Science.gov

Sample records for 12d1 impact properties

  1. Subtask 12D1: Impact properties of production heat of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Smith, D.L.

    1995-03-01

    Following previous reports of excellent properties of a laboratory heat of V-4Cr-4Ti, the alloy identified as the primary vanadium-based candidate for application as fusion reactor structural components, a large production-scale (500-kg) heat of the alloy was fabricated successfully. Since impact toughness has been known to be most sensitive to alloy composition and microstructure, impact testing of the production-scale heat was conducted in this work between -200{degrees}C and +200{degrees}C. A 500-kg heat of V-4Cr-4Ti, an alloy identified previously as the primary vanadium-based candidate alloy for application as fusion reactor structural components, has been produced successfully. Impact tests were conducted at -196{degrees}C to 150{degrees}C on 1/3-size Charpy specimens of the scale-up heat in as-rolled condition and after annealing for 1 h at 950, 1000, and 1050{degrees}C in high-quality vacuum. The annealed material remained ductile at all test temperatures; the ductile-brittle transition temperature (DBTT) was lower than -200{degrees}C. The upper-shelf energy of the production-scale heat was similar to that of the laboratory-scale ({approx}30-kg) heat of V-4Cr-4Ti investigated previously. Effect of annealing temperature was not significant; however, annealing at 1000{degrees}C for 1 h not only produces best impact properties but also ensures a sufficient tolerance to effect of temperature inhomogeneity expected when annealing large components. Effect of notch geometry was also investigated on the production heat. When annealed properly (e.g., at 1000{degrees}C for 1 h), impact properties were not sensitive to notch geometry (45{degrees}-notch, root radius 0.25 mm; and 300-notch, root radius 0.08 mm). 11 refs., 6 figs., 1 tab.

  2. 17 CFR 270.12d1-2 - Exemptions for investment companies relying on section 12(d)(1)(G) of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-12(d)(1)(G)(i)(II)), a registered open-end investment company or a registered unit investment trust... by an investment company); and (3) Securities issued by a money market fund, when the acquisition is in reliance on § 270.12d1-1. (b) Definitions. For purposes of this section, money market fund has...

  3. 17 CFR 270.12d1-2 - Exemptions for investment companies relying on section 12(d)(1)(G) of the Act.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-12(d)(1)(G)(i)(II)), a registered open-end investment company or a registered unit investment trust... by an investment company); and (3) Securities issued by a money market fund, when the acquisition is in reliance on § 270.12d1-1. (b) Definitions. For purposes of this section, money market fund has...

  4. 17 CFR 270.12d1-2 - Exemptions for investment companies relying on section 12(d)(1)(G) of the Act.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-12(d)(1)(G)(i)(II)), a registered open-end investment company or a registered unit investment trust... by an investment company); and (3) Securities issued by a money market fund, when the acquisition is in reliance on § 270.12d1-1. (b) Definitions. For purposes of this section, money market fund has...

  5. 17 CFR 240.12d1-1 - Registration effective as to class or series.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... class or series. 240.12d1-1 Section 240.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Registration § 240.12d1-1 Registration effective as to class or series. (a) An application filed pursuant to... of additional shares or amounts. (d) If a class of security is issuable in two or more series...

  6. 17 CFR 240.12d1-1 - Registration effective as to class or series.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... class or series. 240.12d1-1 Section 240.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Registration § 240.12d1-1 Registration effective as to class or series. (a) An application filed pursuant to... of additional shares or amounts. (d) If a class of security is issuable in two or more series...

  7. 17 CFR 240.12d1-1 - Registration effective as to class or series.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... class or series. 240.12d1-1 Section 240.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Registration § 240.12d1-1 Registration effective as to class or series. (a) An application filed pursuant to... of additional shares or amounts. (d) If a class of security is issuable in two or more series...

  8. 17 CFR 240.12d1-1 - Registration effective as to class or series.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... class or series. 240.12d1-1 Section 240.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Registration § 240.12d1-1 Registration effective as to class or series. (a) An application filed pursuant to... of additional shares or amounts. (d) If a class of security is issuable in two or more series...

  9. 17 CFR 240.12d1-1 - Registration effective as to class or series.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... class or series. 240.12d1-1 Section 240.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Registration § 240.12d1-1 Registration effective as to class or series. (a) An application filed pursuant to... of additional shares or amounts. (d) If a class of security is issuable in two or more series...

  10. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund shares... issued by a money market fund; and (2) A money market fund, any principal underwriter thereof, and...

  11. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund shares... issued by a money market fund; and (2) A money market fund, any principal underwriter thereof, and...

  12. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund shares... issued by a money market fund; and (2) A money market fund, any principal underwriter thereof, and...

  13. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) of the Act (15 U.S.C. 80a-3(c)(1) and 80a-3(c)(7)). (2) Money market fund means: (i) An open-end... as if it were a registered open-end investment company: (A) Operates in compliance with § 270.2a-7... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES...

  14. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) of the Act (15 U.S.C. 80a-3(c)(1) and 80a-3(c)(7)). (2) Money market fund means: (i) An open-end... as if it were a registered open-end investment company: (A) Operates in compliance with § 270.2a-7... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES...

  15. 17 CFR 240.12d1-2 - Effectiveness of registration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Securities Exchange Act of 1934 Certification by Exchanges and Effectiveness of Registration § 240.12d1-2 Effectiveness of registration. (a) A request for acceleration of the effective date of registration pursuant to... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Effectiveness of...

  16. The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice

    PubMed Central

    He, Dongli; Zhang, Hui; Yang, Pingfang

    2014-01-01

    B12D belongs to a function unknown subgroup of the Balem (Barley aleurone and embryo) proteins. In our previous work on rice seed germination, we identified a B12D-like protein encoded by LOC_Os7g41350 (named OsB12D1). OsB12D1 pertains to an ancient protein family with an amino acid sequence highly conserved from moss to angiosperms. Among the six OsB12Ds, OsB12D1 is one of the major transcripts and is primarily expressed in germinating seed and root. Bioinformatics analyses indicated that OsB12D1 is an anoxic or submergence resistance-related gene. RT-PCR results showed OsB12D1 is induced remarkably in the coleoptiles or roots by flooding during seed germination and early seedling growth. The OsB12D1-overexpressed rice seeds could protrude radicles in 8 cm deep water, further exhibiting significant flooding tolerance compared to the wild type. Moreover, this tolerance was not affected by the gibberellin biosynthesis inhibitor paclobutrazol. OsB12D1 was identified in the mitochondrion by subcellular localization analysis and possibly enhances electron transport through mediating Fe and oxygen availability under flooded conditions. This work indicated that OsB12D1 is a promising gene that can help to enhance rice seedling establishment in farming practices, especially for direct seeding. PMID:25089878

  17. Impact failure and fragmentation properties of metals

    SciTech Connect

    Grady, D.E.; Kipp, M.E.

    1998-03-01

    In the present study we describe the development of an experimental fracture material property test method specific to dynamic fragmentation. Spherical test samples of the metals of interest are subjected to controlled impulsive stress loads by acceleration to high velocities with a light-gas launcher facility and subsequent normal impact on thin plates. Motion, deformation and fragmentation of the test samples are diagnosed with multiple flash radiography methods. The impact plate materials are selected to be transparent to the x-ray method so that only test metal material is imaged. Through a systematic series of such tests both strain-to-failure and fragmentation resistance properties are determined through this experimental method. Fragmentation property data for several steels, copper, aluminum, tantalum and titanium have been obtained to date. Aspects of the dynamic data have been analyzed with computational methods to achieve a better understanding of the processes leading to failure and fragmentation, and to test an existing computational fragmentation model.

  18. Enhancements in Magnesium Die Casting Impact Properties

    SciTech Connect

    David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

    2000-06-30

    The need to produce lighter components in transportation equipment is the main driver in the increasing demand for magnesium castings. In many automotive applications, components can be made of magnesium or aluminum. While being lighter, often times the magnesium parts have lower impact and fatigue properties than the aluminum. The main objective of this study was to identify potential improvements in the impact resistance of magnesium alloys. The most common magnesium alloys in automotive applications are AZ91D, AM50 and AM60. Accordingly, these alloys were selected as the main candidates for the study. Experimental quantities of these alloys were melted in an electrical furnace under a protective atmosphere comprising sulfur hexafluoride, carbon dioxide and dry air. The alloys were cast both in a permanent mold and in a UBE 315 Ton squeeze caster. Extensive evaluation of tensile, impact and fatigue properties was conducted at CWRU on permanent mold and squeeze cast test bars of AZ91, AM60 and AM50. Ultimate tensile strength values between 20ksi and 30ksi were obtained. The respective elongations varied between 25 and 115. the Charpy V-notch impact strength varied between 1.6 ft-lb and 5 ft-lb depending on the alloy and processing conditions. Preliminary bending fatigue evaluation indicates a fatigue limit of 11-12 ksi for AM50 and AM60. This is about 0.4 of the UTS, typical for these alloys. The microstructures of the cast specimens were investigated with optical and scanning electron microscopy. Concomitantly, a study of the fracture toughness in AM60 was conducted at ORNL as part of the study. The results are in line with values published in the literature and are representative of current state of the art in casting magnesium alloys. The experimental results confirm the strong relationship between aluminum content of the alloys and the mechanical properties, in particular the impact strength and the elongation. As the aluminum content increases from about 5

  19. Atmospheric Aerosol Properties and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; Halthore, Rangasayi

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  20. Impact of urea on detergent micelle properties.

    PubMed

    Broecker, Jana; Keller, Sandro

    2013-07-09

    Co-solvents, such as urea, can entail drastic changes in the micellization behavior of detergents. We present a systematic quantification of the impact of urea on the critical micellar concentration, the micellization thermodynamics, and the micelle size in three homologous series of commonly used non-ionic alkyl detergents. To this end, we performed demicellization experiments by isothermal titration calorimetry and hydrodynamic size measurements by dynamic light scattering on alkyl maltopyranosides, cyclohexyl alkyl maltopyranosides, and alkyl glucopyranosides at urea concentrations of 0-8 M. For all detergents studied, we found that the critical micellar concentration increases exponentially because the absolute Gibbs free energy of micellization decreases linearly over the entire urea concentration range, as does the micelle size. In contrast, the enthalpic and entropic contributions to micellization reveal more complex, nonlinear dependences on urea concentration. Both free energy and size changes are more pronounced for long-chain detergents, which bury more apolar surface area upon micelle formation. The Gibbs free energy increments per methylene group within each detergent series depend on urea concentration in a linear fashion, although they result from the entropic term for alkyl maltosides but are of enthalpic origin for cyclohexyl alkyl maltosides. We compare our results to transfer free energies of amino acid side chains, relate them to protein-folding data, and discuss how urea-induced changes in detergent micelle properties affect in vitro investigations on membrane proteins.

  1. Subtask 12D2: Baseline impact properties of vanadium alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the baseline impact properties of vanadium-base alloys as a function of compositional variables. Up-to-date results on impact properties of unirradiated V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented and reviewed in this paper, with an emphasis on the most promising class of alloys, i.e., V-(4-5)Cr-(3-5)Ti containing 400-1000 wppm Si. Database on impact energy and ductile-brittle transition temperature (DBTT) has been established from Charpy impact tests on small laboratory as well as production-scale heats. DBTT is influenced most significantly by Cr contents and, to a lesser extent, by Ti contents of the alloys. When combined contents of Cr and Ti were {le}10 wt.%, V-Cr-Ti alloys exhibit excellent impact properties, i.e., DBTT<-200{degrees}C and upper shelf energies of {approx}120-140 J/cm{sup 2}. Impact properties of the production-scale heat of the U.S. reference alloy V-4Cr- 4Ti were as good as those of the laboratory-scale heats. Optimal impact properties of the reference alloy were obtained after annealing the as-rolled products at 1000{degrees}C-1050{degrees}C for 1-2 h in high-quality vacuum. 17 refs., 6 figs., 2 tabs.

  2. Predicting the impact of biochar additions on soil hydraulic properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool predicting the impact of biochar additions on soil saturated hydraulic con...

  3. Impacts of doping on thermal and thermoelectric properties of nanomaterials.

    PubMed

    Zhang, Gang; Li, Baowen

    2010-07-01

    Thermal transport in nanoscale structures has attracted an increasing interest in the last two decades. On the one hand, the low dimensional nanostructured materials are platforms for testing novel phonon transport theories. On the other hand, nanomaterials are promising candidates for nanoscale on-chip coolers. This review is focused on the thermal conductance, thermoelectric property, and impacts of doping on these properties.

  4. Fatigue and impact properties of metal honeycomb sandwich panel

    NASA Astrophysics Data System (ADS)

    Zou, Guang ping; Lu, Jie; Liang, Jun; Chang, Zhong liang

    2008-11-01

    Honeycomb sandwich structures are significant to be used as applied to thermal protection system on reusable launch vehicle. In this paper the fatigue and impact properties of a novel metallic thermal protection material have been investigated and predicted at room temperature. A series of strength tests are carried out to obtain parameters firstly for further experiments. A set of tension-tension stress fatigue tests and impact tests based on split-Hopkinson pressure bar are carried out. Different high strain rate impact experiments are accomplished. The curves of dynamical stress, strain and strain rate are obtained. Also the cell units images after impact are presented. The results show the fatigue properties of honeycomb sandwich panels are comparatively better. And it has the advantages of anti-impact resistance and high, energy absorption capability.

  5. Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions

    NASA Astrophysics Data System (ADS)

    Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.

    2016-10-01

    Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability

  6. Droplet impact patterns on inclined surfaces with variable properties

    NASA Astrophysics Data System (ADS)

    Lockard, Michael; Neitzel, G. Paul; Smith, Marc K.

    2014-11-01

    Bloodstain pattern analysis is used in the investigation of a crime scene to infer the impact velocity and size of an impacting droplet and, from these, the droplet's point and cause of origin. The final pattern is the result of complex fluid mechanical processes involved in the impact and spreading of a blood drop on a surface coupled with the wetting properties of the surface itself. Experiments have been designed to study these processes and the resulting patterns for the case of a single Newtonian water droplet impacting a planar, inclined surface with variable roughness and wetting properties. Results for Reynolds numbers in the range of (9,000 - 27,000) and Weber numbers in the range of (300 - 2,600) will be presented. Transient video images and final impact patterns will be analyzed and compared with results from traditional bloodstain pattern-analysis techniques used by the forensics community. In addition, preliminary work with a new Newtonian blood simulant designed to match the viscosity and surface tension of blood will be presented. Supported by the National Institute of Justice.

  7. Viton's Impact on NASA Standard Initiator Propellant Properties

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl; Tipton, Bill, Jr.

    2000-01-01

    This paper discusses some of the properties of Viton that are relevant to its use as a pyrotechnic binder in a NASA standard initiator (NSI) propellant. Nearly every aspect of NSI propellant manufacture and use is impacted by the binder system. The effect of Viton's molecular weight on solubility, solution viscosity, glass transition temperature, and strength characteristics as applied to NSI production and performance are reviewed. Emphasis is placed on the Viton fractionation that occurs during the precipitation cycle and its impact on bridgewire functions. Special consideration is given to the production of bridgewire slurry mixtures.

  8. Impact of physiochemical properties on pharmacokinetics of protein therapeutics.

    PubMed

    Swami, Rajan; Shahiwala, Aliasgar

    2013-12-01

    Physicochemical properties, such as molecular weight, size, partition coefficient, acid dissociation constant and solubility have a great impact on pharmacokinetics of traditional small molecule drugs and substantially used in development of small drugs. However, predicting pharmacokinetic fate (absorption, distribution, metabolism and elimination) of protein therapeutics from their physicochemical parameters is extremely difficult due to the macromolecular nature of therapeutic proteins and peptides. Their structural complexity and immunogenicity are other contributing factors that determine their biological fate. Therefore, to develop generalized strategies concerning development of therapeutic proteins and peptides are highly challenging. However, reviewing the literature, authors found that physiochemical properties, such as molecular weight, charge and structural modification are having great impact on pharmacokinetics of protein therapeutics and an attempt is made to provide the major findings in this manuscript. This manuscript will serve to provide some bases for developing protein therapeutics with desired pharmacokinetic profile.

  9. Method for Investigation of Frictional Properties at Impact Loading

    NASA Astrophysics Data System (ADS)

    Sundin, K. G.; Åhrström, B. O.

    1999-05-01

    In the assessment of lubricant performance and also in various other contact applications it is of importance to know the frictional qualities of a surface. Under quasi-static conditions, normal and frictional forces are measured using force transducers but the task is more difficult when loads are transient. The experimental method presented in this paper is based on the analysis of propagating waves in a beam, due to an impact on the end surface. The impact is oblique and therefore a transverse as well as a normal force is generated. The normal force history is measured from the axial non-dispersive wave using strain gauges. Transverse force and bending moment both generate dispersive flexural waves. From the FFT of two transverse acceleration histories, the frictional force at the end of the rod is evaluated using beam theory. The relation between normal and frictional force histories displays the frictional properties at the impact. Preliminary results are presented.

  10. Asteroid Impact Deflection and Assessment (AIDA) mission - Properties of Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.; Fahnestock, Eugene G.; Schwartz, Stephen R.; Murdoch, Naomi; Asphaug, Erik; Cheng, Andrew F.; Housen, Kevin R.; Michel, Patrick; Miller, Paul L.; Stickle, Angela; Tancredi, Gonzalo; Vincent, Jean-Baptiste; Wuennemann, Kai; Yu, Yang; AIDA Impact Simulation Working Group

    2016-10-01

    The Asteroid Impact Deflection and Assessment (AIDA) mission is composed of NASA's Double Asteroid Redirection Test (DART) mission and ESA's Asteroid Impact Monitor (AIM) rendezvous mission. The DART spacecraft is designed to impact the small satellite of near-Earth asteroid 65803 Didymos in October 2022, while the in-situ AIM spacecraft observes. AIDA's Modeling and Simulation of Impact Outcomes Working Group is tasked with investigating properties of the debris ejected from the impact. The orbital evolution of this ejecta has important implications for observations that the AIM spacecraft will take as well as for the safety of the spacecraft itself. Ejecta properties including particle sizes, bulk densities, and velocities all depend on the poorly-known physical properties of Didymos' moon. The moon's density, internal strength, and especially its porosity have a strong effect on all ejecta properties. Making a range of assumptions, we perform a suite of numerical simulations to determine the fate of the ejected material; we will use simulation predictions to optimize AIM observations and safety. Ultimately, combining AIM's observations of the ejecta with detailed numerical simulations will help constrain key satellite parameters.We use distinct types of numerical tools to explore ejecta properties based on additional target parameters (different forms of friction, cohesion), e.g., the shock physics code iSALE, smoothed particle hydrodynamics codes, and the granular code PKDGRAV. Given the large discrepancy between the 6 km/s impact speed of DART and the moon's 6 cm/s escape speed, a great challenge will be to determine properties of the low-speed ejecta. Very low-speed material relevant to the safety of the AIM spacecraft and its ability to conduct its observations may loft from the crater at late stages of the impact process, or from other locations far from the impact site due to seismic energy propagation. The manner in which seismic waves manifests in

  11. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  12. Impact properties of shear thickening fluid impregnated foams

    NASA Astrophysics Data System (ADS)

    Soutrenon, M.; Michaud, V.

    2014-03-01

    Concentrated colloidal suspensions of silica particles in polyethylene glycol exhibit a shear thickening behavior: above a critical shear rate in a confined environment, they show a steep increase of viscosity. This reversible transition from a low to a high viscosity state is associated with a large energy absorption that could be harnessed for impact protection. As these suspensions are liquid at rest, however, shear thickening fluids (STFs) are difficult to use in practical applications. Furthermore, their specific rheological properties exist within a narrow range of concentration, so they tend to disappear when the material is in contact with air and humidity. In this work, a soft foam scaffold was impregnated with STF to provide a three-dimensional shape to the assembly at rest, while a silicone was cast around it to serve as a physical barrier to the external environment. A method to quickly impregnate the foam was proposed. Impact tests were carried out on the STF/foam/silicone composite pads using a free fall impact tower. Compared to rubber or pure silicone, larger energy absorptions, up to 85%, were observed, which could be repeated for multiple impacts. The transmitted shock waves were also reduced, showing the potential of this system for impact protection of structures.

  13. The impact of landmark properties in shaping exploration and navigation.

    PubMed

    Yaski, Osnat; Eilam, David

    2007-10-01

    This study was aimed at uncovering physical and geometric properties that make a particular landmark a target of exploration and navigation. Rats were tested in a square open-field arena with additional portable corners featuring the same properties as the arena corners. It was found that the routes of progression converged upon the added corners, whether located at the arena wall or the arena center. Route convergence upon the added corners involved numerous visits to these corners. However, time spent at the added corners was relatively short compared with the arena corners, including that from which rats were introduced into the arena. There was no differential effect of testing rats in light or dark, or with a low versus a high portable corner. It is suggested that the added corners were distinct against the background of the arena enclosure, whereas the four arena corners and walls were encoded by the rats as one geometric module. This distinctness, together with the greater accessibility of the added corners, made them salient landmarks and a target of exploration. Thus, the impact of a landmark extended beyond its specific self-geometry to include accessibility and distinctness, which are contextual properties. In addition to the contextual impact on locomotor behavior there was also a temporal effect, with security initially dominating the rats' behavior but then declining along with an increased attraction to salient landmarks. These spatiotemporal patterns characterized behavior in both lit and dark arenas, indicating that distal cues were secondary to local proximal cues in shaping routes.

  14. Impact of Foliage Surface Properties on Vegetation Reflection and Absorption

    NASA Astrophysics Data System (ADS)

    Yang, B.; Knyazikhin, Y.; Yan, L.; Zhao, Y.; Jiao, J.

    2013-12-01

    Optical properties of phytoelements and their distribution in the canopy space (i.e., canopy structure) are among key factors that determine light environment in vegetation canopies, which in turn drives various physiological and physical processes required for the functioning of plants. Canopy radiative response is the source of information about ecosystem properties from remote sensing. Understanding of how radiation interacts with foliage and traverses in the 3D vegetation canopy is essential to both modeling and remote sensing communities. Radiation scattered by a leaf includes information from two dissimilar sources - the leaf surface and leaf interior. The first component of scattered radiation emanates from light reflected at the air-cuticle interface. This portion of reflected radiation does not interact with biochemical constituents inside the leaf and depends on the properties of the leaf surface. The leaf cuticle acts as a "barrier" for photons to enter the mesophyll and be absorbed; thus, tending to increase the leaf scattering. The second component mainly results from radiation interactions within the leaf-interior. The canopy radiation regime is sensitive to canopy structure, leaf surface properties and leaf biochemical constituents. Impact of leaf surface properties on canopy reflection and absorption is poorly understood. Radiation scattered at the surface of leaves is partly polarized. Fresnel reflection is the principal cause of light polarization. Polarization measurements provide a means to assess the impact of leaf surface properties on canopy radiation regime. We measured Bidirectional Reflectance Factor (BRF) in the principal plane and its polarized portion of needles and shoots of two coniferous species in the 400 to 1000 nm spectral interval. The needle and shoot BRF spectra were decomposed into polarized (PBRF) and diffuse (DBRF) components: BRF=PBRF+DBRF. Our analyses indicate: 1) PBRF in forward directions can account for up to 70% of

  15. Impact absorption properties of carbon fiber reinforced bucky sponges.

    PubMed

    Thevamaran, Ramathasan; Saini, Deepika; Karakaya, Mehmet; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao; Daraio, Chiara

    2017-03-24

    We describe the super compressible and highly recoverable response of bucky sponges as they are struck by a heavy flat-punch striker. The bucky sponges studied here are structurally stable, self-assembled mixtures of multiwalled carbon nanotubes (MWCNTs) and carbon fibers (CFs). We engineered the microstructure of the sponges by controlling their porosity using different CF contents. Their mechanical properties and energy dissipation characteristics during impact loading are presented as a function of their composition. The inclusion of CFs improves the impact force damping by up to 50% and the specific damping capacity by up to 7% compared to bucky sponges without CFs. The sponges also exhibit significantly better stress mitigation characteristics compared to vertically aligned carbon nanotube foams of similar densities. We show that delamination on the MWCNT-CF interfaces occurs during unloading, and arises from the heterogeneous fibrous microstructure of the bucky sponges.

  16. Electromagnetic Properties of Impact-Generated Plasma, Vapor and Debris

    SciTech Connect

    Crawford, D.A.; Schultz, P.H.

    1998-11-02

    Plasma, vapor and debris associated with an impact or explosive event have been demonstrated in the laboratory to produce radiofrequency and optical electromagnetic emissions that can be diagnostic of the event. Such effects could potentially interfere with communications or remote sensing equipment if an impact occurred, for example, on a satellite. More seriously, impact generated plasma could end the life of a satellite by mechanisms that are not well understood and not normally taken into account in satellite design. For example, arc/discharge phenomena resulting from highly conductive plasma acting as a current path across normally shielded circuits may have contributed to the loss of the Olympus experimental communications satellite on August 11, 1993. The possibility of significant storm activity during the Leonid meteor showers of November 1998, 1999 and 2000 (impact velocity, 72 km/s) has heightened awareness of potential vulnerabilities from hypervelocity electromagnetic effects to orbital assets. The concern is justified. The amount of plasma, electrostatic charge and the magnitude of the resulting currents and electric fields scale nearly as the cube of the impact velocity. Even for microscopic Leonid impacts, the amount of plasma approaches levels that could be dangerous to spacecraft electronics. The degree of charge separation that occurs during hypervelocity impacts scales linearly with impactor mass. The resulting magnetic fields increase linearly with impactor radius and could play a significant role in our understanding of the paleomagnetism of planetary surfaces. The electromagnetic properties of plasma produced by hypervelocity impact have been exploited by researchers as a diagnostic tool, invoked to potentially explain the magnetically jumbled state of the lunar surface and blamed for the loss of the Olympus experimental communications satellite. The production of plasma in and around an impact event can lead to several effects: (1) the

  17. Predicting the impact of biochar additions on soil hydraulic properties.

    PubMed

    Lim, T J; Spokas, K A; Feyereisen, G; Novak, J M

    2016-01-01

    Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool predicting the impact of biochar additions on soil saturated hydraulic conductivity (Ksat). Four different kinds of biochar were added to four different textured soils (coarse sand, fine sand, loam, and clay texture) to assess these effects at the rates of 0%, 1%, 2%, and 5% (w/w). The Ksat of the biochar amended soils were significantly influenced by the rate and type of biochar, as well as the original particle size of soil. The Ksat decreased when biochar was added to coarse and fine sands. Biochar with larger particles sizes (60%; >1 mm) decreased Ksat to a larger degree than the smaller particle size biochar (60%; <1 mm) in the two sandy textured soils. Increasing tortuosity in the biochar amended sandy soil could explain this behavior. On the other hand, for the clay loam 1% and 2% biochar additions universally increased the Ksat with higher biochar amounts providing no further alterations. The developed model utilizes soil texture pedotransfer functions for predicting agricultural soil Ksat as a function of soil texture. The model accurately predicted the direction of the Ksat influence, even though the exact magnitude still requires further refinement. This represents the first step to a unified theory behind the impact of biochar additions on soil saturated conductivity.

  18. EVALUATION OF THE IMPACT OF THIN POURS ON SALTSTONE PROPERTIES

    SciTech Connect

    Cozzi, A.; Langton, C.; Fox, K.

    2012-10-02

    testing showed increased flow when the number of cold joints was increased. Compressive strength testing showed that the maximum load at the onset of cracking was reduced by approximately 26% for those samples that contained cold joints as compared to the monolithic samples. The number of cold joints in the sample had no significant impact on the maximum load prior to cracking. The porosity of the samples was not influenced by cold joints. This result was expected as the porosity is a material property affected by the properties of the components (premix and salt solution) and the water to premix ratio. Overall, the only obvious impact of cold joints in the samples was to significantly increase hydraulic conductivity in the direction parallel to the cold joints. An increasing number of cold joints (thin layers) in the simulated saltstone samples did not exacerbate this effect, nor did it have a negative impact on the Leachability Indices or porosity for surfaces exposed for approximately four days. The presence of a cold joint reduced the compressive strength of the material, although this impact was seen regardless of the number of cold joints in the sample.

  19. Magnetic properties of tektites and other related impact glasses

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Gattacceca, J.; Devouard, B.; Moustard, F.; Bezaeva, N. S.; Cournède, C.; Scaillet, B.

    2015-12-01

    We present a comprehensive overview of the magnetic properties of the four known tektite fields and related fully melted impact glasses (Aouelloul, Belize, Darwin, Libyan desert and Wabar glasses, irghizites, and atacamaites), namely magnetic susceptibility and hysteresis properties as well as properties dependent on magnetic grain-size. Tektites appear to be characterized by pure Fe2+ paramagnetism, with ferromagnetic traces below 1 ppm. The different tektite fields yield mostly non-overlapping narrow susceptibility ranges. Belize and Darwin glasses share similar characteristics. On the other hand the other studied glasses have wider susceptibility ranges, with median close to paramagnetism (Fe2+ and Fe3+) but with a high-susceptibility population bearing variable amounts of magnetite. This signs a fundamental difference between tektites (plus Belize and Darwin glasses) and other studied glasses in terms of oxygen fugacity and heterogeneity during formation, thus bringing new light to the formation processes of these materials. It also appears that selecting the most magnetic glass samples allows to find impactor-rich material, opening new perspectives to identify the type of impactor responsible for the glass generation.

  20. Psychometric properties of the modified fatigue impact scale.

    PubMed

    Larson, Rebecca D

    2013-01-01

    Psychometric assessments are tests or questionnaires that have been designed to measure constructs of interest in an individual or a target population. A goal of many of these self-report instruments is to provide researchers with the ability to gather subjective information in a manner that might allow for quantitative analysis and interpretation of these results. This requires the instrument of choice to have adequate psychometric properties of reliability and validity. Much research has been conducted on creating self-report quality of life questionnaires for individuals with multiple sclerosis (MS). This article focuses on one in particular, the Modified Fatigue Impact Scale (MFIS). The article starts with a brief description of the rationale, construction, and scoring of the inventory. Next, the best available reliability and validity data on the MFIS are presented. The article concludes with a brief discussion on the interpretation of scores, followed by suggestions for future research. This summative analysis is intended to examine whether the instrument is adequately measuring the impact of fatigue and whether the scores allow for meaningful interpretations.

  1. Economic impact of fuel properties on turbine powered business aircraft

    NASA Technical Reports Server (NTRS)

    Powell, F. D.

    1984-01-01

    The principal objective was to estimate the economic impact on the turbine-powered business aviation fleet of potential changes in the composition and properties of aviation fuel. Secondary objectives include estimation of the sensitivity of costs to specific fuel properties, and an assessment of the directions in which further research should be directed. The study was based on the published characteristics of typical and specific modern aircraft in three classes; heavy jet, light jet, and turboprop. Missions of these aircraft were simulated by computer methods for each aircraft for several range and payload combinations, and assumed atmospheric temperatures ranging from nominal to extremely cold. Five fuels were selected for comparison with the reference fuel, nominal Jet A. An overview of the data, the mathematic models, the data reduction and analysis procedure, and the results of the study are given. The direct operating costs of the study fuels are compared with that of the reference fuel in the 1990 time-frame, and the anticipated fleet costs and fuel break-even costs are estimated.

  2. Unique Properties of Lunar Impact Glass: Nanophase Metallic Fe Synthesis

    SciTech Connect

    Liu, Yang; Taylor, Lawrence A.; Thompson, James R; Schnare, Darren W.; Park, Jae-Sung

    2007-01-01

    Lunar regolith contains important materials that can be used for in-situ resource utilization (ISRU) on the Moon, thereby providing for substantial economic savings for development of a manned base. However, virtually all activities on the Moon will be affected by the deleterious effects of the adhering, abrasive, and pervasive nature of lunar dust (<20 {micro}m portion of regolith, which constitutes {approx}20 wt% of the soil). In addition, the major impact-produced glass in the lunar soil, especially agglutinitic glass (60-80 vol% of the dust), contains unique nanometer-sized metallic Fe (np-Fe{sup 0}), which may pose severe pulmonary problems for humans. The presence of the np-Fe0 imparts considerable magnetic susceptibility to the fine portion of the lunar soil, and dust mitigation techniques can be designed using these magnetic properties. The limited availability of Apollo lunar soils for ISRU research has made it necessary to produce materials that simulate this unique np-Fe{sup 0} property, for testing different dust mitigation methods using electromagnetic fields, and for toxicity studies of human respiratory and pulmonary systems, and for microwave treatment of lunar soil to produce paved roads, etc. A method for synthesizing np-Fe{sup 0} in an amorphous silica matrix is presented here. This type of specific simulant can be used as an additive to other existing lunar soil simulants.

  3. Privacy Impact Assessment for the Environmental Assessments for Residential Properties (EARP)

    EPA Pesticide Factsheets

    In the course of EPA assessments, EPA finds that there are the potential for releases to impact residential properties. To complete the assessments and public health evaluations related to the release EPA must specifically assess individual properties.

  4. Impact of soil properties on selected pharmaceuticals adsorption in soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also

  5. Impact of Astroglial Connexins on Modafinil Pharmacological Properties

    PubMed Central

    Duchêne, Adeline; Perier, Magali; Zhao, Yan; Liu, Xinhe; Thomasson, Julien; Chauveau, Frédéric; Piérard, Christophe; Lagarde, Didier; Picoli, Christèle; Jeanson, Tiffany; Mouthon, Franck; Dauvilliers, Yves; Giaume, Christian; Lin, Jian-Sheng; Charvériat, Mathieu

    2016-01-01

    Y, Liu X, Thomasson J, Chauveau F, Piérard C, Lagarde D, Picoli C, Jeanson T, Mouthon F, Dauvilliers Y, Giaume C, Lin JS, Charvériat M. Impact of astroglial connexins on modafinil pharmacological properties. SLEEP 2016;39(6):1283–1292. PMID:27091533

  6. Impact of temperature on the biological properties of soil

    NASA Astrophysics Data System (ADS)

    Borowik, Agata; Wyszkowska, Jadwiga

    2016-01-01

    The aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase - at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.

  7. IMPACT OF INCREASED ALUMINATE CONCENTRATIONS ON PROPERTIES OF SALTSTONE MIXES

    SciTech Connect

    Harbour, J; Tommy Edwards, T; Erich Hansen, E; Vickie Williams, V

    2007-10-12

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. The protocols developed in this variability study are ideally suited as a tool to assess the impact of proposed changes to the processing flow sheet for Liquid Waste Operations (LWO). One such proposal that is currently under consideration is to introduce a leaching step in the treatment of the High Level Waste (HLW) sludge to remove aluminum prior to vitrification at the Defense Waste Processing Facility (DWPF). This leachate would significantly increase the soluble aluminate concentrations as well as the free hydroxide ion concentration in the salt feed that will be processed at the Saltstone Processing Facility (SPF). Consequently, an initial study of the impact of increased aluminate concentration on the Saltstone grout properties was performed. The projected compositions and ranges of the aluminate rich salt stream (which includes the blending strategy) are not yet available and consequently, in this initial report, two separate salt stream compositions were investigated. The first stream starts with the previously projected baseline composition of the salt solution that will be fed to SPF from the Salt Waste Processing Facility (SWPF). The second stream is the solution that results from washing of the current Tank 51 sludge and subsequent transfer of the salt solution to Tank 11. The SWPF simulant has higher nitrate and lower free hydroxide than the Tank 11 simulant. In both of these cases, the aluminate was varied up to a maximum of 0.40 to 0.45M aluminate in order to evaluate the impact of increasing aluminate ion concentration on the grout properties. In general, the fresh grout properties of mixes made with SWPF and Tank 11 simulants were relatively insensitive to an increase in aluminate concentration in the salt solutions. However, the overall

  8. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  9. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    SciTech Connect

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2009-12-01

    This report uses statistical analysis to evaluate the impact of wind power projects on property values, and fails to uncovers conclusive evidence of the existence of any widespread property value impacts.

  10. Impact and dynamic mechanical thermal properties of textile silk reinforced epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Yang, K.; Guan, J.

    2016-07-01

    Silk fabric reinforced epoxy resin composites (SFRPs) were prepared using simple techniques of hand lay-up, hot-press and vacuum treatment, and a series of volume fractions of silk reinforcements were achieved. The impact properties and dynamic mechanical properties of SFRPs were investigated using a pendulum impact testing method and dynamic mechanical thermal analysis (DMTA). The results suggest that silk reinforcement could greatly enhance the mechanical performances of SFRPs. The impact strength reached a maximum of 71 kJ/m2 for 60%-silk SFRP, which demonstrated a potential of silk composites for defence and impact- resistant materials.

  11. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    NASA Astrophysics Data System (ADS)

    Davoodi, M. M.; Sapuan, S. M.; Ali, Aidy; Ahmad, D.; Khalina, A.

    2010-05-01

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  12. Modeling of Impact Properties of Auxetic Materials: Phase 1

    DTIC Science & Technology

    2013-08-01

    underlying metal substrate from impact damage will be determined, and compared to the effect of solid polymer coatings (containing no honeycomb shaped air...higher indentation resistance, higher fracture toughness and greater resistance to impact damage . These unique features of the auxetic materials make... Elastoplasticity of auxetic materials, Computational Material Science, in press. [24] Horrigan, E.J., Smith, C.W., Scarpa, F.L., Gaspar, N., Javadi, A.A

  13. On the Possible Influence of Small Impact on Geoengineering Properties of Subsoil

    NASA Astrophysics Data System (ADS)

    Smaga, A.; Radaszewski, R.; Wierzbicki, J.

    2016-08-01

    The main aim of the study was to investigate the changes in geoengineering properties of non lithified deposits below the craters in comparison to genetically the similar types of sediments unaffected by impact.

  14. Properties of the tibial component regarding impact load.

    PubMed

    Yoshino, Kazunori; Koga, Yoshio; Segawa, Hiroyuki; Ueno, Yuichi; Tanabe, Yuji; Endo, Naoto; Omori, Go

    2004-06-01

    Load transmission through knee prostheses was examined to clarify how the tibial component behaves under dynamic loading conditions. We did Genesis II total knee arthroplasty using sawbones and measured impact load transmission ratios using the split-Hopkinson pressure bar technique. We also measured the polyethylene strain when an impact load was applied using a strain gauge bonded to the anterior surface of the polyethylene. The impact load transmission ratios of metal-backed and all-polyethylene tibial components were less than 4%. Greater load transmission was observed with metal-backed components, which suggests that some of the applied dynamic load is transferred directly to the tibial cortical bone. Increasing polyethylene thickness decreased impact load transmission ratios in both components, which might lower the cancellous bone stresses beneath tibial implants. Greater strain in the tibial component was observed in all-polyethylene components. Increased polyethylene thickness did not significantly decrease the polyethylene strain, probably because of the nonlinear elastic behavior of the polyethylene material. The distant positioning of the strain gauge may, however, have prevented the detection of local contact strains. Recent clinical studies did not confirm our theoretical predictions, suggesting that other factors contribute more significantly to the clinical outcome in current total knee arthroplasty.

  15. Impact properties of 500-kg heat of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Gazda, J.

    1995-04-01

    Following previous reports of excellent properties of a laboratory heat of V-4Cr-4Ti, the alloy identified as the primary vanadium-based candidate for application as fusion reactor structural components, a large industrial-scale (500-kg) heat of the alloy was fabricated successfully. The objective of this work is to determine the impact properties of the industrial-scale heat.

  16. Online Data Resources in Chemical Engineering Education: Impact of the Uncertainty Concept for Thermophysical Properties

    ERIC Educational Resources Information Center

    Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael

    2013-01-01

    We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…

  17. How lichens impact on terrestrial community and ecosystem properties.

    PubMed

    Asplund, Johan; Wardle, David A

    2016-10-11

    Lichens occur in most terrestrial ecosystems; they are often present as minor contributors, but in some forests, drylands and tundras they can make up most of the ground layer biomass. As such, lichens dominate approximately 8% of the Earth's land surface. Despite their potential importance in driving ecosystem biogeochemistry, the influence of lichens on community processes and ecosystem functioning have attracted relatively little attention. Here, we review the role of lichens in terrestrial ecosystems and draw attention to the important, but often overlooked role of lichens as determinants of ecological processes. We start by assessing characteristics that vary among lichens and that may be important in determining their ecological role; these include their growth form, the types of photobionts that they contain, their key functional traits, their water-holding capacity, their colour, and the levels of secondary compounds in their thalli. We then assess how these differences among lichens influence their impacts on ecosystem and community processes. As such, we consider the consequences of these differences for determining the impacts of lichens on ecosystem nutrient inputs and fluxes, on the loss of mass and nutrients during lichen thallus decomposition, and on the role of lichenivorous invertebrates in moderating decomposition. We then consider how differences among lichens impact on their interactions with consumer organisms that utilize lichen thalli, and that range in size from microfauna (for which the primary role of lichens is habitat provision) to large mammals (for which lichens are primarily a food source). We then address how differences among lichens impact on plants, through for example increasing nutrient inputs and availability during primary succession, and serving as a filter for plant seedling establishment. Finally we identify areas in need of further work for better understanding the role of lichens in terrestrial ecosystems. These include

  18. Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties

    PubMed Central

    Atalay, Ozgur; Kennon, William Richard

    2014-01-01

    This paper presents a study of the sensing properties exhibited by textile-based knitted strain sensors. Knitted sensors were manufactured using flat-bed knitting technology, and electro-mechanical tests were subsequently performed on the specimens using a tensile testing machine to apply strain whilst the sensor was incorporated into a Wheatstone bridge arrangement to allow electrical monitoring. The sensing fabrics were manufactured from silver-plated nylon and elastomeric yarns. The component yarns offered similar diameters, bending characteristics and surface friction, but their production parameters differed in respect of the required yarn input tension, the number of conductive courses in the sensing structure and the elastomeric yarn extension characteristics. Experimental results showed that these manufacturing controls significantly affected the sensing properties of the knitted structures such that the gauge factor values, the working range and the linearity of the sensors varied according to the knitted structure. These results confirm that production parameters play a fundamental role in determining the physical behavior and the sensing properties of knitted sensors. It is thus possible to manipulate the sensing properties of knitted sensors and the sensor response may be engineered by varying the production parameters applied to specific designs. PMID:24608010

  19. Excellent Ballistic Impact Properties Demonstrated By New Fabric

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Hopkins, Dale A.

    2002-01-01

    Recently, a relatively new industrial fiber known by the trade name Zylon has been under commercial development by Toyobo Co., Ltd., Japan. In ballistic impact tests conducted at the NASA Glenn Research Center, it was found that dry fabric braided of Zylon had greater ballistic impact capacity than comparable (braid style and weight) fabric braided of Kevlar. To study the potential use of Zylon fabric in jet engine containment systems, the fabric was tested in Glenn's Structures and Acoustics Division Ballistic Impact Facility under conditions simulating those which occur in a jet engine blade-out event. Circular ring test specimens were fabricated by wrapping five layers of braided Zylon or Kevlar fabric around an inner ring made of a thin sheet of aluminum and a 1-in.-thick layer of aluminum honeycomb. The test specimens had an inner diameter of 40 in., an axial length of 10 in., and a wall thickness of approximately 1.5in. A test specimen is shown in the photograph.

  20. Role of impactor properties on the computational simulation of particle impact damage in transparent ceramic windows

    NASA Astrophysics Data System (ADS)

    Schultz, Robert; Guven, Ibrahim; Zelinski, Brian J.

    2014-05-01

    The ability to deploy advanced sensor and seeker systems in harsh environments is often restricted by the mechanical durability of the external electromagnetic window or dome. Mission environments may range from long flights at high speeds through rain, ice, or sand to exposure at slower speeds to debris on runways or from helicopter downwash. While significant progress has been made to characterize, understand, and model rain damage, less is known about modeling damage in windows and domes caused by impacts from solid particles such as stones, pebbles, and sand. This paper highlights recent progress made to simulate particle impact damage in zinc sulfide (ZnS) using peridynamics (PD). Early versions of the PD model of sand impact damage simulated the sand particle as a rigid disk. Results from these early models indicated that the extent of damage in relation to the size of the impacting particle was significantly larger than the actual damage observed by experimentation. In order to identify possible explanations for this discrepancy, the shape, impact orientation and mechanical properties of the impacting particle were modified to more closely resemble actual sand particle impacts, that is, the particle was made friable (deformable and breakable). The impacting geometries considered include sphere, flat face of a cylinder, cube-face, cube-edge, and cube-corner. Results confirm that modification of the impacting particle's mechanical properties, shape and impact orientation lead to better agreement between experimental observations and simulation results.

  1. Impact attenuation properties of new and used lacrosse helmets.

    PubMed

    Bowman, Thomas G; Breedlove, Katherine M; Breedlove, Evan L; Dodge, Thomas M; Nauman, Eric A

    2015-11-05

    The National Operating Committee on Standards for Athletic Equipment (NOCSAE) has developed impact attenuation thresholds that protective helmets worn in sport must meet to be commercially available in an attempt to prevent injury. It remains unknown how normal helmet use in athletic activity alters the force attenuation ability of lacrosse helmets. We tested 3 new and 3 randomly selected used helmets from 2 popular lacrosse models (Cascade Pro7, Cascade CPXR). All used helmets had been worn for 3 collegiate seasons prior to testing and had never been refurbished. Helmets were drop-tested using 3 prescribed impact velocities at 6 locations according to the NOCSAE lacrosse helmet standard, and we compared the Gadd Severity Index (GSI) scores between new and used helmets using a repeated measure ANOVA with location as the repeated variable and data separated by impact velocity. All 12 helmets passed the NOCSAE GSI threshold for all testing conditions; however 1 used helmet shell cracked resulting in a failed test. We found a significant main effect for helmet age at the low (F5,50=2.98, P=.02), medium (F5,50=3.71, P=.006), and high (F5,50=2.70, P=.03) velocities. We suspect that helmet use can degrade materials under some conditions, but improve performance in others due to changes in helmet composition from use. The clinical implications of the differences in GSI scores noted remain unclear. Because one helmet shell cracked resulting in a failed test, used helmets should be regularly inspected for cracks or other signs of mechanical fatigue that may weaken helmet integrity.

  2. Impact properties of vanadium-base alloys irradiated at < 430 C

    SciTech Connect

    Chung, H.M.; Smith, D.L.

    1998-03-01

    Recent attention to vanadium-base alloys has focused on the effect of low-temperature (<430 C) neutron irradiation on the mechanical properties, especially the phenomena of loss of work-hardening capability under tensile loading and loss of dynamic toughness manifested by low impact energy and high ductile-brittle-transition temperature (DBTT). This paper summarizes results of an investigation of the low-temperature impact properties of V-5Ti, V-4Cr-4Ti, and V-3Ti-Si that were irradiated in several fission reactor experiments, i.e., FFTF-MOTA, EBR-II X-530, and ATR-A1. Irradiation performance of one production-scale and one laboratory heat of V-4C-4Ti and one laboratory heat of V-3Ti-Si was the focus of the investigation. Even among the same lass of alloy, strong heat-to-heat variation was observed in low-temperature impact properties. A laboratory heat of V-4Cr-4Ti and V-3Ti-1Si exhibited good impact properties whereas a 500-kg heat of V-4Cr-4Ti exhibited unacceptably high DBTT. The strong heat-to-heat variation in impact properties of V-4Cr-4Ti indicates that fabrication procedures and minor impurities play important roles in the low-temperature irradiation performance of the alloys.

  3. Measurements of Lunar Dust Charging Properties by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.

    2009-01-01

    Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.

  4. Side impact: influence of impact conditions and bone mechanical properties on pelvic response using a fracturable pelvis model.

    PubMed

    Song, Eric; Trosseille, Xavier; Guillemot, Hevé

    2006-11-01

    This study aimed at determining the influence of impact conditions and occupant mechanical properties on pelvic response in side impact. First, a fracturable pelvis model was developed and validated against dynamic tests on isolated pelvic bones and on whole cadavers. By coupling a fixed cortical bone section thickness within a single subject's pelvis and across the population with a parametric material law for the pelvic bone, this model reproduced the pelvic response and tolerance variation among individuals. Three material laws were also identified to represent fragile, medium and strong pelvic bones for the 50th percentile male. With this model, the influence of impact mass, velocity and surface shape on pelvic response was examined. Results indicated that the shape difference between four main impactors reported in the literature has little effect on the pelvic response. Under iso-energy conditions, the relationship of pelvic loading between different combinations of impact mass and velocity was also determined. Based on this relationship, existing data from different impactor tests were scaled and combined to establish a pelvic response corridor in terms of pelvis loading versus impact energy. The relationship between bone mechanical properties and pelvic response and tolerance was also investigated with this model. Results indicated that changes in the mechanical properties due to ageing affected the pelvic tolerance more than the pelvic mechanical response. Assuming that the ultimate stress of the pelvic bone decreases 0.4% per year from 25 to 80 years old, the pelvic tolerance should be scaled by 0.4% per year while the pelvic loading response should be scaled only by 0.1% per year. Finally, it is to be noted that the model developed in this paper is a "global" model, not a "descriptive" model. Therefore, while it may be a useful tool for the analysis presented in this paper (e.g., overall fracture tolerance, overall effects of age, etc.), it cannot be

  5. Impact of electron beam irradiation on fish gelatin film properties.

    PubMed

    Benbettaïeb, Nasreddine; Karbowiak, Thomas; Brachais, Claire-Hélène; Debeaufort, Frédéric

    2016-03-15

    The objective of this work was to display the effect of electron beam accelerator doses on properties of plasticized fish gelatin film. Electron spin resonance indicates free radical formation during irradiation, which might induce intermolecular cross-linking. Tensile strength for gelatin film significantly increases after irradiation (improved by 30% for 60 kGy). The vapour permeability is weakly affected by irradiation. Surface tension and its polar component increase significantly and are in accordance with the increase of wettability. So, irradiation may change the orientation of polar groups of gelatin at the film surface and crosslink the hydrophobic amino acids. No modification of the crystallinity of the film is observed. These findings suggest that if structure changes, it only occurs in the amorphous phase of the gelatin matrix. It is also observed that irradiation enhances the thermal stability of the gelatin film, by increasing the glass transition temperature and the degradation temperature.

  6. Aerosol physical properties and their impact on climate change processes

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Makuch, Przemyslaw; Pakszys, Paulina; Markuszewski, Piotr; Piskozub, Jacek; Drozdowska, Violetta; Gutowska, Dorota; Rozwadowska, Anna

    2013-04-01

    Characterizing aerosols involves the specification of not only their spatial and temporal distributions but their multi-component composition, particle size distribution and physical properties as well. Due to their light attenuation and scattering properties, aerosols influence radiance measured by satellite for ocean color remote sensing. Studies of marine aerosol production and transport are important for many earth sciences such as cloud physics, atmospheric optics, environmental pollution studies, and interaction between ocean and atmosphere. It was one of the reasons for the growth in the number of research programs dealing with marine aerosols. Sea salt aerosols are among the most abundant components of the atmospheric aerosol, and thus it exerts a strong influence on radiation, cloud formation, meteorology and chemistry of the marine atmosphere. An accurate understanding and description of these mechanisms is crucial to modeling climate and climate change. This work provides information on combined aerosol studies made with lidars and sun photometers onboard the ship and in different coastal areas. We concentrate on aerosol optical thickness and its variations with aerosol advections into the study area. We pay special attention to the problem of proper data collection and analyses techniques. We showed that in order to detect the dynamics of potential aerosol composition changes it is necessary to use data from different stations where measurements are made using the same techniques. The combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides comprehensive picture of aerosol variations in the study area both vertically and horizontally. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01

  7. Thermal properties of rocks of the borehole Yaxcopoil-1 (Impact Crater Chicxulub, Mexico)

    NASA Astrophysics Data System (ADS)

    Popov, Yu.; Romushkevich, R.; Korobkov, D.; Mayr, S.; Bayuk, I.; Burkhardt, H.; Wilhelm, H.

    2011-02-01

    The results of thermal property measurements on cores from the scientific well Yaxcopoil-1 (1511 m in depth) drilled in the Chicxulub impact structure (Mexico) are described. The thermal conductivity, thermal diffusivity, volumetric heat capacity, thermal anisotropy coefficient, thermal heterogeneity factor, and, in addition, porosity and density were measured on 451 dry and water-saturated cores from the depth interval of 404-1511 m. The acoustic velocities were determined on a subgroup of representative samples. Significant vertical short- and long-scale variations of physical properties related to the grade of shock-thermal metamorphism and correlations between thermal and other physical properties are established. Rocks of the post-impact and impact complexes differ significantly in heterogeneity demonstrating that the impact complex has larger micro- heterogeneity on sample scale. The pre-impact rocks differ essentially from the impact and post-impact rocks in the thermal conductivity, thermal diffusivity, density and porosity. The thermal anisotropy of rocks of all structural-lithological complexes is very low (K = 1.02 … 1.08), which is similar to the situation in the Puchezh-Katunk and Ries impact structures. Correlations are established between the thermal conductivity and elastic wave velocities measured in laboratory. For limestone-calcarenites, the thermal conductivity (λ) can be calculated from the compressional wave velocity (Vp) using the formula λ= 0.346 Vp + 0.844, and for dolomite-anhydrites this relation has the form λ= 0.998 Vp + 1.163 [for λ in W (m K)-1 and Vp in km s-1]. These correlations are used for downscaling of the sonic velocities to the decimetre scale. The effective medium theory is applied to invert the matrix thermal conductivity and pore/crack geometry from the thermal conductivity measured on the studied samples. Representative experimental data on the thermal properties for all lithological groups encountered by the

  8. The impact of surface properties on particle-interface interactions

    NASA Astrophysics Data System (ADS)

    Wang, Anna; Kaz, David; McGorty, Ryan; Manoharan, Vinothan N.

    2013-03-01

    The propensity for particles to bind to oil-water interfaces was first noted by Ramsden and Pickering over a century ago, and has been attributed to the huge reduction in surface energy when a particle breaches an oil-water interface and straddles it at its equilibrium height. Since then materials on a variety of length scales have been fabricated using particles at interfaces, from Pickering emulsions to Janus particles. In these applications, it is simply assumed that the particle sits at its hugely energetically favourable equilibrium position. However, it was recently shown that the relaxation of particles towards their equilibrium position is logarithmic in time and could take months, much longer than typical experiments. Here we investigate how surface charge and particle 'hairiness' impact the interaction between micron-sized particles and oil-water interfaces, and explore a molecular kinetic theory model to help understand these results. We use digital holographic microscopy to track micron-sized particles as they approach an oil-water interface with a resolution of 2 nm in all three dimensions at up to thousands of frames per second.

  9. Impact of fuel properties on advanced power systems

    SciTech Connect

    Sondreal, E.A.; Jones, M.L.; Hurley, J.P.; Benson, S.A.; Willson, W.G.

    1995-12-01

    Advanced coal-fired combined-cycle power systems currently in development and demonstration have the goal of increasing generating efficiency to a level approaching 50% while reducing the cost of electricity from new plants by 20% and meeting stringent standards on emissions of SO{sub x} NO{sub x} fine particulates, and air toxic metals. Achieving these benefits requires that clean hot gas be delivered to a gas turbine at a temperature approaching 1350{degrees}C, while minimizing energy losses in the gasification, combustion, heat transfer, and/or gas cleaning equipment used to generate the hot gas. Minimizing capital cost also requires that the different stages of the system be integrated as simply and compactly as possible. Second-generation technologies including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), externally fired combined cycle (EFCC), and other advanced combustion systems rely on different high-temperature combinations of heat exchange, gas filtration, and sulfur capture to meet these requirements. This paper describes the various properties of lignite and brown coals.

  10. Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability.

    PubMed

    Thoorens, Gregory; Krier, Fabrice; Rozet, Eric; Carlin, Brian; Evrard, Brigitte

    2015-07-25

    The quality by design (QbD) initiative is promoting a better understanding of excipient performance and the identification of critical material attributes (CMAs). Despite microcrystalline cellulose (MCC) being one of the most popular direct compression binders, only a few studies attempted identifying its CMAs. These studies were based either on a limited number of samples or on MCC produced on a small scale and/or in conditions that deviate from those normally encountered in production. The present work utilizes multivariate analyses first to describe a large database of MCCs produced on a commercial scale, including an overview of their physicochemical properties, and secondly to correlate the most significant material attributes with tabletability. Particle size and moisture content are often considered as the most common if not the sole CMAs with regard to MCC performance in direct compression. The evaluation of more than 80 neat MCCs and the performance of selected samples in a model formulation revealed the importance of other potential critical attributes such as tapped density. Drug product developers and excipient suppliers should work together to identify these CMAs, which may not always be captured by the certificate of analysis.

  11. The economic impacts of noxious facilities on wages and property values: An exploratory analysis

    SciTech Connect

    Nieves, L.A.; Hemphill, R.C.; Clark, D.E.

    1991-05-01

    Recent assessments of socioeconomic impacts resulting from the location of potentially hazardous facilities have concentrated on the issue of negative public perceptions and their resulting economic consequences. This report presents an analysis designed to answer the question: Can economic impacts resulting from negative perceptions of ``noxious facilities`` be identified and measured? To identify the impacts of negative perceptions, data on noxious facilities sited throughout the United States were compiled, and secondary economic and demographic data sufficient to analyze the economic impacts on the surrounding study areas were assembled. This study uses wage rate and property value differentials to measure impacts on social welfare so that the extent to which noxious facilities and their associated activities have affected surrounding areas can be determined.

  12. The economic impacts of noxious facilities on wages and property values: An exploratory analysis

    SciTech Connect

    Nieves, L.A.; Hemphill, R.C.; Clark, D.E.

    1991-05-01

    Recent assessments of socioeconomic impacts resulting from the location of potentially hazardous facilities have concentrated on the issue of negative public perceptions and their resulting economic consequences. This report presents an analysis designed to answer the question: Can economic impacts resulting from negative perceptions of noxious facilities'' be identified and measured To identify the impacts of negative perceptions, data on noxious facilities sited throughout the United States were compiled, and secondary economic and demographic data sufficient to analyze the economic impacts on the surrounding study areas were assembled. This study uses wage rate and property value differentials to measure impacts on social welfare so that the extent to which noxious facilities and their associated activities have affected surrounding areas can be determined.

