Science.gov

Sample records for 12d4 baseline tensile

  1. Subtask 12D4: Baseline tensile properties of V-Cr-Ti alloys

    SciTech Connect

    Loomis, B.A.; Chung, H.M.; Smith, D.L.

    1995-03-01

    The objective of this work is to provide a database on the baseline tensile properties of candidate V-Cr-Ti alloys. Vanadium-base alloys of the V-Cr-Ti system are attractive candidates for use as structural materials in fusion reactors. The current focus of the U.S. program of research on these alloys is on the V-(4-6)Cr-(3-6)Ti alloys containing 500-1000 wppm Si. In this paper, we present experimental results on baseline tensile properties of V-Cr-Ti alloys measured at 230-700{degrees}C, with an emphasis on the tensile properties of the U.S. reference alloy V-4Cr-4Ti. The reference alloy was found to exhibit excellent tensile properties up to 700{degrees}C. 9 refs., 8 figs., 1 tab.

  2. Baseline tensile tests of composite materials for LDEF (Long Duration Exposure Facility) exposure

    NASA Technical Reports Server (NTRS)

    Witte, William G.

    1987-01-01

    Tensile specimens of five graphite fiber reinforced composite materials were tested at room temperature to provide baseline data for similar specimens exposed to the space environment in low-Earth orbit on the NASA Long Duration Exposure Facility. All specimens were 4-ply (+ or - 45 deg)s layups; at least five replicate specimens were tested for each parameter evaluated. Three epoxy-matrix materials and two polysulfone-matrix materials, several fiber volume fractions, and two sizes of specimen were evaluated. Stress-strain and Poisson's ratio-stress curves, ultimate stress, strain at failure, secant modulus at 0.004 strain, inplane shear stress-strain curves, and unidirectional shear modulus at .004 shear strain are presented.

  3. Nqrs Data for C9H12D4LiNO4S (Subst. No. 1188)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C9H12D4LiNO4S (Subst. No. 1188)

  4. Manual for LDEF tensile tests

    NASA Technical Reports Server (NTRS)

    Witte, W. G., Jr.

    1985-01-01

    One of the experiments aboard the NASA Long Duration Exposure Facility (LDEF) consists of a tray of approximately one hundred tensile specimens of several candidate space structure composite materials. During the LDEF flight the materials will be subjected to the space environment and to possible contamination during launch and recovery. Tensile tests of representative samples were made before the LDEF flight to obtain baseline data. Similar tests will be made on control specimens stored on earth for the length of the LDEF flight and on recovered flight specimens. This manual codifies the details of testing, data acquisition, and handling used in obtaining the baseline data so that the same procedures and equipment will be used on the subsequent tests.

  5. Unified tensile fracture criterion.

    PubMed

    Zhang, Z F; Eckert, J

    2005-03-11

    We find that the classical failure criteria, i.e., maximum normal stress criterion, Tresca criterion, Mohr-Coulomb criterion, and von Mises criterion, cannot satisfactorily explain the tensile fracture behavior of the bulk metallic glass (BMG) materials. For a better description, we propose an ellipse criterion as a new failure criterion to unify the four classical criteria above and apply it to exemplarily describe the tensile fracture behavior of BMGs as well as a variety of other materials. It is suggested that each of the classical failure criteria can be unified by the present ellipse criterion depending on the difference of the ratio alpha=tau(0)/sigma(0).

  6. Baseline program

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Vonputtkamer, Jesco

    1992-01-01

    This assumed program was developed from several sources of information and is extrapolated over future decades using a set of reasonable assumptions based on incremental growth. The assumptions for the NASA baseline program are as follows: balanced emphasis in four domains; a constant level of activity; low to moderate real budget growth; maximum use of commonality; and realistic and practical technology development. The first domain is low Earth Orbit (LEO). Activities there are concentrated on the space station but extend on one side to Earth-pointing sensors for unmanned platforms and on the other to the launch and staging of unmanned solar system exploration missions. The second domain is geosynchronous Earth orbit (GEO) and cislunar space. Activities here include all GEO missions and operations, both unmanned and manned, and all transport of materials and crews between LEO and the vicinity of the Moon. The third domain is the Moon itself. Lunar activities are to include both orbiting and landing missions; the landings may be either unmanned or manned. The last domain is Mars. Missions to Mars will initially be unmanned but they will eventually be manned. Program elements and descriptions are discussed as are critiques of the NASA baseline.

  7. Grips for Lightweight Tensile Specimens

    NASA Technical Reports Server (NTRS)

    Witte, William G., Jr.; Gibson, Walter D.

    1987-01-01

    Set of grips developed for tensile testing of lightweight composite materials. Double-wedge design substantially increases gripping force and reduces slippage. Specimen held by grips made of hardened wedges. Assembly screwed into load cell in tensile-testing machine.

  8. Tensile testing apparatus

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.; Ellingsworth, J. R. (Inventor)

    1985-01-01

    An improved mechanical extensometer is described for use with a constant load creep test machine. The dead weight of the extensometer is counterbalanced by two pairs of weights connected through a pulley system and to rod extension and leading into the furnace where the test sample is undergoing elevated temperature (above 500 F.) tensile testing. Novel gripper surfaces, conical tip and flat surface are provided in each sampling engaging platens to reduce the grip pressure normally required for attachment of the extensometer to the specimen and reduce initial specimen bending normally associated with foil-gage metal testing.

  9. PBX 9502 TENSILE ANALYSIS

    SciTech Connect

    Idar, D.J.; Larson, S.A.

    2000-10-01

    With the recent creation of the PX HE Core Surveillance Database, individual specimen surveillance values can be easily compared to the corresponding individual qualification values to evaluate for trends. A review of the data shows a broad scatter in measured stress-strain values. Using the available HE surveillance database, it is clear that the surveillance measurements from the two Cycle 15 charges fall within the range of qualification stress and strain values recorded previously for PBX 9502 lots and that no apparent stockpile-age related trends are evident in the tensile stress-strain data. As a result of this investigation, some changes are being made to the core surveillance specifications to minimize the effects on tensile data scatter due to temperature and humidity differences and method to method changes. These data analyses do point out the need for a comprehensive understanding of the effect of a number of variables, i.e. formulation and pressing method, density, stockpile age, lot-to-lot variations, temperature, and humidity on the mechanical property behavior of HE composite materials. Too often data have been compared without the relevant details made available to determine if the test conditions were nominally the same or different. These results also point out the critical need to establish useful stress-strain limits for qualification and surveillance testing of HEs.

  10. Evaluation of nondestructive tensile testing

    NASA Technical Reports Server (NTRS)

    Bowe, J. J.; Polcari, S. M.

    1971-01-01

    The results of a series of experiments performed in the evaluation of nondestructive tensile testing of chip and wire bonds are presented. Semiconductor devices were subjected to time-temperature excursions, static-load life testing and multiple pre-stressing loads to determine the feasibility of a nondestructive tensile testing approach. The report emphasizes the importance of the breaking angle in determining the ultimate tensile strength of a wire bond, a factor not generally recognized nor implemented in such determinations.

  11. Improved Tensile Test for Ceramics

    NASA Technical Reports Server (NTRS)

    Osiecki, R. A.

    1982-01-01

    For almost-nondestructive tensile testing of ceramics, steel rod is bonded to sample of ceramic. Assembly is then pulled apart in conventional tensile-test machine. Test destroys only shallow surface layer which can be machined away making specimen ready for other uses. Method should be useful as manufacturing inspection procedure for low-strength brittle materials.

  12. Tensile Testing: A Simple Introduction

    ERIC Educational Resources Information Center

    Carr, Martin

    2006-01-01

    Tensile testing may be used to decide, say, which steel to use in various constructions. Analogous testing can be done simply in the classroom using plasticine and helps to introduce pupils to the various properties studied in materials science.

  13. Tensile Testing: A Simple Introduction

    ERIC Educational Resources Information Center

    Carr, Martin

    2006-01-01

    Tensile testing may be used to decide, say, which steel to use in various constructions. Analogous testing can be done simply in the classroom using plasticine and helps to introduce pupils to the various properties studied in materials science.

  14. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  15. Tensile properties of epoxy encapsulants

    SciTech Connect

    Guess, T.R.; Wischmann, K.B.; Stavig, M.E.

    1993-02-01

    Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson's ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide information for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson's ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.

  16. Tensile properties of epoxy encapsulants

    SciTech Connect

    Guess, T.R.; Wischmann, K.B.; Stavig, M.E.

    1993-02-01

    Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson`s ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide information for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson`s ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.

  17. Tensile properties of impact ices

    NASA Technical Reports Server (NTRS)

    Chu, M. L.; Scavuzzo, R. J.; Kellackey, C. J.

    1992-01-01

    A special test apparatus was developed to measure the tensile strength of impact ices perpendicular to the direction of growth. The apparatus consists of a split tube carefully machined to minimize the effect of the joint on impact ice strength. The tube is supported in the wind tunnel by two carefully aligned bearings. During accretion the tube is turned slowly in the icing cloud to form a uniform coating of ice on the split tube specimen. The two halves of the split tube are secured firmly by a longitudinal bolt to prevent relative motion between the two halves during ice accretion and handling. Tensile test strength results for a variety of icing conditions were obtained. Both glaze and rime ice conditions were investigated. In general, the tensile strength of impact ice was significantly less than refrigerator ice. Based on the limited data taken, the median strength of rime ice was less than glaze ice. However, the mean values were similar.

  18. Tensile Test For Arboform Samples

    NASA Astrophysics Data System (ADS)

    Plavanescu (Mazurchevici), Simona; Quadrini, Fabrizio; Nedelcu, Dumitru

    2015-07-01

    Petroleum-based plastic materials constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is received particular attention. Our studied material, "Liquid wood" produced from lignin, natural fibres and natural additives, is completely biodegradable in natural environment, in normal conditions. This paper presents the behaviour of Arboform and Arboform reinforced with Aramidic Fibers tensile test analysis. Experimental data show that the tensile strength reached an average value of 15.8 MPa, the modulus of elasticity after tests is 3513.3MPA for Arboform and for the reinforcement the tensile strength is 23.625MPa, the modulus of elasticity after tests is 3411.5MPA, the materials present a brittle behaviour. The high mechanical properties of newly developed material, better than of other ordinary plastics, recommend it as a potential environment-friendly substituent for synthetic plastics, which are present in all fields of activity.

  19. Uniaxial Tensile Test for Soil.

    DTIC Science & Technology

    1987-04-01

    by radiographs to be uniform. 8. Direct tensile triaxial tests performed by Conlon (1966), Bishop and Garga (1969), and Parry and Nadarajah (1974...Parry, R. H. G., and Nadarajah , V. 1974. "Anisotrophy in a Natural Soft Clayey Silt," Engineering Geology, Vol 8, No. 3, pp 287-309. 47 .• ’°"I Peters

  20. Tensile Mechanics of Bamboo Strips

    NASA Astrophysics Data System (ADS)

    Bahari, S. A.; Ahmad, M.; Nordin, K.; Jamaludin, M. A.

    2010-03-01

    Mechanical properties of Semantan bamboo (Gigantochloa scortechinii) strips loaded in tensile parallel to grain were documented. The specimens were taken from bottom, middle and top portions of bamboo culms. In each portion, specimens were taken from internodes and node parts. Specimens from internodes part indicated absence of node while specimens from nodes indicated presence of node at the middle section of each specimen. From the results, there was an increment of tensile mechanic values for Semantan bamboo strips in bottom to top portions, due to the increment of fibro vascular bundles amount in the respective portions. Generally, the failures modes of bamboo strips loaded in tensile were divided into Splintering (Mode I) and Brittle Splintering (Mode II). Mode I occurred in internodes of all portions while Mode II occurred in node. Mode I presented higher tensile mechanic values due to the fibres behaviour of bamboo strips, which is more compact, longer and parallel with axial and uniform grain orientation, compared to the short, forked and crossed fibres as well as uneven orientation of vascular bundles in Mode II.

  1. Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study.

    PubMed

    Khiste, Sujeet Vinayak; Ranganath, V; Nichani, Ashish Sham

    2013-06-01

    The purpose of this study was to evaluate the tensile strength of surgical synthetic absorbable sutures over a period of 14 days under simulated oral conditions. Three suture materials (polyglycolic acid [PGA], polyglactin [PG] 910, and poly (glycolide-co-є-caprolactone) [PGC]) were used in 4-0 and 5-0 gauges. 210 suture samples (35 of each material and gauge) were used. All of the samples were tested preimmersion and 1 hour and 1, 3, 7, 10, and 14 days postimmersion. The tensile strength of each suture material and gauge was assessed. The point of breakage and the resorption pattern of the sutures were also assessed. During the first 24 hours of immersion, all 4-0 and 5-0 samples of PGA, PG 910, and PGC maintained their initial tensile strength. At baseline (preimmersion), there was a statistically significant (P<0.001) difference in the tensile strengths between the 4-0 and 5-0 gauge of PGA, PG 910, and PGC. PGA 4-0 showed the highest tensile strength until day 10. At 7 days, all the 4-0 sutures of the three materials had maintained their tensile strength with PGA 4-0 having significantly greater (P=0.003) tensile strength compared to PG. 4-0 sutures are stronger and have greater tensile strength than 5-0 sutures. The PGA 4-0 suture showed the highest tensile strength at the end of day 10.

  2. Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study

    PubMed Central

    Ranganath, V.; Nichani, Ashish Sham

    2013-01-01

    Purpose The purpose of this study was to evaluate the tensile strength of surgical synthetic absorbable sutures over a period of 14 days under simulated oral conditions. Methods Three suture materials (polyglycolic acid [PGA], polyglactin [PG] 910, and poly (glycolide-co-є-caprolactone) [PGC]) were used in 4-0 and 5-0 gauges. 210 suture samples (35 of each material and gauge) were used. All of the samples were tested preimmersion and 1 hour and 1, 3, 7, 10, and 14 days postimmersion. The tensile strength of each suture material and gauge was assessed. The point of breakage and the resorption pattern of the sutures were also assessed. Results During the first 24 hours of immersion, all 4-0 and 5-0 samples of PGA, PG 910, and PGC maintained their initial tensile strength. At baseline (preimmersion), there was a statistically significant (P<0.001) difference in the tensile strengths between the 4-0 and 5-0 gauge of PGA, PG 910, and PGC. PGA 4-0 showed the highest tensile strength until day 10. At 7 days, all the 4-0 sutures of the three materials had maintained their tensile strength with PGA 4-0 having significantly greater (P=0.003) tensile strength compared to PG. Conclusions 4-0 sutures are stronger and have greater tensile strength than 5-0 sutures. The PGA 4-0 suture showed the highest tensile strength at the end of day 10. PMID:23837127

  3. BIAXIAL TENSILE TESTS OF COATED FABRICS

    DTIC Science & Technology

    This report discusses the design, operation, and purpose of a new biaxial tensile test instrument to measure the stress-strain behavior of fabrics...comparison is made between these data and previous work performed with other tensile test equipment.

