancers that over-express GDF15. Future studies should examine GDF15 as a novel molecular target for blocking ovarian cancer progression. PMID:23085437

  17. Uteroplacental adenovirus vascular endothelial growth factor gene therapy increases fetal growth velocity in growth-restricted sheep pregnancies.

    PubMed

    Carr, David J; Wallace, Jacqueline M; Aitken, Raymond P; Milne, John S; Mehta, Vedanta; Martin, John F; Zachary, Ian C; Peebles, Donald M; David, Anna L

    2014-04-01

    Fetal growth restriction (FGR) occurs in ∼8% of pregnancies and is a major cause of perinatal mortality and morbidity. There is no effective treatment. FGR is characterized by reduced uterine blood flow (UBF). In normal sheep pregnancies, local uterine artery (UtA) adenovirus (Ad)-mediated overexpression of vascular endothelial growth factor (VEGF) increases UBF. Herein we evaluated Ad.VEGF therapy in the overnourished adolescent ewe, an experimental paradigm in which reduced UBF from midgestation correlates with reduced lamb birthweight near term. Singleton pregnancies were established using embryo transfer in adolescent ewes subsequently offered a high intake (n=45) or control intake (n=12) of a complete diet to generate FGR or normal fetoplacental growth, respectively. High-intake ewes were randomized midgestation to receive bilateral UtA injections of 5×10¹¹ particles Ad.VEGF-A165 (n=18), control vector Ad.LacZ (n=14), or control saline (n=13). Fetal growth/well-being were evaluated using serial ultrasound. UBF was monitored using indwelling flowprobes until necropsy at 0.9 gestation. Vasorelaxation, neovascularization within the perivascular adventitia, and placental mRNA expression of angiogenic factors/receptors were examined using organ bath analysis, anti-vWF immunohistochemistry, and qRT-PCR, respectively. Ad.VEGF significantly increased ultrasonographic fetal growth velocity at 3-4 weeks postinjection (p=0.016-0.047). At 0.9 gestation fewer fetuses were markedly growth-restricted (birthweight >2SD below contemporaneous control-intake mean) after Ad.VEGF therapy. There was also evidence of mitigated fetal brain sparing (lower biparietal diameter-to-abdominal circumference and brain-to-liver weight ratios). No effects were observed on UBF or neovascularization; however, Ad.VEGF-transduced vessels demonstrated strikingly enhanced vasorelaxation. Placental efficiency (fetal-to-placental weight ratio) and FLT1/KDR mRNA expression were increased in the

  18. Osteocalcin induces growth hormone/insulin-like growth factor-1 system by promoting testosterone synthesis in male mice.

    PubMed

    Li, Y; Li, K

    2014-10-01

    Osteocalcin has been shown to enhance testosterone production in men. In the present study, we investigated the effects of osteocalcin on testosterone and on induction of the growth hormone/insulin-like growth factor-1 axis. Osteocalcin injection stimulated growth, which could be inhibited by castration. In addition, osteocalcin induced testosterone secretion in testes both in vivo and in vitro. Using real-time polymerase chain reaction and Western blotting, we showed that growth hormone expression was significantly increased in the pituitary after osteocalcin injection (p<0.05). Growth hormone expression in CLU401 mouse pituitary cells was also significantly stimulated (p<0.05) by osteocalcin-induced MA-10 cells. Osteocalcin injection also promoted hepatic expression of growth hormone receptor and insulin-like growth factor-1 (p<0.05), as demonstrated by real-time polymerase chain reaction and Western blotting. Similarly, osteocalcin-induced MA-10 cells promoted growth hormone receptor and insulin-like growth factor-1 expression in NCTC1469 cells. These results suggest that the growth-stimulating activities of osteocalcin are mediated by testicular testosterone secretion, and thus provide valuable information regarding the regulatory effects of osteocalcin expression on the growth hormone/insulin-like growth factor-1 axis via reproductive activities.

  19. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  20. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  1. Expression of transforming growth factor β and fibroblast growth factor 2 in the lens epithelium of Morioka cataract mice.

    PubMed

    Kondo, Tomohiro; Ishiga-Hashimoto, Naoko; Nagai, Hiroaki; Takeshita, Ai; Mino, Masaki; Morioka, Hiroshi; Kusakabe, Ken Takeshi; Okada, Toshiya

    2014-05-01

    In the Morioka cataract (MCT) mice, lens opacity appears at 6 to 8 weeks of age, and swollen lens fiber is electron-microscopically observed at 3 weeks after birth. The present study was designed to characterize the expression of transforming growth factor β (TGFβ) and fibroblast growth factor 2 (FGF2) in the lens epithelium of the MCT mice. Immunohistochemical analysis showed that the expression of TGFβ in the lens epithelium of the MCT mice was stronger than that of the wild-type ddY mice at 2 and 4 weeks after birth. The expression of TGFβ receptors (TGFβRI and TGFβRII) and FGF2 in the lens epithelium of the MCT mice was stronger than that of the wild-type ddY mice at 4 weeks and weaker than that of the wild-type ddY mice at 15 weeks after birth. Using real time polymerase chain reaction (PCR), quantitative RT-PCR analysis showed that expression of TGFβ1 and TGFβ2 mRNA in the lens of 2-week-old MCT mice was significantly higher compared to age-matched wild-type ddY mice. These findings indicate that the lens epithelium of MCT mice has increased expression of TGFβ before cataract affection and that changes in the expression of FGF2 as well as TGFβ may contribute to the progression of the cataract in the mice.

  2. Colocalization of insulin-like growth factor-binding protein with insulin-like growth factor I.

    PubMed

    Kobayashi, S; Clemmons, D R; Venkatachalam, M A

    1991-07-01

    We report the localization of insulin-like growth factor I (IGF-I) and a 25-kDa form of insulin-like growth factor-binding protein (IGF-BP-1) in adult rat kidney. The antigens were localized using a rabbit anti-human IGF-I antibody, and a rabbit anti-human IGF-BP-1 antibody raised against human 25-kDa IGF-BP-1 purified from amniotic fluid. Immunohistochemistry by the avidin-biotin peroxidase conjugate technique showed that both peptides are located in the same nephron segments, in the same cell types. The most intense staining was in papillary collecting ducts. There was moderate staining also in cortical collecting ducts and medullary thick ascending limbs of Henle's loop. In collecting ducts the antigens were shown to be present in principal cells but not in intercalated cells. In distal convoluted tubules, cortical thick ascending limbs, and in structures presumptively identified as thin limbs of Henle's loops there was only modest staining. The macula densa, however, lacked immunoreactivity. Colocalization of IGF-I and IGF-BP-1 in the same cells supports the notion, derived from studies on cultured cells, that the actions of IGF-I may be modified by IGF-BPs that are present in the same location.

  3. Growth hormone, insulin-like growth factor-1 and the aging brain.

    PubMed

    Ashpole, Nicole M; Sanders, Jessica E; Hodges, Erik L; Yan, Han; Sonntag, William E

    2015-08-01

    Growth hormone (GH) and insulin-like growth factor (IGF)-1 regulate the development and function of cells throughout the body. Several clinical diseases that result in a decline in physical and mental functions are marked by mutations that disrupt GH or IGF-1 signaling. During the lifespan there is a robust decrease in both GH and IGF-1. Because GH and IGF-1 are master regulators of cellular function, impaired GH and IGF-1 signaling in aging/disease states leads to significant alterations in tissue structure and function, especially within the brain. This review is intended to highlight the effects of the GH and IGF-1 on neuronal structure, function, and plasticity. Furthermore, we address several potential mechanisms through which the age-related reductions in GH and IGF-1 affect cognition. Together, the studies reviewed here highlight the importance of maintaining GH and IGF-1 signaling in order to sustain proper brain function throughout the lifespan. PMID:25300732

  4. Growth hormone and insulin-like growth factor I in a Sydney Olympic gold medallist.

    PubMed

    Armanini, D; Faggian, D; Scaroni, C; Plebani, M

    2002-04-01

    An Italian athlete who won a gold medal at the Sydney Olympic Games was studied. She was accused of doping after the finding of high levels of plasma growth hormone (GH) before the Games. She was studied firstly under stressed and then under unstressed conditions. In the first study, GH was measured every 20 minutes for one hour; it was above the normal range in all blood samples, whereas insulin-like growth factor I (IGF-I) was normal. In the second study, GH progressively returned to accepted normal levels; IGF-I was again normal. It was concluded that the normal range for GH in athletes must be reconsidered for doping purposes, because athletes are subject to stress and thus to wide variations in GH levels. PMID:11916901

  5. Growth hormone, insulin-like growth factor-1 and the aging brain.

    PubMed

    Ashpole, Nicole M; Sanders, Jessica E; Hodges, Erik L; Yan, Han; Sonntag, William E

    2015-08-01

    Growth hormone (GH) and insulin-like growth factor (IGF)-1 regulate the development and function of cells throughout the body. Several clinical diseases that result in a decline in physical and mental functions are marked by mutations that disrupt GH or IGF-1 signaling. During the lifespan there is a robust decrease in both GH and IGF-1. Because GH and IGF-1 are master regulators of cellular function, impaired GH and IGF-1 signaling in aging/disease states leads to significant alterations in tissue structure and function, especially within the brain. This review is intended to highlight the effects of the GH and IGF-1 on neuronal structure, function, and plasticity. Furthermore, we address several potential mechanisms through which the age-related reductions in GH and IGF-1 affect cognition. Together, the studies reviewed here highlight the importance of maintaining GH and IGF-1 signaling in order to sustain proper brain function throughout the lifespan.

  6. Fibroblast growth factor homologous factors in the heart: a potential locus for cardiac arrhythmias.

    PubMed

    Wei, Eric Q; Barnett, Adam S; Pitt, Geoffrey S; Hennessey, Jessica A

    2011-10-01

    The four fibroblast growth factor homologous factors (FHFs; FGF11-FGF14) are intracellular proteins that bind and modulate voltage-gated sodium channels (VGSCs). Although FHFs have been well studied in neurons and implicated in neurologic disease, their role in cardiomyocytes was unclear until recently. This review discusses the expression profile and function of FHFs in mouse and rat ventricular cardiomyocytes. Recent data show that FGF13 is the predominant FHF in the murine heart, directly binds the cardiac VGSC α subunit, and is essential for normal cardiac conduction. FHF loss-of-function mutations may be unrecognized causes of cardiac arrhythmias, such as long QT and Brugada syndromes.

  7. Bioassay and Attributes of a Growth Factor Associated with Crown Gall Tumors 1

    PubMed Central

    Lippincott, Barbara B.; Lippincott, James A.

    1970-01-01

    An improved bioassay is described for a factor that promotes tumor growth which was first obtained from extracts of pinto bean leaves with crown gall tumors. Sixteen primary pinto bean leaves per sample are inoculated with sufficient Agrobacterium tumefaciens to initiate about 5 to 10 tumors per leaf and treated with tumor growth factor at day 3 after inoculation. The diameters of 30 to 48 round tumors (no more than 3 randomly selected per leaf) are measured per test sample at day 6. Mean tumor diameter increased linearly with the logarithm of the concentration of tumor growth factor applied. The tumor growth factor was separated by column chromatography from an ultraviolet light-absorbing compound previously reported to be associated with fractions having maximal tumor growth factor activity. Partly purified tumor growth factor showed no activity in a cytokinin bioassay or an auxin bioassay, and negligible activity in gibberellin bioassays. Representatives of these three classes of growth factors did not promote tumor growth. Extracts from crown gall tumors on primary pinto bean leaves, primary castor bean leaves, Bryophyllum leaves, carrot root slices, and tobacco stems showed tumor growth factor activity, whereas extracts from healthy control tissues did not. Extracts from actively growing parts of healthy pinto beans, Bryophyllum, and tobacco, however, showed tumor growth factor activity. Tumor growth factor is proposed to be a normal plant growth factor associated with rapidly growing tissues. Its synthesis may be activated in nongrowing tissues by infection with Agrobacterium sp. PMID:16657534

  8. Bioassay and attributes of a growth factor associated with crown gall tumors.

    PubMed

    Lippincott, B B; Lippincott, J A

    1970-11-01

    An improved bioassay is described for a factor that promotes tumor growth which was first obtained from extracts of pinto bean leaves with crown gall tumors. Sixteen primary pinto bean leaves per sample are inoculated with sufficient Agrobacterium tumefaciens to initiate about 5 to 10 tumors per leaf and treated with tumor growth factor at day 3 after inoculation. The diameters of 30 to 48 round tumors (no more than 3 randomly selected per leaf) are measured per test sample at day 6. Mean tumor diameter increased linearly with the logarithm of the concentration of tumor growth factor applied. The tumor growth factor was separated by column chromatography from an ultraviolet light-absorbing compound previously reported to be associated with fractions having maximal tumor growth factor activity. Partly purified tumor growth factor showed no activity in a cytokinin bioassay or an auxin bioassay, and negligible activity in gibberellin bioassays. Representatives of these three classes of growth factors did not promote tumor growth. Extracts from crown gall tumors on primary pinto bean leaves, primary castor bean leaves, Bryophyllum leaves, carrot root slices, and tobacco stems showed tumor growth factor activity, whereas extracts from healthy control tissues did not. Extracts from actively growing parts of healthy pinto beans, Bryophyllum, and tobacco, however, showed tumor growth factor activity. Tumor growth factor is proposed to be a normal plant growth factor associated with rapidly growing tissues. Its synthesis may be activated in nongrowing tissues by infection with Agrobacterium sp. PMID:16657534

  9. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2.

    PubMed

    Miyahara, Daichi; Oishi, Isao; Makino, Ryuichi; Kurumisawa, Nozomi; Nakaya, Ryuma; Ono, Tamao; Kagami, Hiroshi; Tagami, Takahiro

    2016-04-22

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2. PMID:26727404

  10. Factors Affecting Growth of Pinus radiata in Chile

    NASA Astrophysics Data System (ADS)

    Alvarez-Munoz, Jose Santos

    The Chilean forestry industry is based on hundreds of thousands of hectares of Pinus radiata plantations that have been established in a variety of soil and climate conditions. This approach has resulted in highly variable plantation productivity even when the best available technology was used. Little information is known about the ecophysiology basis for this variability. We explored the spatial and temporal variation of stand growth in Chile using a network of permanent sample plots from Modelo Nacional de Simulacion de Pino radiata. We hypothesized that the climate would play an important role in the annual variations in productivity. To answer these questions we developed the following projects: (1) Determination of site resource availability from historical data from automatic weather stations (rainfall, temperatures) and a geophysical model for solar irradiation, (2) Determination of peak annual leaf area index (LAI) for selected permanent sample plots using remote sensing technologies, (3) Analysis of soil, climate, canopy and stand factors affecting the Pinus radiata plantation growth and the use efficiency of site resources. For project 1, we estimated solar irradiation using the r.sun , Hargreaves-Samani (HS), and Bristow-Campbell (BC) models and validated model estimates with observations from weather stations. Estimations from a calibrated r.sun model accounted for 94% of the variance (r2=0.94) in monthly mean measured values. The r.sun model performed quite well for a wide range of Chilean conditions when compared with the HS and BC models. Our estimates of global irradiation may be improved with better estimates of cloudiness as they become available. Our model was able to provide spatial estimates of daily, weekly, monthly and yearly solar irradiation. For project 2, we estimated the inter-annual variation of LAI (Leaf Area Index), using remote sensing technologies. We determined LAI using Landsat Thematic Mapper (TM) data covering a 5 year period

  11. Effects of growth hormone and insulin-like growth factor I on muscle in mouse models of human growth disorders.

    PubMed

    Clark, Ryan P; Schuenke, Mark; Keeton, Stephanie M; Staron, Robert S; Kopchick, John J

    2006-01-01

    The precise effects of growth hormone (GH) and insulin-like growth factor I (IGF-I) on muscle development and physiology are relatively unknown. Furthermore, there have been conflicting reports on the effects of GH/IGF-I on muscle. Distinguishing the direct effects of GH versus those of IGF-I is problematic, but animal models with altered GH/IGF-I action could help to alleviate some of the conflicting results and help to determine the independent actions of GH and IGF-I. The phenotypes of several mouse models, namely the GH receptor-gene-disrupted (GHR -/-) mouse and a variety of IGF-I -/- mice, are summarized, which ultimately will aid our understanding of this complex area. PMID:17259718

  12. Clinical experience with monoclonal antibodies to epidermal growth factor receptor.

    PubMed

    Calvo, Emiliano; Rowinsky, Eric K

    2005-03-01

    Recent knowledge about the intermediate steps and final consequences of ligand-dependent epidermal growth factor receptor (EGFR) activation has clearly supported the notion that EGFR plays a fundamental role in regulating the proliferation and survival of malignant neoplasms. Among the rationally designed target-based therapeutics that are being assessed, those targeting EGFR appear to be some of the most clinically relevant. The strategy of using monoclonal antibodies (mAbs) to block ligand binding to the extracellular domain of the EGFR has led to the development of therapeutics that robustly arrest malignant cell proliferation and, in some cases, induce profound tumor regression. The chimeric mAb against EGFR, cetuximab, has already been approved by regulatory agencies worldwide to treat patients with advanced colorectal cancer. Other mAbs against EGFR, particularly panitumumab (ABX-EGF), h-R3, and EMD72000, are in advanced stages of clinical development. PMID:15717942

  13. Heterogeneity of epidermal growth factor binding kinetics on individual cells.

    PubMed Central

    Chung, J C; Sciaky, N; Gross, D J

    1997-01-01

    Binding of fluorescein-conjugated epidermal growth factor (EGF) to individual A431 cells at 4 degrees C is measured by a quantitative fluorescence imaging technique. After background fluorescence and cell autofluorescence photobleaching corrections, the kinetic data are fit to simple models of one monovalent site and two independent monovalent sites, both of which include a first-order dye photobleaching process. Model simulations and the results from data analysis indicate that the one-monovalent-site model does not describe EGF binding kinetics at the single-cell level, whereas the two-site model is consistent with, but not proved by, the single-cell binding data. In addition, the kinetics of binding of fluorescein-EGF to different cells from the same coverslip often differ significantly from each other, indicating cell-to-cell variations in the binding properties of the EGF receptor. PMID:9251825

  14. Fibroblast growth factor-2 alters the nature of extinction.

    PubMed

    Graham, Bronwyn M; Richardson, Rick

    2011-02-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction, do not depend on NMDAr activation. Three experiments demonstrated that FGF2 prevents the switch from NMDAr-dependent to NMDAr-independent reacquisition and re-extinction, suggesting that FGF2 may lead to the partial erasure of the original fear memory. These findings add to a growing body of work suggesting that FGF2 may be a novel pharmacological enhancer of exposure therapy for humans with anxiety disorders.

  15. Overexpression and activation of epidermal growth factor receptor in hemangioblastomas

    PubMed Central

    Chen, Gregory J.; Karajannis, Matthias A.; Newcomb, Elizabeth W.

    2010-01-01

    Hemangioblastomas frequently develop in patients with von Hippel-Lindau (VHL) disease, an autosomal dominant genetic disorder. The tumors are characterized by a dense network of blood capillaries, often in association with cysts. Although activation of receptor tyrosine kinase (RTK) signaling, including epidermal growth factor receptor (EGFR) has been implicated in the development of malignant brain tumors such as high-grade gliomas, little is known about the role of RTK signaling in hemangioblastomas. To address this issue, we examined hemangioblastoma tumor specimens using receptor tyrosine kinase (RTK) activation profiling and immunohistochemistry. Six human hemangioblastomas were analyzed with a phospho-RTK antibody array, revealing EGFR phosphorylation in all tumors. EGFR expression was confirmed by immunohistochemistry in all tumors analyzed and downstream effector pathway activation was demonstrated by positive staining for phospho-AKT. Our findings suggest that, in primary hemangioblastomas, RTK upregulation and signaling predominantly involves EGFR, providing an attractive molecular target for therapeutic intervention. PMID:20730556

  16. [Antifibrillatory activity of dipeptide antagonist of nerve growth factor].

    PubMed

    Kryzhanovskiĭ, S A; Stoliarchuk, V N; Vititnova, M B; Tsorin, I B; Pekel'dina, E S; Gudasheva, T A

    2012-01-01

    In experiments on anesthetized rats were assessed antifibrillatoty action of dipeptide GK-1. This compound is the fragment of fourth loop of nerve growth factor (NGF) and manifests antagonistic activity in respect to TrkA receptor, that specified for NGF. It is shown that this compound is able to significantly increase the threshold of electrical fibrillation of the heart and its effectiveness is not inferior to the reference antiarrhythmics I and III class on Vaughan Williams classification. However, unlike the latter, antifibrillatory action of dipeptide GK-1 was delayed and realized within 40-60 minutes after its administration. It is discussed possible mechanisms underlying antifibrillatory action of dipeptide GK-1, that, to some extent, may be associated with its ability to change the reactivity of beta-adrenergic structures of the heart.

  17. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    PubMed Central

    Yun, Ye-Rang; Won, Jong Eun; Jeon, Eunyi; Lee, Sujin; Kang, Wonmo; Jo, Hyejin; Jang, Jun-Hyeog; Shin, Ueon Sang; Kim, Hae-Won

    2010-01-01

    Fibroblast growth factors (FGFs) that signal through FGF receptors (FGFRs) regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues. PMID:21350642

  18. Mammalian tolloid proteinases: role in growth factor signalling.

    PubMed

    Troilo, Helen; Bayley, Christopher P; Barrett, Anne L; Lockhart-Cairns, Michael P; Jowitt, Thomas A; Baldock, Clair

    2016-08-01

    Tolloid proteinases are essential for tissue patterning and extracellular matrix assembly. The members of the family differ in their substrate specificity and activity, despite sharing similar domain organization. The mechanisms underlying substrate specificity and activity are complex, with variation between family members, and depend on both multimerization and substrate interaction. In addition, enhancers, such as Twisted gastrulation (Tsg), promote cleavage of tolloid substrate, chordin, to regulate growth factor signalling. Although Tsg and mammalian tolloid (mTLD) are involved in chordin cleavage, no interaction has been detected between them, suggesting Tsg induces a change in chordin to increase susceptibility to cleavage. All members of the tolloid family bind the N terminus of latent TGFβ-binding protein-1, providing support for their role in TGFβ signalling. PMID:27391803

  19. Fibroblast growth factor signaling in skeletal development and disease

    PubMed Central

    Ornitz, David M.; Marie, Pierre J.

    2015-01-01

    Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored. PMID:26220993

  20. Patterns of epidermal growth factor receptor amplification in malignant gliomas.

    PubMed Central

    Sauter, G.; Maeda, T.; Waldman, F. M.; Davis, R. L.; Feuerstein, B. G.

    1996-01-01

    Amplification of the gene for epidermal growth factor receptor (EGFR) is a common finding in malignant gliomas. We found that 18 of 29 grade 3 and grade 4 gliomas had EGFR amplification when assayed using fluorescence in situ hybridization. The amplification pattern suggests that the amplicon is contained within double minute chromosomes in most cases. EGFR copy number can differ by 20-fold in amplified cells within a single case. Polysomy 7 occurs frequently in both EGFR-amplified and -unamplified cells. More than one-third of the cases had < or = 10 percent of cells with amplified EGFR, and it is likely that these cases would not have been identified by methods that do not examine DNA on a cell by cell basis. Images Figure 1 PMID:8644846

  1. Transforming Growth Factor Beta and Excess Burden of Renal Disease

    PubMed Central

    August, Phyllis; Sharma, Vijay; Ding, Ruchuang; Schwartz, Joseph E.; Suthanthiran, Manikkam

    2009-01-01

    End-stage renal disease (ESRD) is more frequent in African Americans (blacks) compared to whites. Because renal fibrosis is a correlate of progressive renal failure and a dominant feature of ESRD, and because transforming growth factor beta 1 (TGF-β1) can induce fibrosis and renal insufficiency, we hypothesized that TGF-β1 hyperexpression is more frequent in blacks compared to whites. We measured circulating levels of TGF-β1 in black and white patients with ESRD, hypertension, and in normal patients. We demonstrated that circulating levels of TGF-β1 are higher in black ESRD patients, hypertensive patients, and normal control patients compared to their white counterparts. Our preliminary genetic analyses suggest that TGF-β1 DNA polymorphisms are different in blacks and whites. Our observations of hyperexpression of TGF-β1 in blacks suggest a mechanism for the increased prevalence of renal failure and hypertensive target organ damage in this population. PMID:19768163

  2. Nerve growth factor: stimulation of polymorphonuclear leukocyte chemotaxis in vitro.

    PubMed Central

    Gee, A P; Boyle, M D; Munger, K L; Lawman, M J; Young, M

    1983-01-01

    Topical application of mouse nerve growth factor (NGF) to superficial skin wounds of mice has previously been shown to accelerate the rate of wound contraction. Results of the present study reveal that NGF in the presence of plasma is also chemotactic for human polymorphonuclear leukocytes in vitro, and the concentration of NGF required for this effect is similar to that which stimulates ganglionic neurite outgrowth. This property does not arise from liberation of the C5a fragment of complement, nor does it require the known enzymic activity of NGF. (NGF inactivated with diisopropyl fluorophosphate is equally active.) We conclude that NGF can display biological effects on cells of nonneural origin and function, and this feature might play a role in the early inflammatory response to injury. PMID:6580641

  3. Topical administration of adrenergic receptor pharmaceutics and nerve growth factor

    PubMed Central

    Steinle, Jena J

    2010-01-01

    Topical application of nerve growth factor (NGF) and adrenergic receptor pharmaceutics are currently in use for corneal ulcers and glaucoma. A recent interest in the neuroprotective abilities of NGF has led to a renewed interest in NGF as a therapeutic for retinal and choroidal diseases. NGF can promote cell proliferation through actions of the TrkA receptor or promote apoptosis through receptor p75NTR. This understanding has led to novel interest in the role of NGF for diseases of the posterior eye. The role of β-adrenergic receptor agonists and antagonists for treatments of glaucoma, diabetic retinopathy, and their potential mechanisms of action, are still under investigation. This review discusses the current knowledge and applications of topical NGF and adrenergic receptor drugs for ocular disease. PMID:20668722

  4. Epidermal growth factor and its receptors in human pancreatic carcinoma

    SciTech Connect

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N. )

    1990-05-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells.

  5. Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation

    SciTech Connect

    Kato, Y.; Iwamoto, M. )

    1990-04-05

    The effects of basic fibroblast growth factor (bFGF) on terminal differentiation of chondrocytes and cartilage-matrix calcification were investigated. Rabbit growth-plate chondrocytes maintained as a pelleted mass in a centrifuge tube produced an abundant proteoglycan matrix during the matrix-maturation stage, yielding a cartilage-like tissue. Thereafter, they terminally differentiated to hypertrophic chondrocytes which produced high levels of alkaline phosphatase. These cells induced extensive calcification of the matrix in the absence of additional phosphate. Addition of bFGF to the chondrocyte cultures abolished the increases in alkaline phosphatase activity, {sup 45}Ca deposition, and the calcium content. These effects were dose-dependent, reversible, and observed in the presence of cytosine arabinoside, an inhibitor of DNA synthesis. The inhibitory effects could be observed only when chondrocytes were exposed to bFGF in a transition period between the matrix-maturation and hypertrophic stages. As chondrocytes differentiated to hypertrophic cells, bFGF became less effective in inhibiting the expression of the mineralization-related phenotypes. The present study also shows that although the rate of ({sup 35}S)sulfate incorporation into large, chondroitin sulfate proteoglycan in the cell-matrix fraction is very high during the matrix-maturation stage, it abruptly decreases by 90% after terminal differentiation. Furthermore, the terminal differentiation-associated decrease in proteoglycan synthesis was delayed by bFGF. These results provide evidence that bFGF inhibits terminal differentiation of chondrocytes and calcification.

  6. Fibroblast growth factor-10 is a mitogen for urothelial cells

    SciTech Connect

    Bagai, Shelly; Rubio, Eric; Cheng, Jang-Fang; Sweet, Robert; Thomas, Regi; Fuchs, Elaine; Grady, Richard; Mitchell, Michael; Bassuk, James A.

    2002-02-01

    Fibroblast Growth Factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.

  7. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  8. Muscle growth in young horses: Effects of age, cytokines, and growth factors.

    PubMed

    LaVigne, E K; Jones, A K; Londoño, A Sanchez; Schauer, A S; Patterson, D F; Nadeau, J A; Reed, S A

    2015-12-01

    Success as equine athletes requires proper muscle growth in young horses. Muscle hypertrophy occurs through protein synthesis and the contribution of muscle satellite cells, which can be stimulated or inhibited by cytokines and growth factors present during exercise and growth. The hypotheses of this study were that 1) the LM area in young horses would increase over 1 yr, and 2) specific cytokines and growth factors (IL-1β, IL-6, tumor necrosis factor [TNF]-α, IGF-I, and fibroblast growth factor [FGF]-2) would alter proliferation and differentiation of satellite cells isolated from young horses. Fourteen horses were divided into 3 age groups: weanlings ( = 5), yearlings to 2 yr olds ( = 4), and 3 to 4 yr olds ( = 5). The area, height, and subcutaneous fat depth of the LM were measured using ultrasonography, and BW and BCS were taken in October (Fall1), April (Spring), and October of the following year (Fall2). Satellite cells obtained from 10-d-old foals ( = 4) were cultured in the presence of IL-6, IL-1β, TNF-α, IGF-I, or FGF-2 before evaluation of proliferation and differentiation. Data were analyzed using PROC MIXED in SAS. Body weight increased from Fall1 to Spring in weanlings ( < 0.001) and increased in all horses from Spring to Fall2 ( ≤ 0.02). Area and height of the LM increased over time ( < 0.001) and with increasing age group of horse ( ≤ 0.03), although there was no interaction of time and age ( > 0.61). There was a significant increase in LM area in all animals from Spring to Fall2 ( < 0.001) but not from Fall1 to Spring. Interleukin-6 and TNF-α decreased satellite cell proliferation by 14.9 and 11.5%, respectively ( ≤ 0.01). Interleukin-6 increased fusion 6.2%, whereas TNF-α decreased fusion 8.7% compared with control cells ( ≤ 0.001). Interleukin-1β had no effect on proliferation ( = 0.32) but tended to decrease fusion ( = 0.06). Satellite cell proliferation was increased 28.8 and 73.0% by IGF-I and FGF-2, respectively ( < 0

  9. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  10. Coregulation of Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2 (HER2) Levels and Locations: Quantitative Analysis of HER2 Overexpression Effects

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee; Wiley, H. S.; Lauffenburger, Douglas A.