  13. Determining perception-based impacts of noxious facilities on wage rates and property values

    SciTech Connect

    Nieves, L.A.; Clark, D.E.

    1992-02-01

    This document, written for the US Department of Energy, discusses current information and the need for future research on estimating the impacts on wages and property values that could result from people`s perceptions of the risks associated with noxious facilities. Psychometric studies indicate that the US population is averse to living near noxious facilities, nuclear-related facilities in particular. Contingent valuation and hedonic studies find that the net economic impacts of proximity to noxious facilities are generally negative and often substantial. Most of these studies are limited in scope, and none estimate the impacts derived from public perceptions of such facilities. This study examines the mechanisms by which negative public perceptions result in economic impacts reflected in wages and property values. On the basis of these mechanisms, it develops a predictive model of perception-based impacts and identifies the data and methods needed to implement it. The key to predicting perception-based impacts lies in combining psychometric and hedonic methods. The reliability of psychometric measures as indicators of aversive stimuli that precipitate economic impacts can be empirically tested. To test the robustness of the findings, alternative estimation methods an be employed in the hedonic analysis. Contingent valuation methods can confirm the results.

  14. Determining perception-based impacts of noxious facilities on wage rates and property values

    SciTech Connect

    Nieves, L.A.; Clark, D.E.

    1992-02-01

    This document, written for the US Department of Energy, discusses current information and the need for future research on estimating the impacts on wages and property values that could result from people's perceptions of the risks associated with noxious facilities. Psychometric studies indicate that the US population is averse to living near noxious facilities, nuclear-related facilities in particular. Contingent valuation and hedonic studies find that the net economic impacts of proximity to noxious facilities are generally negative and often substantial. Most of these studies are limited in scope, and none estimate the impacts derived from public perceptions of such facilities. This study examines the mechanisms by which negative public perceptions result in economic impacts reflected in wages and property values. On the basis of these mechanisms, it develops a predictive model of perception-based impacts and identifies the data and methods needed to implement it. The key to predicting perception-based impacts lies in combining psychometric and hedonic methods. The reliability of psychometric measures as indicators of aversive stimuli that precipitate economic impacts can be empirically tested. To test the robustness of the findings, alternative estimation methods an be employed in the hedonic analysis. Contingent valuation methods can confirm the results.

  15. The effect of heat treatment on the hardness and impact properties of medium carbon steel

    NASA Astrophysics Data System (ADS)

    Mazni Ismail, Noor; Khatif, Nurul Aida Amir; Aliff Kamil Awang Kecik, Mohamad; Hanafiah Shaharudin, Mohd Ali

    2016-02-01

    This paper covers the effect of heat treatment on the mechanical properties of medium carbon steel. The main objective of this project is to investigate the hardness and impact properties of medium carbon steel treated at different heat treatment processes. Three types of heat treatment were performed in this project which are annealing, quenching and tempering. During annealing process, the specimens were heated at 900°C and soaked for 1 hour in the furnace. The specimens were then quenched in a medium of water and open air, respectively. The treatment was followed by tempering processes which were done at 300°C, 450°C, and 600°C with a soaking time of 2 hours for each temperature. After the heat treatment process completed, Rockwell hardness test and Charpy impact test were performed. The results collected from the Rockwell hardness test and Charpy impact test on the samples after quenching and tempering were compared and analysed. The fractured surfaces of the samples were also been examined by using Scanning Electron Microscope. It was observed that different heat treatment processes gave different hardness value and impact property to the steel. The specimen with the highest hardness was found in samples quenched in water. Besides, the microstructure obtained after tempering provided a good combination of mechanical properties due to the process reduce brittleness by increasing ductility and toughness.

  16. Impact of reaction conditions on architecture and rheological properties of starch graft polyacrylamide polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We carried out experiments examining the impact that solvent selection and reaction conditions have on the radical initiated graft polymerization reaction of acrylamide onto starch. We have also evaluated the rheological properties the starch graftpolyacrylamide product when a gel is formed in water...

  17. A Demographic Analysis of the Impact of Property Tax Caps on Indiana School Districts

    ERIC Educational Resources Information Center

    Hirth, Marilyn A.; Lagoni, Christopher

    2014-01-01

    In 2008, the Indiana legislature passed and the governor signed into law House Enrolled Act No. 1001, now referred to as Public Law 146-2008, which capped Indiana school districts' ability to raise revenues from the local property tax without local voter approval. To phase in the impact of the law, the state provided school districts with levy…

  18. The impact of carbohydrate and protein level and sources on swine manure foaming properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study explored the impact of swine diet on the composition, methane production potential, and foaming properties of manure. Samples of swine manure were collected from controlled feeding trials with diets varying in protein and carbohydrate levels and sources. Protein sources consisted of corn ...

  19. Impact of dietary carbohydrate and protein source and content on swine manure foaming properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diet ingredients are thought to contribute to foaming problems associated with swine deep-pit systems. Two experiments explored the impact of protein and carbohydrate sources in swine diets on the physicochemical properties, methane production potential, and foaming characteristics of swine manure. ...

  20. Impact of wheat bran derived arabinoxylanoligosaccharides and associated ferulic acid on dough and bread properties.

    PubMed

    Snelders, Jeroen; Dornez, Emmie; Delcour, Jan A; Courtin, Christophe M

    2014-07-23

    The impact of arabinoxylanoligosaccharides (AXOS) with varying bound or free ferulic acid (FA) content on dough and bread properties was studied in view of their prebiotic and antioxidant properties. AXOS with an FA content of 0.1-1.7% caused an increase in dough firmness with increasing AXOS concentration. AXOS with a high FA content (7.2%), on the contrary, resulted in an increase in dough extensibility and a decrease in resistance to extension, similar to that for free FA, when added in levels up to 2%. Higher levels resulted in unmanageable dough. A limited impact on dough gluten network formation was observed. These results suggest that for highly feruloylated AXOS, the FA-mediated dough softening supersedes the firming effect displayed by the carbohydrate moiety of AXOS. The impact of the different AXOS on bread volume, however, was minimal. Furthermore, AXOS in bread were not engaged in covalent cross-linking and significantly increased its antioxidant capacity.

  1. Impact property enhancement of poly (lactic acid) with different flexible copolymers

    NASA Astrophysics Data System (ADS)

    Likittanaprasong, N.; Seadan, M.; Suttiruengwong, S.

    2015-07-01

    The objective of this work was to improve the impact property of Poly (lactic acid) (PLA) by blending with different copolymers. Six flexible copolymers, namely, acrylonitrile butadiene styrene (ABS) powder, Biomax, polybutyrate adipate co-terephthalate (PBAT), polyether block amide (PEBAX), ethylene-vinyl acetate (EVA) and ethylene acrylic elastomer (EAE), with loading less than 20wt% were used and compared. The rheological, mechanical and morphological properties of samples were investigated by melt flow index, tensile testing, impact testing and scanning electron microscope (SEM), respectively. It was found that PLA added 20wt% EAE showed the highest impact strength (59.5 kJ/m2), which was 22 times higher than neat PLA. The elongation at break was also increased by 12 folds compared to neat PLA. The SEM images showed good interface and distribution for PLA containing 20wt% EAE, 15 phr Biomax and 20 wt% PEBAX.

  2. Impact of magnetic properties on the Casimir torque between anisotropic metamaterial plates

    SciTech Connect

    Deng Gang; Liu Zhongzhu; Luo Jun

    2009-12-15

    The quantized surface mode technique is used to calculate the Casimir torque between two parallel anisotropic metamaterial plates with in-plane optical axes, and our main concern is focused on the impact of the magnetic properties of the plates on the Casimir torque. Our result shows that at small separation, the Casimir torque between the two plates with frequency dependent permeabilities is larger than that between two nonmagnetic plates, while at large separation it is smaller. This can be explained as a result of the impact of both magnetic properties and material dispersion of the plates. The impact of the Drude background in connected metallic metamaterial is also discussed. These phenomena provide us with new understanding about the Casimir effect and show great potential in application.

  3. A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Shu, Guo-Jiun; Chang, Shih-Ying; Lin, Bing-Hao

    2014-08-01

    The impact toughness of powder metallurgy (PM) steel is typically inferior, and it is further impaired when the microstructure is strengthened. To formulate a versatile PM steel with superior impact, fatigue, and tensile properties, the influences of various microstructures, including ferrite, pearlite, bainite, and Ni-rich areas, were identified. The correlations between impact toughness with other mechanical properties were also studied. The results demonstrated that ferrite provides more resistance to impact loading than Ni-rich martensite, followed by bainite and pearlite. However, Ni-rich martensite presents the highest transverse rupture strength (TRS), fatigue strength, tensile strength, and hardness, followed by bainite, pearlite, and ferrite. With 74 pct Ni-rich martensite and 14 pct bainite, Fe-3Cr-0.5Mo-4Ni-0.5C steel achieves the optimal combination of impact energy (39 J), TRS (2170 MPa), bending fatigue strength at 2 × 106 cycles (770 MPa), tensile strength (1323 MPa), and apparent hardness (38 HRC). The impact energy of Fe-3Cr-0.5Mo-4Ni-0.5C steel is twice as high as those of the ordinary high-strength PM steels. These findings demonstrate that a high-strength PM steel with high-toughness can be produced by optimized alloy design and microstructure.

  4. Global Geometric Properties of Martian Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Sakimoto, S. E. H.; Schnetzler, C.; Frawley, J. J.

    1999-01-01

    Impact craters on Mars have been used to provide fundamental insights into the properties of the martian crust, the role of volatiles, the relative age of the surface, and on the physics of impact cratering in the Solar System. Before the three-dimensional information provided by the Mars Orbiter Laser Altimeter (MOLA) instrument which is currently operating in Mars orbit aboard the Mars Global Surveyor (MGS), impact features were characterized morphologically using orbital images from Mariner 9 and Viking. Fresh-appearing craters were identified and measurements of their geometric properties were derived from various image-based methods. MOLA measurements can now provide a global sample of topographic cross-sections of martian impact features as small as approx. 2 km in diameter, to basin-scale features. We have previously examined MOLA cross-sections of Northern Hemisphere and North Polar Region impact features, but were unable to consider the global characteristics of these ubiquitous landforms. Here we present our preliminary assessment of the geometric properties of a globally-distributed sample of martian impact craters, most of which were sampled during the initial stages of the MGS mapping mission (i.e., the first 600 orbits). Our aim is to develop a framework for reconsidering theories concerning impact cratering in the martian environment. This first global analysis is focused upon topographically-fresh impact craters, defined here on the basis of MOLA topographic profiles that cross the central cavities of craters that can be observed in Viking-based MDIM global image mosaics. We have considered crater depths, rim heights, ejecta topologies, cross-sectional "shapes", and simple physical models for ejecta emplacement. To date (May, 1999), we have measured the geometric properties of over 1300 impact craters in the 2 to 350 km diameter size interval. A large fraction of these measured craters were sampled with cavity-center cross-sections during the first

  5. Physical and Social Impacts on Hydrologic Properties of Residential Lawn Soils

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Band, L. E.

    2009-12-01

    Land development practices result in compacted soils that filter less water, increase surface runoff and decrease groundwater infiltration. Literature review of soil infiltration rates reveals that developed sites’ rates, 0.1 to 24 cm/hr, are reduced when compared to rates of undeveloped sites, 14.7 to 48.7 cm/hr. Yet, most hydrologic models neglect the impacts of residential soil compaction on infiltration and runoff. The objectives of this study included: determination of differences between soil properties of forested and residential lawn sites in Baltimore Ecosystem Study; parcel-scale location impacts on soil properties; and the impact of social and physical factors on the distribution of soil properties of residential lawns. Infiltration measures were collected in situ using a Cornell Sprinkle Infiltrometer and soil cores were collected for water retention and texture analysis. These soil properties were paired with GIS data relating to age of house construction, property value, parcel area, percent canopy cover per parcel and parcel distance from stream. The study finds that saturated infiltration rates in residential lawn soils are significantly lower than forest soils due to reduced macroporosity of residential lawn soils. Intra-parcel differences in bulk density and soil depth indicate that runoff from residential lawns is more likely from near-house and near-curb locations than the mid-front or backyards. The range of infiltration rate, bulk density and percent organic matter can be explained by readily attainable social and physical factors—age of house construction and parcel distance to stream. The impacts of land management on soil properties appear to be more prominent than percent canopy.

  6. Impact properties of rubber-modified epoxy resin-graphite-fiber composites

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.; Nir, Z.

    1984-01-01

    To improve the impact resistance of graphite-fiber composites, a commercial and an experimental epoxy resin were modified with liquid reactive rubber and a brominated epoxy resin. The commercial epoxy was a tetrafunctional resin, and the experimental epoxy was a trifunctional resin. The reactive rubber was a carboxyl-terminated butadiene-acrylonitrile copolymer. The rubber content was varied from 0 to 25 percent (wt). The brominated epoxy resin was used at Br levels of 4, 19, and 35 percent of the resin. Composites were prepared with woven graphite cloth reinforcement. The composites were evaluated by using flexural strength in the dry state and an elevated temperature after saturation with water. The impact properties were determined by measuring shear strength after falling-ball impact and instrumented impact. The rubber-modified, trifunctional resin exhibited better properties, when tested in hot-wet conditions in a heated oven at 366 K (after boiling the material for 2 h in demineralized water), than the tetrafunctional resin. Improved impact resistance was observed with the addition of the reactive rubber to the epoxy resin. Further improvement was observed with the addition of the brominated epoxy resin.

  7. Impact properties of the aircraft cast aluminium alloy Al-7Si0.6Mg (A357)

    NASA Astrophysics Data System (ADS)

    Alexopoulos, N. D.

    2010-06-01

    The impact mechanical properties of the widely used in the aeronautics A357 cast aluminum alloy were investigated by exploiting experiments on an instrumented Charpy impact testing machine. The evaluated impact properties for 25 different artificial aging heat treatment conditions were analyzed and discussed in conjunction with the respective tensile properties. Correlations are proposed to establish useful relationships between impact resistance and tensile strain energy density properties. The established correlations, which are well supported by the performed experiments, can be used to estimate the tensile ductility and toughness of the A357 cast aluminum alloy from the Charpy impact test. Performed fractographic analyses were supporting the physically arbitrary correlation between tensile strain energy density and impact resistance.

  8. Impact of ion irradiation on the thermal, structural, and mechanical properties of metallic glasses

    SciTech Connect

    Mayr, S.G.

    2005-04-01

    The impact of ion-beam irradiation on the thermal, structural, and mechanical properties of metallic glasses is investigated using the model glass, CuTi, in molecular dynamics computer simulations. It is found that ion-beam bombardment successively modifies the compositional and structural order toward a universal steady state, which proves to be independent of the initial relaxation state and thermal history of the unirradiated sample. This is reflected by key materials properties, including enthalpy, structural and compositional short-range order, as well as Young's modulus and fracture behavior. The results are interpreted within the framework of competing dynamics, where radiation-induced plastic relaxation counteracts ion-beam disordering.

  9. Dynamic-Mechanical and Impact Properties of Conductive Polymer Blends Based on Polypropylene

    NASA Astrophysics Data System (ADS)

    Acierno, Domenico; Russo, Pietro

    2007-04-01

    Plastic materials with significant electrical properties are getting more and more interest as witnessed by the wide spectra of industrial applications such as high performance textiles, fabrics for military, electronics and display technologies, automotive field (fuel delivery lines, exterior body panels) and so on. In this context, in the last decade an increasing interest has been devoted to the use of intrinsically conductive polymers such as polyaniline (PANI). In this work melt blended formulations based on polypropylene, containing 5% and 10% by weight of PANI, were investigated in terms of dynamic-mechanical and impact properties. Preliminary results indicate that, besides the processing conditions, inclusions of PANI make a general worsening of the dumping behaviour, especially in the rubbery region. Anyway, it is evident a clear improvement of the impact resistance with respect to the matrix, processed under the same conditions and taken as a reference, for the 5wt % system.

  10. Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio

    SciTech Connect

    Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

    2006-01-06

    Corn stover is a primary biofuel feedstock and its expanded use could help reduce reliance on fossil fuels and net CO2 emissions. Excessive stover removal may, however, negatively impact near-surface soil properties within a short period after removal. We assessed changes in soil crust strength, bulk density, and water content over a 1-yr period following a systematic removal or addition of stover from three no-till soils under corn in Ohio.

  11. Physical properties of the Yaxcopoil-1 deep drill core, Chicxulub impact structure, Mexico

    NASA Astrophysics Data System (ADS)

    Elbra, Tiiu; Pesonen, Lauri J.

    2011-11-01

    The Chicxulub structure in Mexico, one of the largest impact structures on Earth, was formed 65 Ma by a hypervelocity impact that led to the large mass extinction at the K-Pg boundary. The Chicxulub impact structure is well preserved, but is buried beneath a sequence of carbonate sediments and, thus, requires drilling to obtain subsurface information. The Chicxulub Scientific Drilling Program was carried out at Hacienda Yaxcopoil in the framework of the International Continental Scientific Drilling Program in 2001-2002. The structure was cored from 404 m down to 1511 m, through three intervals: 794 m of postimpact Tertiary sediments, a 100 m thick impactite sequence, and 616 m of preimpact Cretaceous rocks thought to represent a suite of megablocks. Physical property investigations show that the various lithologies, including the impactite units and the K-Pg boundary layer, can be characterized by their physical properties, which depend on either changes in fabric or on mineralogical variations. The magnetic properties show mostly dia- or paramagnetic behavior, with the exception of the impactite units that indicate the presence of ferromagnetic, probably hydrothermally deposited magnetite and pyrrhotite. The magnetic fraction contributes mainly to enhanced magnetization in the impactite lithologies and, in this way, to the observed magnetic anomalies. The shape and orientation of the magnetic grains are varied and reflect inhomogeneous fabric development and the influence of impact-related redeposition and hydrothermal activity. The Chicxulub impact occurred at the time of the reverse polarity geomagnetic chron 29R, and this finding is consistent with the age of the K-Pg boundary.

  12. Cervical Injury Risk Resulting From Rotary Wing Impact: Assessment of Injury Based Upon Aviator Size, Helmet Mass Properties and Impact Severity

    DTIC Science & Technology

    2004-10-21

    NAWCADPAX/TR-2004/86 CERVICAL INJURY RISK RESULTING FROM ROTARY WING IMPACT: ASSESSMENT OF INJURY BASED UPON AVIATOR SIZE, HELMET MASS...DEPARTMENT OF THE NAVY NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND NAWCADPAX/TR-2004/86 21 October 2004 CERVICAL ... Cervical Injury Risk Resulting From Rotary Wing Impact: Assessment of Injury Based Upon Aviator Size, Helmet Mass Properties and Impact Severity 5b

  13. Influence of Surface Properties and Impact Conditions on Adhesion of Insect Residues

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Smith, Joseph G.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Shanahan, Michelle H.; Penner, Ronald K.

    2015-01-01

    Insect residues can cause premature transition to turbulent flow on laminar flow airfoils. Engineered surfaces that mitigate the adhesion of insect residues provide, therefore, a route to more efficient aerodynamics and reduced fuel burn rates. Areal coverage and heights of residues depend not only on surface properties, but also on impact conditions. We report high speed photography of fruit fly impacts at different angles of inclination on a rigid aluminum surface, optical microscopy and profilometry, and contact angle goniometry to support the design of engineered surfaces. For the polyurethane and epoxy coatings studied, some of which exhibited superhydrophobicity, it was determined that impact angle and surface compositions play critical roles in the efficacy of these surfaces to reduce insect residue adhesion.

  14. Impact of Interfacial Defects on the Properties of Monolayer Transition Metal Dichalcogenide Lateral Heterojunctions.

    PubMed

    Cao, Zhen; Harb, Moussab; Lardhi, Sheikha; Cavallo, Luigi

    2017-03-28

    We explored the impact of interfacial defects on the stability and optoelectronic properties of monolayer transition metal dichalcogenide lateral heterojunctions using a density functional theory approach. As a prototype, we focused on the MoS2-WSe2 system and found that even a random alloy-like interface with a width of less than 1 nm has only a minimal impact on the band gap and alignment compared to the defect-less interface. The largest impact is on the evolution of the electrostatic potential across the monolayer. Similar to defect-less interfaces, a small number of defects results in an electrostatic potential profile with a sharp change at the interface, which facilitates exciton dissociation. Differently, a large number of defects results in an electrostatic potential profile switching smoothly across the interface, which is expected to reduce the capability of the heterojunction to promote exciton dissociation. These results are generalizable to other transition metal dichalcogenide lateral heterojunctions.

  15. Impact of annealing on electrical properties of Cu2ZnSnSe4 absorber layers

    NASA Astrophysics Data System (ADS)

    Weiss, Thomas Paul; Redinger, Alex; Rey, Germain; Schwarz, Torsten; Spies, Maria; Cojocura-Mirédin, Oana; Choi, P.-P.; Siebentritt, Susanne

    2016-07-01

    Reported growth processes for kesterite absorber layers generally rely on a sequential process including a final high temperature annealing step. However, the impact and details for this annealing process vary among literature reports and little is known on its impact on electrical properties of the absorber. We used kesterite absorber layers prepared by a high temperature co-evaporation process to explicitly study the impact of two different annealing processes. From electrical characterization it is found that the annealing process incorporates a detrimental deep defect distribution. On the other hand, the doping density could be reduced leading to a better collection and a higher short circuit current density. The activation energy of the doping acceptor was studied with admittance spectroscopy and showed Meyer-Neldel behaviour. This indicates that the entropy significantly contributes to the activation energy.

  16. Lunar Crustal Properties: Insights from the GRAIL Gravity Signatures of Lunar Impact Craters

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Andrews-Hanna, J. C.; Evans, A. J.; Johnson, B. C.; Melosh, J., IV; Milbury, C.; Miljkovic, K.; Nimmo, F.; Phillips, R. J.; Smith, D. E.; Solomon, S. C.; Wieczorek, M. A.; Zuber, M. T.

    2014-12-01

    Impact cratering is a violent process, shattering and melting rock and excavating deep-seated material. The resulting scars are apparent on every planetary surface across our Solar System. Subsurface density variations associated with the resulting impact structures contain clues to aid in unlocking the details of this process. High-resolution gravity fields, such as those derived from the Gravity Recovery and Interior Laboratory (GRAIL) mission, are ideal for investigating these density variations. With gravity measurements from GRAIL and topography from the Lunar Orbiter Laser Altimeter (LOLA), we derived high-resolution Bouguer gravity fields (i.e., the gravity field after the contribution from topography is removed) that we correlated with craters mapped from LOLA data. We found that the mass deficit beneath lunar impact craters relates directly to crater size, up to diameter ~130 km, whereas craters larger than this diameter display no further systematic change. This observation, coupled with the greater depth of impact damage expected beneath larger craters, indicates that some process is affecting the production and/or preservation of porosity at depth or otherwise altering the mean density beneath the larger craters (note, measurable mantle uplift is observed for craters larger than ~184-km diameter). The observed crater gravity anomalies, however, exhibit considerable variation about these mean trends, suggesting that other factors are also important in determining the bulk density of impact crater structures. Milbury et al. (this conference) have demonstrated that pre-impact crustal porosity strongly influences the resulting density contrast between the impact damage zone beneath a crater and its surroundings. Herein, we extend these studies using the same GRAIL- and LOLA-derived maps to further investigate the effects that crustal properties have on the bulk density of the rock beneath lunar impact features. We focus, in particular, on the processes that

  17. Impact of the post fire management in some soil chemical properties. First results.

    NASA Astrophysics Data System (ADS)

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavi

    2016-04-01

    Post-fire management after severe wildfires has impact on soil properties. In Mediterranean environments management of fire affected areas is a common practice. This intervention may change soil chemical properties of the soil such as major cations. The aim of this work is to study the impact of different types of forest management in soil extractable calcium, magnesium, sodium and potassium after a severe wildfire. The study area is located in Ódena (Catalonia, Spain). The wildfire occurred at July 27th of 2015 and burned 1235 ha. After the fire an experimental plot was designed 9 plots with 2x2 meters (4 square meters). The different managements were: a) clear-cuted area and wood removed, b) no treatment); and c) clear-cutted. The results of the first sampling showed significant differences among all treatments in extractable calcium, sodium and potassium. The amount of these extractable elements was high in clear-cutted treatment in comparison to the others. No differences were identified in extractable magnesium. Overall, in the immediate period after the fire, burned area management, changed the studied soil properties. We are currently studying the evolution of this soil properties in these plots with the time

  18. Relationships between seat properties and human subject kinematics in rear impact tests.

    PubMed

    Welcher, J B; Szabo, T J

    2001-05-01

    The mitigation of whiplash associated disorders (WAD) has received increased priority in the last 10 years. Although the exact mechanism(s) for WAD causation have not been established, several have been proposed and it is likely the mechanism(s) are associated with the kinematics of the head relative to the torso. It follows that automotive seat designs that address reductions in certain head-torso kinematics may lead to a reduction in WAD potential. Seat properties that may have an effect on head-neck kinematics include geometry, stiffness and energy absorption. This study evaluated the performance of five seats with varying properties, including the new Volvo 'WHIPS' seat. Seat properties such as geometry relative to the occupant's head, dynamic and static stiffness, and energy absorption were determined via component testing. A new prototype dynamic seat test, which used a pendulum and seat back pan, was evaluated. Human subject impact tests were conducted using three occupants in rear impacts with velocity changes of 4 and 8 km/h. Potentially relevant occupant kinematic parameters were identified, and then correlated with seat properties in an attempt to determine any relative influence of seat properties on potential WAD mechanisms. Two higher velocity human subject tests using the Volvo Whiplash Injury Protection System (WHIPS) seat were also conducted. Vertical and horizontal head to head restraint distances were found to be most influential on occupant head-neck kinematics. Horizontal and vertical head to head restraint offsets were significantly correlated with rearward translational motion of the head center of gravity relative to the upper torso across all occupants. Rearward offset was also significantly correlated with rearward rotation of the head relative to upper torso, while vertical offset was significantly correlated with head acceleration relative to the upper torso during the flexion phase of the impact. Seat constitutive properties such as

  19. The correlation of low-velocity impact resistance of graphite-fiber-reinforced composites with matrix properties

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1986-01-01

    Summarized are basic studies that were conducted to correlate the impact resistance of graphite-fiber-reinforced composites with polymer matrix properties. Three crosslinked epoxy resins and a linear polysulfone were selected as composite matrices. As a group, these resins possess a significantly large range of mechanical properties. The mechanical properties of the resins and their respective composites were measured. Neat resin specimens and unidirectional and crossply composite specimens were impact tested with an instrumented dropweight tester. Impact resistances of the specimens were assessed on the basis of loading capability, energy absorption, and extent of damage.

  20. Dynamical properties measurements for asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations

    SciTech Connect

    Furnish, M.D.; Boslough, M.B.; Gray, G.T. III; Remo, J.L.

    1994-07-01

    We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2--20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.

  1. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties.

    PubMed

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L; Ilies, Marc A

    2014-02-03

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact on the plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential, and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes, and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process and with transfection efficiency, cytotoxicity, and the internalization mechanism of the resultant nucleic acid complexes. We found that the blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. The transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to the transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of colipids, their nature, and amount present in lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically to obtain efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery.

  2. IMPACT OF TIME / TEMPERATURE CURING CONDITIONS AND ALUMINATE CONCENTRATIONS ON SALTSTONE PROPERTIES

    SciTech Connect

    Harbour, J.; Edwards, T.; Williams, V.

    2009-05-05

    This report addresses the impact of (1) the time and temperature curing conditions (profile) and (2) the impact of higher aluminate concentrations in the decontaminated salt solution on Saltstone processing and performance properties. The results demonstrate that performance properties as well as some of the processing properties of Saltstone are highly sensitive to the conditions of time and temperature under which curing occurs. This sensitivity is in turn dependent on the concentration of aluminate in the salt feed solution. In general, the performance properties and indicators (Young's modulus, compressive strength and total porosity) are reduced when curing is initially carried out under high temperature. However, this reduction in performance properties is dependent on the sequence of temperatures (the time/temperature profile) experienced during the curing process. That is, samples that are subjected to a 1, 2, 3 or 4 day curing time at 60 C followed by final curing at 22 C lead to performance properties that are significantly different than the properties of grouts allowed to cure for 1, 2, 3 or 4 days at 22 C followed by a treatment at 60 C. The performance properties of Saltstone cured in the sequence of higher temperature first are generally less (and in some cases significantly less) than performance properties of Saltstone cured only at 22 C. This loss in performance was shown to be mitigated by increased slag content or cement content in the premix at the expense of fly ash. For the sequence in which the Saltstone is initially cured at 22 C followed by a higher temperature cure, the performance properties can be equal to or greater than the properties observed with curing only at 22 C curing. The results in this report indicate that in order to meaningfully measure and report the performance properties of Saltstone, one has to know the time/temperature profile conditions under which the Saltstone will be cured. This will require thermal modeling and

  3. Examining the economic impacts of hydropower dams on property values using GIS.

    PubMed

    Bohlen, Curtis; Lewis, Lynne Y

    2009-07-01

    While the era of dam building is largely over in the United States, globally dams are still being proposed and constructed. The articles in this special issue consider many aspects and impacts of dams around the world. This paper examines dam removal and the measurement of the impacts of dams on local community property values. Valuable lessons may be found. In the United States, hundreds of small hydropower dams will come up for relicensing in the coming decade. Whether or not the licenses are renewed and what happens to the dams if the licenses expires is a subject of great debate. Dams are beginning to be removed for river restoration and fisheries restoration and these "end-of-life" decisions may offer lessons for countries proposing or currently building small (and large) hydropower dams. What can these restoration stories tell us? In this paper, we examine the effects of dams along the Penobscot River in Maine (USA) on residential property values. We compare the results to findings from a similar (but ex post dam removal) data set for properties along the Kennebec river in Maine, where the Edwards Dam was removed in 1999. The Penobscot River Restoration Project, an ambitious basin-wide restoration effort, includes plans to remove two dams and decommission a third along the Penobscot River. Dam removal has significant effects on the local environment, and it is reasonable to anticipate that environmental changes will themselves be reflected in changes in property values. Here we examine historical real estate transaction data to examine whether landowners pay a premium or penalty to live near the Penobscot River or near a hydropower generating dam. We find that waterfront landowners on the Penobscot or other water bodies in our study area pay approximately a 16% premium for the privilege of living on the water. Nevertheless, landowners pay LESS to live near the Penobscot River than they do to live further away, contrary to the expectation that bodies of water

  4. Instrumented impact properties of zircaloy-oxygen and zircaloy-hydrogen alloys

    SciTech Connect

    Garde, A.M.; Kassner, T.F.

    1980-04-01

    Instrumented-impact tests were performed on subsize Charpy speciments of Zircaloy-2 and -4 with up to approx. 1.3 wt % oxygen and approx. 2500 wt ppM hydrogen at temperatures between 373 and 823/sup 0/K. Self-consistent criteria for the ductile-to-brittle transition, based upon a total absorbed energy of approx. 1.3 x 10/sup 4/ J/m/sup 2/, a dynamic fracture toughness of approx. 10 MPa.m/sup 1/2/, and a ductility index of approx. 0, were established relative to the temperature and oxygen concentration of the transformed BETA-phase material. The effect of hydrogen concentration and hydride morphology, produced by cooling Zircaloy-2 specimens through the temperature range of the BETA ..-->.. ..cap alpha..' = hydride phase transformation at approx. 0.3 and 3 K/s, on the impact properties was determined at temperatures between 373 and 673 K. On an atom fraction basis, oxygen has a greater effect than hydrogen on the impact properties of Zircaloy at temperatures between approx. 400 and 600 K. 34 figures.

  5. Impact Toughness Properties of Nickel- and Manganese-Free High Nitrogen Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Mohammadzadeh, Mina

    2016-12-01

    A large amount of manganese (>10 wt pct) in nickel-free high nitrogen austenitic stainless steels (Ni-free HNASSs) can induce toxicity. In order to develop Ni-free HNASSs with low or no manganese, it is necessary to investigate their mechanical properties for biomedical applications. This work aims to study the Charpy V-notch (CVN) impact toughness properties of a Ni- and Mn-free Fe-22.7Cr-2.4Mo-1.2N HNASS plate in the temperature range of 103 K to 423 K (-170 °C to 150 °C). The results show that unlike conventional AISI 316L austenitic stainless steel, the Ni- and Mn-free HNASS exhibits a sharp ductile-to-brittle transition (DBT). The intergranular brittle fracture associated with some plasticity and deformation bands is observed on the fracture surface at 298 K (25 °C). Electron backscattered diffraction (EBSD) analysis of the impact-tested sample in the longitudinal direction indicates that deformation bands are parallel to {111} slip planes. By decreasing the temperature to 273 K, 263 K, and 103 K (0 °C, -10 °C, and -70 °C), entirely intergranular brittle fracture occurs on the fracture surface. The fracture mode changes from brittle fracture to ductile as the temperature increases to 423 K (150 °C). The decrease in impact toughness is discussed on the basis of temperature sensitivity of plastic flow and planarity of deformation mechanism.

  6. IMPACT OF ALUMINATE IONS ON THE PROPERTIES OF SALTSTONE GROUT MIXES

    SciTech Connect

    Harbour, J; Tommy Edwards, T; Erich Hansen, E; Vickie Williams, V

    2008-02-21

    It is important to identify and control the operational and compositional variables that impact the important processing and performance properties of Saltstone grout mixes. The grout that is produced at the Saltstone Production Facility (SPF) is referred to as Saltstone and is a waste form that immobilizes low concentrations of radionuclides as well as certain toxic metals. The Saltstone will be disposed of in vaults at Savannah River Site (SRS). An effort referred to as the Saltstone Variability Study has been initiated to achieve this goal. The protocols developed in this variability study are also ideally suited as a tool to assess the impact of proposed changes to the processing flow sheet for Liquid Waste Operations at SRS. One such proposal that is currently under consideration is to introduce a leaching step in the treatment of the High Level Waste (HLW) sludge to remove aluminum prior to vitrification at the Defense Waste Processing Facility (DWPF). This leachate would significantly increase the soluble aluminate concentration in the salt feed that will be processed at the SPF. Consequently, an initial study of the impact of increased aluminate concentration on the Saltstone grout properties was performed. Prior work by Lukens (1) showed that aluminate in the salt solutions increases the amount of heat generation.

  7. Processing and thermal properties of filament wound carbon-carbon composites for impact shell application

    NASA Astrophysics Data System (ADS)

    Zee, Ralph; Romanoski, Glenn; Gale, H. Shyam; Wang, Hsin

    2001-02-01

    The performance and safety of the radioisotope power source depend in part on the thermal and impact properties of the materials used in the general purpose heat source (GPHS) through the use of an impact shell, thermal insulation and an aeroshell. Results from an earlier study indicate the importance of circumferential fibers to the mechanical properties of cylindrical filament wound carbon-carbon composites for the impact shell application. Based on this study, an investigation was initiated to determine the processing characteristics and the mechanical and thermal response of three filament wound configurations with different percentages of circumferential fibers: 50%, 66% and 80%. The performs were fabricated using a 3-D filament winding machine followed by five cycles of resin impregnation and carbonization. In this paper, the processing sequence and the resulting microstructures of the composites will be described. The thermal conductivity values of the composites as a function of fiber configuration and density will be discussed. These results will be compared with the fine-weave pierced-fabric (FWPF) material and carbon-bonded carbon-fiber insulation. Finally, the relevance of the new configurations for applications in the general purpose heat source (GPHS) will also be inferred. .

  8. Impact of morphology on the radiative properties of fractal soot aggregates

    NASA Astrophysics Data System (ADS)

    Doner, Nimeti; Liu, Fengshan

    2017-01-01

    The impact of morphology on the radiative properties of fractal soot aggregates was investigated using the discrete dipole approximation (DDA). The optical properties of four different types of aggregates of freshly emitted soot with a fractal dimension Df=1.65 and a fractal pre-factor kf=1.76 were calculated. The four types of aggregates investigated are formed by uniform primary particles in point-touch, by uniform but overlapping primary particles, by uniform but enlarged primary particles in point-touch, and formed by point-touch and polydisperse primary particles. The radiative properties of aggregates consisting of N=20, 56 and 103 primary particles were numerically evaluated for a given refractive index at 0.532 and 1.064 μm. The radiative properties of soot aggregates vary strongly with the volume equivalent radius aeff and wavelength. The accuracy of DDA was evaluated in the first and fourth cases against the generalized multi-sphere Mie (GMM) solution in terms of the vertical-vertical differential scattering cross section (Cvv). The model predicted the average relative deviations from the base case to be within 15-25% for Cvv, depending on the number of particles for the aggregate. The scattering cross sections are only slightly affected by the overlapping but more significantly influenced by primary particle polydispersity. It was also found that the enlargement of primary particles by 20% has a strong effect on soot aggregate radiative properties.

  9. Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-11-01

    Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

  10. Saponaria officinalis L. extract: Surface active properties and impact on environmental bacterial strains.

    PubMed

    Smułek, Wojciech; Zdarta, Agata; Pacholak, Amanda; Zgoła-Grześkowiak, Agnieszka; Marczak, Łukasz; Jarzębski, Maciej; Kaczorek, Ewa

    2017-02-01

    Plant-derived surfactants are characterised by low toxicity, high biodegradability and environmental compatibility. They therefore have many applications; for instance, they can be used in bioremediation to accelerate biodegradation processes, especially of hydrophobic pollutants. This paper analyses the properties of an extract from Saponaria officinalis L. containing saponins and its impact on bacterial strains isolated from soil, as well as its potential for application in hydrocarbon bioremediation. The tested extract from Saponaria officinalis L. contains gypsogenin, hederagenin, hydroxyhederagenin and quillaic acid aglycone structures and demonstrates good emulsification properties. Contact with the extract led to modification of bacterial cell surface properties. A decrease in cell surface hydrophobicity and an increase in membrane permeability were recorded in the experiments. An increase of up to 63% in diesel oil biodegradation was also recorded for Pseudomonas putida DA1 on addition of 1gL(-1) of saponins from Saponaria officinalis L. Saponaria extract showed no toxic impact on the tested environmental bacterial strains at the concentration used in the biodegradation process.

  11. Impact of hemicellulose pre-extraction for bioconversion on birch Kraft pulp properties.

    PubMed

    Helmerius, Jonas; von Walter, Jonas Vinblad; Rova, Ulrika; Berglund, Kris A; Hodge, David B

    2010-08-01

    The combination of hemicellulose extraction with chemical pulping processes is one approach to generate a sugar feedstock amenable to biochemical transformation to fuels and chemicals. Extractions of hemicellulose from silver birch (Betula pendula) wood chips using either water or Kraft white liquor (NaOH, Na(2)S, and Na(2)CO(3)) were performed under conditions compatible with Kraft pulping, using times ranging between 20 and 90 min, temperatures of 130-160 degrees C, and effective alkali (EA) charges of 0-7%. The chips from select extractions were subjected to subsequent Kraft pulping and the refined pulps were made into handsheets. Several metrics for handsheet strength properties were compared with a reference pulp made without an extraction step. This study demonstrated that white liquor can be utilized to extract xylan from birch wood chips prior to Kraft cooking without decreasing the pulp yield and paper strength properties, while simultaneously impregnating cooking alkali into the wood chips. However, for the alkaline conditions tested extractions above pH 10 resulted in low concentrations of xylan. Water extractions resulted in the highest final concentrations of xylan; yielding a liquor without the presence of toxic or inhibitory inorganics and minimal soluble aromatics that we demonstrate can be successfully enzymatically hydrolyzed to monomeric xylose and fermented to succinic acid. However, water extractions were found to negatively impact some pulp properties including decreases in compression strength, bursting strength, tensile strength, and tensile stiffness while exhibiting minimal impact on elongation and slight improvement in tearing strength index.

  12. Impact of Interfacial Roughness on the Sorption Properties of Nanocast Polymers

    SciTech Connect

    Sridhar, Manasa; Gunugunuri, Krishna R.; Hu, Naiping; Motahari, Ahmad; Zuo, Xiaobing; Schaefer, Dale W.; Thiel, Stephen W.; Smirniotis, Panagiotis G.

    2016-03-16

    Nanocasting is an emerging method to prepare organic polymers with regular, nanometer pores using inorganic templates. This report assesses the impact of imperfect template replication on the sorption properties of such polymer castings. Existing X-ray diffraction data show that substantial diffuse scattering exists in the small-angle region even though TEM images show near perfect lattices of uniform pores. To assess the origin of the diffuse scattering, the morphology of the phenol - formaldehyde foams (PFF) was investigated by small-angle X-ray scattering (SAXS). The observed diffuse scattering is attributed to interfacial roughness due to fractal structures. Such roughness has a profound impact on the sorption properties. Conventional pore- filling models, for example, overestimate protein sorption capacity. A mathematical framework is presented to calculate sorption properties based on observed morphological parameters. The formalism uses the surface fractal dimension determined by SAXS in conjunction with nitrogen adsorption isotherms to predict lysozyme sorption. The results are consistent with measured lysozyme loading.

  13. Impact of Interfacial Roughness on the Sorption Properties of Nanocast Polymers

    DOE PAGES

    Sridhar, Manasa; Gunugunuri, Krishna R.; Hu, Naiping; ...

    2016-03-16

    Nanocasting is an emerging method to prepare organic polymers with regular, nanometer pores using inorganic templates. This report assesses the impact of imperfect template replication on the sorption properties of such polymer castings. Existing X-ray diffraction data show that substantial diffuse scattering exists in the small-angle region even though TEM images show near perfect lattices of uniform pores. To assess the origin of the diffuse scattering, the morphology of the phenol - formaldehyde foams (PFF) was investigated by small-angle X-ray scattering (SAXS). The observed diffuse scattering is attributed to interfacial roughness due to fractal structures. Such roughness has a profoundmore » impact on the sorption properties. Conventional pore- filling models, for example, overestimate protein sorption capacity. A mathematical framework is presented to calculate sorption properties based on observed morphological parameters. The formalism uses the surface fractal dimension determined by SAXS in conjunction with nitrogen adsorption isotherms to predict lysozyme sorption. The results are consistent with measured lysozyme loading.« less

  14. Global Geometric Properties of Martian Impact Craters: An Assessment from Mars Orbiter Laser Altimeter (MOLA) Digital Elevation Models

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.; Schnetzler, C.

    2000-01-01

    Global geometric characteristics of topographically fresh impact craters have been assessed, for the first time, from gridded MOLA topography. Global trends of properties such as depth/diameter differ from previous estimates. Regional differences are observed.

  15. Impact properties of irradiated HT9 from the fuel duct of FFTF

    SciTech Connect

    Byun, Thak Sang; Lewis, W. Daniel; Toloczko, Mychailo B.; Maloy, Stuart A.

    2012-02-01

    This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3– 148 dpa and irradiation temperatures in the range of 378–504 *C. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 * 4 * 27 mm at an impact speed of 3.2 m/s in a 25 J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of ductile–brittle transition temperatures (DDBTT) was greater after relatively low temperature irradiation. The USE values were in the range of 5.5–6.7 J before irradiation and decreased to the range of 2–5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. The dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. Size effect was also discussed to clarify the differences in the impact property data from subsize and standard specimens as well as to provide a basis for comparison of data from different specimens. The USE and DDBTT data from different studies were compared.

  16. Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

    SciTech Connect

    Brühwiler, Paul A.; Barbezat, Michel; Necola, Adly; Kohls, Doug J.; Bunk, Oliver; Schaefer, Dale W.; Pötschke, Petra

    2010-10-22

    We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0-2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorption are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorption.

  17. Asteroid surface archaeology: Identification of eroded impact structures by spectral properties on (4) Vesta

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Nathues, A.; Schäfer, M.; Schmedemann, N.; Vincent, J.; Russell, C.

    2014-07-01

    Introduction: Vesta's surface material is characterized as a deep regolith [1,2], mobilized by countless impacts. The almost catastrophic impact near Vesta's south pole, which has created the Rheasilvia basin, and the partly overlapping older impact of similar size, Veneneia, have not only reshaped the areas of their interior (roughly 50 % of the Vesta surface), but also emplaced each time a huge ejecta blanket of similar size, thus covering the whole remaining surface. In this context, pristine and even younger morphologic features have been erased. However, the spectral signatures of the early differentiation and alteration products by impacts have partially remained in situ. While near the north pole several large old eroded impact features are visible, the equatorial zone close to the basin rims seems to be void of those. Since it is unlikely, that this zone has been entirely avoided by large projectiles, in this area the results of such impacts may have left morphologically not detectable remnants: Individual distribution of particle sizes and altered photometric properties, excavated layers, shock metamorphism, melt generation inside particles and on macroscopic scales, and emplacement of exogenous projectile material. An analysis by color ratio images and spatial profiles of diagnostic spectral parameters reveals such features. Results: Based on local spectroscopic evidence we have detected eroded impact features of three categories: 1) Small craters with diameters of a few kilometers, 2) Large craters or, if even larger, incipient impact basins, 3) Sub-global ejecta blankets. The eastern part of Feralia Planitia, diameter 140 km, has little evidence of a round outline in the shape model, but it features spectral gradients towards its center. A feature of similar size, centered north of Lucaria Tholus becomes only visible by a similar spectra gradient and a circular outline in specific spectral ratio mosaics. These features seem to be related to the

  18. [Impact of directly compressed auxiliary materials on powder property of fermented cordyceps powder].

    PubMed

    Chen, Li-Hua; Yue, Guo-Chao; Guan, Yong-Mei; Yang, Ming; Zhu, Wei-Feng

    2014-01-01

    To investigate such physical indexes as hygroscopicity, angle of repose, bulk density, fillibility of compression of mixed powder of directly compressed auxiliary materials and fermented cordyceps powder by using micromeritic study methods. The results showed that spray-dried lactose Flowlac100 and microcrystalline cellulose Avicel PH102 had better effect in liquidity and compressibility on fermented cordyceps powder than pregelatinized starch. The study on the impact of directly compressed auxiliary materials on the powder property of fermented cordyceps powder had guiding significant to the research of fermented cordyceps powder tablets, and could provide basis for the development of fermented cordyceps powder tablets.

  19. Impact of low level praseodymium substitution on the magnetic properties of YCrO3 orthochromites

    NASA Astrophysics Data System (ADS)

    Kumar, Surendra; Coondoo, Indrani; Rao, Ashok; Lu, Bo-Han; Kuo, Yung-Kang; Kholkin, Andrei L.; Panwar, Neeraj

    2017-04-01

    Praseodymium (Pr) modified yttrium orthochromites (YCrO3 with Pr =0% and 5% at Y-sites) have been investigated with the aim of exploring the impact of low level Pr substitution on the magnetic properties including magnetization reversal, spin reorientation, and exchange bias of YCrO3 compound. The samples exhibit a distorted orthorhombic structure with Pnma space group. A negative magnetization (or magnetization reversal) was observed under zero-field cooled (ZFC) mode for the pristine YCrO3 sample, whereas such a feature disappeared with a 5% Pr substitution. In addition, the Pr-doped samples exhibited a spin reorientation behaviour which was absent in the pristine sample. Most interestingly, the ZFC magnetic hysteresis loops revealed a left and upward shift, resembling a negative exchange bias effect. These results indicate the effectiveness of low level doping in tailoring the magnetic properties of orthochromites.

  20. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers.

    PubMed

    Pelipenko, Jan; Kristl, Julijana; Janković, Biljana; Baumgartner, Saša; Kocbek, Petra

    2013-11-01

    Electrospinning is an efficient and flexible method for nanofiber production, but it is influenced by many systemic, process, and environmental parameters that govern the electrospun product morphology. This study systematically investigates the influence of relative humidity (RH) on the electrospinning process. The results showed that the morphology of the electrospun product (shape and diameter) can be manipulated with precise regulation of RH during electrospinning. Because the diameter of nanofibers correlates with their rigidity, it was shown that RH control can lead to manipulation of material mechanical properties. Finally, based on the solution's rheological parameter-namely, phase shift angle-we were able to predict the loss of homogenous nanofiber structure in correlation with RH conditions during electrospinning. This research addresses the mechanism of RH impact on the electrospinning process and offers the background to exploit it in order to better control nanomaterial properties and alter its applicability.

  1. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    This paper describes and discusses the propulsion-system problems that will most likely be encountered if the specifications of hydrocarbon-based jet fuels must undergo significant changes in the future and, correspondingly, the advances in technology that will be required to minimize the adverse impact of these problems. Several investigations conducted are summarized. Illustrations are used to describe the relative effects of selected fuel properties on the behavior of propulsion-system components and fuel systems. The selected fuel properties are those that are most likely to be relaxed in future fuel specifications. Illustrations are also used to describe technological advances that may be needed in the future. Finally, the technological areas needing the most attention are described, and programs that are under way to address these needs are briefly discussed.

  2. Tensile and impact properties of General Atomics 832864 heat of V-4Cr-4Ti alloy

    SciTech Connect

    Tsai, H.; Nowicki, L.J.; Gazda, J.; Billone, M.C.; Smith, D.L.; Johnson, W.R.; Trester, P.

    1998-09-01

    A 1300-kg heat of V-4Cr-4Ti alloy was procured by General Atomics (GA) for the DIII-D radiative divertor program. To determine the mechanical properties of this alloy, tensile and Charpy tests were conducted on specimens prepared from pieces of 4.8-mm-thick as-rolled plates, a major product form for the DIII-D application. The tensile tests were conducted at three temperatures, 26, 280 and 380 C, the last two being the anticipated peak temperatures during DIII-D boronization and postvent bake-out, respectively. Results from these tests show that the tensile and impact properties of the 832864 heat are comparable to those of the other smaller V-(4-5)Cr-(4-5)Ti alloy heats previously developed by the US Fusion Materials Program and that scale-up of vanadium alloy production can be successfully achieved as long as reasonable process control is implemented.

  3. Impact of degree of oxidation on the physicochemical properties of microcrystalline cellulose.

    PubMed

    Hao, Jie; Xu, Shuyi; Xu, Naiyu; Li, Duxin; Linhardt, Robert J; Zhang, Zhenqing

    2017-01-02

    Microcrystalline cellulose, a major component of cell wall of plants, is one of the most abundant natural materials, but the poor solubility of cellulose limits its applications. Cellulose is a linear glucan with exclusive β 1→4 linkage. Oxidation carried out with TEMPO-NaBr-NaClO system can selectively oxidize the C6 of glucose residues in cellulose. This modification improves polysaccharide solubility and other physicochemical properties. In this work, the impact of degree of oxidation on solubility, degree of crystallization, thermostability, molecular weight and the structures of the resulting oligosaccharide products of selectively oxidized cellulose were investigated using x-ray diffraction, thermogravimetric analysis, gel permeation chromatography-multiple angle laser light scattering and ultrahigh performance liquid chromatography-electrospray-quadrupole/time of flight-mass spectrometry, respectively. The physicochemical properties of selectively oxidized cellulose having different degrees of oxidation were carefully characterized providing a theoretical foundation for the more accurate selection of applications of oxidized celluloses.

  4. Computational Assessment of the Impact of Gamma-ray Detector Material Properties on Spectroscopic Performance

    SciTech Connect

    Jordan, David V.; Baciak, James E.; McDonald, Benjamin S.; Hensley, Walter K.; Miller, Erin A.; Wittman, Richard S.; Siciliano, Edward R.

    2011-09-01

    Abstract Pacific Northwest National Laboratory (PNNL) is performing a computational assessment of the impact of several important gamma-ray detector material properties (e.g. energy resolution and intrinsic detection efficiency) on the scenario-specific spectroscopic performance of these materials. The research approach combines 3D radiation transport calculations, detector response modeling, and spectroscopic analysis of simulated energy deposition spectra to map the functional dependence of detection performance on the underlying material properties. This assessment is intended to help guide formulation of performance goals for new detector materials within the context of materials discovery programs, with an emphasis on applications in the threat reduction, nonproliferation, and safeguards/ verification user communities. The research results will also provide guidance to the gamma-ray sensor design community in estimating relative spectroscopic performance merits of candidate materials for novel or notional detectors.

  5. Impact of heat treatment and oxidation of Carbon-carbon composites on microstructure and physical properties

    NASA Astrophysics Data System (ADS)

    Iqbal, Sardar Sarwat

    Carbon-carbon (C/C) composites are notable among engineering materials in aerospace and defense industries possessing excellent specific mechanical, thermal, frictional and wear properties. C/C maintain their properties at temperatures where most of the high end alloys give in, and maintain their dimensional stability at temperatures above 2000 °C. C/C is frequently used in aircraft and automotive industries as brake materials. However, frictional performance is dependent on various parameters: microstructure, fiber type, fiber orientation distribution, fiber/matrix interfacial bond, heat treatment, and oxidation. The present study in dissertation provides an insight into the impact of heat treatment, and oxidation on microstructure, mechanical and thermal properties. The heat treatment (performed at 1800, 2100, 2400 °C in argon) of two-directional (2-D) pitch-fiber with charred resin carbon matrix, and three-directional (3-D) PAN-fiber with CVI carbon matrix influenced microstructure, mechanical and thermal properties. Microstructure characterized by polarized light microscopy (PLM), XRD, and Raman spectroscopy changed with increasing heat treatment temperature. The RL microstructure of 3-D C/C progressively highly organized, whereas ISO microstructure of 2-D C/C's charred resin hardly organized into an ordered structure as evident from Raman spectroscopy and Raman profiling of polished samples. Pitch-fiber organized more than the ISO microstructure of charred resin matrix. On the other, PAN-fiber became more ordered, but was organization was lower than pitch-fiber. Thermal conductivity increased for both (2-D, 3-D C/C) materials in comparison to non-heat treated (NHT) C/Cs. Thermal conductivity of oxidized samples decreased significantly than non-oxidized samples. In-plane thermal conductivity of 3-D C/C was much higher than that of 2-D C/C, and was attributed to the rough laminar (RL) microstructure of carbon matrix and continuous PAN-fiber when compared to

  6. Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties

    NASA Astrophysics Data System (ADS)

    Ebmeier, S. K.; Sayer, A. M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-01-01

    The impact of volcanic emissions is a significant source of uncertainty in estimations of aerosol indirect radiative forcing, especially with respect to emissions from passive degassing and minor explosions. Understanding the impact of volcanic emissions on indirect radiative forcing is important for assessing present day atmospheric properties and also to define the pre-industrial baseline to assess anthropogenic perturbations. We present observations of the time-averaged indirect aerosol effect within 200 km downwind of isolated island volcanoes in regions of low present-day aerosol burden using MODIS and AATSR data. Retrievals of aerosol and cloud properties at Kīlauea (Hawai'i), Yasur (Vanuatu) and Piton de la Fournaise (Réunion) are rotated about the volcanic vent according to wind direction, so that retrievals downwind of the volcano can be averaged to improve signal to noise ratio. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference in effective radius of 4-8 μm at the different volcanoes. A comparison of these observations with cloud properties at isolated islands with no significant source of aerosol suggests that these patterns are not purely orographic in origin. This approach sets out a first step for the systematic measurement of the effects of present day low altitude volcanic emissions on cloud properties. Our observations of unpolluted, isolated marine settings may also capture processes similar to those in the pre-industrial marine atmosphere.

  7. Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties

    NASA Technical Reports Server (NTRS)

    Ebmeier, S. K.; Sayer, A. M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-01-01

    The impact of volcanic emissions is a significant source of uncertainty in estimations of aerosol indirect radiative forcing, especially with respect to emissions from passive de-gassing and minor explosions. Understanding the impact of volcanic emissions on indirect radiative forcing is important assessing present day atmospheric properties and also to define the pre-industrial baseline to assess anthropogenic perturbations. We present observations of the time-averaged indirect aerosol effect within 200 km downwind of isolated island volcanoes in regions of low present-day aerosol burden using MODIS and AATSR data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (Reunion) are rotated about the volcanic vent according to wind direction, so that retrievals downwind of the volcano can be averaged to improve signal to noise ratio. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference in effective radius ranging from 48 microns at the different volcanoes. A comparison of these observations with cloud properties at isolated islands with no significant source of aerosol suggests that these patterns are not purely orographic in origin. This approach sets out a first step for the systematic measurement of the effects of present day low altitude volcanic emissions on cloud properties, and our observations of unpolluted, isolated marine settings may capture processes similar to those in the preindustrial marine atmosphere.

  8. IMPACT OF IRRADIATION AND THERMAL AGING ON DWPF SIMULATED SLUDGE PROPERTIES

    SciTech Connect

    Eibling, R; Michael Stone, M

    2006-10-16

    The research and development programs in support of the Defense Waste Processing Facility (DWPF) and other high-level waste vitrification processes require the use of both nonradioactive waste simulants and actual waste samples. While actual waste samples are the ideal materials to study, acquiring large quantities of actual waste is difficult and expensive. Tests utilizing actual high-level waste require the use of expensive shielded cells facilities to provide sufficient shielding for the researchers. Nonradioactive waste simulants have been used for laboratory testing, pilot-scale testing and full-scale integrated facility testing. These waste simulants were designed to reproduce the chemical and, if possible, the physical properties of the actual high-level waste. This technical report documents a study on the impact of irradiating a Sludge Batch 3 (SB3) simulant and of additional tests on aging a SB3 simulant by additional thermal processing. Prior simulant development studies examined methods of producing sludge and supernate simulants and processes that could be used to alter the physical properties of the simulant to more accurately mimic the properties of actual waste. Development of a precipitated sludge simulant for the River Protection Project (RPP) demonstrated that the application of heat for a period of time could significantly alter the rheology of the sludge simulant. The RPP precipitated simulant used distillation to concentrate the sludge solids and produced a reduction in sludge yield stress of up to 80% compared to the initial sludge properties. Observations at that time suggested that a substantial fraction of the iron hydroxide had converted to the oxide during the distillation. DWPF sludge simulant studies showed a much smaller reduction in yield stress ({approx}10%), demonstrated the impact of shear on particle size, and showed that smaller particle sizes yielded higher yield stress products. The current study documented in this report

  9. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations.