  4. Elongation Transducer For Tensile Tests

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.; Stokes, Thomas R.

    1994-01-01

    Extensometer transducer measures elongation of tensile-test specimen with negligible distortion of test results. Used in stress-versus-strain tests of small specimens of composite materials. Clamping stress distributed more evenly. Specimen clamped gently between jaw and facing surface of housing. Friction force of load points on conical tips onto specimen depends on compression of spring, adjusted by turning cover on housing. Limp, light nylon-insulated electrical leads impose minimal extraneous loads on measuring elements.

  5. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strength (tensile). 29.3061 Section 29.3061... Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing. Tensile strength is not an important element of quality in Burley tobacco. ...

  6. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strength (tensile). 29.3061 Section 29.3061... Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing. Tensile strength is not an important element of quality in Burley tobacco. [24 FR 8771, Oct. 29, 1959. Redesignated...

  7. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strength (tensile). 29.3061 Section 29.3061... Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing. Tensile strength is not an important element of quality in Burley tobacco. ...

  8. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.3061 Section 29.3061... Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing. Tensile strength is not an important element of quality in Burley tobacco....

  9. Tensile and compressive properties of the medial rabbit meniscus.

    PubMed

    Sweigart, M A; Athanasiou, K A

    2005-09-01

    Quantification of the material properties of the meniscus is of paramount importance, creating a 'gold-standard' reference for future tissue engineering research. The purpose of this study was to determine the compressive and circumferential tensile properties in the rabbit meniscus. Creep and recovery indentation experiments were performed on the meniscus using a creep indentation apparatus and analysed via a finite element optimization method to determine the compressive material properties at six topographical locations. Tensile properties of samples taken circumferentially from the rabbit meniscus were also examined. Results show that the femoral side of the anterior portion exhibits the highest aggregate modulus (510 +/- 100 kPa) and shear modulus (240 +/- 40 kPa), while the lowest aggregate modulus (120 +/- 30 kPa) and shear modulus (60 +/- 20 kPa) were found on the femoral side of the posterior location. Values of 156.6 +/- 48.9 MPa for Young's modulus and of 21.6 +/- 7.0 MPa for the ultimate tensile strength of were found from the tensile samples, which are similar to the values found in other animal models. These baseline values of material properties will be of help in future tissue engineering efforts.

  10. Synthetic Mooring Line Tensile Testing Procedure.

    DTIC Science & Technology

    1975-09-01

    tensile test procedure is necessary that will provide commonality among tensile tests of synthetic lines of all materials, diameters and lengths. A relationship was derived that relates material stiffness, diameter, and sample lengths to the strain rate during a tensile test . A first order experiment was conducted in which synthetic lines were tensile tested at various strain rates to determine to what degree tensile strength is affected by strain rate. Results show that the dispersion among individual data points overshadows the general trend of any

  11. Tensile Properties of GRCop-84

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Loewenthal, William S.; Yun, Hee-Man

    2012-01-01

    This is a chapter in the final report on GRCop-84 for the Reusable Launch Vehicle (RLV) Second Generation/Project Constellation Program. It contains information on the tensile properties of GRCop-84. GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) was produced by extrusion and Hot Isostatic Pressing (HIPing). Some of the extrusions were rolled to plate and sheet while other extrusions were drawn into tubing. The material was further subjected to various heat treatments corresponding to annealing, anticipated typical brazing conditions, an end-of-life condition and various elevated temperature exposures to attempt to improve creep resistance. As anticipated, cold work increased strength while decreasing ductility. Annealing at 600 C (1112 F) and higher temperatures was effective. An exposure for 100 h at 500 C (932 F) resulted in an increase in strength rather than the anticipated decrease. High temperature simulated-braze cycles and thermal exposures lowered the strength of GRCop-84, but the deceases were small compared to precipitation strengthened copper alloys. It was observed that the excess Cr could form large precipitates that lower the reduction in area though it appears a minimum amount is required. Overall, GRCop-84 exhibits good stability of its tensile properties, which makes it an excellent candidate for rocket engine liners and many other high temperature applications.

  12. Model Compound Studies of Rigid Rod Aromatic Heterocyclic Polymer Systems. Part 1. The Crystal and Molecular Structures of 2,6-Diphenylbenzo (1,2- d:4,5-d’) Bisthiazole & 2,6-Diphenylbenzo (1,2-d:5,4-d’) Bisoxazole

    DTIC Science & Technology

    1980-02-01

    to date, the paraconfigured aromatic heterocyclic class of polymers, such as the polybenzoxazoles (PBO) and the polybenz- thiazoles (PBT), are...especially promising, since precipitated films and fibers of these materials exhibit high tensile strengths and good thermal oxidative stabilities. These...The molecular order present in fibers and precipitated films of PBO is believed to exist to some degree in solution just prior to fiber formation and

  13. Baseline Test Specimen Machining Report

    SciTech Connect

    mark Carroll

    2009-08-01

    The Next Generation Nuclear Plant (NGNP) Project is tasked with selecting a high temperature gas reactor technology that will be capable of generating electricity and supplying large amounts of process heat. The NGNP is presently being designed as a helium-cooled high temperature gas reactor (HTGR) with a large graphite core. The graphite baseline characterization project is conducting the research and development (R&D) activities deemed necessary to fully qualify nuclear-grade graphite for use in the NGNP reactor. Establishing nonirradiated thermomechanical and thermophysical properties by characterizing lot-to-lot and billet-to-billet variations (for probabilistic baseline data needs) through extensive data collection and statistical analysis is one of the major fundamental objectives of the project. The reactor core will be made up of stacks of graphite moderator blocks. In order to gain a more comprehensive understanding of the varying characteristics in a wide range of suitable graphites, any of which can be classified as “nuclear grade,” an experimental program has been initiated to develop an extensive database of the baseline characteristics of numerous candidate graphites. Various factors known to affect the properties of graphite will be investigated, including specimen size, spatial location within a graphite billet, specimen orientation within a billet (either parallel to [P] or transverse to [T] the long axis of the as-produced billet), and billet-to-billet variations within a lot or across different production lots. Because each data point is based on a certain position within a given billet of graphite, particular attention must be paid to the traceability of each specimen and its spatial location and orientation within each billet. The evaluation of these properties is discussed in the Graphite Technology Development Plan (Windes et. al, 2007). One of the key components in the evaluation of these graphite types will be mechanical testing on

  14. CHARACTERIZATION OF TENSILE STRENGTH OF GLOVEBOX GLOVES

    SciTech Connect

    Korinko, P.; Chapman, G.

    2012-02-29

    A task was undertaken to compare various properties of different glovebox gloves, having various compositions, for use in gloveboxes at the Savannah River Site (SRS). One aspect of this project was to determine the tensile strength (TS) of the gloves. Longitudinal tensile samples were cut from 15 different gloves and tensile tested. The stress, load, and elongation at failure were determined. All of the gloves that are approved for glovebox use and listed in the glovebox procurement specification met the tensile and elongation requirements. The Viton{reg_sign} compound gloves are not listed in the specification, but exhibited lower tensile strengths than permissible based on the Butyl rubber requirements. Piercan Polyurethane gloves were the thinnest samples and exhibited the highest tensile strength of the materials tested.

  15. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2006-01-10

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  16. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2007-08-21

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  17. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2007-07-17

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  18. Tensile properties of textile composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm

    1992-01-01

    The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.

  19. Dynamic Tensile Test Results for Several Metals

    DTIC Science & Technology

    1982-04-01

    8217• AFWAL-TR-82-4026 SDYNAMIC TENSILE TEST RESULTS FOR SEVERAL METALS SUNIVERSITY OF DAYTON RESEA CH INSTITUTE ’ 300 COLLEGE PARK DR. DAYTON, OHIO... Tensile Test Results for March - September 1981 Several Metals 6. PERFORMING oDG. REPORT NUMBER UDR-TR-82-05 7. AUTHOR(s) S. CONTRACT OfR GRANT NUMBER(&) S...tensile stresses above 10 s The split Hopkinson bar tensile test (see next section) can extend this range another decade. Resolution of rapidly

  20. Optical Long Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Le Bouquin, Jean-Baptiste

    Optical Long Baseline Interferometry provides unrivalled angular resolution on bright and compact astrophysical sources. The link between the observables (interferometric phase and contrast) and the image of the source is a Fourier transform expressed first by van Cittert and Zernike. Depending on the source size and the amount of information collected, the analysis of these Fourier components allows a measurement of the typical source size, a parametric modelling of its spatial structures, or a model-independent image reconstruction to be carried. In the past decades, optical long baseline interferometry provided fundamental measurements for astronomy (ex. Cepheids distances, surface-brightness relations) as well as iconic results such as the first images of stellar surfaces other than the Sun. Optical long baseline interferometers exist in the Northern and Southern hemisphere and are open to the astronomical community with modern level of support. We provide in this chapter an introduction to the fundamental principles of optical interferometry and introduce the currently available facilities.

  1. Machining technique prevents undercutting in tensile specimens

    NASA Technical Reports Server (NTRS)

    Moscater, R. E.; Royster, D. M.

    1968-01-01

    Machining technique prevents undercutting at the test section in tensile specimens when machining the four corners of the reduced section. Made with a gradual taper in the test section, the width of the center of the tensile specimen is less than the width at the four corners of the reduced section.

  2. Surfactant effects on soil aggregate tensile strength

    USDA-ARS?s Scientific Manuscript database

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  3. Evolution of tensile design stresses for lumber

    Treesearch

    William L. Galligan; C. C. Gerhards; R. L. Ethington

    1979-01-01

    Until approximately 1965, allowable design stresses for lumber in tension were taken as equal to those assigned for bending. As interest in tensile properties increased, testing machines were designed specifically to stress lumber in tension. Research results that accumulated on tensile tests of full-size lumber suggested lower design stresses for tension than for...

  4. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco leaf...

  5. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco leaf...

  6. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco leaf...

  7. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco leaf...

  8. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco...

  9. West Virginia baseline

    NASA Astrophysics Data System (ADS)

    Cardi, V. P.; Baer, C.; Graham, A.; Hall, T.; Rankin, D.; Sweet, T. J.

    1981-04-01

    Baseline information on West Virginia is provided. The topics covered are terrestrial ecology, aquatic ecology, geology and climatology, socioeconomics, and a legal analysis of institutional accountability. The hydrology, water quality, endangered species, and clean streams of five river basins are described.

  10. First Grade Baseline Evaluation

    ERIC Educational Resources Information Center

    Center for Innovation in Assessment (NJ1), 2013

    2013-01-01

    The First Grade Baseline Evaluation is an optional tool that can be used at the beginning of the school year to help teachers get to know the reading and language skills of each student. The evaluation is composed of seven screenings. Teachers may use the entire evaluation or choose to use those individual screenings that they find most beneficial…

  11. An Interlaminar Tensile Strength Specimen

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Jackson, Wade C.

    1993-01-01

    This paper describes a technique to determine interlaminar tensile strength, sigma(sub 3c), of a fiber reinforced composite material using a curved beam. The specimen was a unidirectional curved beam, bent 90 deg, with straight arms. Attached to each arm was a hinged loading mechanism that was held by the grips of a tension testing machine. Geometry effects of the specimen, including the effects of loading arm length, inner radius, thickness, and width, were studied. The data sets fell into two categories: low strength corresponding to a macroscopic flaw related failure and high strength corresponding to a microscopic flaw related failure. From the data available, the specimen width and loading arm length had little effect on sigma(sub 3c). The inner radius was not expected to have a significant effect on sigma(sub 3c), but this conclusion could not be confirmed because of differences in laminate quality for each curve geometry. The thicker specimens had the lowest value of sigma(sub 3c) because of poor laminate quality.

  12. Dynamic-tensile-extrusion response of fluoropolymers

    SciTech Connect

    Brown, Eric N; Trujillo, Carl P; Gray, George T

    2009-01-01

    The current work applies the recently developed Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). Similar to the Taylor Impact Rod, Dynamic-Tensile-Extrusion is a strongly integrated test, probing a wide range of strain rates and stress states. However, the stress state is primarily tensile enabling investigation of dynamic tensile failure modes. Here we investigate the influence of this propensity to neck or not between PCTFE and PTFE on their response under dynamic tensile extrusion loading. The results of the Dyn-Ten-Ext technique are compared with two classic techniques. Both polymers have been investigated using Tensile Split Hopkinson Pressure Bar. The quasistatic and dynamic responses of both fluoro-polymers have been extensively characterized. The two polymers exhibit significantly different failure behavior under tensile loading at moderate strain rates. Polytetrafluoroethylene resists formation of a neck and exhibits significant strain hardening. Independent of temperature or strain rate, PTFE sustains true strains to failure of approximately 1.5. Polychlorotrifluoroethylene, on the other hand, consistently necks at true strains of approximately 0.05.

  13. Dynamic tensile strength of lunar rock types

    NASA Technical Reports Server (NTRS)

    Cohn, S. N.; Ahrens, T. J.

    1981-01-01

    The dynamic tensile strength of four rocks are determined. A flat plate impact experiment is employed to generate approximately one-microsecond-duration tensile stress pulses in rock samples by superposing rarefaction waves to induce fracture. It is noted that the effect of chemical weathering and other factors has not been explicitly studied. The given tensile strengths are based on a series of experiments on each rock where determination of incipient spallation is made by terminal microscopic examination. The data are generally consistent with previous determinations, at least one of which was for a significantly chemically altered but physically coherent rock.