    2003-03-01

    Elevated expression of human epidermal growth factor receptor 2 (HER2) is know to alter cell signalilng and behavioral responses implicated in tumor progression. However, multiple diverse mechanisms may be involved in these overall effects, including signaling by HER2 itself, modulation of signalilng by epidermal growth factor receptor (EGFR) and modification of trafficking dynamics for both EGFR and HER2. Continued....

  11. Role of polypeptide growth factors in phenotypic transformation of normal rat kidney cells

    SciTech Connect

    van Zoelen, E.J.J.; van Oostwaard, T.M.J.; de Laat, S.W.

    1988-01-05

    A serum-free assay has been established for studying the role of polypeptide growth factors in inducing loss of density-dependent inhibition of growth of normal rat kidney (NRK) cells. The process has been characterized by measuring the time course of (/sup 3/H)thymidine incorporation into confluent, quiescent NRK cultures stimulated by defined polypeptide growth factors, in combination with cell counting studies, increases in DNA content, and cell cycle analysis by means of a fluorescence-activated cell sorter. It is shown that none of the growth factors tested is able to induce loss of density-dependent inhibition of growth by itself, but strong synergism was observed when combinations of growth factors were tested. None of the above factors was found to be essential, however, since any combination of three of the above four growth factors strongly induced the process. Strong parallels were observed between the growth factor requirements for inducing loss of density-dependent inhibition of growth under serum-free conditions and the requirements for induction of anchorage-independent proliferation under growth factor-defined assay conditions. This indicates that most likely the same cellular processes underlie these two aspects of phenotypic transformation, although data indicate that anchorage-independent proliferation may be a more restricted property of phenotypic transformation than loss of density dependence of proliferation. It is concluded that phenotypic transformation of NRK cells does not require specific polypeptide growth factors, but reflects the ability of these cells to respond to multiple growth factors.

  12. The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk.

    PubMed

    McPherson, R J; Wagner, C L

    2001-01-01

    Transforming growth factor alpha (TGF-alpha) and beta 2 (TGF-beta2) are present in human milk and are involved in growth differentiation and repair of neonatal intestinal epithelia. Heat treatment at 56 degrees C has been shown effective for providing safe banked donor milk, with good retention of other biologically active factors. The purpose of our study was to determine the effect of heat sterilization on TGF-alpha and TGF-beta2 concentrations in human milk. Twenty milk samples were collected from 20 lactating mothers in polypropylene containers and frozen at -20 degrees C for transport or storage. Before heat treatment by holder pasteurization, the frozen milk was thawed and divided into 1-mL aliquots. All samples were heated in an accurately regulated water bath until a holding temperature was achieved, then held for 30 minutes using constant agitation. Holding temperature ranged from 56.5 degrees C to 56.9 degrees C. The milk was then stored at 4 degrees C overnight for analysis the following day. The concentration of TGF-alpha was measured by radioimmunoassay. Mean concentration +/- SD of TGF-alpha in raw milk samples was 119+/-50 pg/mL, range 57 to 234. The mean concentration +/- SD of TGF-alpha in heat treated samples was 113+/-50 pg/mL, range 51 to 227. TGF-alpha concentration was minimally affected by pasteurization, with an overall loss of 6.1%. Of 19 samples, 4 had increased and 15 had decreased concentrations after pasteurization (mean percent SEM: 94%+/-7% of raw milk, range 72%+/-107%). The concentration of acid-activated TGF-beta2 was measured by enzyme-linked immunosorbent assay. Mean concentration +/- SD of TGF-beta2 in raw milk samples was 5624+/-5038 pg/mL, range 195 to 15480. The mean concentration +/- SD of TGF-beta2 in heat-treated samples was 5073+/-4646 pg/mL, range 181 to 15140. TGF-beta2 survived with relatively little loss (0.6%): of 18 samples, 11 had increased and 7 had decreased concentrations after pasteurization (mean percent

  13. [The basic and applied study on the epidermal growth factor].

    PubMed

    Huang, B R; Cai, L W; Xiang, X Z

    2001-04-01

    This article reviews the results of the basic research about epidermal growth factor and its receptor, and the development of the novel drug, EGF eyedrop, that containing chemically synthesized EGF gene, the construction of EGF expression vector, the transformation of the host cells, the purification of the recombinant protein EGF, the preparation of three batches of the EGF product and identification, the preclinical and clinical trials. Relevant studies show that recombinant EGF consisting of 51 amino acids can be secreted into the medium under the control of the alpha factor leading sequence in the yeast cells. The EGF can accelerate the growth of corneal-limbal epithelial cells and the healing of an alkali burned corneal. The EGF can be used in curing oral cavity ulcer and skin burned wound. And it has the preventive effects on experimental duodenal ulcer of rat. The antiserum was made for test of the concentration of blood EGF and urine EGF by RIA. Data from studies demonstrate the inhibition effect of EGF on the growth of tumor cells, such as A431 and BT325 cells in the presence of high EGF concentration (> 10 ng/ml). The expression of EGFR and DNA ploidy in renal carcinoma has clinical significance. Crystallization and preliminary x-ray diffraction studies of the EGF has been made. The MW of the EGF product is 6000, and the pI is about 4.6 and it has correct N-terminal amino acids sequences, immunogenicity and biological activity. There is no vestige of the DNA of the yeast cells. Animal experiments reveal that there is no cumulation of the EGF in the body, and EGF can promote corneal epithelial healing. There is no toxicological effect during cornea wound healing of rabbit. A randomized, double-blind, placebo-controlled, multi-center clinical trial was conducted in four hospitals to assess safety, ocular tolerance and efficacy of an ophthalmic solution of EGF for 200 cases of cornea transplantation and 247 cases of nebulae. Unequivocal results were obtained

  14. [The basic and applied study on the epidermal growth factor].

    PubMed

    Huang, B R; Cai, L W; Xiang, X Z

    2001-04-01

    This article reviews the results of the basic research about epidermal growth factor and its receptor, and the development of the novel drug, EGF eyedrop, that containing chemically synthesized EGF gene, the construction of EGF expression vector, the transformation of the host cells, the purification of the recombinant protein EGF, the preparation of three batches of the EGF product and identification, the preclinical and clinical trials. Relevant studies show that recombinant EGF consisting of 51 amino acids can be secreted into the medium under the control of the alpha factor leading sequence in the yeast cells. The EGF can accelerate the growth of corneal-limbal epithelial cells and the healing of an alkali burned corneal. The EGF can be used in curing oral cavity ulcer and skin burned wound. And it has the preventive effects on experimental duodenal ulcer of rat. The antiserum was made for test of the concentration of blood EGF and urine EGF by RIA. Data from studies demonstrate the inhibition effect of EGF on the growth of tumor cells, such as A431 and BT325 cells in the presence of high EGF concentration (> 10 ng/ml). The expression of EGFR and DNA ploidy in renal carcinoma has clinical significance. Crystallization and preliminary x-ray diffraction studies of the EGF has been made. The MW of the EGF product is 6000, and the pI is about 4.6 and it has correct N-terminal amino acids sequences, immunogenicity and biological activity. There is no vestige of the DNA of the yeast cells. Animal experiments reveal that there is no cumulation of the EGF in the body, and EGF can promote corneal epithelial healing. There is no toxicological effect during cornea wound healing of rabbit. A randomized, double-blind, placebo-controlled, multi-center clinical trial was conducted in four hospitals to assess safety, ocular tolerance and efficacy of an ophthalmic solution of EGF for 200 cases of cornea transplantation and 247 cases of nebulae. Unequivocal results were obtained

  15. Incisional wound healing in transforming growth factor-beta1 null mice.

    PubMed

    Koch, R M; Roche, N S; Parks, W T; Ashcroft, G S; Letterio, J J; Roberts, A B

    2000-01-01

    Expression of endogenous transforming growth factor-beta1 is reduced in many animal models of impaired wound healing, and addition of exogenous transforming growth factor-beta has been shown to improve healing. To test the hypothesis that endogenous transforming growth factor-beta1 is essential for normal wound repair, we have studied wound healing in mice in which the transforming growth factor-beta1 gene has been deleted by homologous recombination. No perceptible differences were observed in wounds made in 3-10-day-old neonatal transforming growth factor-beta1 null mice compared to wild-type littermates. To preclude interference from maternally transferred transforming growth factor-beta1, cutaneous wounds were also made on the backs of 30-day-old transforming growth factor-beta1 null and littermate control mice treated with rapamycin, which extends their lifetime and suppresses the inflammatory response characteristic of the transforming growth factor-beta1 null mice. Again, no impairment in healing was seen in transforming growth factor-beta1 null mice. Instead these wounds showed an overall reduction in the amount of granulation tissue and an increased rate of epithelialization compared to littermate controls. Our data suggest that release of transforming growth factor-beta1 from degranulating platelets or secretion by infiltrating macrophages and fibroblasts is not critical to initiation or progression of tissue repair and that endogenous transforming growth factor-beta1 may actually function to increase inflammation and retard wound closure.

  16. How does the pathophysiological context influence delivery of bone growth factors?☆

    PubMed Central

    Yu, Xiaohua; Suárez-González, Darilis; Khalil, Andrew S.; Murphy, William L.

    2014-01-01

    “Orthobiologics” represents an important category of therapeutics for the regeneration of bone defects caused by injuries or diseases, and bone growth factors are a particularly rapidly growing sub-category. Clinical application of bone growth factors has accelerated in the last two decades with the introduction of BMPs into clinical bone repair. Optimal use of growth factor-mediated treatments heavily relies on controlled delivery, which can substantially influence the local growth factor dose, release kinetics, and biological activity. The characteristics of the surrounding environment, or “context”, during delivery can dictate growth factor loading efficiency, release and biological activity. This review discusses the influence of the surrounding environment on therapeutic delivery of bone growth factors. We specifically focus on pathophysiological components, including soluble components and cells, and how they can actively influence the therapeutic delivery and perhaps efficacy of bone growth factors. PMID:25453269

  17. End stage renal disease serum contains a specific renal cell growth factor

    SciTech Connect

    Klotz, L.H.; Kulkarni, C.; Mills, G. )

    1991-01-01

    End stage renal disease (ESRD) kidneys display abnormal growth characterized by a continuum of cystic disease, adenoma and carcinoma. This study evaluates the hypothesis that serum of patients with ESRD contains increased amounts of a growth factor which specifically induces proliferation of renal cells. ESRD sera compared to sera from normal controls induced a two to three-fold increase in the proliferative rate of renal cell carcinoma cell lines and normal kidney explants compared to cell lines from other sites. The increased proliferative activity of ESRD sera on renal cells was paralleled by an increase in cytosolic free calcium. The growth factor activity was encoded by a polypeptide of between 15 and 30 kd. The activity of ESRD sera on renal cells was not mimicked or inhibited by epidermal growth factor, basic fibroblast growth factor and platelet derived growth factor indicating that the renal cell specific growth factor activity in ESRD is different from these factors.

  18. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    SciTech Connect

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro; Iwakura, Tomohiko; Obana, Masanori; Takai, Mika; Mohri, Tomomi; Nonen, Shinpei; Maeda, Makiko; Azuma, Junichi

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.

  19. Placental Induced Growth Factor (PIGf) in Coronary Artery Disease

    NASA Technical Reports Server (NTRS)

    Sundaresan, Alamelu; Carabello, Blaise; Mehta, Satish; Schlegel, Todd; Pellis, Neal; Ott, Mark; Pierson, Duane

    2010-01-01

    Our previous studies on normal human lymphocytes have shown a five-fold increase (p less than 0.001) in angiogenic inducers such as Placental Induced Growth Factor (PIGf) in physiologically stressful environments such as modeled microgravity, a space analog. This suggests de-regulation of cardiovascular signalling pathways indicated by upregulation of PIGf. In the current study, we measured PIGf in the plasma of 33 patients with and without coronary artery disease (CAD) to investigate whether such disease is associated with increased levels of PIGf. A control consisting of 31 sex matched apparently healthy subjects was also included in the study. We observed that the levels of PIGf in CAD patients were significantly increased compared to those in healthy control subjects (p less than 0.001) and usually increased beyond the clinical threshold level (greater than 27ng/L). The mechanisms leading to up-regulation of angiogenic factors and the adaptation of organisms to stressful environments such as isolation, high altitude, hypoxia, ischemia, microgravity, increased radiation, etc are presently unknown and require further investigation in spaceflight and these other physiologically stressed environments.

  20. Neutrino mass, dark energy, and the linear growth factor

    NASA Astrophysics Data System (ADS)

    Kiakotou, Angeliki; Elgarøy, Øystein; Lahav, Ofer

    2008-03-01

    We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities fν=Ων/Ωm, but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;fν,w,ΩDE)≈[1-A(k)ΩDEfν+B(k)fν2-C(k)fν3]Ωmα(z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J.ASJOAB0004-637X 511, 5 (1999)10.1086/306640] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/~lahav/nu_matter_power.f].

  1. [Fibroblast growth factor 23 in chronic kidney disease in children].

    PubMed

    Okarska-Napierała, Magdalena; Skrzypczyk, Piotr; Pańczyk-Tomaszewska, Małgorzata

    2016-06-01

    Cardiovascular risk in children with chronic kidney disease (CKD) is many times higher compared to their healthy peers, and discovered in year 2000 fibroblast growth factor 23 (FGF23) may be one of the factors responsible. FGF23 together with its cofactor, α-Klotho protein, plays a pivotal role in calcium-phosphorus metabolism in patients with CKD by decreasing secretion of active metabolite of vitamin D and antagonizing phosphate resorption in renal tubules. Studies conducted in recent years revealed that FGF23 directly binds to its receptor on cardiomyocytes and promotes left ventricular hypertrophy. Clinical trials in children with CKD, similarly to adult studies, suggest a key role of this protein in development of calciumphosphorus disturbances. Single studies in small patient groups suggest also a significance of FGF23 in pathogenesis of cardiovascular alterations in this population. Further clinical trials investigating role of FGF23 in development of cardiovascular damage in larger groups of children are necessary, which may open new therapeutic options for these patients in future. PMID:27403909

  2. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma.

  3. Roles of Vascular Endothelial Growth Factor in Amyotrophic Lateral Sclerosis

    PubMed Central

    Pronto-Laborinho, Ana Catarina; Pinto, Susana; de Carvalho, Mamede

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS. PMID:24987705

  4. Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis.

    PubMed

    Pronto-Laborinho, Ana Catarina; Pinto, Susana; de Carvalho, Mamede

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS. PMID:24987705

  5. The Insulin-Like Growth Factor System and Nutritional Assessment

    PubMed Central

    Livingstone, Callum

    2012-01-01

    Over recent years there has been considerable interest in the role of the insulin-like growth factor (IGF) system in health and disease. It has long been known to be dysregulated in states of under- and overnutrition, serum IGF-I levels falling in malnourished patients and responding promptly to nutritional support. More recently, other proteins in this system have been observed to be dysregulated in both malnutrition and obesity. Currently no biochemical marker is sufficiently specific for use in screening for malnutrition, but levels may be valuable in providing information on nutritional status and in monitoring of nutritional support. All have limitations as nutritional markers in that their serum levels are influenced by factors other than nutritional status, most importantly the acute phase response (APR). Levels should be interpreted along with clinical findings and the results of other investigations such as C-reactive protein (CRP). This paper reviews data supporting the use of proteins of the IGF system as nutritional markers. PMID:24278739

  6. Receptor Specificity of the Fibroblast Growth Factor Family

    PubMed Central

    Zhang, Xiuqin; Ibrahimi, Omar A.; Olsen, Shaun K.; Umemori, Hisashi; Mohammadi, Moosa; Ornitz, David M.

    2007-01-01

    In mammals, fibroblast growth factors (FGFs) are encoded by 22 genes. FGFs bind and activate alternatively spliced forms of four tyrosine kinase FGF receptors (FGFRs 1–4). The spatial and temporal expression patterns of FGFs and FGFRs and the ability of specific ligand-receptor pairs to actively signal are important factors regulating FGF activity in a variety of biological processes. FGF signaling activity is regulated by the binding specificity of ligands and receptors and is modulated by extrinsic cofactors such as heparan sulfate proteoglycans. In previous studies, we have engineered BaF3 cell lines to express the seven principal FGFRs and used these cell lines to determine the receptor binding specificity of FGFs 1–9 by using relative mitogenic activity as the readout. Here we have extended these semiquantitative studies to assess the receptor binding specificity of the remaining FGFs 10–23. This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity. PMID:16597617

  7. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  8. Growth Hormone-Insulin-Like Growth Factor Axis, Thyroid Axis, Prolactin, and Exercise.

    PubMed

    Hackney, Anthony C; Davis, Hope C; Lane, Amy R

    2016-01-01

    This chapter addresses what is known about the endocrine system components growth hormone (GH)-insulin-like growth factor (IGF) axis, thyroid axis, and prolactin relative to exercise and exercise training. Each one of these hormone axes contributes to the maintenance of homeostasis in the body through impact on a multitude of physiological systems. The homeostatic disruption of exercise causes differing responses in each hormone axis. GH levels increase with sufficient stimulation, and IGFs are released in response to GH from the anterior pituitary providing multiple roles including anabolic properties. Changes in the thyroid hormones T3 and T4 vary greatly with exercise, from increases/decreases to no change in levels across different exercise types, intensities and durations. These ambiguous findings could be due to numerous confounding factors (e.g. nutrition status) within the research. Prolactin increases proportionally to the intensity of the exercise. The magnitude may be augmented with extended durations; conflicting findings have been reported with resistance training. While the responses to exercise vary, it appears there may be overall adaptive and regenerative impacts on the body into recovery by these hormones through immune and tissue inflammatory responses/mediations. Nonetheless, well-designed exercise research studies are still needed on each of these hormones, especially thyroid hormones and prolactin. PMID:27348437

  9. Novel Regulation of Fibroblast Growth Factor 2 (FGF2)-mediated Cell Growth by Polysialic Acid*

    PubMed Central

    Ono, Sayaka; Hane, Masaya; Kitajima, Ken; Sato, Chihiro

    2012-01-01

    Polysialic acid (polySia) is a unique polysaccharide that modifies neural cell adhesion molecule (NCAM) spatiotemporally. Recently, we demonstrated that polySia functions as a reservoir for several neurotrophic factors and neurotransmitters. Here, we showed the direct interaction between polySia and fibroblast growth factor-2 (FGF2) by native-PAGE, gel filtration, and surface plasmon resonance. The minimum chain length of polySia required for the interaction with FGF2 was 17. Compared with heparan sulfate, a well known glycosaminoglycan capable of forming a complex with FGF2, polySia formed a larger complex with distinct properties in facilitating oligomerization of FGF2, as well as in binding to FGF receptors. In polySia-NCAM-expressing NIH-3T3 cells, which were established by transfecting cells with either of the plasmids for the expression of the polysialyltransferases ST8SiaII/STX and ST8SiaIV/PST that can polysialylate NCAM, FGF2-stimulated cell growth, but not cell survival, was inhibited. Taken together, these results suggest that polySia-NCAM might be involved in the regulation of FGF2-FGF receptor signaling through the direct binding of FGF2 in a manner distinct from heparan sulfate. PMID:22158871

  10. Growth factor delivery methods in the management of sports injuries: the state of play.

    PubMed

    Creaney, L; Hamilton, B

    2008-05-01

    In recent years there have been rapid developments in the use of growth factors for accelerated healing of injury. Growth factors have been used in maxillo-facial and plastic surgery with success and the technology is now being developed for orthopaedics and sports medicine applications. Growth factors mediate the biological processes necessary for repair of soft tissues such as muscle, tendon and ligament following acute traumatic or overuse injury, and animal studies have demonstrated clear benefits in terms of accelerated healing. There are various ways of delivering higher doses of growth factors to injured tissue, but each has in common a reliance on release of growth factors from blood platelets. Platelets contain growth factors in their alpha-granules (insulin-like growth factor-1, basic fibroblast growth factor, platelet-derived growth factor, epidermal growth factor, vascular endothelial growth factor, transforming growth factor-beta(1)) and these are released upon injection at the site of an injury. Three commonly utilised techniques are known as platelet-rich plasma, autologous blood injections and autologous conditioned serum. Each of these techniques has been studied clinically in humans to a very limited degree so far, but results are promising in terms of earlier return to play following muscle and particularly tendon injury. The use of growth factors in sports medicine is restricted under the terms of the World Anti-Doping Agency (WADA) anti-doping code, particularly because of concerns regarding the insulin-like growth factor-1 content of such preparations, and the potential for abuse as performance-enhancing agents. The basic science and clinical trials related to the technology are reviewed, and the use of such agents in relation to the WADA code is discussed. PMID:17984193

  11. Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels.

    PubMed

    Conovaloff, Aaron W; Beier, Brooke L; Irazoqui, Pedro P; Panitch, Alyssa

    2011-01-01

    Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. Furthermore, cultures of chick dorsal root ganglia in gels of hyaluronic acid or chondroitin sulfate revealed enhanced growth in chondroitin sulfate gels only upon addition of peptide. Taken together, these results suggest a synergistic nerve growth factor-binding activity between this peptide and chondroitin sulfate. PMID:23507745

  12. Regulation of intestinal epithelial cell growth by transforming growth factor type. beta

    SciTech Connect

    Barnard, J.A.; Beauchamp, R.D.; Coffey, R.J.; Moses, H.L. )

    1989-03-01

    A nontransformed rat jejunal crypt cell line (IEC-6) expresses transforming growth factor type {beta}1 (TGF-{beta}1) mRNA, secretes latent {sup 125}I-labeled TGF-{beta}1 to specific, high-affinity cell surface receptors. IEC-6 cell growth is markedly inhibited by TGF-{beta}1 and TGF-{beta}2 with half-maximal inhibition occurring between 0.1 and 1.0 ng of TGF-{beta}1 per ml. TGF-{beta}1-mediated growth inhibition is not associated with the appearance of biochemical markers of enterocyte differentiation such as alkaline phosphatase expression and sucrase activity. TGF-{beta}1 increases steady-state levels of its own mRNA expression within 8 hr of treatment of rapidly growing IEC-6 cells. In freshly isolated rat jejunal enterocytes that are sequentially eluted from the crypt villus axis, TGF-{beta}1 mRNA expression is most abundant in terminally differentiated villus tip cells and least abundant in the less differentiated, mitotically active crypt cells. The authors conclude that TGF-{beta}1 is an autoregulated growth inhibitor in IEC-6 cells that potentially functions in an autocrine manner. In the rat jejunal epithelium, TGF-{beta}1 expression is most prominently localized to the villus tip--i.e., the region of the crypt villus unit that is characterized by the terminally differentiated phenotype. These data suggest that TGF-{beta}1 may function in coordination of the rapid cell turnover typical for the intestinal epithelium.

  13. Fibroblast growth factor homologous factor 13 regulates Na+ channels and conduction velocity in murine heart

    PubMed Central

    Wang, Chuan; Hennessey, Jessica A.; Kirkton, Robert D.; Wang, Chaojian; Graham, Victoria; Puranam, Ram S.; Rosenberg, Paul B.; Bursac, Nenad; Pitt, Geoffrey S.

    2012-01-01

    Rationale Fibroblast growth factor homologous factors (FHFs), a subfamily of fibroblast growth factors (FGFs) that are incapable of functioning as growth factors, are intracellular modulators of Na+ channels and have been linked to neurodegenerative diseases. Although certain FHFs have been found in embryonic heart, they have not been reported in adult heart, and they have not been shown to regulate endogenous cardiac Na+ channels nor participate in cardiac pathophysiology. Objective We tested whether FHFs regulate Na+ channels in murine heart. Methods and Results We demonstrated that isoforms of FGF13 are the predominant FHFs in adult mouse ventricular myocytes. FGF13 binds directly to, and co-localizes with the Na 1.5 Na+ V channel in the sarcolemma of adult mouse ventricular myocytes. Knockdown of FGF13 in adult mouse ventricular myocytes revealed a loss-of-function of NaV1.5: reduced Na+ current (INa) density, decreased Na+ channel availability, and slowed INa recovery from inactivation. Cell surface biotinylation experiments showed a ~45% reduction in NaV1.5 protein at the sarcolemma after FGF13 knockdown, whereas no changes in whole-cell NaV1.5 protein nor mRNA level were observed. Optical imaging in neonatal rat ventricular myocyte monolayers demonstrated slowed conduction velocity and a reduced maximum capture rate after FGF13 knockdown. Conclusion These findings show that FHFs are potent regulators of Na+ channels in adult ventricular myocytes and suggest that loss-of-function mutations in FHFs may underlie a similar set of cardiac arrhythmias and cardiomyopathies that result from NaV1.5 loss-of-function mutations. PMID:21817159

  14. Value of epidermal growth factor receptor status compared with growth fraction and other factors for prognosis in early breast cancer.

    PubMed Central

    Gasparini, G.; Bevilacqua, P.; Pozza, F.; Meli, S.; Boracchi, P.; Marubini, E.; Sainsbury, J. R.

    1992-01-01

    The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein whose expression is important in the regulation of breast cancer cell growth. The relationship between EGFR status (determined by an immunocytochemical assay) and various prognostic factors was investigated in 164 primary breast cancers. Overall 56% of tumours were EGFR-positive and the expression of EGFR was unrelated to axillary node status, tumour size and histological grade; and it was poorly associated with the tumour proliferative activity measured by Ki-67 immuno-cytochemistry. The relapse-free survival (RFS) probability at 3-years was significantly worse for patients with EGFR positive tumours (P = 0.003) and for those whose Ki-67 score was > 7.5% (P = 0.0027), as well as in patients with axillary node involvement (P = 0.01) and with poorly differentiated tumours (P = 0.04). Immunocytochemical determination of EGFR and cell kinetics gave superimposable prognostic information for predicting RFS with odds ratios of 3.51, when evaluated singly. In our series of patients EGFR, Ki-67 and node status retain their prognostic value concerning RFS in multivariate analysis. The 3-year probability of overall survival (OS) was significantly better in node-negative patients (P = 0.04) and was similar in EGFR-positive and negative patients. In conclusion, EGFR status appears to be a significant and independent indicator of recurrence in human breast cancer and the concomitant measurement of the tumour proliferative activity seems to improve the selection of patients with different risks of recurrence. PMID:1419645

  15. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  16. Expression of vascular endothelial growth factor and basic fibroblast growth factor in acute rejection reaction following rat orthotopic liver transplantation.

    PubMed

    Zhang, Changsong; Yang, Guangshun; Lu, Dewen; Ling, Yang; Chen, Guihua; Zhou, Tianbao

    2014-08-01

    The aim of the present study was to investigate the expression levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in acute rejection reaction (ARR) following orthotopic liver transplantation in a rat model. Serum VEGF and bFGF levels were detected using ELISA, and their expression levels in liver and spleen tissues were determined using immunohistochemistry. The mRNA expression levels of VEGF and bFGF were detected by conducting a quantitative polymerase chain reaction during the ARR following orthotopic liver transplantation. The expression levels of VEGF and bFGF in the serum 3 days following liver transplantation were significantly higher compared with those in the other groups (1 and 7 days following transplantation; P<0.01). In addition, the numbers of cells in the liver tissue that were shown to be positive for the expression VEGF and bFGF using immunohistochemistry were significantly higher 3 days following transplantation than at the other time points (P<0.0001). Furthermore, the numbers of cells positive for VEGF and bFGF expression in the spleen detected 3 days following the transplantation surgery were also significantly higher compared with those at the other time points (P<0.01). VEGF and bFGF mRNA expression levels were also increased from 1 day following the surgery and reached a peak at day 3, prior to declining gradually and remaining at a relatively high level. VEGF and bFGF mRNA expression levels changed dynamically, by peaking and then declining, in ARR following orthotopic liver transplantation. These changes may have an important impact on angiogenesis and the inflammatory reaction, and the identification of these changes increases the current understanding of ARR following orthotopic liver transplantation.

  17. Astragalosides promote angiogenesis via vascular endothelial growth factor and basic fibroblast growth factor in a rat model of myocardial infarction.

    PubMed

    Yu, Jun-Min; Zhang, Xiao-Bo; Jiang, Wen; Wang, Hui-Dong; Zhang, Yi-Na

    2015-11-01

    The aim of the present study was to evaluate the effect of astragalosides (ASTs) on angiogenesis, as well as the expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) following myocardial infarction (MI). MI was induced in rats by ligation of the left coronary artery. Twenty‑four hours after surgery, the rats were divided into low‑dose, high‑dose, control and sham surgery groups (n=8 per group). The low‑ and high‑dose groups were treated with ASTs (2.5 and 10 mg/kg/day, respectively, via intraperitoneal injection), while, the control and sham surgery group rats received saline. Serum levels, and mRNA and protein expression levels of VEGF and bFGF, as well as the microvessel density (MVD) were determined four weeks post‑treatment. Twenty‑four hours post‑surgery, VEGF and bFGF serum levels were observed to be comparable between the groups; while at four weeks, the VEGF and bFGF levels were higher in the AST‑treated rats (P<0.01). Similarly, VEGF and bFGF mRNA and protein expression levels were higher following AST treatment (P<0.05). No difference in VEGF mRNA expression between the low‑ and high‑dose groups was noted, however, an increase in the bFGF expression levels was detected in the high‑dose group. Newly generated blood vessels were observed following MI, with a significant increase in MVD observed in the AST‑treated groups (P<0.05). AST promotes angiogenesis of the heart and increases VEGF and bFGF expression levels. Thus, it is hypothesized that increased VEGF and bFGF levels may contribute to the AST‑induced increase in angiogenesis in rat models of MI.