    PubMed

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle

    2016-09-01

    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels.

  10. Impact of Deforestation on Cloud Properties and Rainfall Over the Costa Rica-Nicaraguan region

    NASA Astrophysics Data System (ADS)

    Ray, D. K.; Nair, U. S.; Welch, R. M.; Lawton, R. O.

    2002-12-01

    The Nicaraguan-Costa Rican region in Central America exhibits the typical pattern of complex deforestation now seen throughout the tropics. The region is a mixture of lowland, mostly converted to agriculture, and mountainous regions, where pristine forests still persist. At present the northern fertile plains of Costa Rica are mostly utilized for agriculture. However in the adjacent regions of southern Nicaragua lowland forests are relatively intact. The extensive agricultural areas of northern Costa Rica is a region of discontinuity in the proposed Mesoamerican Biological Corridor which would connect the montane forests in Costa Rica to the lowland forests in Nicaragua. The present study is part of a larger study which investigates the effects of continuing lowland deforestation and associated regional climate change in Central America on the stability of the entire proposed Mesoamerican Biological Corridor. The present work focuses on the effects of land use on the formation of cloudiness, cloud properties and rainfall in the forested regions of southern Nicaragua and the deforested regions of northern Costa Rica. Land surface and cloud properties are retrieved using the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data and products. The land surface properties retrieved are land surface temperature, albedo, Normalized Difference Vegetation Index (NDVI), Available Soil Moisture fraction and surface energy fluxes. The cloud properties retrieved are cloud optical thickness and effective radii. In addition, the frequency of cumulus cloudiness on hourly basis are derived from the Geostationary Operational Environmental Satellite (GOES) and rainfall is studied using Tropical Rainfall Measuring Mission (TRMM) satellite products. The correlations between the surface properties, cloud properties, cumulus cloudiness and rainfall as a function of ecosystem and topography is

  11. Compatible solutes: Thermodynamic properties and biological impact of ectoines and prolines.

    PubMed

    Held, Christoph; Neuhaus, Thorsten; Sadowski, Gabriele

    2010-11-01

    Compatible solutes like ectoine and its derivatives are deployed by halophile organisms as osmolytes to sustain the high salt concentration in the environment. This work investigates the relation of the thermodynamic properties of compatible solutes and their impact as osmolytes. The ectoines considered in this work are ectoine, hydroxyectoine, and homoectoine. Besides solution densities (15-45°C) and solubilities in water (3-80°C), component activity coefficients in the aqueous solutions were determined in the temperature range between 0 and 50°C. The latter is important for adjusting a certain water activity and therewith a respective osmotic pressure within a cell. The characteristic effect of ectoines is compared to that of prolines, as well as to that of incompatible solutes as salts and urea. The experimental results show that the influence on the activity (coefficient) of water is quite different for compatible and incompatible solutes: whereas compatible solutes cause decreasing water activity coefficients, incompatible solutes lead to an increase in water activity coefficients. Based on this quantity, the paper discusses the impact of various osmolytes on biological systems and contributes to the explanation why some osmolytes are more often and at other temperatures used than others. Moreover, it was found that the anti-stress effect of an osmolyte is weakened in the presence of a salt. Finally, it is shown that the thermodynamic properties of compatible solutes can be modeled and even predicted using the thermodynamic model PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory).

  12. Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment.

    PubMed

    Sano, Syusuke; Iwao, Yasunori; Kimura, Susumu; Noguchi, Shuji; Itai, Shigeru

    2014-07-01

    The impact of different active pharmaceutical ingredients (APIs) loading on the properties of orally disintegrating tablets (ODTs) prepared according to our previously reported microwave (MW) treatment process was evaluated using famotidine (FAM), acetaminophen (AAP), and ibuprofen (IBU). None of the APIs interrupted the tablet swelling during the MW treatment and the tablet hardness were improved by more than 20 N. MW treatment, however, led to a significant increase in the disintegration time of the ODTs containing IBU, but it had no impact on that of the ODTs containing FAM or AAP. This increased disintegration time of the ODTs containing IBU was attributed to the relatively low melting point of IBU (Tm=76 °C), with the IBU particles melting during the MW treatment to form agglomerates, which interrupted the penetration of water into the tablets and delayed their disintegration. The effects of the MW treatment on the chemical stability and dissolution properties of ODTs were also evaluated. The results revealed that MW treatment did not promote the degradations of FAM and AAP or delay their release from the ODTs, while dissolution of the ODTs containing IBU delayed by MW treatment. Based on these results, the MW method would be applicable to the preparation of ODTs containing APIs with melting points higher than 110 °C.

  13. Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part II: Impact Toughness

    NASA Astrophysics Data System (ADS)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2014-10-01

    The present paper is the final part of a two-part paper where the influence of coiling temperature on the final microstructure and mechanical properties of Nb-Mo microalloyed steels is described. More specifically, this second paper deals with the different mechanisms affecting impact toughness. A detailed microstructural characterization and the relations linking the microstructural parameters and the tensile properties have already been discussed in Part I. Using these results as a starting point, the present work takes a step forward and develops a methodology for consistently incorporating the effect of the microstructural heterogeneity into the existing relations that link the Charpy impact toughness to the microstructure. In conventional heat treatments or rolling schedules, the microstructure can be properly described by its mean attributes, and the ductile-brittle transition temperatures measured by Charpy tests can be properly predicted. However, when different microalloying elements are added and multiphase microstructures are formed, the influences of microstructural heterogeneity and secondary hard phases have to be included in a modified equation in order to accurately predict the DB transition temperature in Nb and Nb-Mo microalloyed steels.

  14. An interregional hedonic analysis of noxious facility impacts on local wages and property values

    SciTech Connect

    Clark, D.E.; Nieves, L.A.

    1991-12-31

    Claims of property value loss are commonly raised by homeowners when noxious facilities are sited or when new information about the hazards of existing facilities is made public. While the capitalization of externalities into land values is consistent with economic theory, empirical measurement of impacts has not generated consistent results. This is true both for hedonic measurements as well as other types of econometric analyses. While it is well established that job and site risks have similar impacts on regional labor markets, there are no studies relating the presence of a broad range of noxious facilities to local wage premiums. In contrast, this study employs an interregional framework in a hedonic analysis of both wage and property markets and considers eight different facility classifications. This paper discusses the development of the hedonic model employed in this study. It develops more fully the theoretical advantages of the intercity model and alternative methods of deriving implicit prices for environmental amenities and disamenities. The unique data base and the structure of the estimated model are described. It also includes a discussion of the research findings. Major conclusions and suggestions for further research are presented.

  15. An interregional hedonic analysis of noxious facility impacts on local wages and property values

    SciTech Connect

    Clark, D.E.; Nieves, L.A.

    1991-01-01

    Claims of property value loss are commonly raised by homeowners when noxious facilities are sited or when new information about the hazards of existing facilities is made public. While the capitalization of externalities into land values is consistent with economic theory, empirical measurement of impacts has not generated consistent results. This is true both for hedonic measurements as well as other types of econometric analyses. While it is well established that job and site risks have similar impacts on regional labor markets, there are no studies relating the presence of a broad range of noxious facilities to local wage premiums. In contrast, this study employs an interregional framework in a hedonic analysis of both wage and property markets and considers eight different facility classifications. This paper discusses the development of the hedonic model employed in this study. It develops more fully the theoretical advantages of the intercity model and alternative methods of deriving implicit prices for environmental amenities and disamenities. The unique data base and the structure of the estimated model are described. It also includes a discussion of the research findings. Major conclusions and suggestions for further research are presented.

  16. Effects of Various Heat Treatments on the Ballistic Impact Properties of Inconel 718 Investigated

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2000-01-01

    Uncontained failures of aircraft engine fan blades are serious events that can cause equipment damage and loss of life. Federal Aviation Administration (FAA) certification requires that all engines demonstrate the ability to contain a released fan blade with the engine running at full power. However, increased protection generally comes at the expense of weight. Proper choice of materials is therefore imperative to an optimized design. The process of choosing a good casing material is done primarily through trial and error. This costly procedure could be minimized if there was a better understanding of the relationships among static material properties, impact properties, and failure mechanisms. This work is part of a program being conducted at the NASA Glenn Research Center at Lewis Field to study these relationships. Ballistic impact tests were conducted on flat, square sheets of Inconel 718 that had been subjected to different heat treatments. Two heat treatments and the as-received condition were studied. In addition, results were compared with those from an earlier study involving a fourth heat treatment. The heat treatments were selected on the basis of their effects on the static tensile properties of the material. The impact specimens used in this study were 17.8-cm square panels that were centered and clamped over a 15.2-cm square hole in a 1.27-cm-thick steel plate. Three nominal plate thickness dimensions were studied, 1.0, 1.8, and 2.0 mm. For each thickness, all the specimens were taken from the same sheet of material. The projectile was a Ti-6Al-4V cylinder with a length of 25.4 mm, a diameter of 12.7 mm, and a mass ranging from 14.05 to 14.20 g. The projectiles were accelerated toward the specimens at normal incidence using a gas gun with a 2-m-long, 12.7-mm inner-diameter barrel. The ballistic limit for each heat treatment condition and thickness was determined by conducting a number of impact tests that bracketed as closely as possible the velocity

  17. Investigating the Impact of Optical Selection Effects on Observed Rest-frame Prompt GRB Properties

    NASA Astrophysics Data System (ADS)

    Turpin, D.; Heussaff, V.; Dezalay, J.-P.; Atteia, J.-L.; Klotz, A.; Dornic, D.

    2016-11-01

    Measuring gamma-ray burst (GRB) properties in their rest frame is crucial for understanding the physics at work in GRBs. This can only be done for GRBs with known redshifts. Since redshifts are usually measured from the optical spectrum of the afterglow, correlations between prompt and afterglow emissions may introduce biases into the distribution of the rest-frame properties of the prompt emission, especially considering that we measure the redshift of only one-third of Swift GRBs. In this paper, we study the optical flux of GRB afterglows and its connection to various intrinsic properties of GRBs. We also discuss the impact of the optical selection effect on the distribution of rest-frame prompt properties of GRBs. Our analysis is based on a sample of 90 GRBs with good optical follow-up and well-measured prompt emission. Seventy-six of them have a measure of redshift and 14 have no redshift. We compare the rest-frame prompt properties of GRBs with different afterglow optical fluxes in order to check for possible correlations between the promt properties and the optical flux of the afterglow. The optical flux is measured two hours after the trigger, which is a typical time for the measure of the redshift. We find that the optical flux of GRB afterglows in our sample is mainly driven by their optical luminosity and depends only slightly on their redshift. We show that GRBs with low and high afterglow optical fluxes have similar E {}{{pi}}, E {}{{iso}}, and L {}{{iso}}, indicating that the rest-frame distributions computed from GRBs with a redshift are not significantly distorted by optical selection effects. However, we found that the {T}90{rest} distribution is not immune to optical selection effects, which favor the selection of GRBs with longer durations. Finally, we note that GRBs well above the E {}{{pi}}-E {}{{iso}} relation have lower optical fluxes and we show that optical selection effects favor the detection of GRBs with bright optical afterglows located

  18. Tensile and Charpy impact properties of irradiated reduced-activation ferritic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1996-10-01

    Tensile tests were conducted on 8 reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on steels irradiated to 26-29 dpa. Irradiation was in Fast Flux Test Facility at 365 C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15- 17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20,000 h at 365 C. Thermal aging had little effect on tensile properties or ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in upper-shelf energy (USE). After 7 dpa, strength increased (hardened) and then remained relatively unchanged through 26-29 dpa (ie, strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness (increased DBTT, decreased USE) remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels had the most irradiation resistance.

  19. Impacts of land use changes on physical and chemical soil properties in the Central Pyrenees

    NASA Astrophysics Data System (ADS)

    Nadal Romero, Estela; Hoitinga, Leo; Valdivielso, Sergio; Pérez Cardiel, Estela; Serrano Muela, Pili; Lasanta, Teodoro; Cammeraat, Erik

    2015-04-01

    Soils and vegetation tend to evolve jointly in relation to climate evolution and the impacts of human activity. Afforestation has been one of the main policies for environmental management of forest landscapes in Mediterranean areas. Afforestation has been based mainly on conifers because they are fast-growing species, and also because it was believed that this would lead to rapid restoration of soil properties and hydrological processes, and the formation of protective vegetation cover. This study analyses the effects of afforestation on physical and chemical soil properties. Specifically, we addressed this research question: (i) How do soil properties change after land abandonment? The 11 microsites considered were: Afforestation Pinus sylvestris (escarpment, terrace and close to the stem), Afforestation Pinus nigra (escarpment, terrace and close to the stem), natural shrubland, grasslands, bare lands, and undisturbed forest site (pine cover and close to the stem). An extensive single sampling was carried out in September 2014. We systematically collected 5 top soil samples (0-10 cm) and 3 deep soil samples (10-20 cm) per microsite (88 composite samples in total). These properties were analysed: (i) soil texture, (ii) bulk density, (iii) pH and electrical conductivity, (iv) total SOC, (v) Total Nitrogen, (vi) organic matter, (vii) CaCO3 and (viii) aggregate stability. Statistical tests have been applied to determine relationships between the different soil properties and are used to assess differences between different soil samples, land use areas and soil depths. Implications of reafforestation for soil development and environmental response are discussed. Acknowledgments This research was supported by a Marie Curie Intra-European Fellowship in the project "MED-AFFOREST" (PIEF-GA-2013-624974).

  20. Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties

    NASA Astrophysics Data System (ADS)

    Ebmeier, S. K.; Sayer, A. M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-10-01

    The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The time-averaged indirect aerosol effects within 200 km downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002-2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002-2008) data. Retrievals of aerosol and cloud properties at Kīlauea (Hawai'i), Yasur (Vanuatu) and Piton de la Fournaise (la Réunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes - including those from passive degassing, Strombolian activity and minor explosions - lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2-8 μm at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Wm-2 at distances of 150-400 km from the volcano, with much greater local (< 80 km) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted, isolated marine settings may capture processes similar to

  1. Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties

    NASA Technical Reports Server (NTRS)

    Ebmeier, S.K.; Sayer, Andrew M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-01-01

    The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The timeaveraged indirect aerosol effects within 200 kilometers downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002-2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002- 2008) data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (la Reunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes - including those from passive degassing, Strombolian activity and minor explosions - lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2 - 8 micrometers at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Watts per square meter at distances of 150 - 400 kilometers from the volcano, with much greater local (less than 80 kilometers) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted

  2. Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice.

    PubMed

    Lee, H H; Loh, S P; Bong, C F J; Sarbini, S R; Yiu, P H

    2015-12-01

    Whole grains consumption promotes health benefits, but demonstrates controversial impacts from phytic acid in meeting requirements of good health. Therefore, this study was aimed to determine the nutrient bioaccessibility and antioxidant properties of rice cultivars named "Adan" or "Bario" and deduce the nutritional impact of phytic acid. Majority of the dehusked rice in the collection showed an acceptable level of in-vitro starch digestibility and in-vitro protein digestibility, but were poor in antioxidant properties and bioaccessibility of minerals (Ca, Fe and Zn). The drawbacks identified in the rice cultivars were due to relatively high phytic acid content (2420.6 ± 94.6 mg/100 g) and low phenolic content (152.39 ± 18.84 μg GAE/g). The relationship between phytic acid content and mineral bioaccessibility was strongest in calcium (r = 0.60), followed by iron (r = 0.40) and zinc (r = 0.27). Phytic acid content did not significantly correlate with in-vitro starch digestibility and in-vitro protein digestibility but showed a weak relationship with antioxidant properties. These suggest that phytic acid could significantly impair the mineral bioaccessibility of dehusked rice, and also act as an important antioxidant in non-pigmented rice. Bario rice cultivars offered dehusked rice with wide range of in-vitro digestibility of starch and protein, and also pigmented rice as a good source of antioxidants. However, there is a need to reduce phytic acid content in dehusked rice for improved mineral bioaccessibility among Bario rice cultivars.

  3. Impact of neutrino properties on the estimation of inflationary parameters from current and future observations

    NASA Astrophysics Data System (ADS)

    Gerbino, Martina; Freese, Katherine; Vagnozzi, Sunny; Lattanzi, Massimiliano; Mena, Olga; Giusarma, Elena; Ho, Shirley

    2017-02-01

    We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the ns/r plane, where ns is the scalar spectral index and r is the tensor-to-scalar ratio. We study the following neutrino properties: (i) the total neutrino mass Mν=∑i mi (where the index i =1 , 2, 3 runs over the three neutrino mass eigenstates); (ii) the number of relativistic degrees of freedom Neff at the time of recombination; and (iii) the neutrino hierarchy. Whereas previous literature assumed three degenerate neutrino masses or two massless neutrino species (approximations that clearly do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce <1 σ shift of the probability contours in the ns/r plane with both current or upcoming data. We find that the choice of neutrino hierarchy (normal, inverted, or degenerate) has a negligible impact. However, the minimal cutoff on the total neutrino mass Mν ,min=0 that accompanies previous works using the degenerate hierarchy does introduce biases in the ns/r plane and should be replaced by Mν ,min=0.059 eV as required by oscillation data. Using current cosmic microwave background (CMB) data from Planck and Bicep/Keck, marginalizing over the total neutrino mass Mν and over r can lead to a shift in the mean value of ns of ˜0.3 σ toward lower values. However, once baryon acoustic oscillation measurements are included, the standard contours in the ns/r plane are basically reproduced. Larger shifts of the contours in the ns/r plane (up to 0.8 σ ) arise for nonstandard values of Neff. We also provide forecasts for the future CMB experiments Cosmic Origins Explorer (COrE, satellite) and Stage-IV (ground-based) and show that the incomplete knowledge of neutrino properties, taken into account by a marginalization over Mν, could induce a shift

  4. The psychomechanics of simulated sound sources: material properties of impacted thin plates.

    PubMed

    McAdams, Stephen; Roussarie, Vincent; Chaigne, Antoine; Giordano, Bruno L

    2010-09-01

    Sounds convey information about the materials composing an object. Stimuli were synthesized using a computer model of impacted plates that varied their material properties: viscoelastic and thermoelastic damping and wave velocity (related to elasticity and mass density). The range of damping properties represented a continuum between materials with predominant viscoelastic and thermoelastic damping (glass and aluminum, respectively). The perceptual structure of the sounds was inferred from multidimensional scaling of dissimilarity judgments and from their categorization as glass or aluminum. Dissimilarity ratings revealed dimensions that were closely related to mechanical properties: a wave-velocity-related dimension associated with pitch and a damping-related dimension associated with timbre and duration. When asked to categorize sounds, however, listeners ignored the cues related to wave velocity and focused on cues related to damping. In both dissimilarity-rating and identification experiments, the results were independent of the material of the mallet striking the plate (rubber or wood). Listeners thus appear to select acoustical information that is reliable for a given perceptual task. Because the frequency changes responsible for detecting changes in wave velocity can also be due to changes in geometry, they are not as reliable for material identification as are damping cues.

  5. Dynamic performance of a static or throwing droplet impact onto a solid substrate with different properties

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Li, Ya-Dong

    2016-03-01

    The dynamic performance of a static or throwing droplet impact onto a solid substrate with different properties is numerically studied in this work. After being released or horizontally thrown out, a two-dimensional droplet can fall freely under gravity. The substrate, which is below the droplet, is either hydrophilic/hydrophobic or inhomogeneous. To conduct numerical simulations, a hybrid method is adopted, in which the flow field is solved by using the lattice Boltzmann method and the interface is captured by solving the Cahn-Hilliard equation directly. Given a fixed distance between the droplet and the substrate (H∗), the effects of Bond number (Bo), Weber number (We), and surface property on the performance of droplet impingement are investigated in detail. With the increase of Bond number, the surface coverage area of a static droplet also increases. A hydrophilic surface or an inhomogeneous surface with small advancing/receding angle difference can lead to the breakup of droplet rim due to the bubble entrapment. Moreover, dependent on the Weber number and the surface property, the leading edge rim of a throwing droplet developing on an inhomogeneous surface may break up before or after it contacts the substrate. As a result, compared to the case of static droplet, the surface coverage area will be reduced due to the diffusion of small droplet segment.

  6. Impact of gravels and organic matter on the thermal properties of grassland soils in southern France

    NASA Astrophysics Data System (ADS)

    Calvet, J.-C.; Fritz, N.; Berne, C.; Piguet, B.; Maurel, W.; Meurey, C.

    2015-06-01

    Soil moisture is the main driver of temporal changes in values of the soil thermal conductivity. The latter is a key variable in land surface models (LSMs) used in hydrometeorology, for the simulation of the vertical profile of soil temperature in relation to soil moisture. Shortcomings in soil thermal conductivity models tend to limit the impact of improving the simulation of soil moisture in LSMs. Models of the thermal conductivity of soils are affected by uncertainties, especially in the representation of the impact of soil properties such as the volumetric fraction of quartz (q), soil organic matter, and gravels. As soil organic matter and gravels are often neglected in LSMs, the soil thermal conductivity models used in most LSMs represent the mineral fine earth, only. Moreover, there is no map of q and it is often assumed that this quantity is equal to the volumetric fraction of sand. In this study, q values are derived by reverse modelling from the continuous soil moisture and soil temperature sub-hourly observations of the Soil Moisture Observing System - Meteorological Automatic Network Integrated Application (SMOSMANIA) network at 21 grassland sites in southern France, from 2008 to 2015. The soil temperature observations are used to retrieve the soil thermal diffusivity (Dh) at a depth of 0.10 m in unfrozen conditions, solving the thermal diffusion equation. The soil moisture and Dh values are then used together with the measured soil properties to retrieve soil thermal conductivity (λ) values. For ten sites, the obtained λ value at saturation (λsat) cannot be retrieved or is lower than the value corresponding to a null value of q, probably in relation to a high density of grass roots at these sites or to the presence of stones. For the remaining eleven sites, q is negatively correlated with the volumetric fraction of solids other than sand. The impact of neglecting gravels and organic matter on λsat is assessed. It is shown that these factors have a

  7. Radiopacifier Particle Size Impacts the Physical Properties of Tricalcium Silicate–based Cements

    PubMed Central

    Saghiri, Mohammad Ali; Gutmann, James L.; Orangi, Jafar; Asatourian, Armen; Sheibani, Nader

    2016-01-01

    Introduction The aim of this study was to evaluate the impact of radiopaque additive, bismuth oxide, particle size on the physical properties, and radiopacity of tricalcium silicate–based cements. Methods Six types of tricalcium silicate cement (CSC) including CSC without bismuth oxide, CSC + 10% (wt%) regular bismuth oxide (particle size 10 μm), CSC + 20% regular bismuth oxide (simulating white mineral trioxide aggregate [WMTA]) as a control, CSC + 10% nano bismuth oxide (particle size 50–80 nm), CSC + 20% nano-size bismuth oxide, and nano WMTA (a nano modification of WMTA comprising nanoparticles in the range of 40–100 nm) were prepared. Twenty-four samples from each group were divided into 4 groups and subjected to push-out, surface microhardness, radiopacity, and compressive strength tests. Data were analyzed by 1-way analysis of variance with the post hoc Tukey test. Results The push-out and compressive strength of CSC without bismuth oxide and CSC with 10% and 20% nano bismuth oxide were significantly higher than CSC with 10% or 20% regular bismuth oxide (P < .05). The surface micro-hardness of CSC without bismuth oxide and CSC with 10% regular bismuth oxide had the lowest values (P < .05). The lowest radiopacity values were seen in CSC without bismuth oxide and CSC with 10% nano bismuth oxide (P < .05). Nano WMTA samples showed the highest values for all tested properties (P < .05) except for radiopacity. Conclusions The addition of 20% nano bismuth oxide enhanced the physical properties of CSC without any significant changes in radiopacity. Regular particle-size bismuth oxide reduced the physical properties of CSC material for tested parameters. PMID:25492489

  8. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment.

    PubMed

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-21

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also

  9. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-01

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also

  10. Thermal Properties of Starch From New Corn Lines as Impacted by Environment and During Line Development

    SciTech Connect

    Lenihan, Elizabeth M

    2003-01-01

    The objectives of this research were to further characterize exotic by adapted corn inbreds by studying the impact of environment on their starch thermal properties, and investigating the development of starch thermal properties during kernel maturation by using differential scanning calorimetry (DSC). A method to expedite identification of unusual starch thermal traits was investigated by examining five corn kernels at a time, instead of one kernel, which the previous screening methods used. Corn lines with known thermal functions were blended with background starch (control) in ratios of unique starch to control starch, and analyzed by using DSC. Control starch was representative of typical corn starch. The values for each ratio within a mutant type were unique (α < 0.01) for most DSC measurements. These results supported the five-kernel method for rapidly screening large amounts of corn germplasm to identify unusual starch traits. The effects of 5 growing locations on starch thermal properties from exotic by adapted corn and Corn Belt lines were studied using DSC. The warmest location, Missouri, generally produced starch with greater gelatinization onset temperature (ToG), narrower range of gelatinization (RG), and greater enthalpy of gelatinization (ΔHG). The coolest location, Illinois, generally resulted in starch with lower ToG, wider RG, and lower ΔHG. Starch from the Ames 1 farm had thermal properties similar to those of Illinois, whereas starch from the Ames 2 farm had thermal properties similar to those of Missouri. The temperature at Ames 2 may have been warmer since it was located near a river; however, soil type and quality also were different. Final corn starch structure and function change during development and maturity. Thus, the changes in starch thermal properties during 5 stages of endosperm development from exotic by adapted corn and Corn Belt lines at two locations were

  11. Impact of Texture Heterogeneity on Elastic and Viscoelastic Properties of Carbonates

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi

    This thesis discusses the impacts of fabric heterogeneity, fluids and fluid saturations, effective pressures, and frequency of investigation on the elastic and viscoelastic properties of calcite-rich limestone and chalk formations. Carbonate reservoirs have been analyzed either with empirical relations and analogs from siliciclastic reservoirs or using simplistic models. However, under the varying parameters mentioned above, their seismic response can be very different. The primary reason is because these rocks of biochemical origins readily undergo textural changes and support heterogeneous distribution of fluid flow and elastic properties. Thus, many current rock physics models are unable to predict the time-lapse elastic response in these reservoirs. I have measured elastic properties of calcite rich rocks in the seismic frequency range of 2 to 2000 Hz and at the ultrasonic frequency of 800 kHz. The samples selected for this study represent the typical heterogeneities found in carbonate formations. These measurements covering a large frequency range provide an understanding of the dispersion and attenuation mechanisms during seismic wave propagation in the subsurface. I find that a heterogeneous formation shows significant velocity dispersion and attenuations when saturated with brine, and even more on saturation with CO2. I also show that the shear modulus of carbonate rocks changes significantly (from 8% for brine saturation to 70% for CO2 saturation) upon fluid saturation with polar fluids. I evaluated rock physics models, such as Gassmann's and with uniform and patchy fluid substitution, and Hashin-Shtrikman to predict saturated elastic properties in carbonates. Fluid sensitivity is directly related to the initial stiffness of the rock instead of porosity, as normally assumed. The Gassmann model can predict elastic properties for uniform saturations - mostly in homogenous rocks. Heterogeneous rocks, however, are better modeled using a patchy fluid saturation

  12. Spectral properties of Titan's impact craters imply chemical weathering of its surface.

    PubMed

    Neish, C D; Barnes, J W; Sotin, C; MacKenzie, S; Soderblom, J M; Le Mouélic, S; Kirk, R L; Stiles, B W; Malaska, M J; Le Gall, A; Brown, R H; Baines, K H; Buratti, B; Clark, R N; Nicholson, P D

    2015-05-28

    We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind. These observations support the idea that fluvial processes are active in Titan's equatorial regions.

  13. Impact of strain on the electronic properties of InAs/GaSb quantum well systems

    NASA Astrophysics Data System (ADS)

    Tiemann, L.; Mueller, S.; Wu, Q.-S.; Tschirky, T.; Ensslin, K.; Wegscheider, W.; Troyer, M.; Soluyanov, A. A.; Ihn, T.

    2017-03-01

    Electron-hole hybridization in InAs/GaSb double quantum well structures leads to the formation of a mini-band-gap. We experimentally and theoretically studied the impact of strain on the transport properties of this material system. Thinned samples were mounted to piezoelectric elements to exert strain along the [011] and [001] crystal directions. When the Fermi energy is tuned through the minigap, the resistivity at the charge neutrality point is found to be susceptible to external strain. In the electron and hole regimes, strain influences the Landau level structure. By analyzing the intrinsic strain from the epitaxial growth and the external strain from the piezo elements and combining our experimental results with numerical simulations of strained and unstrained quantum wells, we can illustrate why the InAs/GaSb material system is regularly found to be semimetallic.

  14. New method of the polymeric material properties experimental investigation under powerful energy flux impact

    NASA Astrophysics Data System (ADS)

    Demidov, B. A.; Efremov, V. P.; Kalinin, Yu G.; Kazakov, E. D.; Metelkin, S. Yu; Petrov, V. A.; Potapenko, A. I.

    2015-11-01

    Investigation of the polymeric material properties under powerfull energy flux impact is relevant as for basic research (mathematical modeling of polymeric materials behavior in extreme conditions, testing the state equations), as for practical applications (for testing of protective coatings for space research and laboratory facilities). This paper presents the results of experimental studies of the interaction of polymeric materials with a relativistic electron beam produced by a high-current electron accelerator Calamary. Calamary facility provides a wide range of electron beam parameters: diameter 10-15 mm, the voltage on the diode up to 300 kV, the current through the diode up to 30 kA. New method of beam-target interaction area measurement was developed. The original method for the mechanical kick impulse measuring based on piezoelectric vibration sensor was presented. The dependence of the kick impulse from the power flux was obtained.

  15. Spectral properties of Titan's impact craters imply chemical weathering of its surface

    PubMed Central

    Barnes, J. W.; Sotin, C.; MacKenzie, S.; Soderblom, J. M.; Le Mouélic, S.; Kirk, R. L.; Stiles, B. W.; Malaska, M. J.; Le Gall, A.; Brown, R. H.; Baines, K. H.; Buratti, B.; Clark, R. N.; Nicholson, P. D.

    2015-01-01

    Abstract We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind. These observations support the idea that fluvial processes are active in Titan's equatorial regions. PMID:27656006

  16. Changes in the properties of solonetzic soil complexes in the dry steppe zone under anthropogenic impacts

    NASA Astrophysics Data System (ADS)

    Lyubimova, I. N.; Novikova, A. F.

    2016-05-01

    Long-term studies of changes in the properties of solonetzic soil complexes of the dry steppe zone under anthropogenic impacts (deep plowing, surface leveling, irrigation, and post-irrigation use) have been performed on the Privolzhskaya sand ridge and the Khvalyn and Ergeni plains. The natural morphology of solonetzic soils was strongly disturbed during their deep ameliorative plowing. At present, the soil cover consists of solonetzic agrozems (Sodic Protosalic Cambisols (Loamic, Aric, Protocalcic)), textural (clay-illuvial) calcareous agrozems (Eutric Cambisols (Loamic, Aric, Protocalcic)), agrosolonetzes (Endocalcaric Luvisols (Loamic, Aric, Cutanic, Protosodic), agrochestnut soils (Eutric Cambisols (Siltic, Aric)), and meadowchestnut soils (Haplic Kastanozems). No features attesting to the restoration of the initial profile of solonetzes have been found. The dynamics of soluble salts and exchangeable sodium differ in the agrosolonetzes and solonetzic agrozems. A rise in pH values takes place in the middle part of the soil profiles on the Khvalyn and Ergeni plains.

  17. Impact of finite temperatures on the transport properties of Gd from first principles

    NASA Astrophysics Data System (ADS)

    Chadova, K.; Mankovsky, S.; Minár, J.; Ebert, H.

    2017-03-01

    Finite-temperature effects have a pronounced impact on the transport properties of solids. In magnetic systems, besides the scattering of conduction electrons by impurities and phonons, an additional scattering source coming from the magnetic degrees of freedom must be taken into account. A first-principle scheme which treats all these scattering effects on equal footing was recently suggested within the framework of the multiple scattering formalism. Employing the alloy analogy model treated by means of the CPA, thermal lattice vibrations and spin fluctuations are effectively taken into account. In the present work the temperature dependence of the longitudinal resistivity and the anomalous Hall effect in the strongly correlated metal Gd is considered. The comparison with experiments demonstrates that the proposed numerical scheme does provide an adequate description of the electronic transport at finite temperatures.

  18. Experimental investigation into the effects of meteoritic impacts on the spectral properties of phyllosilicates on Mars

    NASA Astrophysics Data System (ADS)

    Gavin, P.; Chevrier, V.; Ninagawa, K.; Gucsik, A.; Hasegawa, S.

    2013-01-01

    Phyllosilicates have been identified in some of the most highly cratered Noachian terrains on Mars. To study the effects of such impacts on the properties of phyllosilicates, we experimentally shocked six phyllosilicate minerals relevant to the Martian surface: montmorillonite, nontronite, kaolinite, prehnite, chlorite, and serpentine. The shock-treated samples were analyzed with X-ray diffraction (XRD), near- and mid-infrared (NIR and MIR) spectroscopy, Raman spectroscopy, cathodoluminescence (CL), and the shock pressures and temperatures in some were modeled using Autodyn modeling software. XRD data show that the structure of each mineral, except prehnite, underwent partial structural deformation or amorphization. We also found that while the NIR spectra of shocked samples were very similar to that of the original sample, the MIR spectra changed significantly. This may explain some of the discrepancies between CRISM/OMEGA data (NIR) and TES/THEMIS (MIR) observations of phyllosilicates on Mars. Quartz was identified as a secondary phase in the XRD of shocked chlorite.

  19. Morphology and properties of poly vinyl alcohol (PVA) scaffolds: impact of process variables.

    PubMed

    Ye, Mao; Mohanty, Pravansu; Ghosh, Gargi

    2014-09-01

    Successful engineering of functional biological substitutes requires scaffolds with three-dimensional interconnected porous structure, controllable rate of biodegradation, and ideal mechanical strength. In this study, we report the development and characterization of micro-porous PVA scaffolds fabricated by freeze drying method. The impact of molecular weight of PVA, surfactant concentration, foaming time, and stirring speed on pore characteristics, mechanical properties, swelling ratio, and rate of degradation of the scaffolds was characterized. Results show that a foaming time of 60s, a stirring speed of 1,000 rpm, and a surfactant concentration of 5% yielded scaffolds with rigid structure but with interconnected pores. Study also demonstrated that increased foaming time increased porosity and swelling ratio and reduced the rigidity of the samples.

  20. Thermal Properties of Methane Hydrate by Experiment and Modeling and Impacts on Technology

    SciTech Connect

    Warzinski, R.P.; Gamwo, I.K.; Rosenbaum, E.M.; Jiang, Hao; Jordan, K.D.; English, N.J.; Shaw, D.W.

    2008-07-01

    Thermal properties of pure methane hydrate, under conditions similar to naturally occurring hydrate-bearing sediments being considered for potential production, have been determined both by a new experimental technique and by advanced molecular dynamics simulation (MDS). A novel single-sided, Transient Plane Source (TPS) technique has been developed and used to measure thermal conductivity and thermal diffusivity values of low-porosity methane hydrate formed in the laboratory. The experimental thermal conductivity data are closely matched by results from an equilibrium MDS method using in-plane polarization of the water molecules. MDS was also performed using a non-equilibrium model with a fully polarizable force field for water. The calculated thermal conductivity values from this latter approach were similar to the experimental data. The impact of thermal conductivity on gas production from a hydrate-bearing reservoir was also evaluated using the Tough+/Hydrate reservoir simulator.

  1. Impact of observational incompleteness on the structural properties of protein interaction networks

    NASA Astrophysics Data System (ADS)

    Kuhnt, Mathias; Glauche, Ingmar; Greiner, Martin

    2007-01-01

    The observed structure of protein interaction networks is corrupted by many false positive/negative links. This observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts extracted from the yeast data. This underlines the importance to take a precise modeling of the observational incompleteness into account when network structure models are to be quantitatively compared to data.

  2. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls.

    PubMed

    Vaezi, Ali Reza; Ahmadi, Morvarid; Cerdà, Artemi

    2017-04-01

    Soil erosion by water is a three-phase process that consists of detachment of soil particles from the soil mass, transportation of detached particles either by raindrop impact or surface water flow, and sedimentation. Detachment by raindrops is a key component of the soil erosion process. However, little information is available on the role of raindrop impact on soil losses in the semi-arid regions where vegetation cover is often poor and does not protect the soil from rainfall. The objective of this study is to determine the contribution of raindrop impact to changes in soil physical properties and soil losses in a semiarid weakly-aggregated agricultural soil. Soil losses were measured under simulated rainfalls of 10, 20, 30, 40, 50, 60 and 70mmh(-1), and under two conditions: i) with raindrop impact; and, ii) without raindrop impact. Three replications at each rainfall intensity and condition resulted in a total of 42 microplots of 1m×1.4m installed on a 10% slope according to a randomized complete block design. The contribution of raindrop impact to soil loss was computed using the difference between soil loss with raindrop impact and without raindrop impact at each rainfall intensity. Soil physical properties (aggregate size, bulk density and infiltration rate) were strongly damaged by raindrop impact as rainfall intensity increased. Soil loss was significantly affected by rainfall intensity under both soil surface conditions. The contribution of raindrop impact to soil loss decreased steadily with increasing rainfall intensity. At the lower rainfall intensities (20-30mmh(-1)), raindrop impact was the dominant factor controlling soil loss from the plots (68%) while at the higher rainfall intensities (40-70mmh(-1)) soil loss was mostly affected by increasing runoff discharge. At higher rainfall intensities the sheet flow protected the soil from raindrop impact.

  3. Depth-diameter ratios for Martian impact craters: Implications for target properties and episodes of degradation

    NASA Astrophysics Data System (ADS)

    Barlow, N. G.

    This study determines crater depth through use of photoclinometric profiles. Random checks of the photoclinometric results are performed using shadow estimation techniques. The images are Viking Orbiter digital format frames; in cases where the digital image is unusable for photoclinometric analysis, shadow estimation is used to determine crater depths. The two techniques provide depth results within 2 percent of each other. Crater diameters are obtained from the photoclinometric profiles and checked against the diameters measured from the hard-copy images using a digitizer. All images used in this analysis are of approximately 40 m/pixel resolution. The sites that have been analyzed to date include areas within Arabia, Maja Valles, Memnonia, Acidalia, and Elysium. Only results for simple craters (craters less than 5 km in diameter) are discussed here because of the low numbers of complex craters presently measured in the analysis. General results indicate that impact craters are deeper than average. A single d/D relationship for fresh impact craters on Mars does not exist due to changes in target properties across the planet's surface. Within regions where target properties are approximately constant, however, d/D ratios for fresh craters can be determined. In these regions, the d/D ratios of nonpristine craters can be compared with the fresh crater d/D relationship to obtain information on relative degrees of crater degradation. This technique reveals that regional episodes of enhanced degradation have occurred. However, the lack of statistically reliable size-frequency distribution data prevents comparison of the relative ages of these events between different regions, and thus determination of a large-scale episode (or perhaps several episodes) cannot be made at this time.

  4. Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells.

    PubMed

    Zhang, Wen; Hughes, Joseph; Chen, Yongsheng

    2012-06-01

    Despite a wealth of studies examining the toxicity of engineered nanomaterials, current knowledge on their cytotoxic mechanisms (particularly from a physical perspective) remains limited. In this work, we imaged and quantitatively characterized the biomechanical (hardness and elasticity), adhesive, and surface electrical properties of Escherichia coli cells with and without exposure to hematite nanoparticles (NPs) in an effort to advance our understanding of the cytotoxic impacts of nanomaterials. Both scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that E. coli cells had noticeable deformation with hematite treatment for 45 min with a statistical significance. The hematite-treated cells became significantly harder or stiffer than untreated ones, as evidenced by indentation and spring constant measurements. The average indentation of the hematite-treated E. coli cells was 120 nm, which is significantly lower (P < 0.01) than that of the untreated cells (approximately 400 nm). The spring constant of hematite-treated E. coli cells (0.28 ± 0.11 nN/nm) was about 20 times higher than that of untreated ones (0.01 ± 0.01 nN/nm). The zeta potential of E. coli cells, measured by dynamic light scattering (DLS), was shown to shift from -4 ± 2 mV to -27 ± 8 mV with progressive surface adsorption of hematite NPs, a finding which is consistent with the local surface potential measured by Kelvin probe force microscopy (KPFM). Overall, the reported findings quantitatively revealed the adverse impacts of nanomaterial exposure on physical properties of bacterial cells and should provide insight into the toxicity mechanisms of nanomaterials.

  5. Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, O.; Gharaylou, M.

    2017-03-01

    Through modifying the number concentration and size of cloud droplets, aerosols have intricate impacts on radiative and microphysical properties of clouds, which together influence precipitation processes. Aerosol-cloud interactions for a mid-latitude convective cloud system are investigated using a two-moment aerosol-aware bulk microphysical scheme implemented into the Weather Research and Forecasting (WRF) model. Three sensitivity experiments with initial identical dynamic and thermodynamic conditions, but different cloud-nucleating aerosol concentrations were conducted. Increased aerosol number concentration has resulted in more numerous cloud droplets of overall smaller sizes, through which the optical properties of clouds have been changed. While the shortwave cloud forcing is significantly increased in more polluted experiments, changes in the aerosol number concentration have negligible impacts on the longwave cloud forcing. For the first time, it is found that polluted clouds have higher cloud base heights, the feature that is caused by more surface cooling due to a higher shortwave cloud forcing, as well as a drier boundary layer in the polluted experiment compared to the clean. The polluted experiment was also associated with a higher liquid water content (LWC), caused by an increase in the number of condensation of water vapor due to higher concentration of hygroscopic aerosols acting as condensation nuclei. The domain-averaged accumulated precipitation is little changed under both polluted and clean atmosphere. Nevertheless, changes in the rate of precipitation are identified, such that under polluted atmosphere light rain is reduced, while both moderate and heavy rain are intensified, confirming the fact that if an ample influx of water vapor exists, an increment of hygroscopic aerosols can increase the amount of precipitation.

  6. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Barnard, Amanda S.

    2016-07-01

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove

  7. Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties.

    PubMed

    Zhang, Xin; Scott, Tom; Socha, Tyler; Nielsen, David; Manno, Michael; Johnson, Melissa; Yan, Yuqi; Losovyj, Yaroslav; Dowben, Peter; Aydil, Eray S; Leighton, Chris

    2015-07-01

    The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe(1-δ)S) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe(1-δ)S formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe(1-δ)S minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe(1-δ)S nanoregions in an FeS2 matrix), followed by metallicity when Fe(1-δ)S dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.

  8. Effect of single aging on microstructure and impact property of INCONEL X-750

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Sinha, A. K.; Moore, J. J.

    1985-05-01

    The microstructural changes and grain boundary chemistry of high strength, age hardenable Ni-Cr-Fe alloy, INCONEL * X-750, have been studied using electron and Auger microscopy following a sequence of thermal treatments in the carbide precipitation temperature zone of 704 ‡C to 871 ‡C. The thermal treatment consisted of a solution anneal and quench from 1075 ‡C followed by aging up to 200 hours in this temperature region. An attempt has been made to correlate the microstructural data with Charpy impact test results, hardness values, and modified Huey Corrosion Test results (ASTM G28-72). Aging was conducted in a vacuum and in air from which the specimens were cooled at different rates. Aging at 871 ‡C for 50 to 100 hours under both air and vacuum furnace cooling conditions resulted in increased mechanical strength and corrosion resistance compared with aging at 704 ‡C or 760 ‡C, in which temperature range both apparent fracture toughness and corrosion rate deteriorate. The reprecipitation of secondary carbides along with a possible 17 phase precipitation upon aging at 871 ‡C for 200 hours under vacuum furnace cooling resulted in poor corrosion resistance and inferior impact properties.

  9. Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens

    NASA Astrophysics Data System (ADS)

    Shahali, Y.; Pourpak, Z.; Moin, M.; Zare, A.; Majd, A.

    2009-02-01

    Epidemiological studies have demonstrated that urbanization and high levels of vehicle emissions correlated with the increasing trend of pollen-induced respiratory allergies. Numerous works have investigated the role of pollutants in the pathogenesis of respiratory diseases but impacts of anthropogenic pollution on pollen allergenic properties are still poorly understood. The objective of this survey was to evaluate impacts of the traffic-related pollution on the structure and allergenic protein content of Arizona cypress (Cupressus arizonica, CA) pollens, recognized as a rising cause of seasonal allergy in various regions worldwide. According to our results, traffic-related air pollution by its direct effects on the elemental composition of pollens considerably increased the fragility of the pollen exine, causing numerous cracks in its surface and facilitating pollen content liberation. Pollen grains were also covered by numerous submicronic orbicules which may act as effective vectors for pollen-released components into the lower regions of respiratory organs. On the other hand, this study provides us reliable explications about the low efficiency of standard commercial allergens in the diagnosis of the Arizona cypress pollen allergy in Tehran. Although traffic related pollution affects the allergenic components of CA pollens, the repercussions on the respiratory health of urban populations have yet to be clarified and need further investigations.

  10. Uniaxial Properties versus Temperature, Creep and Impact Energy of an Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Brnic, Josip; Turkalj, Goran; Krscanski, Sanjin; Vukelic, Goran; Canadija, Marko

    2017-02-01

    In this paper, uniaxial material properties, creep resistance and impact energy of the austenitic heat-resistant steel (1.4841) are experimentally determined and analysed. Engineering stress-strain diagrams and uniaxial short-time creep curves are examined with computer-controlled testing machine. Impact energy has been determined and fracture toughness assessed. Investigated data are shown in the form of curves related to ultimate tensile strength, yield strength, modulus of elasticity and creep resistance. All of these experimentally obtained results are analysed and may be used in the design process of the structure where considered material is intended to be applied. Based on these results, considered material may be classified as material of high tensile strength (688 MPa/293 K; 326 MPa/923 K) and high yield strength (498 MPa/293 K; 283 MPa/923 K) as well as satisfactory creep resistance (temperature/stress → to strain (%) at 1,200 min: 823 K/167 MPa → to 0.25 %; 923 K/85 MPa → to 0.2 %).

  11. Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole.

    PubMed

    Sun, Binbin; Lian, Fei; Bao, Qiongli; Liu, Zhongqi; Song, Zhengguo; Zhu, Lingyan

    2016-07-01

    The interaction between biochar (BC) and antibiotics with the presence of low molecular weight organic acids (LMWOAs) is largely unknown, although it is crucial for understanding the role of BC in reducing the bioavailability of antibiotics in rhizosphere. The impacts of two typical LMWOAs (citric and malic acids) on sorption of sulfamethoxazole (SMX) by crop-straw BCs produced at 300 °C (BCs300) and 600 °C (BCs600), respectively, were examined. The sorption of SMX on BCs increased more than 5 times with the concentration of LMWOAs increasing from 0 to 100 mmol/L, which was mainly attributed to the elevated microporosity of BCs (measured by CO2) after treated by LMWOAs. The pore development of BCs was mainly derived from the release of dissolved organic residues from BC by LMWOA washing. For H2O2-oxidized BCs, however, LMWOAs had little effect on SMX sorption by BCs300 but greatly increased that by BCs600, which can be explained by the distinct sorption mechanisms of SMX on BCs300 and BCs600. These results indicate that the impact of LMWOAs on SMX sorption is highly dependent on the properties of BCs and LMWOAs, as well as their interaction mechanisms.

  12. The influence of body mass index and gender on the impact attenuation properties of flooring systems.

    PubMed

    Bhan, Shivam; Levine, Iris; Laing, Andrew C

    2013-12-01

    The biomechanical effectiveness of safety floors has never been assessed during sideways falls with human volunteers. Furthermore, the influence of body mass index (BMI) and gender on the protective capacity of safety floors is unknown. The purpose of this study was to test whether safety floors provide greater impact attenuation compared with traditional flooring, and whether BMI and gender modify their impact attenuation properties. Thirty participants (7 men and 7 women of low BMI; 7 men and 9 women of high BMI) underwent lateral pelvis release trials on 2 common floors and 4 safety floors. As a group, the safety floors reduced peak force (by up to 11.7%), and increased the time to peak force (by up to 25.5%) compared with a traditional institutional grade floor. Force attenuation was significantly higher for the low BMI group, and for males. Force attenuation was greatest for the low BMI males, averaging 26.5% (SD = 3.0) across the safety floors. These findings demonstrate an overall protective effect of safety floors during lateral falls on the pelvis, but also suggest augmented benefits for frail older adults (often with low body mass) who are at an increased risk of hip fracture.

  13. PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K

    2005-09-28

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1-7 C min{sup -1} in perforated pans and of 0.1-1.0 C min{sup -1} in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 and 240 C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity.

  14. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  15. A review of some effects of helium on charpy impact properties of ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.; Hankin, G. L.; Hamilton, M. L.

    1998-10-01

    To evaluate the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of earlier tests performed by other researchers on specimens irradiated in reactors with very different neutron spectra, and evaluation of isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400°C to 100 dpa and 1000 appm He will result in a ductile-to-brittle transition temperature (DBTT) shift of over 500°C. However, it can be shown that the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in High Flux Isotope Reactor (HFIR). The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  16. Evaluating the impact of aquifer layer properties on geomechanical response during CO2 geological sequestration

    SciTech Connect

    Bao, Jie; Xu, Zhijie; Lin, Guang; Fang, Yilin

    2013-04-01

    Numerical models play an essential role in understanding the facts of carbon dioxide (CO2) geological sequestration in the life cycle of a storage reservoir. We present a series of test cases that reflect a broad and realistic range of aquifer reservoir properties to systematically evaluate and compare the impacts on the geomechanical response to CO2 injection. In this study, a coupled hydro-mechanical model was introduced to simulate the sequestration process, and a quasi-Monte Carlo sampling method was introduced to efficiently sample the value of aquifer properties and geometry parameters. Aquifer permeability was found to be of significant importance to the geomechanical response to the injection. To study the influence of uncertainty of the permeability distribution in the aquifer, an additional series of tests is presented, based on a default permeability distribution site sample with various distribution deviations generated by the Monte Carlo sampling method. The results of the test series show that different permeability distributions significantly affect the displacement and possible failure zone.

  17. Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions

    SciTech Connect

    Ching, Ping Pui; Riemer, Nicole; West, Matthew

    2016-05-27

    Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcel cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.

  18. Impact of microbial transglutaminase on gelling properties of Indian mackerel fish protein isolates.

    PubMed

    Chanarat, Sochaya; Benjakul, Soottawat

    2013-01-15

    Impacts of microbial transglutaminase (MTGase) (0-0.6 units/g sample) on gel properties of Indian mackerel unwashed mince, surimi and protein isolates with and without prewashing were studied. Generally, lower myoglobin and lipid contents were found in protein isolate with and without prewashing, compared to those of unwashed mince and surimi (P<0.05). Protein isolate had the decreased Ca(2+)-ATPase and protein solubility, indicating protein denaturation. When MTGase was incorporated, breaking force and deformation of all gels markedly increased, especially as MTGase levels increased (P<0.05). At the same MTGase level, gel from protein isolate with prewashing exhibited the highest breaking force and deformation (P<0.05). The addition of MTGase could lower the expressible moisture content of most gels. No change in whiteness of gel was observed with the addition of MTGase (P>0.05), but gel from protein isolate gels had decreased whiteness as MTGase at high level was added. The microstructure of protein isolate gels without prewashing showed a similar network to unwashed mince gels, whilst a similar network was observed between surimi gel and gel from protein isolate with prewashing. Nevertheless, a larger void was noticeable in gels from protein isolates. All gels incorporated with MTGase (0.6 units/g) showed a slightly denser network than those without MTGase. Thus, gel with improved properties could be obtained from protein isolate from Indian mackerel with added MTGase.

  19. Impact of Inconsistencies in Experimental Thermodynamic Data on Thermophysical Properties of Planetary Mantles

    NASA Astrophysics Data System (ADS)

    Jacobs, M. H.; de Jong, B. H.; Matas, J.; van den Berg, A. P.

    2004-12-01

    A new thermodynamic analysis has been performed on experimental thermophysical and phase diagram data of (Mg,Fe)2SiO_4 olivine, wadsleyite and ringwoodite solid solutions. The analysis demonstrates that large inconsistencies exist in the V- P- T data of wadsleyite and ringwoodite. It has been suggested in recent literature that a hydration effect is able to explain the large differences in volume measured by several independent groups of investigators [1,2]. However, this hydration effect does not explain the combination of a large measured volume associated with a large measured bulk modulus for a number of experimental V- P- T data sets [3-7]. We show the effects of the inconsistencies on the calculated phase diagram, bulk sound velocities and other thermodynamic properties. We have applied our thermodynamic analysis to iron rich compositions at pressure/temperature/iron content conditions representative for the mantles of Earth and Mars. For these conditions a strong compositional effect on thermodynamic properties in two- phase regions is observed from our thermodynamic model. This compositional effect is associated with the slopes of two- phase boundaries in pressure- composition and temperature- composition phase diagrams leading to a change up to 100% or more for specific thermodynamic properties thermal expansivity α , specific heat cP and bulk modulus kS. The amplitude of the anomalies increases with iron content larger than 10%. These anomalous two-phase zones, where olivine transforms to ringwoodite via wadsleyite, cover a pressure range of about 5 GPa. In the Earth's mantle transition zone these two-phase zones therefore occupy a depth range of some 150 km and the impact of these strong variations in α and cP on mantle dynamics may be limited. Planet Mars with its weaker gravity field and reduced pressure gradient is an environment more susceptible to the impact of these two-phase compositional effects, even more so since the iron content of the

  20. Impact of effective ocean optical properties on the Pacific subtropical cell: a CGCM study

    NASA Astrophysics Data System (ADS)

    Yamanaka, G.; Tsujino, H.; Ishizaki, H.; Nakano, H.; Hirabara, M.

    2012-12-01

    The choice of ocean radiant scheme is important for modeling the upper ocean. According to the ocean-only simulation (Yamanaka et al., 2012), introduction of the chlorophyll-a dependent ocean radiant scheme results in the decreased mixed layer depth (MLD), the enhanced subtropical cell (STC), and the cooling of the eastern tropical Pacific sea surface temperature (SST). They also found that the enhanced STC results from the velocity profile change associated with the decreased Ekman boundary layer. However, the impact is not well understood when the air-sea feedback process is at work. This study examines the impact of the effective ocean optical properties on the Pacific mean fields, especially focusing on the STC, using a coupled general circulation model (CGCM). The CGCM we employed is the Meteorological Research Institute Earth System Model (MRI-ESM1). The atmospheric model is TL159L48, and the ocean model has a horizontal resolution of 1 x 0.5 deg. with 51 levels in vertical. Experimental design basically follows the CMIP5 protocol. Two experiments (CTL and SLR runs) are performed to investigate the impact of the effective ocean optical properties. In the CTL run, a conventional ocean radiant heating scheme (Paul and Simpson, 1977) is used, whereas a new ocean radiant heating scheme is used in the SLR run, where the satellite-derived chlorophyll-a distribution is taken into consideration based on Morel and Antoine (1994) as well as the effect of the varying solar angle (Ishizaki and Yamanaka, 2010). Each experiment is integrated during the period from 1985 to 2005. It is found that introduction of the new ocean radiant scheme (SLR run) changes the long-term mean wind pattern in the Pacific: easterly winds are strengthened in the equatorial Pacific, but weakened in the off-equatorial region. In the tropical Pacific, the enhanced equatorial upwelling cools the equatorial SST and the MLD becomes shallower. This is similar to the ocean-only simulation, but is more

  1. Impact of Steel Fiber Size and Shape on the Mechanical Properties of Ultra-High Performance Concrete

    DTIC Science & Technology

    2015-08-01

    ER D C/ G SL T R- 15 -2 2 Impact of Steel Fiber Size and Shape on the Mechanical Properties of Ultra-High Performance Concrete G eo te...Performance Concrete Dylan A. Scott, Wendy R. Long, Robert D. Moser, Brian H. Green, James L. O’Daniel, and Brett A. Williams Geotechnical and...Performance Concrete Project ERDC/GSL TR-15-22 ii Abstract This investigation focused on identifying the impact of various steel fiber types

  2. Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material

    SciTech Connect

    Yang, Xiaoyu Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu

    2014-05-07

    The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

  3. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  4. A Review of the Property Value Approach to Measuring the Welfare Impact of an Externality Excerpt from NUREG/CR-0989, PNL-2952 Vol. II Appendix B

    SciTech Connect

    RC. Adams

    1980-08-01

    This paper reviews 1) the quantitative measurement of the welfare impact due to an externality and 2) the empirical estimation of the welfare impact of an externality using the property value approach.

  5. Perceived Impact of a Land and Property Rights Program on Violence Against Women in Rural Kenya: A Qualitative Investigation.

    PubMed

    Hilliard, Starr; Bukusi, Elizabeth; Grabe, Shelly; Lu, Tiffany; Hatcher, Abigail M; Kwena, Zachary; Mwaura-Muiru, Esther; Dworkin, Shari L

    2016-03-06

    The current study focuses on a community-led land and property rights program in two rural provinces in western Kenya. The program was designed to respond to women's property rights violations to reduce violence against women and HIV risks at the community level. Through in-depth interviews with 30 women, we examine the perceived impact that this community-level property rights program had on violence against women at the individual and community level. We also examine perceptions as to how reductions in violence were achieved. Finally, we consider how our findings may aid researchers in the design of structural violence-prevention strategies.