  14. Dynamic tensile strength of lunar rock types

    NASA Technical Reports Server (NTRS)

    Cohn, S. N.; Ahrens, T. J.

    1981-01-01

    The dynamic tensile strength of four rocks are determined. A flat plate impact experiment is employed to generate approximately one-microsecond-duration tensile stress pulses in rock samples by superposing rarefaction waves to induce fracture. It is noted that the effect of chemical weathering and other factors has not been explicitly studied. The given tensile strengths are based on a series of experiments on each rock where determination of incipient spallation is made by terminal microscopic examination. The data are generally consistent with previous determinations, at least one of which was for a significantly chemically altered but physically coherent rock.

  15. Method and apparatus for determining tensile strength

    DOEpatents

    Ratigan, J.L.

    1982-05-28

    A method and apparatus is described for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

  16. Method and apparatus for determining tensile strength

    DOEpatents

    Ratigan, Joe L.

    1984-01-01

    A method and apparatus for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

  17. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.

    PubMed

    Miller, Sandi G; Williams, Tiffany S; Baker, James S; Solá, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S; Wilmoth, Nathan G; Gaier, James; Chen, Michelle; Meador, Michael A

    2014-05-14

    The inherent strength of individual carbon nanotubes (CNTs) offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of CNT forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated into that of sheets and yarns, where the bulk material strength is limited by intertube electrostatic attractions and slippage. The focus of this work was to assess postprocessing of CNT sheets and yarns to improve the macro-scale strength of these material forms. Both small-molecule functionalization and electron-beam irradiation were evaluated as means to enhance the tensile strength and Young's modulus of the bulk CNT materials. Mechanical testing revealed a 57% increase in tensile strength of CNT sheets upon functionalization compared with unfunctionalized sheets, while an additional 48% increase in tensile strength was observed when functionalized sheets were irradiated. Similarly, small-molecule functionalization increased tensile strength of yarn by up to 25%, whereas irradiation of the functionalized yarns pushed the tensile strength to 88% beyond that of the baseline yarn.

  18. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  19. Tensile properties of V-(4-5)Cr-(4-5)Ti alloys

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Busch, D.; Smith, D.L.

    1996-04-01

    The current focus of the U.S program of research on V-base alloys is on V-(4-5)Cr(4-5)Ti that contains 500-1000 wppm Si. in this paper, we present experimental results on baseline tensile properties of two laboratory-scale heats of this alloy and of a 500-kg production heat of V-4Cr-4Ti (heat 832665) that were measured at 23-700 C. Both the production- and laboratory scale heats of the reference alloy V-4Cr-4Ti exhibited excellent tensile properties at temperatures up to {approx}650{degrees}C.

  20. High temperature tensile testing of ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1988-01-01

    The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

  1. Making High-Tensile-Strength Amalgam Components

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  2. Long Baseline Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Mezzetto, Mauro

    2016-05-01

    Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

  3. A baseline lunar mine

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    A models lunar mining method is proposed that illustrates the problems to be expected in lunar mining and how they might be solved. While the method is quite feasible, it is, more importantly, a useful baseline system against which to test other, possible better, methods. Our study group proposed the slusher to stimulate discussion of how a lunar mining operation might be successfully accomplished. Critics of the slusher system were invited to propose better methods. The group noted that while nonterrestrial mining has been a vital part of past space manufacturing proposals, no one has proposed a lunar mining system in any real detail. The group considered it essential that the design of actual, workable, and specific lunar mining methods begin immediately. Based on an earlier proposal, the method is a three-drum slusher, also known as a cable-operated drag scraper. Its terrestrial application is quite limited, as it is relatively inefficient and inflexible. The method usually finds use in underwater mining from the shore and in moving small amounts of ore underground. When lunar mining scales up, the lunarized slusher will be replaced by more efficient, high-volume methods. Other aspects of lunar mining are discussed.

  4. In Situ Radiography During Tensile Tests

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramakrishna T.

    1994-01-01

    Laboratory system for testing specimens of metal-, ceramic-, and intermetallic-matrix composite materials incorporates both electromechanical tensile-testing subsystem and either of two imaging subsystems that take x-ray photographs of specimens before, during, and after tensile tests. Used to test specimens of reaction-bonded silicon nitride reinforced with silicon carbide fibers (SiC/RBSN) considered for high-temperature service in advanced aircraft turbine engines. Provides data on effects of preexisting flaws (e.g., high-density impurities and local variations of density) on fracture behavior. Accumulated internal damage monitored during loading. X-ray source illuminates specimen in load frame while specimen is pulled. X-ray images on film correlated with stress-vs.-strain data from tensile test.

  5. Tensile properties of irradiated surveillance coupons

    SciTech Connect

    Huang, F.H.; Blackburn, L.D.

    1994-06-01

    Tensile testing of austenitic steel and superalloy samples irradiated in the HMO 13 assembly was performed in support of the Fast Flux Test Facility (FFTF) Surveillance Program. Postirradiation yield stress, ultimate tensile stress, uniform elongation, total elongation, and reduction in area of 304 stainless steel (SS), 308 SS weld, 316 SS, A286, In718, and In718 weld were determined. Results showed the strength of austenitic steels increased while the ductility decreased as a result of irradiation. Low irradiation exposure produced little property change in In718. Overall, the tensile properties of HMO 13 surveillance coupons showed a lower magnitude of irradiation-induced property change than was expected based on earlier studies. Results from these tests gave no indications of unexpectedly severe irradiation damage to FFTF components.

  6. Dynamic-Tensile-Extrusion of Polyurea

    NASA Astrophysics Data System (ADS)

    Furmanski, Jevan; Cady, Carl; Rae, Philip; Trujillo, Carl; Gray, G. T., III; Brown, Eric

    2011-06-01

    Polyurea was investigated under Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading where spherical projectiles were propelled at 440-509 m/s through an extrusion die with an area reduction of 87%. Momentum of the leading edge imposes a rapid tensile deformation on the extruding material. Polyurea is an elastomer with outstanding high-rate tensile performance of interest in the shock regime. Previous Dyn-Ten-Ext work on semi-crystalline polymers (PTFE, PCTFE) resulted in small-scale fragmentation of the polymer, and did not provide clear information on the evolution of tensile damage in those materials. The polyurea behaved very differently; the polymer first extruded a jet of apparently intact material, which then broke down via void formation and coalescence, followed by fibrillation and tearing of the material. Most of the material in the jet elastically retracted back into the die, and only a few fragments of torn material were liberated from the sample. The surface texture of all failed surfaces was rough indicating a considerable amount of energy was absorbed by sub-critical failure mechanisms. It is interesting to note that while damage nucleation appeared pervasive in the extruded jet, the samples were nevertheless recovered largely intact, with limited fragmentation.

  7. Tensile Strength of Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Hatta, Hiroshi; Aoi, Tatsuji; Kawahara, Itaru; Kogo, Yasuo; Shiota, Ichiro

    In order to identify ruling mechanisms of tensile fracture of Carbon/Carbon composites (C/Cs), tensile tests were carried out for various C/Cs as functions of the density, heat treatment temperature, and interfacial strength between fiber and matrix. Three processing routes of preformed yarn, resin char, and HIP processes were adopted to densify C/Cs. These C/Cs were finally heat-treated at temperatures from 2273K to 3300K. The interfacial strength between fiber and matrix was varied by the selection of processing routes. As a result, two ruling failure mechanisms were identified. At density lower than 1.6g/cm3, the tensile fracture was controlled by stress transfer capability from the matrix to reinforcing fibers. However, at higher density than 1.6g/cm3, tensile strength was primarily governed by the interfacial strength between the matrix and fibers. Thus the latter mechanism is nearly same as ceramic matrix composites.

  8. Tensile and shear strength of adhesives

    NASA Technical Reports Server (NTRS)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  9. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  10. Tensile Properties and Viscoelastic Model of a Polyimide Film

    NASA Astrophysics Data System (ADS)

    Zhang, Shengde; Mori, Syuhei; Sakane, Masao; Nagasawa, Tadashi; Kobayashi, Kaoru

    This paper presents tensile properties of a polyimide thin film used in electronic devices. Tensile tests were performed to determine Young's modulus, proportional limit, yield stress, ultimate tensile strength and elongation of the polyimide film. Effects of strain rate and temperature on the tensile properties were discussed. There was a little effect of strain rate on Young's modulus but proportional limit, yield stress and ultimate tensile strength increased with increasing strain rate. Only elongation decreased with strain rate. Young's modulus, proportional limit, yield stress and ultimate tensile strength decreased with increasing temperature, but elongation increased. Applicability of a viscoelastic model for describing the stress-strain curves of the polyimide film was discussed.

  11. Approaches for Tensile Testing of Braided Composites

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Salem, Jonathan A.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.; Martin, Richard E.

    2011-01-01

    For angleply composites, lamina tension and compression strengths are commonly determined by applying classical lamination theory to test data obtained from testing of angleply composite specimens. For textile composites such as 2D triaxial braids, analysis is more complex and standard test methods do not always yield reliable strength measurements. This paper describes recent research focused on development of more reliable tensile test methods for braided composites and presents preliminary data for various approaches. The materials investigated in this work have 0deg+/-60 2D triaxial braid architecture with nearly equal fiber volume fraction in each of the three fiber directions. Flat composite panels are fabricated by resin transfer molding (RTM) using six layers of the braided preform aligned along the 0deg fiber direction. Various epoxy resins are used as matrix materials. Single layer panels are also fabricated in order to examine local variations in deformation related to the braid architecture. Specimens are cut from these panels in the shape of standard straight-sided coupons, an alternative bowtie geometry, and an alternative notched geometry. Axial tensile properties are measured using specimens loaded along the 0deg fiber direction. Transverse tensile properties are measured using specimens loaded perpendicular to the 0deg fibers. Composite tubes are also fabricated by RTM. These tubes are tested by internal pressurization using a soft rubbery material sealed between the inside diameter of the tube and the load fixtures. The ends of the tube are unconstrained, so the primary load is in the hoop direction. Tubes are fabricated with the 0deg fibers aligned along the tube axis by overbraiding the preform on a mandrel. Since the loading is in the hoop direction, testing of the overbraided tube provides a measure of transverse tensile strength. Previous work has indicated that straight-sided coupons yield a transverse tensile strength that is much lower

  12. Silphenylene elastomers have high thermal stability and tensile strength

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Two polymeric silphenylene ethers, when cured by reactions with ethyl silicates and metal salts at room temperature, form elastomers having excellent thermal stability and tensile properties. The highest tensile strength obtained in a reinforced elastomer was 2800 psi.

  13. Baseline Familiarity in Lie Detection.

    ERIC Educational Resources Information Center

    Feeley, Thomas H.; And Others

    1995-01-01

    Reports on a study in which subjects judged the veracity of truthful and deceptive communicators after viewing no, one, two, or four case-relevant baseline exposures (familiarity) of truthful communication. Finds a positive linear relationship between detection accuracy and amount of baseline familiarity. (SR)

  14. Hanford Site technical baseline database

    SciTech Connect

    Porter, P.E., Westinghouse Hanford

    1996-05-10

    This document includes a cassette tape that contains the Hanford specific files that make up the Hanford Site Technical Baseline Database as of May 10, 1996. The cassette tape also includes the delta files that delineate the differences between this revision and revision 3 (April 10, 1996) of the Hanford Site Technical Baseline Database.

  15. Baseline Familiarity in Lie Detection.

    ERIC Educational Resources Information Center

    Feeley, Thomas H.; And Others

    1995-01-01

    Reports on a study in which subjects judged the veracity of truthful and deceptive communicators after viewing no, one, two, or four case-relevant baseline exposures (familiarity) of truthful communication. Finds a positive linear relationship between detection accuracy and amount of baseline familiarity. (SR)

  16. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    PubMed

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  17. Designing tensile ductility in metallic glasses

    PubMed Central

    Sarac, Baran; Schroers, Jan

    2013-01-01

    Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantitative study. Our approach reveals the optimal microstructural architecture for metallic glass heterostructures to achieve tensile ductility. Critical design aspect is a soft second phase, which is most effective when spacing between the second phase assumes the critical crack length of the metallic glass. This spacing should coincide with the second phase’s size, and beyond, the specific second phase morphology of the heterostructure is crucial. These toughening strategies are only effective in samples that are large compared with the spacing of the second phase. The identified design aspects provide guidance in designing tensile ductility into metallic glasses. PMID:23863967

  18. Designing tensile ductility in metallic glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran; Schroers, Jan

    2013-07-01

    Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantitative study. Our approach reveals the optimal microstructural architecture for metallic glass heterostructures to achieve tensile ductility. Critical design aspect is a soft second phase, which is most effective when spacing between the second phase assumes the critical crack length of the metallic glass. This spacing should coincide with the second phase’s size, and beyond, the specific second phase morphology of the heterostructure is crucial. These toughening strategies are only effective in samples that are large compared with the spacing of the second phase. The identified design aspects provide guidance in designing tensile ductility into metallic glasses.

  19. Plutonium Immobilization Project Baseline Formulation

    SciTech Connect

    Ebbinghaus, B.

    1999-02-01

    A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.

  20. Determining tensile properties of sweetgum veneer flakes

    Treesearch

    Eddie W. Price

    1976-01-01

    Rotary-cut sweetgum veneer flakes measuring 3 inches along the grain, 3/8 inch wide, and 0.015 inch thick, were stressed in tension parallel to the grain at gage lengths from 0.50 to 1.25 inches for unpressed control and at 0.75 inch gage length for flakes pressed in a flakeboard mat. The control fkaes had an average tensile strength of 9,400 psi for the smaller gage...

  1. Determining tensile properties of sweetgum veneer flakes

    Treesearch

    E.W. Price

    1976-01-01

    Rotary-cut 8weetgum veneer flakes measuring 3 inchee along the grain, 3/8 inch wide, and 0.015 inch thick, were stressed in tension parallel to the grain at gage lengths from 0.00 to 1.25 inchee for unpressed control and at 0.75 inch gage length for flakes pressed in a flakeboard mat. The control flakes had an average tensile strength of 9,400 psi for the smaller age...