  18. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes

    SciTech Connect

    Shannon, M.F.; Pell, L.M.; Kuczek, E.S.; Occhiodoro, F.S.; Dunn, S.M.; Vadas, M.A. ); Lenardo, M.J. )

    1990-06-01

    A conserved DNA sequence element, termed cytokine 1 (CK-1), is found in the promoter regions of many hemopoietic growth factor (HGF) genes. Mutational analyses and modification interference experiments show that this sequence specifically binds a nuclear transcription factor, NF-GMa, which is a protein with a molecular mass of 43 kilodaltons. It interacts with different affinities with the CK-1-like sequence from a number of HGF genes, including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte (G)-CSF, interleukin 3 (IL-3), and IL-5. The authors show that the level of NF-GMa binding is induced in embryonic fibroblasts by tumor necrosis factor {alpha} (TNF-{alpha}) treatment and that the CK-1 sequence from the G-CSF gene is a TNF-{alpha}-responsive enhancer in these cells.

  19. Cytotoxic effects of acrylamide in nerve growth factor or fibroblast growth factor 1-induced neurite outgrowth in PC12 cells.

    PubMed

    Chen, Jong-Hang; Lee, Don-Ching; Chiu, Ing-Ming

    2014-03-01

    Acrylamide is a neurological and reproductive toxicant in humans and laboratory animals; however, the neuron developmental toxicity of acrylamide remains unclear. The aims of this study are to investigate the cytotoxicity and neurite outgrowth inhibition of acrylamide in nerve growth factor (NGF)- or fibroblast growth factor 1 (FGF1)-mediated neural development of PC12 cells. MTS assay showed that acrylamide treatment suppresses NGF- or FGF1-induced PC12 cell proliferation in a time- and dose-dependent manner. Quantification of neurite outgrowth demonstrated that 0.5 mM acrylamide treatment resulted in significant decrease in differentiation of NGF- or FGF1-stimulated PC12 cells. This decrease is accompanied with the reduced expression of growth-associated protein-43, a neuronal marker. Moreover, relative levels of pERK, pAKT, pSTAT3 and pCREB were increased within 5-10 min when PC12 cells were treated with NGF or FGF1. Acrylamide (0.5 mM) decreases the NGF-induced activation of AKT-CREB but not ERK-STAT3 within 20 min. Similarly, acrylamide (0.5 mM) decreases the FGF1-induced activation of AKT-CREB within 20 min. In contrast to the NGF treatment, the ERK-STAT3 activation that was induced by FGF1 was slightly reduced by 0.5 mM acrylamide. We further showed that PI3K inhibitor (LY294002), but not MEK inhibitor (U0126), could synergize with acrylamide (0.5 mM) to reduce the cell viability and neurite outgrowth in NGF- or FGF1-stimulated PC12 cells. Moreover, acrylamide (0.5 mM) increased reactive oxygen species (ROS) activities in NGF- or FGF1-stimulated PC12 cells. This increase was reversed by Trolox (an ROS scavenging agent) co-treatment. Together, our findings reveal that NGF- or FGF1-stimulation of the neuronal differentiation of PC12 cells is attenuated by acrylamide through the inhibition of PI3K-AKT-CREB signaling, along with the production of ROS.

  20. SMAD3 and SP1/SP3 Transcription Factors Collaborate to Regulate Connective Tissue Growth Factor Gene Expression in Myoblasts in Response to Transforming Growth Factor β.

    PubMed

    Córdova, Gonzalo; Rochard, Alice; Riquelme-Guzmán, Camilo; Cofré, Catalina; Scherman, Daniel; Bigey, Pascal; Brandan, Enrique

    2015-09-01

    Fibrotic disorders are characterized by an increase in extracellular matrix protein expression and deposition, Duchene Muscular Dystrophy being one of them. Among the factors that induce fibrosis are Transforming Growth Factor type β (TGF-β) and the matricellular protein Connective Tissue Growth Factor (CTGF/CCN2), the latter being a target of the TGF-β/SMAD signaling pathway and is the responsible for the profibrotic effects of TGF-β. Both CTGF and TGF are increased in tissues affected by fibrosis but little is known about the regulation of the expression of CTGF mediated by TGF-β in muscle cells. By using luciferase reporter assays, site directed mutagenesis and specific inhibitors in C2C12 cells; we described a novel SMAD Binding Element (SBE) located in the 5' UTR region of the CTGF gene important for the TGF-β-mediated expression of CTGF in myoblasts. In addition, our results suggest that additional transcription factor binding sites (TFBS) present in the 5' UTR of the CTGF gene are important for this expression and that SP1/SP3 factors are involved in TGF-β-mediated CTGF expression.

  1. Vascular endothelial growth factor in human preterm lung.

    PubMed

    Lassus, P; Ristimäki, A; Ylikorkala, O; Viinikka, L; Andersson, S

    1999-05-01

    Endothelial cell damage is characteristic for respiratory distress syndrome and development of chronic lung disease. Vascular endothelial growth factor (VEGF) is an endothelial mitogen that takes part in the growth and repair of vascular endothelial cells. We measured VEGF in 189 tracheal aspirate samples (TAF), and in 24 plasma samples from 44 intubated preterm infants (gestational age, 27.3 +/- 2.0 wk; birth weight, 962 +/- 319 g) during their first postnatal week. VEGF in TAF increased from 25 +/- 12 pg/ml (mean +/- SEM) on Day 1 to 526 +/- 120 pg/ml on Day 7 (mean concentrations, 106 +/- 25 pg/ml on Days 1 to 3 and 342 +/- 36 pg/ml on Days 4 to 7). In plasma, mean concentration of VEGF during the first week was 48 +/- 6 pg/ml, with no increase observed. In TAF, higher VEGF was found in patients born to mothers with premature rupture of the membranes, or chorionamnionitis, whereas preeclampsia of the mother was associated with lower VEGF (all p < 0.05). In TAF, no correlations existed between VEGF and gestational age or birth weight, but a correlation existed between lecithin/sphengomyelin ratio and VEGF (p < 0.05). During Days 4 to 7 patients developing bronchopulmonary dysplasia (BPD) had lower VEGF in TAF than did those surviving without BPD (235 +/- 31 versus 383 +/- 50; p < 0.05). VEGF increased rapidly in the lungs of the preterm infant during the first days of life. VEGF may be indicative of pulmonary maturity and may participate in pulmonary repair after acute lung injury.

  2. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    SciTech Connect

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  3. Research Advances in Tissue Engineering Materials for Sustained Release of Growth Factors

    PubMed Central

    Zhao, Hai-yang; Wu, Jiang; Zhu, Jing-jing; Xiao, Ze-cong; He, Chao-chao; Shi, Hong-xue; Li, Xiao-kun; Yang, Shu-lin; Xiao, Jian

    2015-01-01

    Growth factors are a class of cytokines that stimulate cell growth and are widely used in clinical practice, such as wound healing, revascularization, bone repair, and nervous system disease. However, free growth factors have a short half-life and are instable in vivo. Therefore, the search of excellent carriers to enhance sustained release of growth factors in vivo has become an area of intense research interest. The development of controlled-release systems that protect the recombinant growth factors from enzymatic degradation and provide sustained delivery at the injury site during healing should enhance the growth factor's application in tissue regeneration. Thus, this study reviews current research on commonly used carriers for sustained release of growth factors and their sustained release effects for preservation of their bioactivity and their accomplishment in tissue engineering approaches. PMID:26347885

  4. Endothelial Cell-Derived Basic Fibroblast Growth Factor: Synthesis and Deposition into Subendothelial Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Vlodavsky, Israel; Folkman, Judah; Sullivan, Robert; Fridman, Rafael; Ishai-Michaeli, Rivka; Sasse, Joachim; Klagsbrun, Michael

    1987-04-01

    Bovine aortic and corneal endothelial cells synthesize a growth factor that remains mostly cell-associated but can also be extracted from the subendothelial extracellular matrix (ECM) deposited by these cells. The endothelial cell-derived growth factors extracted from cell lysates and from the extracellular matrix appear to be structurally related to basic fibroblast growth factor by the criteria that they (i) bind to heparin-Sepharose and are eluted at 1.4-1.6 M NaCl, (ii) have a molecular weight of about 18,400, (iii) cross-react with anti-basic fibroblast growth factor antibodies when analyzed by electrophoretic blotting and immunoprecipitation, and (iv) are potent mitogens for bovine aortic and capillary endothelial cells. It is suggested that endothelium can store growth factors capable of autocrine growth promotion in two ways: by sequestering growth factor within the cell and by incorporating it into the underlying extracellular matrix.

  5. Research Advances in Tissue Engineering Materials for Sustained Release of Growth Factors.

    PubMed

    Zhao, Hai-yang; Wu, Jiang; Zhu, Jing-jing; Xiao, Ze-cong; He, Chao-chao; Shi, Hong-xue; Li, Xiao-kun; Yang, Shu-lin; Xiao, Jian

    2015-01-01

    Growth factors are a class of cytokines that stimulate cell growth and are widely used in clinical practice, such as wound healing, revascularization, bone repair, and nervous system disease. However, free growth factors have a short half-life and are instable in vivo. Therefore, the search of excellent carriers to enhance sustained release of growth factors in vivo has become an area of intense research interest. The development of controlled-release systems that protect the recombinant growth factors from enzymatic degradation and provide sustained delivery at the injury site during healing should enhance the growth factor's application in tissue regeneration. Thus, this study reviews current research on commonly used carriers for sustained release of growth factors and their sustained release effects for preservation of their bioactivity and their accomplishment in tissue engineering approaches.

  6. Hepatoma-derived growth factor-related protein-3 is a novel angiogenic factor.

    PubMed

    LeBlanc, Michelle E; Wang, Weiwen; Caberoy, Nora B; Chen, Xiuping; Guo, Feiye; Alvarado, Gabriela; Shen, Chen; Wang, Feng; Wang, Hui; Chen, Rui; Liu, Zhao-Jun; Webster, Keith; Li, Wei

    2015-01-01

    Hepatoma-derived growth factor-related protein-3 (Hdgfrp3 or HRP-3) was recently reported as a neurotrophic factor and is upregulated in hepatocellular carcinoma to promote cancer cell survival. Here we identified HRP-3 as a new endothelial ligand and characterized its in vitro and in vivo functional roles and molecular signaling. We combined open reading frame phage display with multi-round in vivo binding selection to enrich retinal endothelial ligands, which were systematically identified by next generation DNA sequencing. One of the identified endothelial ligands was HRP-3. HRP-3 expression in the retina and brain was characterized by Western blot and immunohistochemistry. Cell proliferation assay showed that HRP-3 stimulated the growth of human umbilical vein endothelial cells (HUVECs). HRP-3 induced tube formation of HUVECs in culture. Wound healing assay indicated that HRP-3 promoted endothelial cell migration. HRP-3 was further confirmed for its in vitro angiogenic activity by spheroid sprouting assay. HRP-3 extrinsically activated the extracellular-signal-regulated kinase ½ (ERK1/2) pathway in endothelial cells. The angiogenic activity of HRP-3 was independently verified by mouse cornea pocket assay. Furthermore, in vivo Matrigel plug assay corroborated HRP-3 activity to promote new blood vessel formation. These results demonstrated that HRP-3 is a novel angiogenic factor.

  7. Connective tissue growth factor is a substrate of ADAM28

    SciTech Connect

    Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki; Onuma, Junko; Fujii, Yutaka; Jinno, Hiromitsu; Okada, Yasunori

    2010-11-26

    Research highlights: {yields} The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. {yields} ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF{sub 165} complex. {yields} CTGF digestion by ADAM28 releases biologically active VEGF{sub 165} from the complex. {yields} ADAM28, CTGF and VEGF{sub 165} are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. {yields} These suggest that ADAM28 promotes VEGF{sub 165}-induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF{sub 165} complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinoma cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala{sup 181}-Tyr{sup 182} and Asp{sup 191}-Pro{sup 192} bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor{sub 165} (VEGF{sub 165}), releasing biologically active VEGF{sub 165} from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF{sub 165}-induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF{sub 165} complex.

  8. Adding to the Mix: Fibroblast Growth Factor and Platelet-derived Growth Factor Receptor Pathways as Targets in Non–small Cell Lung Cancer

    PubMed Central

    Kono, Scott A.; Heasley, Lynn E.; Doebele, Robert C.; Camidge, D. Ross

    2012-01-01

    The treatment of advanced non–small cell lung cancer (NSCLC) increasingly involves the use of molecularly targeted therapy with activity against either the tumor directly, or indirectly, through activity against host-derived mechanisms of tumor support such as angiogenesis. The most well studied signaling pathway associated with angiogenesis is the vascular endothelial growth factor (VEGF) pathway, and the only antiangiogenic agent currently approved for the treatment of NSCLC is bevacizumab, an antibody targeted against VEGF. More recently, preclinical data supporting the role of fibroblast growth factor receptor (FGFR) and platelet-derived growth factor receptor (PDGFR) signaling in angiogenesis have been reported. The platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) pathways may also stimulate tumor growth directly through activation of downstream mitogenic signaling cascades. In addition, 1 or both of these pathways have been associated with resistance to agents targeting the epidermal growth factor receptor (EGFR) and VEGF. A number of agents that target FGF and/or PDGF signaling are now in development for the treatment of NSCLC. This review will summarize the potential molecular roles of PDGFR and FGFR in tumor growth and angiogenesis, as well as discuss the current clinical status of PDGFR and FGFR inhibitors in clinical development. PMID:22165970

  9. Insulin-like growth factor factor binding protein-2 is a novel mediator of p53 inhibition of insulin-like growth factor signaling.

    PubMed

    Grimberg, Adda; Coleman, Carrie M; Shi, Zonggao; Burns, Timothy F; MacLachlan, Timothy K; Wang, Wenge; El-Deiry, Wafik S

    2006-10-01

    The p53 tumor suppressor induces cellular growth arrest and apoptosis in response to DNA damage by transcriptionally activating or repressing target genes and also through protein-protein interactions and direct mitochondrial activities. In 1995, insulin-like growth factor binding protein (IGFBP)-3 was identified as one of the genes transcriptionally activated by p53. IGFBP-3 is one of six closely related IGFBP's, with additional IGFBP-related proteins belonging to the IGFBP superfamily. Here we show that IGFBP-2 is also a p53 target. Like IGFBP-3, IGFBP-2 secretion is reduced when p53+/+ lung cancer cells are transfected with human papillomavirus E6, which targets p53 for degradation. IGFBP-2 mRNA is induced by irradiation in vivo in a p53-dependent manner. p53 protein binds IGFBP-2 intronic sequences in an electrophoretic mobility shift assay, and activates transcription in a luciferase assay. Loss of IGFBP-2 inhibits the ability of p53 to inhibit the activation of extracellular signal-regulated kinase (ERK)1 by IGF-I. Thus, p53 effects on the IGF axis are more complex than previously appreciated, and overall transform the axis from IGF-mediated mitogenesis to growth inhibition and apoptosis. This has significant implications for how growth hormone and IGF-I can induce growth without also inducing cancer.

  10. Liver growth factor as a tissue regenerating factor in neurodegenerative diseases.

    PubMed

    Gonzalo-Gobernado, Rafael; Calatrava-Ferreras, Lucia; Perucho, Juan; Reimers, Diana; Casarejos, MarIa J; Herranz, Antonio S; Jimenez-Escrig, Adriano; Diaz-Gil, Juan J; Bazan, Eulalia

    2014-01-01

    Liver growth factor (LGF) is a hepatic mitogen purified by our group in 1986. In the following years we demonstrated its activity both in "in vivo" and "in vitro" systems, stimulating hepatocytes mitogenesis as well as liver regeneration in several models of liver injury. Furthermore, we established its chemical composition (albumin-bilirubin complex) and its mitogenic actions in liver. From 2000 onwards we used LGF as a tissue regenerating factor in several models of extrahepatic diseases. The use of Liver growth factor as a neural tissue regenerator has been recently protected (Patent No US 2014/8,642,551 B2). LGF administration stimulates neurogenesis and neuron survival, promotes migration of newly generated neurons, and induces the outgrowth of striatal dopaminergic terminals in 6-hidroxydopamine-lesioned rats. Furthermore, LGF treatment raises striatal dopamine levels and protects dopaminergic neurons in hemiparkinsonian animals. LGF also stimulates survival of grafted foetal neural stem cells in the damaged striatum, reduces rotational behaviour and improves motor coordination. Interestingly, LGF also exerts a neuroprotective role both in an experimental model of cerebellar ataxia and in a model of Friedrich´s ataxia. Microglia seem to be the cellular target of LGF in the CNS. Moreover, the activity of the factor could be mediated by the stimulation of MAPK´s signalling pathway and by regulating critical proteins for cell survival, such as Bcl-2 and phospho-CREB. Since the factor shows neuroprotective and neurorestorative effects we propose LGF as a patented novel therapeutic tool that may be useful for the treatment of Parkinson´s disease and cerebellar ataxias. Currently, our studies have been extended to other neurological disorders such as Alzheimer's disease (Patent No: US 2014/0113859 A1). PMID:25537484

  11. Liver Growth Factor as a Tissue Regenerating Factor in Neurodegenerative Diseases

    PubMed Central

    Gonzalo-Gobernado, Rafael; Calatrava-Ferreras, Lucia; Perucho, Juan; Reimers, Diana; Casarejos, María J.; Herranz, Antonio S.; Jiménez-Escrig, Adriano; Díaz-Gil, Juan J.; Bazán, Eulalia

    2014-01-01

    Liver growth factor (LGF) is a hepatic mitogen purified by our group in 1986. In the following years we demonstrated its activity both in “in vivo” and “in vitro” systems, stimulating hepatocytes mitogenesis as well as liver regeneration in several models of liver injury. Furthermore, we established its chemical composition (albumin-bilirubin complex) and its mitogenic actions in liver. From 2000 onwards we used LGF as a tissue regenerating factor in several models of extrahepatic diseases. The use of Liver growth factor as a neural tissue regenerator has been recently protected (Patent No US 2014/8,642,551 B2). LGF administration stimulates neurogenesis and neuron survival, promotes migration of newly generated neurons, and induces the outgrowth of striatal dopaminergic terminals in 6-hidroxydopamine-lesioned rats. Furthermore, LGF treatment raises striatal dopamine levels and protects dopaminergic neurons in hemiparkinsonian animals. LGF also stimulates survival of grafted foetal neural stem cells in the damaged striatum, reduces rotational behaviour and improves motor coordination. Interestingly, LGF also exerts a neuroprotective role both in an experimental model of cerebellar ataxia and in a model of Friedrich´s ataxia. Microglia seem to be the cellular target of LGF in the CNS. Moreover, the activity of the factor could be mediated by the stimulation of MAPK´s signalling pathway and by regulating critical proteins for cell survival, such as Bcl-2 and phospho-CREB. Since the factor shows neuroprotective and neurorestorative effects we propose LGF as a patented novel therapeutic tool that may be useful for the treatment of Parkinson´s disease and cerebellar ataxias. Currently, our studies have been extended to other neurological disorders such as Alzheimer’s disease (Patent No: US 2014/0113859 A1). PMID:25537484

  12. Liver growth factor as a tissue regenerating factor in neurodegenerative diseases.

    PubMed

    Gonzalo-Gobernado, Rafael; Calatrava-Ferreras, Lucia; Perucho, Juan; Reimers, Diana; Casarejos, MarIa J; Herranz, Antonio S; Jimenez-Escrig, Adriano; Diaz-Gil, Juan J; Bazan, Eulalia

    2014-01-01

    Liver growth factor (LGF) is a hepatic mitogen purified by our group in 1986. In the following years we demonstrated its activity both in "in vivo" and "in vitro" systems, stimulating hepatocytes mitogenesis as well as liver regeneration in several models of liver injury. Furthermore, we established its chemical composition (albumin-bilirubin complex) and its mitogenic actions in liver. From 2000 onwards we used LGF as a tissue regenerating factor in several models of extrahepatic diseases. The use of Liver growth factor as a neural tissue regenerator has been recently protected (Patent No US 2014/8,642,551 B2). LGF administration stimulates neurogenesis and neuron survival, promotes migration of newly generated neurons, and induces the outgrowth of striatal dopaminergic terminals in 6-hidroxydopamine-lesioned rats. Furthermore, LGF treatment raises striatal dopamine levels and protects dopaminergic neurons in hemiparkinsonian animals. LGF also stimulates survival of grafted foetal neural stem cells in the damaged striatum, reduces rotational behaviour and improves motor coordination. Interestingly, LGF also exerts a neuroprotective role both in an experimental model of cerebellar ataxia and in a model of Friedrich´s ataxia. Microglia seem to be the cellular target of LGF in the CNS. Moreover, the activity of the factor could be mediated by the stimulation of MAPK´s signalling pathway and by regulating critical proteins for cell survival, such as Bcl-2 and phospho-CREB. Since the factor shows neuroprotective and neurorestorative effects we propose LGF as a patented novel therapeutic tool that may be useful for the treatment of Parkinson´s disease and cerebellar ataxias. Currently, our studies have been extended to other neurological disorders such as Alzheimer's disease (Patent No: US 2014/0113859 A1).

  13. Hepatocyte growth factor induction of macrophage chemoattractant protein-1 and osteophyte-inducing factors in osteoarthritis.

    PubMed

    Dankbar, Berno; Neugebauer, Katja; Wunrau, Christina; Tibesku, Carsten O; Skwara, Adrian; Pap, Thomas; Fuchs-Winkelmann, Susanne

    2007-05-01

    In osteoarthritis (OA), hepatocyte growth factor (HGF) is supposed to play a role in cartilage repair. Because the development of osteophytes is a major characteristic of OA and thought to be part of an attempted repair process, the purpose of this study was to determine whether HGF may be involved in osteophyte formation. HGF levels in synovial fluids from 41 patients assessed by enzyme immunosorbant assay were correlated with disease severity and osteophyte formation, evaluated by anteroposterior weight-bearing radiographs. Detection of HGF, c-Met, and CD68 in cartilage and synovial tissues was assessed by immunohistochemistry. Effects of HGF on the secretion of TGF-beta1 and BMP-2 by chondrocytes, fibroblast-like synovial cells (FLS), and macrophages as well as HGF-induced secretion of MCP-1 by FLS and chondrocytes were determined by ELISA. HGF was detected in all synovial fluids and concentrations correlated highly with disease severity and osteophyte formation (p < 0.001). Immunohistochemistry revealed weak synovial staining for HGF, whereas increasing numbers of HGF expressing chondrocytes were detected depending on disease severity. In addition, an increased number of macrophages in synovial specimens was observed, which was likewise severity dependent. In a series of subsequent in vitro studies, HGF remarkable induced MCP-1 secretion by FLS in a dose-dependent manner. No effect on TGF-beta1 and BMP-2 secretion by FLS and chondrocytes was evident upon HGF stimulation, whereas secretion of these growth factors by PMA-differentiated THP-1 cells was significantly increased by HGF. The results indicate that HGF may facilitate osteophyte development by promoting MCP-1-mediated entry of monocytes/macrophages into the OA-affected joint and/or by stimulating macrophage-derived growth factors.

  14. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  15. Renoprotective effects of hepatocyte growth factor in the stenotic kidney.

    PubMed

    Stewart, Nicholas; Chade, Alejandro R

    2013-03-15

    Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renal artery stenosis (RAS). Hepatocyte growth factor (HGF) is a powerful angiogenic and antifibrotic cytokine that we showed to be decreased in the stenotic kidney. We hypothesized that renal HGF therapy will improve renal function mainly by protecting the renal microcirculation. Unilateral RAS was induced in 15 pigs. Six weeks later, single-kidney RBF and GFR were quantified in vivo using multidetector computed tomography (CT). Then, intrarenal rh-HGF or vehicle was randomly administered into the stenotic kidney (RAS, n = 8; RAS+HGF, n = 7). Pigs were observed for 4 additional weeks before CT studies were repeated. Renal MV density was quantified by 3D micro-CT ex vivo and histology, and expression of angiogenic and inflammatory factors, apoptosis, and fibrosis was determined. HGF therapy improved RBF and GFR compared with vehicle-treated pigs. This was accompanied by improved renal expression of angiogenic cytokines (VEGF, p-Akt) and tissue-healing promoters (SDF-1, CXCR4, MMP-9), reduced MV remodeling, apoptosis, and fibrosis, and attenuated renal inflammation. However, HGF therapy did not improve renal MV density, which was similarly reduced in RAS and RAS+HGF compared with controls. Using a clinically relevant animal model of RAS, we showed novel therapeutic effects of a targeted renal intervention. Our results show distinct actions on the existing renal microcirculation and promising renoprotective effects of HGF therapy in RAS. Furthermore, these effects imply plasticity of the stenotic kidney to recuperate its function and underscore the importance of MV integrity in the progression of renal injury in RAS. PMID:23269649

  16. Fibroblast Growth Factor 23 in Patients Undergoing Peritoneal Dialysis

    PubMed Central

    Isakova, Tamara; Xie, Huiliang; Barchi-Chung, Allison; Vargas, Gabriela; Sowden, Nicole; Houston, Jessica; Wahl, Patricia; Lundquist, Andrew; Epstein, Michael; Smith, Kelsey; Contreras, Gabriel; Ortega, Luis; Lenz, Oliver; Briones, Patricia; Egbert, Phyllis; Ikizler, T. Alp; Jueppner, Harald

    2011-01-01

    Summary Background and objectives Fibroblast growth factor 23 (FGF23) is an independent risk factor for mortality in patients with ESRD. Before FGF23 testing can be integrated into clinical practice of ESRD, further understanding of its determinants is needed. Design, setting, participants, & measurements In a study of 67 adults undergoing peritoneal dialysis, we tested the hypothesis that longer dialysis vintage and lower residual renal function and renal phosphate clearance are associated with higher FGF23. We also compared the monthly variability of FGF23 versus parathyroid hormone (PTH) and serum phosphate. Results In unadjusted analyses, FGF23 correlated with serum phosphate (r = 0.66, P < 0.001), residual renal function (r = −0.37, P = 0.002), dialysis vintage (r = 0.31, P = 0.01), and renal phosphate clearance (r = −0.38, P = 0.008). In adjusted analyses, absence of residual renal function and greater dialysis vintage associated with higher FGF23, independent of demographics, laboratory values, peritoneal dialysis modality and adequacy, and treatment with vitamin D analogs and phosphate binders. Urinary and dialysate FGF23 clearances were minimal. In three serial monthly measurements, within-subject variability accounted for only 10% of total FGF23 variability compared with 50% for PTH and 60% for serum phosphate. Conclusions Increased serum phosphate, loss of residual renal function, longer dialysis vintage, and lower renal phosphate clearance are associated with elevated FGF23 levels in ESRD patients undergoing peritoneal dialysis. FGF23 may be a more stable marker of phosphate metabolism in ESRD than PTH or serum phosphate. PMID:21903990

  17. Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression.

    PubMed

    Girer, Nathaniel G; Murray, Iain A; Omiecinski, Curtis J; Perdew, Gary H

    2016-07-15

    The Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in many physiological processes. Several studies indicate that AHR is also involved in energy homeostasis. Fibroblast growth factor 21 (FGF21) is an important regulator of the fasting and feeding responses. When administered to various genetic and diet-induced mouse models of obesity, FGF21 can attenuate obesity-associated morbidities. Here, we explore the role of AHR in hepatic Fgf21 expression through the use of a conditional, hepatocyte-targeted AHR knock-out mouse model (Cre(Alb)Ahr(Fx/Fx)). Compared with the congenic parental strain (Ahr(Fx/Fx)), non-fasted Cre(Alb)Ahr(Fx/Fx) mice exhibit a 4-fold increase in hepatic Fgf21 expression, as well as elevated expression of the FGF21-target gene Igfbp1 Furthermore, in vivo agonist activation of AHR reduces hepatic Fgf21 expression during a fast. The Fgf21 promoter contains several putative dioxin response elements (DREs). Using EMSA, we demonstrate that the AHR-ARNT heterodimer binds to a specific DRE that overlaps binding sequences for peroxisome proliferator-activated receptor α (PPARα), carbohydrate response element-binding protein (ChREBP), and cAMP response element-binding protein, hepatocyte specific (CREBH). In addition, we reveal that agonist-activated AHR impairs PPARα-, ChREBP-, and CREBH-mediated promoter activity in Hepa-1 cells. Accordingly, agonist treatment in Hepa-1 cells ablates potent ER stress-driven Fgf21 expression, and pre-treatment with AHR antagonist blocks this effect. Finally, we show that pre-treatment of primary human hepatocytes with AHR agonist diminishes PPARα-, glucose-, and ER stress-driven induction of FGF21 expression, indicating the effect is not mouse-specific. Together, our data show that AHR contributes to hepatic energy homeostasis, partly through the regulation of FGF21 expression and signaling. PMID:27226639

  18. Exercise Increases Serum Fibroblast Growth Factor 21 (FGF21) Levels

    PubMed Central

    Cuevas-Ramos, Daniel; Almeda-Valdés, Paloma; Meza-Arana, Clara Elena; Brito-Córdova, Griselda; Gómez-Pérez, Francisco J.; Mehta, Roopa; Oseguera-Moguel, Jorge; Aguilar-Salinas, Carlos A.