  6. The impact of subgroup type and subgroup configurational properties on work team performance.

    PubMed

    Carton, Andrew M; Cummings, Jonathon N

    2013-09-01

    Scholars have invoked subgroups in a number of theories related to teams, yet certain tensions in the literature remain unresolved. In this article, we address 2 of these tensions, both relating to how subgroups are configured in work teams: (a) whether teams perform better with a greater number of subgroups and (b) whether teams perform better when they have imbalanced subgroups (majorities and minorities are present) or balanced subgroups (subgroups are of equal size). We predict that the impact of the number and balance of subgroups depends on the type of subgroup-whether subgroups are formed according to social identity (i.e., identity-based subgroups) or information processing (i.e., knowledge-based subgroups). We first propose that teams are more adversely affected by 2 identity-based subgroups than by any other number, yet the uniquely negative impact of a 2-subgroup configuration is not apparent for knowledge-based subgroups. Instead, a larger number of knowledge-based subgroups is beneficial for performance, such that 2 subgroups is worse for performance when compared with 3 or more subgroups but better for performance when compared with no subgroups or 1 subgroup. Second, we argue that teams perform better when identity-based subgroups are imbalanced yet knowledge-based subgroups are balanced. We also suggest that there are interactive effects between the number and balance of subgroups-however, the nature of this interaction depends on the type of subgroup. To test these predictions, we developed and validated an algorithm that measures the configurational properties of subgroups in organizational work teams. Results of a field study of 326 work teams from a multinational organization support our predictions.

  7. Impact of gas injection on the apparent viscosity and viscoelastic property of waste activated sewage sludge.

    PubMed

    Bobade, Veena; Baudez, Jean Christophe; Evans, Geoffery; Eshtiaghi, Nicky

    2017-05-01

    Gas injection is known to play a major role on the particle size of the sludge, the oxygen transfer rate, as well as the mixing efficiency of membrane bioreactors and aeration basins in the waste water treatment plants. The rheological characteristics of sludge are closely related to the particle size of the sludge floc. However, particle size of sludge floc depends partly on the shear induced in the sludge and partly on physico-chemical nature of the sludge. The objective of this work is to determine the impact of gas injection on both the apparent viscosity and viscoelastic property of sludge. The apparent viscosity of sludge was investigated by two methods: in-situ and after sparging. Viscosity curves obtained by in-situ measurement showed that the apparent viscosity decreases significantly from 4000 Pa s to 10 Pa s at low shear rate range (below 10 s(-1)) with an increase in gas flow rate (0.5LPM to 3LPM); however the after sparging flow curve analysis showed that the reduction in apparent viscosity throughout the shear rate range is negligible to be displayed. Torque and displacement data at low shear rate range revealed that the obtained lower apparent viscosity in the in-situ method is not the material characteristics, but the slippage effect due to a preferred location of the bubbles close to the bob, causing an inconsistent decrease of torque and increase of displacement at low shear rate range. In linear viscoelastic regime, the elastic and viscous modulus of sludge was reduced by 33% & 25%, respectively, due to gas injection because of induced shear. The amount of induced shear measured through two different tests (creep and time sweep) were the same. The impact of this induced shear on sludge structure was also verified by microscopic images.

  8. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah T.; Valiant, Gregory J.

    2006-10-01

    The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3-50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5-2.0 times deeper (≥5σo difference) with >50% larger cavities (≥2σo) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45-70% of their transient cavity volumes, while highland craters preserve only 25-50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9-12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through

  9. Quantifying the impact of AGN and nebular emission on stellar population properties with REBETIKO

    NASA Astrophysics Data System (ADS)

    Cardoso, L. S. M.; Gomes, J. M.; Papaderos, P.

    2016-06-01

    Spectral synthesis enables the reconstruction of the star formation and chemical evolution histories (SFH & CEH) of a galaxy that are encoded in its spectral energy distribution (SED). Most state-of-the-art population synthesis codes however consider only purely stellar emission and are hence inadequate for modelling studies of galaxies where non-stellar emission components contribute significantly to the SED. This work combines evolutionary and population synthesis techniques to quantify the impact of active galactic nucleus (AGN) and nebular emission on the determination of the stellar population properties in galaxies. We have developed an evolutionary synthesis code called REBETIKO - Reckoning galaxy Emission By means of Evolutionary Tasks with Input Key Observables - to compute and study the time evolution of the SED of AGN-hosts and starburst galaxies. Our code takes into account the main ingredients of a galaxy's SED (e.g. non-thermal emission and/or nebular continuum and lines) for various commonly used parameterizations of the SFH, such as instantaneous burst, constant, exponentially decreasing, and gradually increasing peaking at a redshift between 1-10. Synthetic SEDs computed with REBETIKO have been subsequently fitted with the STARLIGHT population synthesis code (PSC) which can be regarded as representative for currently available state-of-the-art (i.e. purely stellar) PSCs. The objective is to study the impact of non-stellar SED components on the recovery of the true total stellar mass M_{star} and SFH of a galaxy, as well as other evolutionary properties, such as CEH and light- and mass-weighted mean stellar age and metallicity. We find that purely stellar fits in galaxies with a strong non-stellar continuum (e.g. Seyfert and/or starburst galaxies) can for instance overestimate M_{star} by up to 3 orders of magnitude, while the mean stellar age and metallicity can deviate from their true values up to 2 and 4 dex, respectively. These results imply

  10. 76 FR 30319 - Real Property Master Plan Programmatic Environmental Impact Statement, at Yuma Proving Ground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... the installation. Resource areas that may be impacted include air quality, airspace, traffic, noise... Programmatic Environmental Impact Statement, at Yuma Proving Ground, Arizona AGENCY: Department of the Army, Do... Environmental Impact Statement (PEIS) to analyze the environmental impacts resulting from adoption...

  11. School Improvement and Urban Renewal: The Impact of a Turnaround School's Performance on Real Property Values in Its Surrounding Community

    ERIC Educational Resources Information Center

    Jacobson, Stephen L.; Szczesek, Jill

    2013-01-01

    This study investigates the economic impact of a "turnaround" school on real property values in its surrounding community as related to the argument introduced by Tiebout in 1956 correlating local public goods, in this case school success, to housing-location decision making. Using single-family home sales found on the Multiple Listing System and…

  12. Impact of the substitution of rice bran on rheological properties of dough and in the new product development.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice bran is a nutrient-rich co-product of the rice milling industries. The impact of adding 2-20% rice bran in wheat flour on the rheological behavior of the dough was investigated using the instruments, Farinograph, Consistograph, and Alveograph. The changes in physico-chemical properties were fo...

  13. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    SciTech Connect

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2009-12-02

    With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering wind power development nearby, there is an urgent need to empirically investigate common community concerns about wind project development. The concern that property values will be adversely affected by wind energy facilities is commonly put forth by stakeholders. Although this concern is not unreasonable, given property value impacts that have been found near high voltage transmission lines and other electric generation facilities, the impacts of wind energy facilities on residential property values had not previously been investigated thoroughly. The present research collected data on almost 7,500 sales of singlefamily homes situated within 10 miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from eight different hedonic pricing models, as well as both repeat sales and sales volume models. The various analyses are strongly consistent in that none of the models uncovers conclusive evidence of the existence of any widespread property value impacts that might be present in communities surrounding wind energy facilities. Specifically, neither the view of the wind facilities nor the distance of the home to those facilities is found to have any consistent, measurable, and statistically significant effect on home sales prices. Although the analysis cannot dismiss the possibility that individual homes or small numbers of homes have been or could be negatively impacted, it finds that if these impacts do exist, they are either too small and/or too infrequent to result in any widespread, statistically observable impact.

  14. Impact of a low intensity controlled-fire in some chemical soil properties.

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Hueso-González, Paloma; Aranda-Gómez, Francisco; Damián Ruiz-Sinoga, José

    2014-05-01

    Some changes in chemical soil properties can be observed after fires of low intensities. pH and electric conductivity tend to increase, while C/N ratio decrease. In the case of organic matter, the content can increase due to the massive incorporation of necromass including, especially, plants and roots. The aim of this study is to assess the impact of low intensity and controlled fire in some soil properties in field conditions. El Pinarillo experimental area is located in South of Spain. Two set of closed plots were installed (24 m2: 12 m length x 2 m width). One of them was remained as control with the original vegetation cover (Mediterranean matorral: Rosmarinus officinalis, Cistus clusii, Lavandula stoechas, Chamaeropos humilis, Thymus baetica), and the other one was burnt in a controlled-fire in 2011. Weather conditions and water content of vegetation influenced in the intensity of fire (low). After the controlled-fire, soil surface sample (0-5 cm) were taken in both set of plots (B, burnt soil samples; C, control soil samples). Some soil chemical properties were analysed: organic matter content (OM), C/N ratio, pH and electrical conductivity (EC). Some changes were observed in B corroborating a controlled-fire of low intensity. pH remained equal after fire (B: pH=7.7±0.11; C: pH=7.7±0.04). An increment was obtained in the case of EC (B: EC=0.45 mScm-1±0.08 mScm-1; C: EC=0.35 mScm-1±0.07 mScm-1) and OM (B: OM=8.7%±3.8%; C: pH=7.3%±1.5%). Finally, C/N ratio decreased after fire respect to the control and initial conditions (B: C/N=39.0±14.6; C: C/N =46.5±10.2).

  15. Deposition velocities and impact of physical properties on ozone removal for building materials

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  16. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity

    PubMed Central

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system. PMID:27042378

  17. Impact of Argon gas on optical and electrical properties of Carbon thin films

    NASA Astrophysics Data System (ADS)

    Usman, Arslan; Rafique, M. S.; Shaukat, S. F.; Siraj, Khurram; Ashfaq, Afshan; Anjum, Safia; Imran, Muhammad; Sattar, Abdul

    2016-12-01

    Nanostructured thin films of carbon were synthesized and investigated for their electrical, optical, structural and surface properties. Pulsed Laser Deposition (PLD) technique was used for the preparation of these films under Argon gas environment. A KrF Laser (λ=248 nm) was used as source of ablation and plasma formation. It was observed that the carbon ions and the background gas environment has deep impact on the morphology as well as on the microstructure of the films. Time of Flight (TOF) method was used to determine the energies of the ablated carbon ions. The morphology of film surfaces deposited at various argon pressure was analysed using an atomic force microscope. The Raman spectroscopic measurement reveal that there is shift in phase from sp3 to sp2 and a decrease in FWHM of G band, which is a clear indication of enhanced graphitic clusters. The electrical resistivity was also reduced from 85.3×10-1 to 2.57×10-1 Ω-cm. There is an exponential decrease in band gap Eg of the deposited films from 1.99 to 1.37 eV as a function of argon gas pressure.

  18. The impact of antibiotics (benzylpenicillin, and nystatin) on the biological properties of ordinary chernozems

    NASA Astrophysics Data System (ADS)

    Akimenko, Yu. V.; Kazeev, K. Sh.; Kolesnikov, S. I.

    2014-09-01

    In recent years, the input of antibiotics into soils has sharply increased. We studied the impact antibiotics (benzylpenicillin, pharmasin, and nystatin) at different concentrations (100 and 600 mg/kg) on population densities of microorganisms and enzymatic activity of ordinary chernozems in model experiments. The applied doses of antibiotics had definite suppressing effects on population densities of microorganisms (up to 30-70% of the control) and on the soil enzymatic activity (20-70% of the control). Correlation analysis showed close correlation between the concentrations of antibiotics and the population densities of soil microorganisms ( r = -0.68-0.86). Amylolytic bacteria had the highest resistance to the antibiotics, whereas ammonifying bacteria had the lowest resistance. Among the studied enzymes belonging to oxidoreductases and hydrolases, catalase and phosphatase had the highest and the lowest resistance to the antibiotics, respectively. The effect of antibiotics on the biological properties of the chernozem lasted for a long time. The studied parameters were not completely recovered in 120 days.

  19. Chemical precursor impact on the properties of Cu2ZnSnS4 absorber layer

    NASA Astrophysics Data System (ADS)

    Vashistha, Indu B.; Sharma, Mahesh C.; Sharma, S. K.

    2016-04-01

    In present work impact of different chemical precursor on the deposition of solar absorber layer Cu2ZnSnS4 (CZTS) were studied by Chemical Bath Deposition (CBD) method without using expensive vacuum facilities and followed by annealing. As compared to the other deposition methods, CBD method is interesting one because it is simple, reproducible, non-hazardous, cost effective and well suited for producing large-area thin films at low temperatures, although effect of precursors and concentration plays a vital role in the deposition. So, the central theme of this work is optimizing and controlling of chemical reactions for different chemical precursors. Further Effect of different chemical precursors i.e. sulphate and chloride is analyzed by structural, morphological, optical and electrical properties. The X-ray diffraction (XRD) of annealed CZTS thin film revealed that films were polycrystalline in nature with kestarite tetragonal crystal structure. The Atomic Force micrographs (AFM) images indicated total coverage compact film and as well as growth of crystals. The band gap of annealed CZTS films was found in the range of optimal band gap by absorption spectroscopy.

  20. Mechanical property characterization and impact resistance of selected graphite/PEEK composite materials

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    1991-01-01

    To use graphite/PEEK material on highly curved surfaces requires that the material be drapable and easily conformable to the surface. The mechanical property characterization and impact resistance results are presented for laminates made from two types of graphite/PEEK materials that will conform to a curved surface. These laminates were made from two different material forms. These forms are: (1) a fabric where each yarn is a co-mingled Celion G30-500 3K graphite fiber and PEEK fiber; and (2) an interleaved material of Celion G30-500 3K graphite fiber interleaved with PEEK film. The experimental results from the fabric laminates are compared with results for laminates made from AS4/PEEK unidirectional tape. The results indicate that the tension and compression moduli for quasi-isotropic and orthotropic laminates made from fabric materials are at least 98 pct. of the modulus of equivalent laminates made from tape materials. The strength of fabric material laminates is at least 80 pct. of laminates made from tape material. The evaluation of the fabric material for shear stiffness indicates that a tape material laminate could be replaced by a fabric material laminate and still maintain 89 pct. of the shear stiffness of the tape material laminate.

  1. The impact of accretion material composition and properties on interior structure dynamics of Kuiper belt objects

    NASA Astrophysics Data System (ADS)

    Shchuko, Oleg; Shchuko, Svetlana D.; Kartashov, Daniil; Orosei, Roberto

    The building material of the forming Kuiper belt objects is supposed in the model to consist of solid dust material of protosolar cloud fringe regions and H2 O amorphous ice. A spheri-cally symmetric celestial body was being created as a result of accretion. The body's internal structure was determined by the composition and the properties of the accretion material and the evolution of the structure -by internal thermal processes. The accretion material compo-sition and structure have been studied, which provide now the existence of large icy Kuiper belt objects. Radionuclides 26 Al, 40 K, 232 Th, 235 U and 238 U embedded in solid dust matter particles have been main sources of radiogenic heat for the Kuiper belt object life time. The impact of the heat-and-power potentials of radiogenic heat sources on H2 O phase transition dynamics in the celestial body matter has been investigated. The parameter variation domains of these potentials have been found at which there can be formed areas partly or fully filled with H2 O of different phase states. In addition, the dynamic boundaries of areas have been determined where the ice component is presented by amorphous ice or cubic and hexagonal crystal ice. The parameter domains of celestial body accretion and radiogenic heat processes have been determined where the body evolution may have a catastrophic scenario up to its complete destruction.

  2. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties

    PubMed Central

    Islam, Paromita; Water, Jorrit J.; Bohr, Adam; Rantanen, Jukka

    2016-01-01

    Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated, particularly with respect to the impact of composition on the resulting physicochemical properties. Different compositions were obtained as nanogels with sizes ranging from 203 to 561 nm. The addition of alginate and exclusion of sodium tri-penta phosphate led to an increase in nanogel size. The nanogels were subsequently spray-dried to form nano-embedded microparticles with trehalose or mannitol as matrix excipient. The microparticles of different composition were mostly spherical with a smooth surface and a mass median aerodynamic diameter of 6–10 µm. Superior redispersibility was observed for microparticles containing amorphous trehalose. This study demonstrates the potential of nano-embedded microparticles for stabilization and delivery of nanogel-based delivery systems. PMID:28025505

  3. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.

    PubMed

    Iyer, Raman Mahadevan; Hegde, Shridhar; Dinunzio, James; Singhal, Dharmendra; Malick, Waseem

    2014-08-01

    Material properties play a significant role in pharmaceutical processing. The impact of roller compaction (RC) and tablet compression on solid fraction (SF), tensile strength (TS) and flexural modulus (FM) of Avicel DG [co-processed excipient with 75% microcrystalline cellulose (MCC) and 25% anhydrous dibasic calcium phosphate (DCPA)], lactose and 1:1 Mixture of the two was studied. Materials were roller compacted at different force and roller type and compressed into tablets over a range of compression pressures (CP). SF, TS and FM were determined for ribbons and tablets. Roller force was a significant variable affecting SF while roller type was not. Both SF and TS of tablets increased with CP with Avicel DG exhibiting greater TS than that of 1:1 Mixture while tablets of lactose had the lowest TS. The TS of tablets decreased exponentially with tablet porosity. Ribbon of Avicel DG had higher TS and lower SF than lactose and greater reworkability. This is attributed to plastic deformation of MCC resulting in high degree of bonding and fragmentation of DCPA that fills the void spaces during tablet compression. The lack of significant increase in SF and low tablet TS for lactose upon compression is likely due to its brittle fragmentation and some elastic recovery as shown by the high FM.

  4. Secondary materials: Engineering properties, environmental consequences, and social and economic impacts. Final report

    SciTech Connect

    Breslin, V.; Reaven, S.; Schwartz, M.; Swanson, L.; Zweig, M.; Bortman, M.; Schubel, J.

    1993-08-01

    This report investigates two secondary materials, plastic lumber made from mixed plastic waste, and cement blocks and structures made with incinerator ash. Engineering properties, environmental impacts, and energy costs and savings of these secondary materials are compared to standard lumber products and cement blocks. Market capacity and social acceptance of plastic lumber and stabilized ash products are analyzed. These secondary materials apparently have potential markets; however, their economic value is primarily that they will not take up landfill space. For plastic lumber and stabilized incinerator ash products, marine and highway construction seem ideal public works applications. Incinerator ash may be suitable to use in seawalls, jetties, fishing reefs, highway barriers, and roadbed applications. Docks, piers, highway sound barriers, parking stops, and park furniture may all be made from plastic lumber. To encourage public acceptance and improve the market potential of secondary materials, these activities could be beneficial: industry should emphasize developing useful, long-lived products; industry and governments should create product performance criteria; government should provide rigorous testing and demonstration programs; and government and industry should cooperate to improve public outreach and educational programs.

  5. Impact of Simulated Microgravity on Cytoskeleton and Viscoelastic Properties of Endothelial Cell

    NASA Astrophysics Data System (ADS)

    Janmaleki, M.; Pachenari, M.; Seyedpour, S. M.; Shahghadami, R.; Sanati-Nezhad, A.

    2016-09-01

    This study focused on the effects of simulated microgravity (s-μg) on mechanical properties, major cytoskeleton biopolymers, and morphology of endothelial cells (ECs). The structural and functional integrity of ECs are vital to regulate vascular homeostasis and prevent atherosclerosis. Furthermore, these highly gravity sensitive cells play a key role in pathogenesis of many diseases. In this research, impacts of s-μg on mechanical behavior of human umbilical vein endothelial cells were investigated by utilizing a three-dimensional random positioning machine (3D-RPM). Results revealed a considerable drop in cell stiffness and viscosity after 24 hrs of being subjected to weightlessness. Cortical rigidity experienced relatively immediate and significant decline comparing to the stiffness of whole cell body. The cells became rounded in morphology while western blot analysis showed reduction of the main cytoskeletal components. Moreover, fluorescence staining confirmed disorganization of both actin filaments and microtubules (MTs). The results were compared statistically among test and control groups and it was concluded that s-μg led to a significant alteration in mechanical behavior of ECs due to remodeling of cell cytoskeleton.

  6. Glycoengineering of pertuzumab and its impact on the pharmacokinetic/pharmacodynamic properties

    PubMed Central

    Luo, Cheng; Chen, Song; Xu, Na; Wang, Chi; Sai, Wen bo; Zhao, Wei; Li, Ying chun; Hu, Xiao jing; Tian, Hong; Gao, Xiang dong; Yao, Wen bing

    2017-01-01

    Pertuzumab is an antihuman HER2 antibody developed for HER2 positive breast cancer. Glycosylation profiles are always the important issue for antibody based therapy. Previous findings have suggested the impact of glycosylation profiles on the function of antibodies, like pharmacodynamics, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, the roles of fucose and sialic acid in the function of therapeutic antibodies still need further investigation, especially the role of sialic acid in nonfucosylated antibodies. This study focused on the pharmacokinetic and pharmacodynamic properties of pertuzumab after glycoengineering. Herein, nonfucosylated pertuzumab was produced in CHOFUT8−/− cells, and desialylated pertuzumab was generated by enzymatic hydrolysis. Present data indicated that fucose was critical for ADCC activity by influencing the interaction between pertuzumab and FcγRIIIa, nevertheless removal of sialic acid increased the ADCC and CDC activity of pertuzumab. Meanwhile, regarding to sialic acid, sialidase hydrolysis directly resulted in asialoglycoprotein receptors (ASGPRs) dependent clearance in hepatic cells in vitro. The pharmacokinetic assay revealed that co-injection of asialofetuin can protect desialylated pertuzumab against ASGPRs-mediated clearance. Taken together, the present study elucidated the importance of fucose and sialic acid for pertuzumab, and also provided further understanding of the relationship of glycosylation/pharmacokinetics/pharmacodynamics of therapeutic antibody.

  7. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  8. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity.

    PubMed

    Velmourougane, Kulandaivelu

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system.

  9. Impact of preparation conditions on the magnetocaloric properties of Gd thin films

    NASA Astrophysics Data System (ADS)

    Kirby, H. F.; Belyea, D. D.; Willman, J. T.; Hendryx, C. J.; Miller, C. W.

    2012-02-01

    The impact of the deposition temperature and gettering were investigated on Ta(5nm)/Gd(30nm)/Ta(5nm) thin films' magneto caloric(MCE) properties. The samples were grown by magnetron at temperatures up to 600 C, with and without gettering. Structure of the samples was investigated by X-ray diffraction and ray reflectivity. The isothermal magnetization of the samples was above and below the Curie temperature of the Gd. The entropy change associated with the second order phasewas calculated from M(H,T) using the thermodynamic Maxwell. Increasing the deposition temperature generally improves entropy peak (magnitude, FWHM, and temperature of the peak), but leads to significant oxidation. The ungettered sample grown at00 C was purely GdO (111). Gettering the chamber by sputtering Tathe walls of the chamber for 30 minutes prior to deposition this oxidation issue, and increased the relative cooling power RCP) of films grown at elevated temperatures. The RCP values of the sample set were increased by as much as 42% over ungettered. Supported by AFOSR and NSF.

  10. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties.

    PubMed

    Islam, Paromita; Water, Jorrit J; Bohr, Adam; Rantanen, Jukka

    2016-12-22

    Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated, particularly with respect to the impact of composition on the resulting physicochemical properties. Different compositions were obtained as nanogels with sizes ranging from 203 to 561 nm. The addition of alginate and exclusion of sodium tri-penta phosphate led to an increase in nanogel size. The nanogels were subsequently spray-dried to form nano-embedded microparticles with trehalose or mannitol as matrix excipient. The microparticles of different composition were mostly spherical with a smooth surface and a mass median aerodynamic diameter of 6-10 µm. Superior redispersibility was observed for microparticles containing amorphous trehalose. This study demonstrates the potential of nano-embedded microparticles for stabilization and delivery of nanogel-based delivery systems.

  11. Impact of Simulated Microgravity on Cytoskeleton and Viscoelastic Properties of Endothelial Cell

    PubMed Central

    Janmaleki, M.; Pachenari, M.; Seyedpour, S. M.; Shahghadami, R.; Sanati-Nezhad, A.

    2016-01-01

    This study focused on the effects of simulated microgravity (s-μg) on mechanical properties, major cytoskeleton biopolymers, and morphology of endothelial cells (ECs). The structural and functional integrity of ECs are vital to regulate vascular homeostasis and prevent atherosclerosis. Furthermore, these highly gravity sensitive cells play a key role in pathogenesis of many diseases. In this research, impacts of s-μg on mechanical behavior of human umbilical vein endothelial cells were investigated by utilizing a three-dimensional random positioning machine (3D-RPM). Results revealed a considerable drop in cell stiffness and viscosity after 24 hrs of being subjected to weightlessness. Cortical rigidity experienced relatively immediate and significant decline comparing to the stiffness of whole cell body. The cells became rounded in morphology while western blot analysis showed reduction of the main cytoskeletal components. Moreover, fluorescence staining confirmed disorganization of both actin filaments and microtubules (MTs). The results were compared statistically among test and control groups and it was concluded that s-μg led to a significant alteration in mechanical behavior of ECs due to remodeling of cell cytoskeleton. PMID:27581365

  12. Impact of Intellectual Property Laws on Part-Time Faculty. The Effective Voice for You.

    ERIC Educational Resources Information Center

    Duby, James R., Jr.

    This guide explains some of the intellectual property rights of part-time college faculty members and the circumstances under which faculty can defend intellectual property rights. The term "intellectual property" refers to proprietary information, materials, or products, the owner of which may possess intellectual property rights under trademark,…

  13. Impact damage resistance and residual property assessment of (0/+/-45/90)s SCS-6/Timetal 21S

    NASA Technical Reports Server (NTRS)

    Miller, Jennifer L.; Portanova, Marc A.; Johnson, W. Steven

    1995-01-01

    The impact damage resistance and residual mechanical properties of (0/ +/- 45/90)s SCS-6/Timetal 21S composites were evaluated. Both quasi-static indentation and drop-weight impact tests were used to investigate the impact behavior at two nominal energy levels (5.5 and 8.4 J) and determine the onset of internal damage. Through x-ray inspection, the extent of internal damage was characterized non-destructively. The composite strength and constant amplitude fatigue response were evaluated to assess the effects of the sustained damage. Scanning electron microscopy was used to characterize internal damage from impact in comparison to damage that occurs during mechanical loading alone. The effect of stacking sequence was examined by using specimens with the long dimension of the specimen both parallel (longitudinal) and perpendicular (transverse) to the 0 deg fiber direction. Damage in the form of longitudinal and transverse cracking occurred in all longitudinal specimens tested at energies greater than 6.3 J. Similar results occurred in the transverse specimens tested above 5.4 J. Initial load drop, characteristic of the onset of damage, occurred on average at 6.3 J in longitudinal specimens and at 5.0 J in transverse specimens. X-ray analysis showed broken fibers in the impacted region in specimens tested at the higher impact energies. At low impact energies, visible matrix cracking may occur, but broken fibers may not. Matrix cracking was noted along fiber swims and it appeared to depend on the surface quality of composite. At low impact energies, little damage has been incurred by the composite and the residual strength and residual life is not greatly reduced as compared to an undamaged composite. At higher impact energies, more damage occurred and a greater effect of the impact damage was observed.

  14. Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling

    NASA Astrophysics Data System (ADS)

    Inoue, Tadanobu; Yin, Fuxing; Kimura, Yuuji; Tsuzaki, Kaneaki; Ochiai, Shojiro

    2010-02-01

    Bulk ultrafine-grained (UFG) low-carbon steel bars were produced by caliber rolling, and the impact and tensile properties were investigated. Initial samples with two different microstructures, ferrite-pearlite and martensite (or bainite), were prepared and then caliber rolling was conducted at 500 °C. The microstructures in the rolled bars consisted of an elongated UFG structure with a strong α-fiber texture. The rolled bar consisting of spheroidal cementite particles that distributed uniformly in the elongated ferrite matrix of transverse grain sizes 0.8 to 1.0 μm exhibited the best strength-ductility balance and impact properties. Although the yield strength in the rolled bar increased 2.4 times by grain refinement, the upper-shelf energy did not change, and its value was maintained from 100 °C to -40 °C. In the rolled bars, cracks during an impact test branched parallel to the longitudinal direction of the test samples as temperatures decreased. Delamination caused by such crack branching appeared, remarkably, near the ductile-to-brittle transition temperature (DBTT). The effect of delamination on the impact properties was associated with crack propagation on the basis of the microstructural features in the rolled bars. In conclusion, the strength-toughness balance is improved by refining crystal grains and controlling their shape and orientation; in addition, delamination effectively enhances the low-temperature toughness.

  15. Impact of land management on soil structure and soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Jirku, Veronika; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna

    2010-05-01

    Study is focused on a comparison of a soil structure and soil hydraulic properties within soil profiles of a same soil type under different land management. Study was performed in Haplic Luvisol in Hnevceves the Czech Republic. Two soil profiles, which were in close distance from each other, were chosen: 1. under the conventional tillage, 2. under the permanent (30 years) grass cover. Soil sampling and field experiments were carried out immediately after the harvest of winter barley in 2008. The micromorphological images were used to evaluate the soil structure of all Ap, Bt1, Bt2 and C diagnostic horizons. The hydraulic properties of the diagnostic horizons were studied in the laboratory using multistep outflow experiments performed on the undisturbed 100-cm3 soil samples. A tension disc infiltrometer (with a disc radius of 10 cm) and minidisc tension infiltrometers (with a disc radius of 2.2 cm) were used to measure cumulative water infiltration under unsaturated conditions created using a pressure head of -2 cm. Measurements were performed at a depths of 5, 45, 75 and 110 cm, which corresponded to the Ap, Bt1, Bt2 and C horizons of studied Haplic Luvisol at both locations. The Guelph permeameter was used to measure cumulative water flux under surface ponding conditions. The depth of the drilled well was 10, 50, 80 and 115 cm, the well radius was 3 cm, and the well ponding depth was 5 cm. Both tests were used to evaluate hydraulic conductivity (K for h=-2cm, and Ks) values. Results showed, that while properties in the Bt2 and C horizons of both soil profiles were relatively similar, properties in the Ap and Bt1 horizons were different. The fraction of gravitational pores (which may cause preferential flow) in the Ap and Bt1 horizons of the soil profile under the convectional tillage was large than those in the Ap and Bt1 horizons of the soil profile under the permanent grass. This influenced for instance the Ks values measured using the Guelph permeametr. The Ks

  16. Aerosol Impacts on Microphysical and Radiative Properties of Stratocumulus Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Toohey, D. W.; Andrejczuk, M.; Anderson, J. R.; Adams, A.; Lytle, M.; George, R.; Wood, R.; Zuidema, P.; Leon, D.

    2011-12-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, cloud droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties along an E-W track from near the Chilean coast to remote areas offshore. Mean statistics from seven flights were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. The effect extends ~800 to 1000 km from shore. The additional particles are mainly sulfates from anthropogenic sources. Liquid water content and drizzle concentration tended to increase with distance from shore, but exhibited much greater variability. Analysis of the droplet residual measurements showed that not only were there more residual nuclei near shore, but that they tended to be larger than those offshore. Single particle analysis over a broad particle size range was used to reveal types and sources of CCN, which were primarily sulfates near shore. Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed due to the preferential activation of large aerosol particles. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, which initiate drizzle, contain the largest aerosol particles. However, the scavenging efficiency is not sharp as expected from a simple parcel activation model. A wide range of

  17. Experimental Techniques for Evaluating the Effects of Aging on Impact and High Strain Rate Properties of Triaxial Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas

    2010-01-01

    An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.

  18. The Impacts of Thermal and Smouldering Remediation on Soil Properties Related to Rehabilitation and Plant Growth

    NASA Astrophysics Data System (ADS)

    Pape, A.; Knapp, C.; Switzer, C.

    2012-04-01

    Tens of thousands of sites worldwide are contaminated with toxic non-aqueous phase liquids (NAPLs) reducing their economic and environmental value. As a result a number of treatments involving heat and smouldering have been developed to desorb and extract or destroy these contaminants including; steam injection (<110°C), electrical heating (<110°C), microwave heating (ambient to 400°C),conductive heating (ambient to 800°C) and in-situ smouldering (800°C to 1200°C). Implemented correctly these treatments are efficient enough for the soil to be safe for use, but the heating may unintentionally reduce the capability of the soil to act as a growing media. To investigate the effects of elevated temperature soils samples were heated at fixed temperatures (ambient to 1000°C) for one hour or smouldered after artificial contamination. Temperatures up to 105°C resulted in very little change in soil properties but at 250°C nutrients became more available. At 500°C little organic matter or nitrogen remained in the soil and clay sized particles started to decompose and aggregate. By 1000°C total and available phosphorus were very low, cation exchange capacity had been reduced, pH had increased and the clay fraction had been completely lost. Similar changes were observed in smouldered soils with variations dependent upon remediation conditions. As a result the smouldered soils will require nutrient supplementation to facilitate plant growth. Nutrient addition will also improve the physical properties of the soil and serve to re-inoculate it with microbes, particularly if an organic source such as compost or sewage sludge is used. The soils may remain effective growing media during lower temperature treatments; however some sort of soil inoculant would also be beneficial as these temperatures are sufficient to sterilise the system, which may impact nutrient cycling. Further work involving months-long exposure to the elevated temperatures that are typical of thermal

  19. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo.

    PubMed

    Destexhe, A; Paré, D

    1999-04-01

    During wakefulness, neocortical neurons are subjected to an intense synaptic bombardment. To assess the consequences of this background activity for the integrative properties of pyramidal neurons, we constrained biophysical models with in vivo intracellular data obtained in anesthetized cats during periods of intense network activity similar to that observed in the waking state. In pyramidal cells of the parietal cortex (area 5-7), synaptic activity was responsible for an approximately fivefold decrease in input resistance (Rin), a more depolarized membrane potential (Vm), and a marked increase in the amplitude of Vm fluctuations, as determined by comparing the same cells before and after microperfusion of tetrodotoxin (TTX). The model was constrained by measurements of Rin, by the average value and standard deviation of the Vm measured from epochs of intense synaptic activity recorded with KAc or KCl-filled pipettes as well as the values measured in the same cells after TTX. To reproduce all experimental results, the simulated synaptic activity had to be of relatively high frequency (1-5 Hz) at excitatory and inhibitory synapses. In addition, synaptic inputs had to be significantly correlated (correlation coefficient approximately 0.1) to reproduce the amplitude of Vm fluctuations recorded experimentally. The presence of voltage-dependent K+ currents, estimated from current-voltage relations after TTX, affected these parameters by <10%. The model predicts that the conductance due to synaptic activity is 7-30 times larger than the somatic leak conductance to be consistent with the approximately fivefold change in Rin. The impact of this massive increase in conductance on dendritic attenuation was investigated for passive neurons and neurons with voltage-dependent Na+/K+ currents in soma and dendrites. In passive neurons, correlated synaptic bombardment had a major influence on dendritic attenuation. The electrotonic attenuation of simulated synaptic inputs was

  20. Quantifying the impact of lithology upon the mechanical properties of rock

    NASA Astrophysics Data System (ADS)

    Weatherley, Dion

    2013-04-01

    The physical characteristics of rock, its lithology, undoubtedly influences its deformation under natural or engineering loads. Mineral texture, micro-damage, joints, bedding planes, inclusions, unconformities and faults are all postulated to alter the mechanical response of rock on different scales and under different stressing conditions. Whilst laboratory studies have elucidated some aspects of the relationship between lithology and mechanical properties, these small-scale results are difficult to extrapolate to lithospheric scales. To augment laboratory-derived knowledge, physics-based numerical modelling is a promising avenue [3]. Bonded particle models implemented using the Discrete Element Method (DEM [1]) are a practical numerical laboratory to investigate the interplay between lithology and the mechanical response of rock specimens [4]. Numerical rock specimens are represented as an assembly of indivisible spherical particles connected to nearest neighbours via brittle-elastic beams which impart forces and moments upon one-another as particles move relative to each other. By applying boundary forces and solving Newton's Laws for each particle, elastic deformation and brittle failure may be simulated [2]. Each beam interaction is defined by four model parameters: Young's modulus, Poisson's ratio, cohesive strength and internal friction angle. Beam interactions in different subvolumes of the specimen are assigned different parameters to model different rock types or mineral assemblages. Micro-cracks, joints, unconformities and faults are geometrically incorporated by fitting particles to either side of triangulated surfaces [5]. The utility of this modelling approach is verified by reproducing analytical results from fracture mechanics (Griffith crack propagation and wing-crack formation) and results of controlled laboratory investigations. To quantify the impact of particular lithologic structures on mechanical response, a range of control experiments are

  1. Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties.

    PubMed

    Boluwade, Alaba; Madramootoo, Chandra

    2013-01-01

    Spatial accuracy of hydrologic modeling inputs influences the output from hydrologic models. A pertinent question is to know the optimal level of soil sampling or how many soil samples are needed for model input, in order to improve model predictions. In this study, measured soil properties were clustered into five different configurations as inputs to the Soil and Water Assessment Tool (SWAT) simulation of the Castor River watershed (11-km(2) area) in southern Quebec, Canada. SWAT is a process-based model that predicts the impacts of climate and land use management on water yield, sediment, and nutrient fluxes. SWAT requires geographical information system inputs such as the digital elevation model as well as soil and land use maps. Mean values of soil properties are used in soil polygons (soil series); thus, the spatial variability of these properties is neglected. The primary objective of this study was to quantify the impacts of spatial variability of soil properties on the prediction of runoff, sediment, and total phosphorus using SWAT. The spatial clustering of the measured soil properties was undertaken using the regionalized with dynamically constrained agglomerative clustering and partitioning method. Measured soil data were clustered into 5, 10, 15, 20, and 24 heterogeneous regions. Soil data from the Castor watershed which have been used in previous studies was also set up and termed "Reference". Overall, there was no significant difference in runoff simulation across the five configurations including the reference. This may be attributable to SWAT's use of the soil conservation service curve number method in flow simulation. Therefore having high spatial resolution inputs for soil data may not necessarily improve predictions when they are used in hydrologic modeling.

  2. Impact of controlled particle size nanofillers on the mechanical properties of segmented polyurethane nanocomposites

    SciTech Connect

    Finnigan, Bradley; Casey, Phil; Cookson, David; Halley, Peter; Jack, Kevin; Truss, Rowan; Martin, Darren

    2008-04-02

    The impact of average layered silicate particle size on the mechanical properties of thermoplastic polyurethane (TPU) nanocomposites has been investigated. At fixed addition levels (3 wt% organosilicate), an increase in average particle size resulted in an increase in stiffness. Negligible stiffening was observed for the smallest particles (30 nm) due to reduced long-range intercalation and molecular confinement, as well as ineffective stress transfer from matrix to filler. At low strain ({le}100%), an increase in filler particle size was associated with an increase in the rate of stress relaxation, tensile hysteresis, and permanent set. At high strain (1200%), two coexisting relaxation processes were observed. The rate of the slower (long-term) relaxation process, which is believed to primarily involve the hard segment rich structures, decreased on addition of particles with an average diameter of 200 nm or less. At high strain the tensile hysteresis was less sensitive to particle size, however the addition of particles with an average size of 200 nm or more caused a significant increase in permanent set. This was attributed to slippage of temporary bonds at the polymer-filler interface, and to the formation of voids at the sites of unaligned tactoids. Relative to the host TPU, the addition of particles with an average size of 30 nm caused a reduction in permanent set. This is a significant result because the addition of fillers to elastomers has long been associated with an increase in hysteresis and permanent set. At high strain, well dispersed and aligned layered silicates with relatively small interparticle distances and favourable surface interactions are capable of imparting a resistance to molecular slippage throughout the TPU matrix.

  3. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  4. Short-term sustainability of drainage water reuse: spatio-temporal impacts on soil chemical properties.

    PubMed

    Corwin, Dennis L; Lesch, Scott M; Oster, James D; Kaffka, Stephen R

    2008-01-01

    Greater urban demand for finite water resources, increased frequency of drought resulting from erratic weather, and increased pressure to reduce drainage water volumes have intensified the need to reuse drainage water. A study was initiated in 1999 on a 32.4-ha saline-sodic field (Lethent clay loam series; fine, montmorillonitic, thermic, Typic Natrargid) located on the west side of California's San Joaquin Valley (WSJV) with the objective of evaluating the sustainability of drainage water reuse with respect to impact on soil quality. An evaluation after 5 yr of irrigation with drainage water is presented. Geo-referenced measurements of apparent soil electrical conductivity (EC(a)) were used to direct soil sampling at 40 sites to characterize the spatial variability of soil properties (i.e., salinity, Se, Na, B, and Mo) crucial to the soil's intended use of growing Bermuda grass (Cynodon dactylon (l.) Pers.) for livestock consumption. Soil samples were taken at 0.3-m increments to a depth of 1.2 m at each site in August 1999, April 2002, and November 2004. Drainage water varying in salinity (0.8-16.2 dS m(-1)), SAR (5.4-52.4), Mo (80-400 microg L(-1)), and Se (<1-700 microg L(-1)) was applied to the field since July 2000. An analysis of the general temporal trend shows that overall soil quality has improved due to leaching of B from the top 0.6 m of soil; salinity and Na from the top 1.2 m, but primarily from 0 to 0.6 m; and Mo from the top 1.2 m. Short-term sustainability of drainage water reuse is supported by the results.

  5. Impacts of the Cerro Grande fire on Homestead era and Manhattan Project properties at Los Alamos National Laboratory.

    SciTech Connect

    McGehee, E. D.; Isaacson, J.

    2001-01-01

    In May of 2000, the Cerro Grande Fire burned approximately 8,000 acres of Department of Energy (DOE) managed land at the Los Alamos National Laboratory (LANL). Although the fire was generally of low intensity, it impacted a significant number of LANL's cultural resources. Historic wooden properties were affected more heavily than prehistoric archaeological sites. This paper will provide an overview of the Homestead and Manhattan Project Periods at LANL and will discuss the effects of the Cerro Grande Fire on historic wooden properties. Post-fire cultural resource management issues will also be discussed.

  6. Charpy Impact Properties of Reduced-Activation Ferritic/Martensitic Steels Irradiated in HFIR up to 20 dpa

    SciTech Connect

    Tanigawa, H.; Shiba, K.; Sokolov, M.A.; Klueh, R.L.

    2003-07-15

    The effects of irradiation up to 20 dpa on the Charpy impact properties of reduced-activation ferritic/martensitic steels (RAFs) were investigated. The ductile-brittle transition temperature (DBTT) of F82H-IEA shifted up to around 323K. TIG weldments of F82H showed a fairly small variation on their impact properties. A finer prior austenite grain size in F82H-IEA after a different heat treatment resulted in a 20K lower DBTT compared to F82H-IEA after the standard heat treatment, and that effect was maintained even after irradiation. Helium effects were investigated utilizing Ni-doped F82H, but no obvious evidence of helium effects was obtained. ORNL9Cr-2WVTa and JLF-1 steels showed smaller DBTT shifts compared to F82H-IEA.

  7. Effect of Ultrasonic Treatment on The Tensile and Impact Properties of Thermoplastic Natural Rubber Nanocomposites Reinforced with Carbon Nanotubes

    SciTech Connect

    Tarawneh, Mou'ad A.; Ahmad, Sahrim Hj.; Rasid, Rozaidi; Yahya, S. Y.

    2009-06-01

    This study investigates the effect of ultrasonic treatment on the mechanical properties of thermoplastic natural rubber (TPNR) nanocomposites reinforced with multi-walled nanotubes. The TPNR nanocomposites were prepared using melt blending method from polypropylene (PP), natural rubber (NR) and liquid natural rubber (LNR) as a compatibilizer, respectively, with 1% of Multi-wall nanotubes. The nanocomposite was prepared using the indirect technique (IDT) with the optimum processing parameters at 180 deg. C with 80 rpm mixing speed and 11 minutes processing time. The results have showed that the good dispersion on nanotubes was achieved by ultrasonic treatment. The optimization of ultrasonic time indicated that the maximum tensile and impact properties occurred with 1 h ultrasonic treatment. The Young's modulus, tensile strength, elongation at break and impact strength have increased by almost 11%, 21%, 43% and 50%, respectively. The results from our study indicate that nanotubes have as excellent reinforcement filler in TPNR matrix.

  8. The Impact of Specific Prior Experiences on Infants' Extension of Animal Properties

    ERIC Educational Resources Information Center

    Furrer, Stephanie D.; Younger, Barbara A.

    2008-01-01

    We examined the influence of prior exposure to specific animal properties on 15-month-old infants' inductive generalization. Using picture books, 29 infants were trained on properties linked in a congruent or incongruent manner with four animal categories. A generalized imitation task was then administered to assess patterns of property extension…

  9. Supplemental Information For: Asymmetric Distribution of Lunar Impact Basins Caused by Variations in Target Properties

    NASA Technical Reports Server (NTRS)

    Miljkovic, Katarina; Wieczorek, Mark; Collins, Gareth S.; Laneuville, Matthieu; Neumann, Gregory A.; Melosh, H. Jay; Solomon, Sean C.; Phillips, Roger J.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and uppermantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins up to two times larger than similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner Solar system impact bombardment

  10. Asymmetric Distribution of Lunar Impact Basins Caused by Variations in Target Properties

    NASA Technical Reports Server (NTRS)

    Miljkovic, Katarina; Wieczorek, Mark A.; Collins, Gareth S.; Laneuville, Matthieu; Neumann, Gregory A.; Melosh, H. Jay; Solomon, Sean C.; Phillips, Roger J.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and upper mantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins up to two times larger than similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner Solar system impact bombardment.

  11. Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC

    NASA Astrophysics Data System (ADS)

    Arel, Hasan Şahan

    The effects of silica fume fineness and fiber aspect ratio on the compressive strength and impact resistance of ultra high-performance fiber-reinforced concrete (UHPFRC) are investigated experimentally. To this end, UHPFRC mixtures are manufactured by combining silica fumes with different fineness (specific surface areas: 17,200, 20,000, and 27,600 m2/kg) and hooked-end steel fibers with various aspect ratios (lengths: 8, 13, and 16 mm). The samples are subjected to standard curing, steam curing, and hot-water curing. Compressive strength tests are conducted after 7-, 28-, 56-, and 90-day curing periods, and an impact resistance experiment is performed after the 90th day. A steam-cured mixture of silica fumes with a specific surface area of 27,600 m2/kg and 16-mm-long fibers produce better results than the other mixtures in terms of mechanical properties. Moreover, impact resistance increases with the fiber aspect ratio.

  12. Influence of microstructure on impact properties of 9-18%Cr ODS steels for fusion/fission applications

    NASA Astrophysics Data System (ADS)

    Hadraba, H.; Fournier, B.; Stratil, L.; Malaplate, J.; Rouffié, A.-L.; Wident, P.; Ziolek, L.; Béchade, J.-L.

    2011-04-01

    The paper describes the influence of the microstructure (coming from the extrusion shape, the chemical composition and the thermo-mechanical treatments) of (9-18%)Cr-W-Ti-Y 2O 3 ODS steels on their impact fracture properties. The extrusion shape plays a major role on the impact properties, materials extruded as a rod present a higher upper shelf energy (USE) and a lower ductile to brittle transition temperature (DBTT) compared to materials extruded as plates. The DBTT for the non-recrystallized 14%Cr ferritic steels was shifted towards higher temperatures compared to the 9%Cr tempered ferritic-martensitic steel. Increasing the W and Ti content in 9%Cr tempered ferritic-martensitic ODS steel leads to a USE and a DBTT shifted towards higher energies and higher temperatures respectively. Increasing the yttria content leads to a drop of the impact energy and a shift of the DBTT of ferritic ODS steel towards higher temperatures. The present study highlights extensive splitting of the fracture surfaces and a dependency of the impact energy on the fracture plane orientation according to the microstructure anisotropy.

  13. Recovery of soil physical properties and microbiology in foresty drained peatlands from the impact of forest machinery

    NASA Astrophysics Data System (ADS)

    Lepilin, Dmitrii; Kimura, Bryn; Uusitalo, Jori; Laiho, Raija; Fritze, Hannu; Lauren, Ari; Tuittila, Eeva-Stiina

    2016-04-01

    Forestry-drained peatlands occupy approximately 5.7 million ha and represent almost one fourth of the total forest surface in Finland. They are subjected to the same silvicultural harvesting operations as upland forests. However, although the potential of timber harvesting to cause detrimental effects on soil is well documented in upland forests, the knowledge on environmental impact of harvesting machinery on peat soils is still lacking. To assess the impact of harvesting machines on peat physical properties and biology we collected soil samples from six peatland forests that were harvested by commonly employed Harvester and Forwarder. Samples were taken from trails formed by harvesting machinery (treatment plots) and outside of trails (control plots unaffected by machinery traffic) to a depth of 15 cm. To adders the recovery of soil properties after disturbance we sampled sites that form a chronosequence in respect to time since harvesting: 1 month (class I), 3-4 years (class II) and 14-15 years (class III). The physical and microbiological properties of soil samples were analyzed in laboratory. Harvesting operations with heavy machinery appeared to significantly increase the bulk density of peat in the machines' trails at recently harvested sites in comparison to control plots. Following change in bulk density there was change of pore size distribution with decreasing macrospores quantity. This led to slight decrease of total porosity and decrease of air filled porosity. Water retention capacity increased with increasing bulk density. CO2 evolution increased in the trails of class I site with where dissolved organic carbon concurrently decreased. While there was not impact of harvesting on microbial biomass or carbon, PLFA analysis indicated that machinery traffic caused a shift in microbial community structure. Results of class II and class III sites showed a recovery of physical properties within 16 years: treatment plots and control plots started to resemble

  14. Subtask 12F4: Effects of neutron irradiation on the impact properties and fracture behavior of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    Up-to-date results on the effects of neutron irradiation on the impact properties and fracture behavior of V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented in this paper, with an emphasis on the behavior of the U.S. reference alloys V-4Cr-4Ti containing 500-1000 wppm Si. Database on impact energy and cluctile-brittle transition temperature (DBTT) has been established from Charpy impact tests of one-third-size specimens irradiated at 420{degrees}C-600{degrees}C up to {approx}50 dpa in lithium environment in fast fission reactors. To supplement the Charpy impact tests fracture behavior was also characterized by quantitative SEM fractography on miniature tensile and disk specimens that were irradiated to similar conditions and fractured at -196{degrees}C to 200{degrees}C by multiple bending. For similar irradiation conditions irradiation-induced increase in DBTT was influenced most significantly by Cr content, indicating that irradiation-induced clustering of Cr atoms takes place in high-Cr (Cr {ge} 7 wt.%) alloys. When combined contents of Cr and Ti were {le}10 wt.%, effects of neutron irradiation on impact properties and fracture behavior were negligible. For example, from the Charpy-impact and multiple-bend tests there was no indication of irradiation-induced embrittlement for V-5Ti, V-3Ti-1Si and the U.S. reference alloy V-4Cr-4Ti after irradiation to {approx}34 dpa at 420{degrees}C to 600{degrees}C, and only ductile fracture was observed for temperatures as low as -196{degrees}C. 14 refs., 8 figs., 1 tab.

  15. JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System

    SciTech Connect

    Scott Tolbert; Steven Benson

    2008-02-29

    Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and

  16. Steel Processing Properties and Their Effect on Impact Deformation of Lightweight Structures

    SciTech Connect

    Simunovic, S

    2003-09-23

    The objective of the research was to perform a comprehensive computational analysis of the effects of material and process modeling approaches on performance of UltraLight Steel Auto Body (ULSAB) vehicle models. The research addressed numerous material related effects, impact conditions as well as analyzed the performance of the ULSAB vehicles in crashes against designs representing the current US vehicle fleet. This report is organized into three main sections. The first section describes the results of the computational analysis of ULSAB crash simulations that were performed using advanced material modeling techniques. The effects of strain-rate sensitivity on a high strength steel (HSS) intensive vehicle were analyzed. Frontal and frontal offset crash scenarios were used in a finite element parametric study of the ULSAB body structure. Comparisons are made between the crash results using the piece-wise-linear isotropic plasticity strain-rate dependent material model, and the isotropic plasticity material model based on quasi-static properties. The simulation results show the importance of advanced material modeling techniques for vehicle crash simulations due to strain-rate sensitivity and rapid hardening characteristics of advanced high strength steels. Material substitution was investigated for the main frontal crush structure using the material of similar yield stress a significantly different strain-rate and hardening characteristics. The objective of the research presented in Section 2 was to assess the influence of stamping process on crash response of ULSAB vehicle. Considered forming effects included thickness variations and plastic strain hardening imparted in the part forming process. The as-formed thickness and plastic strain for front crash parts were used as input data for vehicle crash analysis. Differences in structural performance between crash models with and without forming data were analyzed in order to determine the effects and feasibility of

  17. Impacts of deficit irrigation and altered rooting patterns on soil structure and associated soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of belowground systems and overall management impacts on soil health is needed to improve crop production and long-term sustainability under deficit irrigation. This study investigates effects of deficit irrigation on rooting patterns in maize and subsequent impacts on soil pr...

  18. Bacterial ice nuclei impact cloud lifetime and radiative properties and reduce atmospheric heat loss in the BRAMS simulation model

    NASA Astrophysics Data System (ADS)

    Costa, Tassio S.; Gonçalves, Fábio L. T.; Yamasoe, Marcia A.; Martins, Jorge A.; Morris, Cindy E.

    2014-08-01

    This study examines the effect of the bacterial species Pseudomonas syringae acting as ice nuclei (IN) on cloud properties to understand its impact on local radiative budget and heating rates. These bacteria may become active IN at temperatures as warm as -2 °C. Numerical simulations were developed using the Brazilian Regional Atmospheric Model System (BRAMS). To investigate the isolated effect of bacterial IN, four scenarios were created considering only homogeneous and bacterial ice nucleation, with 1, 10 and 100 IN per cubic meter of cloud volume and one with no bacteria. Moreover, two other scenarios were generated: the BRAMS default parameterization and its combination with bacterial IN. The model reproduced a strong convective cell over São Paulo on 3 March 2003. Results showed that bacterial IN may change cloud evolution as well as its microphysical properties, which in turn influence cloud radiative properties. For example, the reflected shortwave irradiance over an averaged domain in a scenario considering bacterial IN added to the BRAMS default parameterization was 14% lower than if bacteria were not considered. Heating rates can also be impacted, especially due to differences in cloud lifetime. Results suggest that the omission of bacterial IN in numerical models, including global cloud models, could neglect relevant ice nucleation processes that potentially influence cloud radiative properties.

  19. Impact of an intense rainfall event on soil properties following a wildfire in a Mediterranean environment (North-East Spain).

    PubMed

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Mataix-Solera, Jorge; Úbeda, Xavier

    2016-12-01

    Intense rainfall events after severe wildfires can have an impact on soil properties, above all in the Mediterranean environment. This study seeks to examine the immediate impact and the effect after a year of an intense rainfall event on a Mediterranean forest affected by a high severity wildfire. The work analyses the following soil properties: soil aggregate stability, total nitrogen, total carbon, organic and inorganic carbon, the C/N ratio, carbonates, pH, electrical conductivity, extractable calcium, magnesium, sodium, potassium, available phosphorous and the sodium and potassium adsorption ratio (SPAR). We sampled soils in the burned area before, immediately after and one year after the rainfall event. The results showed that the intense rainfall event did not have an immediate impact on soil aggregate stability, but a significant difference was recorded one year after. The intense precipitation did not result in any significant changes in soil total nitrogen, total carbon, inorganic carbon, the C/N ratio and carbonates during the study period. Differences were only registered in soil organic carbon. The soil organic carbon content was significantly higher after the rainfall than in the other sampling dates. The rainfall event did increase soil pH, electrical conductivity, major cations, available phosphorous and the SPAR. One year after the fire, a significant decrease in soil aggregate stability was observed that can be attributed to high SPAR levels and human intervention, while the reduction in extractable elements can be attributed to soil leaching and vegetation consumption. Overall, the intense rainfall event, other post-fire rainfall events and human intervention did not have a detrimental impact on soil properties in all probability owing to the flat plot topography.

  20. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2000-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  1. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    1999-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  2. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2001-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  3. Impact of long-term tillage and manure application on soil physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil physical properties play an integral role in maintaining soil quality for sustainable agricultural practices. Agronomic practices such as tillage systems and organic amendments have been shown to influence soil physical properties. Thus, a study was conducted to evaluate effects of long-term ma...

  4. Impacts of an integrated crop-livestock system on soil properties to enhance precipitation capture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping/Livestock systems alter soil properties that are important in enhancing capture of precipitation by developing and maintaining water infiltration and storage. In this paper we will relate soil hydraulic conductivity and other physical properties on managed Old World Bluestem grassland, whea...

  5. Identifying military impacts to archaeological resources based on differences in vertical stratification of soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Historic Preservation Act requires land-managing agencies to identify and account for their impacts on archaeological resources. Regulatory agencies that oversee compliance with historic preservation legislation frequently assume military training adversely affects archaeological resou...

  6. Properties of Ejecta Blanket Deposits Surrounding Morasko Meteorite Impact Craters (Poland)

    NASA Astrophysics Data System (ADS)

    Szokaluk, M.; Muszyński, A.; Jagodziński, R.; Szczuciński, W.

    2016-08-01

    Morasko impact craters are a record of the fall of a meteorite into the soft sediments. The presented results illustrate the geological structure of the area around the crater as well as providing evidence of the occurrence of ejecta blanket.

  7. Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran.

    PubMed

    Zhao, Hui-Min; Guo, Xiao-Na; Zhu, Ke-Xue

    2017-02-15

    To improve the nutritional, physical and flavor properties of wheat bran, yeast and lactic acid bacteria (LAB) were used for fermenting wheat bran in solid state. Appearance properties, nutritional properties, microstructure, hydration properties and flavor of raw bran and fermented bran were evaluated. After treatments, water extractable arabinoxylans were 3-4 times higher than in raw bran. Total dietary fiber and soluble dietary fiber increased after solid state fermentation. Over 20% of phytic acid was degraded. Microstructure changes and protein degradation were observed in fermented brans. Water holding capacity and water retention capacity of fermented brans were improved. Results suggest that solid state fermentation is an effective way to improve the properties of wheat brans.