  2. Dynamic-tensile-extrusion of polyurea

    NASA Astrophysics Data System (ADS)

    Furmanski, Jevan; Cady, Carl; Rae, Philip; Trujillo, Carl P.; Gray, George Thompson, III; Brown, Eric

    2012-03-01

    Polyurea was investigated under Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading where spherical projectiles were propelled at 440 to 509 ms-1 through a conical extrusion die with an area reduction of 87%. Momentum of the leading edge imposes a rapid tensile deformation on the extruded jet of material. Polyurea is an elastomer with outstanding high-rate tensile performance of interest in the shock regime. Previous Dyn-Ten-Ext work on semi-crystalline fluoropolymers (PTFE, PCTFE) elucidated irregular deformation and profuse stochastic-based damage and failure mechanisms, but with limited insight into damage inception or progression in those polymers. The polyurea behaved very differently; the polymer first extruded a jet of apparently intact material, which then broke down via void coalescence, followed by fibrillation and tearing of the material. Most of the material in the jet elastically retracted back into the die, and only a few unique fragments were formed. The surface texture of all failed surfaces was found to be tortuous and covered with drawn hair-like filaments, implying a considerable amount of energy was absorbed during damage progression.

  3. Tensile strength of bovine trabecular bone.

    PubMed

    Kaplan, S J; Hayes, W C; Stone, J L; Beaupré, G S

    1985-01-01

    Data on the tensile and compressive properties of trabecular bone are needed to define input parameters and failure criteria for modeling total joint replacements. To help resolve differences in reports comparing tensile and compressive properties of trabecular bone, we have developed new methods, based on porous foam technology, for tensile testing of fresh/frozen trabecular bone specimens. Using bovine trabecular bone from an isotropic region from the proximal humerus as a model material, we measured ultimate strengths in tension and compression for two groups of 24 specimens each. The average ultimate strength in tension was 7.6 +/- 2.2 (95% C.I.) MPa and in compression was 12.4 +/- 3.2 MPa. This difference was statistically significant (p = 0.013) and was not related to density differences between the test groups (p = 0.28). Strength was related by a power-law function of the local apparent density, but, even accounting for density influences, isotropic bovine trabecular bone exhibits significantly lower strengths in tension than in compression.

  4. Temperature controlled tensile testing of individual nanowires.

    PubMed

    Chen, Lisa Y; Terrab, Soraya; Murphy, Kathryn F; Sullivan, John P; Cheng, Xuemei; Gianola, Daniel S

    2014-01-01

    We present a novel experimental method for quantitatively characterizing the temperature-dependent mechanical behavior of individual nanostructures during uniaxial straining. By combining a microelectromechanical tensile testing device with a low thermal mass and digital image correlation providing nm-level displacement resolution, we show successful incorporation of a testing platform in a vacuum cryostat system with an integrated heater and temperature control. Characterization of the local sample temperature and time-dependent response at both low and high temperature demonstrates a testing range of ∼90-475 K and steady-state drift rates less than 0.04 K/min. In situ operation of the tensile testing device employing resistively heated thermal actuators while imaging with an optical microscope enables high-resolution displacement measurements, from which stress-strain behavior of the nanoscale specimens is deduced. We demonstrate the efficacy of our approach in measuring the temperature dependence of tensile strength in nominally defect-free ⟨110⟩ Pd nanowhiskers. We uncover a pronounced sensitivity of the plastic response to testing temperature over a range of ∼300 K, with an ultimate strength in excess of 6 GPa at low temperature. The results are discussed in the context of thermally activated deformation mechanisms and defect nucleation in defect-free metallic nanostructures.

  5. The tensile strength of liquid helium four

    NASA Astrophysics Data System (ADS)

    Nissen, Joel Alan

    1988-08-01

    It is well known that most liquids exhibit a tensile strength which is much smaller in magnitude than the tensile strength predicted by homogeneous nucleation theory. Liquid helium occupies a unique place among liquids for tensile strength measurements because all foreign gases are frozen out at liquid temperatures. Moreover, superfluid He-4 should fill all crevises on solid surfaces, eliminating the chance of heterogeneous nucleation on helium vapor pockets. A piezoelectric transducer in the form of a hemispherical shell was used to focus high intensity ultrasound into a small volume of He-4. The transducer was gated at its resonant frequency of 566 kHz with gate widths of less than 1 msec in order to minimize the effects of transducer heating and acoustic streaming. The onset of nucleation was detected from the absorption of acoustic energy and the scattering of laser light from microscopic bubbles. A theory for light diffraction from the focal zone of a spherical converging sound wave was developed to confirm calculations of the acoustic pressure amplitude at the focus of the transducer, calculations based on the acoustic power radiated into the liquid and nonlinear sound absorption.

  6. MISSE 6 Polymer Film Tensile Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Dever, Joyce A.; Banks, Bruce A.; Waters, Deborah L.; Sechkar, Edward; Kline, Sara

    2010-01-01

    The Polymer Film Tensile Experiment (PFTE) was flown as part of Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to expose a variety of polymer films to the low Earth orbital environment under both relaxed and tension conditions. The polymers selected are those commonly used for spacecraft thermal control and those under consideration for use in spacecraft applications such as sunshields, solar sails, and inflatable and deployable structures. The dog-bone shaped samples of polymers that were flown were exposed on both the side of the MISSE 6 Passive Experiment Container (PEC) that was facing into the ram direction (receiving atomic oxygen, ultraviolet (UV) radiation, ionizing radiation, and thermal cycling) and the wake facing side (which was supposed to have experienced predominantly the same environmental effects except for atomic oxygen which was present due to reorientation of the International Space Station). A few of the tensile samples were coated with vapor deposited aluminum on the back and wired to determine the point in the flight when the tensile sample broke as recorded by a change in voltage that was stored on battery powered data loggers for post flight retrieval and analysis. The data returned on the data loggers was not usable. However, post retrieval observation and analysis of the samples was performed. This paper describes the preliminary analysis and observations of the polymers exposed on the MISSE 6 PFTE.

  7. Tensile Properties of Single Desmin Intermediate Filaments

    PubMed Central

    Kreplak, Laurent; Herrmann, Harald; Aebi, Ueli

    2008-01-01

    Within muscle fibers, desmin intermediate filaments (IFs) are major constituents of the extrasarcomeric cytoskeleton. However, their contribution to the mechanical properties of myocytes has remained elusive. We present an experimental approach to measure the extensibility and the tensile strength of in vitro reconstituted desmin IFs adsorbed to a solid support. The tip of an atomic force microscope (AFM) was used to push on single filaments perpendicular to the filament axis. The torque of the AFM cantilever was monitored during the pushing events to yield an estimate of the lateral force necessary to bend and stretch the filaments. Desmin IFs were stretched up to 3.4-fold with a maximum force of ∼3.5 nN. Fully stretched filaments exhibited a much smaller diameter than did native IFs, i.e., ∼3.5 nm compared to 12.6 nm, both by AFM and electron microscopy. Moreover, we combined the morphological and lateral force data to compute an average stress-strain curve for a single desmin filament. The main features were a pronounced strain-hardening regime above 50% extension and a tensile strength of at least 240 MPa. Because of these nonlinear tensile properties, desmin IFs may dissipate mechanical energy and serve as a physical link between successive sarcomeres during large deformation. PMID:18178641

  8. The tensile strength of helium II

    SciTech Connect

    Xiong, Quan.

    1991-01-01

    The study of the negative pressure required to produce cavitation in liquid helium (i.e. the tensile strength of helium) has been of continuing interest for two reasons. Since all other elements have freezing temperatures of 14 K or higher, helium can be prepared free of gaseous impurities which can serve as centers for heterogeneous nucleation of bubbles which will reduce the tensile strength of the liquid. Secondly, helium remains a liquid even down to the absolute zero of temperature. Consequently, it has been considered that at sufficiently low temperatures there is the possibility that the rate of nucleation of bubbles is dominated by quantum tunneling. In this thesis, the authors reexamined the theory of homogeneous nucleation and made an estimate of the equation of state for negative pressure in helium. He found that the earlier theories were incorrect in that they took no account of the equation of state of liquid helium in the negative pressure regime. The tensile strength of helium at T = 0 K should be around [minus]9 bars instead of [minus]17 bars predicted by the standard theory.

  9. Tensile properties of amorphous diamond films

    SciTech Connect

    Lavan, D.A.; Hohlfelder, R.J.; Sullivan, J.P.; Friedmann, T.A.; Mitchell, M.A.; Ashby, C.I.

    1999-12-02

    The strength and modulus of amorphous diamond, a new material for surface micromachined MEMS and sensors, was tested in uniaxial tension by pulling laterally with a flat tipped diamond in a nanoindenter. Several sample designs were attempted. Of those, only the single layer specimen with a 1 by 2 {micro}m gage cross section and a fixed end rigidly attached to the substrate was successful. Tensile load was calculated by resolving the measured lateral and normal forces into the applied tensile force and frictional losses. Displacement was corrected for machine compliance using the differential stiffness method. Post-mortem examination of the samples was performed to document the failure mode. The load-displacement data from those samples that failed in the gage section was converted to stress-strain curves using carefully measured gage cross section dimensions. Mean fracture strength was found to be 8.5 {+-} 1.4 GPa and the modulus was 831 {+-} 94 GPa. Tensile results are compared to hardness and modulus measurements made using a nanoindenter.

  10. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2014-10-01 2014-10-01 false Tensile strength of shell plates. 230.26 Section 230.26 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  11. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2013-10-01 2013-10-01 false Tensile strength of shell plates. 230.26 Section 230.26 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  12. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2011-10-01 2011-10-01 false Tensile strength of shell plates. 230.26 Section 230.26 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  13. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2012-10-01 2012-10-01 false Tensile strength of shell plates. 230.26 Section 230.26 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  14. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2010-10-01 2010-10-01 false Tensile strength of shell plates. 230.26 Section 230.26 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  15. Treadmill Kinematics Baseline Data Collection

    NASA Image and Video Library

    2011-05-12

    PHOTO DATE: 5-12-11 LOCATION: Building 261 - Room 138 SUBJECT: Expedition 29 Preflight Training with Dan Burbank during Treadmill Kinematics Baseline Data Collection. WORK ORDER: 2011-1214 PHOTOGRAPHER: Lauren Harnett

  16. 324 Building Baseline Radiological Characterization

    SciTech Connect

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  17. Coastal Surveillance Baseline Model Development

    DTIC Science & Technology

    2015-02-27

    These sensors were defined using basic unclassified information from several different sources [15] [16] [17]. DRDC CORA Task #185 Coastal ...unclassified information from several different sources [19] [20] [21]. DRDC CORA Task #185 Coastal Surveillance Baseline Model Development 27 February...Task #185 Coastal Surveillance Baseline Model Development 27 February 2015 – 27 – 5758-001 Version 01 platform from a couple of different perspectives

  18. Ask the experts: chromatographic baselines.

    PubMed

    Smith, Graeme; James, Christopher A; Scott, Rebecca; Woolf, Eric

    2014-05-01

    Bioanalysis invited a selection of leading researchers to express their views on chromatographic baseline assignment in the bioanalytical laboratory. The topics discussed include the challenges presented with ensuring automated baseline assignment is correct, when reintegration is necessary, regulation and consistency in terminology. Their enlightening responses provide a valuable insight into developing an industry consensus towards reintegration. An accompanying commentary article in this issue, authored by Howard Hill and colleagues (Huntingdon Life Sciences), provides background to this much debated topic.

  19. Tensile trabeculae--myth or reality?

    PubMed

    Sverdlova, N

    2011-03-01

    Understanding of the functional role of the trabecular bone is very important for the analysis and computer-aided simulations of bone remodelling processes. The aspired wide clinical applications remain a remote future despite a great number of developed up-to-date approaches and theories and collected data on both material properties of the trabecular bone and its reaction to various stimuli. It is widely accepted that the mechanical loading plays the major role for the structure of the cancellous bone. The in vivo loading conditions of the cancellous bone are not known. Hence, for the computer-aided analysis and modelling of the trabecular bone specimens, simplified loading conditions are used. Also for the analysis of the cancellous bone as a part of a whole bone simplified loading conditions are assumed based on previous research without questioning its accuracy or relevance to the real in vivo conditions. In particular, the bending loading of the bone, which originates from the well-known observations made more than a century ago that have evolved in the trajectorial theory or "tensile trabeculae tradition", is often assumed to reflect the physiological loading conditions of bones. Some studies show that the bending or tensile-compressive orthogonal loading conditions for the cancellous bone may lead to plausible results. However, some other research works suggest that the presence of the tensile trabecular structures (particularly in the proximal femur) is doubtful and the bending loading conditions in bone should be treated with caution. Moreover, the loading conditions with compensated (or minimised) bending also produce results that correlate with the material distribution in the bone. The purpose of this review is to analyse some of the data and ideas available in the literature and to discuss the question of the major factors that define the shape and structure of the trabecular bone during the process of functional adaptation.

  20. Effects of processing induced defects on laminate response - Interlaminar tensile strength

    NASA Technical Reports Server (NTRS)

    Gurdal, Zafer; Tomasino, Alfred P.; Biggers, S. B.

    1991-01-01

    Four different layup methods were used in the present study of the interlaminar tensile strength of AS4/3501-6 graphite-reinforced epoxy as a function of defects from manufacturing-induced porosity. The methods were: (1) baseline hand layup, (2) solvent wipe of prepreg for resin removal, (3) moisture-introduction between plies, and (4) a low-pressure cure cycle. Pore characterization was conducted according to ASTM D-2734. A significant reduction is noted in the out-of-plane tensile strength as a function of increasing void content; the porosity data were used in an empirical model to predict out-of-plane strength as a function of porosity.

  1. Stochastic models for the tensile strength, fatigue

    NASA Technical Reports Server (NTRS)

    Phoenix, S. L.

    1976-01-01

    The time-to-failure of a single fiber is modeled as a functional of the fiber load history and reasonable forms for this functional are proposed. Earlier models by Daniels and Coleman are shown to be special cases of the proposed model and apparent disparities in their behavior are discussed. Techniques are presented for determining analytically the asymptotic distributions of the tensile strength and time-to-failure for bundles of a large number of fibers. For smaller bundles, exact results are far too cumbersome to be of use so that efficient Monte Carlo simulation procedures are proposed.