    2012-01-01

    Background Fibroblast growth factor 21 (FGF21) increases glucose uptake. It is unknown if FGF21 serum levels are affected by exercise. Methodology/Principal Findings This was a comparative longitudinal study. Anthropometric and biochemical evaluation were carried out before and after a bout of exercise and repeated after two weeks of daily supervised exercise. The study sample was composed of 60 sedentary young healthy women. The mean age was 24±3.7 years old, and the mean BMI was 21.4±7.0 kg/m2. The anthropometric characteristics did not change after two weeks of exercise. FGF21 levels significantly increased after two weeks of exercise (276.8 ng/l (142.8–568.6) vs. (460.8 (298.2–742.1), p<0.0001)). The delta (final–basal) log of serum FGF21, adjusted for BMI, showed a significant positive correlation with basal glucose (r = 0.23, p = 0.04), mean maximal heart rate (MHR) (r = 0.54, p<0.0001), mean METs (r = 0.40, p = 0.002), delta plasma epinephrine (r = 0.53, p<0.0001) and delta plasma FFAs (r = 0.35, p = 0.006). A stepwise linear regression model showed that glucose, MHR, METs, FFAs, and epinephrine, were factors independently associated with the increment in FGF21 after the exercise program (F = 4.32; r2 = 0.64, p<0.0001). Conclusions Serum FGF21 levels significantly increased after two weeks of physical activity. This increment correlated positively with clinical parameters related to the adrenergic and lipolytic response to exercise. Trial Registration ClinicalTrials.gov NCT01512368 PMID:22701542

  19. Effect of plasma rich in growth factors on alveolar osteitis

    PubMed Central

    Haraji, Afshin; Lassemi, Eshagh; Motamedi, Mohammad Hosein Kalantar; Alavi, Maryam; Adibnejad, Saman

    2012-01-01

    Introduction: The high prevalence of dry socket or alveolar osteitis (AO) is of concern in surgical removal of third molars. The aim of the present study was to assess the preventive effect of plasma rich in growth factors (PRGF) on AO and also its effect on pain management and healing acceleration in third molar extraction sockets of high-risk patients. Materials and Methods: This split-mouth, double-blind clinical trial included 40 bilateral third molar extractions (80 sockets) with at least one identified risk factor for AO. PRGF was obtained from patient's own blood, based on manufacturer's instruction, and blindly placed in one of the two bilateral sockets (PRGF group; n = 20) of each patient. The contralateral socket was treated with a placebo (control group; n = 20). Samples were evaluated for AO and pain incidence on days 2, 3 and 4 and healing and infection on days 3 and 7. Data were analyzed in SPSS v16 using Wilcoxon test. Results: There was a significant difference in dry socket and pain incidence and healing rate between the two groups. Intensity of pain and occurrence of dry socket in the study group was lower than the controls. Also the healing rate was higher (P < 0.05) for the PRGF group. No sign of infection was seen in either group. Conclusion: The application of PRGF may significantly reduce the incidence of AO or its associated pain and may accelerate healing. The prophylactic use of PRGF following third molar extraction may be suggested especially in the patients at risk of AO. PMID:23251056

  20. Epidermal growth factor improved alcohol-induced inflammation in rats.

    PubMed

    Chen, Ya-Ling; Peng, Hsiang-Chi; Hsieh, Yi-Ching; Yang, Suh-Ching

    2014-11-01

    The purpose of this study was to investigate the effects of an epidermal growth factor (EGF) intervention on improving the inflammatory response of rats fed an ethanol-containing diet. Eight-week-old male Wistar rats were divided into ethanol (E) and control (C) groups. Rats in the E group were fed an ethanol liquid diet, while rats in the C group were pair-fed an isoenergetic diet without ethanol. After a 4-week ethanol-induction period, both the C and E group were respectively subdivided into 2 groups: a normal liquid diet without (C group, n = 8) or with EGF supplementation (C + EGF, n = 8), and the ethanol-containing diet without (E group, n = 8) or with EGF supplementation (E + EGF group, n = 8). The EGF (30 μg/kg body weight/day) intervention period was carried out for the following 8 weeks. At the end of the experiment, activity of aspartate transaminase (AST) and alanine transaminase (ALT) and hepatic levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 in group E were significantly higher than those in group C. In addition, alterations in the gut microbiota profile were found in group E. In contrast, activity of AST and ALT and levels of TNF-α, IL-1β, and IL-6 in group E + EGF were significantly lower than those in group E. Significantly lower intestinal permeability and lower numbers of Escherichia coli in the fecal microbial culture were also found in group E + EGF. These results suggest that EGF improved the intestinal integrity by decreasing E. coli colonization and lowering intestinal permeability, which then ameliorated the inflammatory response under chronic ethanol exposure.

  1. Adverse Reaction to Cetuximab, an Epidermal Growth Factor Receptor Inhibitor.

    PubMed

    Štulhofer Buzina, Daška; Martinac, Ivana; Ledić Drvar, Daniela; Čeović, Romana; Bilić, Ivan; Marinović, Branka

    2016-04-01

    Dear Editor, Inhibition of the epidermal growth factor receptor (EGFR) is a new strategy in treatment of a variety of solid tumors, such as colorectal carcinoma, non-small cell lung cancer, squamous cell carcinoma of the head and neck, and pancreatic cancer (1). Cetuximab is a chimeric human-murine monoclonal antibody against EGFR. Cutaneous side effects are the most common adverse reactions occurring during epidermal growth factor receptor inhibitors (EGFRI) therapy. Papulopustular rash (acne like rash) develop with 80-86% patients receiving cetuximab, while xerosis, eczema, fissures, teleangiectasiae, hyperpigmentations, and nail and hair changes occur less frequently (2). The mechanism underlying these skin changes has not been established and understood. It seems EGFRI alter cell growth and differentiation, leading to impaired stratum corneum and cell apoptosis (3-5). An abdominoperineal resection of the rectal adenocarcinoma (Dukes C) was performed on a 43-year-old female patient. Following surgery, adjuvant chemo-radiotherapy was applied. After two years, the patient suffered a metastatic relapse. Abdominal lymphadenopathy was detected on multi-slice computer tomography (MSCT) images, with an increased value of the carcinoembryonic antigen (CEA) tumor marker (maximal value 57 ng/mL). Hematological and biochemical tests were within normal limits, so first-line chemotherapy with oxaliplatin and a 5-fluorouracil (FOLFOX4) protocol was introduced. A wild type of the KRAS gene was confirmed in tumor tissue (diagnostic prerequisite for the introduction of EGFRI) and cetuximab (250 mg per m2 of body surface) was added to the treatment protocol. The patient responded well to the treatment with confirmed partial regression of the tumor formations. Three months after the patient started using cetuximab, an anti-EGFR monoclonal antibody, the patient presented with a papulopustular eruption in the seborrhoeic areas (Figure 1) and eczematoid reactions on the extremities

  2. Fibroblast Growth Factor-23 in Bed Rest and Spaceflight

    NASA Technical Reports Server (NTRS)

    Bokhari, R.; Zwart, S. R; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.

    2014-01-01

    Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight. Presented with an imbalanced dietary phosphorus to calcium ratio, increased secretion of FGF23 will inhibit renal phosphorus reabsorption, resulting in increased excretion and reduced circulating phosphorus. Increased intake and excretion of phosphorus is associated with increased kidney stone risk in both the terrestrial and microgravity environments. Highly processed foods and carbonated beverages are associated with higher phosphorus content. Ideally, the dietary calcium to phosphorus ratio should be at minimum 1:1. Nutritional requirements for spaceflight suggest that this ratio not be less than 0.67 (3), while the International Space Station (ISS) menu provides 1020 mg Ca and 1856 mg P, for a ratio of 0.55 (3). Subjects in NASA's bed rest studies, by design, have consumed intake ratios much closer to 1.0 (4). FGF23 also has an inhibitory influence on PTH secretion and 1(alpha)-hydroxylase, both of which are required for activating vitamin D with the conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. Decreased 1,25-dihydroxyvitamin D will result in decreased intestinal phosphorus absorption, and increased urinary phosphorus excretion (via decreased renal reabsorption). Should a decrease in 1

  3. Fibroblast growth factors as tissue repair and regeneration therapeutics.

    PubMed

    Nunes, Quentin M; Li, Yong; Sun, Changye; Kinnunen, Tarja K; Fernig, David G

    2016-01-01

    Cell communication is central to the integration of cell function required for the development and homeostasis of multicellular animals. Proteins are an important currency of cell communication, acting locally (auto-, juxta-, or paracrine) or systemically (endocrine). The fibroblast growth factor (FGF) family contributes to the regulation of virtually all aspects of development and organogenesis, and after birth to tissue maintenance, as well as particular aspects of organism physiology. In the West, oncology has been the focus of translation of FGF research, whereas in China and to an extent Japan a major focus has been to use FGFs in repair and regeneration settings. These differences have their roots in research history and aims. The Chinese drive into biotechnology and the delivery of engineered clinical grade FGFs by a major Chinese research group were important enablers in this respect. The Chinese language clinical literature is not widely accessible. To put this into context, we provide the essential molecular and functional background to the FGF communication system covering FGF ligands, the heparan sulfate and Klotho co-receptors and FGF receptor (FGFR) tyrosine kinases. We then summarise a selection of clinical reports that demonstrate the efficacy of engineered recombinant FGF ligands in treating a wide range of conditions that require tissue repair/regeneration. Alongside, the functional reasons why application of exogenous FGF ligands does not lead to cancers are described. Together, this highlights that the FGF ligands represent a major opportunity for clinical translation that has been largely overlooked in the West. PMID:26793421

  4. Nerve growth factor facilitates perivascular innervation in neovasculatures of mice.

    PubMed

    Goda, Mitsuhiro; Takatori, Shingo; Atagi, Saori; Hashikawa-Hobara, Narumi; Kawasaki, Hiromu

    2016-08-01

    It is well known that blood vessels including arterioles have a perivascular innervation. It is also widely accepted that perivascular nerves maintain vascular tone and regulate blood flow. Although there are currently prevailing opinions, unified views on the innervation of microcirculation in any organs have not been established. The present study was designed to investigate whether there are perivascular nerves innervated in microvessels and neovessels. Furthermore, we examined whether nerve growth factor (NGF) can exert a promotional effect on perivascular nerve innervation in neovessels of Matrigel plugs. A Matrigel was subcutaneously implanted in mouse. The presence of perivascular nerves in Matrigel on Day 7-21 after the implantation was immunohistochemically studied. NGF or saline was subcutaneously administered by an osmotic mini-pump for a period of 3-14 days. The immunostaining of neovasculatures in Matrigel showed the presence of perivascular nerves on Day 21 after Matrigel injection. Perivascular nerve innervation of neovessels within Matrigel implanted in NGF-treated mice was observed in Day 17 after Matrigel implantation. However, NGF treatment did not increase numbers of neovessels in Matrigel. These results suggest that perivascular nerves innervate neovessels as neovasculatures mature and that NGF accelerates the innervation of perivascular nerves in neovessels. PMID:27493098

  5. Biochemical and biological properties of the nerve growth factor receptor

    SciTech Connect

    Taniuchi, M.

    1988-01-01

    We have utilized a monoclonal antibody (192-IgG) to study the rat nerve growth factor receptor. After intraocular injection, {sup 125}I-192-IgG was retrogradely transported in sympathetic neuronal axons to the superior cervical ganglion. When the sciatic nerve was ligated to induce the accumulation of axonally transported materials, 192-IgG immunostaining was observed on both sides of the ligature, indicating that NGF receptors are transported in both orthograde and retrograde directions. By using {sup 125}I-NGF crosslinking and 192-IgG immunoprecipitation, we detected receptor molecules throughout the rat brain, thereby supporting the hypothesis that NGF is active in the central nervous system. We also discovered that sciatic nerve transection leads to a dramatic increase in the amount of NGF receptor found in the distal portion of the nerve. Immunostaining revealed that all Schwann cells in the distal axotomized nerve were expressing NGF receptors. We examined phosphorylation of NGF receptor in cultured sympathetic neurons and PC12 cells. We also examined pharmacological effects of 192-IgG. Systemic injection of 192-IgG into neonatal rats caused a permanent partial sympathectomy in a dose-dependent manner; a maximum of 50% of the cells were killed.

  6. Infiltration of Autologous Growth Factors in Chronic Tendinopathies

    PubMed Central

    Crescibene, Antonio; Napolitano, Marcello; Sbano, Raffaella; Costabile, Enrico; Almolla, Hesham

    2015-01-01

    Achilles tendinopathy and patellar tendinopathy are among the most frequent diagnoses in sports medicine. Therapeutic treatment of the disease is difficult, particularly in chronic cases. In literature, several studies suggest the employment of Platelet-Rich Plasma as a therapeutic alternative in tendinopathies. The choice of employing this method is based on the activity of growth factors contained in platelets which activate, amplify, and optimize the healing process. We selected 14 patients affected by Achilles tendinopathy and 7 patients affected by patellar tendinopathy, with a two-year final follow-up. These patients underwent a cycle of three tendinous infiltrations, after clinical and instrumental evaluation carried out by means of specific questionnaires and repeated ultrasound scans. Ultrasound scans of 18 patients showed signs of reduction in insertional irregularities. The result is confirmed by complete functional recovery of the patients, with painful symptomatology disappearing. The patients showed a clear pain reduction, along with an enhanced VISA score after the 24-month follow-up, equal to 84.2 points on a scale of 0 to 100. In conclusion, the present study provides evidence to suggest that PRP infiltration is a valid option to patients with chronic tendinopathy who did not benefit from other treatments. PMID:26171277

  7. The latent transforming growth factor beta binding protein (LTBP) family.

    PubMed Central

    Oklü, R; Hesketh, R

    2000-01-01

    The transforming growth factor beta (TGFbeta) cytokines are a multi-functional family that exert a wide variety of effects on both normal and transformed mammalian cells. The secretion and activation of TGFbetas is regulated by their association with latency-associated proteins and latent TGFbeta binding proteins (LTBPs). Over the past few years, three members of the LTBP family have been identified, in addition to the protoype LTBP1 first sequenced in 1990. Three of the LTBP family are expressed in a variety of isoforms as a consequence of alternative splicing. This review summarizes the differences between the isoforms in terms of the effects on domain structure and hence possible function. The close identity between LTBPs and members of the fibrillin family, mutations in which have been linked directly to Marfan's syndrome, suggests that anomalous expression of LTBPs may be associated with disease. Recent data indicating that differential expression of LTBP1 isoforms occurs during the development of coronary heart disease is considered, together with evidence that modulation of LTBP function, and hence of TGFbeta activity, is associated with a variety of cancers. PMID:11104663

  8. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine

    PubMed Central

    Tollemar, Viktor; Collier, Zach J.; Mohammed, Maryam K.; Lee, Michael J.; Ameer, Guillermo A.; Reid, Russell R.

    2015-01-01

    Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials. PMID:27239485

  9. Fibroblast growth factor signaling in mammalian tooth development.

    PubMed

    Li, Chun-Ying; Prochazka, Jan; Goodwin, Alice F; Klein, Ophir D

    2014-01-01

    In this review, we discuss the central role of fibroblast growth factor (FGF) signaling in mammalian tooth development. The FGF family consists of 22 members, most of which bind to four different receptor tyrosine kinases, which in turn signal through a cascade of intracellular proteins. This signaling regulates a number of cellular processes, including proliferation, differentiation, cell adhesion and cell mobility. FGF signaling first becomes important in the presumptive dental epithelium at the initiation stage of tooth development, and subsequently, it controls the invagination of the dental epithelium into the underlying mesenchyme. Later, FGFs are critical in tooth shape formation and differentiation of ameloblasts and odontoblasts, as well as in the development and homeostasis of the stem cell niche that fuels the continuously growing mouse incisor. In addition, FGF signaling is critical in human teeth, as mutations in genes encoding FGF ligands or receptors result in several congenital syndromes characterized by alterations in tooth number, morphology or enamel structure. The parallel roles of FGF signaling in mouse and human tooth development demonstrate the conserved importance of FGF signaling in mammalian odontogenesis.

  10. Fibroblast growth factors as tissue repair and regeneration therapeutics

    PubMed Central

    Kinnunen, Tarja K.

    2016-01-01

    Cell communication is central to the integration of cell function required for the development and homeostasis of multicellular animals. Proteins are an important currency of cell communication, acting locally (auto-, juxta-, or paracrine) or systemically (endocrine). The fibroblast growth factor (FGF) family contributes to the regulation of virtually all aspects of development and organogenesis, and after birth to tissue maintenance, as well as particular aspects of organism physiology. In the West, oncology has been the focus of translation of FGF research, whereas in China and to an extent Japan a major focus has been to use FGFs in repair and regeneration settings. These differences have their roots in research history and aims. The Chinese drive into biotechnology and the delivery of engineered clinical grade FGFs by a major Chinese research group were important enablers in this respect. The Chinese language clinical literature is not widely accessible. To put this into context, we provide the essential molecular and functional background to the FGF communication system covering FGF ligands, the heparan sulfate and Klotho co-receptors and FGF receptor (FGFR) tyrosine kinases. We then summarise a selection of clinical reports that demonstrate the efficacy of engineered recombinant FGF ligands in treating a wide range of conditions that require tissue repair/regeneration. Alongside, the functional reasons why application of exogenous FGF ligands does not lead to cancers are described. Together, this highlights that the FGF ligands represent a major opportunity for clinical translation that has been largely overlooked in the West. PMID:26793421

  11. Transforming Growth Factor-β and the Hallmarks of Cancer

    PubMed Central

    Tian, Maozhen; Neil, Jason R.; Schiemann, William P.

    2010-01-01

    Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells. PMID:20940046

  12. The epidermal growth factor receptor pathway in chronic kidney diseases.

    PubMed

    Harskamp, Laura R; Gansevoort, Ron T; van Goor, Harry; Meijer, Esther

    2016-08-01

    The epidermal growth factor receptor (EGFR) pathway has a critical role in renal development, tissue repair and electrolyte handling. Numerous studies have reported an association between dysregulation of this pathway and the initiation and progression of various chronic kidney diseases such as diabetic nephropathy, chronic allograft nephropathy and polycystic kidney disease through the promotion of renal cell proliferation, fibrosis and inflammation. In the oncological setting, compounds that target the EGFR pathway are already in clinical use or have been evaluated in clinical trials; in the renal setting, therapeutic interventions targeting this pathway by decreasing ligand availability with disintegrin and metalloproteinase inhibitors or with ligand-neutralizing antibodies, or by inhibiting receptor activation with tyrosine kinase inhibitors or monoclonal antibodies are only just starting to be explored in animal models of chronic kidney disease and in patients with autosomal dominant polycystic kidney disease. In this Review we focus on the role of the EGFR signalling pathway in the kidney under physiological conditions and during the pathophysiology of chronic kidney diseases and explore the clinical potential of interventions in this pathway to treat chronic renal diseases. PMID:27374915

  13. Pancreatitis with vascular endothelial growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Ghatalia, Pooja; Morgan, Charity J; Choueiri, Toni K; Rocha, Pedro; Naik, Gurudatta; Sonpavde, Guru

    2015-04-01

    A trial-level meta-analysis was conducted to determine the relative risk (RR) of pancreatitis associated with multi-targeted vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKI). Eligible studies included randomized phase 2 and 3 trials comparing arms with and without an FDA-approved VEGFR TKI (sunitinib, sorafenib, pazopanib, axitinib, vandetanib, cabozantinib, ponatinib, regorafenib). Statistical analyses calculated the RR and 95% confidence intervals (CI). A total of 10,578 patients from 16 phase III trials and 6 phase II trials were selected. The RR for all grade and high-grade pancreatitis for the TKI vs. no TKI- arms was 1.95 (p=0.042, 95% CI: 1.02 to 3.70) and 1.89 (p=0.069, 95% CI: 0.95 to 373), respectively. No differential impact of malignancy type or specific TKI agent was seen on RR of all grade of high grade pancreatitis. Better patient selection and monitoring may mitigate the risk of severe pancreatitis.

  14. pH sensitivity of epidermal growth factor receptor complexes.

    PubMed

    Nunez, M; Mayo, K H; Starbuck, C; Lauffenburger, D

    1993-03-01

    The association/dissociation binding kinetics of 125I-labeled mouse epidermal growth factor (EGF) to receptors on human fibroblast cells in monolayer culture have been measured at 4 degrees C as a function of extracellular pH from pH 5-9. At pH 8, steady-state total binding is maximal. As pH is lowered to 6.5, total binding monotonically decreases dramatically. It changes further only slightly between pH 6.5 and 5 to about 20% of the maximum binding value. Scatchard binding plots at pH 7.5 and above show the commonly observed concave-upward, non-linear curve; as pH is lowered, this plot becomes much more linear, indicating that the "high affinity" bound receptor population is greatly diminished. Application of our ternary complex binding model [Mayo et al., J Biol Chem 264:17838-17844, 1989], which hypothesizes complexation of the EGF-bound receptor with a cell surface interaction molecule, indicates that pH may have some direct effects on ternary complex formation, but the major effect is on EGF-receptor dissociation. PMID:8501133

  15. Purinergic regulation of vascular endothelial growth factor signaling in angiogenesis

    PubMed Central

    Rumjahn, S M; Yokdang, N; Baldwin, K A; Thai, J; Buxton, I L O

    2009-01-01

    P2Y purine nucleotide receptors (P2YRs) promote endothelial cell tubulogenesis through breast cancer cell-secreted nucleoside diphosphate kinase (NDPK). We tested the hypothesis that activated P2Y1 receptors transactivate vascular endothelial growth factor receptor (VEGFR-2) in angiogenic signaling. P2Y1R stimulation (10 μM 2-methyl-thio-ATP (2MS-ATP)) of angiogenesis is suppressed by the VEGFR-2 tyrosine kinase inhibitor, SU1498 (1 μM). Phosphorylation of VEGFR-2 by 0.0262 or 2.62 nM VEGF was comparable with 0.01 or 10 μM 2MS-ATP stimulation of the P2Y1R. 2MS-ATP, and VEGF stimulation increased tyrosine phosphorylation at tyr1175. 2MS-ATP (0.1–10 μM) also stimulated EC tubulogenesis in a dose-dependent manner. The addition of sub-maximal VEGF (70 pM) in the presence of increasing concentrations of 2MS-ATP yielded additive effects at 2MS-ATP concentrations <3 μM, whereas producing saturated and less than additive effects at ⩾3 μM. We propose that the VEGF receptor can be activated in the absence of VEGF, and that the P2YR–VEGFR2 interaction and resulting signal transduction is a critical determinant of vascular homoeostasis and tumour-mediated angiogenesis. PMID:19367276

  16. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    PubMed Central

    Dobolyi, Arpád; Vincze, Csilla; Pál, Gabriella; Lovas, Gábor

    2012-01-01

    Transforming growth factor beta (TGF-β) proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed. PMID:22942700

  17. Epithelial expression of keratinocytes growth factor in oral precancer lesions

    PubMed Central

    Jimson, Sudha; Murali, S.; Zunt, Susan L.; Goldblatt, Lawrence I.; Srinivasan, Mythily

    2016-01-01

    Background: Keratinocyte growth factor (KGF) is a potent epithelial mitogen that acts by binding the KGF receptors (KGFRs) expressed on epithelial cells and regulates proliferation and differentiation. The objective of this study was to investigate the expression of KGF in the epithelium in oral precancer. Materials and Methods: Archival tissues of oral submucous fibrosis (SMF) and leukoplakia were assessed for epithelial KGF expression by immunohistochemistry and real-time quantitative polymerase chain reaction. Results: KGF was predominantly expressed in the basal and parabasal cells in the epithelium of SMF tissues. KGF transcript in the epithelial cells increased with increasing severity of epithelial dysplasia in oral leukoplakia. Conclusion: Although widely reported as a product secreted by the mesenchymal cells, our data suggest that the KGF is also expressed in oral epithelial cells much like the expression in ovarian epithelial cells. Based on the localization of KGF in cells at the epithelial mesenchymal junction and that of the reported presence of KGFR in oral keratinocytes, a potential mechanism involving paracrine and autocrine interactions of KGF and KGFR in early stages of oral precancer is postulated. PMID:27274338

  18. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  19. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    NASA Astrophysics Data System (ADS)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  20. Anti-nerve growth factor in pain management: current evidence

    PubMed Central

    Chang, David S; Hsu, Eugene; Hottinger, Daniel G; Cohen, Steven P

    2016-01-01

    There continues to be an unmet need for safe and effective pain medications. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) dominate the clinical landscape despite limited effectiveness and considerable side-effect profiles. Although significant advancements have identified myriad potential pain targets over the past several decades, the majority of new pain pharmacotherapies have failed to come to market. The discovery of nerve growth factor (NGF) and its interaction with tropomyosin receptor kinase A (trkA) have been well characterized as important mediators of pain initiation and maintenance, and pharmacotherapies targeting this pathway have the potential to be considered promising methods in the treatment of a variety of nociceptive and neuropathic pain conditions. Several methodologic approaches, including sequestration of free NGF, prevention of NGF binding and trkA activation, and inhibition of trkA function, have been investigated in the development of new pharmacotherapies. Among these, NGF-sequestering antibodies have exhibited the most promise in clinical trials. However, in 2010, reports of rapid joint destruction leading to joint replacement prompted the US Food and Drug Administration (FDA) to place a hold on all clinical trials involving anti-NGF antibodies. Although the FDA has since lifted this hold and a number of new trials are under way, the long-term efficacy and safety profile of anti-NGF antibodies are yet to be established. PMID:27354823

  1. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes

    PubMed Central

    Kharmate, Geetanjali; Hosseini-Beheshti, Elham; Caradec, Josselin; Chin, Mei Yieng; Tomlinson Guns, Emma S.

    2016-01-01

    Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa. PMID:27152724

  2. Hepatocyte uptake and nuclear binding of epidermal growth factor (EGF)

    SciTech Connect

    Moriarity, D.M.; Underwood, T.

    1987-05-01

    The internalization of /sup 125/I-EGF and its cell-membrane receptor by target cells suggests a possible intracellular role for EGF and/or its receptor. They have examined the uptake of /sup 125/I-EGF by primary cultures of adult rat hepatocytes after 1, 24 and 48 hours of incubation in the presence of the growth factor. A significant increase in the association of radioactivity with various nuclear fractions was observed between 1 and 24 hours incubation. After 1 hour approximately 2% of the total specific binding was associated with both the nuclear sap proteins extractable with 0.14 M NaCl and with the residual nucleoplasm, while about 1% or less was associated with the nuclear membrane and the chromatin fractions. After 24 hours the percentage associated with the nuclear membrane and chromatin fractions increased 2-4 fold. Binding of /sup 125/I-EGF to isolated nuclei from intact livers of adult rats followed by fractionation of the nuclei after incubation with /sup 125/I-EGF indicated that after 60 min at 37/sup 0/C there was a substantial amount of specific binding associated with the nucleoplasm, nuclear membranes and chromatin fractions. These data indicate that specific interactions of EGF with nuclear components occur in both intact normal hepatocytes and in isolated nuclei from intact liver.

  3. Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding

    PubMed Central

    Reinert, Rachel B.; Cai, Qing; Hong, Ji-Young; Plank, Jennifer L.; Aamodt, Kristie; Prasad, Nripesh; Aramandla, Radhika; Dai, Chunhua; Levy, Shawn E.; Pozzi, Ambra; Labosky, Patricia A.; Wright, Christopher V. E.; Brissova, Marcela; Powers, Alvin C.

    2014-01-01

    Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process during embryonic organogenesis significantly precedes islet innervation. Although a simple neuronal meshwork interconnects the developing islet clusters as they begin to form at E14.5, the substantial ingrowth of nerve fibers into islets occurs postnatally, when islet vascularization is already complete. Using genetic mouse models, we demonstrate that VEGF regulates islet innervation indirectly through its effects on intra-islet endothelial cells. Our data indicate that formation of a VEGF-directed, intra-islet vascular plexus is required for development of islet innervation, and that VEGF-induced islet hypervascularization leads to increased nerve fiber ingrowth. Transcriptome analysis of hypervascularized islets revealed an increased expression of extracellular matrix components and axon guidance molecules, with these transcripts being enriched in the islet-derived endothelial cell population. We propose a mechanism for coordinated neurovascular development within pancreatic islets, in which endocrine cell-derived VEGF directs the patterning of intra-islet capillaries during embryogenesis, forming a scaffold for the postnatal ingrowth of essential autonomic nerve fibers. PMID:24574008

  4. Fibroblast growth factors, old kids on the new block.

    PubMed

    Li, Xiaokun; Wang, Cong; Xiao, Jian; McKeehan, Wallace L; Wang, Fen

    2016-05-01

    The fibroblast growth factors (FGFs) are a family of cell intrinsic regulatory peptides that control a broad spectrum of cellular activities. The family includes canonic FGFs that elicit their activities by activating the FGF receptor (FGFR) tyrosine kinase and non-canonic members that elicit their activities intracellularly and via FGFR-independent mechanisms. The FGF signaling axis is highly complex due to the existence of multiple isoforms of both ligands and receptors, as well as cofactors that include the chemically heterogeneous heparan sulfate (HS) cofactors, and in the case of endocrine FGFs, the Klotho coreceptors. Resident FGF signaling controls embryonic development, maintains tissue homeostasis, promotes wound healing and tissue regeneration, and regulates functions of multiple organs. However, ectopic or aberrant FGF signaling is a culprit for various diseases, including congenital birth defects, metabolic disorder, and cancer. The molecular mechanisms by which the specificity of FGF signaling is achieved remain incompletely understood. Since its application as a druggable target has been gradually recognized by pharmaceutical companies and translational researchers, understanding the determinants of FGF signaling specificity has become even more important in order to get into the position to selectively suppress a particular pathway without affecting others to minimize side effects. PMID:26768548

  5. Factors controlling ebro deep-sea fan growth, Mediterranean Sea

    SciTech Connect

    Nelson, C.H.; Maldonado, A.; Alonso, B.; Palanques, A.; Ryan, W.B.F.; Kastens, K.; O'Connel, S.