  8. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Several court cases involving acquisition, use, and disposal of property by institutions of higher education are briefly summarized in this chapter. Cases discussed touch on such topics as municipal annexation of university property; repurchase of properties temporarily allocated to faculty members; implications of zoning laws and zoning board…

  9. Effect of stitching on impact and interlaminar properties of graphite/epoxy laminates

    SciTech Connect

    Sharma, S.K.; Sankar, B.V.

    1994-12-31

    Effects of through-the-thickness stitching on the impact damage resistance, impact damage tolerance and interlaminar fracture toughness (Mode I and Mode II) of plain woven and uniweave textile graphite/epoxy laminates are investigated. The laminates were manufactured using resin-infusion-molding and resin-transfer-molding processes. Kevlar{reg_sign} and glass yarns of different yam numbers were used for stitching. Static Indentation-flexure (SI), Compression-After-Impact (CAI), Double-Cantilever-Beam (DCB) and End-Notched-Flexure (ENF) tests were conducted. Stitching did not have any significant effect on impact damage resistance. However, stitching leads to significant improvement (25-40%) in impact damage tolerance as measured by CAI strength and impact damage area. Mode I fracture toughness as characterized by critical strain energy release rate (G{sub Ic}) was found to increase by at least an order higher (15--30 times) than the unstitched laminates. Mode II fracture toughness (G{sub Ic}) increased by 5--15 times over the unstitched laminates. New methods to estimate Mode 11 critical strain energy release rate in the stitched laminates are presented.

  10. Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn-Ni-Mo bainitic steels

    NASA Astrophysics Data System (ADS)

    Im, Young-Roc; Jun Oh, Yong; Lee, Byeong-Joo; Hwa Hong, Jun; Lee, Hu-Chul

    2001-08-01

    The effects of carbide precipitation on the strength and Charpy impact properties of tempered bainitic Mn-Ni-Mo steels have been investigated. An attempt has also been made to modify the microstructure of the steels in order to improve the Charpy properties, by controlling the alloy composition being guided by thermodynamic calculations of phase equilibria. Coarse rod type or agglomerated spherical type cementite particles in inter-lath region were considered to be mostly detrimental to Charpy impact properties. By reducing the precipitation of cementite through decreasing carbon content and/or by substituting it into fine M 2C carbides through increasing the molybdenum content, DBTT could be lowered significantly. Further decrease of DBTT could be achieved by substituting part of manganese content by nickel. Yield strength of tested alloys could be maintained at the level of a reference 0.2 wt% carbon alloy in spite of the significant reduction in carbon content, mainly by the increase in the precipitation of fine M 2C type carbides with increased molybdenum content.

  11. The impact of local processes and the prohibition of multiple links in the topological properties of directed complex networks

    NASA Astrophysics Data System (ADS)

    Esquivel-Gómez, J.; Arjona-Villicaña, P. D.; Acosta-Elías, J.

    2015-05-01

    Local processes exert influence on the growth and evolution of complex networks, which in turn shape the topological and dynamic properties of these networks. Some local processes have been researched, for example: Addition of nodes and links, rewiring of links between nodes, accelerated growth, link removal, aging, copying and multiple links prohibition. These processes impact directly into the topological and dynamical properties of complex networks. This paper introduces a new model for growth of directed complex networks which incorporates the prohibition of multiple links, addition of nodes and links, and rewiring of links. This paper also reports on the impact that these processes have in the topological properties of the networks generated with the proposed model. Numerical simulation shows that, when the frequency of rewiring increases in the proposed model, the γ exponent of the in-degree distribution approaches a value of 1.1. When the frequency of adding new links increases, the γ exponent approaches 1. That is the proposed model is able to generate all exponent values documented in real-world networks which range 1.05 < γ < 8.94.

  12. A Multiple Impact Hypothesis for Moon Formation: Target Spin and Disk Properties

    NASA Astrophysics Data System (ADS)

    Rufu, R.; Aharonson, O.

    2015-12-01

    We investigate aspects of the multiple impact hypothesis for Moon's formation, whereby the proto-Earth suffers successive collisions, each forming a debris disk that accretes to form a moonlet. The moonlets tidally advance outward, and potentially coalesce to form the Moon. In addressing the fundamental problem of the Moon's formation, we consider smaller impactors than previously studied, and investigate the effect of new geometries using a Smoothed Particles Hydrodynamics (SPH) code. For impacts within the equatorial plane, we find multiple impactors are effective in draining angular momentum from the target's initial spin due to the often-neglected angular momentum carried by escaping mass. Our simulations reveal new consequences of non-equatorial inclination of the impactor, also previously neglected. We note relationships with the resulting disks of corresponding equatorial cases, but find that the target's axis of rotation can now be tilted by a significant amount (10's of degrees) with sub-Mars size impactors. Importantly for distinguishing among competing Moon formation hypotheses, our results imply that (i) the rotational acceleration of the proto-Earth by successive impacts may be limited by angular momentum drain if the impacting population contains multiple members of medium size, and (ii) impacts onto such a non-rapidly rotation proto-Earth (well below break-up speed) can produce disks compatible with sub-Moon fragments in mass, momentum, and composition.

  13. Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone.

    PubMed

    Burgin, Leanne V; Aspden, Richard M

    2008-02-01

    The biomechanical response of cartilage to impact loads, both in isolation and in situ on its bone substrate, has been little studied despite the common occurrence of osteoarthritis subsequent to cartilage injury. An instrumented drop tower was used to apply controlled impact loads of different energies to explants of bovine articular cartilage. Results were compared with a conventional slow stress-strain test. The effects of the underlying bone were investigated by progressively shortening a core of bone removed with the cartilage, and by gluing cartilage samples to substrates of different moduli. The maximum dynamic modulus of isolated samples of bovine articular cartilage, at strain rates between 1100 and 1500 s(-1), was approximately two orders of magnitude larger than the quasistatic modulus and varied non-linearly with applied stress. When attached to a substrate of higher modulus, increasing the thickness of the substrate increased the effective modulus of the combination until a steady value was achieved. A lower modulus substrate reduced the effective modulus of the combination. Severe impacts resulted in damage to the bone rather than to the cartilage. The modulus of cartilage rises rapidly and non-linearly with strain rate, giving the tissue a remarkable ability to withstand impact loads. The presence of cartilage attenuated the peak force experienced by the bone and spread the impact loading period over a longer time.

  14. Impact of Wetting/Oven-Drying Cycles on the Mechanical and Physical Properties of Birch Plywood

    NASA Astrophysics Data System (ADS)

    Sooru, M.; Kasepuu, K.; Kask, R.; Lille, H.

    2015-11-01

    The objective of this study was to explore some physical and mechanical properties and the dimensional stability of birch (Betula sp.) nine-ply veneers glued with phenol-formaldehyde (PF) after 10 cycles of soaking/oven-drying. The properties to be determined were bending strength (BS), modulus of elasticity in bending (MOE), Janka hardness (JH) and thickness swelling (TS), which were tested according to the European Standards (EN). An analytical equation was used for approximation of the change in the physical and mechanical properties of the samples depending on the number of cycles. It was shown that the values of the studied properties were affected most by the first soaking and drying cycles after which BS and MOE decreased continuously while the values of JH and TS stabilized. After 10 cycles the final values of BS, MOE, JH and TS accounted for 75-81%, 95%, 82% and 98.5% of the initial values, respectively.

  15. Impact of thermal properties of the trees cultivated by processed waste water and sludge

    SciTech Connect

    Drakatos, P.A.; Kalavrouziotis, I.K.; Skuras, D.G.; Drakatos, S.P.; Fanariotou, I.

    1997-07-01

    Eucalyptus trees were planted and irrigated with wastewater from the wastewater treatment plan (WWTP) of the University of Patras in certain experimental design including treatment and control groups. Measurements of the thermal properties from treatment and control specimens (Eucalyptus sp.), showed significantly different values. Preliminary findings showed that the use of sludge and wastewater affect the thermal properties of wood. The implications of this finding on the future planning of wastewater reuse are discussed.

  16. The Impact of Organic Amendments on Soil Properties Under Mediterranean Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Hueso Gonzalez, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2014-05-01

    Soil erosion and unsustainable land uses produce adverse effect on SOC content. Soil management techniques and corrections can be applied for soil recovery, especially, with afforestation purposes. This study presents the short term effects of the application of different treatments and amendments on soil properties for soils included in several sets of closed plots located in the experimental area of Pinarillo (Nerja, Spain). The analysed soil properties were: pH, EC, Organic Carbon, total Nitrogen and total Carbon. In order to verify possible differences, we applied the test of Mann-Whitney U in corroboration with the previous homogeneity test of variance. The result of each strategy set compared to the initial condition shows at least one significant modification in the analysed soil properties. Electrical conductivity was the most changeable soil property respect to the initial condition. Similarly, organic carbon content and total organic carbon remained quite similar. However, when all of the strategy sets are compared among them, total carbon was the most significantly changeable property. Mulching, polymers and urban residue seem to highly modify the soil initial conditions. Although soil physic-chemical parameters generally used to evaluate soil quality change very slowly. The analysed soil properties shows significant differences between dry and wet season. This fact, could be indicating the effect of certain seasonality as it is usual in Mediterranean condition.

  17. A STUDY OF THE PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-30

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  18. Shock wave properties of anorthosite and gabbro. [to model hypervelocity impact cratering on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1985-01-01

    Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.

  19. Effect of heat treatment on the impact properties of a 12Cr-1Mo-V-W steel

    SciTech Connect

    Chin, B.A.; Wilcox, R.C.

    1983-11-11

    This paper describes the effects of austenitization and tempering treatments on the strength and impact properties of a 12Cr-1Mo-V-W steel. Data are reported for austenitization temperatures covering the range 900 to 1250/sup 0/C and tempering treatments of 600 to 800/sup 0/C. A 50/sup 0/C improvement in the ductile brittle transition temperature is achieved through heat treatment. This is found to result from elimination of delta ferrite and associated carbides at the delta ferrite-matrix interface. 17 figures.

  20. Efficient simulation of the impact of interface grading on the transport and optical properties of semiconductor heterostructures

    SciTech Connect

    Lü, X.; Schrottke, L.; Luna, E.; Grahn, H. T.

    2014-06-09

    An efficient model is proposed to evaluate the impact of interface grading on the properties of semiconductor heterostructures. In the plane-wave approximation, the interface grading is taken into account by simply multiplying the Fourier components of the potential by a Gaussian function, which results only in a very small increase of the computation time. We show that the interface grading may affect the transition energies, the field strength for resonant coupling of subbands, and even the miniband formation in complex systems such as quantum-cascade lasers. This model provides a convenient tool for the incorporation of interface grading into the design of heterostructures.

  1. Economic Impacts from the Boulder County, Colorado, ClimateSmart Loan Program: Using Property-Assessed Clean Energy Financing

    SciTech Connect

    Goldberg, M.; Cliburn, J. K.; Coughlin, J.

    2011-04-01

    This report examines the economic impacts (including job creation) from the Boulder County, Colorado, ClimateSmart Loan Program (CSLP), an example of Property-Assessed Clean Energy (PACE) financing. The CSLP was the first test of PACE financing on a multi-jurisdictional level (involving individual cities as well as the county government). It was also the first PACE program to comprehensively address energy efficiency measures and renewable energy, and it was the first funded by a public offering of both taxable and tax-exempt bonds.

  2. Correlation of Impact Conditions, Interface Reactions, Microstructural Evolution, and Mechanical Properties in Kinetic Spraying of Metals: A Review

    NASA Astrophysics Data System (ADS)

    Kim, Jaeick; Lee, Changhee

    2016-12-01

    In the past, most studies into kinetic spraying technology focused on basic research, but a large portion of current research is devoted to industrial applications of the technology. To advance, however, studies about industrial applications of kinetic spraying require profound understanding of the scientific foundations of the kinetic spray process. Nevertheless, no one has yet provided a well-organized summary of the correlations among impact conditions, interface reactions, microstructural evolution, and mechanical properties across the whole field of kinetic spraying technology. This paper provides such an overview of these correlations for kinetic spraying of metals. For each correlation, the interactions between the given conditions and the material properties of the metal feedstock powder are the most influential. These interactions are so complicated that it is difficult to systematically classify all cases into certain types. Nonetheless, we try to explain and summarize the critical factors and their roles in each relationship.

  3. The impact of lone pair-π interactions on photochromic properties in 1-D naphthalene diimide coordination networks.

    PubMed

    Liu, Jian-Jun; Guan, Ying-Fang; Chen, Yong; Lin, Mei-Jin; Huang, Chang-Cang; Dai, Wen-Xin

    2015-10-21

    Lone pair-π interaction is an important but less studied binding force. Generally, it is too weak to influence the physical properties of supramolecular systems. Herein we reported the first example exhibiting the impact of lone pair-π interactions on photochromic properties of naphthalene diimide based coordination networks. In three isostructural 1-D networks, [(DPNDI)ZnX2] (DPNDI = N,N-di(4-pyridyl)-1,4,5,8-naphthalene diimide, X = Cl for 1, X = Br for 2 and X = I for 3), they exhibit different electron-transfer photochromic behaviors due to different lone pair-π interactions between the capped halogen atoms and electron-deficient DPNDI moieties. Specifically, 1 and 2 but not 3 are photochromic, which is attributed to a stronger lone pair-π interaction in 3 than those in 1 and 2. This study anticipates breaking a new path for designing novel photochromic materials through such unnoticeable supramolecular interactions.

  4. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  5. Soluble Dietary Fiber Fractions in Wheat Bran and Their Interactions with Wheat Gluten Have Impacts on Dough Properties.

    PubMed

    Li, Qian; Liu, Rui; Wu, Tao; Wang, Man; Zhang, Min

    2016-11-23

    Six soluble dietary fiber (SDF) fractions were prepared via stepwise ethanol precipitation from natural and fermented wheat bran. The chemical composition, molecular weight distribution, and glycosidic linkage and substitution pattern of each SDF fraction were elucidated by sugar analysis, periodate oxidation and Smith degradation, molecular determination, and (1)H nuclear magnetic resonance (NMR) analysis. The impacts of SDF fractions on the rheological properties and morphologies of doughs were investigated by farinography, rheometry, and scanning electron microscopy (SEM) to clarify the relationship between the microstructural features of SDF fractions and the macroscopic properties of SDF-containing doughs. The interactions between SDF fractions and wheat glutens in doughs were further studied by confocal laser scanning microscopy (CLSM). The experimental results indicated that the SDF fraction with an intermediate molecular weight but a higher substitution degree and a larger disubstitution ratio was most compatible with the dough network and beneficial to dough quality.

  6. The Impact of Federally Tax Exempt Property Ownership on National County Poverty Rank and Student Achievement

    ERIC Educational Resources Information Center

    Kuessner, Sonia Shedd

    2016-01-01

    Education in the 21st century is subject to standardized testing with financial implications associated with testing. Under continued focus at the federal level to close the socioeconomic achievement gap, equitable distribution of funding is critical to ensure all schools have resources available to offset impacts of low socioeconomic status on…

  7. Pilot plant assessment of blend properties and their impact on critical power plant components

    SciTech Connect

    1996-10-01

    A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

  8. Nutrient source and tillage impacts on tall fescue production and soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Festuca arundinacea Schreb.) grass provides a major forage base for many livestock production systems in the southeastern United States. Forage production with manure helps recycle nutrients with less environmental impacts. This two year study examined tall fescue forage production and ...

  9. Novel slow release nanocomposite nitrogen fertilizers: the impact of polymers on nanocomposite properties and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient use of fertilizers, especially nitrogen, is essential and strategic to agricultural production. Among the technologies that can contribute to efficient use of fertilizers are slow or controlled release products. This paper describes the impact on structure, urea release rate and function i...

  10. Spatial variability of the properties of marsh soils and their impact on vegetation

    NASA Astrophysics Data System (ADS)

    Sidorova, V. A.; Svyatova, E. N.; Tseits, M. A.

    2015-03-01

    Spatial variability of the properties of soils and the character of vegetation was studied on seacoasts of the Velikii Island in the Kandalaksha Bay of the White Sea. It was found that the chemical and physicochemical properties of marsh soils (Tidalic Fluvisols) are largely dictated by the distance from the sea and elevation of the sampling point above sea level. The spatial distribution of the soil properties is described by a quadratic trend surface. With an increase in the distance from the sea, the concentration of ions in the soil solution decreases, and the organic carbon content and soil acidity become higher. The spatial dependence of the degree of variability in the soil properties is moderate. Regular changes in the soil properties along the sea-land gradient are accompanied by the presence of specific spatial patterns related to the system of temporary water streams, huge boulders, and beached heaps of sea algae and wood debris. The cluster analysis made it possible to distinguish between five soil classes corresponding to the following plant communities: barren surface (no permanent vegetation), clayey-sandy littoral with sparse halophytes, marsh with large rhizomatous grasses, and grass-forb-bunchberry vegetation of forest margins. The subdivision into classes is especially distinct with respect to the concentration of chloride ions. The following groups of factors affect the distribution of vegetation: the composition of the soil solution, the height above sea level, the pH of water suspensions, and the humus content.

  11. Cooked rice texture and rice flour pasting properties; impacted by rice temperature during milling.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2015-03-01

    Rice milling plays a key factor in determining rice quality and value. Therefore accurate quality assessments are critical to the rice industry. This study was undertaken to assess the effect of exposing rice to elevated temperatures during milling, on cooked rice texture and rice flour pasting properties. Two long (Cybonnett and Francis) and one medium (Jupiter) rice (oryzae sativa L.) cultivars were milled using McGill laboratory mill for 30 and 40 s after warmed up the mill before milling. Four different milling temperatures per milling duration were achieved. Cooked rice texture properties were assessed using a uniaxial compression test and rice flour pasting properties measured using a TA-2000 rheometer. Results of this study showed that exposure of rice to high temperatures during milling significantly decreased cooked rice firmness. An increase in milled rice temperature after milling from 10.0 to 13.3 °C resulted in a 5.4 and 8.1 N decrease in cooked rice firmness. Although not always significant, the increase in milled rice temperature during milling resulted in an increase in cooked rice stickiness. The increase in milling temperature also showed significant increase in rice flour pasting properties. Changes in rice functional characteristics were attributed to the changes occurring to rice chemical constituents due to temperature exposure as indicated by the increase in rice protein hydrophobicity. Proteins are known to affect rice starch water holding capacity and other starch gelatinization properties.

  12. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China

    NASA Astrophysics Data System (ADS)

    Lu, X.; Yan, Y.; Sun, J.; Zhang, X.; Chen, Y.; Wang, X.; Cheng, G.

    2015-11-01

    Since the 1980s, alpine grasslands have been seriously degraded on the Tibetan Plateau. Grazing exclusion by fencing has been widely adopted to restore degraded grasslands. To clarify the effect of grazing exclusion on soil quality, we investigated soil properties and nutrients by comparing free-grazing (FG) and grazing exclusion (GE) grasslands in Tibet. Soil properties - including soil bulk density, pH, particle size distributions, and proportion of aggregates - showed no significant difference between FG and GE plots. Soil organic carbon, soil available nitrogen, and available phosphorus contents did not differ with grazing exclusion treatments in both the 0-15 and 15-30 cm layer. However, soil total nitrogen and total phosphorus contents were remarkably reduced due to grazing exclusion at 0-15 cm depth. Furthermore, growing season temperature and/or growing season precipitation had significant effects on almost all soil property and nutrient indicators. This study demonstrates that grazing exclusion had no impact on most soil properties and nutrients in Tibet. Additionally, the potential shift of climate conditions should be considered when recommending any policy designed for restoration of degraded soil in alpine grasslands in the future. Nevertheless, because the results of the present study come from a short-term (6-8 years) grazing exclusion, the assessments of the ecological effects of the grazing exclusion management strategy on soil quality of degraded alpine grasslands in Tibet still need long-term continued research.

  13. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China

    NASA Astrophysics Data System (ADS)

    Lu, X.; Yan, Y.; Sun, J.; Zhang, X.; Chen, Y.; Wang, X.; Cheng, G.

    2015-08-01

    Since the 1980s, alpine grasslands have been seriously degraded on the Tibetan Plateau. Grazing exclusion by fencing has been widely adopted to restore degraded grasslands. To clarify the effect of grazing exclusion on soil quality, we investigated soil properties and nutrients by comparing free grazing (FG) and grazing exclusion (GE) grasslands in Tibet. Soil properties, including soil bulk density, pH, particle size distributions, and proportion of aggregates, were not significant different between FG and GE plots. Soil organic carbon, soil available nitrogen, available phosphorus contents did not differ with grazing exclusion treatments in both 0-15 and 15-30 cm layer. However, soil total nitrogen and total phosphorus contents were remarkably reduced due to grazing exclusion at the 0-15 cm depth. Furthermore, growing season temperature and/or growing season precipitation had significant effects on almost all soil properties and nutrients indicators. This study demonstrates that grazing exclusion had no impact on most soil properties and nutrients in Tibet. Additionally, the potential shift of climate conditions should be considered when recommend any policies designed for alpine grasslands degraded soil restoration in the future. Nevertheless, because the results of the present study come from short term (6-8 years) grazing exclusion, the assessments of the ecological effects of the grazing exclusion management strategy on soil quality of degraded alpine grasslands in Tibet still need long term continued research.

  14. Impact of heating on sensory properties of French Protected Designation of Origin (PDO) blue cheeses. Relationships with physicochemical parameters.

    PubMed

    Bord, Cécile; Guerinon, Delphine; Lebecque, Annick

    2016-07-01

    The aim of this study was to measure the impact of heating on the sensory properties of blue-veined cheeses in order to characterise their sensory properties and to identify their specific sensory typology associated with physicochemical parameters. Sensory profiles were performed on a selection of Protected Designation of Origin (PDO) cheeses representing the four blue-veined cheese categories produced in the Massif Central (Fourme d'Ambert, Fourme de Montbrison, Bleu d'Auvergne and Bleu des Causses). At the same time, physicochemical parameters were measured in these cheeses. The relationship between these two sets of data was investigated. Four types of blue-veined cheeses displayed significantly different behaviour after heating and it is possible to discriminate these cheese categories through specific sensory attributes. Fourme d'Ambert and Bleu d'Auvergne exhibited useful culinary properties: they presented good meltability, stretchability and a weak oiling-off. However, basic tastes (salty, bitter and sour) are also sensory attributes which can distinguish heated blue cheeses. The relationship between the sensory and physicochemical data indicated a correlation suggesting that some of these sensory properties may be explained by certain physicochemical parameters of heated cheeses.

  15. Property.

    ERIC Educational Resources Information Center

    Goldblatt, Steven M.; Piele, Philip K.

    This chapter reviews 1982 cases related to school property. Cases involving citizen efforts to overturn school board decisions to close schools dominate the property chapter, and courts continue to uphold school board authority to close schools, transfer students, and sell or lease the buildings. Ten cases involving detachment and attachment of…

  16. Property.

    ERIC Educational Resources Information Center

    Bickel, Robert D.; Zeller, Trisha A.

    A number of cases related to property issues involving institutions of higher education are examined in this chapter. Cases discussed touch on such topics as funding for property and equipment acquisition; opposition to building construction or demolition; zoning issues; building construction and equipment contracts; and lease agreements. Current…

  17. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Johnson, Margaret M.

    This chapter deals with 1981 cases involving disputes over property. Cases involving the detachment and attachment of land continue to dominate the property chapter with 11 cases reported, the same number summarized in last year's chapter. One case involving school board referenda raised the interesting question of whether or not a state could…

  18. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Chapter 7 of a book on school law, this chapter deals with 1979 cases involving disputes over property. Cases involving taxpayer attempts to prevent the construction of school buildings dominate this year's property chapter, as they did last year's. Yet, paradoxically, there is also a significant increase in cases in which taxpayers tried to…

  19. Understanding Material Property Impacts on Co-Current Flame Spread: Improving Understanding Crucial for Fire Safety

    NASA Technical Reports Server (NTRS)

    Ruff, Gary (Technical Monitor); Rangwala, Ali S.; Buckley, Steven G.; Torero, Jose L.

    2004-01-01

    The prospect of long-term manned space flight brings fresh urgency to the development of an integrated and fundamental approach to the study of material flammability. Currently, NASA uses two tests, the upward flame propagation test and heat and visible smoke release rate test, to assess the flammability properties of materials to be used in space under microgravity conditions. The upward flame propagation test can be considered in the context of the 2-D analysis of Emmons. This solution incorporates material properties by a "mass transfer number", B in the boundary conditions.

  20. Late Stages of Stellar Evolution and their Impact on Spectrophotometric Properties of Galaxies

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.

    2007-12-01

    The connection between AGB evolution of stellar populations and infrared vs. ultraviolet properties of the parent galaxies is reviewed relying on the updated lookout provided by population-synthesis theory. In particular, planetary-nebula events and hot horizontal-branch evolution are assessed in a unitary view to outline a plain general picture of galaxy spectrophotometric evolution. This will include a brief discussion of relevant phenomena such as the ``UV upturn'' in ellipticals and the stellar mass loss properties along the galaxy morphological sequence.

  1. Recognizing impact glass on Mars using surface texture, mechanical properties, and mid-infrared spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Bradley, James Thomson

    A primary goal of future Mars sample return missions is to obtain samples whose isotopic ages can be used to place absolute time constraints on the relative Martian crater chronology. Thus, identifying the origin of surface material as impact or volcanic prior to its return to Earth will be critical. This dissertation focuses on four strategies for identifying and characterizing impact melt breccias from both landed and orbital perspectives. In Part 1, the geology of Viking 2 Landing (VL2) site is re-evaluated using recently acquired orbital data. Measurements of relict landform topography indicate that a layer of sedimentary material at least 120 m thick has been eroded from the site. Crater counts indicate an extreme deficiency of small-diameter craters (<500 m), indicating that resurfacing has continued up to the present. Thermal inertia data over the site is consistent with some rocks being impact-emplaced and possibly impact-derived. In Part 2, three textural characteristics were identified as potential discriminants between vesicular impact and volcanic glasses: vesicle shape (elongation), orientation, and spatial density. Additionally, a theoretical model was developed to constrain the conditions necessary for the preservation of deformed bubble textures. The results suggest that deformed bubbles are unlikely to be preserved in typical Martian basalts or basaltic andesites. Part 3 is an endeavor to extract science from mission support operations. First, a method for determining the bulk density of rocks via a pushing (i.e., by a robotic spacecraft arm) was developed and applied to VL2 rock-pushing data. Although the large measurement uncertainties preclude drawing firm conclusions, the results demonstrate the feasibility of the technique. Second, results from the Rock Abrasion Tool (RAT) on the Spirit rover were analyzed to infer the mechanical strength of ground surfaces. Rocks in the Columbia Hills were found to be mechanically consistent with impact melt

  2. Impact of further processing on dielectric properties of broiler poultry meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently in the U.S. more than 90% of the turkeys and more than 70% of the broilers are processed beyond the normal ready-to-cook stage. Up to 50% of raw poultry meat is marinated with mixtures of water, salts, and phosphates. Physical properties of foods provide essential data to the food industr...

  3. Impact of fatty ester composition on low temperature properties of biodiesel-petroleum diesel blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several biodiesel fuels along with neat fatty acid methyl esters (FAMEs) commonly encountered in biodiesel were blended with ultra-low sulfur diesel (ULSD) fuel at low blend levels permitted by ASTM D975 (B1-B5) and cold flow properties such as cloud point (CP), cold filter plugging point (CFPP), an...

  4. Structural and Thermodynamic Properties of Amyloid-β Peptides: Impact of Fragment Size

    NASA Astrophysics Data System (ADS)

    Kitahara, T.; Wise-Scira, O.; Coskuner, O.

    2010-10-01

    Alzheimer's disease is a progressive neurodegenerative disease whose physiological characteristics include the accumulation of amyloid-containing deposits in the brain and consequent synapse and neuron loss. Unfortunately, most widely used drugs for the treatment can palliate the outer symptoms but cannot cure the disease itself. Hence, developing a new drug that can cure it. Most recently, the ``early aggregation and monomer'' hypothesis has become popular and a few drugs have been developed based on this hypothesis. Detailed understanding of the amyloid-β peptide structure can better help us to determine more effective treatment strategies; indeed, the structure of Amyloid has been studied extensively employing experimental and theoretical tools. Nevertheless, those studies have employed different fragment sizes of Amyloid and characterized its conformational nature in different media. Thus, the structural properties might be different from each other and provide a reason for the existing debates in the literature. Here, we performed all-atom MD simulations and present the structural and thermodynamic properties of Aβ1-16, Aβ1-28, and Aβ1-42 in the gas phase and in aqueous solution. Our studies show that the overall structures, secondary structures, and the calculated thermodynamic properties change with increasing peptide size. In addition, we find that the structural properties of those peptides are different from each other in the gas phase and in aqueous solution.

  5. The Impact of Parks on Property Values: A Review of the Empirical Evidence.

    ERIC Educational Resources Information Center

    Crompton, John L.

    2001-01-01

    Reviews research on whether parks and open spaces influence increasing property values (the proximate principle); the magnitude of this effect; and how distance affects the proximate principle. Data from 30 studies on the extent and legitimacy of the proximate principle find that only 5 studies do not support the proximate principle. These…

  6. Impact of deficit irrigation on sorghum physical and chemical properties and ethanol yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the effect of irrigation levels (five levels from 304.8 to 76.2 mm water) on the physical and chemical properties and ethanol fermentation performance of sorghum. Ten sorghum samples grown under semi-arid climatic conditions were harvested in 2011 from the...

  7. Impact of deficit irrigation on maize physical and chemical properties and ethanol yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the effect of irrigation levels (five levels from 102 to 457 mm of water) on the physical and chemical properties and ethanol fermentation performance of maize. Twenty maize samples with two crop rotation systems, grain sorghum–maize and maize–maize, were ...

  8. Corn and soybean rotation under reduced tillage management: impacts on soil properties, yield, and net return

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 4-yr field study was conducted from 2007 to 2010 at Stoneville, MS to examine the effects of rotating corn and soybean under reduced tillage conditions on soil properties, yields, and net return. The six rotation systems were continuous corn (CCCC), continuous soybean (SSSS), corn-soybean (CSCS),...

  9. The impact of plant-based antimicrobials on sensory properties of organic leafy greens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant extracts and essential oils are well known for their antibacterial activity. However, studies concerning their effect on the organoleptic properties of treated foods are limited. The objective was to study the sensory attributes of organic leafy greens treated with plant antimicrobials and ide...

  10. Impact of presowing laser irradiation of seeds on sugar beet properties

    NASA Astrophysics Data System (ADS)

    Sacała, E.; Demczuk, A.; Grzyś, E.; Prośba-Białczyk, U.; Szajsner, H.

    2012-07-01

    The aim of the experiment was to establish the influence of biostimulation on the sugar beet seeds. The seeds came from the specialized breeding program energ'hill or were irradiated by the laser in two doses. The impact of the biostimulation was analyzed by determining the nitrate reductase activity and the nitrate, chlorophyll and carotenoids contents in leaves, as well as, the dry matter and sugar concentration in mature roots. The field experiment was established for two sugar beet cultivars. Biostimulation by irradiation and a special seed breeding program energ'hill had a positive influence on some examined parameters (particularly on nitrate reductase activity in Ruveta and in numerous cases on photosynthetic pigments in both cultivars). Regarding the dry matter accumulation and sugar concentration this impact was more favourable for Tiziana than for Ruveta cultivar.

  11. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  12. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NASA Astrophysics Data System (ADS)

    Alling, B.; Körmann, F.; Grabowski, B.; Glensk, A.; Abrikosov, I. A.; Neugebauer, J.

    2016-06-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the present study we show that this assumption is not valid when the coupling between vibrations and magnetism is taken into account. At the γ -δ transition temperature (1662 K), the lattice distortions cause very similar magnetic moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic properties to understand paramagnetic Fe. Furthermore, they suggest that at the γ -δ transition temperature electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

  13. Intrinsic Impact and Fatigue Property Degradation of Composite Materials in Sea Water

    DTIC Science & Technology

    2010-05-26

    in a local buckling form. Unlike impact-induced delamination, its propagation is mainly opening- dominated. Delamination also appeared along the...actual experiment. A linear, elastic and isotropic material was chosen as only brittle materials are considered in this analysis . The specimen was meshed... analysis with the updated set of boundary conditions was carried out. This was done until convergence and the total applied load was obtained by

  14. Physical Properties of Suevite Section of the Eyreville Core, Chesapeake Bay Impact Structure

    NASA Astrophysics Data System (ADS)

    Elbra, T.; Pesonen, L. J.

    2007-12-01

    Chesapeake is a 35 Ma old shallow marine, complex impact structure with a diameter of ca. 85 km. The structure has previously been mapped with shallow drillings. Recently, the deep drilling into inner crater zone near Cape Charles was carried out in order to provide constraints on cratering processes in multi-layered marine targets. The Eyreville-1 core includes three holes with total depth of 1766m (Gohn et al. 2006). We are analyzing the fragments of the Eyreville core including post-impact, impact and basement units of the structure. The sampling interval was chosen dense enough to allow high-resolution petrophysical, paleomagnetic and rock magnetic data to be extracted from the core. Hereby we report the preliminary petrophysical and rock-magnetic data from suevite section of Eyreville core B. Results obtained so far show large variations in magnetic susceptibility data of suevite section. Polymict lithic breccias and cataclasites in lower part of the section are characterized by low magnetic susceptibility (below 0.0003 SI). The upper part, however, consists of more magnetic (susceptibility up to 0.006 SI) suevites. The rock- magnetic measurements (including thermal behavior of magnetic susceptibility and magnetic hysteresis) show the presence of magnetites in lower part of the section. Upper part shows additionally a distinct change in the slope of the susceptibility curve also near 350C, which may indicate the presence of pyrrhotites or maghemites. More extensive studies will be applied in near future in order to clarify the magnetomineralogy and will be presented. References: G. S. Gohn, C. Koeberl, K. G. Miller, W. U. Reimold, C. S. Cockell, J. W. Horton, W. E. Sanford, M. A. Voytek, 2006. Chesapeake Bay Impact Structure Drilled. EOS, vol 87. nr 35

  15. Impact of Non-Invasively Induced Motor Deficits on Tibial Cortical Properties in Mutant Lurcher Mice

    PubMed Central

    Jindrová, Alena; Tuma, Jan; Sládek, Vladimír

    2016-01-01

    It has been shown that Lurcher mutant mice have significantly altered motor abilities, regarding their motor coordination and muscular strength because of olivorecebellar degeneration. We assessed the response of the cross-sectional geometry and lacuno-canalicular network properties of the tibial mid-diaphyseal cortical bone to motor differences between Lurcher and wild-type (WT) male mice from the B6CBA strain. The first data set used in the cross-sectional geometry analysis consists of 16 mice of 4 months of age and 32 mice of 9 months of age. The second data set used in the lacunar-canalicular network analysis consists of 10 mice of 4 months of age. We compared two cross-sectional geometry and four lacunar-canalicular properties by I-region using the maximum and minimum second moment of area and anatomical orientation as well as H-regions using histological differences within a cross section. We identified inconsistent differences in the studied cross-sectional geometry properties between Lurcher and WT mice. The biggest significant difference between Lurcher and WT mice is found in the number of canaliculi, whereas in the other studied properties are only limited. Lurcher mice exhibit an increased number of canaliculi (p < 0.01) in all studied regions compared with the WT controls. The number of canaliculi is also negatively correlated with the distance from the centroid in the Lurcher and positively correlated in the WT mice. When the Lurcher and WT sample is pooled, the number of canaliculi and lacunar volume is increased in the posterior Imax region, and in addition, midcortical H-region exhibit lower number of canaliculi, lacuna to lacuna distance and increased lacunar volume. Our results indicate, that the importance of precise sample selection within cross sections in future studies is highlighted because of the histological heterogeneity of lacunar-canalicular network properties within the I-region and H-region in the mouse cortical bone. PMID:27387489

  16. Martian Polar Region Impact Craters: Geometric Properties From Mars Orbiter Laser Altimeter (MOLA) Observations

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Sakimoto, S. E. H.; Frawley, J. J.; Matias, A.

    1998-01-01

    The Mars Orbiter Laser Altimeter (MOLA) instrument onboard the Mars Global Surveyor (MGS) spacecraft has so far observed approximately 100 impact landforms in the north polar latitudes (>60 degrees N) of Mars. Correlation of the topography with Viking Orbiter images indicate that many of these are near-center profiles, and for some of the most northern craters, multiple data passes have been acquired. The northern high latitudes of Mars may contain substantial ground ice and be topped with seasonal frost (largely CO2 with some water), forming each winter. We have analyzed various diagnostic crater topologic parameters for this high-latitude crater population with the objective of characterizing impact features in north polar terrains, and we explore whether there is evidence of interaction with ground ice, frost, dune movement, or other polar processes. We find that there are substantial topographic variations from the characteristics of midlatitude craters in the polar craters that are not readily apparent from prior images. The transition from small simple craters to large complex craters is not well defined, as was observed in the midlatitude MOLA data (transition at 7-8 km). Additionally, there appear to be additional topographic complexities such as anomalously large central structures in many polar latitude impact features. It is not yet clear if these are due to target-induced differences in the formation of the crater or post-formation modifications from polar processes.

  17. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties.

    PubMed

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-03-01

    The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details.

  18. Tensile and charpy impact properties of irradiated reduced-activation ferritic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1996-10-01

    Tensile tests were conducted on eight reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on the steels irradiated to 26-29 dpa. Irradiation was in the Fast Flux Test Facility at 365{degrees}C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15-17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20000 h at 365{degrees}C. Thermal aging had little effect on the tensile behavior or the ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in the upper-shelf energy (USE). After {approx}7 dpa, the strength of the steels increased and then remained relatively unchanged through 26-29 dpa (i.e., the strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness, as measured by an increase in DBTT and a decrease in the USE, remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels were the most irradiation resistant.

  19. The Properties of Chondrocyte Membrane Reservoirs and Their Role in Impact-Induced Cell Death

    PubMed Central

    Moo, Eng Kuan; Amrein, Matthias; Epstein, Marcelo; Duvall, Mike; Abu Osman, Noor Azuan; Pingguan-Murphy, Belinda; Herzog, Walter

    2013-01-01

    Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3–4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3–4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates. PMID:24094400

  20. Physical property data from the ICDP-USGS Eyreville cores A and B, Chesapeake Bay impact structure, Virginia, USA, acquired using a multisensor core logger

    USGS Publications Warehouse

    Pierce, H.A.; Murray, J.B.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.

  1. How sea level rise and storm climate impact the looming morpho-economic bubble in coastal property value.

    NASA Astrophysics Data System (ADS)

    McNamara, D.; Keeler, A.; Smith, M.; Gopalakrishnan, S.; Murray, A.

    2012-12-01

    property is significantly reduced with the removal of nourishment subsidies, creating a temporary bubble in coastal property value. In both models, results show the extent to which rising sea level and changing storminess impact the size of the property value bubble. The utility of the optimal control model is that it provides an empirically grounded parameterization of the coupled human coastal system. The coupled agent-based physical coastline model is more difficult to constrain with current data, however the model provides insight into the dynamics of subjective beliefs about coastal risk, which depend on the weight agents place on scientific predictions and on the way they process signals from previous climate events. Results from this model illustrate how the dynamics of the property bubble burst depend on agent beliefs about their changing environment.

  2. The impact of human activities on the flushing properties of a semi-enclosed lagoon: Xiaohai, Hainan, China.

    PubMed

    Gong, Wenping; Shen, Jian; Jia, Jianjun

    2008-02-01

    In this study, a Lagrangian particle tracking model driven by hydrodynamic fields was used to investigate the changes of flushing properties in Xiaohai Lagoon resulting from natural evolution and influences of human activities. Comparisons of residence times between 1936 and 2001 indicate that the flushing efficiency of the lagoon has deteriorated greatly during the past seven decades. Over this period, the average residence time of the lagoon has increased from 45 to 71 days, an increase of 59%. The Lagrangian residual velocity has decreased from 1936 to 2001 in the large portions of the lagoon, and the spatial distribution pattern of the residual current has changed significantly. The well-developed horizontal circulations in 1936 disappeared. Instead, the horizontal Lagrangian residual velocity showed uniformly seaward motion with reduced velocity in 2001. Human activities have incurred great impacts on the deterioration of flushing efficiency. The reduction of river inflow imposed the most significant impact, causing an increase of average residence time by 33%. The land reclamation in the lagoon came as the second most significant factor, causing an increase of 15%. Closure of the North Opening had posed minor impact. The model results suggest that restoring the river inflow, as well as the dredging of the tidal channel and the inner lagoon, should be the top proprieties for future water quality management.

  3. Impact of natural organic matter on monochloramine reduction by granular activated carbon: the role of porosity and electrostatic surface properties

    SciTech Connect

    Julian L. Fairey; Gerald E. Speitel Jr.; Lynn E. Katz

    2006-07-01

    Steady-state monochloramine reduction in fixed-bed reactors (FBRs) was quantified on five types of granular activated carbon (GAC) using two background waters - one natural source water (LAW) containing 2.5-3.5 mg/L organic carbon and one synthetic organic-free water (NW). GACs used were coal-based Filtrasorb 400, Filtrasorb 600, Centaur and Medical Grade, and wood-based AquaGuard. While more monochloramine was reduced at steady-state using NW compared to LAW for each GAC and empty-bed contact time studied, the differences in removal varied considerably among the GACs tested. Physical characterization of the GACs suggested that the degree of interference caused by natural organic matter (NOM) increased with increasing GAC surface area contained within pores greater than 2 nm in width. Acid/base and electrostatic properties of the GACs were not found to be significant in terms of NOM uptake, which indicated that size exclusion effects of the GAC pores overwhelmed the impact of the GAC surface chemistry. Therefore, selection of GAC to limit the impact of NOM on monochloramine reduction in FBRs should be based on pore size distribution alone, with the impact of NOM decreasing with decreasing mesoporosity and macroporosity. 23 refs., 4 figs., 3 tabs.

  4. Analysis of the Thermal Comfort and Impact Properties of the Neoprene-Spacer Fabric Structure for Preventing the Joint Damages

    PubMed Central

    Ghorbani, Ehsan; Hasani, Hossein; Rafeian, Homa; Hashemibeni, Batool

    2013-01-01

    Background: Frequent moves at the joint, plus external factors such as trauma, aging, and etc., are all reasons for joint damages. In order to protect and care of joints, the orthopedic textiles are used. To protect the joints, these textiles keep muscles warm to prevent shock. To produce orthopedic textiles, Neoprene foams have been traditionally used. These foams are flexible and resist impact, but are not comfortable enough and might cause problems for the consumer. This study introduces a new structure consisting of perforated Neoprene foam attached to the spacer fabric and also compares the properties of thermal and moisture comfort and impact properties of this structure in comparison with Neoprene foam. Methods: In order to measure the factors related to the samples lateral pressure behavior, a tensile tester was used. A uniform pressure is applied to the samples and a force – displacement curve is obtained. The test continues until the maximum compression force is reached to 50 N. The area under the curve is much greater; more energy is absorbed during the impact. In order to investigate the dynamic heat and moisture transfer of fabrics, an experimental apparatus was developed. This device made the simulation of sweating of human body possible and consisted of a controlled environmental chamber, sweating guarded hot plate, and data acquisition system. Results: The findings show that the Neoprene-spacer fabric structure represents higher toughness values compared to other samples (P ≤ 0.001). Neoprene-spacer fabric structure (A3) has higher rate of moisture transport than conventional Neoprene foam; because of undesirable comfort characteristics in Neoprene. Conclusions: Results of the tests indicate full advantage of the new structure compared with the Neoprene foam for use in orthopedic textiles (P ≤ 0.001). PMID:24049594

  5. Impact of North American intense fires on aerosol optical properties measured over the European Arctic in July 2015

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Pakszys, P.; Ritter, C.; Zielinski, T.; Udisti, R.; Cappelletti, D.; Mazzola, M.; Shiobara, M.; Xian, P.; Zawadzka, O.; Lisok, J.; Petelski, T.; Makuch, P.; Karasiński, G.

    2016-12-01

    In this paper impact of intensive biomass burning (BB) in North America in July 2015, on aerosol optical and microphysical properties measured in the European Arctic, is discussed. This study was made within the framework of the Impact of Absorbing aerosols on Radiating forcing in the European Arctic project. During the BB event aerosol optical depth (AOD) at 500 nm exceeded 1.2 in Spitsbergen and 0.7 in Andenes (Norway). Angstrom exponent exceeded 1.4, while the absorbing Angstrom exponent varied between 1 and 1.25. BB aerosols were observed in humid atmosphere with a total water vapor column between 2 and 2.5 cm. In such conditions aerosols are activated and may produce clouds at different altitudes. Vertical structure of aerosol plumes over Svalbard, obtained from ceilometers and lidars, shows variability of range-corrected signal between surface and middle and upper troposphere. Aerosol backscattering coefficients show values up to 10-5 m-1 sr-1 at 532 nm. Aerosol surface observations indicate chemical composition typical for biomass burning particles and very high single scattering properties. Scattering and absorption coefficients at 530 nm were up to 130 and 15 Mm-1, respectively. Single scattering albedo at the surface varied from 0.9 to 0.94. The averaged values over the entire atmospheric column ranged from 0.93 to 0.99. Preliminary statistics of model and Sun photometer data as well as previous studies indicate that this event, in the Arctic region, must be considered extreme (such AOD was not observed in Svalbard since 2005) with a significant impact on energy budget.

  6. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    SciTech Connect

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militizer, B.

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  7. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    SciTech Connect

    Hu, S. X. Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-15

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κ{sub QMD}), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ∼2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP

  8. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE PAGES

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; ...

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  9. Environmental and management impacts on temporal variability of soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2012-04-01

    Soil hydraulic properties underlie temporal changes caused by different natural and management factors. Rainfall intensity, wet-dry cycles, freeze-thaw cycles, tillage and plant effects are potential drivers of the temporal variability. For agricultural purposes it is important to determine the possibility of targeted influence via management. In no-till systems e.g. root induced soil loosening (biopores) is essential to counteract natural soil densification by settling. The present work studies two years of temporal evolution of soil hydraulic properties in a no-till crop rotation (durum wheat-field pea) with two cover crops (mustard and rye) having different root systems (taproot vs. fibrous roots) as well as a bare soil control. Soil hydraulic properties such as near-saturated hydraulic conductivity, flow weighted pore radius, pore number and macroporosity are derived from measurements using a tension infiltrometer. The temporal dynamics are then analysed in terms of potential driving forces. Our results revealed significant temporal changes of hydraulic conductivity. When approaching saturation, spatial variability tended to dominate over the temporal evolution. Changes in near-saturated hydraulic conductivity were mainly a result of changing pore number, while the flow weighted mean pore radius showed less temporal dynamic in the no-till system. Macroporosity in the measured range of 0 to -10 cm pressure head ranged from 1.99e-4 to 8.96e-6 m3m-3. The different plant coverage revealed only minor influences on the observed system dynamics. Mustard increased slightly the flow weighted mean pore radius, being 0.090 mm in mustard compared to 0.085 mm in bare soil and 0.084 mm in rye. Still pore radius changes were of minor importance for the overall temporal dynamics. Rainfall was detected as major driving force of the temporal evolution of structural soil hydraulic properties at the site. Soil hydraulic conductivity in the slightly unsaturated range (-7 cm to -10

  10. Impact of Nanostructure on Mechanical Properties of Norbornene-based Block Copolymers under Simulated Operating Conditions for Biobutanol Membranes.

    PubMed

    Ye, Changhuai; Takigawa, Tamami; Burtovvy, Oleksandr Sasha; Langsdorf, Leah; Jablonski, Dane; Bell, Andrew; Vogt, Bryan D

    2015-06-10

    The structure and mechanical properties of a novel block copolymer (BCP) system with T(g)'s for both segments exceeding 300 °C, poly(butylnorbornene)-block-poly(hydroxyhexafluoroisopropyl norbornene) (BuNB-b-HFANB), are investigated as a function of processing conditions used for solvent vapor annealing (SVA). Solvent selection impacts long-range order markedly, but unexpectedly vertical orientation of cylinders are preferred over a wide range of solubility parameters, as determined by atomic force microscopy and grazing incidence small-angle X-ray scattering. The mechanical properties (elastic modulus, fracture strength, and onset fracture strain) are dependent upon the long-range order induced during SVA and determined using the combination of surface wrinkling and cracking. The modulus and fracture strength of the films increase from 1.44 GPa and 12.1 MPa to 1.77 GPa and 17.5 MPa, respectively, whereas the onset fracture strain decreases from 1.6% to approximately 0.6% as the ordering is improved. The polarity difference in the segments of the BCP is attractive for membrane separations, especially butanol-water. For biobutanol recovery, the titers are typically <3 wt % butanol; exposure of the BCP membrane to aqueous 1 wt % butanol decreases the elastic modulus to approximately 0.90 GPa, irrespective of the morphology, despite the high T(g) of both segments and limited swelling (5.0 wt %). Correspondingly, the onset fracture strain of these swollen films is estimated to increase significantly to 6-7%. These results indicate that operating conditions impact the mechanical performance of BCP membranes more than their morphology despite the high T(g) of the neat copolymer. Wrinkling and cracking provide a facile route to test the mechanical properties of membranes under simulated operando conditions.

  11. Atmospheric Aging and Its Impacts on Physical Properties of Soot Aerosols: Results from the 2009 SHARP/SOOT Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Khalizov, A. F.; Zheng, J.; Reed, C. C.; Collins, D. R.; Olaguer, E. P.

    2009-12-01

    Atmospheric aerosols impact the Earth energy balance directly by scattering solar radiation back to space and indirectly by changing the albedo, frequency, and lifetime of clouds. Carbon soot (or black carbon) produced from incomplete combustion of fossil fuels and biomass burning represents a major component of primary aerosols. Because of high absorption cross-sections over a broad range of the electromagnetic spectra, black carbon contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. In areas identified as aerosol hotspots, which include many megacities, solar heating by soot-containing aerosols is roughly comparable to heating due to greenhouse gases. In addition, light absorbing soot aerosols may reduce photolysis rates at the surface level, producing a noticeable impact on photochemistry. Enhanced light absorption and scattering by soot can stabilize the atmosphere, retarding vertical transport and exacerbating accumulation of gaseous and particulate matter (PM) pollutants within the planetary boundary layer. Less surface heating and atmospheric stabilization may decrease formation of clouds, and warming in the atmosphere can evaporate existing cloud droplets by lowering relative humidity. Furthermore, soot-containing aerosols represent a major type of PM that has adverse effects on human health. When first emitted, soot particles are low-density aggregates of loosely connected primary spherules. Freshly emitted soot particles are typically hydrophobic, but may become cloud condensation nuclei (CCN) during atmospheric aging by acquiring hydrophilic coatings. Hygroscopic soot particles, being efficient CCN, can exert indirect forcing on climate. In this talk, results will be presented on measurements of soot properties during the 2009 SHARP/SOOT Campaign. Ambient aerosols and fresh soot particles injected into a captured air chamber were monitored to

  12. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, Volumes, and Physical-chemical Properties of Chemicals

    NASA Astrophysics Data System (ADS)

    Knightes, C. D.; Daiss, R.; Williams, L.; Singer, A.

    2015-12-01

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base fluid, proppant, and additives. Additives, comprised of one or more chemicals, are serve a specific engineering purpose (e.g., friction reducer, scale inhibitor, biocide). As part of the USEPA's Draft Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources, we investigated the different types, volumes injected, and physical-chemical properties of HF fluid chemicals. The USEPA identified 1,076 chemicals used in HF fluids, based on 10 sources covering chemical use from 2005 to 2013. These chemicals fall into different classes: acids, alcohols, aromatic hydrocarbons, bases, hydrocarbon mixtures, polysaccharides, and surfactants. The physical-chemical properties of these chemicals vary, which affects their movement through the environment if spilled. Properties range from fully miscible to insoluble, from highly hydrophobic to highly hydrophilic. Most of these chemicals are not volatile. HF fluid composition varies from site to site depending on a range of factors. No single chemical or set of chemicals are used at every site. A median of 14 chemicals are used per well, with a range of four to 28 (5th and 95th percentiles). Methanol was the chemical most commonly reported in FracFocus 1.0 (72% of disclosures), and hydrotreated light petroleum distillates and hydrochloric acid were both reported in over half the disclosures. Operators store chemicals on-site, often in multiple containers (typically in 760 to 1,500 L totes). We estimated that the total volume of all chemicals used per well ranges from approximately 10,000 to 110,000 L. The views expressed here are those of the authors and do not necessarily represent the views or policies of the USEPA.

  13. Stabilization of the Dimeric Birch Pollen Allergen Bet v 1 Impacts Its Immunological Properties*

    PubMed Central

    Kofler, Stefan; Ackaert, Chloé; Samonig, Martin; Asam, Claudia; Briza, Peter; Horejs-Hoeck, Jutta; Cabrele, Chiara; Ferreira, Fatima; Duschl, Albert; Huber, Christian; Brandstetter, Hans

    2014-01-01

    Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity. PMID:24253036

  14. Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.).

    PubMed

    Xu, Lei; Chen, Long; Ali, Barkat; Yang, Na; Chen, Yisheng; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2017-08-15

    Adlay has garnered a great deal of research attentions in recent years as a highly nutritious food material and herbal medicine. This study characterized the changes of nutritional and physicochemical properties of adlay seeds during a 60-h germination. The results showed that the 60-h germination brought about a 3.4-fold increase in γ-aminobutyric acid (GABA) and 3.6-fold increase in coixol compared to ungerminated adlay seeds, while the triolein content slightly decreased. Some high molecular proteins were hydrolyzed into smaller proteins, peptides and amino acids after germination. Scanning electron micrographs (SEM) showed that the germination process destroyed the continuous matrix structure of adlay flour and created pits and holes on the surface of some starch granules. Germination resulted to changes in the pasting and gelatinization properties of adlay flour. The results of present study suggest that germination efficiently enhances the nutritional compounds while altering the physicochemical characteristics of adlay seeds.

  15. Ultra-high pressure homogenization-induced changes in skim milk: impact on acid coagulation properties.

    PubMed

    Serra, Mar; Trujillo, Antonio J; Jaramillo, Pamela D; Guamis, Buenaventura; Ferragut, Victoria

    2008-02-01

    The effects of ultra-high pressure homogenization (UHPH) on skim milk yogurt making properties were investigated. UHPH-treated milk was compared with conventionally homogenised (15 MPa) heat-treated skim milk (90 degrees C for 90 s), and to skim milk treated under the same thermal conditions but fortified with 3% skim milk powder. Results of the present study showed that UHPH is capable of reducing skim milk particle size which leads to the formation of finer dispersions than those obtained by conventional homogenisation combined with heat treatment. In addition, results involving coagulation properties and yogurt characteristics reflected that, when increasing UHPH pressure conditions some parameters such as density of the gel, aggregation rate and water retention are improved.

  16. Impact of feature-size dependent etching on the optical properties of photonic crystal devices

    SciTech Connect

    Berrier, A.; Anand, S.; Ferrini, R.; Talneau, A.; Houdre, R.

    2008-05-01

    Feature size dependence in Ar/Cl{sub 2} chemically assisted ion beam etching of InP-based photonic crystals (PhCs) and its influence on the optical properties of PhC devices operating in the band gap are investigated. The analysis of the measured quality factors, the determined mirror reflectivities, and losses of one-dimensional Fabry-Perot cavities clearly demonstrates the importance of feature-size dependent etching. The optical properties show a dramatic improvement up to a hole depth of about 3.5 {mu}m that is primarily due to a significant reduction in extrinsic losses. However, beyond this hole depth, the improvement is at a lower rate, which suggests that extrinsic losses, although present, are not dominant.

  17. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder

    NASA Astrophysics Data System (ADS)

    Li, J.; Feng, W. J.; Wang, J. S.; Zhao, X.; Zheng, W. Q.; Yang, H.

    2015-11-01

    Microwave absorption properties, especially the band width and depth of reflection loss are highlighted as key measurement in studies of microwave absorber. In order to improve the band width and depth of reflection loss of carbonyl iron powder (CIP), we prepared SiO2 layers on the surface of CIP by using tetraethyl orthosilicate (TEOS) as a SiO2 source and 3-aminopropyl triethoxysilane (APTES) as a surface modifier. SiO2 layer was formed by the hydrolysis of TEOS. The results show that after treatment the CIP is covered by a 5-10 nm coating layer. Contrast to uncoated samples, coated samples show improved absorption properties. The minimum of reflection loss is -38.8 dB at 11 GHz and the band width of reflection loss exceeding -10 dB is from 8 GHz to 14 GHz.

  18. Stabilization of the dimeric birch pollen allergen Bet v 1 impacts its immunological properties.

    PubMed

    Kofler, Stefan; Ackaert, Chloé; Samonig, Martin; Asam, Claudia; Briza, Peter; Horejs-Hoeck, Jutta; Cabrele, Chiara; Ferreira, Fatima; Duschl, Albert; Huber, Christian; Brandstetter, Hans

    2014-01-03

    Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.

  19. Impact of amylose content on starch physicochemical properties in transgenic sweet potato.

    PubMed

    Zhou, Wenzhi; Yang, Jun; Hong, Yan; Liu, Guiling; Zheng, Jianli; Gu, Zhengbiao; Zhang, Peng

    2015-05-20

    The intrinsic relationship between amylose content and starch physicochemical properties was studied using six representative starch samples (amylose content 0-65%) produced from transgenic sweet potato (cultivar Xushu22). The transgenic lines (waxy and high-amylose) and wild-type (WT) sweet potatoes were analyzed for amylose content, particle size and chain length distribution, X-ray diffraction analysis, thermal characteristics, pasting and rheological property. Compared to the WT starch, the waxy and high-amylose starches showed larger average granule sizes and had fewer short chains and more medium and long chains. X-ray diffractogram analysis revealed that high-amylose starches show a type-B crystal form with a markedly decreased degree of crystallinity in contrast to the type-A crystal form of the WT and waxy starches. In the high-amylose sweet potato starches, the rise of setback value and the reduction of breakdown value led to the high shear resistance as indicated by the higher G', G", and tanδ from the oscillation test. ΔH was not found to be decreased with the reduction of crystallinity. The shear stress resistance of starch gel after gelatinization was also enhanced as amylose content increased. Principal component analysis also confirmed that the amylose content greatly influenced the starch structure and properties, e.g., storage modulus, setback value, and average chain length. Thus, our study not only shed light on how amylose content affects starch properties but also identified novel starches that are available for various applications.