  2. Stochastic models for the tensile strength, fatigue

    NASA Technical Reports Server (NTRS)

    Phoenix, S. L.

    1976-01-01

    The time-to-failure of a single fiber is modeled as a functional of the fiber load history and reasonable forms for this functional are proposed. Earlier models by Daniels and Coleman are shown to be special cases of the proposed model and apparent disparities in their behavior are discussed. Techniques are presented for determining analytically the asymptotic distributions of the tensile strength and time-to-failure for bundles of a large number of fibers. For smaller bundles, exact results are far too cumbersome to be of use so that efficient Monte Carlo simulation procedures are proposed.

  3. Active Tensile Modulus of an Epithelial Monolayer

    NASA Astrophysics Data System (ADS)

    Vincent, Romaric; Bazellières, Elsa; Pérez-González, Carlos; Uroz, Marina; Serra-Picamal, Xavier; Trepat, Xavier

    2015-12-01

    A general trait of cell monolayers is their ability to exert contractile stresses on their surroundings. The scaling laws that link such contractile stresses with the size and geometry of constituent cells remain largely unknown. In this Letter, we show that the active tension of an epithelial monolayer scales linearly with the size of the constituent cells, a surprisingly simple relationship. The slope of this relationship defines an active tensile modulus, which depends on the concentration of myosin and spans more than 2 orders of magnitude across cell types and molecular perturbations.

  4. Tensile Fabrics Enhance Architecture Around the World

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Using a remarkable fabric originally developed to protect Apollo astronauts, Birdair Inc. of Amherst, New York, has crafted highly durable, safe, environmentally friendly, and architecturally stunning tensile membrane roofs for over 900 landmark structures around the world. Travelers in airports, sports fans at stadiums, and shoppers in malls have all experienced the benefits of the Teflon-coated fiberglass fabric that has enabled Birdair to grow from a small company established in its founder?s kitchen in 1955 to a multimillion-dollar specialty contractor today.

  5. Collagen network strengthening following cyclic tensile loading.

    PubMed

    Susilo, Monica E; Paten, Jeffrey A; Sander, Edward A; Nguyen, Thao D; Ruberti, Jeffrey W

    2016-02-06

    The bulk mechanical properties of tissues are highly tuned to the physiological loads they experience and reflect the hierarchical structure and mechanical properties of their constituent parts. A thorough understanding of the processes involved in tissue adaptation is required to develop multi-scale computational models of tissue remodelling. While extracellular matrix (ECM) remodelling is partly due to the changing cellular metabolic activity, there may also be mechanically directed changes in ECM nano/microscale organization which lead to mechanical tuning. The thermal and enzymatic stability of collagen, which is the principal load-bearing biopolymer in vertebrates, have been shown to be enhanced by force suggesting that collagen has an active role in ECM mechanical properties. Here, we ask how changes in the mechanical properties of a collagen-based material are reflected by alterations in the micro/nanoscale collagen network following cyclic loading. Surprisingly, we observed significantly higher tensile stiffness and ultimate tensile strength, roughly analogous to the effect of work hardening, in the absence of network realignment and alterations to the fibril area fraction. The data suggest that mechanical loading induces stabilizing changes internal to the fibrils themselves or in the fibril-fibril interactions. If such a cell-independent strengthening effect is operational in vivo, then it would be an important consideration in any multiscale computational approach to ECM growth and remodelling.

  6. [The measurement of nerve root tensile stress].

    PubMed

    Poeată, I; Munteanu, Fl

    2008-01-01

    In the majority of the cases sciatica is caused by an intervertebral disc herniation compressing the nerve root. The compression determines an increased tension in the nerve root. We believe that the magnitude of this stress offers more information about the root impairment that the disc displacement measured on MRI images. We present in this paper an original device which allows for intraoperative root stress analysis. The device consists of a force transducer composed of an elastic element and a displacement limitation. The initial measurements were performed on silicon catheters and human cadavers in two different situations: 1. free nerve root; 2. blocked nerve root. Next step was intraoperative nerve roots tensile stress recording during lumbar disc surgery. Different force values were obtained for the same displacement (3 mm perpendicular on nervous root): F1 = 0.21 N; F2 = 0.78 N. Considering experimental values, the tensile stress inside of a nervous root is determined by using specific mechanical calculations presented in this paper. This is a simple and useful device for rapid intraoperative recording of nerve root mechanical stress.

  7. Developing RESRAD-BASELINE for environmental baseline risk assessment

    SciTech Connect

    Cheng, Jing-Jy

    1995-12-31

    RESRAD-BASELINE is a computer code developed at Argonne developed at Argonne National Laboratory for the US Department of Energy (DOE) to perform both radiological and chemical risk assessments. The code implements the baseline risk assessment guidance of the US Environmental Protection Agency (EPA 1989). The computer code calculates (1) radiation doses and cancer risks from exposure to radioactive materials, and (2) hazard indexes and cancer risks from exposure to noncarcinogenic and carcinogenic chemicals, respectively. The user can enter measured or predicted environmental media concentrations from the graphic interface and can simulate different exposure scenarios by selecting the appropriate pathways and modifying the exposure parameters. The database used by PESRAD-BASELINE includes dose conversion factors and slope factors for radionuclides and toxicity information and properties for chemicals. The user can modify the database for use in the calculation. Sensitivity analysis can be performed while running the computer code to examine the influence of the input parameters. Use of RESRAD-BASELINE for risk analysis is easy, fast, and cost-saving. Furthermore, it ensures in consistency in methodology for both radiological and chemical risk analyses.

  8. Integrated Baseline Review (IBR) Handbook

    NASA Technical Reports Server (NTRS)

    2013-01-01

    An Integrated Baseline Review (IBR) is a review of a supplier?s Performance Measurement Baseline (PMB). It is conducted by Program/Project Managers and their technical staffs on contracts and in-house work requiring compliance with NASA Earned Value Management System (EVMS) policy as defined in program/project policy, NPR 7120.5, or in NASA Federal Acquisition Regulations. The IBR Handbook may also be of use to those responsible for preparing the Terms of Reference for internal project reviews. While risks may be identified and actions tracked as a result of the IBR, it is important to note that an IBR cannot be failed.

  9. Tensile properties of bacterial cellulose nanofibers - polyester composites

    NASA Astrophysics Data System (ADS)

    Abral, H.; Mahardika, M.

    2016-07-01

    The paper shows tensile properties of bacterial cellulose (BC) nanofibers and polyester (PO) matrix composites. Tensile properties including tensile strength (TS), modulus elasticity (ME), and elongation (EL) were observed respectively. BC nanofibers exist in the form of a sheet that was then varied in matrix PO. The BC sheet was mounted by one, three, five and seven pieces respectively in the matrix PO. The tensile strength of the composites was conducted by using the tensile equipment. The results showed that the tensile strength of the composite with a single sheet of BC was lower than that of pure PO. The ST value achieved maximum level in the number of layers of BC three pieces, but then it decreased for the composites reinforced five and seven pieces of BC nanofiber, respectively. Scanning Electron Microscope (SEM) observation exhibits bad interface bonding between BC nanofibers and PO matrix.

  10. Evaluating Freeze-Thaw Deterioration with Tensile Strength

    NASA Astrophysics Data System (ADS)

    Komar, A. J. K.; Boyd, A. J.

    2017-06-01

    Freeze-thaw damage is one of the leading contributors to infrastructure deterioration in temperate northern climates. Deterioration caused by freeze-thaw cycling is primarily induced by hydraulic pressures within the hydrated cement paste matrix that cause tensile cracking. Such damage should, therefore, be more effectively detected with tensile testing. This work presents the detection and evaluation of ongoing freeze-thaw (F/T) damage in plain concrete cylinders using the pressure tensile strength test, as it compares to compressive strength evaluation. Pressure tension test results exhibited significantly higher levels of deterioration compared to compression testing, with the samples losing up to 90% of their undamaged tensile capacity. Moreover, it was shown that tensile strength testing is far more sensitive to freeze-thaw deterioration, evidenced by a significant drop in the tensile to compressive strength ratio to below 5%.

  11. Comparative evaluation of the tensile bond strength of two silicone based denture liners with denture base resins.

    PubMed

    Mittal, Manish; Anil Kumar, S; Sandhu, H S; Iyer, Satish R; Ahuja, Ratandeep S

    2016-07-01

    To evaluate and compare tensile bond strength of two silicone based liners with heat cure and heat cure high impact denture base resin at baseline and after storage in artificial saliva for 30 and 60 days. Heat cure conventional and high impact acrylic blocks (120 blocks each) prepared with final test specimen of two blocks of each resin with a liner. The baseline samples and those tested after 30 and 60 days interval stored in artificial saliva in thermal incubator, all were pulled apart in UTM at 20 mm/min. The tensile bond strength and mode of failure (adhesive/cohesive) were assessed. Mean, SD determined and analysis using one way ANOVA and paired 't' test. The highest mean tensile bond strength (1.028 MPa) and the least i.e. 0.289 MPa was observed with Permaflex silicone liner against heat cure PMMA after storage in artificial saliva at 37 ± 1 °C. The study rejected the null hypothesis because storage time in artificial saliva affected the bond strength of the resilient liners examined. The results revealed a statistically significant difference (p < 0.05) of artificial saliva storage on the bond strength of both the liners. After storage in artificial saliva for 30 days and 60 days at 37 ± 1 °C, all the specimens showed a significant reduction in the tensile bond strength.

  12. Baseline Report on HB2320

    ERIC Educational Resources Information Center

    State Council of Higher Education for Virginia, 2015

    2015-01-01

    Staff provides this baseline report as a summary of its preliminary considerations and initial research in fulfillment of the requirements of HB2320 from the 2015 session of the General Assembly. Codified as § 23-7.4:7, this legislation compels the Education Secretary and the State Council of Higher Education for Virginia (SCHEV) Director, in…

  13. Baseline Removal From EMG Recordings

    DTIC Science & Technology

    2007-11-02

    registers in which the main spike of the MUAP occupies the central position) [1]; or else just give the BL a zero level (system ground). We regard...a time-varying baseline contamination. Acknowledgements: Work funded by the Departamento de Salud del Gobierno de Navarrra and by a Spanish MEC

  14. An experimental evaluation of the tensile strength of impact ice

    NASA Technical Reports Server (NTRS)

    Xian, X.; Chu, M. L.; Scavuzzo, R. J.; Srivatsan, T. S.

    1989-01-01

    The evaluation of the tensile strength of impact built-up ice on structural components has been prompted by such problems as electrical transmission line losses and catastrophic failures in Arctic regions, deicing problems with fixed-wing and rotary-wing aircraft, etc. It is demonstrated that the conventional tensile-testing technique furnishes adequate data on artificially refrigerated ice, and helps establish the influence of extrinsic factors on ice tensile strength.

  15. An experimental evaluation of the tensile strength of impact ice

    NASA Technical Reports Server (NTRS)

    Xian, X.; Chu, M. L.; Scavuzzo, R. J.; Srivatsan, T. S.

    1989-01-01

    The evaluation of the tensile strength of impact built-up ice on structural components has been prompted by such problems as electrical transmission line losses and catastrophic failures in Arctic regions, deicing problems with fixed-wing and rotary-wing aircraft, etc. It is demonstrated that the conventional tensile-testing technique furnishes adequate data on artificially refrigerated ice, and helps establish the influence of extrinsic factors on ice tensile strength.

  16. Dataset of tensile strength development of concrete with manufactured sand.

    PubMed

    Zhao, Shunbo; Hu, Feijia; Ding, Xinxin; Zhao, Mingshuang; Li, Changyong; Pei, Songwei

    2017-04-01

    This article presents 755 groups splitting tensile strength tests data of concrete with manufactured sand (MSC) in different curing age ranged from 1 day to 388 days related to the research article "Experimental study on tensile strength development of concrete with manufactured sand" (Zhao et al., 2017) [1]. These data were used to evaluate the precision of the prediction formulas of tensile strength of MSC, and can be applied as dataset for further studies.

  17. Tensile and Compressive Tests of Magnesium Alloy J-1 Sheet

    DTIC Science & Technology

    1943-12-01

    Tensile and compressive properties of longitudinal and transverse specimens of magnesium alloy J-1 sheets, 0.032 and 0.12 in. thick, were tested. It was found that he tensile properties were above the Navy specification 47M2a for magnesium-base-alloy 8H. Longitudinal and transverse specimens were in close agreement in the tensile test . In the compressive yield strengths, longitudinal direction was much less

  18. Space environmental effects on graphite-epoxy compressive properties and epoxy tensile properties

    NASA Technical Reports Server (NTRS)

    Fox, Derek J.; Sykes, George F., Jr.; Herakovich, Carl T.

    1987-01-01

    This study characterizes the effects of electron radiation and temperature on a graphite-epoxy composite material. Compressive properties of the T300/934 material system were obtained at -250 F (-157 C), room temperature, and 250 F (121 C). Tensile specimens of the Fiberite 934 epoxy resin were fabricated and tested at room temperature and 250 F (121 C). Testing was conducted in the baseline (nonirradiated) and irradiated conditions. The radiation exposure was designed to simulate 30 year, worst-case exposure in geosynchronous Earth orbit. Mechanical properties tended to degrade at elevated temperature and improve at cryogenic temperature. Irradiation generally degraded properties at all temperatures.

  19. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  20. Flat tensile specimen design for advanced composites

    NASA Technical Reports Server (NTRS)

    Worthem, Dennis W.

    1990-01-01

    Finite element analyses of flat, reduced gage section tensile specimens with various transition region contours were performed. Within dimensional constraints, such as maximum length, tab region width, gage width, gage length, and minimum tab length, a transition contour radius of 41.9 cm produced the lowest stress values in the specimen transition region. The stresses in the transition region were not sensitive to specimen material properties. The stresses in the tab region were sensitive to specimen composite and/or tab material properties. An evaluation of stresses with different specimen composite and tab material combinations must account for material nonlinearity of both the tab and the specimen composite. Material nonlinearity can either relieve stresses in the composite under the tab or elevate them to cause failure under the tab.