    1985-01-01

    Tectonic, sediment-source and sea-level factors control depositional patterns of the Ebro deep-sea fan system. In unstable, steep continental slope terrain, mass movement of material results in wide gullied canyons and formation of non-channelized debris aprons. These fan channels develop low sinuosity and generally traverse the continental rise without feeding into depositional lobes because of steep gradients (1:50 to 1:100) and sediment draining into the subsiding Valencia Valley graben. An abundance of sediment input points from mass failure and many river-fed canyons contributes to a depositional pattern of side-by-side debris aprons and separate channel-levee complexes. When a large sediment supply feeds a channel for a relatively long period 1) fan valley sinuosity increases: 2) channel walls are modified through undercutting, slumping, and crevasse splays: 3) channel bifurcation occurs: 4) incipient depositional lobe formation begins. Lowering of sea levels in Late Pleistocene time permitted the access of coarse river sediment to slope valleys and promoted deposition of numerous turbidites and active growth of the fan. During the Holocene, when sea levels have been high, a regime of hemipelagic sedimentation, mass movement, and debris apron sedimentation has dominated.

  6. Nanoscale Imaging of Epidermal Growth Factor Receptor Clustering

    PubMed Central

    Abulrob, Abedelnasser; Lu, Zhengfang; Baumann, Ewa; Vobornik, Dusan; Taylor, Rod; Stanimirovic, Danica; Johnston, Linda J.

    2010-01-01

    The development of some solid tumors is associated with overexpression of the epidermal growth factor receptor (EGFR) and often correlates with poor prognosis. Near field scanning optical microscopy, a technique with subdiffraction-limited optical resolution, was used to examine the influence of two inhibitors (the chimeric 225 antibody and tyrosine phosphorylation inhibitor AG1478) on the nanoscale clustering of EGFR in HeLa cells. The EGFR is organized in small clusters, average diameter of 150 nm, on the plasma membrane for both control and EGF-treated cells. The numbers of receptors in individual clusters vary from as few as one or two proteins to greater than 100. Both inhibitors yield an increased cluster density and an increase in the fraction of clusters with smaller diameters and fewer receptors. Exposure to AG1478 also decreases the fraction of EGFR that colocalizes with both rafts and caveolae. EGF stimulation results in a significant loss of the full-length EGFR from the plasma membrane with the concomitant appearance of low molecular mass proteolytic products. By contrast, AG1478 reduces the level of EGFR degradation. Changes in receptor clustering provide one mechanism for regulating EGFR signaling and are relevant to the design of strategies for therapeutic interventions based on modulating EGFR signaling. PMID:19959837

  7. The ontogeny of epidermal growth factor receptors during mouse development

    SciTech Connect

    Adamson, E.D.; Meek, J.

    1984-05-01

    In an attempt to understand the role(s) of epidermal growth factor (EGF) in vivo during murine development, we have examined the /sup 125/I-EGF binding characteristics of EGF-receptors in membrane preparations of tissues from the 12th day of gestation to parturition. Using autoradiography, the earliest time that we could detect EGF-receptors was on trophoblast cells cultured for 3 days as blastocyst outgrowths. Trophoblast eventually forms a large portion of the placenta, where EGF-receptors have long been recognized. We measured the number and affinity of EGF-receptors on tissues dissected from conceptuses from the 12th day of gestation in order to identify a stage when tissues may be most sensitive to EGF. Whereas the number of EGF receptors increases during gestation for all tissues examined, the affinity of the receptors declines for carcass and placenta and remains relatively unchanged for brain and liver. This suggests that EGF may function differently throughout development. Our hypothesis is that EGF (or its embryonic equivalent) initially stimulates proliferation in embryonic cells and then stimulates differentiation as the tissues mature. In the adult, its main role could be to stimulate tissue repair after damage.

  8. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth[S

    PubMed Central

    Haubrich, Brad A.; Singha, Ujjal K.; Miller, Matthew B.; Nes, Craigen R.; Anyatonwu, Hosanna; Lecordier, Laurence; Patkar, Presheet; Leaver, David J.; Villalta, Fernando; Vanhollebeke, Benoit; Chaudhuri, Minu; Nes, W. David

    2015-01-01

    Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β-methyltransferase (TbSMT) and sterol 14α-demethylase [TbSDM (TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of TbSMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanism-based inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death. Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection. PMID:25424002

  9. Enhanced effect of fibroblast growth factor-2-containing dalteparin/protamine nanoparticles on hair growth

    PubMed Central

    Takabayashi, Yuki; Nambu, Masaki; Ishihara, Masayuki; Kuwabara, Masahiro; Fukuda, Koichi; Nakamura, Shingo; Hattori, Hidemi; Kiyosawa, Tomoharu

    2016-01-01

    Purpose Although treatments for alopecia are in high demand, not all treatments are safe and reliable. Dalteparin/protamine nanoparticles (D/P NPs) can effectively carry growth factors (GFs) such as fibroblast GF (FGF)-2. The purpose of this study was to identify the effects of FGF-2-containing D/P NPs (FGF-2&D/P NPs) on hair growth. Patients and methods In this study, the participants were 12 volunteers with thin hair. One milliliter of FGF-2 (100 ng/mL) and D/P NPs (56 μg/mL) was applied and massaged on the skin of the scalp by the participants twice a day. They were evaluated for 6 months. Participants were photographed using a digital camera for general observation and a hair diagnosis system for measuring hair diameter. Results The mean diameter of the hairs was significantly higher following the application of FGF-2&D/P NPs for 6 months. Objective improvements in thin hair were observed in two cases. Nine participants experienced greater bounce and hair resilience. Conclusion The transdermal application of FGF-2&D/P NPs to the scalp can be used as a new treatment for alopecia. PMID:27274299

  10. Role of insulin-like growth factor monitoring in optimizing growth hormone therapy.

    PubMed

    Wetterau, L; Cohen, P

    2000-01-01

    Much has been learned over the past two decades regarding the management of growth hormone (GH) deficiency in children and adolescents. Current GH therapy under ideal circumstances enables children to attain a final height within the normal range and close to their target height. However, such a successful outcome is not always achieved and the necessity to individualize treatment according to the specific needs of each GH-deficient child is now well recognized. Consensus does not currently exist as to how to formulate individualized treatment plans. Nonetheless, a clear role for a biochemical, as well as an auxological, monitoring approach has been established. Accurate determinations of height velocity and interval height increase (expressed as the change in height Z-score) continue to be the most important parameters in monitoring the response to treatment. The importance of routinely monitoring serum levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 is an emerging paradigm. Firm roles have been established for this approach in the assurance of compliance and safety (particularly to avoid long-term theoretical risks). IGF monitoring also has important potential utility as a tool to assess and optimize the response to GH therapy through dose adjustments. In years to come, we expect the development of multiple GH treatment optimization strategies, including approaches such as prediction modeling, as well as serum IGF monitoring and dose adjustments, to evolve and improve. PMID:11202212

  11. The Role of Fibroblast Growth Factor-23 in Cardiorenal Syndrome

    PubMed Central

    Kovesdy, Csaba P.; Quarles, L. Darryl

    2016-01-01

    Abnormalities in chronic kidney disease-related bone and mineral metabolism (CKD-MBD) have emerged as novel risk factors in excess cardiovascular mortality in patients with CKD and end-stage renal disease (ESRD). The pathophysiological links between CKD-MBD and adverse cardiovascular events in this patient population are unclear. Hyperphosphatemia through induction of vascular calcifications and decreased active vitamin D production leading to activation of the renin angiotensin system (RAS) along with defects in innate immunity are purported to be the proximate cause of CKD-MBD-associated mortality in CKD. Recently, this view has been challenged by the observation that fibroblast growth factor-23 (FGF23), a newly discovered hormone produced in the bone that regulates phosphate and vitamin D metabolism by the kidney, is a strong predictor of adverse cardiovascular outcomes in patients with CKD and ESRD. Whether these associations between elevated circulating FGF23 levels and cardiovascular outcomes are causative, and if so, the mechanisms mediating the effects of FGF23 on the cardiovascular system are not clear. The principal physiological functions of FGF23 are mediated by activation of FGF receptor/α-klotho coreceptor complexes in target tissues. Elevated FGF23 has been associated with left ventricular hypertrophy (LVH), and it has been suggested that FGF23 may induce myocardial hypertrophy through a direct effect on cardiac myocytes. A direct ‘off target’ effect of FGF23 on LVH is controversial, however, since α-klotho (which is believed to be indispensable for the physiologic actions of FGF23) is not expressed in the myocardium. Another possibility is that FGF23’s effect on the heart is mediated indirectly, via ‘on target’ regulation of hormonal pathways in the kidney, which include suppression of angiotensin-converting enzyme 2, Cyp27b1and α-klotho, which would be predicted to act on circulating factors known to regulate RAS, 1,25(OH)2 D

  12. Increased Serum Levels of Epidermal Growth Factor in Children with Autism

    ERIC Educational Resources Information Center

    Iseri, Elvan; Guney, Esra; Ceylan, Mehmet F.; Yucel, Aysegul; Aral, Arzu; Bodur, Sahin; Sener, Sahnur

    2011-01-01

    The etiology of autism is unclear, however autism is considered as a multifactorial disorder that is influenced by neurological, environmental, immunological and genetic factors. Growth factors, including epidermal growth factor (EGF), play an important role in the celluler proliferation and the differentiation of the central and peripheral…

  13. The Effects of Autocorrelation on the Curve-of-Factors Growth Model

    ERIC Educational Resources Information Center

    Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A.

    2011-01-01

    This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…

  14. Growth factors have a protective effect on neomycin-induced hair cell loss.

    PubMed

    Lou, Xiangxin; Yuan, Huihua; Xie, Jing; Wang, Xianliu; Yang, Liangliang; Zhang, Yanzhong

    2015-01-01

    We have demonstrated that selected growth factors are involved in regulating survival and proliferation of progenitor cells derived from the neonatal rat organ of Corti (OC). The protective and regenerative effects of these defined growth factors on the injured organ of Corti were therefore investigated. The organ of Corti dissected from the Wistar rat pups (P3-P5) was split into apical, middle, and basal parts, explanted and cultured with or without neomycin and growth factors. Insulin-like growth factor-1 (IGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF) protected the inner hair cells (IHCs) and outer hair cells (OHCs) from neomycin ototoxicity. Using EGF, IGF-1, and FGF-2 alone induced no protective effect on the survival of auditory hair cells. Combining 2 growth factors (EGF + IGF-1, EGF + FGF-2, or IGF-1 + FGF-2) gave statistically protective effects. Similarly, combining all three growth factors effectively protected auditory hair cells from the ototoxic insult. None of the growth factors induced regeneration of hair cells in the explants injured with neomycin. Thus various combinations of the three defined factors (IGF-1, FGF-2, and EGF) can protect the auditory hair cells from the neomycin-induced ototoxic damage, but no regeneration was seen. This offers a possible novel approach to the treatment of hearing loss.

  15. Growth hormone and insulin-like growth factors in fish: Where we are and where to go

    USGS Publications Warehouse

    Reinecke, M.; Bjornsson, Bjorn Thrandur; Dickhoff, Walton W.; McCormick, S.D.; Navarro, I.; Power, D.M.; Gutierrez, J.

    2005-01-01

    This communication summarizes viewpoints, discussion, perspectives, and questions, put forward at a workshop on "Growth hormone and insulin-like growth factors in fish" held on September 7th, 2004, at the 5th International Symposium on Fish Endocrinology in Castello??n, Spain. ?? 2005 Elsevier Inc. All rights reserved.

  16. Diverse Roles of Growth Hormone and Insulin-Like Growth Factor-1 in Mammalian Aging: Progress and Controversies

    PubMed Central

    Csiszar, Anna; de Cabo, Raphael; Ferrucci, Luigi; Ungvari, Zoltan

    2012-01-01

    Because the initial reports demonstrating that circulating growth hormone and insulin-like growth factor-1 decrease with age in laboratory animals and humans, there have been numerous studies related to the importance of these hormones for healthy aging. Nevertheless, the role of these potent anabolic hormones in the genesis of the aging phenotype remains controversial. In this chapter, we review the studies demonstrating the beneficial and deleterious effects of growth hormone and insulin-like growth factor-1 deficiency and explore their effects on specific tissues and pathology as well as their potentially unique effects early during development. Based on this review, we conclude that the perceived contradictory roles of growth hormone and insulin-like growth factor-1 in the genesis of the aging phenotype should not be interpreted as a controversy on whether growth hormone or insulin-like growth factor-1 increases or decreases life span but rather as an opportunity to explore the complex roles of these hormones during specific stages of the life span. PMID:22522510

  17. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  18. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  19. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration.

    PubMed

    Bayer, E A; Gottardi, R; Fedorchak, M V; Little, S R

    2015-12-10

    Bone regeneration is a complex process, that in vivo, requires the highly coordinated presentation of biochemical cues to promote the various stages of angiogenesis and osteogenesis. Taking inspiration from the natural healing process, a wide variety of growth factors are currently being released within next generation tissue engineered scaffolds (in a variety of ways) in order to heal non-union fractures and bone defects. This review will focus on the delivery of multiple growth factors to the bone regeneration niche, specifically 1) dual growth factor delivery signaling and crosstalk, 2) the importance of growth factor timing and temporal separation, and 3) the engineering of delivery systems that allow for temporal control over presentation of soluble growth factors. Alternative methods for growth factor presentation, including the use of gene therapy and platelet-rich plasma scaffolds, are also discussed.

  20. Elevated Fibroblast Growth Factor 23 is a Risk Factor for Kidney Transplant Loss and Mortality

    PubMed Central

    Molnar, Miklos Z.; Amaral, Ansel P.; Czira, Maria E.; Rudas, Anna; Ujszaszi, Akos; Kiss, Istvan; Rosivall, Laszlo; Kosa, Janos; Lakatos, Peter; Kovesdy, Csaba P.; Mucsi, Istvan

    2011-01-01

    An increased circulating level of fibroblast growth factor 23 (FGF23) is an independent risk factor for mortality, cardiovascular disease, and progression of chronic kidney disease (CKD), but its role in transplant allograft and patient survival is unknown. We tested the hypothesis that increased FGF23 is an independent risk factor for all-cause mortality and allograft loss in a prospective cohort of 984 stable kidney transplant recipients. At enrollment, estimated GFR (eGFR) was 51 ± 21 ml/min per 1.73 m2 and median C-terminal FGF23 was 28 RU/ml (interquartile range, 20 to 43 RU/ml). Higher FGF23 levels independently associated with increased risk of the composite outcome of all-cause mortality and allograft loss (full model hazard ratio: 1.46 per SD increase in logFGF23, 95% confidence interval: 1.28 to 1.68, P < 0.001). The results were similar for each component of the composite outcome and in all sensitivity analyses, including prespecified analyses of patients with baseline eGFR of 30 to 90 ml/min per 1.73 m2. In contrast, other measures of phosphorus metabolism, including serum phosphate and parathyroid hormone (PTH) levels, did not consistently associate with outcomes. We conclude that a high (or elevated) FGF23 is an independent risk factor for death and allograft loss in kidney transplant recipients. PMID:21436289

  1. Hepatocyte Growth Factor/Scatter Factor and MET Are Involved in Arterial Repair and Atherogenesis

    PubMed Central

    McKinnon, Heather; Gherardi, Ermanno; Reidy, Michael; Bowyer, David

    2006-01-01

    Several studies have shown that in the arterial wall hepatocyte growth factor/scatter factor (HGF/SF) is expressed by smooth muscle cells (SMCs) but acts on endothelial cells, not SMCs. Other studies, however, have indicated that SMCs can respond to HGF/SF. We have reinvestigated expression and activity of HGF/SF and its receptor MET in arterial SMC and endothelial cell cultures and in whole arteries after superficial or deep injury or atherogenesis. High-density cultures of SMCs produced HGF/SF but did not express MET, whereas SMCs, at the leading edge of injured cultures, expressed both ligand and receptor and showed a dramatic motility and growth response to HGF/SF. In line with these results, HGF/SF and MET expression was undetectable in the media of uninjured carotid arteries but was induced after deep arterial injury in areas of SMC migration in the neointima. Strong MET expression was also observed in the SMCs of the atherosclerotic lesions of homozygous apoE−/− mice, whereas HGF/SF was expressed by macrophage-derived foam cells. These results demonstrate that MET is induced in migrating and proliferating SMCs and that HGF/SF and MET are key mediators of the SMC response in atherogenesis. PMID:16400035

  2. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells.

    PubMed Central

    Mills, G B; May, C; Hill, M; Campbell, S; Shaw, P; Marks, A

    1990-01-01

    Human ovarian cancer, the leading cause of death from gynecologic malignancy, tends to remain localized to the peritoneal cavity until late in the disease. In established disease, ascitic fluid accumulates in the peritoneal cavity. We have previously demonstrated that this ascitic fluid is a potent source of in vitro mitogenic activity including at least one unique growth factor. We now report that the human ovarian adenocarcinoma line, HEY, can be induced to grow intraperitoneally in immunodeficient nude mice in the presence (23/28 mice), but not absence (0/21 mice) of ascitic fluid from ovarian cancer patients. Ascitic fluid from patients with benign disease did not have similar effects on intraperitoneal growth of HEY cells (1/15 mice). Once tumors were established by injections of exogenous ascitic fluid, they could progress in the absence of additional injections of ascitic fluid. The mice eventually developed ascitic fluid which contained potent growth factor activity, suggesting that the tumors eventually produced autologous growth factors. This nude mouse model provides a system to study the action of ovarian cancer growth factors on tumor growth in vivo and to evaluate preclinically, therapeutic approaches designed to counteract the activity of these growth factors. PMID:2394835

  3. Nerve growth factor: role in growth, differentiation and controlling cancer cell development.

    PubMed

    Aloe, Luigi; Rocco, Maria Luisa; Balzamino, Bijorn Omar; Micera, Alessandra

    2016-01-01

    Recent progress in the Nerve Growth Factor (NGF) research has shown that this factor acts not only outside its classical domain of the peripheral and central nervous system, but also on non-neuronal and cancer cells. This latter observation has led to divergent hypothesis about the role of NGF, its specific distribution pattern within the tissues and its implication in induction as well as progression of carcinogenesis. Moreover, other recent studies have shown that NGF has direct clinical relevance in certain human brain neuron degeneration and a number of human ocular disorders. These studies, by suggesting that NGF is involved in a plethora of physiological function in health and disease, warrant further investigation regarding the true role of NGF in carcinogenesis. Based on our long-lasting experience in the physiopathology of NGF, we aimed to review previous and recent in vivo and in vitro NGF studies on tumor cell induction, progression and arrest. Overall, these studies indicate that the only presence of NGF is unable to generate cell carcinogenesis, both in normal neuronal and non-neuronal cells/tissues. However, it cannot be excluded the possibility that the co-expression of NGF and pro-carcinogenic molecules might open to different consequence. Whether NGF plays a direct or an indirect role in cell proliferation during carcinogenesis remains to demonstrate. PMID:27439311

  4. Mitogenic properties of insulin-like growth factors I and II, insulin-like growth factor binding protein-3 and epidermal growth factor on human breast stromal cells in primary culture.

    PubMed

    Strange, Karen S; Wilkinson, Darcy; Edin, Glenn; Emerman, Joanne T

    2004-03-01

    Insulin-like growth factors I and II (IGF-I and IGF-II) are growth factors implicated in both normal mammary gland development and breast cancer. We have previously reported on the effects of components of the IGF system on breast epithelial cells. Since data suggests that stromal-epithelial interactions play a crucial role in breast cancer, we have now investigated the mitogenic properties of IGF-I, IGF-II, insulin-like growth factor binding protein-3 (IGFBP-3) and epidermal growth factor (EGF) on human breast stromal cells in primary culture. We show that, under serum-free conditions, stromal cells are stimulated to grow in response to IGF-I and IGF-II in a dose-dependent manner. IGF-I and EGF, a potent stimulator of human breast epithelial cell growth in primary culture and also associated with breast cancer, appear to stimulate stromal cell growth in a synergistic manner. IGFBP-3 does not inhibit the stimulation of growth by IGF-I, or IGF-I plus EGF. However, IGFBP-3 does inhibit the stimulation of growth by IGF-II. In contrast to our previous results with human breast epithelial cells, IGFBP-3 does not have an IGF-independent inhibitory effect on stromal cell growth. This study is the first to address the effects of IGF-I, IGF-II and IGFBP-3 alone and in combination with EGF on human breast stromal cell growth in primary culture. Characterizing the role of the IGF system in both normal breast epithelial cells and stromal cells will aid in our understanding of the mechanisms behind the role of the IGF system in breast cancer.

  5. Controlled Multiple Growth Factor Delivery from Bone Tissue Engineering Scaffolds via Designed Affinity

    PubMed Central

    Suárez-González, Darilis; Lee, Jae Sung; Diggs, Alisha; Lu, Yan; Nemke, Brett; Markel, Mark; Hollister, Scott J.

    2014-01-01

    It is known that angiogenesis plays an important role in bone regeneration and that release of angiogenic and osteogenic growth factors can enhance bone formation. Multiple growth factors play key roles in processes that lead to tissue formation/regeneration during natural tissue development and repair. Therefore, treatments aiming to mimic tissue regeneration can benefit from multiple growth factor release, and there remains a need for simple clinically relevant approaches for dual growth factor release. We hypothesized that mineral coatings could be used as a platform for controlled incorporation and release of multiple growth factors. Specifically, mineral-coated scaffolds were “dip coated” in multiple growth factor solutions, and growth factor binding and release were dictated by the growth factor-mineral binding affinity. Beta tricalcium phosphate (β-TCP) scaffolds were fabricated using indirect solid-free form fabrication techniques and coated with a thin conformal mineral layer. Mineral-coated β-TCP scaffolds were sequentially dipped in recombinant human vascular endothelial growth factor (rhVEGF) and a modular bone morphogenetic peptide, a mineral-binding version of bone morphogenetic protein 2 (BMP2), solutions to allow for the incorporation of each growth factor. The dual release profile showed sustained release of both growth factors for over more than 60 days. Scaffolds releasing either rhVEGF alone or the combination of growth factors showed an increase in blood vessel ingrowth in a dose-dependent manner in a sheep intramuscular implantation model. This approach demonstrates a “modular design” approach, in which a controllable biologics carrier is integrated into a structural scaffold as a thin surface coating. PMID:24350567

  6. Epidermal Growth Factor Receptor and Transforming Growth Factor-β Signaling Contributes to Variation for Wing Shape in Drosophila melanogaster

    PubMed Central

    Dworkin, Ian; Gibson, Greg

    2006-01-01

    Wing development in Drosophila is a common model system for the dissection of genetic networks and their roles during development. In particular, the RTK and TGF-β regulatory networks appear to be involved with numerous aspects of wing development, including patterning, cell determination, growth, proliferation, and survival in the developing imaginal wing disc. However, little is known as to how subtle changes in the function of these genes may contribute to quantitative variation for wing shape, per se. In this study 50 insertional mutations, representing 43 loci in the RTK, Hedgehog, TGF-β pathways, and their genetically interacting factors were used to study the role of these networks on wing shape. To concurrently examine how genetic background modulates the effects of the mutation, each insertion was introgressed into two wild-type genetic backgrounds. Using geometric morphometric methods, it is shown that the majority of these mutations have profound effects on shape but not size of the wing when measured as heterozygotes. To examine the relationships between how each mutation affects wing shape hierarchical clustering was used. Unlike previous observations of environmental canalization, these mutations did not generally increase within-line variation relative to their wild-type counterparts. These results provide an entry point into the genetics of wing shape and are discussed within the framework of the dissection of complex phenotypes. PMID:16648592

  7. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer

    PubMed Central

    Sobani, Zain A; Sawant, Ashwin; Jafri, Mikram; Correa, Amit Keith; Sahin, Ibrahim Halil

    2016-01-01

    Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade. PMID:27777877

  8. Transforming growth factor-betas and vascular disorders.

    PubMed

    Bobik, Alex

    2006-08-01

    Transforming growth factor-beta (TGF-beta) superfamily members, TGF-beta and bone morphogenetic proteins (BMPs), are potent regulatory cytokines with diverse functions on vascular cells. They signal through heteromeric type I and II receptor complexes activating Smad-dependent and Smad-independent signals, which regulate proliferation, differentiation, and survival. They are potent regulators of vascular development and vessel remodeling and play key roles in atherosclerosis and restenosis, regulating endothelial, smooth muscle cell, macrophage, T cell, and probably vascular calcifying cell responses. In atherosclerosis, TGF-beta regulates lesion phenotype by controlling T-cell responses and stimulating smooth muscle cells to produce collagen. It contributes to restenosis by augmenting neointimal cell proliferation and collagen accumulation. Defective TGF-beta signaling in endothelial cells attributable to mutations in endoglin or the type I receptor ALK-1 leads to hereditary hemorrhagic telangiectasia, whereas defective BMP signaling attributable to mutations in the BMP receptor II has been associated with development of primary pulmonary hypertension. The development of mouse models with either cell type-specific or general inactivation of TGF-beta/BMP signaling has started to reveal the importance of the regulatory network of TGF-beta/BMP pathways in vivo and their significance for atherosclerosis, hereditary hemorrhagic telangiectasia, and primary pulmonary hypertension. This review highlights recent findings that have advanced our understanding of the roles of TGF-beta superfamily members in regulating vascular cell responses and provides likely avenues for future research that may lead to novel pharmacological therapies for the treatment or prevention of vascular disorders. PMID:16675726

  9. Nerve growth factor receptor molecules in rat brain

    SciTech Connect

    Taniuchi, M.; Schweitzer, J.B.; Johnson, E.M. Jr.

    1986-03-01

    The authors have developed a method to immunoprecipitate rat nerve growth factor (NGF) receptor proteins and have applied the method to detect NGF receptor molecules in the rat brain. Crosslinking /sup 125/I-labeled NGF to either PC12 cells or cultured rat sympathetic neurons yielded two radiolabeled molecules (90 kDa and 220 kDa) that were immunoprecipitated by monoclonal antibody 192-IgG. Further, 192-IgG precipitated two radiolabeled proteins, with the expected sizes (80 kDa and 210 kDa) of noncrosslinked NGF receptor components, from among numerous surface-iodinated PC12 cell proteins. These results demonstrate the specific immunoprecipitation of NGF receptor molecules by 192-IgG. They applied the /sup 125/I-NGF crosslinking and 192-IgG-mediated immunoprecipitation procedures to plasma membrane preparations of rat brain: NGF receptor molecules of the same molecular masses as the peripheral receptor components were consistently detected in all regions and in preparations from whole brains. Removal of the peripheral sympathetic innervation of the brain did not eliminate these NGF receptor proteins, indicating that the receptor is endogenous to central nervous system tissues. They also observed retrograde transport of /sup 125/I-labeled 192-IgG from the parietal cortex to the nucleus basalis and from the hippocampus to the nucleus of the diagonal band of Broca and the medial septal nucleus. These findings demonstrate the presence in brain of NGF receptor molecules indistinguishable from those of the peripheral nervous system.

  10. Developmental regulation of human truncated nerve growth factor receptor

    SciTech Connect

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. )

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  11. The effects of bleomycin on alveolar macrophage growth factor secretion.

    PubMed Central

    Denholm, E. M.; Phan, S. H.