  20. Molecular simulations of hydrocarbon lubricants: Impact of molecular architecture on performance properties

    NASA Astrophysics Data System (ADS)

    Kioupis, Loukas I.

    2000-07-01

    With the increased power of modern computers, molecular modeling has been used widely and proven to be a valuable tool for elucidating the physical processes important in many industrial and engineering problems. Of particular interest to us is the rheology and physical chemistry of complex fluids, such as hydrocarbon lubricants and polymers. The goal is to provide qualitative and quantitative molecular-level explanations for the behavior of such fluids, and provide guidance in the development of new improved materials. For example, during the production of poly-α-olefin (PAO) synthetic lubricants, the number of the isomer skeletal structures that can be obtained is staggering. Which of the countless PAO isomers produce a lubricant with superior performance properties? How does it behave under different operational conditions of temperature, pressure, and shear rate? A fundamental understanding of the effect that molecular structure has on the oil's rheological and lubricant performance is first needed, in order to answer these questions. To serve this purpose, we have developed efficient molecular dynamics (MD) simulation programs, which utilize multiple time step algorithms and parallel computational techniques. This enables us to conduct simulations of typical PAO isomers and compute the viscosity, as well as several other dynamic and static properties, as a function of temperature, pressure, and shear rate. The key molecular mechanisms that determine important macroscopic properties, such as viscosity index, viscosity-pressure coefficient, traction coefficient, and shear thinning behavior are discussed. Based on this analysis, lubricant and traction fluid structures that have a high likelihood of having desirable properties are proposed. In addition, studies on simple alkane mixtures are presented, in an attempt to understand the more complex polydisperse lubricant fluids, their blends, and their interaction with additives.

  1. Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Taher, Ayoub; Joseph, Antony

    2016-11-05

    Lentil starch (LS) dispersions (flour to water 1:4w/w) were subjected to high pressure (HP) treatment at 0.1, 400, 500 and 600MPa for 10min, followed by evaluation on the functional, particle size, rheological, pasting, and structural properties of post-process samples. Water holding capacity of pressurized starch increased with the pressure intensity due to increase in damaged starch. The amount of resistant starch increased from 5 to 6.8% after pressure treatment at 600MPa. An increase in starch granule particle size (196-207μm) was obvious after HP treatment. The lentil starch was completely gelatinized after pressure treatment at 600MPa for 10min as evidenced from differential scanning calorimetry, rheometry, X-ray diffraction (XRD) and scanning electron microscopy observation. The elastic modulus, G' of lentil starch gel was less frequency dependent, and higher in magnitude at high pressure (>500MPa) than at lower pressure range (≤400MPa). XRD analysis revealed the disappearance of two diffraction peak intensities at 14.86° and 22.82° at 600MPa for 10min, which confirms the transformation of crystalline to amorphous region of lentil starch. Pasting properties were significantly influenced by the pressure treatment especially at 600MPa, resulting in a considerable decrease in peak viscosity, breakdown and final viscosity, and an increase in peak time. It can be inferred that the functional properties of pressure-treated LS are mainly based on the structural destruction of granules.

  2. On the impact of indium distribution on the electronic properties in InGaN nanodisks

    SciTech Connect

    Benaissa, M. E-mail: benaissa@fsr.ac.ma; Sigle, W.; Aken, P. A. van; Ng, T. K.; Ooi, B. S.; El Bouayadi, R.; Jahangir, S.; Bhattacharya, P.

    2015-03-09

    We analyze an epitaxially grown heterostructure composed of InGaN nanodisks inserted in GaN nanowires in order to relate indium concentration to the electronic properties. This study was achieved with spatially resolved low-loss electron energy-loss spectroscopy using monochromated electrons to probe optical excitations—plasmons—at nanometer scale. Our findings show that each nanowire has its own indium fluctuation and therefore its own average composition. Due to this indium distribution, a scatter is obtained in plasmon energies, and therefore in the optical dielectric function, of the nanowire ensemble. We suppose that these inhomogeneous electronic properties significantly alter band-to-band transitions and consequently induce emission broadening. In addition, the observation of tailing indium composition into the GaN barrier suggests a graded well-barrier interface leading to further inhomogeneous broadening of the electro-optical properties. An improvement in the indium incorporation during growth is therefore needed to narrow the emission linewidth of the presently studied heterostructures.

  3. Impact of self-assembly properties on antibacterial activity of short acyl-lysine oligomers.

    PubMed

    Sarig, Hadar; Rotem, Shahar; Ziserman, Lior; Danino, Dganit; Mor, Amram

    2008-12-01

    We investigated both the structural and functional consequences of modifying the hydrophobic, lipopeptide-mimetic oligo-acyl-lysine (OAK) N(alpha)-hexadecanoyl-l-lysyl-l-lysyl-aminododecanoyl-l-lysyl-amide (c(16)KKc(12)K) to its unsaturated analog hexadecenoyl-KKc(12)K [c(16(omega7))KKc(12)K]. Despite similar tendencies for self-assembly in solution (critical aggregation concentrations, approximately 10 muM), the analogous OAKs displayed dissimilar antibacterial properties (e.g., bactericidal kinetics taking minutes versus hours). Diverse experimental evidence provided insight into these discrepancies: whereas c(16(omega7))KKc(12)K created wiry interconnected nanofiber networks, c(16)KKc(12)K formed both wider and stiffer fibers which displayed distinct binding properties to phospholipid membranes. Unsaturation also shifted their gel-to-liquid transition temperatures and altered their light-scattering properties, suggesting the disassembly of c(16(omega7))KKc(12)K in the presence of bacteria. Collectively, the data indicated that the higher efficiency in interfering with bacterial viability emanated from a wobbly packing imposed by a single double bond. This suggests that similar strategies might improve hydrophobic OAKs and related lipopeptide antibiotics.

  4. Investigating the impact of microbial interactions with geologic media on geophysical properties

    NASA Astrophysics Data System (ADS)

    Davis, Caroline Ann

    The goals of this study were to investigate the effect of: (1) microbial metabolic byproducts, microbial growth, and biofilm formation on the low frequency electrical properties of porous media, (2) biofilm formation on acoustic wave properties, and (3) the natural electrical (self-potential) signatures associated with an in-situ biological permeable reactive barrier (PRB). The results suggest: (1) increases in electrolytic conductivity are consistent with increased concentrations of organic acids and biosurfactants; (2) mineral weathering promoted by organic acids causes increases in electrolytic conductivity, concomitant with increases in major cation concentrations; (3) interfacial conductivity generally parallels microbial cell concentrations and biofilm formation; (4) variations in microbial growth and biofilms causes spatiotemporal heterogeneity in the elastic properties of porous media; (5) SP signatures associated with the injection of groundwater into an in-situ biological PRB are dominated by diffusion potentials induced by the injections. The results suggest that electrolytic conductivity may be useful as an indicator of metabolism, while interfacial conductivity may be used as proxy indicator for microbial growth and biofilm formation in porous media. In addition, acoustic measurements may provide diagnostic spatiotemporal data for the validation of bioclogging models/simulations. Collectively, this study provides further evidence that geophysical measurements are sensitive to microbial-induced changes to geologic media, and may be useful for the detection and monitoring of subsurface microbial growth, activity, and distribution such as in microbial enhanced oil recovery, assessing biofilm barriers used for contaminant remediation, or as sealants for reservoirs in CO2 sequestration studies.

  5. Functional gradients in the pericarp of the green coconut inspire asymmetric fibre-composites with improved impact strength, and preserved flexural and tensile properties.

    PubMed

    Graupner, Nina; Labonte, David; Humburg, Heide; Buzkan, Tayfun; Dörgens, Anna; Kelterer, Wiebke; Müssig, Jörg

    2017-02-28

    Here we investigate the mechanical properties and structural design of the pericarp of the green coconut (Cocos nucifera L.). The pericarp showed excellent impact characteristics, and mechanical tests of its individual components revealed gradients in stiffness, strength and elongation at break from the outer to the inner layer of the pericarp. In order to understand more about the potential effect of such gradients on 'bulk' material properties, we designed simple, graded, cellulose fibre-reinforced polylactide (PLA) composites by stacking layers reinforced with fibres of different mechanical properties. Tensile properties of the graded composites were largely determined by the 'weakest' fibre, irrespective of the fibre distribution. However, a graded design led to pronounced asymmetric bending and impact properties. Bio-inspired, asymmetrically graded composites showed a flexural strength and modulus comparable to that of the strongest reference samples, but the elongation at maximum load was dependent on the specimen orientation. The impact strength of the graded composites showed a similar orientation-dependence, and peak values exceeded the impact strength of a non-graded reference composite containing identical fibre fractions by up to a factor of three. In combination, our results show that an asymmetric, systematic variation of fibre properties can successfully combine desirable properties of different fibre types, suggesting new routes for the development of high-performance composites, and improving our understanding of the structure-function relationship of the coconut pericarp.

  6. Impact of an intensive management on soil biochemical and biological properties in an agricultural soil of Southern Italy

    NASA Astrophysics Data System (ADS)

    Scotti, R.; D'Ascoli, R.; Rao, M. A.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    An intensive management of agricultural soils is widely carried out to increase vegetation productivity. Nevertheless, the large use of machineries, chemical fertilizers and pesticides can often cause, in time, a substantial decline in soil fertility by affecting soil physical and chemical properties and, in turn, growth and activity of soil microbial community. In fact, alteration in soil structure, nutrient losses and, in particular, changes in quality and quantity of soil organic matter are some of the principal soil degradation processes deriving from an intensive agricultural management that can affect, in different ways, soil biochemical and biological properties. The aim of this research was to assess the impact of intensive management on agricultural soils by measuring soil physical, chemical and biochemical/biological properties. The use of appropriate indicators as quantitative tools could allow to assess soil quality. Moreover, although soil physical and chemical properties have received great attention, soil biochemical/biological properties, such as enzyme activities and microbial biomass, functionally related properties involved in the nutrient cycles, can be considered as sensitive indicators of soil quality and health changes because, they show a faster turn over compared to soil organic matter. Our attention was focused on the Plane of Sele river (Campania region, Italy), an area characterized by an intensive agriculture and greenhouse cultures. Twenty-five farms were chosen, with the aid of regional soil map, in order to get soils with different physical and chemical properties. As common trait, the selected farms, all with greenhouse cultures, used no organic amendments but only mineral compounds to fertilize soils. Moreover, to better understand the impact of intensive agricultural practices on soil of each farm, control soils from orchards or uncultivated plots were chosen. In each farm soil samples were collected in three different plots

  7. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  8. Impact of anti-tacking agents on properties of gas-entrapped membrane and effervescent floating tablets.

    PubMed

    Kriangkrai, Worawut; Puttipipatkhachorn, Satit; Sriamornsak, Pornsak; Pongjanyakul, Thaned; Sungthongjeen, Srisagul

    2014-12-01

    Tackiness caused by the gas-entrapped membrane (Eudragit(®)RL 30D) was usually observed during storage of the effervescent floating tablets, leading to failure in floatation and sustained release. In this work, common anti-tacking agents (glyceryl monostearate (GMS) and talc) were used to solve this tackiness problem. The impact of anti-tacking agent on the properties of free films and corresponding floating tablets was investigated. GMS was more effective than talc in reducing tackiness of the film. Addition and increasing amount of anti-tacking agents lowered the film mechanical strength, but the coating films were still strong and flexible enough to resist the generated gas pressure inside the floating tablet. Wettability and water vapor permeability of the film decreased with increasing level of anti-tacking agents as a result of their hydrophobicity. No interaction between anti-tacking agents and polymer was observed as confirmed by Fourier transform infrared spectroscopy, powder X-ray diffractometry, and differential scanning calorimetry studies. Increasing amount of anti-tacking agents decreased time to float and tended to retard drug release of the floating tablets. Floating properties and drug release were also influenced by type of anti-tacking agents. The obtained floating tablets still possessed good floating properties and controlled drug release even though anti-tacking agent had some effects. The results demonstrated that the tackiness problem of the floating tablets could be solved by incorporating anti-tacking agent into the gas-entrapped membrane.

  9. Impact Strength and Flexural Properties Enhancement of Methacrylate Silane Treated Oil Palm Mesocarp Fiber Reinforced Biodegradable Hybrid Composites

    PubMed Central

    Ibrahim, Nor Azowa; Ariffin, Hidayah; Yunus, Wan Md. Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites. PMID:25254230

  10. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

    PubMed

    Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.

  11. Protecting intellectual property associated with Canadian academic clinical trials--approaches and impact.

    PubMed

    Ross, Sue; Magee, Laura; Walker, Mark; Wood, Stephen

    2012-12-27

    Intellectual property is associated with the creative work needed to design clinical trials. Two approaches have developed to protect the intellectual property associated with multicentre trial protocols prior to site initiation. The 'open access' approach involves publishing the protocol, permitting easy access to the complete protocol. The main advantages of the open access approach are that the protocol is freely available to all stakeholders, permitting them to discuss the protocol widely with colleagues, assess the quality and rigour of the protocol, determine the feasibility of conducting the trial at their centre, and after trial completion, to evaluate the reported findings based on a full understanding of the protocol. The main potential disadvantage of this approach is the potential for plagiarism; however if that occurred, it should be easy to identify because of the open access to the original trial protocol, as well as ensure that appropriate sanctions are used to deal with plagiarism. The 'restricted access' approach involves the use of non-disclosure agreements, legal documents that must be signed between the trial lead centre and collaborative sites. Potential sites must guarantee they will not disclose any details of the study before they are permitted to access the protocol. The main advantages of the restricted access approach are for the lead institution and nominated principal investigator, who protect their intellectual property associated with the trial. The main disadvantages are that ownership of the protocol and intellectual property is assigned to the lead institution; defining who 'needs to know' about the study protocol is difficult; and the use of non-disclosure agreements involves review by lawyers and institutional representatives at each site before access is permitted to the protocol, significantly delaying study implementation and adding substantial indirect costs to research institutes. This extra step may discourage sites from

  12. On the impact of the magnitude of Interstellar pressure on physical properties of Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.; Burkert, A.; Kuiper, R.

    2017-01-01

    Recently reported variations in the typical physical properties of Galactic and extra-Galactic molecular clouds (MCs), and in their star-forming ability have been attributed to local variations in the magnitude of interstellar pressure. Inferences from these surveys have called into question two long-standing beliefs : (1) that MCs are Virialised, and (2) they obey the Larson's third law. Here we invoked the framework of cloud-formation via collision between warm gas-flows to examine if these latest observational inferences can be reconciled. To this end we traced the temporal evolution of the gas surface density, the fraction of dense gas, the distribution of gas column density (N-PDF), and the Virial nature of the assembled clouds. We conclude, these physical properties exhibit temporal variation and their respective peak-magnitude also increases in proportion with the magnitude of external pressure, Pext. The velocity dispersion in assembled clouds appears to follow the power-law, σ _{gas}∝ P_{ext}^{0.23}. The power-law tail at higher densities becomes shallower with increasing magnitude of external pressure for Pext/kB ≲ 107 K cm-3; at higher magnitudes such as those typically found in the Galactic CMZ (Pext/kB > 107 K cm-3), the power-law shows significant steepening. While our results are broadly consistent with inferences from various recent observational surveys, it appears, MCs do not exhibit a unique set of properties, but rather a wide variety that can be reconciled with a range of magnitudes of pressure between 104 K cm-3 - 108 K cm-3.

  13. Impact of Residential Prairie Gardens on the Physical Properties of Urban Soil in Madison, Wisconsin.

    PubMed

    Johnston, Marie R; Balster, Nick J; Zhu, Jun

    2016-01-01

    Prairie gardens have become a common addition to residential communities in the midwestern United States because prairie vegetation is native to the region, requires fewer resources to maintain than turfgrass, and has been promoted to help remediate urban soil. Although prairie systems typically have deeper and more diverse root systems than traditional turfgrass, no one has tested the effect of this vegetation type on the physical properties of urban soil. We hypothesized that residential prairie gardens would yield lower soil bulk density (BD), lower penetration resistance (PR), greater soil organic matter (SOM), and greater saturated hydraulic conductivity () compared with turfgrass lawns. To test this hypothesis, we examined 12 residential properties in Madison, WI, where homeowners had established a prairie garden within their turfgrass lawn. Despite a consistent trend in the difference between vegetation types, no significant main effects were found (i.e., a difference between vegetation types when averaged over depth) for any of the four soil properties measured in this study. Differences were found with depth and depended on a significant interaction with vegetation type. At the surface depth (0-0.15 m), soil beneath prairie gardens had 10% lower mean BD, 15% lower mean PR, 25% greater level of SOM, and 33% greater compared with soil beneath the adjacent lawns. These differences were not detected at deeper sampling intervals of 0.15 to 0.30 m and 0.30 to 0.45 m. Although not statistically significant, the consistent trend and direction among soil variables suggest that residential prairie gardens had changed the surface soil at a rate that marginally outpaced turfgrass and calls for controlled experiments to identify the mechanisms that might enhance these trends.

  14. Impact of phytoplankton community structure and function on marine particulate optical properties

    NASA Astrophysics Data System (ADS)

    McFarland, Malcolm Neil

    Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural

  15. Impact of the Soak and the Malt on the Physicochemical Properties of the Sorghum Starches

    PubMed Central

    Claver, Irakoze Pierre; Zhang, Haihua; Li, Qin; Zhu, Kexue; Zhou, Huiming

    2010-01-01

    Starches were isolated from soaked and malted sorghum and studied to understand their physicochemical and functional properties. The swelling power (SP) and the water solubility index (WSI) of both starches were nearly similar at temperatures below 50 °C, but at more than 50 °C, the starch isolated from malted sorghum showed lower SP and high WSI than those isolated from raw and soaked sorghum. The pasting properties of starches determined by rapid visco-analyzer (RVA) showed that malted sorghum starch had a lower viscosity peak value (86 BU/RVU) than raw sorghum starch (454 BU/RVU). For both sorghum, X-ray diffractograms exhibited an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity ranged from 9.62 to 15.50%. Differential scanning calorimetry (DSC) revealed that raw sorghum starch showed an endotherm with a peak temperature (Tp) at 78.06 °C and gelatinization enthalpies of 2.83 J/g whereas five-day malted sorghum starch had a Tp at 47.22 °C and gelatinization enthalpies of 2.06 J/g. Storage modulus (G′) and loss modulus (G″) of all starch suspensions increased steeply to a maximum at 70 °C and then decreased with continuous heating. The structural analysis of malted sorghum starch showed porosity on the granule’s surface susceptible to the amylolysis. The results showed that physicochemical and functional properties of sorghum starches are influenced by soaking and malting methods. PMID:21152287

  16. Defects in Ceramic Matrix Composites and Their Impact on Elastic Properties (Postprint)

    DTIC Science & Technology

    2013-07-01

    SiNC had the highest separation area followed by the MI SiC/SiC and oxide/oxide composites. Defects were prevalent in SiC/SiNC composites than other sys ...modulus for the composite sys - tems were experimentally evaluated and compared to results of the model. It was observed that the most affected property...Manufacturing Directorate, Wright-Patterson AFB, OH, USA supported this effort under contract FA8650-11-M-5130. References [1] Abdul Aziz A, Saury C, Bui Xuan

  17. Impact of preacidification of milk and fermentation time on the properties of yogurt.

    PubMed

    Peng, Y; Horne, D S; Lucey, J A

    2009-07-01

    Casein interactions play an important role in the textural properties of yogurt. The objective of this study was to investigate how the concentration of insoluble calcium phosphate (CCP) that is associated with casein particles and the length of fermentation time influence properties of yogurt gels. A central composite experimental design was used. The initial milk pH was varied by preacidification with glucono-delta-lactone (GDL), and fermentation time (time to reach pH 4.6 from the initial pH) was altered by varying the inoculum level. We hypothesized that by varying the initial milk pH value, the amount of CCP would be modified and that by varying the length of the fermentation time we would influence the rate and extent of solubilization of CCP during any subsequent gelation process. We believe that both of these factors could influence casein interactions and thereby alter gel properties. Milks were preacidified to pH values from 6.55 to 5.65 at 40 degrees C using GDL and equilibrated for 4 h before inoculation. Fermentation time was varied from 250 to 500 min by adding various amounts of culture at 40 degrees C. Gelation properties were monitored using dynamic oscillatory rheology, and microstructure was studied using fluorescence microscopy. Whey separation and permeability were analyzed at pH 4.6. The preacidification pH value significantly affected the solubilization of CCP. Storage modulus values at pH 4.6 were positively influenced by the preacidification pH value and negatively affected by fermentation time. The value for the loss tangent maximum during gelation was positively affected by the preacidification pH value. Fermentation time positively affected whey separation and significantly influenced the rate of CCP dissolution during fermentation, as CCP dissolution was a slow process. Longer fermentation times resulted in greater loss of CCP at the pH of gelation. At the end of fermentation (pH approximately 4.6), virtually all CCP was dissolved

  18. Impact of densification on microstructure and transport properties of CaFe5O7

    NASA Astrophysics Data System (ADS)

    Delacotte, C.; Hébert, S.; Hardy, V.; Bréard, Y.; Maki, R.; Mori, T.; Pelloquin, D.

    2016-04-01

    Monophasic CaFe5O7 ceramic has been synthesized by solid state route. Its microstructural features have been studied by diffraction techniques and electron microscopy images before and after Spark Plasma Sintering (SPS) annealings. This work is completed by measurements of electrical and thermal properties. Especially, attention is focused around the structural and electronic transition at 360 K for which specific heat measurements have revealed a sharp peak. Densification by SPS techniques led to a significant improvement of electrical conductivity above 360 K.

  19. Impact of dry heating on physicochemical properties of corn starch and lysine mixture.

    PubMed

    Ji, Ying; Yu, Jicheng; Xu, Yongbin; Zhang, Yinghui

    2016-10-01

    Corn starch was modified with lysine by dry heat treatment and to investigate how they can affect the pasting and structural properties of the treated starches. Dry heating with lysine reduced the pasting temperature and resulting in viscosity increase. The particle size of heated starch-lysine mixture increased, suggesting that starch granules were cross-linked to lysine. After dry heating, the onset temperature, peak temperature and conclusion temperature of corn starch-lysine mixture were lower than those of other starches. The degree of crystallinity decreased for the starch after dry heat treatment while these heated starch samples still have the same X-ray diffraction types as the original starch.

  20. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  1. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).

  2. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.

  3. BLOOD-NANOPARTICLE INTERACTIONS AND IN VIVO BIODISTRIBUTION: IMPACT OF SURFACE PEG AND LIGAND PROPERTIES

    PubMed Central

    Shah, Neha B.; Vercellotti, Gregory M.; White, James G.; Fegan, Adrian; Wagner, Carston R.; Bischof, John C.

    2012-01-01

    Theranostic nanoparticles (NPs) cannot reach their target tissue without first passing through blood, however, the influence of blood protein and blood cell interactions on NP biodistribution are not well understood. The current work shows that 30nm PEGylated gold NPs (GNPs) interact not only with blood proteins as thought before, but also with blood cells (esp. platelets and monocytes) in vivo and that longer blood circulation correlates strongly with tumor uptake. Further, GNP surface properties such as negative charge or lyophilization had either a minimal (i.e. charge) or 15 fold increase (i.e. fresh vs. lyophilized) in blood retention times and tumor uptake. Tumor accumulation was increased over 10 fold by use of a bioactive ligand (i.e. TNF) on the lyophilized GNP surface. Resident macrophages were primarily responsible for the bulk of GNP uptake in liver while spleen uptake was highly surface property dependent and appears to involve macrophages and cellular interaction between the red and white pulp. This study shows that the PEG layer and ligand on the surface of the NP are critical to blood interactions and eventual tumor and RES organ biodistribution in vivo. PMID:22668197

  4. Identify OH groups in TiOF2 and their impact on the lithium intercalation properties

    NASA Astrophysics Data System (ADS)

    Li, Wei; Body, Monique; Legein, Christophe; Dambournet, Damien

    2017-02-01

    A detailed investigation on the chemical composition of the cubic form of titanium oxyfluoride-based compound reveals the presence of OH groups substituting the oxide/ fluoride sublattice. The substitution of oxide by hydroxyl groups induces the presence of titanium vacancies (□) which were characterized by 1H and 19F solid-state NMR. 1H NMR shows that OH groups are present as bridging Ti-OH-Ti or terminal OH groups, i.e. sitting close to a titanium vacancy Ti-OH-□. The electrochemical properties vs. Li+/Li indicates that the presence of OH groups prevents the intercalation of lithium in the upper voltage region (1.2-3 V vs. Li+/Li). Indeed, a partial dehydroxylation of the framework enables to improve the reversibility of the lithium insertion/de-insertion processes. Since the presence of OH groups in this type of compounds is usual and depends on the synthesis method employed, this work enables to rationalize the different electrochemical behaviors reported in the literature and further highlights the importance of a good knowledge of the chemical composition with regard to the physico-chemical properties.

  5. Impact of symmetry on the ferroelectric properties of CaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Biegalski, Michael D.; Qiao, Liang; Gu, Yijia; Mehta, Apurva; He, Qian; Takamura, Yayoi; Borisevich, Albina; Chen, Long-Qing

    2015-04-01

    Epitaxial strain is a powerful tool to induce functional properties such as ferroelectricity in thin films of materials that do not possess ferroelectricity in bulk form. In this work, a ferroelectric state was stabilized in thin films of the incipient ferroelectric, CaTiO3, through the careful control of the biaxial strain state and TiO6 octahedral rotations. Detailed structural characterization was carried out by synchrotron x-ray diffraction and scanning transmission electron microscopy. CaTiO3 films grown on La0.18Sr0.82Al0.59Ta0.41O3 (LSAT) and NdGaO3 (NGO) substrates experienced a 1.1% biaxial strain state but differed in their octahedral tilt structures. A suppression of the out-of-plane rotations of the TiO6 octahedral in films grown on LSAT substrates resulted in a robust ferroelectric I4 mm phase with remnant polarization ˜5 μC/cm2 at 10 K and Tc near 140 K. In contrast, films grown on NGO substrates with significant octahedral tilting showed reduced polarization and Tc. These results highlight the key role played by symmetry in controlling the ferroelectric properties of perovskite oxide thin films.

  6. Impact of cultivation of Mastocarpus stellatus in IMTA on the seaweeds chemistry and hybrid carrageenan properties.

    PubMed

    Azevedo, Gabriela; Domingues, Bernardo; Abreu, Helena; Sousa-Pinto, Isabel; Feio, Gabriel; Hilliou, Loic

    2015-02-13

    The biomass yield potential of Mastocarpus stellatus, a commercially attractive carrageenophyte for foods and pharmaceutics, was investigated by cultivating the seaweeds in the nutrient-rich outflow of a commercial fish farm. Results from two consecutive 4 weeks experiments indicate that the cultivation of this seaweed produces a mean biomass of 21 to 40.6 gDW m(-2) day(-1) depending on the time of the experiment. DRIFT and CP-MAS NMR analyses of seaweeds indicate that cultivation during May affected quantitatively the seaweeds chemistry, and thus the chemical and gelling properties of native extracts of kappa/iota-hybrid carrageenan (KI). Overall, algal growth leads to the production of more sulphated KI, the percentage increase varying between 27% and 44% for the two experiments. However, alkali treatment of seaweeds before extraction reduces the variations in gelling properties of KI induced by the algal growth. This study demonstrates the capacity of growing M. stellatus in an integrated multi-trophic aquaculture system for the sustainable production of high value polysaccharides.

  7. Impact of parasitic thermal effects on thermoelectric property measurements by Harman method

    NASA Astrophysics Data System (ADS)

    Kwon, Beomjin; Baek, Seung-Hyub; Keun Kim, Seong; Kim, Jin-Sang

    2014-04-01

    Harman method is a rapid and simple technique to measure thermoelectric properties. However, its validity has been often questioned due to the over-simplified assumptions that this method relies on. Here, we quantitatively investigate the influence of the previously ignored parasitic thermal effects on the Harman method and develop a method to determine an intrinsic ZT. We expand the original Harman relation with three extra terms: heat losses via both the lead wires and radiation, and Joule heating within the sample. Based on the expanded Harman relation, we use differential measurement of the sample geometry to measure the intrinsic ZT. To separately evaluate the parasitic terms, the measured ZTs with systematically varied sample geometries and the lead wire types are fitted to the expanded relation. A huge discrepancy (˜28%) of the measured ZTs depending on the measurement configuration is observed. We are able to separately evaluate those parasitic terms. This work will help to evaluate the intrinsic thermoelectric property with Harman method by eliminating ambiguities coming from extrinsic effects.

  8. Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors

    DOE PAGES

    Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.

    2015-03-11

    In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100more » mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.« less

  9. Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors

    SciTech Connect

    Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.

    2015-03-11

    In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100 mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.

  10. Particle stability in dilute fermented dairy drinks: formation of fluid gel and impact on rheological properties.

    PubMed

    Kiani, H; Mousavi, M E; Mousavi, Z E

    2010-12-01

    Fluid gels are known to be very shear-thinning materials with yield stress. In this study, the rheological properties of gellan and gellan-pectin fluid gels in fermented dairy drinks were evaluated using viscometric measurements. Both gellan- and gellan-pectin-containing solutions showed the rheological properties of fluid gels resulting in stabilization of particles; but no evidence of a fluid gel was observed for those with pectin alone and those with no hydrocolloid content. Unlike pectin, gellan gum was capable of creating significant values of yield stress and accordingly stabilized colloidal particles and extrinsic added solid particles in the fermented dairy drink. However, pectin improved the stability in combination with gellan. The origin of fluid gel formation was assumed to be both permanent interactions occurring between gellan and proteins, forming hairy particle gels and transient interactions between the particle gels. The significance of yield stress values for particle stability was demonstrated and two methods, including a noteworthy infinite apparent viscosity method and a conventional Bingham approach, were employed to calculate the values of yield stress. Both the methods showed a good application potential due to their simplicity, reasonable results and also wide availability of the instrument applied.

  11. Impact of thickness on microscopic and macroscopic properties of Fe-Te-Se superconductor thin films

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Wang, J. O.; Lei, T.; Liu, C.; Zhang, S. H.; Qian, H. J.; Wu, R.; Zhou, H.; Wang, H. Q.; Zheng, J. C.; Guo, H. Z.; Yan, L.; Ibrahim, K.

    2015-04-01

    A series of iron based Fe-Te-Se superconductor thin films depositing on 0.7wt% Nb-doped SrTiO3 at substrate temperatures in the 250°C -450°C range by pulsed laser ablation of a constituents well defined precursor FeTe0.55Se0.55 target sample. We study the possible growth mechanism and its influence on the superconductor properties. Experimental results indicate the superconductive and non-superconductive properties are modulated only by the thickness of the thin films through the temperature range. The films appear as superconductor whenever the thickness is above a critical value ˜30nm and comes to be non-superconductor below this value. Relative ratios of Fe to (Te+Se) in the films retained Fe/(Te+Se)<1 for superconductor and Fe/(Te+Se)>1 for non-superconductor no matter what the film growth temperature was. The effect of film growth temperature takes only the role of modulating the ratio of Te/Se and improving crystallinity of the systems. According to the experimental results we propose a sandglass film growth mechanism in which the interfacial effect evokes to form a Fe rich area at the interface and Se or Te starts off a consecutive filling up process of chalcogenide elements defect sides, the process is significant before the film thickness reaches at ˜30nm.

  12. Impact of stoichiometry of Yb2Ti2O7 on its physical properties

    NASA Astrophysics Data System (ADS)

    Arpino, K. E.; Trump, B. A.; Scheie, A. O.; McQueen, T. M.; Koohpayeh, S. M.

    2017-03-01

    A series of Yb2 +xTi2 -xO7 -δ doped samples demonstrates the effects of off-stoichiometry on Yb2Ti2O7 's structure, properties, and magnetic ground state via x-ray diffraction, specific heat, and magnetization measurements. A stoichiometric single crystal of Yb2Ti2O7 grown by the traveling solvent floating zone technique (solvent = 30 wt % rutile TiO2 and 70 wt % Yb2Ti2O7 ) is characterized and evaluated in light of this series. Our data shows that upon positive x doping, the cubic lattice parameter a increases and the Curie-Weiss temperature θCW decreases. Heat capacity measurements of stoichiometric Yb2Ti2O7 samples exhibit a sharp, first-order peak at T =268 (4) mK that is suppressed in magnitude and temperature in samples doped off ideal stoichiometry. The full entropy recovered per Yb ion is 5.7 J K-1≈R ln2 . Our work establishes the effects of doping on Yb2Ti2O7 's physical properties, which provides further evidence indicating that previous crystals grown by the traditional floating zone method are doped off ideal stoichiometry. Additionally, we present how to grow high-quality colorless single crystals of Yb2Ti2O7 by the traveling solvent floating zone growth method.

  13. Predicting the impact of quenching on mechanical properties of complex-shaped aluminum alloy parts

    SciTech Connect

    Hall, D.D.; Mudawar, I.

    1995-05-01

    The mechanical properties of age-hardenable aluminum alloy extrusions are critically dependent on the rate at which the part is cooled (quenched) after the forming operation. The present study continues the development of an intelligent spray quenching system, which selects the optimal nozzle configuration based on part geometry and composition such that the magnitude and uniformity of hardness (or yield strength) is maximized while residual stresses are minimized. The quenching of a complex-shaped part with multiple, overlapping sprays was successfully modeled using spray heat transfer correlations as boundary conditions within a finite element program. The hardness distribution of the heat-treated part was accurately predicted using the quench factor technique; that is, the metallurgical transformations that occur within the part were linked to the cooling history predicted by the finite element program. This study represents the first successful attempt at systematically predicting the mechanical properties of a quenched metallic part from knowledge of only the spray boundary conditions. 26 refs., 8 figs., 1 tab.

  14. Impact of Alkyl Polyglucosides Surfactant Lutensol GD 70 on Modification of Bacterial Cell Surface Properties.

    PubMed

    Smułek, Wojciech; Kaczorek, Ewa; Zgoła-Grzeskowiak, Agnieszka; Cybulski, Zefiryn

    Alkyl polyglucosides, due to their low toxicity and environmental compatibility, could be used in biodegradation of hydrophobic compounds. In this study, the influence of Lutensol GD 70 on the cell hydrophobicity and zeta potential was measured. The particle size distribution and surfactant biodegradation were also investigated. Microbacterium sp. strain E19, Pseudomonas stutzeri strain 9, and the same strain cultivated in stress conditions were used in studies. Adding surfactant to the diesel oil system resulted in an increase of the cell surface hydrophobicity and the formation of cell aggregates (a high polydispersity index). The correlation between cell hydrophobicity and zeta potential in examined samples was not found. The results showed a significant influence of Lutensol GD 70 on the changes in cell surface properties. Moreover, a high biodegradation of a surfactant (over 50 %) by tested strains was observed. The biodegradation of Lutensol GD 70 depends on the length of both polar and nonpolar chains. A long-term contact with diesel oil of stressed strain modifies not only cell surface properties but also its ability to a surfactant biodegradation.

  15. Impact of a Reducing Agent on the Dynamic Surface Properties of Lysozyme Solutions.

    PubMed

    Tihonov, Michael M; Kim, Viktoria V; Noskov, Boris A

    2016-05-01

    Disulfide bond shuffling in the presence of the reducing agents dithiothreitol (DTT) or β-mercaptoethanol (BME) strongly affects the surface properties of lysozyme solutions. The addition of 0.32 mM DTT substantially alters the kinetic dependencies of the dynamic surface elasticity and surface tension relative to those of pure protein solutions. The significant increase in the dynamic surface elasticity likely relates to the cross-linking between lysozyme molecules and the formation of a dense layer of protein globules stabilized by intermolecular disulfide bonds at the liquid/gas interface. This effect differs from the previously described influence of chaotropic denaturants, such as guanidine hydrochloride (GuHCl) and urea, on the surface properties of lysozyme solutions. If both chaotropic and reducing agents are added to protein solutions simultaneously, their effects become superimposed. In the case of mixed lysozyme/GuHCl/DTT solutions, the dynamic surface elasticity near equilibrium decreases as the GuHCl concentration increases because of the gradual loosening of the cross-linked layer of protein globules but remains much higher than that of lysozyme/GuHCl solutions.

  16. The impact of the layer thickness on the thermodynamic properties of pd hydride thin film electrodes.

    PubMed

    Vermeulen, Paul; Ledovskikh, Alexander; Danilov, Dmitry; Notten, Peter H L

    2006-10-19

    Recently, a lattice gas model was presented and successfully applied to simulate the absorption/desorption isotherms of various hydride-forming materials. The simulation results are expressed by parameters corresponding to several energy contributions, e.g., interaction energies. However, the use of a model system is indispensable in order to show the strength of the simulations. The palladium-hydrogen system is one of the most thoroughly described metal hydrides found in the literature and is therefore ideal for this purpose. The effects of decreasing the thickness of Pd thin films on the isotherms have been monitored experimentally and subsequently simulated. An excellent fit of the lattice gas model to the experimental data is found, and the corresponding parameters are used to describe several thermodynamic properties. It is analyzed that the contribution of H-H interaction energies to the total energy and the influence of the host lattice energy are significantly and systematically changing as a function of Pd thickness. Conclusively, it has been verified that the lattice gas model is a useful tool to analyze thermodynamic properties of hydrogen storage materials.

  17. Impact of videogame play on the brain's microstructural properties: cross-sectional and longitudinal analyses

    PubMed Central

    Takeuchi, H; Taki, Y; Hashizume, H; Asano, K; Asano, M; Sassa, Y; Yokota, S; Kotozaki, Y; Nouchi, R; Kawashima, R

    2016-01-01

    Videogame play (VGP) has been associated with numerous preferred and non-preferred effects. However, the effects of VGP on the development of microstructural properties in children, particularly those associated with negative psychological consequences of VGP, have not been identified to date. The purpose of this study was to investigate this issue through cross-sectional and longitudinal prospective analyses. In the present study of humans, we used the diffusion tensor imaging mean diffusivity (MD) measurement to measure microstructural properties and examined cross-sectional correlations with the amount of VGP in 114 boys and 126 girls. We also assessed correlations between the amount of VGP and longitudinal changes in MD that developed after 3.0±0.3 (s.d.) years in 95 boys and 94 girls. After correcting for confounding factors, we found that the amount of VGP was associated with increased MD in the left middle, inferior and orbital frontal cortex; left pallidum; left putamen; left hippocampus; left caudate; right putamen; right insula; and thalamus in both cross-sectional and longitudinal analyses. Regardless of intelligence quotient type, higher MD in the areas of the left thalamus, left hippocampus, left putamen, left insula and left Heschl gyrus was associated with lower intelligence. We also confirmed an association between the amount of VGP and decreased verbal intelligence in both cross-sectional and longitudinal analyses. In conclusion, increased VGP is directly or indirectly associated with delayed development of the microstructure in extensive brain regions and verbal intelligence. PMID:26728566

  18. Impact of parasitic thermal effects on thermoelectric property measurements by Harman method

    SciTech Connect

    Kwon, Beomjin Baek, Seung-Hyub; Keun Kim, Seong; Kim, Jin-Sang

    2014-04-15

    Harman method is a rapid and simple technique to measure thermoelectric properties. However, its validity has been often questioned due to the over-simplified assumptions that this method relies on. Here, we quantitatively investigate the influence of the previously ignored parasitic thermal effects on the Harman method and develop a method to determine an intrinsic ZT. We expand the original Harman relation with three extra terms: heat losses via both the lead wires and radiation, and Joule heating within the sample. Based on the expanded Harman relation, we use differential measurement of the sample geometry to measure the intrinsic ZT. To separately evaluate the parasitic terms, the measured ZTs with systematically varied sample geometries and the lead wire types are fitted to the expanded relation. A huge discrepancy (∼28%) of the measured ZTs depending on the measurement configuration is observed. We are able to separately evaluate those parasitic terms. This work will help to evaluate the intrinsic thermoelectric property with Harman method by eliminating ambiguities coming from extrinsic effects.

  19. Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties

    SciTech Connect

    Sinclair, Michael B.; Fan, Hongyou; Brener, Igal; Liu, Sheng; Luk, Ting S.; Li, Binsong

    2015-09-01

    QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.

  20. [Study of spectrum drifting of primary colors and its impact on color rendering properties].

    PubMed

    Cui, Xiao-yan; Zhang, Xiao-dong

    2012-08-01

    LEDs are currently used widely to display text, graphics and images in large screens. With red, green and blue LEDs as three primary colors, color rendition will be realized through color mixing. However, LEDs' spectrum will produce drifts with the changes in the temperature environment. With the changes in the driving current simulating changes in the temperature, the three primary color LEDs' spectral drifts were tested, and the drift characteristics of the three primary colors were obtained respectively. Based on the typical characteristics of the LEDs and the differences between LEDs with different colors in composition and molecular structure, the paper analyzed the reason for the spectrum drifts and the drift characteristics of different color LEDs, and proposed the equations of spectrum drifts. Putting the experimental data into the spectrum drift equations, the paper analyzed the impacts of primary colors on the mixed color, pointed out a way to reduce the chromatic aberration, and provided the theory for engineering application of color LEDs.

  1. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    SciTech Connect

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  2. Impact of Enzymatic and Microbial Bioprocessing on Protein Modification and Nutritional Properties of Wheat Bran.

    PubMed

    Arte, Elisa; Rizzello, Carlo G; Verni, Michela; Nordlund, Emilia; Katina, Kati; Coda, Rossana

    2015-10-07

    Besides providing dietary fiber, wheat bran is a recognized source of protein and is considered a very valuable substitute for other protein-rich sources in the food and feed industry. Nonetheless, several factors affect protein bioavailability, including bran's layered structure. This study showed the influence on the release and protein modification of wheat bran of different bioprocessing methods involving the activation of endogenous enzymes of bran, the addition of an enzyme mixture having carbohydrase activity, and microbial fermentation. Bioprocessing in acidic conditions significantly enhanced the solubilization of protein from wheat bran, reaching the highest value in the treatment where the sole endogenous protease activity was activated. Bioprocessing through controlled fermentation allowed a more intense proteolysis and strongly impacted the in vitro digestibility of proteins. The combined use of starter cultures and cell-wall-degrading enzymes was characterized by the highest increase of phytase activity and total phenols.

  3. Study of the Impact of Stellar Multiplicity on Planet Occurrence and Properties

    NASA Astrophysics Data System (ADS)

    Thorp, Rachel; Desert, J.; Baranec, C.; Law, N. M.; Johnson, J. A.; Riddle, R. L.

    2014-01-01

    Stellar multiplicity in an exoplanet host star system is likely to affect planetary formation and evolution. To explore this possibility, we used visible-light adaptive optics to search for the presence of possible bounded stellar companions to known exoplanet host stars. Here we present the results and analysis of 48 exoplanet host stars as imaged by the Robo-AO system on the 1.5-m telescope at Palomar Observatory. For each object, we performed a search for the presence of stellar companions using several techniques, and for each method we assessed its detection limits. Finally, we address the questions of sensitivity, density number, and spectral types of stellar companions from a statistical standpoint, and conclude on the impact of stellar multiplicity to exoplanet host stars.

  4. The impact of baking time and bread storage temperature on bread crumb properties.

    PubMed

    Bosmans, Geertrui M; Lagrain, Bert; Fierens, Ellen; Delcour, Jan A

    2013-12-15

    Two baking times (9 and 24 min) and storage temperatures (4 and 25 °C) were used to explore the impact of heat exposure during bread baking and subsequent storage on amylopectin retrogradation, water mobility, and bread crumb firming. Shorter baking resulted in less retrogradation, a less extended starch network and smaller changes in crumb firmness and elasticity. A lower storage temperature resulted in faster retrogradation, a more rigid starch network with more water inclusion and larger changes in crumb firmness and elasticity. Crumb to crust moisture migration was lower for breads baked shorter and stored at lower temperature, resulting in better plasticized biopolymer networks in crumb. Network stiffening, therefore, contributed less to crumb firmness. A negative relation was found between proton mobilities of water and biopolymers in the crumb gel network and crumb firmness. The slope of this linear function was indicative for the strength of the starch network.

  5. Psychometric Properties of the Oral Health Impact Profile and New Methodological Approach

    PubMed Central

    Zucoloto, M.L.; Maroco, J.; Campos, J.A.D.B.

    2014-01-01

    Objective: Evaluate the validity, reliability, and factorial invariance of the complete Portuguese version of the Oral Health Impact Profile (OHIP) and its short version (OHIP-14). Methods: A total of 1,162 adults enrolled in the Faculty of Dentistry of Araraquara/UNESP participated in the study; 73.1% were women; and the mean age was 40.7 ± 16.3 yr. We conducted a confirmatory factor analysis, where χ2/df, comparative fit index, goodness of fit index, and root mean square error of approximation were used as indices of goodness of fit. The convergent validity was judged from the average variance extracted and the composite reliability, and the internal consistency was estimated by Cronbach standardized alpha. The stability of the models was evaluated by multigroup analysis in independent samples (test and validation) and between users and nonusers of dental prosthesis. Results: We found best-fitting models for the OHIP-14 and among dental prosthesis users. The convergent validity was below adequate values for the factors “functional limitation” and “physical pain” for the complete version and for the factors “functional limitation” and “psychological discomfort” for the OHIP-14. Values of composite reliability and internal consistency were below adequate in the OHIP-14 for the factors “functional limitation” and “psychological discomfort.” We detected strong invariance between test and validation samples of the full version and weak invariance for OHIP-14. The models for users and nonusers of dental prosthesis were not invariant for both versions. Conclusion: The reduced version of the OHIP was parsimonious, reliable, and valid to capture the construct “impact of oral health on quality of life,” which was more pronounced in prosthesis users. PMID:24782438

  6. Impact of Camping on Soil Properties at Strawberry Lake, North Dakota, USA

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Tibor, Matthew A.

    2014-05-01

    Recreational activity at campsites can cause compaction and metal contamination of soils. This study compared the bulk densities, penetration resistance values, organic matter contents, and Zn, Mn, and Cu contents of soils sampled from zones of varying recreational activity within the campsites at Strawberry Lake, North Dakota, USA. The results of this study showed that there were statistically significant increases in the soil bulk densities and soil penetration resistance values compared to the controls. However, the low recreational intensity has not compacted the surface soils beyond an average of 1.36 g cm-3, which is not dense enough to hinder the root growth of the surrounding vegetation. There were no statistically significant differences between the soil organic matter content of the different activity zones at the 95% confidence interval. Zinc values were four orders of magnitude and Cu values three to four orders of magnitude below US EPA guideline limits. The EPA does not have guidelines for Mn, but Mn levels were lower than reported typical natural values for a nearby area. Therefore, metal contents were not high enough to be of concern. Taken together, these results were interpreted to indicate that the low-intensity camping activities that occur at Strawberry Lake campground have not had a significant negative impact on the soils found there. Additional information on this study can be found in Tibor and Brevik (2013). Reference Tibor, M.A., and E.C. Brevik. 2013. Anthropogenic Impacts on Campsite Soils at Strawberry Lake, North Dakota. Soil Horizons 54: doi:10.2136/sh13-06-0016.

  7. Family Impact Scale (FIS): Cross-cultural Adaptation and Psychometric Properties for the Peruvian Spanish Language.

    PubMed

    Abanto, Jenny; Albites, Ursula; Bönecker, Marcelo; Paiva, Saul M; Castillo, Jorge L; Aguilar-Gálvez, Denisse

    2015-12-01

    The lack of a Family Impact Scale (FIS) in Spanish language limits its use as an indicator in Spanish-speaking countries and precludes comparisons with data from other cultural and ethnic groups. The purpose of this study was therefore to adapt the FIS cross-culturally to the Peruvian Spanish language and assess its reliability and validity. In order to translate and adapt the FIS cross-culturally, it was answered by 60 parents in two pilot tests, after which it was tested on 200 parents of children aged 11 to 14 years who were clinically examined for dental caries experience and malocclusions. Internal consistency was assessed by Cronbach's alpha coefficient while repeat administration of the FIS on the same 200 parents enabled the test-retest reliability to be assessed via intraclass correlation coefficient (ICC). Construct and discriminant validity were based on associations of the FIS with global ratings of oral health and clinical groups, respectively. Mean (standard deviation) FIS total score was 5.20 (5.86). Internal consistency was confirmed by Cronbach's alpha 0.84. Test-retest reliability revealed excellent reproducibility (ICC = 0.96). Construct validity was good, demonstrating statistically significant associations between total FIS score and global ratings of oral health (p=0.007) and overall wellbeing (p=0.002), as well as for the subscale scores (p<0.05) with exception of the financial burden subscale. The FIS was also able to discriminate between children with and without dental caries experience and malocclusions (p<0.05). Satisfactory psychometric results for the Peruvian Spanish FIS confirm it as a reliable, valid instrument for assessing the impact on the family caused by children's oral conditions.

  8. Morphological Adaptations for Digging and Climate-Impacted Soil Properties Define Pocket Gopher (Thomomys spp.) Distributions

    PubMed Central

    Marcy, Ariel E.; Fendorf, Scott; Patton, James L.; Hadly, Elizabeth A.

    2013-01-01

    Species ranges are mediated by physiology, environmental factors, and competition with other organisms. The allopatric distribution of five species of northern Californian pocket gophers (Thomomys spp.) is hypothesized to result from competitive exclusion. The five species in this environmentally heterogeneous region separate into two subgenera, Thomomys or Megascapheus, which have divergent digging styles. While all pocket gophers dig with their claws, the tooth-digging adaptations of subgenus Megascapheus allow access to harder soils and climate-protected depths. In a Northern Californian locality, replacement of subgenus Thomomys with subgenus Megascapheus occurred gradually during the Pleistocene-Holocene transition. Concurrent climate change over this transition suggests that environmental factors – in addition to soil – define pocket gopher distributional limits. Here we show 1) that all pocket gophers occupy the subset of less energetically costly soils and 2) that subgenera sort by percent soil clay, bulk density, and shrink-swell capacity (a mineralogical attribute). While clay and bulk density (without major perturbations) stay constant over decades to millennia, low precipitation and high temperatures can cause shrink-swell clays to crack and harden within days. The strong yet underappreciated interaction between soil and moisture on the distribution of vertebrates is rarely considered when projecting species responses to climatic change. Furthermore, increased precipitation alters the weathering processes that create shrink-swell minerals. Two projected outcomes of ongoing climate change—higher temperatures and precipitation—will dramatically impact hardness of soil with shrink-swell minerals. Current climate models do not include factors controlling soil hardness, despite its impact on all organisms that depend on a stable soil structure. PMID:23717675

  9. Impact of lubricant additives on the physicochemical properties and activity of three-way catalysts

    SciTech Connect

    Toops, Todd J.; Lance, Michael J.; Qu, Jun; Viola, Michael B; Lewis, Samuel Arthur; Leonard, Donovan N.; Edward W. Hagaman; Xie, Chao

    2016-04-04

    As alternative lubricant anti-wear additives are sought to reduce friction and improve overall fuel economy, it is important that these additives are also compatible with current emissions control catalysts. In the present work, an oil-miscible phosphorous-containing ionic liquid (IL), trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P66614][DEHP]), is evaluated for its impact on three-way catalysts (TWC) and benchmarked against the industry standard zinc-dialkyl-dithio-phosphate (ZDDP). The TWCs are aged in different scenarios: neat gasoline (no-additive, or NA), gasoline+ZDDP, and gasoline+IL. The aged samples, along with the as received TWC, are characterized through various analytical techniques including catalyst reactivity evaluation in a bench-flow reactor. The temperatures of 50% conversion (T50) for the ZDDP-aged TWCs increased by 30, 24, and 25 °C for NO, CO, and C3H6, respectively, compared to the no-additive case. Although the IL-aged TWC also increased in T50 for CO and C3H6, it was notably less than ZDDP, 7 and 9 °C, respectively. Additionally, the IL-aged samples had higher water-gas-shift reactivity and oxygen storage capacity than the ZDDP-aged TWC. Characterization of the aged samples indicated the predominant presence of CePO4 in the ZDDP-aged TWC aged by ZDDP, while its formation was retarded in the case of IL where higher levels of AlPO4 is observed. Furthermore, the results in this work indicate that the phosphonium-phosphate IL potentially has less adverse impact on TWC than ZDDP.

  10. Impact of lubricant additives on the physicochemical properties and activity of three-way catalysts

    DOE PAGES

    Toops, Todd J.; Lance, Michael J.; Qu, Jun; ...

    2016-04-04

    As alternative lubricant anti-wear additives are sought to reduce friction and improve overall fuel economy, it is important that these additives are also compatible with current emissions control catalysts. In the present work, an oil-miscible phosphorous-containing ionic liquid (IL), trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P66614][DEHP]), is evaluated for its impact on three-way catalysts (TWC) and benchmarked against the industry standard zinc-dialkyl-dithio-phosphate (ZDDP). The TWCs are aged in different scenarios: neat gasoline (no-additive, or NA), gasoline+ZDDP, and gasoline+IL. The aged samples, along with the as received TWC, are characterized through various analytical techniques including catalyst reactivity evaluation in a bench-flow reactor. The temperaturesmore » of 50% conversion (T50) for the ZDDP-aged TWCs increased by 30, 24, and 25 °C for NO, CO, and C3H6, respectively, compared to the no-additive case. Although the IL-aged TWC also increased in T50 for CO and C3H6, it was notably less than ZDDP, 7 and 9 °C, respectively. Additionally, the IL-aged samples had higher water-gas-shift reactivity and oxygen storage capacity than the ZDDP-aged TWC. Characterization of the aged samples indicated the predominant presence of CePO4 in the ZDDP-aged TWC aged by ZDDP, while its formation was retarded in the case of IL where higher levels of AlPO4 is observed. Furthermore, the results in this work indicate that the phosphonium-phosphate IL potentially has less adverse impact on TWC than ZDDP.« less

  11. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Numerous cases in this year's chapter dealt with the same topics of previous years--contracts and bids for building construction, and detachment and annexation of a portion of a school district. The courts continued to attribute board discretionary authority to school boards in school property matters. Intergovernmental disputes over ownership or…

  12. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Forsberg, James R.

    This chapter summarizes and analyze all state supreme court and federal court decisions as well as other significant court decisions involving school property. The cases discussed are generally limited to those decided during 1974 and reported in the General Digest on or before March 1, 1975. In their discussion, the authors attempt to integrate…

  13. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    A review of cases involving higher education property matters shows that many are concerned with building construction, equipment installation, or repair contracts. A number of other cases involve routine conflicts between colleges or universities and other governmental entities over matters such as requests for special exceptions to zoning…

  14. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Forsberg, James R.

    This chapter summarizes recent state supreme court and federal court decisions involving school property. The cases discussed are generally limited to those decided during 1975 and reported in the General Digest as of March 1976. In their discussion, the authors attempt to integrate related cases and to illuminate any unifying legal principles…

  15. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Reflecting widespread unhappiness with the growing tax burdens in this country, the most active area of litigation reported in the property chapter this year involves various attempts by taxpayers to prevent the construction or remodeling of public school facilities. While some taxpayers fought to keep schools from being built, others in New York…

  16. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    The author notes that controversies over construction bids and contracts continue to represent the largest number of property cases reported in this year's chapter. Most of these cases are routine disputes between colleges or universities and contractors over such issues as the return of bid bonds, recovery of additional costs for construction…

  17. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Johnson, Margaret M.

    While the number of cases dealing with school property issues was significantly lower than in previous years, a significant number of cases involving the detachment and attachment of land to school districts arose. Eight of the eleven cases dealing with land detachment come from Illinois. The cases concerned requests from parents that their…

  18. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Forsberg, James R.

    While the types of cases reported in this year's chapter are essentially the same as those reported in last year's, the number of certain types of cases have changed--in some instances significantly. For example, the number of cases raising constitutional issues in the areas of school construction, location, and property use have declined. On the…

  19. Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

    PubMed Central

    Friederich, Pascal; Schäfer, Bernhard; Fattori, Valeria; Sun, Xiangnan; Strunk, Timo; Meded, Velimir; Hueso, Luis E; Wenzel, Wolfgang; Ruben, Mario

    2015-01-01

    Summary We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olate)aluminium(III) (Al(Op)3) both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be −5.93 and −3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op)3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10−6 and 2.1 × 10−6 cm2·V−1·s−1 was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10−6 cm2·V−1·s−1 and a hole mobility of 1.4 × 10−4 cm2·V−1·s−1. The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement. PMID:26171287

  20. Impacts of maintenance channel dredging in a northern Adriatic coastal lagoon. I: Effects on sediment properties, contamination and toxicity

    NASA Astrophysics Data System (ADS)

    Guerra, Roberta; Pasteris, Andrea; Ponti, Massimo

    2009-10-01

    Conservation and management of coastal lagoons envisage direct human intervention. To prevent siltation and to preserve the hydrodynamics features of the lagoon system, the inner channels undergo regular maintenance dredging. Sediment properties (RDP, organic matter, grain size), trace metals (Cd, Cu, Cr, Hg, Ni, and Pb), and toxicity vs. the amphipod Corophium insidiosum and the luminescent bacterium Vibrio fischeri, were analysed before and after dredging operations in a coastal lagoon (Pialassa Baiona, Italy). To detect the actual impacts, disturbed sites were contrasted with multiple controls in two distinct times, i.e. before and after disturbance, according to a sampling design based on Beyond BACI principles. The integrated methodology here adopted suggests that dredging operations carried out are not likely to pose dramatic effects on environmental quality of the lagoon.

  1. Temperature impact on W surface exposed to He plasma in LHD and its consequences for the material properties

    NASA Astrophysics Data System (ADS)

    Bernard, E.; Sakamoto, R.; Yoshida, N.; Yamada, H.