  1. High-speed tensile test instrument.

    PubMed

    Mott, P H; Twigg, J N; Roland, D F; Schrader, H S; Pathak, J A; Roland, C M

    2007-04-01

    A novel high-speed tensile test instrument is described, capable of measuring the mechanical response of elastomers at strain rates ranging from 10 to 1600 s(-1) for strains through failure. The device employs a drop weight that engages levers to stretch a sample on a horizontal track. To improve dynamic equilibrium, a common problem in high speed testing, equal and opposite loading was applied to each end of the sample. Demonstrative results are reported for two elastomers at strain rates to 588 s(-1) with maximum strains of 4.3. At the higher strain rates, there is a substantial inertial contribution to the measured force, an effect unaccounted for in prior works using the drop weight technique. The strain rates were essentially constant over most of the strain range and fill a three-decade gap in the data from existing methods.

  2. Tensile properties of ceramic matrix fiber composites

    SciTech Connect

    Shin, D.W.; Auh, K.H.; Tanaka, Hidehiko

    1995-11-01

    The mechanical properties of various 2D ceramic matrix fiber composites were characterized by tension testing, using the gripping and alignment techniques developed in this work. The woven fabric composites used for the test had the basic combinations of Al{sub 2}O{sub 3} fabric/Al{sub 2}O{sub 3}, SiC fabric/SiC, and SiC monofilament uniweave fabric/SiC. Tension testing was performed with strain gauge and acoustic emission instrumentation to identify the first-matrix cracking stress and assure a valid alignment. The peak tensile stresses of these laminate composites were about one-third of the flexural strengths. The SiC monofilament uniweave fabric (14 vol%)/SiC composites showed a relatively high peak stress of 370 MPa in tension testing.

  3. On the tensile strength of insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, Rui; Ouellette, Nicholas T.

    2016-08-01

    Collective animal groups are often described by the macroscopic patterns they form. Such global patterns, however, convey limited information about the nature of the aggregation as a whole. Here, we take a different approach, drawing on ideas from materials testing to probe the macroscopic mechanical properties of mating swarms of the non-biting midge Chironomus riparius. By manipulating ground-based visual features that tend to position the swarms in space, we apply an effective tensile load to the swarms, and show that we can quasi-statically pull single swarms apart into multiple daughter swarms. Our results suggest that swarms surprisingly have macroscopic mechanical properties similar to solids, including a finite Young’s modulus and yield strength, and that they do not flow like viscous fluids.

  4. Tensile Strength of the Chromaffin Granule Membrane

    PubMed Central

    Hiram, Yael; Nir, Avinoam; Zinder, Oren

    1982-01-01

    Catecholamine release from chromaffin granules, suspended in sucrose solutions of various osmotic strengths, was determined at different temperatures between 2° and 44°C. Dynamic measurements showed that steady state is achieved within 15 min of incubation at all temperatures. The effect of temperature on the release was established in terms of the median granular fragility (MGF) defined as the concentration of sucrose solution causing 50% lysis. The MGF was determined as the inflection point of the Gaussian distribution of granular fragility. The MGF was found to decrease with fall in temperature implying a corresponding increase of the tensile strength of the vesicle membrane. Critical resultant forces at lysis were calculated and found to vary from 8.2 dyn/cm at 2°C to 4.2 dyn/cm at 44°C. These compare well with tensions at lysis found earlier for erythrocytes. PMID:7104452

  5. Optical Long Baseline Interferometry News

    NASA Astrophysics Data System (ADS)

    Lawson, P. R.; Malbet, F.

    2005-12-01

    The Optical Long Baseline Interferometry News is a website and forum for scientists, engineers, and students who share an interest in long baseline stellar interferometry. It was established in 1995 and is the focus of activity of the IAU Working Group on Optical/Infrared Interferometry. Here you will find links to projects devoted to stellar interferometry, news items, recent papers and preprints, and resources for further research. The email news forum was established in 2001 to complement the website and to facilitate exchanges and collaborations. The forum includes an email exploder and an archived list of discussions. You are invited to explore the forum and website at http://olbin.jpl.nasa.gov. Work by PRL was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  6. Direct observation of the residual plastic deformation caused by a single tensile overload

    SciTech Connect

    Bichler, C.; Pippan, R.

    1999-07-01

    The fatigue crack growth behavior following single tensile overloads at high stress intensity ranges in a cold-rolled austenitic steel has been studied experimentally. After tensile overloads, fatigue cracks initially accelerate, followed by significant retardation, before the growth rates return to their baseline level. The initial acceleration was attributed to an immediate reduction in near-tip closure. Scanning electron micrography and stereophotogrammetric reconstruction of the fracture surface were applied to study the residual plastic deformation caused by a single tensile overload in the mid-thickness of the specimen. The measured residual opening displacement of the crack as a function of the overload is presented and compared with simple estimations. Also, free specimen surface observations of the residual plastic deformation and crack growth rate were performed. In the midsection of the specimens the striation spacing-length, i.e., the microscopic growth rates, were measured before and after the applied overload. It will be shown that the measured plasticity-induced wedges from the single overload and the observed propagation behavior support the significance of the concept of crack closure.

  7. Acoustic emission monitoring of low velocity impact damage in graphite/epoxy laminates during tensile loading

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    1992-01-01

    An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.

  8. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  9. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  10. Dilution and the elusive baseline.

    PubMed

    Likens, Gene E; Buso, Donald C

    2012-04-17

    Knowledge of baseline conditions is critical for evaluating quantitatively the effect of human activities on environmental conditions, such as the impact of acid deposition. Efforts to restore ecosystems to prior, "pristine" condition require restoration targets, often based on some presumed or unknown baseline condition. Here, we show that rapid and relentless dilution of surface water chemistry is occurring in the White Mountains of New Hampshire, following decades of acid deposition. Extrapolating measured linear trends using a unique data set of up to 47 years, suggest that both precipitation and streamwater chemistry (r(2) >0.84 since 1985) in the Hubbard Brook Experimental Forest (HBEF) will approximate demineralized water within one to three decades. Because such dilute chemistry is unrealistic for surface waters, theoretical baseline compositions have been calculated for precipitation and streamwater: electrical conductivity of 3 and 5 μS/cm, base cation concentrations of 7 and 39 μeq/liter, acid-neutralizing capacity values of <1 and 14 μeq/liter, respectively; and pH 5.5 for both. Significantly large and rapid dilution of surface waters to values even more dilute than proposed for Pre-Industrial Revolution (PIR) conditions has important ecological, biogeochemical and water resource management implications, such as for the success of early reproductive stages of aquatic organisms.

  11. Development of an updated tensile neck injury criterion.

    PubMed

    Parr, Jeffrey C; Miller, Michael E; Schubert Kabban, Christine M; Pellettiere, Joseph A; Perry, Chris E

    2014-10-01

    Ejection neck safety remains a concern in military aviation with the growing use of helmet mounted displays (HMDs) worn for entire mission durations. The original USAF tensile neck injury criterion proposed by Carter et al. (4) is updated and an injury protection limit for tensile loading is presented to evaluate escape system and HMD safety. An existent tensile neck injury criterion was updated through the addition of newer post mortem human subject (PMHS) tensile loading and injury data and the application of Survival Analysis to account for censoring in this data. The updated risk function was constructed with a combined human subject (N = 208) and PMHS (N = 22) data set. An updated AIS 3+ tensile neck injury criterion is proposed based upon human and PMHS data. This limit is significantly more conservative than the criterion proposed by Carter in 2000, yielding a 5% risk of AIS 3+ injury at a force of 1136 N as compared to a corresponding force of 1559 N. The inclusion of recent PMHS data into the original tensile neck injury criterion results in an injury protection limit that is significantly more conservative, as recent PMHS data is substantially less censored than the PMHS data included in the earlier criterion. The updated tensile risk function developed in this work is consistent with the tensile risk function published by the Federal Aviation Administration used as the basis for their neck injury criterion for side facing aircraft seats.

  12. Measuring the Tensile Strength of B/AL Composites

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1983-01-01

    Proposed nondestructive technique correlates damping measurements with material strength. Increasing axial damping and decreasing axial tensile strength are observed after 1-hour treatment of B/AL composites containing about 50 percent fiber. Damping was measured in vacuum at frequencies near 2,000 Hz, and tensile strength was normalized by maximum strength observed before thermally induced degradation.

  13. Graphite/Polyimide Tabs For High-Temperature Tensile Tests

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Papadopoulos, Demetrios S.

    1993-01-01

    Delamination from ceramic composite specimens prevented. Tabs made from composite of graphite and PMR-15 polyimide enable high-temperature tensile testing of flat coupons of ceramic-matrix composites. Also used in high-temperature tensile testing of flat coupons of ceramics, metals, and metal-matrix composites.

  14. Relation between incremental lines and tensile strength of coronal dentin.

    PubMed

    Inoue, Toshiko; Saito, Makoto; Yamamoto, Masato; Nishimura, Fumio; Miyazaki, Takashi

    2012-01-01

    In one aspect, this study examined the tensile strength of coronal dentin, as a function of the location of incremental lines, in two types of teeth: human molar versus bovine incisor. In another aspect, tensile strength in coronal dentin was examined with tensile loading in two different orientations to the incremental lines: parallel versus perpendicular. There were four experimental groups in this study: HPa, human molar dentin with tensile orientation parallel to the incremental lines; HPe, human molar dentin with tensile orientation perpendicular to the incremental lines; BPa, bovine incisor dentin with tensile orientation parallel to the incremental lines; BPe, bovine incisor dentin with tensile orientation perpendicular to the incremental lines. Tensile strengths of the parallel group (HPa and BPa) were significantly higher (p<0.05) than those of the perpendicular group (HPe and BPe). Effect of structural anisotropy, contributed by the incremental lines, was thus confirmed in coronal dentin. However, there were no differences in anisotropy effect between the two tooth types.

  15. Polystyrene cryostat facilitates testing tensile specimens under liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Shogan, R. P.; Skalka, R. J.

    1967-01-01

    Lightweight cryostat made of expanded polystyrene reduces eccentricity in a tensile system being tested under liquid nitrogen. The cryostat is attached directly to the tensile system by a special seal, reducing misalignment effects due to cryostat weight, and facilitates viewing and loading of the specimens.

  16. Mechanical shear and tensile characteristics of selected biomass stems

    USDA-ARS?s Scientific Manuscript database

    Mechanical characteristics (stress and energy of tensile and shear modes) of selected biomass stems, such as big bluestem, bromegrass, and Barlow wheat were determined. A high capacity MTI-100K universal testing machine attached with standard tensile clamps and designed fabricated double-shear devic...

  17. Increased molecular mobility in humid silk fibers under tensile stress

    NASA Astrophysics Data System (ADS)

    Seydel, Tilo; Knoll, Wiebke; Greving, Imke; Dicko, Cedric; Koza, Michael M.; Krasnov, Igor; Müller, Martin

    2011-01-01

    Silk fibers are semicrystalline nanocomposite protein fibers with an extraordinary mechanical toughness that changes with humidity. Diffusive or overdamped motion on a molecular level is absent in dry silkworm silk, but present in humid silk at ambient temperature. This microscopic diffusion distinctly depends on the externally applied macroscopic tensile force. Quasielastic and inelastic neutron-scattering data as a function of humidity and of tensile strain on humid silk fibers support the model that both the adsorbed water and parts of the amorphous polymers participate in diffusive motion and are affected by the tensile force. It is notable that the quasielastic linewidth of humid silk at 100% relative humidity increases significantly with the applied force. The effect of the tensile force is discussed in terms of an increasing alignment of the polymer chains in the amorphous fraction with increasing tensile stress which changes the geometrical restrictions of the diffusive motions.

  18. Tensile properties of the modified 13Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  19. Tensile properties of the modified 13Cr martensitic stainless steels

    SciTech Connect

    Mabruri, Efendi Anwar, Moch Syaiful Prifiharni, Siska Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-19

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  20. Baseline LAW Glass Formulation Testing

    SciTech Connect

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  1. Orbiter electrical equipment utilization baseline

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The baseline for utilization of Orbiter electrical equipment in both electrical and Environmental Control and Life Support System (ECLSS) thermal analyses is established. It is a composite catalog of Space Shuttle equipment, as defined in the Shuttle Operational Data Book. The major functions and expected usage of each component type are described. Functional descriptions are designed to provide a fundamental understanding of the Orbiter electrical equipment, to insure correlation of equipment usage within nominal analyses, and to aid analysts in the formulation of off-nominal, contingency analyses.

  2. Long-Baseline Neutrino Experiments

    DOE PAGES

    Diwan, M. V.; Galymov, V.; Qian, X.; ...

    2016-10-19

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We will summarize the current best knowledge of neutrino parameters and phenomenology with our focus on the evolution of the experimental technique. We will proceed from the rst evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research

  3. Geotaxis baseline data for Drosophila

    NASA Technical Reports Server (NTRS)

    Schnebel, E. M.; Bhargava, R.; Grossfield, J.

    1987-01-01

    Geotaxis profiles for 20 Drosophila species and semispecies at different ages have been examined using a calibrated, adjustable slant board device. Measurements were taken at 5 deg intervals ranging from 0 deg to 85 deg. Clear strain and species differences are observed, with some groups tending to move upward (- geotaxis) with increasing angles, while others move downward (+ geotaxis). Geotactic responses change with age in some, but not all experimental groups. Sample geotaxis profiles are presented and their application to ecological and aging studies are discussed. Data provide a baseline for future evaluations of the biological effects of microgravity.

  4. Environmental Baseline File: National Transportation

    SciTech Connect

    1999-05-22

    This Environmental Baseline File summarizes and consolidates information related to the national-level transportation of commercial spent nuclear fuel. Topics address include: shipmnents of commercial spent nuclear fuel based on mostly truck and mostly rail shipping scenarios; transportation routing for commercial spent nuclear fuel sites and DOE sites; radionuclide inventories for various shipping container capacities; transportation routing; populations along transportation routes; urbanized area population densities; the impacts of historical, reasonably foreseeable, and general transportation; state-level food transfer factors; Federal Guidance Report No. 11 and 12 radionuclide dose conversion factors; and national average atmospheric conditions.

  5. Long-Baseline Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Diwan, M. V.; Galymov, V.; Qian, X.; Rubbia, A.

    2016-10-01

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We summarize the current best knowledge of neutrino parameters and phenomenology, with a focus on the evolution of the experimental technique. We proceed from the first evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research.