    1989-01-01

    Previous work in this laboratory has demonstrated increased secretion of fibroblast growth factor (MDGF) activity by alveolar macrophages obtained from mice with bleomycin-induced pulmonary fibrosis. The mechanism by which bleomycin promotes this increase in MDGF secretion is not clear, however. The purpose of this study was to determine the direct effects of bleomycin on alveolar macrophages. Normal rat alveolar macrophages obtained by lavage were cultured in the presence or absence of bleomycin; conditioned media from these cultures were dialyzed to remove bleomycin and then assayed in vitro for MDGF activity. Alveolar macrophages incubated with 0.01 microgram to 1 microgram/ml bleomycin for 18 hours secreted significantly more MDGF than macrophages incubated without bleomycin. Viability of macrophages as determined by exclusion of trypan blue and release of LDH was unaffected by any dose tested. Maximal MDGF production was seen with bleomycin doses of greater than or equal to 0.1 microgram/ml. When alveolar macrophages were incubated with 0.1 microgram/ml bleomycin for 0.5-18 hours, MDGF activity was detected as early as 1 hour, with peak responses found at 4-8 hours. Macrophages stimulated with bleomycin continued to produce significant amounts of MDGF even after bleomycin was removed and replaced with fresh (bleomycin-free) media. MDGF secretion by bleomycin-stimulated alveolar macrophages was inhibited by cycloheximide, and the 5-lipoxygenase inhibitors NDGA (nordihydroguairetic acid) and BW755c, indicating not only a requirement for protein synthesis but also for metabolites of the 5-lipoxygenase pathway of arachidonic acid metabolism for full expression of activity(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2464942

  12. Hematopoietic Growth Factors, Signaling and the Chronic Myeloproliferative Disorders

    PubMed Central

    Kaushansky, Kenneth

    2006-01-01

    The chronic myeloproliferative diseases (CMDs) are a group of conditions characterized by unregulated blood cell production, that due either to excessive numbers of erythrocytes, leukocytes or platelets, or their defective function cause symptoms and signs of fatigue, headache, ruddy cyanosis, hemorrhage, abdominal distension, and the complications of vascular thrombosis. In the late 19th century Vaquez provided the first description of polycythemia vera (PV) and Hueck defined idiopathic myelofibrosis (IMF). In 1920, di Guglielmo established criteria for patients with essential thrombocythemia (ET). In 1951 Dameshek argued that these disorders, along with chronic myelogenous leukemia (CML) display many similar clinical and laboratory features (1), and grouped them. In 2002 the World Health Organization expanded the definition of CMDs to also include chronic neutrophilic leukemia (CNL), chronic eosinophilic leukemia/hypereosinophilic syndrome (CEL/HES) and systemic mast cell disorder (SMCD; 2). While the molecular pathogenesis of CML is well known (3), and the causes of CEL/HES and SMCD have been identified in about half of all cases (4,5), until very recently the etiologies of the three classically defined CMDs, PV, IMF and ET, were poorly understood. Each of these disorders is characterized by excessive hematopoiesis, a process usually dependent on one or more hematopoietic growth factors (HGFs). This review will focus on how our knowledge of the molecular mechanisms by which HGFs are produced, bind cell surface receptors and transduce survival and proliferative signals have provided the platform on which the multiple origins of CMDs can be understood and novel therapeutic interventions designed. PMID:17055768

  13. Identification of a new fibroblast growth factor receptor, FGFR5.

    PubMed

    Sleeman, M; Fraser, J; McDonald, M; Yuan, S; White, D; Grandison, P; Kumble, K; Watson, J D; Murison, J G

    2001-06-27

    A novel fibroblast growth factor receptor (FGFR), designated FGFR5, was identified from an EST database of a murine lymph node stromal cell cDNA library. The EST has approximately 32% identity to the extracellular domain of FGFR1-4. Library screening with this EST identified two full-length alternative transcripts which we designated as FGFR5 beta and FGFR5 gamma. The main difference between these transcripts is that FGFR5 beta contains three extracellular Ig domains whereas FGFR5 gamma contains only two. A unique feature of FGFR5 is that it does not contain an intracellular tyrosine kinase domain. Predictive structural modelling of the extracellular domain of FGFR5 gamma suggested that it was a member of the I-set subgroup of the Ig-superfamily, consistent with the known FGFRs. Northern analysis of mouse and human FGFR5 showed detectable mRNA in a broad range of tissues, including kidney, brain and lung. Genomic sequencing identified four introns but identified no alternative transcripts containing a tyrosine kinase domain. Extracellular regions of FGFR5 beta and 5 gamma were cloned in-frame with the Fc fragment of human IgG(1) to generate recombinant non-membrane bound protein. Recombinant FGFR5 beta Fc and R5 gamma Fc demonstrated specific binding to the ligand FGF-2, but not FGF-7 or EGF. However, biological data suggest that FGF-2 binding to these proteins is with lower affinity than its cognate receptor FGFR2C. The above data indicate that this receptor should be considered as the fifth member of the FGFR family. PMID:11418238

  14. Growth-Factor Nanocapsules That Enable Tunable Controlled Release for Bone Regeneration.

    PubMed

    Tian, Haijun; Du, Juanjuan; Wen, Jing; Liu, Yang; Montgomery, Scott R; Scott, Trevor P; Aghdasi, Bayan; Xiong, Chengjie; Suzuki, Akinobu; Hayashi, Tetsuo; Ruangchainikom, Monchai; Phan, Kevin; Weintraub, Gil; Raed, Alobaidaan; Murray, Samuel S; Daubs, Michael D; Yang, Xianjin; Yuan, Xu-Bo; Wang, Jeffrey C; Lu, Yunfeng

    2016-08-23

    Growth factors are of great potential in regenerative medicine. However, their clinical applications are largely limited by the short in vivo half-lives and the narrow therapeutic window. Thus, a robust controlled release system remains an unmet medical need for growth-factor-based therapies. In this research, a nanoscale controlled release system (degradable protein nanocapsule) is established via in situ polymerization on growth factor. The release rate can be finely tuned by engineering the surface polymer composition. Improved therapeutic outcomes can be achieved with growth factor nanocapsules, as illustrated in spinal cord fusion mediated by bone morphogenetic protein-2 nanocapsules. PMID:27227573

  15. Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis.

    PubMed

    Talapatra, S; Wagner, J D O; Thompson, C B

    2002-08-01

    To identify genes that contribute to apoptotic resistance, IL-3 dependent hematopoietic cells were transfected with a cDNA expression library and subjected to growth factor withdrawal. Transfected cells were enriched for survivors over two successive rounds of IL-3 withdrawal and reconstitution, resulting in the identification of a full-length elongation factor 1 alpha (EF-1alpha) cDNA. Ectopic EF-1alpha expression conferred protection from growth factor withdrawal and agents that induce endoplasmic reticulum stress, but not from nuclear damage or death receptor signaling. Overexpression of EF-1alpha did not lead to growth factor independent cell proliferation or global alterations in protein levels or rates of synthesis. These findings suggest that overexpression of EF-1alpha results in selective resistance to apoptosis induced by growth factor withdrawal and ER stress. PMID:12107828

  16. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis.

    PubMed Central

    Yoshida, S; Ono, M; Shono, T; Izumi, H; Ishibashi, T; Suzuki, H; Kuwano, M

    1997-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a macrophage/monocyte-derived polypeptide which modulates the expression of various genes in vascular endothelial cells and induces angiogenesis. However, the underlying mechanism by which TNF-alpha mediates angiogenesis is not completely understood. In this study, we assessed whether TNF-alpha-induced angiogenesis is mediated through TNF-alpha itself or indirectly through other TNF-alpha-induced angiogenesis-promoting factors. Cellular mRNA levels of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and their receptors were increased after the treatment of human microvascular endothelial cells with TNF-alpha (100 U/ml). TNF-alpha-dependent tubular morphogenesis in vascular endothelial cells was inhibited by the administration of anti-IL-8, anti-VEGF, and anti-bFGF antibodies, and coadministration of all three antibodies almost completely abrogated tubular formation. Moreover, treatment with Sp1, NF-kappaB, and c-Jun antisense oligonucleotides inhibited TNF-alpha-dependent tubular morphogenesis by microvascular endothelial cells. Administration of a NF-kappaB antisense oligonucleotide almost completely inhibited TNF-alpha-dependent IL-8 production and partially abrogated TNF-alpha-dependent VEGF production, and an Sp1 antisense sequence partially inhibited TNF-alpha-dependent production of VEGF. A c-Jun antisense oligonucleotide significantly inhibited TNF-alpha-dependent bFGF production but did not affect the production of IL-8 and VEGF. Administration of an anti-IL-8 or anti-VEGF antibody also blocked TNF-alpha-induced neovascularization in the rabbit cornea in vivo. Thus, angiogenesis by TNF-alpha appears to be modulated through various angiogenic factors, both in vitro and in vivo, and this pathway is controlled through paracrine and/or autocrine mechanisms. PMID:9199336

  17. Growth factor modulation of fibroblast proliferation, differentiation, and invasion: implications for tissue valve engineering.

    PubMed

    Narine, Kishan; De Wever, Olivier; Van Valckenborgh, Dillis; Francois, Katrien; Bracke, Marc; DeSmet, Stefaan; Mareel, Marc; Van Nooten, Guido

    2006-10-01

    We have previously shown that transforming growth factor-beta1 (TGF-beta1) stimulates transdifferentiation of fibroblasts into smooth muscle alpha-actin (alpha-SMA) positive myofibroblasts. However, TGF-beta, as such, is unsuitable for effective population of a heart valve matrix, because it dose-dependently inhibits growth of fibroblasts. The aim of this study was to investigate combinations of other growth factors with TGF-beta to stimulate the proliferation of suitably differentiated cells and to enhance their invasion into aortic valve matrices. Human dermal mesenchymal cells (hDMC1.1) were treated with combinations of growth factors to stimulate these cells to trans-differentiate into myofibroblasts, to proliferate, and to invade. Growth factors were chosen after expression of their respective receptors was confirmed in hDMC1.1 using reverse transcriptase polymerase chain reaction. We combined TGF-beta with several growth factors such as insulin-like growth factor (IGF-1, IGF-2), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and platelet-derived growth factor (PDGF-AA, PDGF-BB, and PDGFAB). Nuclear Ki67 staining, MTT assay, and cell counting revealed that only EGF and bFGF were capable of overcoming TGF-beta-induced growth inhibition. However, bFGF but not EGF inhibited TGF-beta-induced alpha-SMA expression, as evidenced by immuno-cytochemistry and Western blotting. A growth factor cocktail (TGF-beta, EGF, bFGF) has been established that maintains TGF-beta-induced trans-differentiation but overcomes TGF-beta-induced growth inhibition while stimulating fibroblast proliferation and invasion. PMID:17518640

  18. Levels of transforming growth factor beta and transforming growth factor beta receptors in rat liver during growth, regression by apoptosis and neoplasia.

    PubMed

    Grasl-Kraupp, B; Rossmanith, W; Ruttkay-Nedecky, B; Müllauer, L; Kammerer, B; Bursch, W; Schulte-Hermann, R

    1998-09-01

    Transforming growth factor beta1 (TGF-beta1) has been implicated as inhibitor of cell proliferation and a potent inducer of apoptosis in vitro and in vivo after the administration of high doses. To assess the role of endogenous TGF-beta1, we quantitated the cytokine and its receptors in rat liver during regenerative and hyperplastic growth, regression by apoptosis, and in hepatocellular carcinoma (HCC). This was accomplished by Northern blot analysis and by RNase protection assay of the messenger RNA (mRNA) of TGF-beta1 and TGF-beta receptors (TbetaR) types I to III and by an activity bioassay of the TGF-beta proteins. Untreated rat livers were found to contain 15.6 +/- 4.8 ng TGF-beta1 protein/g tissue; TGF-beta2 protein was not detected. To induce toxic cell death and subsequent regenerative DNA synthesis in the liver, rats were treated with a necrogenic dose of carbon tetrachloride (CCl4). After 24 and 48 hours, there was an upregulation of TGF-beta1 (mRNA, up to tenfold; protein, about twofold) and of TbetaRs (mRNA: two- to fourfold); that indicates an overall enhanced production of and sensitivity to TGF-beta1, which may serve to confine the regenerative response. Hyperplastic liver growth and regression of the hyperplasia were induced by treatment with cyproterone acetate (CPA) or nafenopin (NAF) followed by withdrawal; neither mRNAs of TGF-beta1 and TbetaR types I to III nor TGF-beta1 protein exhibited significant changes during the growth phase or during regression by apoptosis. We also studied neoplastic growth. HCC, obtained after long-term treatment with NAF, exhibited high rates of cell replication and apoptosis. The majority of lesions contained mRNA and protein of TGF-beta1 and mRNA of TbetaR types I to III at concentrations similar to those of the surrounding tissue. In conclusion, during liver regeneration there is a pronounced upregulation of expression of both TGF-beta1 and TbetaRs I to III, but not during mitogen-induced liver growth or

  19. Tumor necrosis factor alpha induces the expression of transforming growth factor alpha and the epidermal growth factor receptor in human pancreatic cancer cells.

    PubMed Central

    Schmiegel, W; Roeder, C; Schmielau, J; Rodeck, U; Kalthoff, H

    1993-01-01

    Recombinant human tumor necrosis factor (TNF)-alpha increased the expression of epidermal growth factor receptor (EGFR) mRNA and protein in all of six human pancreatic carcinoma cell lines tested. In addition, TNF-alpha increased the expression of an EGFR ligand, transforming growth factor (TGF)-alpha, at the mRNA and protein level in all cell lines. Increased expression of EGFR protein was associated with elevated steady-state EGFR mRNA levels. Nuclear run-on analysis showed that increase in EGFR mRNA was due to an increased rate of transcription. Induction of EGFR mRNA expression by TNF-alpha was abrogated by cycloheximide but occurred independently of TNF-alpha-induced production of TGF-alpha protein. Protein kinase A or Gi-type guanine nucleotide-binding proteins were not involved in this process as assessed by using appropriate stimulators and inhibitors of these signal transduction pathways. By contrast, staurosporine, an inhibitor of protein kinase C, partially inhibited, and 4-bromophenacyl bromide, a phospholipase inhibitor, completely inhibited TNF-alpha-dependent EGFR mRNA expression. The phospholipase C-specific inhibitor tricyclodecan-9-yl xanthogenate did not alter TNF-alpha-dependent EGFR mRNA expression, suggesting that phospholipase A2 is involved in the modulation of EGFR expression by TNF-alpha. The simultaneous induction of a ligand/receptor system by TNF-alpha suggests that this cytokine modulates autocrine growth-regulatory pathways in pancreatic cancer cells. Images PMID:8430098

  20. Alterations of growth plate and abnormal insulin-like growth factor I metabolism in growth-retarded hypokalemic rats: effect of growth hormone treatment.

    PubMed

    Gil-Peña, Helena; Garcia-Lopez, Enrique; Alvarez-Garcia, Oscar; Loredo, Vanessa; Carbajo-Perez, Eduardo; Ordoñez, Flor A; Rodriguez-Suarez, Julian; Santos, Fernando

    2009-09-01

    Hypokalemic tubular disorders may lead to growth retardation which is resistant to growth hormone (GH) treatment. The mechanism of these alterations is unknown. Weaning female rats were grouped (n = 10) in control, potassium-depleted (KD), KD treated with intraperitoneal GH at 3.3 mg x kg(-1) x day(-1) during the last week (KDGH), and control pair-fed with KD (CPF). After 2 wk, KD rats were growth retarded compared with CPF rats, the osseous front advance (+/-SD) being 67.07 +/- 10.44 and 81.56 +/- 12.70 microm/day, respectively. GH treatment did not accelerate growth rate. The tibial growth plate of KD rats had marked morphological alterations: lower heights of growth cartilage (228.26 +/- 23.58 microm), hypertrophic zone (123.68 +/- 13.49 microm), and terminal chondrocytes (20.8 +/- 2.39 microm) than normokalemic CPF (264.21 +/- 21.77, 153.18 +/- 15.80, and 24.21 +/- 5.86 microm). GH administration normalized these changes except for the distal chondrocyte height. Quantitative PCR of insulin-like growth factor I (IGF-I), IGF-I receptor, and GH receptor genes in KD growth plates showed downregulation of IGF-I and upregulation of IGF-I receptor mRNAs, without changes in their distribution as analyzed by immunohistochemistry and in situ hybridization. GH did not further modify IGF-I mRNA expression. KD rats had normal hepatic IGF-I mRNA levels and low serum IGF-I values. GH increased liver IGF-I mRNA, but circulating IGF-I levels remained reduced. This study discloses the structural and molecular alterations induced by potassium depletion on the growth plate and shows that the lack of response to GH administration is associated with persistence of the disturbed process of chondrocyte hypertrophy and depressed mRNA expression of local IGF-I in the growth plate.

  1. Effect of intestinal ischemia-reperfusion on expressions of endogenous basic fibroblast growth factor and transforming growth factor betain lung and its relation with lung repair.

    PubMed

    Fu, Xiao-Bing; Yang, Yin-Hui; Sun, Tong-Zhu; Gu, Xiao-Man; Jiang, Li-Xian; Sun, Xiao-Qing; Sheng, Zhi-Yong

    2000-06-01

    AIM:To study the changes of endogenous transforming growth factor beta(TGFbeta) and basic fibroblast growth factor (bFGF) in lung following intestinal ischemia and reperfusion injury and their effects on lung injury and repair.METHODS:Sixty Wistar rats were divided into five groups, which underwent sham-operation, ischemia (45 minutes), and reperfusion (6, 24 and 48 hours, respectively) after ischemia (45 minutes). Immunohistochemical method was used to observe the localization and amounts of both growth factors.RESULTS:Positive signals of both growth factors could be found in normal lung, mainly in alveolar cells and endothelial cells of vein. After ischemia and reperfusion insult, expressions of both growth factors were increased and their amounts at 6 hours were larger than those of normal control or of 24 and 48 hours after insult.CONCLUSION:The endogenous bFGF and TGF beta expression appears to be upregulated in the lung following intestinal ischemia and reperfusion, suggesting that both growth factors may be involved in the process of lung injury and repair. PMID:11819596

  2. Fitness, training, and the growth hormone-->insulin-like growth factor I axis in prepubertal girls.

    PubMed

    Eliakim, A; Scheett, T P; Newcomb, R; Mohan, S; Cooper, D M

    2001-06-01

    We recently demonstrated that a brief endurance type training program led to increases in thigh muscle mass and peak oxygen uptake (VO(2)) in prepubertal girls. In this study, we examined the effect of training on the GH-->insulin-like growth factor I (GH-->IGF-I) axis, a system known to be involved both in the process of growth and development and in the response to exercise. Healthy girls (mean age 9.17 +/- 0.10 yr old) volunteered for the study and were randomized to control (n = 20) and training groups (n = 19) for 5 weeks. Peak VO(2), thigh muscle volume, and blood samples [for IGF-I, IGF-binding proteins (IGFBP)-1 to -6, and GHBP] were measured. At baseline, IGF-I was significantly correlated with both peak VO(2) (r = 0.44, P < 0.02) and muscle volume (r = 0.58, P < 0.004). IGFBP-1 was negatively correlated with muscle volume (r = -0.71, P < 0.0001), as was IGFBP-2. IGFBP-4 and -5 were significantly correlated with muscle volume. We found a threshold value of body mass index percentile (by age) of about 71, above which systematic changes in GHBP, IGFBP-1, and peak VO(2) per kilogram were noted, suggesting decreases in the following: 1) GH function, 2) insulin sensitivity, and 3) fitness. Following the training intervention, IGF-I increased in control (19.4 +/- 9.6%, P < 0.05) but not trained subjects, and both IGFBP-3 and GHBP decreased in the training group (-4.2 +/- 3.1% and -9.9 +/- 3.8%, respectively, P < 0.05). Fitness in prepubertal girls is associated with an activated GH-->IGF-I axis, but, paradoxically, early in a training program, children first pass through what appears to be a neuroendocrine state more consistent with catabolism.

  3. Exercise and the growth hormone-insulin-like growth factor axis.

    PubMed

    Frystyk, Jan

    2010-01-01

    Exercise is a robust physiological stimulator of the pituitary secretion of growth hormone (GH), and within approximately 15 min after the onset of exercise, plasma GH starts to increase. GH and its primary downstream mediator, insulin-like growth factor I (IGF-I), play a critical role in formation, maintenance, and regeneration of skeletal muscles. Consequently, it seems logical to link the exercise-induced stimulation of GH with the hypertrophy observed in exercising muscles. GH stimulates circulating (endocrine) as well as locally produced (peripheral) IGF-I, which acts through autocrine/paracrine mechanisms. However, it remains to be clarified whether skeletal muscle hypertrophy after exercise is stimulated primarily by endocrine or paracrine/autocrine IGF-I. Early cross-sectional studies have observed positive correlations between circulating IGF-I levels and GH secretion, respectively, and indices of fitness. However, longitudinal exercise studies have shown that it is possible to increase muscle strength, performance, and VO2max without concomitant and robust changes in circulating IGF-I, indicating that the effect of exercise on skeletal muscles is mediated via paracrine/autocrine IGF-I rather than endocrine IGF-I. So far, most exercise studies have investigated the concentration of immunoreactive IGF-I in serum or plasma, obtained after extraction of the IGF-binding proteins (i.e., total IGF-I). However, several of the newer exercise studies have included measurement of free IGF-I as well as bioactive IGF-I. The aim of this review was to discuss whether measurement of free and/or bioactive IGF-I have increased our knowledge on the processes that link exercise, muscle hypertrophy, and GH/IGF-I axis. Thus, the current review will discuss (i) the different IGF-I assay methodologies and (ii) the current literature on free, bioactive, and immunoreactive (total) IGF-I in exercising subjects.

  4. Insulin-like growth factor-1 receptor acts as a growth regulator in synovial sarcoma.

    PubMed

    Friedrichs, N; Küchler, J; Endl, E; Koch, A; Czerwitzki, J; Wurst, P; Metzger, D; Schulte, J H; Holst, M I; Heukamp, L C; Larsson, O; Tanaka, S; Kawai, A; Wardelmann, E; Buettner, R; Pietsch, T; Hartmann, W

    2008-12-01

    Synovial sarcomas account for 5-10% of all soft tissue sarcomas and the majority of synovial sarcomas display characteristic t(X;18) translocations that result in enhanced transcription of the insulin-like growth factor-2 (IGF-2) gene. IGF-2 is an essential fetal mitogen involved in the pathogenesis of different tumours, leading to cellular proliferation and inhibition of apoptosis. Here we asked whether activation of IGF signalling is of functional importance in synovial sarcomas. We screened human synovial sarcomas for expression of IGF-2 and the phosphorylated IGF-1 receptor (IGF-1R), which mainly mediates the proliferative and anti-apoptotic effects of IGF-2. Since both the phosphatidylinositol 3'-kinase (PI3K)-AKT pathway and the MAPK signalling cascade are known to be involved in the transmission of IGF-1R signals, expression of phosphorylated (p)-AKT and p-p44/42 MAPK was additionally assessed. All tumours expressed IGF-2 and 78% showed an activated IGF-1R. All tumours were found to express p-AKT and 92% showed expression of activated p44/42 MAPK. To analyse the functional and potential therapeutic relevance of IGF-1R signalling, synovial sarcoma cell lines were treated with the IGF-1R inhibitor NVP-AEW541. Growth was impaired by the IGF-1R antagonist, which was consistently accompanied by a dose-dependent reduction of phosphorylation of AKT and p44/42 MAPK. Functionally, inhibition of the receptor led to increased apoptosis and diminished mitotic activity. Concurrent exposure of selected cells to NVP-AEW541 and conventional chemotherapeutic agents resulted in positive interactions. Finally, synovial sarcoma cell migration was found to be dependent on signals transmitted by the IGF-1R. In summary, our data show that the IGF-1R might represent a promising therapeutic target in synovial sarcomas.

  5. Purification and partial sequence analysis of insulin-like growth factor-1 from bovine colostrum.

    PubMed Central

    Francis, G L; Read, L C; Ballard, F J; Bagley, C J; Upton, F M; Gravestock, P M; Wallace, J C

    1986-01-01

    Growth-promoting activity in bovine colostrum has been detected as the capacity to stimulate protein synthesis in L6 myoblasts. By using this assay as a measure of bioactivity, a growth factor has been purified to near homogeneity from centrifuged colostrum by a series of steps including acid extraction, chromatography on sulphopropyl-Sephadex, followed by adsorption to, and elution from, C18 columns using acetonitrile and propan-1-ol gradients. The purified growth factor has a low solubility at neutral and alkaline pH and has an Mr of 7800 by gel-permeation chromatography. Sequence analysis of the first 30 amino acids from the N-terminus indicated complete identity in this region with human insulin-like growth factor-1. Accordingly we conclude that the purified growth factor is bovine insulin-like growth factor-1. PMID:3954725

  6. Hepatocyte growth factor is a mouse fetal Leydig cell terminal differentiation factor.

    PubMed

    Ricci, Giulia; Guglielmo, Maria Cristina; Caruso, Maria; Ferranti, Francesca; Canipari, Rita; Galdieri, Michela; Catizone, Angela

    2012-06-01

    The hepatocyte growth factor (HGF) is a pleiotropic cytokine and a well-known regulator of mouse embryonic organogenesis. In previous papers, we have shown the expression pattern of HGF and its receptor, C-MET, during the different stages of testis prenatal development. We demonstrated that C-MET is expressed in fetal Leydig cells (FLCs) and that HGF stimulates testosterone secretion in organ culture of late fetal testes. In the present study, we analyzed the proliferation rate, apoptotic index, and differentiation of FLCs in testicular organ culture of 17.5 days postcoitum (17.5 dpc) embryos to clarify the physiological role of HGF in late testis organogenesis. Based on our data, we conclude the following: 1) HGF acts as an antiapoptotic factor that is able to reduce the number of apoptotic FLCs and testicular caspase-3 active fragment; 2) HGF does not affect FLC proliferation; 3) HGF significantly increases expression of insulin-like 3 (INSL3), a marker of Leydig cell terminal differentiation, without affecting 3beta-hydroxysteroid dehydrogenase (3betaHSD) expression; 4) HGF significantly decreases the expression of nestin, a marker of Leydig cell progenitors; and 5) HGF significantly increases the number of fully developed FLCs. Taken together, these observations demonstrate that HGF is able to act in vitro as a survival and differentiation factor in FLC population.

  7. Lifestyle factors and insulin-like growth factor 1 levels among elderly men.

    PubMed

    Signorello, L B; Kuper, H; Lagiou, P; Wuu, J; Mucci, L A; Trichopoulos, D; Adami, H O

    2000-06-01

    Insulin-like growth factor 1 (IGF-1) is a potentially important determinant of disease; hence epidemiological identification of factors that influence circulating IGF-1 is merited. We therefore analysed data collected in Greece to determine the relationship between anthropometric, lifestyle and dietary variables and serum levels of IGF-1 among elderly men. We identified 51 men with prostate cancer, 50 men with benign prostatic hyperplasia, and 52 apparently healthy elderly men (controls), all matched for age (+/- 1 year). These 153 men provided blood specimens and were interviewed using a validated lifestyle and food frequency questionnaire. We performed multivariate linear regression to identify potential predictors of circulating IGF-1. After controlling for age, body mass index, smoking habits, alcohol drinking and coffee consumption, each 5 cm increase in height predicted a 13.0% increase in IGF-1 (95% CI 0.4-27.2%) among the controls and a 11.3% increase in IGF-1 (95% CI 4.5-18.6%) among the entire study group. None of the investigated dietary factors (total fat, carbohydrate, protein, dairy products, tomatoes, calcium) were strongly related to IGF-1 levels. The positive association between IGF-1 and height integrates the empirical evidence linking IGF-1 and height with prostate cancer risk.

  8. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    SciTech Connect

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-08-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation.

  9. Biological repair of the degenerated intervertebral disc by the injection of growth factors

    PubMed Central

    2008-01-01

    The homeostasis of intervertebral disc (IVD) tissues is accomplished through a complex and precise coordination of a variety of substances, including cytokines, growth factors, enzymes and enzyme inhibitors. Recent biological therapeutic strategies for disc degeneration have included attempts to up-regulate the production of key matrix proteins or to down-regulate the catabolic events induced by pro-inflammatory cytokines. Several approaches to deliver these therapeutic biologic agents have been proposed and tested in a preclinical setting. One of the most advanced biological therapeutic approaches to regenerate or repair a degenerated disc is the injection of a recombinant growth factor. Abundant evidence for the efficacy of growth factor injection therapy for the treatment of IVD degeneration can be found in preclinical animal studies. Recent data obtained from animal studies on changes in cytokine expression following growth factor injection illustrate the great potential for patients with chronic discogenic low back pain. The first clinical trial for growth factor injection has been initiated and the results of that study may prove the usefulness of growth factor injection for treating the symptoms of patients with degenerative disc diseases. The focus of this review article is the effects of an in vivo injection of growth factors on the biological repair of the degenerated intervertebral disc in animal models. The effects of growth factor injection on the symptoms of patients with low back pain, the therapeutic target of growth factor injection and the limitations of the efficacy of growth factor therapy are also reviewed. Further quantitative studies on the effect of growth factor injection on pain generation and the long term effects on the endplate and cell survival after an injection using large animals are needed. An international academic-industrial consortium addressing these aims, such as was achieved for osteoarthritis (The Osteoarthritis Initiative

  10. Potential mechanisms for hypoalgesia induced by anti-nerve growth factor immunoglobulin are identified using autoimmune nerve growth factor deprivation.

    PubMed

    Hoffman, E M; Zhang, Z; Anderson, M B; Schechter, R; Miller, K E

    2011-10-13

    Nerve growth factor (NGF) antagonism has long been proposed as a chronic pain treatment. In 2010, the FDA suspended clinical trials using tanezumab, a humanized monoclonal anti-NGF antibody, to treat osteoarthritis due to worsening joint damage in 16 patients. Increased physical activity in the absence of acute pain which normally prevents self-harm was purported as a potential cause. Such an adverse effect is consistent with an extension of tanezumab's primary mechanism of action by decreasing pain sensitivity below baseline levels. In animal inflammatory pain models, NGF antagonism decreases intraepidermal nerve fiber (IENF) density and attenuates increases in expression of nociception-related proteins, such as calcitonin gene-related peptide (CGRP) and substance P (SP). Little is known of the effects of NGF antagonism in noninflamed animals and the hypoalgesia that ensues. In the current study, we immunized rats with NGF or cytochrome C (cytC) and examined (1) nocifensive behaviors with thermal latencies, mechanical thresholds, the hot plate test, and the tail flick test, (2) IENF density, and (3) expression of CGRP, SP, voltage-gated sodium channel 1.8 (Nav1.8), and glutaminase in subpopulations of dorsal root ganglion (DRG) neurons separated by size and isolectin B4 (IB4) labeling. Rats with high anti-NGF titers had delayed responses on the hot plate test but no other behavioral abnormalities. Delayed hot plate responses correlated with lower IENF density. CGRP and SP expression was decreased principally in medium (400-800 μm(2)) and small neurons (<400 μm(2)), respectively, regardless of IB4 labeling. Expression of Nav1.8 was only decreased in small and medium IB4 negative neurons. NGF immunization appears to result in a more profound antagonism of NGF than tanezumab therapy, but we hypothesize that decreases in IENF density and nociception-related protein expression are potential mechanisms for tanezumab-induced hypoalgesia. PMID:21802499

  11. Internephron heterogeneity of growth factors and sclerosis--modulation of platelet-derived growth factor by angiotensin II.

    PubMed

    Tanaka, R; Sugihara, K; Tatematsu, A; Fogo, A

    1995-01-01

    We studied the early phase after 5/6 nephrectomy in Munich-Wistar rats to determine whether treatment with angiotensin II receptor antagonist (AIIRA) modulates the expression of platelet-derived growth factor (PDGF) mRNA and its protein among the glomeruli which are undergoing progressive hypertrophy and sclerosis. Average PDGF-B immunohistochemistry staining score (IHS, 0 to 3 scale) in glomeruli and PDGF-B chain mRNA from kidneys were both increased in 5/6 nephrectomy rats (N = 6) versus age-matched normal (N = 5) at week 4, when glomeruli were at early stages of sclerosis (IHS, 0.81 +/- 0.12 vs. 0.19 +/- 0.05; sclerosis index, S.I., 0 to 4 scale: 0.41 +/- 0.04 vs. 0.05 +/- 0.01, both P < 0.05). AIIRA (80 mg/liter drinking water, N = 6) started at time of 5/6 nephrectomy prevented the development of sclerosis (S.I. 0.08 +/- 0.03) and decreased PDGF-B protein (IHS 0.22 +/- 0.08, both P = NS vs. normal), and PDGF-B chain mRNA. In contrast, triple therapy (TRX; hydralazine, reserpine and hydrochlorothiazide, N = 5) in doses which controlled systemic blood pressure resulted in intermediate level of glomerulosclerosis at this early time point of progressive injury. Concurrently, TRX failed to affect the expression of PDGF-B protein (IHS 0.86 +/- 0.19) or its mRNA expression. The PDGF-B distribution was not uniform amongst the glomeruli with varying stages of sclerosis. There was a strong correlation in individual glomeruli of increased PDGF-B staining with early sclerotic changes (P < 0.01), with the disappearance of this correlation in glomeruli with advanced sclerosis.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Angiogenic growth factors in neural embryogenesis and neoplasia.