    2015-08-01

    A new temperature controlled material probe was designed for the exposure of W samples to He plasma in the LHD (Large Helical Device). TEM (Transmission Electron Microscopy) analysis allowed the study of the impact of He irradiation under high temperatures (up to 600 °C) on W microstructure: bubbles and dislocation loops are formed at the surface. A heavily damaged layer rich in both damages is formed at the very surface layer whose thickness increases with the incident fluence; beyond this layer, bubbles are observed much deeper than expected, rising concerns about the consequences for the material properties conservation. Nano-indentation measurements showed that the hardness of exposed tungsten indeed increases as the dislocation loops are formed and large bubbles appear in the material.

  2. Physical and spectral properties of the Chelyabinsk ordinary chondrite: Support information for future impact deflection missions to asteroids.

    NASA Astrophysics Data System (ADS)

    Moyano-Cambero, C. E.; Trigo-Rodríguez, J. M.; Pellicer, E.; Llorca, J.; Sort, J.

    2017-03-01

    Asteroids of the near-Earth population experience collisions that disrupte them, producing smaller bodies that can travel from the Main Asteroid Belt to the near-Earth region. Some may survive the entrance through Earth’s atmosphere and become meteorites, that are studied to understand their parent asteroids. The Chelyabinsk superbolide produced a massive meteorite fall, and the pieces recovered can be analyzed to decipher the physical processes affecting the surface of its parent object. On this study we describe the physical properties of Chelyabinsk samples obtained using nanoindentation technique. We also compare ultraviolet to near-infrared spectra of the samples to connect the meteorites with asteroids, considering how impact processing has affected asteroid spectra.

  3. Thermal energy storage material thermophysical property measurement and heat transfer impact

    NASA Technical Reports Server (NTRS)

    Tye, R. P.; Bourne, J. G.; Destarlais, A. O.

    1976-01-01

    The thermophysical properties of salts having potential for thermal energy storage to provide peaking energy in conventional electric utility power plants were investigated. The power plants studied were the pressurized water reactor, boiling water reactor, supercritical steam reactor, and high temperature gas reactor. The salts considered were LiNO3, 63LiOH/37 LiCl eutectic, LiOH, and Na2B4O7. The thermal conductivity, specific heat (including latent heat of fusion), and density of each salt were measured for a temperature range of at least + or - 100 K of the measured melting point. Measurements were made with both reagent and commercial grades of each salt.

  4. Impact of anthropomorphic soil genesis on hydraulic properties: the case of cranberry production

    NASA Astrophysics Data System (ADS)

    Periard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean; Hallema, Dennis W.

    2014-05-01

    The construction of a cranberry field requires the installation of a drainage system which causes anthropic layering of the natural sequence of soil strata. Over the years, the soil hydraulic properties may change under the influence of irrigation and water table control. In fact, natural consolidation (drainage and recharge cycles), filtration and clogging soil pores by colloidal particle accelerated by water management will alter the hydrodynamic behavior of the soil (Gaillard et al., 2007; Wildenschild and Sheppard, 2013; Bodner et al., 2013). Today, advances in the field of tomography imagery allows the study a number of physicals processes of soils (Wildenschilds and Sheppard, 2013) especially for the transport of colloidal particles (Gaillard et al., 2007) and consolidation (Reed et al, 2006; Pires et al, 2007). Therefore, the main objective of this work is to analyze the temporal evolution of hydrodynamic properties of a sandy soil during repeated drainage and recharge cycles using a medical CT-scan. A soil columns laboratory experiment was setup in fall 2013, pressure head, input and output flow, tracer monitoring (KBr and ZrO2) and tomographic analyses have been used to quantify the temporal variation of the soil hydrodynamic properties of these soil columns. The results showed that the water management (irrigation and drainage) has strong effect on soil genesis and causes significant alteration of soil hydraulic properties, which may reduce soil drainage capacity. Knowledge about the mechanisms responsible of anthropic cranberry soil genesis will allow us to predict soil evolution according to several conditions (soil type, drainage system design, water management) to better anticipate and control their future negative effects on cranberry production. References: Bodner, G., P. Scholl and H.P. Kaul. 2013. Field quantification of wetting-drying cycles to predict temporal changes of soil pore size distribution. Soil and Tillage Research 133: 1-9. doi

  5. Impact of sputter deposition parameters on molybdenum nitride thin film properties

    NASA Astrophysics Data System (ADS)

    Stöber, L.; Konrath, J. P.; Krivec, S.; Patocka, F.; Schwarz, S.; Bittner, A.; Schneider, M.; Schmid, U.

    2015-07-01

    Molybdenum and molybdenum nitride thin films are presented, which are deposited by reactive dc magnetron sputtering. The influence of deposition parameters, especially the amount of nitrogen during film synthesization, to mechanical and electrical properties is investigated. The crystallographic phase and lattice constants are determined by x-ray diffraction analyses. Further information on the microstructure as well as on the biaxial film stress are gained from techniques such as transmission electron microscopy, scanning electron microscopy and the wafer bow. Furthermore, the film resistivity and the temperature coefficient of resistance are measured by the van der Pauw technique starting from room temperature up to 300 °C. Independent of the investigated physical quantity, a dominant dependence on the sputtering gas nitrogen content is observed compared to other deposition parameters such as the plasma power or the sputtering gas pressure in the deposition chamber.

  6. Aerosol Impacts on Cloud Properties Observed during CalWater 2011

    NASA Astrophysics Data System (ADS)

    Suski, K.; Prather, K. A.; Hubbe, J.; Kluzek, C.; Jonsson, H.

    2011-12-01

    In February and March of 2011, an aircraft aerosol time-of-flight mass spectrometer (A-ATOFMS) was deployed on the DOE G-1 during CalWater, a multiyear field campaign aimed at understanding the effects of aerosols and atmospheric rivers on precipitation in California. Flights were conducted out of Sacramento and traversed the western coast of California to the eastern edge of the Sierra Nevada Mountain Range. Initial results show that when heavily processed Asian dust was present, clouds contained more ice than when dust wasn't present, showing that cloud processed Asian dust acts as an efficient ice nucleus. In one particular cloud, salty, processed dust was at the core of most cloud droplets, while aged soot remained unactivated in the interstitial aerosol. These results show that atmospheric aging can have varying effects on CCN and IN abilities. Further analysis of chemical mixing state and atmospheric aging effects on cloud properties are presented.

  7. Impact of laver treatment practices on the geoenvironmental properties of sediments in the Ariake Sea.

    PubMed

    Du, Yan Jun; Hayashi, Shigenori; Shen, Shui-Long

    2014-04-15

    Since the 1970s, the catch of Tairagi and Agemaki shellfish that inhabit the shallow sediments of the Ariake Sea of Japan has fallen dramatically. This is partly accounted for by the Isahaya land reclamation dike project and by the increasingly frequent local red tides. A recent survey of local fisherman suggested that the decline in the shellfish harvest may also be due to the practice of laver treatment in the tidal flats of the Ariake Sea. We carried out field and laboratory investigations to determine whether the practice changes the geoenvironmental properties of the fine-grained sediments in the tidal flats. There were notable changes in the salt concentration, pH, and sulfide content between the sediments exposed to a laver treating agent and those without laver treatment. Based on these differences, we identified potential mechanisms by which the laver treating agent was transported into the sediments and influenced the sulfide levels.

  8. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    SciTech Connect

    Gayathri, S.; Sridharan, M. E-mail: m.sridharan@ece.sastra.edu; Kumar, N.; Krishnan, R. E-mail: m.sridharan@ece.sastra.edu; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.

    2013-12-15

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp{sup 2} bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp{sup 3} domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp{sup 2} fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm{sup 2}. The super low friction mechanism is explained by low sliding resistance of a-C/sp{sup 2} and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm{sup 2} is related to widening of the intergrain distance caused by transformation from sp{sup 2} to sp{sup 3} hybridized structure.

  9. Impact of gadolinium-157 containing nanoscale magnetosensitive composites on morfofunctional properties of cells in vitro.

    PubMed

    Lavrenchuk, H Y; Shevchenko, Y B; Petranovska, A L; Asmolkova, V S; Oksamytnyi, V M; Kozlovska, I V; Yavorska, O H

    2014-09-01

    Objective - to investigate the morphofunctional cells properties under the action of magneticallybased nanocomposites containing gadolinium-157. Materials and methods. Experimental studies are performed in cell culture line L929 Nanocomposites based on magnetite modified by functional amino groups chemically fixed by diethylenetriaminepentaacetic acid (DTPA) and gadolinium - (Fe3O4/γ-APS/DTPA-Gd) were studied (1), also by meso-2,3-dimercaptosuccinic acid (DMSA) - (Fe3O4/DMSA-Gd), which binds to the hydroxyl group of magnetite surface (2); gadolinium was adsorbed from a solution of gadolinium sulfate. Reagent 3 - magnetic substance Fe3O4 with sodium oleate. Morphofunctional characteristics of cell culture were evaluated in various terms by standard indicators of sustainability: proliferative and mitotic activity and the number of giant multinuclear cells, apoptosis. Results and conclusions. We established that magnetdriven nanocomposites with gadolinium modified by DTPA and DMSA, were more biocompatibile to cells: incubation of cells with neutron capture agents (NCA) in the studied range of concentrations showed no toxicity, except maximum concentration, while decreasing cells adhesive properties. For all nanocomposites we observed decrease in mitotic activity in the background of the control cell population density, which may indicate synchronization of cell division. We found that the stabilized by sodium oleate ferrite caused destructive changes in cell culture only at concentrations of 500 μg / ml, but reduced mitotic activity in cell culture in 3-5 times in the whole range of concentrations. It is shown that magnetdriven nanocomposites induce different levels of apoptosis in cultured cells depending on the concentration of the reactants.

  10. Impact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part I: Model Comparison Using EOF Analyses

    NASA Astrophysics Data System (ADS)

    Biggerstaff, Michael I.; Seo, Eun-Kyoung; Hristova-Veleva, Svetla M.; Kim, Kwang-Yul

    2006-07-01

    The impact of model microphysics on the relationships among hydrometeor profiles, latent heating, and derived satellite microwave brightness temperatures TB have been examined using a nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over water. Two microphysical schemes (each employing three-ice bulk parameterizations) were tested for two different assumptions in the number of ice crystals assumed to be activated at 0°C to produce simulations with differing amounts of supercooled cloud water. The model output was examined using empirical orthogonal function (EOF) analysis, which provided a quantitative framework in which to compare the simulations. Differences in the structure of the vertical anomaly patterns were related to physical processes and attributed to different approaches in cloud microphysical parameterizations in the two schemes. Correlations between the first EOF coefficients of cloud properties and TB at frequencies associated with the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) showed additional differences between the two parameterization schemes that affected the relationship between hydrometeors and TB. Classified in terms of TB, the microphysical schemes produced significantly different mean vertical profiles of cloud water, cloud ice, snow, vertical velocity, and latent heating. The impact of supercooled cloud water on the 85-GHz TB led to a 15% variation in mean convective rain mass at the surface. The variability in mean profiles produced by the four simulations indicates that the retrievals of cloud properties, especially latent heating, based on TMI frequencies are dependent on the particular microphysical parameterizations used to construct the retrieval database.

  11. Impact of N-Terminal Acetylation of α-Synuclein on Its Random Coil and Lipid Binding Properties

    PubMed Central

    2012-01-01

    N-Terminal acetylation of α-synuclein (aS), a protein implicated in the etiology of Parkinson’s disease, is common in mammals. The impact of this modification on the protein’s structure and dynamics in free solution and on its membrane binding properties has been evaluated by high-resolution nuclear magnetic resonance and circular dichroism (CD) spectroscopy. While no tetrameric form of acetylated aS could be isolated, N-terminal acetylation resulted in chemical shift perturbations of the first 12 residues of the protein that progressively decreased with the distance from the N-terminus. The directions of the chemical shift changes and small changes in backbone 3JHH couplings are consistent with an increase in the α-helicity of the first six residues of aS, although a high degree of dynamic conformational disorder remains and the helical structure is sampled <20% of the time. Chemical shift and 3JHH data for the intact protein are virtually indistinguishable from those recorded for the corresponding N-terminally acetylated and nonacetylated 15-residue synthetic peptides. An increase in α-helicity at the N-terminus of aS is supported by CD data on the acetylated peptide and by weak medium-range nuclear Overhauser effect contacts indicative of α-helical character. The remainder of the protein has chemical shift values that are very close to random coil values and indistinguishable between the two forms of the protein. No significant differences in the fibrillation kinetics were observed between acetylated and nonacetylated aS. However, the lipid binding properties of aS are strongly impacted by acetylation and exhibit distinct behavior for the first 12 residues, indicative of an initiation role for the N-terminal residues in an “initiation–elongation” process of binding to the membrane. PMID:22694188

  12. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations

    NASA Astrophysics Data System (ADS)

    Di Mauro, B.; Fava, F.; Ferrero, L.; Garzonio, R.; Baccolo, G.; Delmonte, B.; Colombo, R.

    2015-06-01

    In this paper, we evaluate the impact of mineral dust (MD) on snow radiative properties in the European Alps at ground, aerial, and satellite scale. A field survey was conducted to acquire snow spectral reflectance measurements with an Analytical Spectral Device (ASD) Field Spec Pro spectroradiometer. Surface snow samples were analyzed to determine the concentration and size distribution of MD in each sample. An overflight of a four-rotor Unmanned Aerial Vehicle (UAV) equipped with an RGB digital camera sensor was carried out during the field operations. Finally, Landsat 8 Operational Land Imager (OLI) data covering the central European Alps were analyzed. Observed reflectance evidenced that MD strongly reduced the spectral reflectance of snow, in particular, from 350 to 600 nm. Reflectance was compared with that simulated by parameterizing the Snow, Ice, and Aerosol Radiation radiative transfer model. We defined a novel spectral index, the Snow Darkening Index (SDI), that combines different wavelengths showing nonlinear correlation with measured MD concentrations (R2 = 0.87, root-mean-square error = 0.037). We also estimated a positive instantaneous radiative forcing that reaches values up to 153 W/m2 for the most concentrated sampling area. SDI maps at local scale were produced using the UAV data, while regional SDI maps were generated with OLI data. These maps show the spatial distribution of MD in snow after a natural deposition from the Saharan desert. Such postdepositional experimental data are fundamental for validating radiative transfer models and global climate models that simulate the impact of MD on snow radiative properties.

  13. Impact of Formulation Properties and Process Parameters on the Dispensing and Depositioning of Drug Nanosuspensions Using Micro-Valve Technology.

    PubMed

    Bonhoeffer, Bastian; Kwade, Arno; Juhnke, Michael

    2017-04-01

    Flexible manufacturing processes with continuously adjustable dose strengths are considered particularly innovative and interesting for applications in personalized medicine, continuous manufacturing, or early drug development. A piezo-actuated micro-valve has been investigated for the dispensing and depositioning of drug nanosuspensions onto substrates to facilitate the manufacturing of solid oral dosage forms. The investigated micro-valve has been characterized regarding dispensing behavior, mass flow, accuracy, and robustness. The amount of dispensed drug compound during 1 dispensing event could be continuously adjusted from a few micrograms to several milligrams with high accuracy. Fluid properties, dispensing parameters of the micro-valve, and the resulting steady state mass flow could be correlated adequately for low-viscous drug nanosuspensions. High-speed imaging was used to investigate the dispensing behavior of the micro-valve regarding the evolution of the dispensed drug nanosuspension after ejection from the nozzle and the behavior during impact on flat and dry solid substrates. The experimentally determined breakup length of the dispensed liquid jet could be correlated with a semiempirical equation. From image sequences of the jet impact, We-Re phase diagrams could be established, providing a profound understanding and systematic guidance for the controlled depositioning of the entire dispensed drug nanosuspension onto the substrate.

  14. Impact of lipid-induced degradation on the mechanical properties of ultra-high molecular weight polyethylene for joint replacements.

    PubMed

    Sakoda, Hideyuki; Niimi, Shingo

    2016-01-01

    Gamma or electron beam irradiation of ultra-high molecular weight polyethylene (UHMWPE) used in artificial joints for sterilization and/or crosslinking purposes generates free radicals in the material, which causes long-term oxidative degradation of UHMWPE. Recently, another mechanism for the degradation of UHMWPE by the absorption of lipids during in vivo clinical use was proposed. However, knowledge on lipid-induced degradation is quite limited, compared with that on radical-induced degradation. In this study, lipid-induced degradation was simulated using squalene absorption and subsequent accelerated aging, and its impact on the mechanical properties of UHMWPE was evaluated. The simulated lipid-induced degradation caused an increased elastic modulus and decreased elongation with maximum degradation at the surfaces. These results imply that degradation of UHMWPE may occur during in vivo long-term use, even if free radicals are completely eliminated. Therefore, further investigation is required to clarify the impact of lipid-induced degradation on clinical outcomes, such as the wear and fatigue characteristics of UHMWPE components.

  15. Deflection by Kinetic Impact or Nuclear Ablation: Sensitivity to Asteroid Properties

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.

    2015-12-01

    Impulsive deflection of a threatening asteroid can be achieved by deploying either a kinetic impactor or a standoff nuclear device to impart a modest velocity change to the body. Response to each of these methods is sensitive to the individual asteroid's characteristics, some of which may not be well constrained before an actual deflection mission. Numerical simulations of asteroid deflection, using both hypervelocity impacts and nuclear ablation of the asteroid's surface, provide detailed information on asteroid response under a range of initial conditions. Here we present numerical results for the deflection of asteroids by both kinetic and nuclear methods, focusing on the roles of target body composition, strength, porosity, rotational state, shape, and internal structure. These results provide a framework for evaluating the planetary defense-related value of future asteroid characterization missions and capture some of the uncertainty that may be present in a real threat scenario. Part of this work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-005, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675914.

  16. Impact on Participation and Autonomy Questionnaire: Psychometric Properties of the Thai Version

    PubMed Central

    Suttiwong, Jatuporn; Vongsirinavarat, Mantana; Vachalathiti, Roongtiwa; Chaiyawat, Pakaratee

    2013-01-01

    [Purpose] The present study aimed to cross-culturally translate and evaluate the reliability and validity of the Thai version of the Impact on Participation and Autonomy (IPA) in persons with spinal cord injury (SCI). [Subjects] One hundred and thirty-nine persons with SCI who lived in the community were recruited for this study. [Methods] The IPA was translated following the guideline for cross-cultural adaptation of self-report measures. The reliability and validity was examined in 139 persons with SCI. For the test-retest reliability, 30 participants completed the Thai version of the IPA twice with a 2-week interval. [Results] The translated questionnaire and its items had moderate to good reliability, with the ICC(3,1) ranging from 0.76 to 0.93. The internal consistency for all domains was high, with Cronbach's alpha ranging from 0.86 to 0.90. The convergent validity, discriminant validity, and construct validity were supported. [Conclusion] The Thai version of the IPA is a reliable and valid instrument for assessing the level of community participation in Thai persons with spinal cord injury. PMID:24259849

  17. Impact of precursor purity on optical properties and radiation detection of CsI:Tl scintillators

    NASA Astrophysics Data System (ADS)

    Saengkaew, Phannee; Sanorpim, Sakuntam; Jitpukdee, Manit; Cheewajaroen, Kulthawat; Yenchai, Chadet; Thong-aram, Decho; Yordsri, Visittapong; Thanachayanont, Chanchana; Nuntawong, Noppadon

    2016-08-01

    Cesium iodide doped with thallium (CsI:Tl) crystals was grown to develop the gamma-ray detectors by using low-cost raw materials. Effect of impurities on optical properties and radiation detection performance was investigated. By a modified homemade Bridgman-Stockbarger technique, CsI:Tl samples were grown in two levels of CsI and TlI reactant materials, i.e., having as a very high purity of 99.999 % and a high purity of 99.9 %. XRD measurements indicate CsI:Tl crystals having a good quality with a dominant (110) plane. Having a cubic structure, a lattice constant of CsI crystals of 0.4574 nm and a crystallite size of 43.539 nm were obtained. From the lower-purity raw materials, calcite was found in an orange crystal with a lattice constant of 0.4560 nm and a crystallite size of 43.089 nm. By PL measurements, the optical properties of the CsI:Tl crystals were analyzed. ~540-nm-wavelength PL peak was observed from the colorless high-purity crystal, and ~600-nm-wavelength PL peak was observed from the orange crystal. The brighter PL emission was obtained from the orange crystals suggesting impurities. CsI:Tl surface morphology by SEM exhibited a smooth surface with some parallel crystal facets. For electrical properties of high-quality CsI:Tl crystals, the electrical resistances were 230 ± 16 MΩ in cross-sectional direction and 714 ± 136 MΩ in vertical direction with respect to more homogeneous crystal quality in cross-sectional direction than that in vertical direction. TEM measurement was applied to evaluate the microstructure of colorless CsI:Tl crystal with different patterns of a cubic structure. Both CsI:Tl crystals show good efficiencies and good resolutions. Maintaining the same electronic conditions and amplifications, the colorless CsI:Tl scintillators represented a higher detection efficiency at 122 keV of Co-57 of 78.4 % and the energy resolution of 23.3 % compared to the detection efficiency of 75.9 % and the energy resolution of 34.6 % of the orange

  18. Impact of ancient charcoal kilns on chemical properties of several forest soils after 2 centuries

    NASA Astrophysics Data System (ADS)

    Dufey, Joseph; Hardy, Brieuc; Cornelis, Jean-Thomas

    2014-05-01

    Pyrogenic carbon plays a major role in soil biogeochemical processes and carbon budgets. Until the early 19th century, charcoal was the unique combustible used for iron metallurgy in Wallonia (Belgium). Traditional charcoal kilns were built directly in the forest: wood logs were piled into a mound and isolated from air oxygen with a covering of vegetation residues and soil before setting fire, inducing wood pyrolysis. Nowadays, ancient wood-charring platforms are still easy to identify on the forest floor as heightened domes of 10 meters in diameter characterized by a very dark topsoil horizon containing charcoal dust and fragments. Our goal is to assess the effects of wood charring at mound kiln sites on the properties of various forest soil types in Wallonia (Belgium), after two centuries. We sampled soil by horizon in 18 ancient kiln sites to 1.20 meter depth. The adjacent charcoal-unaffected soils were sampled the same way. We also collected recent charcoal fragments and topsoil samples from a still active charcoal kiln located close to Dole (France) to apprehend the evolution of soil properties over time. The pH, total carbon (C) and nitrogen (N) content, available phosphorus (Pav), cation exchange capacity at pH 7 (CEC), exchangeable cations (Ca++, Mg++, K+, Na+) and loss on ignition at 550°C (LI550) were measured on each soil sample. We separated the soil profiles in 5 groups based on the nature of soil substrate and pedogenesis for interpretation of the results. We show that the total carbon stock is significantly increased at kiln sites due to higher C concentrations and greater depth of the organo-mineral horizon. The C/N ratio in charcoal-enriched soil horizons is significantly higher than in the neighboring reference soils but clearly attenuated compared to pure wood-charcoal fragments. The CEC is higher in the charcoal-enriched soil horizons, not only due to higher C concentrations but also to increased CEC by carbon unit at kiln sites. The high

  19. The impact of air mass advection on aerosol optical properties over Gotland (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Zdun, Agnieszka; Rozwadowska, Anna; Kratzer, Susanne

    2016-12-01

    In the present paper, measurements of aerosol optical properties from the Gotland station of the AERONET network, combined with a two-stage cluster analysis of back trajectories of air masses moving over Gotland, were used to identify the main paths of air mass advection to the Baltic Sea and to relate them to aerosol optical properties, i.e. the aerosol optical thickness at the wavelength λ = 500 nm, AOT (500) and the Ångström exponent for the spectral range from 440 to 870 nm, α(440,870). One- to six-day long back trajectories ending at 300, 500 and 3000 m above the station were computed using the HYSPLIT model. The study shows that in the Gotland region, variability in aerosol optical thickness AOT(500) is more strongly related to advections in the boundary layer than to those in the free troposphere. The observed variability in AOT(500) was best explained by the advection speeds and directions given by clustering of 4-day backward trajectories of air arriving in the boundary layer at 500 m above the station. 17 clusters of 4-day trajectories arriving at altitude 500 m above the Gotland station (sea level) derived using two-stage cluster analysis differ from each other with respect to trajectory length, the speed of air mass movement and the direction of advection. They also show different cluster means of AOT(500) and α(440,870). The cluster mean AOT(500) ranges from 0.342 ± 0.012 for the continental clusters M2 (east-southeast advection with moderate speed) and 0.294 ± 0.025 for S5 (slow south-southeast advection) to 0.064 ± 0.002 and 0.069 ± 0.002 for the respective marine clusters L3 (fast west-northwest advection) and M3 (north-northwest advection with moderate speed). The cluster mean α(440,870) varies from 1.65-1.70 for the short-trajectory clusters to 0.98 ± 0.03 and 1.06 ± 0.03 for the Arctic marine cluster L4 (fast inflow from the north) and marine cluster L5 (fast inflow from the west) respectively.

  20. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    PubMed

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology.

  1. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges.

    PubMed

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.

  2. Impact properties and hardening behavior of laser and electron-beam welds of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Strain, R.V.; Tsai, H.C.; Park, J.H.; Smith, D.L.

    1996-10-01

    The authors are conducting a program to develop an optimal laser welding procedure that can be applied to large-scale fusion-reactor structural components to be fabricated from vanadium-base alloys. Results of initial investigation of mechanical properties and hardening behavior of laser and electron-beam (EB) welds of the production-scale heat of V-4Cr-4Ti (500-kg Heat 832665) in as-welded and postwelding heat-treated (PWHT) conditions are presented in this paper. The laser weld was produced in air using a 6-kW continuous CO{sub 2} laser at a welding speed of {approx}45 mm/s. Microhardness of the laser welds was somewhat higher than that of the base metal, which was annealed at a nominal temperature of {approx}1050{degrees}C for 2 h in the factory. In spite of the moderate hardening, ductile-brittle transition temperatures (DBTTs) of the initial laser ({approx}80{degrees}C) and EB ({approx}30{degrees}C) welds were significantly higher than that of the base metal ({approx}{minus}170{degrees}C). However, excellent impact properties, with DBTT < {minus}80{degrees}C and similar to those of the base metal, could be restored in both the laser and EB welds by postwelding annealing at 1000{degrees}C for 1 h in vacuum.

  3. Impact of annealing on physical properties of e-beam evaporated polycrystalline CdO thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Purohit, Anuradha; Chander, S.; Dhaka, M. S.

    2017-04-01

    An impact of annealing on the physical properties of polycrystalline CdO thin films is carried out in this study. CdO thin films of thickness 650 nm were fabricated on glass and indium tin oxide (ITO) substrates employing e-beam evaporation technique. The pristine thin films were annealed in air atmosphere at 250 °C, 400 °C and 550 °C for one hour followed by investigation of structural, optical, electrical and morphological properties along with elemental composition using X-ray diffraction (XRD), UV-Vis spectrophotometer, Fourier transform infrared (FTIR) spectrometer, source meter, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), respectively. XRD patterns confirmed the polycrystalline nature and cubic structure (with space group Fm 3 bar m) of the films. The crystallographic parameters are calculated and found to be influenced by the post-air annealing treatment. The optical study shows that direct band gap is ranging from 1.98 eV to 2.18 eV and found to be decreased with post-annealing. The refractive index and optical conductivity are also increased with annealing temperature. The current-voltage characteristics show ohmic behaviour of the annealed films. The surface morphology is observed to be improved with annealing and grain-size is increased as well as EDS spectrum confirmed the presence of cadmium (Cd) and oxygen (O) in the deposited films.

  4. Cellular injuries of spray-dried Lactobacillus spp. isolated from kefir and their impact on probiotic properties.

    PubMed

    Golowczyc, Marina A; Silva, Joana; Teixeira, Paula; De Antoni, Graciela L; Abraham, Analía G

    2011-01-05

    The injuries caused by spray drying (SD) of three potential probiotic lactobacilli isolated from kefir grains and the impact on some probiotic properties, were evaluated. Results demonstrated that Lactobacillus plantarum 83114 and L. kefir 8321 showed a slight reduction of viability (0.11 and 0.29 log CFU/ml respectively) after SD process, and L. kefir 8348 was found to be more sensitive to the process with a reduction in viability of 0.70 log CFU/ml. Neither membrane damage, evaluated by increased sensitivity to NaCl, lysozyme, bile salt and penicillin G, nor changes in acidifying activity in MRS and milk by lactobacilli were detected after SD. L. plantarum 83114 and L. kefir 8321 after SD did not lose their capacity to adhere to intestinal cells. Nevertheless, L. kefir 8348 showed a significant loss of adhesion capacity after SD. In addition, rehydrated spray-dried L. kefir 8321 retained the ability to protect against Salmonella invasion of intestinal cells. This effect was observed when L. kefir is co-incubated with Salmonella before invasion assay. This work shows that the membrane integrity evaluated by indirect methods and some probiotic properties of lactobacilli isolated from kefir did not change significantly after SD, and these powders could be used in functional foods applications.

  5. Measuring workplace trauma response in Australian paramedics: an investigation into the psychometric properties of the Impact of Event Scale

    PubMed Central

    Hogan, Nicola; Costello, Shane; Boyle, Malcolm; Williams, Brett

    2015-01-01

    Introduction Investigation into the psychological effects of violence toward health care workers and its associated trauma is increasing. The Impact of Event Scale (IES) provides a measure of current, subjective, emotional distress symptomatic of a specific traumatic event. However, its validity among paramedics is largely unknown. Problem The purpose of this study was to investigate the psychometric properties and factor structure of the IES with a sample of Australian paramedics. Methods The study aimed to investigate the psychometric properties and factor structure of the 15-item IES with a sample of Australian paramedics using Exploratory Factor Analysis with model fit statistics as found in confirmatory analysis. Results Maximum Likelihood Factor Analysis with Varimax rotation supported the hypothesis that a two-factor solution would provide the best fit of the data. Procrustes rotation provided further support for this hypothesis indicating that the factors, labeled “Intrusion” and “Avoidance”, as well as the individual items of the 12-item final model, were a good fit to an ideal solution. Conclusion The revision of the scale has improved its validity for use in the general population of paramedics, improving the potential for its use in trauma-related research. PMID:26719731

  6. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties.

    PubMed

    Jelusic, Masa; Lestan, Domen

    2014-03-15

    We applied a multi-level approach assessing the quality, toxicity and functioning of Pb, Zn and Cd contaminated/remediated soil from a vegetable garden in Meza Valley, Slovenia. Contaminated soil was extracted with EDTA and placed into field experimental plots equipped with lysimeters. Soil properties were assessed by standard pedological analysis. Fractionation and leachability of toxic metals were analyzed by sequential extraction and TCLP and metal bioaccessibility by UBM tests. Soil respiration and enzyme activities were measured as indicators of soil functioning. Remediation reduced the metal burden by 80, 28 and 72% for Pb, Zn and Cd respectively, with a limited impact on soil pedology. Toxic metals associated with labile soil fractions were largely removed. No shifts between labile and residual fractions were observed during the seven months of the experiment. Initial metal leaching measured through lysimeters eventually ceased. However, remediation significantly diminished potential soil enzyme activity and no trends were observed of the remediated soil recovering its biological properties. Soil washing successfully removed available forms of Pb, Zn and Cd and thus lowered the human and environmental hazards of the remediated soil; however, remediation also extracted the trace elements essential for soil biota. In addition to reduced water holding capacity, soil health was not completely restored.

  7. Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Anshari, G. Z.; Afifudin, M.; Nuriman, M.; Gusmayanti, E.; Arianie, L.; Susana, R.; Nusantara, R. W.; Sugardjito, J.; Rafiastanto, A.

    2010-11-01

    Degradation of tropical peats is a global concern due to large Carbon emission and loss of biodiversity. The degradation of tropical peats usually starts when the government drains and clears peat forests into open peats used for food crops, oil palm and industrial timber plantations. Major properties of tropical peat forests are high in Water Contents (WC), Loss on Ignition (LOI) and Total Organic Carbon (TOC), and low in peat pH, Dry Bulk Density (DBD), and Total Nitrogen (TN). In this study, we investigated impacts of drainage and land use change on these properties. We collected peat samples from peat forests, logged over peat forest, industrial timber plantation, community agriculture, and oil palms. We used independent t-tests and oneway ANOVA to analyze mean differences of the research variables. We found that peat pH, DBD, and TN tend to increase. A significant decrease of C/N ratio in oil palm and agriculture sites importantly denotes a high rate of peat decompositions. Water contents, LOI, and TOC are relatively constants. We suggest that changes in pH, DBD, TN and atomic C/N ratio are important indicators for assessing tropical peat degradation. We infer that land use change from tropical peat forests into cleared and drained peats used for intensive timber harvesting, oil palms and industrial timber plantations in Indonesia has greatly degraded major ecological function of tropical peats as Carbon storage.

  8. Impact of growth-synthesis conditions on Cu2Zn1-xCdxSnS4 monograin material properties

    NASA Astrophysics Data System (ADS)

    Nkwusi, G.; Leinemann, I.; Raudoja, J.; Mikli, V.; Karba, E.; Altosaar, M.

    2016-10-01

    This paper presents the impact of growth conditions on the properties of copper zinc cadmium tin sulfide (Cu2Zn1-xCdxSnS4) monograin powder synthesized in molten CdI2. We studied the effects of synthesis time and flux amount on the properties of the monograin powder. Our results showed that we could control the phase composition, grain size and the morphology of the as grown Cu2Zn1-xCdxSnS4 powder by changing the synthesis conditions. We found that in comparison with other used fluxes (KI, NaI), monograin powders synthesized in molten CdI2 were less faceted and more round shaped. The average grain size increased as the flux amount decreased. The optimum synthesis time to obtain usable grain size with 50-100μ was found to be 160 h with CdI2 flux amount, providing the ratio of the volumes of CdI2/CZTS is 0.5.

  9. The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources.

    PubMed

    Hoover, Ratnajothi

    2010-10-01

    Heat-moisture treatment is a hydrothermal treatment that changes the physicochemical properties of starches by facilitating starch chain interactions within the amorphous and crystalline domains and/or by disrupting starch crystallites. The extent of these changes is influenced by starch composition, moisture content and temperature during treatment, and by the organization of amylose and amylopectin chains within native starch granules. During heat-moisture treatment starch granules at low moisture levels [(<35% water (w/w)] are heated at a temperature above the glass transition temperature (T(g)) but below the gelatinization temperature for a fixed period of time. Significant progress in heat-moisture treatment has been made during the last 15 years, as reflected by numerous publications on this subject. Therefore, this review summarizes the current knowledge on the impact of heat-moisture treatment on the composition, granule morphology, crystallinity, X-ray pattern, granular swelling, amylose leaching, pasting properties, gelatinization and retrogradation parameters, and susceptibility towards α-amylase and acid hydrolysis. The application of heat-moisture treatment in the food industry is also reviewed. Recommendations for future research are outlined.

  10. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    PubMed Central

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  11. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    NASA Astrophysics Data System (ADS)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  12. Impact of Anthropogenic Aerosol on the Properties of Shallow Maritime Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Gao, L.; Wilcox, E. M.; Shan, Y.

    2015-12-01

    The northern Indian Ocean region is frequently covered by cumulus clouds that are responsible for moistening the boundary layer and contribute to tropical deep convection. Because this region is uniquely located close to the highly polluted Indian plateau, air mass with high aerosol concentration can be easily transported to this area. These small cumulus clouds, coupled with the effects of aerosol, have a large potential to affect the regional and global albedo. The aerosol effects on cloud properties and atmospheric structures are examined in this work, using the UAV (Unmanned Aerial Vehicle) data that are observed from CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) and MAC (Maldives Autonomous unmanned aerial vehicle Campaign). On average, the high polluted cases show warmer temperature through the entire atmospheric column and higher relative humidity in boundary layer. The maximum temperature difference between high and low polluted cases can be found around the cloud layer altitude. In addition, the height of sub-cloud mixed layer is higher in low polluted cases. Clouds in high polluted cases are generally becoming narrower and taller than those in low polluted cases, and are associated with greater cloud water content and higher cloud droplet number concentrations, especially in small droplet range (diameters less than 10 micrometers). Meanwhile, the effective radius of cloud droplets decreases as the aerosol concentration increases. These facts indicate that the high polluted clouds are on average brighter with higher albedo.

  13. Impact of doping and diameter on the electrical properties of GaSb nanowires

    NASA Astrophysics Data System (ADS)

    Babadi, Aein S.; Svensson, Johannes; Lind, Erik; Wernersson, Lars-Erik

    2017-01-01

    The effect of doping and diameter on the electrical properties of vapor-liquid-solid grown GaSb nanowires was characterized using long channel back-gated lateral transistors and top-gated devices. The measurements showed that increasing the doping concentration significantly increases the conductivity while reducing the control over the channel potential and shifting the threshold voltage, as expected. The highest average mobility was 85 cm2/V.s measured for an unintentionally doped GaSb nanowire with a diameter of 45 nm, whereas medium doped nanowires with large diameters (81 nm) showed a value of 153 cm2/V.s. The mobility is found to be independent of nanowire diameter in the range of 36 nm-68 nm, while the resistivity is strongly reduced with increasing diameter attributed to the surface depletion of charge carriers. The data are in good agreement with an analytical calculation of the depletion depth. A high transconductance was achieved by scaling down the channel length to 200 nm, reaching a maximum value of 80 μS/μm for a top-gated GaSb nanowires transistor with an ON-resistance of 26 kΩ corresponding to 3.9 Ω.mm. The lowest contact resistance obtained was 0.35 Ω.mm for transistors with the highest doping concentration.

  14. Impacts of biochar on physical properties and erosion potential of a mudstone slopeland soil.

    PubMed

    Hseu, Zeng-Yei; Jien, Shih-Hao; Chien, Wei-Hsin; Liou, Ruei-Cheng

    2014-01-01

    Food demand and soil sustainability have become urgent issues recently because of the global climate changes. This study aims to evaluate the application of a biochar produced by rice hull, on changes of physiochemical characteristics and erosion potential of a degraded slopeland soil. Rice hull biochar pyrolized at 400°C was incorporated into the soil at rates of 2.5%, 5%, and 10% (w/w) and was incubated for 168 d in this study. The results indicated that biochar application reduced the Bd by 12% to 25% and the PR by 57% to 92% after incubation, compared with the control. Besides, porosity and aggregate size increased by 16% to 22% and by 0.59 to 0.94 mm, respectively. The results presented that available water contents significantly increased in the amended soils by 18% to 89% because of the obvious increase of micropores. The water conductivity of the biochar-amended soils was only found in 10% biochar treatment, which might result from significant increase of macropores and reduction of soil strength (Bd and PR). During a simulated rainfall event, soil loss contents significantly decreased by 35% to 90% in the biochar-amended soils. In conclusion, biochar application could availably raise soil quality and physical properties for tilth increasing in the degraded mudstone soil.

  15. An Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency

    SciTech Connect

    Szybist, James P; Chakravathy, Kalyana; Daw, C Stuart

    2012-01-01

    In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiency of an adiabatic internal combustion engine. First Law efficiency is calculated using lower heating value (LHV) while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to produce propulsion. We find that First Law efficiency can deviate by as much as nine percentage points between fuels while Second Law efficiency exhibits a much smaller degree of variability. We also find that First and Second Law efficiency can be nearly the same for some fuels (methane and ethane) but differ substantially for other fuels (hydrogen and ethanol). The differences in First and Second Law efficiency are due to differences in LHV and exergy for a given fuel. In order to explain First Law efficiency differences between fuels as well as the differences between LHV and exergy, we introduce a new term: the molar expansion ratio (MER), defined as the ratio of product moles to reactant moles for complete stoichiometric combustion. We find that the MER is a useful expression for providing a physical explanation for fuel-specific efficiency differences as well as differences between First and Second Law efficiency. First and Second Law efficiency are affected by a number of other fuel-specific thermochemical properties, such as the ratio of specific heat and dissociation of combustion products.

  16. The impact of hierarchically constrained dynamics with a finite mean of cluster sizes on relaxation properties

    SciTech Connect

    Weron, Karina; Jurlewicz, Agnieszka; Patyk, Michał; Stanislavsky, Aleksander

    2013-05-15

    In this paper, a stochastic scenario of relaxation underlying the generalization (Kahlau et al., 2010) [15] of the Cole–Davidson (CD) and Kohlrausch–Williams–Watts (KWW) functions is proposed. As it has been shown (Kahlau et al., 2010) [15], the new three-parameter time-domain fitting function provides a very flexible description of the dielectric spectroscopy data for viscous glass-forming liquids. In relation to that result we discuss a hierarchically-constrained model yielding the proposed relaxation fitting function. Within the “exponentially decaying relaxation contributions” framework we show origins of the high-frequency (short-time, respectively) fractional power law, i.e., the characteristic feature of the new, as well as, of both CD and KWW response functions. We also bring into light a reason for which their common behavior in the opposite frequency limit is linear on external field frequency. Finally, we relate the new relaxation pattern (Kahlau et al., 2010) [15] with the Generalized Gamma (GG) survival probability of an imposed, non-equilibrium initial state in a relaxing system. -- Highlights: ► Combine the empirical Kohlrausch–Williams–Watts and Cole–Davidson laws of relaxation. ► Establish a microscopic stochastic scenario explaining the generalized law. ► Derive a frequency-domain relaxation function fitting the dielectric spectroscopy data. ► Find the low- and high-frequency properties for the relaxation pattern.

  17. Methanol Fractionation of Softwood Kraft Lignin: Impact on the Lignin Properties

    SciTech Connect

    Saito, Tomonori; Perkins, Joshua H; Vautard, Frederic; Meyer III, Harry M; Messman, Jamie M; Tolnai, Balazs; Naskar, Amit K

    2014-01-01

    The development of technologies to tune lignin properties for high-performance lignin-based materials is crucial for the utilization of lignin in various applications. Here, the effect of methanol (MeOH) fractionation on the molecular weight, molecular weight distribution, glass transition temperature (Tg), thermal decomposition, and chemical structure of lignin were investigated. Repeated MeOH fractionation of softwood Kraft lignin successfully removed the low-molecular-weight fraction. The separated high-molecular-weight lignin showed a Tg of 211 C and a char yield of 47%, much higher than those of asreceived lignin (Tg 153 C, char yield 41%). The MeOH-soluble fraction of lignin showed an increased low-molecular-weight fraction and a lower Tg (117 C) and char yield (32%). The amount of low-molecular-weight fraction showed a quantitative correlation with both 1/Tg and char yield in a linear regression. This study demonstrated the efficient purification or fractionation technology for lignin; it also established a theoretical and empirical correlation between the physical characteristics of fractionated lignins.

  18. Methanol fractionation of softwood Kraft lignin: impact on the lignin properties.

    PubMed

    Saito, Tomonori; Perkins, Joshua H; Vautard, Frederic; Meyer, Harry M; Messman, Jamie M; Tolnai, Balazs; Naskar, Amit K

    2014-01-01

    The development of technologies to tune lignin properties for high-performance lignin-based materials is crucial for the utilization of lignin in various applications. Here, the effect of methanol (MeOH) fractionation on the molecular weight, molecular weight distribution, glass transition temperature (Tg ), thermal decomposition, and chemical structure of lignin were investigated. Repeated MeOH fractionation of softwood Kraft lignin successfully removed the low-molecular-weight fraction. The separated high-molecular-weight lignin showed a Tg of 211 °C and a char yield of 47 %, much higher than those of as-received lignin (Tg 153 °C, char yield 41 %). The MeOH-soluble fraction of lignin showed an increased low-molecular-weight fraction and a lower Tg (117 °C) and char yield (32%). The amount of low-molecular-weight fraction showed a quantitative correlation with both 1/Tg and char yield in a linear regression. This study demonstrated the efficient purification or fractionation technology for lignin; it also established a theoretical and empirical correlation between the physical characteristics of fractionated lignins.

  19. Impacts of Biochar on Physical Properties and Erosion Potential of a Mudstone Slopeland Soil

    PubMed Central

    Chien, Wei-Hsin; Liou, Ruei-Cheng

    2014-01-01

    Food demand and soil sustainability have become urgent issues recently because of the global climate changes. This study aims to evaluate the application of a biochar produced by rice hull, on changes of physiochemical characteristics and erosion potential of a degraded slopeland soil. Rice hull biochar pyrolized at 400°C was incorporated into the soil at rates of 2.5%, 5%, and 10% (w/w) and was incubated for 168 d in this study. The results indicated that biochar application reduced the Bd by 12% to 25% and the PR by 57% to 92% after incubation, compared with the control. Besides, porosity and aggregate size increased by 16% to 22% and by 0.59 to 0.94 mm, respectively. The results presented that available water contents significantly increased in the amended soils by 18% to 89% because of the obvious increase of micropores. The water conductivity of the biochar-amended soils was only found in 10% biochar treatment, which might result from significant increase of macropores and reduction of soil strength (Bd and PR). During a simulated rainfall event, soil loss contents significantly decreased by 35% to 90% in the biochar-amended soils. In conclusion, biochar application could availably raise soil quality and physical properties for tilth increasing in the degraded mudstone soil. PMID:25548787

  20. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Kang, Wei; Wang, Jianxiang

    2015-01-01

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence of the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion.

  1. Optimised amylases extraction from oat seeds and its impact on bread properties.

    PubMed

    Ben Halima, Nihed; Borchani, Maha; Fendri, Imen; Khemakhem, Bassem; Gosset, David; Baril, Patrick; Pichon, Chantal; Ayadi, Mohamed-Ali; Abdelkafi, Slim

    2015-01-01

    Statistical approaches were employed for the optimisation of the extraction of amylolytic activity from oat (Avena sativa) seeds. The application of the response surface methodology allows us to determine a set of optimal conditions (ratio seed weight/buffer volume 0.1, germination days 10 days, temperature 20 °C and pH 5.6). Experiments carried out under these conditions led to amylase production yield of 91 U/g. Its maximal activity was in the pH 5.6 and at 55 °C. Study of the incorporation of the optimised oat extract into the bread formulation revealed an improvement of the sensory quality and the textural properties of fresh and stored bread. Three-dimensional elaborations of Confocal Laser Scanning Microscopy (CLSM) images were performed on crumb of the different breads to evaluate the influence of amylase activity on microstructure. The result showed improved baking characteristics as well as overall microscopic and macroscopic appearance.

  2. Terminal sterilization of alginate hydrogels: efficacy and impact on mechanical properties.

    PubMed

    Stoppel, Whitney L; White, Joseph C; Horava, Sarena D; Henry, Anna C; Roberts, Susan C; Bhatia, Surita R

    2014-05-01

    Terminal, or postprocessing, sterilization of composite biomaterials is crucial for their use in wound healing and tissue-engineered devices. Recent research has focused on optimizing traditional biomaterial formulations to create better products for commercial and academic use which incorporate hydrophobic compounds or secondary gel networks. To use a hydrogel in a clinical setting, terminal sterilization is necessary to ensure patient safety. Lyophilization, gamma-irradiation, and ethylene oxide treatment all have negative consequences when applied to alginate scaffolds for clinical use. Here, we aim to find alternative terminal sterilization methods for alginate and alginate-based composite hydrogels which maintain the structure of composite alginate networks for use in biomedical applications. A thorough investigation of the effect of common sterilization methods on swollen alginate-based hydrogels has not been reported and therefore, this work examines autoclaving, ethanol washing, and ultraviolet light as sterilization techniques for alginate and alginate/Pluronic® F68 composite hydrogels. Preservation of structural integrity is evaluated using shear rheology and analysis of water retention, and efficacy of sterilization is determined via bacterial persistence within the hydrogel. Results indicate that ethanol sterilization is the best method of those investigated because ethanol washing results in minimal effects on mechanical properties and water retention and eliminates bacterial persistence. Furthermore, this study suggests that ethanol treatment is an efficacious method for terminally sterilizing interpenetrating networks or other composite hydrogel systems.

  3. Impact of lateral carrier confinement on electro-optical tuning properties of polariton condensates

    SciTech Connect

    Brodbeck, S.; Suchomel, H.; Amthor, M.; Wolf, A.; Kamp, M.; Schneider, C.; Höfling, S.

    2015-07-27

    Electro-optical measurements on exciton-polaritons below and above the condensation threshold are performed on high quality, pin-doped microcavities with embedded GaAs quantum wells. Applying an external electric field shifts the polariton emission by hundreds of μeV both in the linear and the nonlinear regime. We study three device geometries to investigate the influence of carrier confinement in the plane of the quantum well on the electro-optical tuning properties. In the conventional micropillar geometry, the electric field tuning behavior is dominated by the effects of carrier tunneling and electric field screening that manifest in a blueshift of the polariton emission. In stark contrast, for a planar sample geometry, we can significantly extend the range of electric fields and a redshift is observed. To separate the contributions of quantum confined Stark effect and reduced exciton oscillator strength to the energy shift, we study a third sample where the etching of micropillars is stopped just above the active region. In this semi-planar geometry, exciton and polariton emissions can be measured simultaneously. As for the planar geometry, redshifts of the polariton emission are observed below and above threshold that are well reproduced by theoretical shifts.

  4. Impact of solar dehydration on composition and antioxidant properties of acai (Euterpe oleracea Mart.).

    PubMed

    Sangronis, Elba; Sanabria, Neida

    2011-03-01

    Commercial products derived from the acai fruit (Euterpe oleracea Mart.) are available in Brazil, but in Venezuela, it is only known by ethnic indigenous groups of the Amazon. In this study, acai flour was made by solar dehydration and the effect of processing on the composition, microbiological quality, and antioxidant properties of such flour were evaluated. The fruit was purchased in Puerto Ayacucho, Venezuela, and a portion was manually pulped. Microbiological quality, proximal composition, minerals, polyphenols, tannins, anthocyanins, and antioxidant capacity were evaluated. The remaining portion of fruit was blanched in a solution of ascorbic acid and citric acid at 98 degrees C for 1 min in the same manner, manually pulped, dried by solar dehydration and the acai flour was also analysed. From the composition of the acai flour, its high content of fat (22.9%), protein (13.7%), dietary fibre (20.5%), total polyphenols (1.60 g/kg) and antioxidant capacity (79.97%) stood out. The blanching of the fruit and the solar dehydrating of the acai pulp did not modify the composition, but they improved its microbiological quality and reduced phenolic compounds and antioxidant capacity. The flour obtained is stable and innocuous and could be used to diversify the diet of the indigenous people of the Amazon region.

  5. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants

    NASA Astrophysics Data System (ADS)

    Meynet, G.; Chomienne, V.; Ekström, S.; Georgy, C.; Granada, A.; Groh, J.; Maeder, A.; Eggenberger, P.; Levesque, E.; Massey, P.

    2015-03-01

    Context. The post-main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate, and the effect of a close companion. Aims: We study the change in the red supergiant (RSG) lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor and the structure of the stars at that time for various mass-loss rates during the RSG phase and for two different initial rotation velocities. Methods: Stellar models were computed with the Geneva code for initial masses between 9 and 25 M⊙ at solar metallicity (Z = 0.014) with 10 times and 25 times the standard mass-loss rates during the RSG phase, with and without rotation. Results: The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and in turn on the luminosity function of RSGs. An observed RSG is associated with a model of higher initial mass when models with an enhanced RSG mass-loss rate are used to deduce that mass. At solar metallicity, models with an enhanced mass-loss rate produce significant changes in the populations of blue, yellow, and RSGs. When extended blue loops or blueward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post-RSG objects. These post-RSG stars are predicted to show much lower surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. Enhanced mass-loss rates during the RSG phase have little impact on the Wolf-Rayet populations. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever at the pre-supernova stage the H-rich envelope contains more than about 5% of the initial mass, the star is a RSG, and whenever

  6. The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis.

    PubMed

    Bakholdina, S I; Sanina, N M; Krasikova, I N; Popova, O B; Solov'eva, T F

    2004-12-01

    The impact of the availability of glucose in nutrition medium and growth temperature on the composition and thermotropic behavior of lipids from Yersinia pseudotuberculosis (Enterobacteriaceae) was studied. Y. pseudotuberculosis was grown in nutrition broth (NB) with/without glucose at 8 and 37 degrees C, corresponding to the temperatures of saprophytic and parasitic phases of this bacterium life. The decrease of phosphatidylethanolamine, phosphatidylglycerol and unsaturated fatty acids and the parallel increase of lysophosphatidylethanolamine and diphosphatidylglycerol and saturated and cyclopropane acids were the most significant changes with temperature in bacterial phospholipid (PL) classes and fatty acids, respectively. Glucose did not effect the direction of temperature-induced changes in the contents of PLs, fatty acids, however it enhanced (for PLs) or diminished (for fatty acids) intensity of these changes. The thermally induced transitions of lipids were studied by differential scanning calorimetry (DSC). It was revealed that the addition of glucose to NB induced a sharp shift of DSC thermograms to lower temperatures in the "warm" variants of bacteria. The peak maximum temperature (Tmax) of thermal transitions dropped from 50 to 26 degrees C that is the optimal growth temperature of Y. pseudotuberculosis. Tmax of total lipids of the cells grown at 8 degrees C without glucose in NB was equal to growth temperature that corresponded to the classical mechanism of homeoviscous adaptation of bacteria. An addition of glucose to NB at this growth temperature caused the subsequent reduction of Tmax to -8 degrees C, while the temperature ranges of thermograms were not substantially changed. So, not only the temperature growth of bacteria, but also the presence of glucose in NB can modify the physical state of lipids from Y. pseudotuberculosis. In this case, both factors affect additively. It is suggested that glucose influences some membrane-associated proteins and

  7. Mapping small effect mutations in Saccharomyces cerevisiae: impacts of experimental design and mutational properties.

    PubMed

    Duveau, Fabien; Metzger, Brian P H; Gruber, Jonathan D; Mack, Katya; Sood, Natasha; Brooks, Tiffany E; Wittkopp, Patricia J

    2014-04-29

    Genetic variants identified by mapping are biased toward large phenotypic effects because of methodologic challenges for detecting genetic variants with small phenotypic effects. Recently, bulk segregant analysis combined with next-generation sequencing (BSA-seq) was shown to be a powerful and cost-effective way to map small effect variants in natural populations. Here, we examine the power of BSA-seq for efficiently mapping small effect mutations isolated from a mutagenesis screen. Specifically, we determined the impact of segregant population size, intensity of phenotypic selection to collect segregants, number of mitotic generations between meiosis and sequencing, and average sequencing depth on power for mapping mutations with a range of effects on the phenotypic mean and standard deviation as well as relative fitness. We then used BSA-seq to map the mutations responsible for three ethyl methanesulfonate-induced mutant phenotypes in Saccharomyces cerevisiae. These mutants display small quantitative variation in the mean expression of a fluorescent reporter gene (-3%, +7%, and +10%). Using a genetic background with increased meiosis rate, a reliable mating type marker, and fluorescence-activated cell sorting to efficiently score large segregating populations and isolate cells with extreme phenotypes, we successfully mapped and functionally confirmed a single point mutation responsible for the mutant phenotype in all three cases. Our simulations and experimental data show that the effects of a causative site not only on the mean phenotype, but also on its standard deviation and relative fitness should be considered when mapping genetic variants in microorganisms such as yeast that require population growth steps for BSA-seq.

  8. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  9. Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon

    PubMed Central

    Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel

    2014-01-01

    The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400–800 m depth range. To explore the degree of alteration of surface sediments (0–50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y−1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298

  10. Sugar cane management with humic extract and organic and mineral fertilizer: impacts on Oxisol some physical properties

    NASA Astrophysics Data System (ADS)

    Alves, M. C.; Campos, F. S.; Souza, Z. M.

    2012-04-01

    The present investigation has as objective to study the impact of cultive systems, humic extract and organic and mineral fertilizers on Oxisol some physical properties cultivated of sugar cane. It was developed in Aparecida do Taboado, Mato Grosso do Sul, Brazil, in Manufactores Alcoolvale. The study was in sugar cane culture implanted on 3th and 4th cycle. The experimental design was at randomized blocks following scheme in zone with eight treatments and four replications. The two treatments in main zone were represented by cultivation systems (with and without chisel) and the subzone fertilization (T1-mineral, T2-mineral+sugar cane residue, T3-mineral+humic and fulvic acids and T4-mix of mineral, sugar cane residue and humic and fulvic acids). In three soil layers: 0.00-0.05; 0.10-0.20 and 0.20-0.40 m were studied the physical soil properties: macroporosity, microporosity, total porosity and soil bulk density. Also evaluate the technological quality of sugar cane. The conclusions are: the application of mineral fertilizer+sugar cane residue+humic extract (Humitec ®) and cropping system with chisel were more effective in improving soil physical; the system of crop of sugar cane ratton implanted in the 2th and 3th cycle, without the use of chisel was better in the recovery of soil physical properties; the crop system without the chisel and the combination of mineral fertilizer+sugar cane residue was promising to increase of Brix, Pol juice, Pol sugar cane and total recoverable sugars Pol.

  11. Impact of nucleation of carbonaceous clusters on structural, electrical and optical properties of Cr+-implanted PMMA

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Aziz, Uzma

    2016-09-01

    Specimens of polymethylmethacrylate (PMMA) have been implanted with 400 keV Cr+ ions at different ion fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The possible chemical reactions involved in the nucleation of conjugated carbonaceous clusters in implanted PMMA are discussed. Furthermore, impact of formation of carbonaceous clusters on structural, optical, electrical and morphological properties of implanted PMMA has been examined. The structural modifications in implanted PMMA are observed by Raman spectroscopy. The variation in optical band gap and Urbach energy is measured using UV-visible spectroscopic analysis. The effects of Cr+ ion implantation on electrical and morphological properties are investigated by four-probe apparatus and atomic force microscopy, respectively. The Raman spectroscopic analysis confirmed the formation of carbonaceous clusters with the transformation of implanted layer of PMMA into amorphous carbon. Simultaneously, the optical band gap of implanted PMMA has reduced from 3.13 to 0.85 eV. The increase in Urbach energy favors the decline in band gap together with the structural modification in implanted PMMA. As a result of Cr+ ion implantation, the electrical conductivity of PMMA has improved from 2.14 ± 0.06 × 10-10 S/cm (pristine) to 7.20 ± 0.36 × 10-6 S/cm. The AFM images revealed a decrease in surface roughness with an increment in ion fluence up to 5 × 1014 ions/cm2. The modification in the electrical, optical and structural properties makes the PMMA a promising candidate for its future utilization, as a semiconducting and optically active material, in various fields like plastic electronics and optoelectronic devices.