  6. FED baseline engineering studies report

    SciTech Connect

    Sager, P.H.

    1983-04-01

    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcing between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept.

  7. Agricultural Baseline (BL0) scenario

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinckel, Chad M [University of Tennessee] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154)

    2016-07-13

    Scientific reason for data generation: to serve as the reference case for the BT16 volume 1 agricultural scenarios. The agricultural baseline runs from 2015 through 2040; a starting year of 2014 is used. Date the data set was last modified: 02/12/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: simulation was developed without offering a farmgate price to energy crops or residues (i.e., building on both the USDA 2015 baseline and the agricultural census data (USDA NASS 2014). Data generated are .txt output files by year, simulation identifier, county code (1-3109). Instruments used: POLYSYS (version POLYS2015_V10_alt_JAN22B) supplied by the University of Tennessee APAC The quality assurance and quality control that have been applied: • Check for negative planted area, harvested area, production, yield and cost values. • Check if harvested area exceeds planted area for annuals. • Check FIPS codes.

  8. Baseline experiments in teleoperator control

    NASA Technical Reports Server (NTRS)

    Hankins, W. W., III; Mixon, R. W.

    1986-01-01

    Studies have been conducted at the NASA Langley Research Center (LaRC) to establish baseline human teleoperator interface data and to assess the influence of some of the interface parameters on human performance in teleoperation. As baseline data, the results will be used to assess future interface improvements resulting from this research in basic teleoperator human factors. In addition, the data have been used to validate LaRC's basic teleoperator hardware setup and to compare initial teleoperator study results. Four subjects controlled a modified industrial manipulator to perform a simple task involving both high and low precision. Two different schemes for controlling the manipulator were studied along with both direct and indirect viewing of the task. Performance of the task was measured as the length of time required to complete the task along with the number of errors made in the process. Analyses of variance were computed to determine the significance of the influences of each of the independent variables. Comparisons were also made between the LaRC data and data taken earlier by Grumman Aerospace Corp. at their facilities.

  9. Ultrasound transmission measurements for tensile strength evaluation of tablets.

    PubMed

    Simonaho, Simo-Pekka; Takala, T Aleksi; Kuosmanen, Marko; Ketolainen, Jarkko

    2011-05-16

    Ultrasound transmission measurements were performed to evaluate the tensile strength of tablets. Tablets consisting of one ingredient were compressed from dibasic calcium phosphate dehydrate, two grades of microcrystalline cellulose and two grades of lactose monohydrate powders. From each powder, tablets with five different tensile strengths were directly compressed. Ultrasound transmission measurements were conducted on every tablet at frequencies of 2.25 MHz, 5 MHz and 10 MHz and the speed of sound was calculated from the acquired waveforms. The tensile strength of the tablets was determined using a diametrical mechanical testing machine and compared to the calculated speed of sound values. It was found that the speed of sound increased with the tensile strength for the tested excipients. There was a good correlation between the speed of sound and tensile strength. Moreover, based on the statistical tests, the groups with different tensile strengths can be differentiated from each other by measuring the speed of sound. Thus, the ultrasound transmission measurement technique is a potentially useful method for non-destructive and fast evaluation of the tensile strength of tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Effect of tensile stress on cavitation damage formation in mercury

    NASA Astrophysics Data System (ADS)

    Naoe, Takashi; Kogawa, Hiroyuki; Yamaguchi, Yoshihito; Futakawa, Masatoshi

    2010-03-01

    Cavitation erosion or so called pitting damage was investigated under tensile stress conditions in mercury. In MW-class liquid metal spallation targets, pitting damage is a critical issue to satisfy required power and/or lifetime of the target vessel. Cavitation occurs by negative pressure which is induced through pressure wave propagation due to proton beam injection. Pitting damage is formed by microjet and/or shock wave during cavitation bubble collapse. A mercury target vessel suffers tensile stress due to thermal stress or welding. In order to investigate the effect of tensile stress on pitting damage formation, cavitation erosion tests were performed using stress imposed specimens in mercury. An ultrasonic vibratory horn and electro-Magnetic IMpact Testing Machine (MIMTM) were used to vary the cavitation intensity. In the incubation period of pitting damage, damaged area was slightly increased with increasing imposed tensile stress. In the steady state period, a mean depth of erosion was increased by the tensile stress. Additionally, in order to quantitatively evaluate the effect of tensile stress, an indentation test with Vickers indenter was carried out to quasi-statically simulate the impact load. From the measurement of the diagonal length of the indent aspect ratio and hardness, it is recognized that the threshold of the deformation, i.e. pitting damage formation, was decreased by the tensile stress.

  11. Tensile-stressed microelectromechanical apparatus and tiltable micromirrors formed therefrom

    DOEpatents

    Fleming, James G.

    2007-01-09

    A microelectromechanical (MEM) apparatus is disclosed which includes a pair of tensile-stressed actuators suspending a platform above a substrate to tilt the platform relative to the substrate. A tensile stress built into the actuators initially tilts the platform when a sacrificial material used in fabrication of the MEM apparatus is removed. Further tilting of the platform can occur with a change in the ambient temperature about the MEM apparatus, or by applying a voltage to one or both of the tensile-stressed actuators. The MEM apparatus can be used to form a tiltable micromirror or an array of such devices, and also has applications for thermal management within satellites.

  12. High temperature tensile properties of V-4Cr-4Ti

    SciTech Connect

    Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O.

    1998-09-01

    Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.

  13. The tensile properties of single sugar palm (Arenga pinnata) fibre

    NASA Astrophysics Data System (ADS)

    Bachtiar, D.; Sapuan, S. M.; Zainudin, E. S.; Khalina, A.; Dahlan, K. Z. M.

    2010-05-01

    This paper presents a brief description and characterization of the sugar palm fibres, still rare in the scientific community, compared to other natural fibres employed in polymeric composites. Sugar palm fibres are cellulose-based fibres extracted from the Arenga pinnata plant. The characterization consists of tensile test and the morphological examination. The average tensile properties results of fibres such as Young's modulus is equal to 3.69 GPa, tensile strength is equal to 190.29 MPa, and strain at failure is equal to 19.6%.

  14. Tensile Strength of Polyester Composites Reinforced with Thinner Ramie Fibers

    NASA Astrophysics Data System (ADS)

    Monteiro, Sergio Neves; de Pontes, Lucas Almeida; Margem, Frederico Muylaert; Ferreira, Jordana; Netto, Pedro Amoy; Margem, Jean Igor

    This study evaluated the tensile properties of polyester composites reinforced with ramie fibers with thinner diameters. Specimens with different ramie fibers percentages (0,10,20 and 30%) in continuous and aligned ramie stalk fibers volume, were tensile tested at room temperature to evaluate the ultimate strength, elastic modulus and total strain. The results indicated that the tensile properties tend to improve with increasing volume fraction of ramie fibers. The role played by the fiber/matrix interaction was analyzed by scanning electron microscopy.

  15. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect

    Schulthess, Jason

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  16. Integrated Baseline Review (IBR) Handbook

    NASA Technical Reports Server (NTRS)

    Fleming, Jon F.; Kehrer, Kristen C.

    2016-01-01

    The purpose of this handbook is intended to be a how-to guide to prepare for, conduct, and close-out an Integrated Baseline Review (IBR). It discusses the steps that should be considered, describes roles and responsibilities, tips for tailoring the IBR based on risk, cost, and need for management insight, and provides lessons learned from past IBRs. Appendices contain example documentation typically used in connection with an IBR. Note that these appendices are examples only, and should be tailored to meet the needs of individual projects and contracts. Following the guidance in this handbook will help customers and suppliers preparing for an IBR understand the expectations of the IBR, and ensure that the IBR meets the requirements for both in-house and contract efforts.

  17. Pinellas Plant Environmental Baseline Report

    SciTech Connect

    Not Available

    1997-06-01

    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  18. Tensile Bond Strength of Latex-Modified Bonded Concrete Overlays

    NASA Astrophysics Data System (ADS)

    Dubois, Cameron; Ramseyer, Chris

    2010-10-01

    The tensile bond strength of bonded concrete overlays was tested using the in-situ pull-off method described in ASTM C 1583 with the goal of determining whether adding latex to the mix design increases bond strength. One slab of ductile concrete (f'c > 12,000 psi) was cast with one half tined, i.e. roughened, and one half steel-troweled, i.e. smooth. The slab surface was sectioned off and overlay mixtures containing different latex contents cast in each section. Partial cores were drilled perpendicular to the surface through the overlay into the substrate. A tensile loading device applied a direct tensile load to each specimen and the load was increased until failure occurred. The tensile bond strength was then calculated for comparison between the specimens.

  19. Improved Flat Specimens For Tensile And Fatigue Testing Of Composites

    NASA Technical Reports Server (NTRS)

    Worthem, Dennis W.

    1994-01-01

    Improved shape proposed for flat, reduced-gauge-section specimens for tensile and fatigue testing of advanced composite materials at ambient and high temperatures. Typical specimen consists of flat bar 15.2 centimeters long, 1.27 centimeters wide, and 0.318 centimeters thick, with full-width tab regions at ends, 3.81-centimeters-long gauge section of reduced width in middle, and two transition regions where width tapers between tab and gauge widths along 6.35-centimeters-radius circular arc tangent to edge of gauge section. Specimen gripped by squeezing between tabs in tab regions, and tensile test load applied via tab grips. Configuration reduces undesired concentrations of stresses in transition and tab regions, forcing tensile failure to occur in gauge section and ensuring more-consistent results in tensile tests.

  20. Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles

    SciTech Connect

    Screen, Hazel R.C. . E-mail: H.R.C.Screen@qmul.ac.uk; Shelton, Julia C.; Bader, Dan L.; Lee, David A.

    2005-10-21

    Mechanical stimulation has been implicated as an important regulatory factor in tendon homeostasis. In this study, a custom-designed tensile loading system was used to apply controlled mechanical stimulation to isolated tendon fascicles, in order to examine the effects of 5% cyclic tensile strain at 1 Hz on cell proliferation and matrix synthesis. Sample viability and gross structural composition were maintained over a 24 h loading period. Data demonstrated no statistically significant differences in cell proliferation or glycosaminoglycan production, however, collagen synthesis was upregulated with the application of cyclic tensile strain over the 24 h period. Moreover, a greater proportion of the newly synthesised matrix was retained within the sample after loading. These data provide evidence of altered anabolic activity within tendon in response to mechanical stimuli, and suggest the importance of cyclic tensile loading for the maintenance of the collagen hierarchy within tendon.

  1. Aluminum/steel wire composite plates exhibit high tensile strength

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Composite plate of fine steel wires imbedded in an aluminum alloy matrix results in a lightweight material with high tensile strength. Plates have been prepared having the strength of titanium with only 85 percent of its density.

  2. Predicting Tensile Stretchability of Trimmed AA6111-T4 Sheets

    SciTech Connect

    Hu, Xiaohua; Sun, Xin; Golovashchenko, Sergey F.

    2014-02-15

    An integrated manufacturing process simulation framework has been developed to predict the trimmed edge tensile stretchability of AA6111-T4 sheets by incorporating the burr geometry, damage, and plastic strain from trimming simulations into subsequent tensile stretchability simulations. The influence of the trimming die clearances on the predicted tensile stretching ductility (stretchability) is studied and quantitatively compared with experimental measurements. Stretchability is found to decrease with increasing cutting clearances, and simulation results have successfully captured experimentally observed edge crack initiation and failure mode variations for different trimming clearances. Subsequent computational sensitivity studies reveal that while deburring of previously trimmed edges has little influence on tensile stretchability, removal of trimmed edge initial plastic strain may significantly enhance the subsequent trimmed edge stretchability.

  3. In vitro tensile bond strength of reconditioned brackets.

    PubMed

    Wright, W L; Powers, J M

    1985-03-01

    This study evaluated the effects of four rebonding procedures on in vitro tensile bond strength of four filled diacrylate adhesives on orthodontic brackets. The four procedures were thermal reconditioning, chemical reconditioning, removal of residual adhesive with a green stone, and grinding the mesh base with a green stone. The mesh-base, stainless steel brackets were bonded to plastic cylinders and the tensile bond force necessary to cause bond failure was recorded. The initial bond strengths for the no-mix adhesive and both two-paste systems were significantly greater than the tensile bond strengths for any rebonding condition. Different rebonding conditions reduced tensile bone strength to differing degrees, using each of these three adhesives. The initial bond strength for the visible, light-cured adhesive was not significantly different from three of the four rebonding conditions and was lower than the initial bond strength of the other three adhesives.

  4. Tensile Fracture of Ductile Materials. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Pai, D. M.

    1984-01-01

    For brittle materials, circular voids play an important role relative to fracture, intensifing both tensile and compressive stresses. A maximum intensified tensile stress failure criterion applies quite well to brittle materials. An attempt was made to explore the possibility of extending the approach to the tensile fracture of ductile materials. The three dimensional voids that exist in reality are modelled by circular holes in sheet metal. Mathematical relationships are sought between the shape and size of the hole, after the material is plastically deformed, and the amount of deformation induced. Then, the effect of hole shape, size and orientation on the mechanical properties is considered experimentally. The presence of the voids does not affect the ultimate tensile strength of the ductile materials because plastic flow wipes out the stress intensification caused by them. However, the shape and orientation of the defect is found to play an important role in affecting the strain at fracture.