    PubMed Central

    Zagzag, D.

    1995-01-01

    "Blood vessels have the power to increase within themselves which is according to the necessity whether natural or diseased. As a further proof that this is a general principle, we find that all growing parts are much more vascular than those that are come to their full growth; because growth is an operation beyond the simple support of the part. This is the reason why young animals are more vascular than those that are full grown. This is not peculiar to the natural operation of growth, but applies also to disease and restoration." PMID:7531952

  13. Insulin-like growth factor-1 stimulation of lymphopoiesis.

    PubMed Central

    Clark, R; Strasser, J; McCabe, S; Robbins, K; Jardieu, P

    1993-01-01

    We show that treatment of adult mice with recombinant human insulin-like growth factor 1 (rhIGF-1) induces striking modifications in lymphocyte number and function. 9-mo-old male mice received rhIGF-1 (4 mg/kg per d) or its excipient by subcutaneous infusion from osmotic minipumps for 7 or 14 d. Mice were weighed daily and bled at sacrifice; the spleen and thymus were harvested and single cell suspensions were made for analysis of cell phenotype and cell number. The responses of splenocytes to mitogens (concanavalin A, lipopolysaccharide, and pokeweed mitogen), alloantigens and dinitrophenyl ovalbumin were measured. After either 7 or 14 d of treatment, rhIGF-1 had an overall whole-body anabolic effect, resulting in increased body and organ weights with prominent increases in the weight of the spleen and thymus. Furthermore, the rhIGF-1 treated mice were normoglycemic but had reduced blood urea nitrogens, again reflecting the anabolic activity of rhIGF-1. The increased spleen and thymus weights were associated with a large increase in the number of lymphocytes in both organs. In addition to an increase in T cells, specifically CD4+ T cells, a dramatic increase in splenic B cells was also observed. This increase was accompanied by an enhanced responsiveness to dinitrophenyl ovalbumin resulting in increased immunoglobulin production. However, despite the increases in cellularity, there was a decrease in the in vitro responses of spleen cells to mitogens after 7 d of rhIGF-1 treatment. In contrast, treatment with rhIGF-1 for 14 d increased both the cell number and mitogenic responses of splenocytes suggesting that some time is required for the cells populating the peripheral organs to gain mitogenic responsiveness. It is clear from these data that rhIGF-1, at doses that have whole-body anabolic activity, can expand cell number in lymphoid tissue in a normal adult mouse. These dual effects of rhIGF-1, of increasing lymphocyte number and activity, indicate that, in a

  14. Rac regulates vascular endothelial growth factor stimulated motility.

    PubMed

    Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A

    2001-01-01

    During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent

  15. Rac regulates vascular endothelial growth factor stimulated motility.

    PubMed

    Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A

    2001-01-01

    During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent

  16. Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor.

    PubMed

    Supp, D M; Supp, A P; Bell, S M; Boyce, S T

    2000-01-01

    Cultured skin substitutes have been used as adjunctive therapies in the treatment of burns and chronic wounds, but they are limited by lack of a vascular plexus. This deficiency leads to greater time for vascularization compared with native skin autografts and contributes to graft failure. Genetic modification of cultured skin substitutes to enhance vascularization could hypothetically lead to improved wound healing. To address this hypothesis, human keratinocytes were genetically modified by transduction with a replication incompetent retrovirus to overexpress vascular endothelial growth factor, a specific and potent mitogen for endothelial cells. Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates inoculated with human fibroblasts and either vascular endothelial growth factor-modified or control keratinocytes were prepared, and were cultured in vitro for 21 d. Northern blot analysis demonstrated enhanced expression of vascular endothelial growth factor mRNA in genetically modified keratinocytes and in cultured skin substitutes prepared with modified cells. Furthermore, the vascular endothelial growth factor-modified cultured skin substitutes secreted greatly elevated levels of vascular endothelial growth factor protein throughout the entire culture period. The bioactivity of vascular endothelial growth factor protein secreted by the genetically modified cultured skin substitutes was demonstrated using a microvascular endothelial cell growth assay. Vascular endothelial growth factor-modified and control cultured skin substitutes were grafted to full-thickness wounds on athymic mice, and elevated vascular endothelial growth factor mRNA expression was detected in the modified grafts for at least 2 wk after surgery. Vascular endothelial growth factor-modified grafts exhibited increased numbers of dermal blood vessels and decreased time to vascularization compared with controls. These results indicate that genetic modification of

  17. Combined Vascular Endothelial Growth Factor Receptor and Epidermal Growth Factor Receptor (EGFR) Blockade Inhibits Tumor Growth in Xenograft Models of EGFR Inhibitor Resistance

    PubMed Central

    Naumov, George N.; Nilsson, Monique B.; Cascone, Tina; Briggs, Alexandra; Straume, Oddbjorn; Akslen, Lars A.; Lifshits, Eugene; Byers, Lauren Averett; Xu, Li; Wu, Hua-kang; Jänne, Pasi; Kobayashi, Susumu; Halmos, Balazs; Tenen, Daniel; Tang, Xi M.; Engelman, Jeffrey; Yeap, Beow; Folkman, Judah; Johnson, Bruce E.; Heymach, John V.

    2010-01-01

    Purpose The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) gefitinib and erlotinib benefit some non–small cell lung cancer (NSCLC) patients, but most do not respond (primary resistance) and those who initially respond eventually progress (acquired resistance). EGFR TKI resistance is not completely understood and has been associated with certain EGFR and K-RAS mutations and MET amplification. Experimental Design We hypothesized that dual inhibition of the vascular endothelial growth factor (VEGF) and EGFR pathways may overcome primary and acquired resistance. We investigated the VEGF receptor/EGFR TKI vandetanib, and the combination of bevacizumab and erlotinib in vivo using xenograft models of EGFR TKI sensitivity, primary resistance, and three models of acquired resistance, including models with mutated K-RAS and secondary EGFR T790M mutation. Results Vandetanib, gefitinib, and erlotinib had similar profiles of in vitro activity and caused sustained tumor regressions in vivo in the sensitive HCC827 model. In all four resistant models, vandetanib and bevacizumab/erlotinib were significantly more effective than erlotinib or gefitinib alone. Erlotinib resistance was associated with a rise in both host and tumor-derived VEGF but not EGFR secondary mutations in the KRAS mutant-bearing A549 xenografts. Dual inhibition reduced tumor endothelial proliferation compared with VEGF or EGFR blockade alone, suggesting that the enhanced activity of dual inhibition is due at least in part to antiendothelial effects. Conclusion These studies suggest that erlotinib resistance may be associated with a rise in both tumor cell and host stromal VEGF and that combined blockade of the VEGFR and EGFR pathways can abrogate primary or acquired resistance to EGFR TKIs. This approach merits further evaluation in NSCLC patients. PMID:19447865

  18. Platelet-derived growth factor-BB and transforming growth factor beta 1 selectively modulate glycosaminoglycans, collagen, and myofibroblasts in excisional wounds.

    PubMed Central

    Pierce, G. F.; Vande Berg, J.; Rudolph, R.; Tarpley, J.; Mustoe, T. A.

    1991-01-01

    Recombinant platelet-derived growth factor (PDGF) and transforming growth factor beta 1 (TGF-beta 1) influence the rate of extracellular matrix formed in treated incisional wounds. Because incisional healing processes are difficult to quantify, a full-thickness excisional wound model in the rabbit ear was developed to permit detailed analyses of growth-factor-mediated tissue repair. In the present studies, quantitative and qualitative differences in acute inflammatory cell influx, glycosaminoglycan (GAG) deposition, collagen formation, and myofibroblast generation in PDGF-BB (BB homodimer)- and TGF-beta 1-treated wounds were detected when analyzed histochemically and ultrastructurally. Although both growth factors significantly augmented extracellular matrix formation and healing in 10-day wounds compared with controls (P less than 0.002). PDGF-BB markedly increased macrophage influx and GAG deposition, whereas TGF-beta 1 selectively induced significantly more mature collagen bundles at the leading edge of new granulation tissue (P = 0.007). Transforming growth factor-beta 1-treated wound fibroblasts demonstrated active collagen fibrillogenesis and accretion of subfibrils at the ultrastructural level. Myofibroblasts, phenotypically modified fibroblasts considered responsible for wound contraction, were observed in control, but were absent in early growth-factor-treated granulating wounds. These results provide important insights into the mechanisms of soft tissue repair and indicate that 1) PDGF-BB induces an inflammatory response and provisional matrix synthesis within wounds that is qualitatively similar but quantitatively increased compared with normal wounds; 2) TGF-beta 1 preferentially triggers synthesis and more rapid maturation of collagen within early wounds; and 3) both growth factors inhibit the differentiation of fibroblasts into myofibroblasts, perhaps because wound contraction is not required, due to increased extracellular matrix synthesis. Images

  19. Proliferation-independent growth factor modulation of the radiation sensitivity of human prostate cells

    SciTech Connect

    Howard, S.P.; Groch, K.M.; Lindstrom, M.J.

    1995-08-01

    The survival of human prostatic epithelial cells irradiated in different physiological states is reported. Exponentially growing cells and contact-inhibited cells grown and irradiated in the presence of the growth factors epidermal growth factor (EGF) and bovine pituitary extract (bPE) had overlapping radiation dose-cell survival curves. However, when EGF and bPE were removed from exponentially growing cells before irradiation, an increase in radiosensitivity was observed if the cells were replated into medium containing growth factors (EGF and bPE) immediately after irradiation. Treating cells with the nonspecific growth factor receptor antagonist suramin had similar effects as did growth factor deprivation. In contrast, when growth factor-deprived cells were maintained in this same medium for 12 h postirradiation, an increase in radiation survival was observed. This increase in survival is attributed to the repair of potentially lethal damage (PLD). Both the increase in radiosensitivity induced by deprivation of growth factor before irradiation and the repair of PLD caused by deprivation of growth factor after irradiation were independent of changes in cellular proliferation. 22 refs., 1 fig., 2 tab.

  20. Organotypic Cultures of Intervertebral Disc Cells: Responses to Growth Factors and Signaling Pathways Involved.

    PubMed

    Pratsinis, Harris; Kletsas, Dimitris

    2015-01-01

    Intervertebral disc (IVD) degeneration is strongly associated with low back pain, a major cause of disability worldwide. An in-depth understanding of IVD cell physiology is required for the design of novel regenerative therapies. Accordingly, aim of this work was the study of IVD cell responses to mitogenic growth factors in a three-dimensional (3D) organotypic milieu, comprising characteristic molecules of IVD's extracellular matrix. In particular, annulus fibrosus (AF) cells were cultured inside collagen type-I gels, while nucleus pulposus (NP) cells in chondroitin sulfate A (CSA) supplemented collagen gels, and the effects of Platelet-Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (bFGF), and Insulin-Like Growth Factor-I (IGF-I) were assessed. All three growth factors stimulated DNA synthesis in both AF and NP 3D cell cultures, with potencies similar to those observed previously in monolayers. CSA supplementation inhibited basal DNA synthesis rates, without affecting the response to growth factors. ERK and Akt were found to be phosphorylated following growth factor stimulation. Blockade of these two signaling pathways using pharmacologic inhibitors significantly, though not completely, inhibited growth factor-induced DNA synthesis. The proposed culture systems may prove useful for further in vitro studies aiming at future interventions for IVD regeneration. PMID:26583105

  1. Problem-Solving Test: The Role of Ubiquitination in Epidermal Growth Factor Receptor Trafficking

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2012-01-01

    Terms to be familiar with before you start to solve the test: growth factor signaling, epidermal growth factor, tyrosine protein kinase, tyrosine phosphorylation, ubiquitin, monoubiquitination, polyubiquitination, site-directed mutagenesis, transfection, expression vector, cDNA, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, Western…

  2. Organotypic Cultures of Intervertebral Disc Cells: Responses to Growth Factors and Signaling Pathways Involved

    PubMed Central

    Pratsinis, Harris; Kletsas, Dimitris

    2015-01-01

    Intervertebral disc (IVD) degeneration is strongly associated with low back pain, a major cause of disability worldwide. An in-depth understanding of IVD cell physiology is required for the design of novel regenerative therapies. Accordingly, aim of this work was the study of IVD cell responses to mitogenic growth factors in a three-dimensional (3D) organotypic milieu, comprising characteristic molecules of IVD's extracellular matrix. In particular, annulus fibrosus (AF) cells were cultured inside collagen type-I gels, while nucleus pulposus (NP) cells in chondroitin sulfate A (CSA) supplemented collagen gels, and the effects of Platelet-Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (bFGF), and Insulin-Like Growth Factor-I (IGF-I) were assessed. All three growth factors stimulated DNA synthesis in both AF and NP 3D cell cultures, with potencies similar to those observed previously in monolayers. CSA supplementation inhibited basal DNA synthesis rates, without affecting the response to growth factors. ERK and Akt were found to be phosphorylated following growth factor stimulation. Blockade of these two signaling pathways using pharmacologic inhibitors significantly, though not completely, inhibited growth factor-induced DNA synthesis. The proposed culture systems may prove useful for further in vitro studies aiming at future interventions for IVD regeneration. PMID:26583105

  3. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel.

    PubMed

    Bruggeman, Kiara F; Rodriguez, Alexandra L; Parish, Clare L; Williams, Richard J; Nisbet, David R

    2016-09-23

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine. PMID:27517970

  4. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  5. Regulation of serotonin transporter gene expression in human glial cells by growth factors.

    PubMed

    Kubota, N; Kiuchi, Y; Nemoto, M; Oyamada, H; Ohno, M; Funahashi, H; Shioda, S; Oguchi, K

    2001-04-01

    The aims of this study were to identify monoamine transporters expressed in human glial cells, and to examine the regulation of their expression by stress-related growth factors. The expression of serotonin transporter mRNA was detected by reverse transcriptase-polymerase chain reaction in normal human astrocytes, whereas the dopamine transporter (DAT) and the norepinephrine transporter (NET) were not detected. The cDNA sequence of the "glial" serotonin transporter in astrocytes was consistent with that reported for the "neuronal" serotonin transporter (SERT). Moreover, we also demonstrated SERT expression in glial fibrillary acidic protein-positive cells by immunocytochemical staining in normal human astrocytes. Serotonin transporter gene expression was also detected in glioma-derived cell lines (A172, KG-1-C and KGK). Addition of basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF) for 2 days increased serotonin transporter gene expression in astrocytes and JAR (human choriocarcinoma cell line). Basic fibroblast growth factor, but not epidermal growth factor, increased specific [3H]serotonin uptake in astrocytes in a time (1-4 days)- and concentration (20-100 ng/ml)-dependent manner. The expression of genes for basic fibroblast growth factor and epidermal growth factor receptors was detected in astrocytes. These findings suggest that the expression of the serotonin transporter in human glial cells is positively regulated by basic fibroblast growth factor. PMID:11301061

  6. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair.

    PubMed Central

    Pierce, G. F.; Tarpley, J. E.; Yanagihara, D.; Mustoe, T. A.; Fox, G. M.; Thomason, A.

    1992-01-01

    Recombinant platelet-derived growth factor (BB homodimer, rPDGF-BB), transforming growth factor beta 1 (rTGF-beta 1), and basic fibroblast growth factor (rbFGF) can accelerate healing of soft tissues. However, little information is available characterizing the components of wound matrix induced by these growth factors and the molecular mechanisms underlying accelerated repair and wound maturation. In this study, the composition, quantity, and rate of extracellular matrix deposition within growth factor-treated lapine ear excisional wounds were analyzed at different stages of healing using specific histochemical and immunohistochemical stains, coupled with image analysis techniques. Single application of optimal concentrations of each growth factor accelerated normal healing by 30% (P less than 0.0003); rPDGF-BB markedly augmented early glycosaminoglycan (GAG) and fibronectin deposition, but induced significantly greater levels of collagen later in the repair process, compared with untreated wounds rTGF-beta 1 treatment led to rapidly enhanced collagen synthesis and maturation, without increased GAG deposition. In contrast, rbFGF treatment induced a predominantly angiogenic response in wounds, with a marked increase in endothelia and neovessels (P less than 0.0001), and increased wound collagenolytic activity (P less than 0.03). rbFGF-treated wounds did not evolve into collagen-containing scars and continued to accumulate only provisional matrix well past wound closure. These results provide new evidence that growth factors influence wound repair via different mechanisms: 1) rPDGF-BB accelerates deposition of provisional wound matrix; 2) rTGF-beta 1 accelerates deposition and maturation of collagen; and 3) rbFGF induces a profound monocellular angiogenic response which may lead to a marked delay in wound maturation, and the possible loss of the normal signal(s) required to stop repair. These results suggest that specific growth factors may selectively regulate

  7. Molecular Docking and Interactions of Pueraria Tuberosa with Vascular Endothelial Growth Factor Receptors.

    PubMed

    Asthana, S; Agarwal, T; Singothu, S; Samal, A; Banerjee, I; Pal, K; Pramanik, K; Ray, S S

    2015-01-01

    Pueraria tuberosa is known for its therapeutic potentials in cardiovascular disorders, but its effect in angiogenesis has not been studied so far. In this study, a computational approach has been applied to elucidate the role of the phytochemicals in inhibition of angiogenesis through modulation of vascular endothelial growth factor receptors: Vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2, major factors responsible for angiogenesis. Metabolite structures retrieved from PubChem and KNApSAcK - 3D databases, were docked using AutoDock4.2 tool. Hydrogen bond and molecular docking, absorption, distribution, metabolism and excretion and toxicity predictions were carried out using UCSF Chimera, LigPlot(+) and PreADMET server, respectively. From the docking analysis, it was observed that puerarone and tuberostan had significant binding affinity for the intracellular kinase domain of vascular endothelial growth factor receptors-1 and vascular endothelial growth factor receptor-2 respectively. It is important to mention that both the phytochemicals shared similar interaction profile as that of standard inhibitors of vascular endothelial growth factor receptors. Also, both puerarone and tuberostan interacted with Lys861/Lys868 (adenosine 5'-triphosphate binding site of vascular endothelial growth factor receptors-1/vascular endothelial growth factor receptors-2), thus providing a clue that they may enforce their inhibitory effect by blocking the adenosine 5'-triphosphate binding domain of vascular endothelial growth factor receptors. Moreover, these molecules exhibited good drug-likeness, absorption, distribution, metabolism and excretion properties without any carcinogenic and toxic effects. The interaction pattern of the puerarone and tuberostan may provide a hint for a novel drug design for vascular endothelial growth factor tyrosine kinase receptors with better specificity to treat angiogenic disorders. PMID:26664060

  8. Molecular Docking and Interactions of Pueraria Tuberosa with Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Asthana, S.; Agarwal, T.; Singothu, S.; Samal, A.; Banerjee, I.; Pal, K.; Pramanik, K.; Ray, S. S.

    2015-01-01

    Pueraria tuberosa is known for its therapeutic potentials in cardiovascular disorders, but its effect in angiogenesis has not been studied so far. In this study, a computational approach has been applied to elucidate the role of the phytochemicals in inhibition of angiogenesis through modulation of vascular endothelial growth factor receptors: Vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2, major factors responsible for angiogenesis. Metabolite structures retrieved from PubChem and KNApSAcK – 3D databases, were docked using AutoDock4.2 tool. Hydrogen bond and molecular docking, absorption, distribution, metabolism and excretion and toxicity predictions were carried out using UCSF Chimera, LigPlot+ and PreADMET server, respectively. From the docking analysis, it was observed that puerarone and tuberostan had significant binding affinity for the intracellular kinase domain of vascular endothelial growth factor receptors-1 and vascular endothelial growth factor receptor-2 respectively. It is important to mention that both the phytochemicals shared similar interaction profile as that of standard inhibitors of vascular endothelial growth factor receptors. Also, both puerarone and tuberostan interacted with Lys861/Lys868 (adenosine 5’-triphosphate binding site of vascular endothelial growth factor receptors-1/vascular endothelial growth factor receptors-2), thus providing a clue that they may enforce their inhibitory effect by blocking the adenosine 5’-triphosphate binding domain of vascular endothelial growth factor receptors. Moreover, these molecules exhibited good drug-likeness, absorption, distribution, metabolism and excretion properties without any carcinogenic and toxic effects. The interaction pattern of the puerarone and tuberostan may provide a hint for a novel drug design for vascular endothelial growth factor tyrosine kinase receptors with better specificity to treat angiogenic disorders. PMID:26664060

  9. Serum brain-derived neurotrophic factor and nerve growth factor decreased in chronic ketamine abusers

    PubMed Central

    Ke, Xiaoyin; Ding, Yi; Xu, Ke; He, Hongbo; Zhang, Minling; Wang, Daping; Deng, Xuefeng; Zhang, Xifan; Zhou, Chao; Liu, Yuping; Ning, Yuping; Fan, Ni

    2016-01-01

    Aims This study investigated the serum levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in a group of chronic ketamine abusers in comparison to healthy controls. The correlations between the serum BDNF, NGF level with the subjects’ demographic, pattern of ketamine use were also examined. Methods 93 subjects who met the criteria of ketamine dependence and 39 healthy subjects were recruited. Serum BDNF and NGF levels were assayed by enzyme-linked immunosorbent assay (ELISA). Psychopathological symptoms were assessed using Positive and Negative Syndrome Scale (PANSS), Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). Results Both serum levels of BDNF and NGF were significant lower in the ketamine users compared to the healthy control subjects (9.50 ± 6.68 versus 14.37 ± 6.07 ng/ml, p = 0.019 for BDNF; 1.93 ± 0.80 versus 2.60 ± 1.07 ng/ml, p = 0.011 for NGF). BDNF level was negatively associated with current frequency of ketamine use (r = −0.209, p = 0.045). Conclusions Both BDNF and NGF serum concentrations were significantly lower among chronic ketamine users than among health controls. PMID:25064020

  10. Growth hormone-releasing factor (GRF) induced growth hormone advances puberty in female buffaloes.

    PubMed

    Haldar, A; Prakash, B S

    2006-05-01

    Exogenous bovine growth hormone-releasing factor (bGRF) at the dose rate of 10 microg/100 kg body weight was administered intravenously (i.v.) to six Murrah buffalo heifers as treatment group, while another six buffalo heifers served as control group which received the vehicle (0.9% NaCl solution) at an interval of 15 days for a period of 9 months to study the effect of bGRF on puberty onset associated with temporal hormonal changes in peri-pubertal buffalo heifers. Blood samples were collected at 3-day interval from all the animals during the experimental period and plasma harvested was assayed for growth hormonal (GH), luteinizing hormone (LH) and progesterone. The day that plasma progesterone was greater than 1.0 ng/ml for three consecutive sampling days was defined as the day of puberty. Exogenous bGRF administration increased (P = 0.02) plasma GH concentration in treatment group over control group during the treatment of bGRF as well as during the peri-pubertal period. Plasma progesterone concentrations increased transiently earlier (P = 0.05) by 58.5 days in bGRF-treated buffaloes than that in the control group. However, plasma LH concentrations were unaffected by the treatment of bGRF (P = 0.48). Both plasma GH and LH in the buffalo heifers increased (P < 0.01) over time preceding puberty and the higher hormonal concentrations were maintained during the onset of puberty, and thereafter, the concentrations of both the hormones declined (P < 0.05) after puberty. GH and LH were positively correlated both before puberty (r = +0.59 and +0.63; P < 0.05 for control and treatment group, respectively) and after puberty (r = +0.42 and +0.46; P < 0.05 for control and treatment group, respectively) indicating the interaction and/or close relationship of GH and LH in the mechanism of puberty in buffalo species. PMID:16011881

  11. The Role of Growth Factors in Intestinal Regeneration and Repair in Necrotizing Enterocolitis

    PubMed Central

    Rowland, Kathryn J.; Choi, Pamela M.; Warner, Brad W.

    2013-01-01

    Necrotizing enterocolitis (NEC) is a devastating intestinal disease resulting in major neonatal morbidity and mortality. The pathology is poorly understood, and means of preventing and treating NEC are limited. Several endogenous growth factors have been identified as having important roles in intestinal growth as well as aiding intestinal repair from injury or inflammation. In this review, we will discuss several growth factors as mediators of intestinal regeneration and repair as well as potential therapeutic agents for NEC. PMID:23611614

  12. Interaction of epidermal growth factor with vasoactive hormones in the regulation of phospholipase A2.

    PubMed

    Hack, N; Margolis, B; Schlessinger, J; Skorecki, K

    1991-01-01

    The interaction of growth factors with their receptors initiates a series of intracellular events that are of critical importance in the control of normal cell proliferation. In this regard considerable attention has focused on the coupling of phospholipase C-gamma to growth factor receptor tyrosine kinases. In contrast, the interaction of growth factors with phospholipase A2 has received less attention, most likely because the arachidonic acid release response has been considered to be an accompaniment of phospholipase C activation. Work from our laboratory using a well defined model system demonstrated a distinct coupling relationship of epidermal growth factor to phospholipase A2. This review focuses on the interaction of the epidermal growth factor receptor with phospholipases involved in both mitogenic and non-mitogenic responses and discusses their possible relation with vasoactive hormones.

  13. Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor.

    PubMed

    Wu, Chengtie; Fan, Wei; Chang, Jiang; Xiao, Yin

    2013-09-01

    In this article, we, for the first time, investigated mesoporous bioactive glass scaffolds for the delivery of vascular endothelial growth factor. We have found that mesoporous bioactive glass scaffolds have significantly higher loading efficiency and more sustained release of vascular endothelial growth factor than non-mesoporous bioactive glass scaffolds. In addition, vascular endothelial growth factor delivery from mesoporous bioactive glass scaffolds has improved the viability of endothelial cells. The study has suggested that mesopore structures in mesoporous bioactive glass scaffolds play an important role in improving the loading efficiency, decreasing the burst release, and maintaining the bioactivity of vascular endothelial growth factor, indicating that mesoporous bioactive glass scaffolds are an excellent carrier of vascular endothelial growth factor for potential bone tissue engineering applications.

  14. Radix Bupleuri ameliorates depression by increasing nerve growth factor and brain-derived neurotrophic factor

    PubMed Central

    Wang, Xia; Feng, Qing; Xiao, Yong; Li, Ping

    2015-01-01

    Background: Chinese herb Radix Bupleuri has been regarded effective to improve treatment of depression, but the molecular mechanism remains unknown. Low levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) increase the likelihood of developing the depression. Therefore, we want to know whether Radix Bupleuri affects the levels of these factors. Methods: A total 160 hemodialysis patients were diagnosed with depression and randomly assigned to two groups: Radix Bupleuri group (received 1 g root power of Radix Bupleuri in a capsule daily Radix Bupleuri) and control group (receive placebo). Results: After three-month follow-up, the patients who received Radix Bupleuri had greater improvement in depression symptoms, anxiety symptoms and general functioning via controls after three-month follow-up (P < 0.05). Serum NGF levels were significantly higher in subjects accepted Radix Bupleuris (178.64 ± 52.18 pg/mL) when compared to a control (103.54 ± 31.23 pg/ml) (P < 0.01). Similarly, serum BDNF levels were significantly higher in subjects accepted Radix Bupleuris (1635.26 ± 121.66 pg/ml) when compared to a control (516.38 ± 44.89 pg/ml) (P < 0.01). The serum levels of NGF and BDNF were negatively related with Montgomery-Asberg Depression Rating Scale (MADRS) and positively related with scores of RAND-36 item Health Survey (RAND-36) (P < 0.01). Conclusion: Thus, Radix Bupleuri ameliorates the patients with depression by increasing serum levels of NGF and BDNF. Radix Bupleuri should be developed a new drug for the therapy of depression. PMID:26309578

  15. Mitogenic properties of insulin-like growth factors I and II, insulin-like growth factor binding protein-3 and epidermal growth factor on human breast epithelial cells in primary culture.

    PubMed

    Strange, Karen S; Wilkinson, Darcy; Emerman, Joanne T

    2002-10-01

    Insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II) are growth factors implicated in mammary gland development and are believed to be involved in breast cancer. However, the interactions between components of the IGF system and breast epithelial cells, which give rise to breast cancer, are not well understood. We have investigated the mitogenic properties of IGF-I, IGF-II, IGF binding protein-3 (IGFBP-3) and epidermal growth factor (EGF) on human breast epithelial cells (HBEC) in primary culture. We show that, under serum-free conditions, HBEC are stimulated to grow in response to IGF-I and IGF-II in a dose-dependent manner. IGF-I and EGF, a potent stimulator of HBEC growth in primary culture and also associated with breast cancer, appear to stimulate HBEC in a synergistic manner. IGFBP-3 inhibits the stimulation by IGF-I, IGF-II and IGF-I plus EGE In addition, it appears that IGFBP-3 has an inhibitory effect on HBEC growth that is IGF-independent. This study is the first to address the effects of IGF-I, IGF-II and IGFBP-3 alone and in combination with EGF on HBEC growth in primary culture. Characterizing the role of the IGF system in normal breast biology is significant because the system has been implicated in breast cancer and a number of the anti-estrogens used in treatment are believed to function through the IGF system.

  16. Some factors affecting the growth and decay of plages

    NASA Astrophysics Data System (ADS)

    Howard, Robert F.