  12. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.

    2016-08-01

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.

  13. Are Extracted Materials Truly Representative of Original Samples? Impact of C18 Extraction on CDOM Optical and Chemical Properties.

    PubMed

    Andrew, Andrea A; Del Vecchio, Rossana; Zhang, Yi; Subramaniam, Ajit; Blough, Neil V

    2016-01-01

    Some properties of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction (SPE) is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB) and the Equatorial Atlantic Ocean (EAO). Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4). C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission, and quantum yield) of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure) of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters.

  14. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  15. The Influence of Forge Reduction Ratio on the Tensile and Impact Properties of a Low-Alloy ESR (Electroslag Remelting) Steel

    DTIC Science & Technology

    1986-01-01

    phenomenon occurs. The ESR steel investigated was a low sulphur (0.002%) - . AISI 4340 grade in the heat treated condition. Attention is also directed toward...MRL-R-985 THE INFLUENCE OF FORGE REDUCTION RATIO ON THE TENSILE AND IMPACT PROPERTIES OF A LOW-ALLOY ESR STEEL G.M. Weston LEC I . ;T E; ’ :cX NMI 5- i...RESEARCH LABORATORIES REPORT MRL-R-98 5 THE INFLUENCE OF FORGE REDUCTION RATIO ON THE TENSILE AND IMPACT PROPERTIES OF A LOW-ALLOY ESR STEEL G.M. Weston

  16. The Geographic Information System techniques impact analyze of Office's Properties in Barcelona

    NASA Astrophysics Data System (ADS)

    Garcia, P. A.; Biere, R. A.; Moix, M. B.

    2007-05-01

    The changes in the characteristics and needs in the cities structures means new challenges in the space to the economics activities. The increasing predominance of the tertiary industry, of offices or I+D buildings, like an effect of the economic transformation implies new forms, new technical characteristics and similar alternatives locations accordant with a changing demand. The project that is presented here, is developed by the Centre of Land Policy and Valuations of the University Polytechnic of Catalonia for the company "Servicios de Geo-marketing Inmobiliario S.L.' (SGMI, Real State Geo- marketing Services S.L.) The process consists in the generation of a geographic information system to the analyses of the characteristics office's buildings of Barcelona in the sense to introduce the property office's buildings of Barcelona into a database for the geo-marketing. This application allows the access to the necessary information of technical and constructive characteristics of the office's buildings, summoned by the most emblematic or central locations to the best technical level in their constructions towards facilitating the maximum knowledge the citizen in order to assure the choice according to the needs for every profile of demand. The work has consisted basically in defining the technical criteria of evaluation of the building, to systematize those characteristics in some indicators (variable) capable of expressing the level of quality of every variable, to establish a system measurement of greater to smaller value explained to the quality. Systematizing the collection of information of a total of 683 buildings of Barcelona and of some municipalities of its periphery, through a visit to every building, to process the data obtained to a database and to standardize the value of quality for every indicator and set of indicators towards determining a final qualification, obtained from the different physical, constructive and qualitative characteristics of

  17. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    SciTech Connect

    Gillinger, M.; Schneider, M.; Bittner, A.; Schmid, U.; Nicolay, P.

    2015-02-14

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 h in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.

  18. Antifungal Properties of Cationic Phenylene Ethynylenes and Their Impact on β-Glucan Exposure

    PubMed Central

    Pappas, Harry C.; Sylejmani, Rina; Graus, Matthew S.; Donabedian, Patrick L.; Whitten, David G.

    2016-01-01

    Candida species are the cause of many bloodstream infections through contamination of indwelling medical devices. These infections account for a 40% mortality rate, posing a significant risk to immunocompromised patients. Traditional treatments against Candida infections include amphotericin B and various azole treatments. Unfortunately, these treatments are associated with high toxicity, and resistant strains have become more prevalent. As a new frontier, light-activated phenylene ethynylenes have shown promising biocidal activity against Gram-positive and -negative bacterial pathogens, as well as the environmental yeast Saccharomyces cerevisiae. In this study, we monitored the viability of Candida species after treatment with a cationic conjugated polymer [poly(p-phenylene ethynylene); PPE] or oligomer [“end-only” oligo(p-phenylene ethynylene); EO-OPE] by flow cytometry in order to explore the antifungal properties of these compounds. The oligomer was found to disrupt Candida albicans yeast membrane integrity independent of light activation, while PPE is able to do so only in the presence of light, allowing for some control as to the manner in which cytotoxic effects are induced. The contrast in killing efficacy between the two compounds is likely related to their size difference and their intrinsic abilities to penetrate the fungal cell wall. Unlike EO-OPE-DABCO (where DABCO is quaternized diazabicyclo[2,2,2]octane), PPE-DABCO displayed a strong propensity to associate with soluble β-glucan, which is expected to inhibit its ability to access and perturb the inner cell membrane of Candida yeast. Furthermore, treatment with PPE-DABCO unmasked Candida albicans β-glucan and increased phagocytosis by Dectin-1-expressing HEK-293 cells. In summary, cationic phenylene ethynylenes show promising biocidal activity against pathogenic Candida yeast cells while also exhibiting immunostimulatory effects. PMID:27161628

  19. Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus

    SciTech Connect

    Muhlbauer, Andreas; Ackerman, Thomas P.; Comstock, Jennifer M.; Diskin, G. S.; Evans, Stuart; Lawson, Paul; Marchand, Roger

    2014-04-16

    In situ microphysical observations 3 of mid-latitude cirrus collected during the Department of Energy Small Particles in Cirrus (SPAR-TICUS) field campaign are combined with an atmospheric state classification for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site to understand statistical relationships between cirrus microphysics and the large-scale meteorology. The atmospheric state classification is informed about the large-scale meteorology and state of cloudiness at the ARM SGP site by combining ECMWF ERA-Interim reanalysis data with 14 years of continuous observations from the millimeter-wavelength cloud radar. Almost half of the cirrus cloud occurrences in the vicinity of the ARM SGP site during SPARTICUS can be explained by three distinct synoptic condi- tions, namely upper-level ridges, mid-latitude cyclones with frontal systems and subtropical flows. Probability density functions (PDFs) of cirrus micro- physical properties such as particle size distributions (PSDs), ice number con- centrations and ice water content (IWC) are examined and exhibit striking differences among the different synoptic regimes. Generally, narrower PSDs with lower IWC but higher ice number concentrations are found in cirrus sam- pled in upper-level ridges whereas cirrus sampled in subtropical flows, fronts and aged anvils show broader PSDs with considerably lower ice number con- centrations but higher IWC. Despite striking contrasts in the cirrus micro- physics for different large-scale environments, the PDFs of vertical velocity are not different, suggesting that vertical velocity PDFs are a poor predic-tor for explaining the microphysical variability in cirrus. Instead, cirrus mi- crophysical contrasts may be driven by differences in ice supersaturations or aerosols.

  20. Sewage sludge hydrochars: properties and agronomic impact as related to different production conditions

    NASA Astrophysics Data System (ADS)

    Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Conte, Pellegrino; Knicker, Heike

    2015-04-01

    The huge amount of sewage sludge (SS) generated in wastewater treatment plants all over the world represents an environmental problem. Due to the high concentration of phosphorus and nitrogen in SS as well as other macro and micro nutrients it has been considered a suitable soil amendment. However, before being applied to soil a complete sterilization and elimination of pollutants should be carried out [1]. In this context, thermal treatments appear as a convenient methodology for producing SS byproducts useful for agronomic purposes. Hydrothermal carbonization (HTC) is a kind of pyrolysis characterized by the heating of the biomass in presence of water. This process shows an advantage compared to other thermal treatments for wet residues since dryness of the biomass prior to the thermal transformation is not necessary. The solid product which results from HTC is called hydrochar and it has been suggested to increase soil productivity [2]. However, the agronomic potential of hydrochars depends on the feedstock and production conditions. Additionally, possible toxic and risks have to be carefully evaluated. Thus, SS hydrochars appear as a potential soil amendment but further scientific research is needed to find its real capacity, optimal production conditions as well as possible environmental harmful effects. The aim of this study was to evaluate which are the most suitable production conditions, to transform SS into hydrochar. An additional goal of this work was to relate the hydrochars properties to its agronomic response. Therefore, hydrochars were produced from SS collected from the Experimental Wastewater Treatment plant of CENTA (http://www.centa.es/), located in Carrion de los Cespedes (Seville), under two different temperatures (200 and 260˚C) and residence times (30 min and 1h). With the hydrochars obtained, a greenhouse pot incubation study was carried out for 80 days. The pots contained 250 g of a Calcic Cambisol (IUSS Working Group WRB, 2007) and an

  1. Properties, classification, and genetic interpretation of the allochthonous impact formations of the ICDP Chicxulub drill core YAX-1

    NASA Astrophysics Data System (ADS)

    Stöffler, D.; Hecht, L.; Kenkmann, T.; Schmitt, R. T.; Wittmann, A.

    2003-04-01

    The ICDP drilling Yaxcopoil-1 exposes 1510 m of impact-related lithologies. We report here and in related abstracts [1-3] on allochthonous impactites representing a complex layered sequence of polymict breccias, extremely rich in impact melt particles and rather poor in fine-grained matrix. This sequence can be subdivided into 6 units. Their whole rock chemistry reflects a mixture of crystalline rocks and Cretaceous carbonate rocks. The completely crystallized silicate "glass" occurs in discrete particles whereas carbonate melt forms exsolved inclusions in silicate melts and larger bodies of polycrystalline Mg-bearing calcite in unit 6. The stratigraphy, classification, and properties of the impactites are as follows: Unit 1 (Upper sorted suevite): 794.63 m, melt-rich, fine grained, clastic matrix; Unit 2 (Lower sorted suevite): 807.75 m, melt-rich, coarse grained, clastic matrix partly recrystallized, Unit 3 (Upper suevite): 823.25 m, melt rich, very coarse grained, recrystallized matrix; Unit 4 (Middle suevite): 846.09 m, melt rich, very coarse grained, recrystallized matrix; Unit 5 (Suevitic breccia with cataclastic melt rock): 861.06 m, suevitic melt agglomerate with monomictly brecciated melt bodies, coarse grained, crystallized matrix (remelted); Unit 6 (Lower suevite): 884.96 m, suevite with silicate and carbonate melt, very coarse grained; recrystallized matrix; Unit 7 (Cretaceous): 894.94-1510.97 m, displaced bedded carbonates and anhydrite, partially brecciated, with impact breccia dikes. The source material of the layered breccias, derived from the deepest excavation zone, was incorporated into the ejecta plume at a late stage when the bulk of the high rising plume had disappeared from the impact site [3] and distributed globally. The upper section (units 1-4) is interpreted as ballistic "fallout" material from the ejecta plume. The Lower Suevite (unit 6) represents ground surged material deposited as the first layer and then covered with laterally

  2. Land-use change impacts on hydrologic soil properties and implications for overland-flow in a periurban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Steenhuis, Tammo S.; Walsh, Rory P. D.; Soares, Daniel; Ferreira, António J. D.; Coelho, Celeste O. A.

    2013-04-01

    Global urbanization affects land-use, soil properties and runoff generation and has implications on flow connectivity in the landscape. Understanding how various forms of the urban mosaic affects the landscape functioning is still a challenge. The aim of our research is to: 1) understand spatio-temporal variability of soil hydrological properties of land-uses in a periurban Mediterranean environment and the impacts on runoff processes; 2) assess the impacts of urbanizing mosaic features of periurban areas on flow connectivity and streamflow response. The study is carried out in a Portuguese typical urbanizing environment, the Ribeira dos Covões (6 km2 catchment). In the last 50 years, the catchment has changed from being rural into urban. By 2009, although still dominated by forest (66%), the catchment urban areas (30%) exhibited a distinctive pattern involving sets of gardens and walls, with derelict land in between properties. The study combines field surveys and hydrological monitoring to assess spatio-temporal dynamics of land-use contributions to surface hydrology. Over a one year period, nine monitoring campaigns were carried out to assess the variability of water-repellency, soil moisture and water infiltration in different land-use categories. In 2010 fall, nine 8mx2m runoff plots were installed in the forest areas, as well as a continuous-recording network that includes three rain-gauges and nine water-level recorders. This network provides continuous data on hydrological response to rainfall at the catchment outlet and in eight sub-catchments. The results revealed high spatio-temporal variability in soil hydrological properties with significant differences between land-uses. In summer, soil hydrophobicity is widespread and most severe in forest areas, resulting in very low soil-matrix infiltration and thereby promoting Hortonian overland-flow. In wet periods, water-repellency almost vanished, with infiltration rates at forest sites increasing to12mm

  3. Radiative properties of Bay of Bengal aerosols: Spatial distinctiveness and source impacts

    NASA Astrophysics Data System (ADS)

    Babu, S. Suresh; Gogoi, Mukunda M.; Kumar, V. H. Arun; Nair, Vijayakumar S.; Moorthy, K. Krishna

    2012-03-01

    Simultaneous and collocated measurements of spectrally resolved scattering and absorption coefficients and mass concentration of near-surface composite aerosols in the marine atmosphere over the Bay of Bengal (BOB), along with incoming shortwave (0.3-3 μm) global solar radiation and columnar spectral aerosol optical depths (AOD), were made on a research cruise during the winter phase of the Integrated Campaign for Aerosols, Gases and Radiation Budget (W-ICARB). The aerosol radiative properties revealed distinct spatial features associated with the contrasting outflows from Indo-Gangetic Plain (IGP) and East Asia. Both scattering and absorption coefficients depicted very high values (>200 and >15 Mm-1) over the northwestern and southeastern BOB and extremely low values (<50 and <10 Mm-1) over the central BOB. The mean value of the total scattering coefficient at 550 nm (˜123.7 ± 85.3 Mm-1) over the entire BOB during winter was higher than the mean values (˜94 ± 47 Mm-1) reported for the premonsoon season. While SSA at 550 nm showed very low values (<0.8) over a very large region in the central BOB and moderately low values over the southern BOB (˜0.85-0.9), the columnar AOD varied from the least values of ˜0.1 over the northeastern BOB to the highest values of ˜0.8 over the northwestern BOB. While significant cooling was observed at the top of the atmosphere and surface over the northwestern BOB, the atmospheric forcing was found to be significantly high (˜15 W m-2) over the southern BOB, where the aerosol radiative forcing efficiency (ARFE) at the surface was also found to be high. Examination of the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived fire count along with the advection pathways revealed a strong contribution from the emissions of biomass smoke from East Asia, which might be contributing to the enhanced aerosol induced warming over the southern BOB. However, the ARFE at the surface was low over the northwestern BOB, where the

  4. Shielding properties of lead-free protective clothing and their impact on radiation doses.

    PubMed

    Schlattl, Helmut; Zankl, Maria; Eder, Heinrich; Hoeschen, Christoph

    2007-11-01

    The shielding properties of two different lead-free materials-tin and a compound of 80% tin and 20% bismuth-for protective clothing are compared with those of lead for three typical x-ray spectra generated at tube voltages of 60, 75, and 120 kV. Three different quantities were used to compare the shielding capability of the different materials: (1) Air-kerma attenuation factors in narrow-beam geometry, (2) air-kerma attenuation factors in broad-beam geometry, and (3) ratios of organ and effective doses in the human body for a whole-body irradiation with a parallel beam directed frontally at the body. The thicknesses of tin (0.45 mm) and the tin/bismuth compound (0.41 mm) to be compared against lead correspond to a lead equivalence value of 0.35 mm for the 75 kV spectrum. The narrow-beam attenuation factors for 0.45 mm tin are 54% and 32% lower than those for 0.35 mm lead for 60 and 120 kV; those for 0.41 mm tin/bismuth are 12% and 32% lower, respectively. The decrease of the broad-beam air-kerma attenuation factors compared to lead is 74%, 46%, and 41% for tin and 42%, 26%, and 33% for tin/bismuth and the spectra at 60, 75, and 120 kV, respectively. Therefore, it is recommended that the characterization of the shielding potential of a material should be done by measurements in broad-beam geometry. Since the secondary radiation that is mainly responsible for the shielding reduction in broad-beam geometry is of low penetrability, only more superficially located organs receive significantly enhanced doses. The increase for the dose to the glandular breast tissue (female) compared to being shielded by lead is 143%, 37%, and 45% when shielded by tin, and 35%, 15%, and 39% when shielded by tin/bismuth for 60, 75, and 120 kV, respectively. The effective dose rises by 60%, 6%, and 38% for tin, and 14%, 3% and, 35% for tin/bismuth shielding, respectively.

  5. Microstructural impacts on the electrical properties of copper and titanium substituted bismuth vanadates

    NASA Astrophysics Data System (ADS)

    Ring, Kevin

    In the search for a material that can exceed the performance of YSZ as an ionic oxide conductor at intermediate temperatures (300°C to 600°C) a group of Aurivillius phase ceramics dubbed the BIMEVOX (Bi 2V1-xMexO5.5-delta) family has garnered much attention over the past 20 years. Novel results regarding the influence of microstructure on electrical properties were obtained by non-conventional methods of fabrication and characterization. Approaches included: uniaxial, load assisted sintering, molten salt synthesis, templated grain growth, and the use of ion blocking electrodes to measure the partial electronic conductivity. Molten salt synthesis methods successfully produced high aspect ratio platelets of both BiCuVOx (Bi2V0.9Cu0.1O 5.5-delta) and BiCuTiVOx (Bi2V0.9Cu0.05 Ti0.05O5.5-delta), at a variety of temperatures and times. Uniaxial load assisted sintering (or "hot-forging") when combined with templated grain growth produced high density (rho>95% theoretical) samples of moderate texture (F(00l) up to 29%). Impedance spectroscopy measurements indicated that increased texture and grain size reduce the thermal stability of BiCuVOx below the critical gamma-phase transition temperature. Measurements of total conductivity were made with changing oxygen partial pressure down to 10-4 atm of oxygen between temperatures of 400°C and 550°C. Under those conditions, total conductivity was invariant, confirming published results of operation within the ionic compensated regime. Partial electronic conductivity and electronic transference numbers were estimated by asymmetric DC polarization measurements down to 10-6 atm of oxygen between 500°C and 550°C. The results indicate that the partial pressure of oxygen in normal air is already below the intrinsic minimum of conductivity at 500°C and that electronic conductivity may become significant (te>0.01) no lower than 10-6 atm of oxygen. The culmination of research since its first publication poses uncertainty regarding

  6. Impact of catchment degree on peat properties in peat deposits of eutrophic bog

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Golubina, O. A.; Rodikova, A. V.; Shinkeeva, N. A.; Bubina, A. B.

    2010-05-01

    Fundamental works of many investigators show that according to the biophysical properties peat deposit (PD) is divided into 2 layers: active and inert. It is interesting to analyze the supposed changes in PD of eutrophic bog according to different data (physical, chemical and biological). The researches were carried out at two plots of one bog (points 1 and 2, positions 56° 21' NL, 84° 47' EL, Russia, Siberia). Agricultural afforestation (pine planting) was made at one of them (point 2) 60 years ago. Now this plot is absolutely identical in ground cover to 1 point, but other conditions are significantly changed. In spring bog water level is at the depth of 20cm at 2 point (at 1 point it is near water face), it lows up to 53 cm during summer time (at 1 point - up to 37 cm). According to redox conditions zone of anoxic-oxic conditions reaches meter depth at 2 points. PDs don't significantly differ in activity of ammonifiers but in activity of cellulose-lytic aerobic microflora it follows that it is more active at 2 point in PD active layer. In spite of good aeration, more favorable conditions were created also for anaerobic cellulose-fermenting microflora in PD of 2 point in comparison with 1 one. Activity analysis of denitrifying agents and microflora of other physiological groups also showed high activity of biota at the plot with afforestation amelioration. This fact was confirmed by high coefficient of mineralization. Time of drainage effect created by afforestation amelioration influenced group composition of peat organic matter which builds up PD of examined plots. According to fractional and group composition data fracture of hard-to-hydrolyze organic matters decreased during the process of microflora activating at the plot with afforestation amelioration but FA content increased. Fractional composition of nitrogen showed that content of mineral nitrogen compounds definitely increased. Thus, 60 years of surface drainage influenced composition change of peat

  7. Effect of Silica-Particle Characteristics on Impact/Usual Fatigue Properties and Evaluation of Mechanical Characteristics of Silica-Particle Epoxy Resins

    NASA Astrophysics Data System (ADS)

    Yamamoto, Isamu; Higashihara, Takashi; Kobayashi, Toshiro

    The structure (crystalline or amorphous) and shape (globular or irregular) of silica fillers were varied and their effects on the impact fatigue and usual fatigue properties in the particle-filled epoxy resins were investigated. The fatigue crack extension process was discussed in terms of initiation and propagation processes. Furthermore, the mechanical characteristics of the material were evaluated by considering the tensile properties, fatigue resistance and the fracture behavior. It has been found that the epoxy resin filled with irregular crystalline silica-particles possessed the best combination of mechanical properties.

  8. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    PubMed

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH<4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH>10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances.

  9. Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces.

    PubMed

    Durst, Julien; Chatenet, Marian; Maillard, Frédéric

    2012-10-05

    Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion® ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.

  10. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2013-03-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500-1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths

  11. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    SciTech Connect

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  12. The Effect of Ballistic Impacts on the High Cycle Fatigue Properties of Ti-48Al-2Nb-2Cr (at.%)

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Austin, C. M.; Erdman, O.

    2000-01-01

    The ability of gamma - TiAl to withstand potential foreign and/or domestic object damage is a technical risk to the implementation of gamma - TiAl in low pressure turbine (LPT) blade applications. The overall purpose of the present study was to determine the influence of ballistic impact damage on the high cycle fatigue strength of gamma - TiAl simulated LPT blades. Impact and specimen variables included ballistic impact energy, projectile hardness, impact temperature, impact location, and leading edge thickness. The level of damage induced by the ballistic impacting was studied and quantified on both the impact (front) and backside of the specimens. Multiple linear regression was used to model the cracking and fatigue response as a function of the impact variables. Of the impact variables studied, impact energy had the largest influence on the response of gamma - TiAl to ballistic impacting. Backside crack length was the best predictor of remnant fatigue strength for low energy impacts (<0.74J) whereas Hertzian crack length (impact side damage) was the best predictor for higher energy impacts. The impacted gamma - TiAl samples displayed a classical mean stress dependence on the fatigue strength. For the fatigue design stresses of a 6th stage LPT blade in a GE90 engine, a Ti-48Al-2Nb-2Cr LPT blade would survive an impact of normal service conditions.

  13. The Impact of Escape Alternative Position Change in Multiple-Choice Test on the Psychometric Properties of a Test and Its Items Parameters

    ERIC Educational Resources Information Center

    Hamadneh, Iyad Mohammed

    2015-01-01

    This study aimed at investigating the impact changing of escape alternative position in multiple-choice test on the psychometric properties of a test and it's items parameters (difficulty, discrimination & guessing), and estimation of examinee ability. To achieve the study objectives, a 4-alternative multiple choice type achievement test…

  14. Regional trends of aerosol optical depth and their impact on cloud properties over Southern India using MODIS data

    NASA Astrophysics Data System (ADS)

    Gopal, K. Rama; Obul Reddy, K. Raja; Balakrishnaiah, G.; Arafath, S. MD.; Kumar Reddy, N. Siva; Rao, T. Chakradhar; Reddy, T. Lokeswara; Reddy, R. Ramakrishna

    2016-08-01

    Remote sensing of global aerosols has constituted a great scientific interest in a variety of applications related to global warming and climatic change. In the present study we investigate the spatial and temporal variations of aerosol optical properties and its impact on various properties of clouds over Southern India for the last ten years (2005-2014) by using Moderate Resolution Imaging Spectroradiometer (MODIS) data retrieved from the onboard Terra and Aqua satellites. The spatial distributions of annual mean lowest Aerosol Optical Depth (AOD) value is observed in Bangalore (BLR) (0.22±0.04) and the highest AOD value is noted in Visakhapatnam (VSK) (0.39±0.05). Similarly high Fine Mode Fraction (FMF) is noticed over VSK and Thiruvananthapuram (TVM), while lower values are observed in Anantapur (ATP), Hyderabad (HYD), Pune (PUNE) and BLR. From the results, a negative correlation was found between AOD and Cloud Top Temperature (CTT), Cloud Top Pressure (CTP) where as, a positive correlation was observed between AOD and Cloud Fraction (CF), Water Vapor (WV) over the selected regions. Monthly average AOD and FMF are plotted for analysis of the trends of aerosol loading in a long-term scale and both values showed statistically significant enhancing trend over all regions as derived from the MODIS measurements. Further, the annual variation of spatial correlation between MODIS and MISR (Multi - Angle Imaging Spectro Radiometer) AOD has been analyzed and the correlation coefficients are found to be higher in two of the regions VSK and PUNE (>0.8), and considerably lower for TVM (<0.7).

  15. Aircraft measurements of the impacts of urban plume on cloud activation properties during GoAmazon - preliminary results

    NASA Astrophysics Data System (ADS)

    Mei, F.; Comstock, J. M.; Wang, J.; Tomlinson, J. M.; Hubbe, J. M.; Schmid, B.; Martin, S. T.; Longo, K.; Kuang, C.; Chand, D.; Pekour, M. S.; Shilling, J. E.

    2014-12-01

    Currently, the indirect effects of atmospheric aerosols remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially a result of our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturations. One of the objectives of the US Department of Energy (DOE) Green Ocean Amazon Project (GoAmazon) is to understand the influence of the emission from Manaus, a tropical megacity, on aerosol size, concentration, and chemical composition, and their impact on aerosol cloud condensation nuclei (CCN) spectrum. During the GoAmazon study, size distributions, CCN spectra and chemical composition of aerosols both under pristine conditions and inside Manaus plume were measured in-situ from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods, one conducted in the wet season (Feb 22- March 24, 2014) and the other in dry season (Sep 1 - Oct 10, 2014). Aerosol size distributions were measured by a Fast Integrated Mobility Spectrometer (FIMS) and compared with the merged size distribution from two other instruments, an Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), and a Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT). Optical measurements of light scattering by nephelometer and absorption by a particle soot absorption photometer (PSAP) were combined with number/size distributions data in a iterative method, which retrieves the effective imaginary refractive index of the particles at a wavelength of 545 nm. Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.). CCN number concentration was measured by a DMT dual column CCN counter at two supersaturations 0.25% and 0.5%. Based on the aerosol properties mentioned above, CCN closure is carried out. In addition, the sensitivity of calculated CCN

  16. Impact of sintering temperature on the structural, electrical, and optical properties of doped ZnO nanoparticle-based discs

    NASA Astrophysics Data System (ADS)

    Sendi, Rabab Khalid; Mahmud, Shahrom

    2012-11-01

    In the current study, 20 nm zinc oxide (ZnO) nanoparticles were used to make high-density ZnO discs doped with Bi2O3 and Mn2O3 via the conventional ceramic processing method. Different sintering temperatures were found to have significant impacts on the ZnO discs, especially on enhancing grain growth even at a low sintering temperature of only 980 °C. The strong solid-state reaction during sintering may be attributed to the high surface area of the 20 nm ZnO nanoparticles that promoted a strong surface reaction even at low sintering temperatures. Moreover, the sintering process also improved the grain crystallinity, as shown in the lowering of the intrinsic compressive stress based on the X-ray diffraction lattice constant and full-wave half-maximum data. The sintering temperatures also significantly influenced the electrical properties of the doped ZnO discs with a marked drop in the breakdown voltage from 330 V (sample at 980 °C) to 80 V (sample at 1380 °C). The resistivity also experienced a dramatic drop from 304.4 kΩ cm (sample at 980 °C) to 98.86 kΩ cm (sample at 1380 °C). The observed shift in the energy band-gap from a higher to a lower value may be attributed to the conversion of compressive stress to tensile stress with increasing sintering temperature. The Raman spectra indicate that the sintering temperatures and dopants in the discs had significant effects on the E2(high) phonon mode and ZnO crystal structures. Therefore, the sintering process can be used as a new technique for controlling the breakdown voltage of doped ZnO discs made from ZnO nanoparticles with improved structural and optical properties.

  17. Seed layer impact on structural and magnetic properties of [Co/Ni] multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, Enlong; Swerts, J.; Devolder, T.; Couet, S.; Mertens, S.; Lin, T.; Spampinato, V.; Franquet, A.; Conard, T.; Van Elshocht, S.; Furnemont, A.; De Boeck, J.; Kar, G.

    2017-01-01

    [Co/Ni] multilayers with perpendicular magnetic anisotropy (PMA) have been researched and applied in various spintronic applications. Typically, the seed layer material is studied to provide the desired face-centered cubic (fcc) texture to the [Co/Ni] to obtain PMA. The integration of [Co/Ni] in back-end-of-line processes also requires the PMA to survive post-annealing. In this paper, the impact of NiCr, Pt, Ru, and Ta seed layers on the structural and magnetic properties of [Co(0.3 nm)/Ni(0.6 nm)] multilayers is investigated before and after annealing. The multilayers were deposited in-situ on different seeds via physical vapor deposition at room temperature. The as-deposited [Co/Ni] films show the required fcc(111) texture on all seeds, but PMA is only observed on Pt and Ru. In-plane magnetic anisotropy is obtained on NiCr and Ta seeds, which is attributed to strain-induced PMA loss. PMA is maintained on all seeds after post-annealing up to 400 °C. The largest effective perpendicular anisotropy energy ( KUeff≈2 ×105 J/m3) after annealing is achieved on the NiCr seed. The evolution of PMA upon annealing cannot be explained by further crystallization during annealing or strain-induced PMA, nor can the observed magnetization loss and the increased damping after annealing. Here, we identify the diffusion of the non-magnetic materials from the seed into [Co/Ni] as the major driver of the changes in the magnetic properties. By selecting the seed and post-annealing temperature, the [Co/Ni] can be tuned in a broad range for both PMA and damping.

  18. Modeling the impacts of soil hydraulic properties on temporal stability of soil moisture under a semi-arid climate

    NASA Astrophysics Data System (ADS)

    Wang, Tiejun

    2014-11-01

    contents. Therefore, the impacts of soil hydraulic properties on TS SM may vary under different climate regimes.

  19. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked

  20. Atmospheric coupling of Tsunami: observations from Tohoku and impact on tsunami physical properties and phase/group velocities

    NASA Astrophysics Data System (ADS)

    Lognonne, P. H.; Kherani, E. A.; Coisson, P.; Astafyeva, E.; Occhipinti, G.; Rolland, L. M.; Yahagi, T.; Khelfi, K.; Sladen, A.; Hebert, H.; Makela, J. J.

    2012-12-01

    Tsunamis, through a dynamic coupling between the ocean and atmosphere, are generating atmospheric waves, detected in the ionosphere for tsunamis with amplitudes as much as 1 cm in the open ocean. Signals associated to the Tohoku tsunami have therefore been observed with huge signal to noise ratio, not only over Japan, but all over the Pacific, up to Chili. These signals have been moreover modelled, not only for the Total Electronic Contents perturbation signals, but also of the airglow detected for the first time over Hawaii and for the magnetic perturbations detected in Japan. We present in this paper the two sides of this coupling. The first side resumes the different observations and modelling of the Tohoku ionospheric signals observed by GEONET, by the GSI magnetic network and by Airglow cameras in Hawaii and Chili. Comparison between data and modelling are shown. The second side present the effects of the atmospheric coupling on the tsunami properties, i.e. amplitudes, phase/group velocities and excitation coefficients. By taking into account the coupling of tsunami with both the solid Earth and atmosphere, we show that specific resonances between the ocean and the atmosphere exist, enabling to understand the large and peaked signal spectrum. Local Time and geographical variations of this coupling is studied, as well as its dependence with the ocean depth. The impacts of atmospheric coupling on the propagation travel time of tsunamis is finally presented and discussed.

  1. Effect of heat treatment and irradiation temperature on impact properties of Cr-W-V ferritic steels

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Alexander, D. J.

    Charpy impact tests were conducted on eight normalized-and-tempered ferritic and martensitic steels irradiated in two different normalized conditions. Irradiation was conducted in the Fast Flux Test Facility (FFTF) at 393°C to ≈14 dpa on eight steels with 2.25%, 5%, 9%, and 12% Cr (0.1% C) with varying amounts of W, V, and Ta. The different normalization treatments involved changing the cooling rate after austenitization. The faster cooling rate produced 100% bainite in the 2.25Cr steels, compared to duplex structures of bainite and polygonal ferrite for the slower cooling rate. For both cooling rates, martensite formed in the 5% and 9% Cr steels, and martensite with ≈25% δ-ferrite formed in the 12% Cr steel. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy (USE). The difference in microstructure in the low-chromium steels due to the different heat treatments had little effect on properties. For the high-chromium martensitic steels, only the 5Cr steel was affected by heat treatment. When the results at 393°C were compared with previous results at 365°C, all but a 5Cr and a 9Cr steel showed the expected decrease in the shift in DBTT with increasing temperature.

  2. Influence of confining pressure and impact loading on mechanical properties of amphibolite and sericite-quartz schist

    NASA Astrophysics Data System (ADS)

    Liu, Shi; Xu, Jinyu; Lv, Xiaocong

    2014-06-01

    In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confining pressure, two rocks are subjected to impact loadings with different strain rates and confining pressures by using split Hopkinson pressure bar equipment with a confining pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confining pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that: (1) The characteristics of two rocks in the ascent stage of the stress-strain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confining pressure increases. (2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confining pressure effects are obvious. (3) Due to the effect of confining pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice.

  3. Impact of a real-time controlled wastewater subsurface drip disposal system on the selected chemical properties of a vertisol.

    PubMed

    Hea, Jiajie; Dougherty, Mark; Arriaga, Francisco J; AbdelGadir, Abdelaziz H

    2013-01-01

    The operation of onsite septic effluent disposal without considering seasonal moisture changes in drain field conditions can be a major cause of the failure of conventional septic systems. This study addressed this issue from a soil hydraulic perspective by using real-time drain field soil moisture levels to limit septic effluent disposal in a vertisol via subsurface drip irrigation. A prototype system was field-tested in a Houston clay soil and results describe the subsequent impact on selected soil chemical properties. After one year of hydraulic dosing with a synthetic wastewater, soil total carbon and nitrogen concentrations increased, but no increase in soil total phosphorus concentration was observed. Soil NO3-N leaching potential was noted, but soil NH4-N concentrations decreased, which could be ascribed to NH4-N nitrification, fixation within clay sheets and NH3 volatilization. Soil K+, Mg2+ and Na+ concentrations increased in soil layers above the drip lines, but decreased in soil layers below drip lines. Soil electrical conductivity accordingly increased in soil layers above drip lines, but the range was significantly lower than the threshold for soil salinity. Although the moisture-controlled effluent disposal strategy successfully avoided hydraulic dosing during unfavourable wet drain field conditions and prevented accumulation of soil salts in the soil profile beneath the drip lines, soil salts tended to accumulate in top soil layers. These adverse effects warrant system corrections before large-scale implementation of subsurface drip irrigation of effluent in similar vertisols.

  4. North Atlantic Aerosol Properties for Radiative Impact Assessments. Derived from Column Closure Analyses in TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, Philip A.; Bergstrom, Robert A.; Schmid, Beat; Livingston, John M.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. Both experiments used remote and in situ measurements from aircraft and the surface, coordinated with overpasses by a variety of satellite radiometers. TARFOX focused on the urban-industrial haze plume flowing from the United States over the western Atlantic, whereas ACE-2 studied aerosols over the eastern Atlantic from both Europe and Africa. These aerosols often have a marked impact on satellite-measured radiances. However, accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved aerosol optical depths (AODs) remains a difficult challenge. Here we summarize key initial results from TARFOX and ACE-2, with a focus on closure analyses that yield aerosol microphysical models for use in improved assessments of flux changes. We show how one such model gives computed radiative flux sensitivities (dF/dAOD) that agree with values measured in TARFOX and preliminary values computed for the polluted marine boundary layer in ACE-2. A companion paper uses the model to compute aerosol-induced flux changes over the North Atlantic from AVHRR-derived AOD fields.

  5. The Impact of Surface Albedo on the Retrievals of Low-Level Stratus Cloud Properties: An Updated Parameterization

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan

    2005-01-01

    An updated version of Dong et al. (1998, hereafter D98) parameterization is developed from a total of 40 hours of data with a broad range of surface albedos (0.1-0.8) during the 2000-2002 winter seasons at the DOE ARM SGP site. The updated parameterization includes the impact of surface albedo on the retrievals of stratus cloud microphysical and radiative properties, and has a significant improvement over D98 when surface albedo is high. Comparing the retrievals, the cloud-droplet effective radii (r(sub e)) calculated from the updated parameterization have a higher correlation coefficient (0.733) and lower Root-Mean-Square (RMS) error (1.74 m or 17.4%) than those (0.602, 4.0 m or 40%) from the D98. The cloud albedos also have a much higher correlation coefficient (0.983) and lower RMS (3%) than those 0.465, 26%) from the D98. The upper limit of surface albedo is 0.3 in applying the D98.

  6. Impacts of thermal annealing temperature on memory properties of charge trapping memory with NiO nano-pillars

    NASA Astrophysics Data System (ADS)

    Yan, Xiaobing; Yang, Tao; Jia, Xinlei; Zhao, Jianhui; Zhou, Zhenyu

    2017-03-01

    In this work, Au/SiO2/NiO/SiO2/Si structure charge trapping memory using NiO as the charge trapping layer was fabricated, and the impacts of the annealing temperature on the charge trapping memory performance were investigated in detail. The sample thermal annealed at 750 °C indicated a large memory window of 2.07 V under a low sweeping voltage of ± 5 V, which also has excellent charge retention properties with only small charge loss of ∼4.9% after more than 104 s retention. The high resolved transmission electron microscopy shows that the NiO films grew as nano-pillars structure. It is proposed that the excellent memory characteristics of the device are attributed to the inherent atomic defects and oxygen vacancies accumulated by the grain boundaries around NiO nano-pillars. Meanwhile the interface inter-diffusion formed by thermal annealing process is also an indispensable factor for the excellent memory characteristics of the device.

  7. Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia-rich urban environment

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Lack, Daniel; Brock, Charles A.; Bahreini, Roya; Middlebrook, Ann M.; Neuman, J. Andrew; Nowak, John B.; Perring, Anne E.; Schwarz, Joshua P.; Spackman, J. Ryan; Holloway, John S.; Pollack, Ilana B.; Ryerson, Thomas B.; Roberts, James M.; Warneke, Carsten; Gouw, Joost A.; Trainer, Michael K.; Murphy, Daniel M.

    2011-11-01

    Airborne measurements of sub-micron aerosol and trace gases downwind of Los Angeles are used to investigate the influence of aging on aerosol properties relevant to climate forcing and visibility. The analysis focuses on the Los Angeles plume, which in addition to strong urban emissions is influenced by local agricultural emissions. Secondary organic aerosol formation and repartitioning of semi-volatile ammonium nitrate were identified as key factors controlling the optical behavior observed. For one case study, ammonium nitrate contributed up to 50% of total dry extinction. At 85% relative humidity, extinction in the fresh plume was enhanced by a factor of ˜1.7, and 60-80% of this was from water associated with ammonium nitrate. On this day, loss of ammonium nitrate resulted in decreasing aerosol hygroscopicity with aging. Failing to account for loss of ammonium nitrate led to overestimation of the radiative cooling exerted by the most aged aerosol by ˜35% under dry conditions. These results show that changes to aerosol behavior with aging can impact visibility and climate forcing significantly. The importance of ammonium nitrate and water also highlight the need to improve the current representation of semi-volatile aerosol species in large-scale climate models.

  8. Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia-rich urban environment

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Lack, Daniel; Brock, Charles A.; Bahreini, Roya; Middlebrook, Ann M.; Neuman, J. Andrew; Nowak, John B.; Perring, Anne E.; Schwarz, Joshua P.; Spackman, J. Ryan; Holloway, John S.; Pollack, Ilana B.; Ryerson, Thomas B.; Roberts, James M.; Warneke, Carsten; de Gouw, Joost A.; Trainer, Michael K.; Murphy, Daniel M.

    2012-03-01

    Airborne measurements of sub-micron aerosol and trace gases downwind of Los Angeles are used to investigate the influence of aging on aerosol properties relevant to climate forcing and visibility. The analysis focuses on the Los Angeles plume, which in addition to strong urban emissions is influenced by local agricultural emissions. Secondary organic aerosol formation and repartitioning of semi-volatile ammonium nitrate were identified as key factors controlling the optical behavior observed. For one case study, ammonium nitrate contributed up to 50% of total dry extinction. At 85% relative humidity, extinction in the fresh plume was enhanced by a factor of ˜1.7, and 60-80% of this was from water associated with ammonium nitrate. On this day, loss of ammonium nitrate resulted in decreasing aerosol hygroscopicity with aging. Failing to account for loss of ammonium nitrate led to overestimation of the radiative cooling exerted by the most aged aerosol by ˜35% under dry conditions. These results show that changes to aerosol behavior with aging can impact visibility and climate forcing significantly. The importance of ammonium nitrate and water also highlight the need to improve the current representation of semi-volatile aerosol species in large-scale climate models.

  9. Impact of Site Disturbances from Harvesting and Logging on Soil Physical Properties and Pinus kesiya Tree Growth.

    PubMed

    Missanjo, Edward; Kamanga-Thole, Gift

    2014-01-01

    A study was conducted to determine the impacts of soil disturbance and compaction on soil physical properties and tree growth and the effectiveness of tillage in maintaining or enhancing site productivity for intensively managed Pinus kesiya Royle ex Gordon sites in Dedza, Malawi. The results indicate that about fifty-two percent of the area of compacted plots was affected by the vehicular traffic. Seventy percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at 0-20 cm depth increased from 0.45 to 0.66 Mg m(-3) in the most compacted portions of traffic lanes. Soil strength in traffic lanes increased at all 60 cm depth but never exceeded 1200 kPa. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 13.8% to 16.1% with compaction, while available water holding capacity increased. The study revealed no detrimental effects on tree height and diameter from soil disturbance or compaction throughout the three growing season. At the ages of two and three, a tree volume index was actually greater for trees planted on traffic lanes than those on nondisturbed soil.

  10. Impact of Site Disturbances from Harvesting and Logging on Soil Physical Properties and Pinus kesiya Tree Growth

    PubMed Central

    Missanjo, Edward

    2014-01-01

    A study was conducted to determine the impacts of soil disturbance and compaction on soil physical properties and tree growth and the effectiveness of tillage in maintaining or enhancing site productivity for intensively managed Pinus kesiya Royle ex Gordon sites in Dedza, Malawi. The results indicate that about fifty-two percent of the area of compacted plots was affected by the vehicular traffic. Seventy percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at 0–20 cm depth increased from 0.45 to 0.66 Mg m−3 in the most compacted portions of traffic lanes. Soil strength in traffic lanes increased at all 60 cm depth but never exceeded 1200 kPa. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 13.8% to 16.1% with compaction, while available water holding capacity increased. The study revealed no detrimental effects on tree height and diameter from soil disturbance or compaction throughout the three growing season. At the ages of two and three, a tree volume index was actually greater for trees planted on traffic lanes than those on nondisturbed soil. PMID:27355043

  11. The impacts of pyrolysis temperature and feedstock type on biochar properties and the effects of biochar application on the properties of a sandy loam

    NASA Astrophysics Data System (ADS)

    Aston, Steve; Doerr, Stefan; Street-Perrott, Alayne

    2013-04-01

    The production of biochar and its application to soil has the potential to make a significant contribution to climate change mitigation whilst simultaneously improving soil fertility, crop yield and soil water-holding capacity. Biochar is produced from various biomass feedstock materials at varying pyrolysis temperatures, but relatively little is known about how these parameters affect the properties of the resultant biochars and their impact on the properties of the soils to which they are subsequently applied. Salix viminalis, M. giganteus and Picea sitchensis feedstocks were chipped then sieved to 2 - 5 mm, oven dried to constant weight, then pyrolyzed at 350, 500, 600 and 800° C in a nitrogen-purged tube furnace. Biochar yields were measured by weighing the mass of each sample before and after pyrolysis. Biochar hydrophobicity was assessed by using a goniometer to measure water-droplet contact-angles. Cation-exchange-capacity (CEC) was measured using the ammonium acetate method. Biochars were also produced in a rotary kiln from softwood pellets at 400, 500, 600 and 700° C then ground to 0.4 - 1 mm and applied to a sandy loam at a rate of 50 g kg-1. Bulk densities of these soil-biochar mixtures were measured on a tapped, dry, basis. The water-holding-capacity (WHC) of each mixture was measured gravimetrically following saturation and free-draining. The filter paper method was used to assess how pyrolysis temperature influences the effect of biochar application on matric suction. For all feedstocks, large decreases in biochar yield were observed between the pyrolysis temperatures of 350° C and 500° C. For Salix viminalis and M. giganteus feedstocks, subsequent reductions in the yield with increasing pyrolysis temperature were much lower. There were significant differences in hydrophobicity between biochars produced from different biomass and mean biochar hydrophobicity decreased with increasing pyrolysis temperature for all feedstocks. Results for CEC and WHC

  12. Effects of microstructural variation on Charpy impact properties in heavy-section Mn-Mo-Ni low alloy steel for reactor pressure vessel

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin; Song, Jaemin; Kim, Min-Chul; Choi, Kwon-Jae; Lee, Bong-Sang

    2016-03-01

    The effects of microstructural changes in heavy-section Mn-Mo-Ni low alloy steel on Charpy impact properties were investigated using a 210 mm thick reactor pressure vessel. Specimens were sampled from 5 different positions at intervals of 1/4 thickness from the inner surface to the outer surface. A detailed microstructural analysis of impact-fractured specimens showed that coarse carbides along the lath boundaries acted as fracture initiation sites, and cleavage cracks deviated at prior-austenite grain boundaries and bainite lath boundaries. Upper shelf energy was higher and energy transition temperature was lower at the surface positon, where fine bainitic microstructure with homogeneously distributed fine carbides were present. Toward the center, coarse upper bainite and precipitation of coarse inter-lath carbides were observed, which deteriorated impact properties. At the 1/4T position, the Charpy impact properties were worse than those at other positions owing to the combination of elongated-coarse inter-lath carbides and large effective grain size.

  13. Magnetic properties of the ejecta blanket from the Chicxulub impact crater: Analog for robotic exploration of similar deposits on Mars

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Wasilewski, P. J.; Ocampo, A.; Pope, K.

    2001-05-01

    A major focus in the search for fossil life on Mars is on recognition of the proper material on the surface. Heavily cratered surface suggests high concentration of fluidized ejecta deposits. Because magnetism of rocks is an easy measure for remote robotic tools we collected samples of ejecta blanket deposits in southern Mexico and throughout Belize as a Martian analog. The ejecta layer (spheroid bed) that blankets the preexisting Cretaceous dolomite units consists of green glassy fragments, pink and white spheroids (accretionary lapilli) and darker fragments of limestone. The spheroid bed is overlain by a coarse unit of pebbles, cobbles, and boulders, which in more distal locations is composed of a pebble conglomerate. Clasts in the conglomerate (Pooks Pebbles) have striated features consistent with hypervelocity collisions during impact. We examined the magnetic properties of individual fragments within the spheroid bed. Green glassy fragments are highly paramagnetic (0.2 to 0.3 Am2kg-1 at 2 Tesla field) with no ferromagnetic component detected. Pink spheroids are slightly paramagnetic (0.001 to 0.04 Am2kg-1 at 2 Tesla field) and commonly contain soft ferromagnetic component (saturation magnetization (Ms) = 0.02 to 0.03 Am2kg-1). White spheroids have more or less equal amount of paramagnetic and diamagnetic components (-0.08 to 0.03 Am2kg-1 at 2 Tesla field) and no apparent ferromagnetism. Darker fragments are diamagnetic (-0.05 to -0.02 Am2kg-1 at 2 Tesla field) with absence of ferromagnetism. Intense paramagnetic properties of the glass allow easy distinction of glass containing samples. Pink spheroids appear to contain the largest amount of ferromagnetic particles. Diamagnetic dark grains are most likely fragments of limestone. Pebbles from the conglomerate unit are dolomite and consequently diamagnetic. The diamagnetism was established with field magnetic susceptibility measurements. Pebbles have very small natural remanent magnetization (NRM). Thermal

  14. Relationships between soil properties and contents in trace elements in a landscape impacted by atmospheric fallouts in Belgium

    NASA Astrophysics Data System (ADS)

    Liénard, Amandine; Colinet, Gilles

    2013-04-01

    Examples of sites contaminated by atmospheric fallouts are numerous across former industrial areas, among which the valleys of Sambre and Meuse in Wallonia hosted metal ore treatment factories. Trace contaminants that fell on soil surface can migrate in the landscape under soluble or particle forms through various processes such as erosion, lixiviation, biological transportation, aso. We first investigated the spatial distribution of some metallic trace elements in soils around a former zinc-ore treatment plant to a distance of 3km. In a second stage, we studied the relationships between trace contents and soil properties, in order to evaluate the risks of mobility. The sampling strategy aimed at (i) verifying that the main source of trace elements was the plant chimney, (ii) assessing the impact of the wind directions on fallout dispersion and (iii) evaluating whether there were differences of contents according to soil types and to soil occupation. Two hundred and fifty topsoil samples were collected according to a stratified design dealing with distance to the chimney, direction of dominant winds, soil type (loamy soil with good drainage, loamy soil with poor drainage and loamy-stony soils with gravels), and land use (crop, grassland and forest). Pseudo-total and available contents in trace and major elements, pH, TOC, and N were determined in the laboratory. Besides classical statistical analysis, (i) correlations between different parameters of soil, (ii) ANOVA (two or three way), (iii) ANCOVA (three-way ANOVA with the distance as a co-variate), (iv) regressions and (v) Principal Component Analysis were also performed. First results show that (i) contaminants (Cd, Pb, Zn and Cu) contents are closely correlated to each other and (ii) Cd, Pb and Zn are negatively correlated with the distance (R2 > 0.5; p-value < 0.001). So, the geographical location explained by the "distance" factor is the main driving factor of trace elements contents in soils. Moreover, the

  15. Impact of Sequential Ammonia Fiber Expansion (AFEX) Pretreatment and Pelletization on the Moisture Sorption Properties of Corn Stover

    SciTech Connect

    Bonner, Ian J.; Thompson, David N.; Teymouri, Farzaneh; Campbell, Timothy; Bals, Bryan; Tumuluru, Jaya Shankar

    2015-05-01

    Combining ammonia fiber expansion (AFEX™) pretreatment with a depot processing facility is a promising option for delivering high-value densified biomass to the emerging bioenergy industry. However, because the pretreatment process results in a high moisture material unsuitable for pelleting or storage (40% wet basis), the biomass must be immediately dried. If AFEX pretreatment results in a material that is difficult to dry, the economics of this already costly operation would be at risk. This work tests the nature of moisture sorption isotherms and thin-layer drying behavior of corn (Zea mays L.) stover at 20°C to 60°C before and after sequential AFEX pretreatment and pelletization to determine whether any negative impacts to material drying or storage may result from the AFEX process. The equilibrium moisture content to equilibrium relative humidity relationship for each of the materials was determined using dynamic vapor sorption isotherms and modeled with modified Chung-Pfost, modified Halsey, and modified Henderson temperature-dependent models as well as the Double Log Polynomial (DLP), Peleg, and Guggenheim Anderson de Boer (GAB) temperature-independent models. Drying kinetics were quantified under thin-layer laboratory testing and modeled using the Modified Page's equation. Water activity isotherms for non-pelleted biomass were best modeled with the Peleg temperature-independent equation while isotherms for the pelleted biomass were best modeled with the Double Log Polynomial equation. Thin-layer drying results were accurately modeled with the Modified Page's equation. The results of this work indicate that AFEX pretreatment results in drying properties more favorable than or equal to that of raw corn stover, and pellets of superior physical stability in storage.

  16. Effects of Molybdenum and Vanadium Addition on Tensile and Charpy Impact Properties of API X70 Linepipe Steels

    NASA Astrophysics Data System (ADS)

    Kim, Young Min; Shin, Sang Yong; Lee, Hakcheol; Hwang, Byoungchul; Lee, Sunghak; Kim, Nack J.

    2007-08-01

    This study is concerned with the effects of V and Mo addition on tensile and Charpy impact properties of API X70 linepipe steels. Twelve kinds of steel specimens were produced by varying V and Mo additions and rolling conditions. The addition of V and Mo promoted the formation of acicular ferrite (AF), banitic ferrite (BF), and martensite-austenite (MA) constituents, while suppressing the formation of polygonal ferrite (PF) or pearlite (P). The tensile test results indicated that the tensile strength of the specimens rolled in the two-phase region increased with the addition of V and Mo, while the yield strength did not vary much in these specimens except the water-cooled specimens, which showed the increased yield strength with addition of Mo. The tensile strength of specimens rolled in the single-phase region followed by water cooling increased with increasing V and Mo contents. The yield strength, however, did not vary much with increasing V content or with addition of Mo to the low-V alloy. In these specimens, a substantial increase in the strengths was achieved only when Mo was added to the high-V alloy. The specimens rolled in the single-phase region had higher upper-shelf energy (USE) and lower ductile-brittle transition temperature (DBTT) than the specimens rolled in the two-phase region, because their microstructures were composed of AF and fine PF. According to the electron backscatter diffraction (EBSD) analysis data, the effective grain size in AF was determined by crystallographic packets composed of a few fine grains having similar orientations. Thus, the decreased DBTT in the specimens rolled in the single-phase region could be explained by the decrease in the overall effective grain size due to the presence of AF having smaller effective grain size.

  17. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Schmid, B.; Livingston, J. M.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net short-wave flux at the tropopause by combining satellite-derived aerosol optical depth (AOD) maps with model aerosol properties determined via closure analyses in TARFOX and ACE 2. We exclude African dust, primarily by restricting latitudes to 25-60 N. The analyses use in situ aerosol composition measurements and air- and ship-borne sun-photometer measurements of AOD spectra. The aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. Its midvisible single-scattering albedo is 0.9. which is in the range obtained from in situ measurements of scattering and absorption in both TARFOX and ACE 2. Combining satellite-derived AOD maps with the aerosol model yields maps of 24-hour average net radiative flux changes. For simultaneous AVHRR, radiance measurements exceeded the sunphotometer AODs by about 0.04. However. shipboard sunphotometer and AVHRR AODs agreed Within 0.02 for data acquired during satellite overflights on two other days. We discuss attempts to demonstrate column closure within the MBL by comparing shipboard sunphotometer AODs and values calculated from simultaneous shipboard in-situ aerosol size distribution measurements. These comparisons were mostly unsuccessful, but they illustrate the difficulties inherent in this type of closure analysis. Specifically, AODs derived from near-surface in-situ size distribution measurements are extremely sensitive to the assumed hygroscopic growth model that itself requires an assumption of particle composition as a function of height and size, to the radiosonde-measured relative humidity, and to the vertical profile of particle number. We investigate further the effects of hygroscopic particle growth within the MBL by using shipboard lidar aerosol backscatter profiles together with the sunphotometer AOD.

  18. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime

    NASA Astrophysics Data System (ADS)

    Domine, Florent; Barrere, Mathieu; Morin, Samuel

    2016-12-01

    With climate warming, shrubs have been observed to grow on Arctic tundra. Their presence is known to increase snow height and is expected to increase the thermal insulating effect of the snowpack. An important consequence would be the warming of the ground, which will accelerate permafrost thaw, providing an important positive feedback to warming. At Bylot Island (73° N, 80° W) in the Canadian high Arctic where bushes of willows (Salix richardsonii Hook) are growing, we have observed the snow stratigraphy and measured the vertical profiles of snow density, thermal conductivity and specific surface area (SSA) in over 20 sites of high Arctic tundra and in willow bushes 20 to 40 cm high. We find that shrubs increase snow height, but only up to their own height. In shrubs, snow density, thermal conductivity and SSA are all significantly lower than on herb tundra. In shrubs, depth hoar which has a low thermal conductivity was observed to grow up to shrub height, while on herb tundra, depth hoar only developed to 5 to 10 cm high. The thermal resistance of the snowpack was in general higher in shrubs than on herb tundra. More signs of melting were observed in shrubs, presumably because stems absorb radiation and provide hotspots that initiate melting. When melting was extensive, thermal conductivity was increased and thermal resistance was reduced, counteracting the observed effect of shrubs in the absence of melting. Simulations of the effect of shrubs on snow properties and on the ground thermal regime were made with the Crocus snow physics model and the ISBA (Interactions between Soil-Biosphere-Atmosphere) land surface scheme, driven by in situ and reanalysis meteorological data. These simulations did not take into account the summer impact of shrubs. They predict that the ground at 5 cm depth at Bylot Island during the 2014-2015 winter would be up to 13 °C warmer in the presence of shrubs. Such warming may however be mitigated by summer effects.

  19. The impact of resolution on meteorological, chemical and aerosol properties in regional simulations with WRF-Chem

    NASA Astrophysics Data System (ADS)

    Crippa, Paola; Sullivan, Ryan C.; Thota, Abhinav; Pryor, Sara C.

    2017-01-01

    Limited area (regional) models applied at high resolution over specific regions of interest are generally expected to more accurately capture the spatiotemporal variability of key meteorological and climate parameters. However, improved performance is not inevitable, and there remains a need to optimize use of numerical resources and to quantify the impact on simulation fidelity that derives from increased resolution. The application of regional models for climate forcing assessment is currently limited by the lack of studies quantifying the sensitivity to horizontal spatial resolution and the physical-dynamical-chemical schemes driving the simulations. Here we investigate model skill in simulating