    1993-09-01

    The Mount Wilson coarse array magnetograph data set is analyzed to examine the dependence of growth and decay rates on the tilt angles of the magnetic axes of the regions. It is found that there is a relationship between these quantities which is similar to that found earlier for sunspot groups. Regions near the average tilt angle show larger average (absolute) growth and decay rates. The percentage growth and decay rates show minima (in absolute values) at the average tilt angles because the average areas of regions are largest near this angle. This result is similar to that derived earlier for sunspot groups. As in the case of spot groups, this suggests that, for decay, the effect results from the fact that the average tilt angle may represent the simplest subsurface configuration of the flux loop or loops that make up the region. In the case of region growth, it was suggested that the more complicated loop configuration should result in increased magnetic tension in the flux loop, and thus in a slower ascent of the loop to the surface, and thus a slower growth rate.

  17. Expression of human tyrosine kinase-negative epidermal growth factor receptor amplifies signaling through endogenous murine epidermal growth factor receptor.

    PubMed

    Hack, N; Sue-A-Quan, A; Mills, G B; Skorecki, K L

    1993-12-15

    Recent findings have suggested that certain ligand-dependent responses to EGF may be propagated in a manner that is not dependent on the intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGF-R, Campos-Gonzalez, R., and Glenney, J. R., Jr. (1992) J. Biol. Chem. 267, 14535-14538) or, alternatively, that these responses may occur through the interaction of the human tyrosine kinase-deficient EGF-R with an as yet unidentified kinase (Selva, E., Raden, D. L., and Davis, R. J. (1993) J. Biol. Chem. 268, 2250-2254). These conclusions represent a significant departure from our current understanding of signal transduction by receptor tyrosine kinases. Therefore we examined the effect of expression of tyrosine kinase-negative human EGF receptor in murine NIH-3T3-2.2 cells on the EGF-dependent phosphorylation of mitogen-activated protein (MAP-2) kinase. In parental cells (NIH-3T3-2.2) that express low levels of endogenous murine EGF-R, there was no demonstrable EGF-dependent coupling to MAP-2 kinase. In NIH-3T3-2.2 cells transfected with tyrosine kinase-negative human EGF-R, there was unexpected EGF-dependent phosphorylation of MAP-2 kinase. Analysis of the tyrosine kinase-negative human EGF-R in these cells revealed significant tyrosine phosphorylation of the EGF-R. A low level of endogenous murine EGF-R present in these cells were also phosphorylated on tyrosine residues and displayed autokinase activity. Similar results were obtained using an unrelated cell line (B82L cells), in which EGF-dependent phosphorylation of MAP-2 kinase was previously attributed to signal propagation through a tyrosine kinase-negative human EGF-R (Campos-Gonzalez, R., and Glenney, J. R., Jr. (1992) J. Biol. Chem. 267, 14535-14538). Taken together, these results suggest that the tyrosine kinase-negative human EGF-R are able to amplify the response to activation of low levels of endogenous murine EGF-R, thus leading to EGF-dependent phosphorylation of MAP-2 kinase in cells

  18. Controlled release of nerve growth factor from heparin-conjugated fibrin gel within the nerve growth factor-delivering implant

    PubMed Central

    Lee, Jin-Yong; Kim, Soung-Min; Kim, Myung-Jin

    2014-01-01

    Objectives Although nerve growth factor (NGF) could promote the functional regeneration of an injured peripheral nerve, it is very difficult for NGF to sustain the therapeutic dose in the defect due to its short half-life. In this study, we loaded the NGF-bound heparin-conjugated fibrin (HCF) gel in the NGF-delivering implants and analyzed the time-dependent release of NGF and its bioactivity to evaluate the clinical effectiveness. Materials and Methods NGF solution was made of 1.0 mg of NGF and 1.0 mL of phosphate buffered saline (PBS). Experimental group A consisted of three implants, in which 0.25 µL of NGF solution, 0.75 µL of HCF, 1.0 µL of fibrinogen and 2.0 µL of thrombin was injected via apex hole with micropipette and gelated, were put into the centrifuge tube. Three implants of experimental group B were prepared with the mixture of 0.5 µL of NGF solution, 0.5 µL HCF, 1.0 µL of fibrinogen and 2.0 µL of thrombin. These six centrifuge tubes were filled with 1.0 mL of PBS and stirred in the water-filled beaker at 50 rpm. At 1, 3, 5, 7, 10, and 14 days, 1.0 mL of solution in each tubes was collected and preserved at -20℃ with adding same amount of fresh PBS. Enzyme-linked immunosorbent assay (ELISA) was done to determine in vitro release profile of NGF and its bioactivity was evaluated with neural differentiation of pheochromocytoma (PC12) cells. Results The average concentration of released NGF in the group A and B increased for the first 5 days and then gradually decreased. Almost all of NGF was released during 10 days. Released NGF from two groups could promote neural differentiation and neurite outgrowth of PC12 cells and these bioactivity was maintained over 14 days. Conclusion Controlled release system using NGF-HCF gel via NGF-delivering implant could be an another vehicle of delivering NGF to promote the nerve regeneration of dental implant related nerve damage. PMID:24627836

  19. Epidermal growth factor, transforming growth factor-alpha, and epidermal growth factor receptor expression and localization in the canine endometrium during the estrous cycle and in bitches with pyometra.

    PubMed

    Kida, K; Maezono, Y; Kawate, N; Inaba, T; Hatoya, S; Tamada, H

    2010-01-01

    Gene expression and immunohistochemical localization of epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), and epidermal growth factor receptor (EGF-R) were compared between the endometrium of bitches (Canis familiaris) with pyometra accompanied by cystic endometrial hyperplasia (CEH) and that of healthy bitches at similar stages of the estrous cycle. In normal bitches, endometrial TGF-alpha mRNA levels were highest at proestrus and gradually decreased as the cycle progressed to anestrus. Epidermal growth factor receptor mRNA levels were not significantly affected by the stage of the estrous cycle. Epidermal growth factor mRNA levels were higher at Day 35 of diestrus than at other stages of the estrous cycle (P<0.05). In bitches with pyometra, endometrial TGF-alpha and EGF-R mRNA levels did not differ significantly from those at diestrus in normal bitches, but EGF mRNA levels were lower than those at Day 35 of diestrus in normal bitches (P<0.05). In normal bitches, positive immunohistochemical staining for TGF-alpha, EGF, and EGF-R was mainly present in the glandular and luminal epithelial cells of the endometrium. In contrast, in bitches with pyometra, immunoreactivity for EGF was clearly present in endometrial stromal cells. Inflammatory cells that had infiltrated the endometrial stroma stained strongly for TGF-alpha and EGF-R. Luminal and glandular epithelial cells also stained positive for EGF-R. In conclusion, expression of TGF-alpha by inflammatory cells and a low level of expression and differential localization of EGF may be involved in aberrant growth of endometrial glands and development of CEH. PMID:19853901

  20. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  1. Insulin-like growth factor-1 ameliorates age-related behavioral deficits.

    PubMed

    Markowska, A L; Mooney, M; Sonntag, W E

    1998-12-01

    Insulin-like growth factor-1 has been found to be involved in the regulation of several aspects of brain metabolism, neural transmission, neural growth and differentiation. Because decreased insulin-like growth factor-1 and/or its receptors are likely to contribute to age-related abnormalities in behavior, the strategy of replacing this protein is one potential therapeutic alternative. The present study was designed to assess whether cognitive deficits with ageing may be partially overcome by increasing the availability of insulin-like growth factor-1 in the brain. Fischer-344 x Brown Norway hybrid (F1) male rats of two ages (four-months-old and 32-months-old) were preoperatively trained in behavioral tasks and subsequently implanted with osmotic minipumps to infuse the insulin-like growth factor-1 (23.5 microg/pump) or a vehicle, i.c.v. Animals were retested at two weeks and four weeks after surgery. Insulin-like growth factor-1 improved working memory in the repeated acquisition task and in the object recognition task. An improvement was also observed in the place discrimination task, which assesses reference memory. Insulin-like growth factor-1 had no effect on sensorimotor skills nor exploration, but mildly reversed some age-related deficits in emotionality. These data indicate a potentially important role for insulin-like growth factor-1 in the reversal of age-related behavioral impairments in rodents.

  2. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  3. Heterogeneity of cytokine and growth factor gene expression in human melanoma cells with different metastatic potentials.

    PubMed

    Singh, R K; Gutman, M; Radinsky, R

    1995-01-01

    The purpose of this study was to determine the mRNA expression level of multiple cytokine and growth factor genes in human malignant melanoma. Melanoma cells were isolated from several surgical specimens, adapted to growth in culture, characterized for their ability to produce experimental metastases in nude mice, and assessed for cytokine and growth factor steady-state gene expression. Highly metastatic in vivo- and in vitro-derived variants isolated from a single melanoma, A375, were also analyzed. Northern blot analyses revealed that all melanomas analyzed constitutively expressed steady-state mRNA transcripts for the growth and angiogenic factors, basic fibroblast growth factor (bFGF), and transforming growth factor alpha (TGF-alpha), which correlated with metastatic propensity. Only one highly metastatic melanoma, TXM-1, originally isolated from a lymph node metastasis, expressed mRNA transcripts specific for monocyte chemotactic and activating factor (MCAF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Similarly, of the nine melanomas examined, only TXM-1 expressed interleukin (IL)-1 alpha, IL-1 beta, and IL-6, important immunomodulatory cytokines. These data demonstrate the differential and heterogeneous expression of cytokine and growth factor genes in human malignant melanoma. PMID:7648437

  4. Hepatocyte growth factor induces tubulogenesis of primary renal proximal tubular epithelial cells.

    PubMed

    Bowes, R C; Lightfoot, R T; Van De Water, B; Stevens, J L

    1999-07-01

    Hepatocyte growth factor (HGF)-induced tubulogenesis has been demonstrated with renal epithelial cell lines grown in collagen gels but not with primary cultured renal proximal tubular epithelial cells (RPTEs). We show that HGF selectively induces proliferation and branching morphogenesis of primary cultured rat RPTEs. Additional growth factors including fibroblast growth factor (FGF)-1, epidermal growth factor (EGF), FGF-7, or insulin-like growth factor-1 (IGF-1) did not selectively induce tubulogenesis. However, when administered in combination, these factors initiated branching morphogenesis comparable to HGF alone and greatly augmented HGF-induced proliferation and branching. Microscopic analysis revealed that branching RPTEs were undergoing tubulogenesis and formed a polarized epithelium. TGF-beta1 blocked HGF- or growth factor cocktail (GFC; HGF, FGF-1, EGF, IGF-1)-induced proliferation and branching morphogenesis. Adding TGF-beta1 after GFC-induced tubulogenesis had occurred caused a progressive regression of the tubular structures, a response associated with an increase in apoptosis of the RPTEs. Primary cultured RPTEs are capable of undergoing HGF-induced tubulogenesis. Unlike cell lines, combinations of growth factors differentially augment the response. PMID:10362020

  5. Factors Associated with Growth in Daily Smoking among Indigenous Adolescents

    ERIC Educational Resources Information Center

    Whitlock, Les B.; Sittner Hartshorn, Kelley J.; McQuillan, Julia; Crawford, Devan M.

    2012-01-01

    North American Indigenous adolescents smoke earlier, smoke more, and are more likely to become regular smokers as adults than youth from any other ethnic group, yet we know very little about their early smoking trajectories. We use multilevel growth modeling across five waves of data from Indigenous adolescents (aged 10-13 years at Wave 1) to…

  6. What Factors Sustain Professional Growth among School Counselors?

    ERIC Educational Resources Information Center

    Konstam, Varda; Cook, Amy L.; Tomek, Sara; Mahdavi, Esmaeil; Gracia, Robert; Bayne, Alexander H.

    2015-01-01

    This study examined relationships among self-reported professional expertise, organizational support of evidence-based practices (EBP), and professional growth. Data were collected from 85 members of American School Counseling Association (ASCA). School counselors with higher self-reported expertise reported that they were more likely to improve…

  7. Krüppel-Like Factor 12 Promotes Colorectal Cancer Growth through Early Growth Response Protein 1

    PubMed Central

    Kim, Sun-Hee; Park, Yun-Yong; Cho, Sung-Nam; Margalit, Ofer; Wang, Dingzhi; DuBois, Raymond N.

    2016-01-01

    Krüppel-like factor 12 (KLF12) is a transcription factor that plays a role in normal kidney development and repression of decidualization. KLF12 is frequently elevated in esophageal adenocarcinoma and has been reported to promote gastric cancer progression. Here, we examined the role of KLF12 in colorectal cancer (CRC). Indeed, KLF12 promotes tumor growth by directly activating early growth response protein 1 (EGR1). The levels of KLF12 and EGR1 correlate synergistically with a poor prognosis. These results indicate that KLF12 likely plays an important role in CRC and could serve as a potential prognostic marker and therapeutic target. PMID:27442508

  8. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation.

    PubMed

    Subramanian, S V; Fitzgerald, M L; Bernfield, M

    1997-06-01

    The syndecan family of transmembrane heparan sulfate proteoglycans is abundant on the surface of all adherent mammalian cells. Syndecans bind and modify the action of various growth factors/cytokines, proteases/antiproteases, cell adhesion molecules, and extracellular matrix components. Syndecan expression is highly regulated during wound repair, a process orchestrated by many of these effectors. Each syndecan ectodomain is shed constitutively by cultured cells, but the mechanism and significance of this shedding are not understood. Therefore, we examined (i) whether physiological agents active during wound repair influence syndecan shedding, and (ii) whether wound fluids contain shed syndecan ectodomains. Using SVEC4-10 endothelial cells we find that certain proteases and growth factors accelerate shedding of the syndecan-1 and -4 ectodomains. Protease-accelerated shedding is completely inhibited by serum-containing media. Thrombin activity is duplicated by the 14-amino acid thrombin receptor agonist peptide that directly activates the thrombin receptor and is not inhibited by serum. Epidermal growth factor family members accelerate shedding but FGF-2, platelet-derived growth factor-AB, transforming growth factor-beta, tumor necrosis factor-alpha, and vascular endothelial cell growth factor 165 do not. Shed ectodomains are soluble, stable in the conditioned medium, have the same size core proteins regardless whether shed at a basal rate, or accelerated by thrombin or epidermal growth factor-family members and are found in acute human dermal wound fluids. Thus, shedding is accelerated by activation of at least two distinct receptor classes, G protein-coupled (thrombin) and protein tyrosine kinase (epidermal growth factor). Proteases and growth factors active during wound repair can accelerate syndecan shedding from cell surfaces. Regulated shedding of syndecans suggests physiological roles for the soluble proteoglycan ectodomains.

  9. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing.

    PubMed

    Martino, Mikaël M; Tortelli, Federico; Mochizuki, Mayumi; Traub, Stephanie; Ben-David, Dror; Kuhn, Gisela A; Müller, Ralph; Livne, Erella; Eming, Sabine A; Hubbell, Jeffrey A

    2011-09-14

    Although growth factors naturally exert their morphogenetic influences within the context of the extracellular matrix microenvironment, the interactions among growth factors, their receptors, and other extracellular matrix components are typically ignored in clinical delivery of growth factors. We present an approach for engineering the cellular microenvironment to greatly accentuate the effects of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) for skin repair, and of bone morphogenetic protein-2 (BMP-2) and PDGF-BB for bone repair. A multifunctional recombinant fragment of fibronectin (FN) was engineered to comprise (i) a factor XIIIa substrate fibrin-binding sequence, (ii) the 9th to 10th type III FN repeat (FN III9-10) containing the major integrin-binding domain, and (iii) the 12th to 14th type III FN repeat (FN III12-14), which binds growth factors promiscuously, including VEGF-A165, PDGF-BB, and BMP-2. We show potent synergistic signaling and morphogenesis between α5β1 integrin and the growth factor receptors, but only when FN III9-10 and FN III12-14 are proximally presented in the same polypeptide chain (FN III9-10/12-14). The multifunctional FN III9-10/12-14 greatly enhanced the regenerative effects of the growth factors in vivo in a diabetic mouse model of chronic wounds (primarily through an angiogenic mechanism) and in a rat model of critical-size bone defects (through a mesenchymal stem cell recruitment mechanism) at doses where the growth factors delivered within fibrin only had no significant effects.

  10. Growth factor signalling networks in breast cancer and resistance to endocrine agents: new therapeutic strategies.

    PubMed

    Nicholson, R I; Hutcheson, I R; Britton, D; Knowlden, J M; Jones, H E; Harper, M E; Hiscox, S E; Barrow, D; Gee, J M W

    2005-02-01

    Recent evidence demonstrates that growth factor networks are highly interactive with the estrogen receptor (ER) in the control of breast cancer growth and development. As such, tumor responses to anti-hormones are likely to be a composite of the ER and growth factor inhibitory activity of these agents, with alterations/aberrations in growth factor signalling providing a mechanism for the development of anti-hormone resistance. In this light, the current article focuses on illustrating the relationship between growth factor signalling and anti-hormone failure in our in-house tumor models of breast cancer and describes how we are now beginning to successfully target their actions to improve the effects of anti-hormonal drugs and to block aggressive disease progression.

  11. FIBROBLAST GROWTH FACTOR HOMOLOGOUS FACTORS CONTROL NEURONAL EXCITABILITY THROUGH MODULATION OF VOLTAGE GATED SODIUM CHANNELS

    PubMed Central

    Goldfarb, Mitchell; Schoorlemmer, Jon; Williams, Anthony; Diwakar, Shyam; Wang, Qing; Huang, Xiao; Giza, Joanna; Tchetchik, Dafna; Kelley, Kevin; Vega, Ana; Matthews, Gary; Rossi, Paola; Ornitz, David M.; D’Angelo, Egidio

    2007-01-01

    SUMMARY Nerve cells integrate and encode complex synaptic inputs into action potential outputs through a process termed intrinsic excitability. Here we report the essential contribution of fibroblast growth factor homologous factors (FHFs), a family of voltage-gated sodium channel binding proteins, to this process. In mouse cerebellar slice recordings, wild-type and Fhf1−/− granule neurons generate sustained trains of action potentials up to high frequencies (~60 Hz), but Fhf4−/− neurons typically fire for only 100 milliseconds, and Fhf1−/−Fhf4−/− neurons often fire only once. Additionally, the voltage threshold for spike generation is 9 mV higher in Fhf1−/−Fhf4−/− neurons compared to wild-type cells. The severity of ataxia and motor weakness in mutant mice parallels the degree of intrinsic excitability deficits in mutant neurons. While density, distribution, isotype, and activation of sodium channels in Fhf1−/−Fhf4−/− neurons are similar to those of wild-type cells, channels in Fhf1−/−Fhf4−/− neurons undergo inactivation at more negative membrane potential, inactivate more rapidly, and are slower to recover from the inactivated state. Altered sodium channel physiology is sufficient to explain excitability deficits, as tested in a granule cell computer model. These findings provide a physiological understanding for spinocerebellar ataxia syndrome associated with human Fhf4 mutation and suggest a broad role for FHFs in the control of excitability throughout the central nervous system. PMID:17678857

  12. SCN5A variant that blocks fibroblast growth factor homologous factor regulation causes human arrhythmia

    PubMed Central

    Musa, Hassan; Kline, Crystal F.; Sturm, Amy C.; Murphy, Nathaniel; Adelman, Sara; Wang, Chaojian; Yan, Haidun; Johnson, Benjamin L.; Csepe, Thomas A.; Kilic, Ahmet; Higgins, Robert S. D.; Janssen, Paul M. L.; Fedorov, Vadim V.; Weiss, Raul; Salazar, Christina; Hund, Thomas J.; Pitt, Geoffrey S.; Mohler, Peter J.

    2015-01-01

    Nav channels are essential for metazoan membrane depolarization, and Nav channel dysfunction is directly linked with epilepsy, ataxia, pain, arrhythmia, myotonia, and irritable bowel syndrome. Human Nav channelopathies are primarily caused by variants that directly affect Nav channel permeability or gating. However, a new class of human Nav channelopathies has emerged based on channel variants that alter regulation by intracellular signaling or cytoskeletal proteins. Fibroblast growth factor homologous factors (FHFs) are a family of intracellular signaling proteins linked with Nav channel regulation in neurons and myocytes. However, to date, there is surprisingly little evidence linking Nav channel gene variants with FHFs and human disease. Here, we provide, to our knowledge, the first evidence that mutations in SCN5A (encodes primary cardiac Nav channel Nav1.5) that alter FHF binding result in human cardiovascular disease. We describe a five*generation kindred with a history of atrial and ventricular arrhythmias, cardiac arrest, and sudden cardiac death. Affected family members harbor a novel SCN5A variant resulting in p.H1849R. p.H1849R is localized in the central binding core on Nav1.5 for FHFs. Consistent with these data, Nav1.5 p.H1849R affected interaction with FHFs. Further, electrophysiological analysis identified Nav1.5 p.H1849R as a gain-of-function for INa by altering steady-state inactivation and slowing the rate of Nav1.5 inactivation. In line with these data and consistent with human cardiac phenotypes, myocytes expressing Nav1.5 p.H1849R displayed prolonged action potential duration and arrhythmogenic afterdepolarizations. Together, these findings identify a previously unexplored mechanism for human Nav channelopathy based on altered Nav1.5 association with FHF proteins. PMID:26392562

  13. Modulation of epidermal growth factor effects on epithelial ion transport by intestinal trefoil factor.

    PubMed

    Chinery, R; Cox, H M

    1995-05-01

    1. The direct epithelial effects of epidermal growth factor (EGF) and its modulation by intestinal trefoil factor (ITF) have been studied in a human colonic adenocarcinoma cell line called Colony-29 (Col-29). 2. When grown in culture as confluent monolayers and voltage-clamped in Ussing chambers, these epithelia responded with an increase in short circuit current (SCC) to basolateral as well as to apically applied EGF although the latter responses (at 10 nM) were only 25% of those observed following basolateral peptide. 3. Recombinant rat ITF (added to the basolateral surface) did not alter basal SCC levels, but it did enhance the electrogenic effects of basolateral EGF. The EC50 values for EGF-induced ion transport were 0.25 nM in control, and 0.26 nM in ITF pretreated Col-29 epithelia. A significant increase in the size of EGF responses (0.1 nM-10 nM) was observed in the presence of 10 nM ITF and the half-maximal concentration for this modulatory effect of ITF was 7.6 nM. 4. The EGF-induced increases in SCC were partially inhibited (50%) by piretanide pretreatment, indicating that Cl- secretion is involved. EGF responses either in the presence or absence of ITF were also significantly reduced (84% and 66% respectively) by the cyclo-oxygenase inhibitor, piroxicam, therefore implicating prostaglandins as mediators of EGF-stimulated anion secretion. 5. We conclude that in confluent Col-29 epithelia, basolateral EGF stimulates a predominantly prostaglandin-dependent increase in Cl- secretion that is enhanced by basolateral ITF, and that these two peptides may interact in normal and damaged mucosa to alter the local apical solute and fluid environment.

  14. Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis.

    PubMed

    Matsuo, Isao; Kimura-Yoshida, Chiharu

    2014-12-01

    During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.

  15. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-05-01

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analysed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest.

  16. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-06-16

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analyzed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest. PMID:27043383

  17. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-05-01

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analysed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest. PMID:26918325

  18. Epidermal growth factor suppresses insulin-like growth factor binding protein 3 levels in human papillomavirus type 16-immortalized cervical epithelial cells and thereby potentiates the effects of insulin-like growth factor 1.

    PubMed

    Hembree, J R; Agarwal, C; Eckert, R L

    1994-06-15

    Human ectocervical epithelial cells are a primary target for infection by oncogenic papillomaviruses, which are strongly implicated as causative agents in the genesis of cervical cancer. Growth factors have been implicated as agents that stimulate proliferation and enhance the possibility of malignant transformation. In the present study we utilize several human papillomavirus (HPV) type 16-immortalized ectocervical epithelial cell lines to investigate the effects of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) on cell proliferation and the production of IGF binding proteins (IGFBPs). ECE16-1 cells, an HPV16-immortalized/nontumorigenic cell line, maintained in defined medium, produce and release high levels of IGFBP-3 (38/42 kDa) as well as smaller amounts of a 24-kDa IGFBP. Supplementation of defined medium with EGF causes a dose-dependent increase in cell growth and a concomitant decrease in the levels of IGFBP-3 released into the culture medium. EGF suppression of IGFBP-3 is maintained even when EGF-stimulated cell growth is suppressed 67% due to the simultaneous presence of 3 ng/ml of TGF beta 1, indicating that EGF suppression of IGFBP-3 levels is independent of EGF effects on cell growth. EGF suppression of IGFBP-3 production is correlated with a reduction in IGFBP-3 mRNA level. In the presence of EGF, the growth response of the cells to ng amounts of IGF-I is significantly enhanced. Moreover, the simultaneous presence of both EGF and IGF-I reduces the level of IGFBP-3 more efficiently than EGF alone. We also observe that the IGFBP-3 level is decreased and the 24-kDa IGFBP level is increased in HPV16-positive tumorigenic versus nontumorigenic cell lines. This is the first report of EGF acting as a positive regulator of IGF-I action via the IGFBPs. On the basis of these findings, we propose that EGF stimulates ECE16-1 cell growth via a dual-action mechanism by (a) stimulating growth directly via the EGF mitogenic pathway and (b

  19. Growth factor and ultrasound-assisted bioreactor synergism for human mesenchymal stem cell chondrogenesis

    PubMed Central

    Thakurta, Sanjukta Guha; Budhiraja, Gaurav

    2015-01-01

    Ultrasound at 5.0 MHz was noted to be chondro-inductive, with improved SOX-9 gene and COL2A1 protein expression in constructs that allowed for cell-to-cell contact. To achieve tissue-engineered cartilage using macroporous scaffolds, it is hypothesized that a combination of ultrasound at 5.0 MHz and transforming growth factor-β3 induces human mesenchymal stem cell differentiation to chondrocytes. Expression of miR-145 was used as a metric to qualitatively assess the efficacy of human mesenchymal stem cell conversion. Our results suggest that in group 1 (no transforming growth factor-β3, no ultrasound), as anticipated, human mesenchymal stem cells were not efficiently differentiated into chondrocytes, judging by the lack of decrease in the level of miR-145 expression. Human mesenchymal stem cells differentiated into chondrocytes in group 2 (transforming growth factor-β3, no ultrasound) and group 3 (transforming growth factor-β3, ultrasound) with group 3 having a 2-fold lower miR-145 when compared to group 2 at day 7, indicating a higher conversion to chondrocytes. Transforming growth factor-β3–induced chondrogenesis with and without ultrasound stimulation for 14 days in the ultrasound-assisted bioreactor was compared and followed by additional culture in the absence of growth factors. The combination of growth factor and ultrasound stimulation (group 3) resulted in enhanced COL2A1, SOX-9, and ACAN protein expression when compared to growth factor alone (group 2). No COL10A1 protein expression was noted. Enhanced cell proliferation and glycosaminoglycan deposition was noted with the combination of growth factor and ultrasound stimulation. These results suggest that ultrasound at 5.0 MHz could be used to induce chondrogenic differentiation of mesenchymal stem cells for cartilage tissue engineering. PMID:25610590

  20. Heparin-binding growth factor type 1 (acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration.

    PubMed Central

    Kan, M; Huang, J S; Mansson, P E; Yasumitsu, H; Carr, B; McKeehan, W L

    1989-01-01

    Heparin-binding growth factor type 1 (HBGF-1; sometimes termed acidic fibroblast growth factor) is potentially an important factor in liver regeneration. HBGF-1 alone (half-maximal effect at 60 pM) stimulated hepatocyte DNA synthesis and bound to a high-affinity receptor (Kd = 62 pM; 5000 per cell). Epidermal growth factor (EGF) neutralized or masked the mitogenic effect of HBGF-1 concurrent with appearance of low-affinity HBGF-1 binding sites. HBGF-1 reduced the inhibitory effect of transforming growth factor type beta (TGF-beta) on the EGF stimulus. Nanomolar levels of HBGF-1 decreased the EGF stimulus. An increase in hepatic HBGF-1 gene expression after partial hepatectomy precedes increases in expression of the EGF homolog, TGF-alpha, and nonparenchymal-cell-derived TGF-beta in the regenerating liver. Expression of HBGF-1 mRNA occurs in both hepatocytes and nonparenchymal cells and persists for 7 days in liver tissue after partial hepatectomy. HBGF-1 acting through a high-affinity receptor is a candidate for the early autocrine stimulus that drives hepatocyte DNA synthesis prior to or concurrent with the EGF/TGF-alpha stimulus. It may allow hepatocyte proliferation to proceed in the presence of low levels of TGF-beta. An EGF/TGF-alpha-dependent change in HBGF-1 receptor phenotype and increasing levels of nonparenchymal-cell-derived HBGF-1 and TGF-beta may serve to limit hepatocyte proliferation. Images PMID:2477840

  1. Growth hormone and insulin-like growth factor I plasma levels in patients with hypophosphatemic rickets.

    PubMed

    Jasper, H; Cassinelli, H

    1993-01-01

    The cause of the growth retardation present in patients with hypophosphatemic rickets has not been totally elucidated. There has been a previous report of a growth hormone deficit in a group of these patients. To verify this abnormality we studied two groups of patients with hypophosphatemic rickets, one with (n = 6) and the other without (n = 7) treatment with calcitriol and oral phosphates. All patients in both groups showed a normal growth hormone response (> 10 micrograms/l) to standard stimulatory tests and normal IGF-I plasma levels. Mean IGF-I plasma levels were not significantly different (untreated 1.46 +/- 0.80 U/ml, treated 1.25 +/- 0.69 U/ml) and the mean logarithmic deviation of IGF-I plasma levels from both groups did not differ from normal. In summary, we found no abnormalities of the growth hormone-IGF-I axis in our patients with hypophosphatemic rickets.

  2. Molecular genetics of human growth hormone, insulin-like growth<