  5. Baseline Graphite Characterization: First Billet

    SciTech Connect

    Mark C. Carroll; Joe Lords; David Rohrbaugh

    2010-09-01

    The Next Generation Nuclear Plant Project Graphite Research and Development program is currently establishing the safe operating envelope of graphite core components for a very high temperature reactor design. To meet this goal, the program is generating the extensive amount of quantitative data necessary for predicting the behavior and operating performance of the available nuclear graphite grades. In order determine the in-service behavior of the graphite for the latest proposed designs, two main programs are underway. The first, the Advanced Graphite Creep (AGC) program, is a set of experiments that are designed to evaluate the irradiated properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences, and compressive loads. Despite the aggressive experimental matrix that comprises the set of AGC test runs, a limited amount of data can be generated based upon the availability of space within the Advanced Test Reactor and the geometric constraints placed on the AGC specimens that will be inserted. In order to supplement the AGC data set, the Baseline Graphite Characterization program will endeavor to provide supplemental data that will characterize the inherent property variability in nuclear-grade graphite without the testing constraints of the AGC program. This variability in properties is a natural artifact of graphite due to the geologic raw materials that are utilized in its production. This variability will be quantified not only within a single billet of as-produced graphite, but also from billets within a single lot, billets from different lots of the same grade, and across different billets of the numerous grades of nuclear graphite that are presently available. The thorough understanding of this variability will provide added detail to the irradiated property data, and provide a more thorough understanding of the behavior of graphite that will be used in reactor design and licensing. This report covers the

  6. In Vitro Tensile Strength Study on Suturing Technique and Material.

    PubMed

    González-Barnadas, Albert; Camps-Font, Octavi; Espanya-Grifoll, Dunia; España-Tost, Antoni; Figueiredo, Rui; Valmaseda-Castellón, Eduard

    2017-06-01

    Suture technique and materials are important in preventing complications such as wound dehiscences. The purpose of this study was to determine the tensile strength of different suturing techniques, comparing several materials with different diameters. One hundred sixty sutures were performed using silk, e-PTFE, and 2 types of polyamide (monofilament and Supramid). Ten simple, 10 horizontal mattress, and 10 combinations of the two stitches were performed with 4-0 gauge of each material. Additionally, 10 simple sutures were performed with the 5-0 gauge of each material. The maximum tensile force resisted by each suture was recorded. When 5 mm of traction was applied, the polyamide monofilament resisted significantly better without untying or breaking compared with Supramid or silk, while the e-PTFE was superior to all the others. However, the force when e-PTFE 4-0 sutures untied or broke was lower than for either type of polyamide. The combined technique withstood a significantly higher tensile force before unknotting or breaking than did the simple and mattress stitches. The 5-0 gauges of silk and both types of polyamide showed lower tensile strengths than the 4-0 materials. Among the 5-0 sutures, Supramid showed a higher tensile strength than silk. The combined suture technique possessed greater tensile strength than did a simple or a horizontal mattress suture, and e-PTFE 4-0 withstood more traction without untying or breaking than did all the other materials, although at a lower tensile force. With the exception of e-PTFE, 4-0 sutures had greater tensile strength than did 5-0 sutures.

  7. Tensile properties of palladium-silver alloys with absorbed hydrogen

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Otterson, D. A.

    1975-01-01

    The alloys 90Pd-10Ag, 80Pd-20Ag, 70Pd-30Ag, 60Pd-40Ag, and 50Pd-50Ag containing absorbed hydrogen were tested in tension. The results show the tensile properties to be independent of the phase transition. Also, hydrogen in the lattice does not necessarily cause embrittlement or poor elongation. The changes in the tensile properties appear dependent on the electron to atom site ratio.

  8. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    NASA Technical Reports Server (NTRS)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  9. On the tensile strength of soil grains in Hertzian response

    NASA Astrophysics Data System (ADS)

    Nadimi, Sadegh; Fonseca, Joana

    2017-06-01

    The breakage initiation of soil grains is controlled by its tensile capacity. Despite the importance of tensile strength, it is often disregarded due to difficulties in measurement. This paper presents an experimental and numerical investigation on the effect of tensile strength on Hertzian response of a single soil grain. Hertz theory is commonly used in numerical simulation to present the contact constitutive behaviour of a purely elastic grain under normal loading. This normal force:displacement comes from stress distribution and concentration inside the grain. When the stress reaches the tensile capacity, a crack initiates. A series of numerical tests have been conducted to determine the sensitivity of Hertzian response to the selected tensile strength used as an input data. An elastic-damage constitutive model has been employed for spherical grains in a combined finite-discrete element framework. The interpretation of results was enriched by considering previous theoretical work. In addition, systematic experimental tests have been carried out on both spherical glass beads and grains of two different sands, i.e. Leighton Buzzard silica sand and coarse carbonate sand from Persian Gulf. The preliminary results suggest that lower tensile strength leads to a softer response under normal loading. The wider range of responses obtained for the carbonate sand, are believed to be related to the large variety of grain shape associated with bioclastic origin of the constituent grains.

  10. Effect of Electron Beam Irradiation on Tensile Strength of Polypropylene

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Ikeda, Masayuki; Shimbo, Minoru; Miyano, Yasushi

    In this paper, the effects of the intensity of electron beam and the variation with time after irradiation of electron beam on the tensile strength of the polypropylene (PP), which is widely used as medicine containers, were investigated. PP with and without colorants were used first and samples irradiated under various intensity of EB. A tensile test on the irradiated samples with elapsed time after the irradiation of the electron beam was carried out. The effects of those factors on the tensile strength were discussed. The following results were obtained (1) The tensile strength of PP decreased due to the influence of the electron beam irradiation, however the rate of the decrease in strength was small compared with the original one. Furthermore, the rate of the decrease in strength was very small owing to the variation with time after the EB irradiation. (2) The tensile rupture strength of PP increased and the rupture strain owing to the influence of the electron beam irradiation compared with the original one. In addition, these rupture strength increased and the rupture strain decreased along with time after the irradiation of the electron beam. (3) The tensile rupture strain energy of PP decreased owing to the influence of the electron beam irradiation compared with the original one. In addition, the strain energy decreases with time after the irradiation of the electron beam. Moreover, the strength characteristics of PP with colorants received greater influence of electron beam compared with the one without colorants.

  11. Demonstration of concurrent tensile testing and magnetic resonance elastography.

    PubMed

    Brinker, Spencer; Klatt, Dieter

    2016-10-01

    Magnetic Resonance Elastography (MRE) is a technique used to measure the mechanical properties of soft tissues and has already shown its diagnostic potential for pathologies involving fibrogenesis and neurodegeneration. Experimental investigation of loading during MRE is fairly unexplored and may help to better understand changing mechanical properties in relation to organ function. Tensile testing is a common technique for examining mechanical properties of materials and is used as the simultaneous comparison method with MRE in this study. 3D MRE data was acquired during quasistatic uniaxial tensile loading of an Ecoflex 0010 cylindrical specimen. Individual MRE scans at 1.5, 2.0, and 2.5kHz where performed on engineering strain increments of 20% from 0% to 140% while tensile reaction force was recorded using a load cell attached to an adjustable elongation slide. Tensile stress-strain relation resembled the Fung hyperelastic strain energy model. We observe that the MRE shear storage modulus is related to the state of tensile deformation. This study demonstrates the feasibility of simultaneous tensile testing during MRE and the new design can potentially be used for MRE calibration using pre-tension.

  12. SUGV baseline autonomy using ROS

    NASA Astrophysics Data System (ADS)

    Stump, Ethan; Sadler, Laurel; Baran, David

    2011-05-01

    Currently, the 3000+ robotic systems fielded in theater are entirely teleoperated. This constant dependence on operator control introduces several problems, including a large cognitive load on the operator and a limited ability for the operator to maintain an appropriate level of situational awareness of his surroundings. One solution to reduce the dependence on teleoperation is to develop autonomous behaviors for the robot to reduce the strain on the operator. We consider mapping and navigation to be fundamental to the development of useful field autonomy for small unmanned ground vehicles (SUGVs). To this end, we have developed baseline autonomous capabilities for our SUGV platforms, making use of the open-source Robot Operating System (ROS) software from Willow Garage, Inc. Their implementations of mapping and navigation are drawn from the most successful published academic algorithms in robotics. In this paper, we describe how we bridged our previous work with the Packbot Explorer to incorporate a new processing payload, new sensors, and the ROS system configured to perform the high-level autonomy tasks of mapping and waypoint navigation. We document our most successful parameter selection for the ROS navigation software in an indoor environment and present results of a mapping experiment.

  13. Shifting Baselines, Science, and Society

    NASA Astrophysics Data System (ADS)

    Jackson, J. B.

    2006-12-01

    All of us have a deeply personal concept of nature based upon our childhood perceptions of the world around us, and of the subsequent degradation of nature by the experiences of our lifetimes. Yet even the most rudimentary knowledge of history clearly demonstrates that the modern rise of human population and consumption have wreaked havoc on global ecosystems to the extent that nowhere is close to natural or pristine and that most places have been increasingly degraded over many centuries. This disconnect between direct personal experience and abstract historical perspective is the problem of "shifting baselines" that is the fundamental impediment to basic scientific understanding and environmental policy, and affects scientists as much as the general public, business, and government. Scientists in particular suffer from the inability to directly observe and experimentally verify causes and effects of previous changes in ecosystems that now bear so little resemblance to their natural state. Under the circumstances, it is essential for scientists to draw scientific conclusions based on imperfect data and to publicly explain, defend, and discuss their conclusions as the best possible science given present information. The failure to do so makes science virtually irrelevant to social and environmental policy and government.

  14. 2016 Annual Technology Baseline (ATB)

    SciTech Connect

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; O'Connor, Patrick; Waldoch, Connor

    2016-09-01

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  15. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  16. Light duty utility arm baseline system description

    SciTech Connect

    Kiebel, G.R.

    1996-02-01

    This document describes the configuration of the Light Duty Utility Arm (LDUA) Baseline System. The baseline system is the initial configuration of the LDUA system that will be qualified for hot deployment in Hanford single shell underground storage tanks.

  17. 2016 Annual Technology Baseline (ATB) - Webinar Presentation

    SciTech Connect

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; Porro, Gian; O'Connor, Patrick; Waldoch, Connor

    2016-09-13

    This deck was presented for the 2016 Annual Technology Baseline Webinar. The presentation describes the Annual Technology Baseline, which is a compilation of current and future cost and performance data for electricity generation technologies.

  18. Asteroids With Tensile Strength: The Case of 2015 HM10

    NASA Astrophysics Data System (ADS)

    Busch, Michael W.; Benner, Lance A. M.; Naidu, Shantanu P.; Brozovic, Marina; Richardson, James E.; Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Ford, H. Alyson; Ghigo, Frank D.; Giorgini, Jon D.; Jao, Joseph S.; Teitelbaum, Lawrence

    2015-11-01

    Near-Earth asteroid 2015 HM10 was discovered on 2015 April 19 with the 4-m Blanco Telescope at Cerro Tololo (MPEC 2015-H90). HM10 made a 0.00295 AU / 1.14 lunar distance flyby of Earth on July 7. This was the asteroid’s closest approach to Earth until at least 2419.We observed HM10 with radar between July 5 and July 8 using Arecibo, the 70 m DSS-14 and 34 m DSS-13 antennas at Goldstone, Green Bank, and elements of the Very Long Baseline Array (VLBA). Bistatic observations were crucial to obtain high-resolution images of HM10 due to the short round-trip travel time of the radar signal, which was as low as 2.95 s on July 7. Our finest image resolution was 3.75 m/pixel in range, obtained on July 7 with the new 80 kW C-band (7190 MHz, 4.2 cm) transmitter on DSS-13 and receiving at Green Bank with the new radar backend.Optical lightcurves obtained prior to closest approach indicated that HM10 has a spin period of ~22.2 minutes and an elongated shape (W. Ryan, pers. comm). The delay-Doppler radar images confirm the rotation period estimated from photometry and reveal that HM10 has a long-axis extent of 80-100 m with an equatorial aspect ratio of about 2:1. Radar speckle tracking transmitting from Arecibo and receiving with the VLBA on July 6 rule out any non-principal axis ‘wobble’ with an amplitude greater than ~10º.HM10’s rapid rotation implies significant cohesion, with a minimum tensile strength of 25-150 Pa required at its center to prevent disruption, assuming overall bulk density between 0.7 and 3.9 g cm-3. This is comparable to strength predictions for rubble-pile aggregates (e.g. Scheeres, Britt, Carry, & Holsapple 2015, Asteroids IV, in press). HM10 is not necessarily a ‘monolith’.HM10’s shape is complex and irregular. The radar images show angular features and ‘facets’ up to ~30 m across. There is also a cluster of radar-bright pixels that tracks with HM10’s rotation, consistent with a high standing feature 15-20 m across. This feature is

  19. Comparing the tensile strength of square and reversing half-hitch alternating post knots

    PubMed Central

    Wu, Vincent; Sykes, Edward A.; Mercer, Dale; Hopman, Wilma M.; Tang, Ephraim

    2017-01-01

    Background Square knots are the gold standard in hand-tie wound closure, but are difficult to reproduce in deep cavities, inadvertently resulting in slipknots. The reversing half-hitch alternating post (RHAP) knot has been suggested as an alternative owing to its nonslip nature and reproducibility in limited spaces. We explored whether the RHAP knot is noninferior to the square knot by assessing tensile strength. Methods We conducted 10 trials for each baseline and knot configuration, using 3–0 silk and 3–0 polyglactin 910 sutures. We compared tensile strength between knot configurations at the point of knot failure between slippage and breakage. Results Maximal failure strength (mean ± SD) in square knots was reached with 4-throw in both silk (30 ± 1.5 N) and polyglactin 910 (39 ± 12 N). For RHAP knots, maximal failure strength was reached at 5-throw for both silk (31 ± 1.5 N) and polyglactin 910 (41 ± 13 N). In both sutures, there were no strength differences between 3-throw square and 4-throw RHAP, between 4-throw square and 5-throw RHAP, or between 5-throw square and 6-throw RHAP knots. Polyglactin 910 sutures, in all knot configurations, were more prone to slippage than silk sutures (p < 0.001). Conclusion The difference in mean tensile strength could be attributed to the proportion of knot slippage versus breakage, which is material-dependent. Future studies can re-evaluate findings in monofilament sutures and objectively assess the reproducibility of square and RHAP knots in deep cavities. Our results indicate that RHAP knots composed of 1 extra throw provide equivalent strength to square knots and may be an alternative when performing hand-ties in limited cavities with either silk or polyglactin 910 sutures. PMID:28327276

  20. Comparing the tensile strength of square and reversing half-hitch alternating post knots.

    PubMed

    Wu, Vincent; Sykes, Edward A; Mercer, Dale; Hopman, Wilma M; Tang, Ephraim

    2017-06-01

    Square knots are the gold standard in hand-tie wound closure, but are difficult to reproduce in deep cavities, inadvertently resulting in slipknots. The reversing half-hitch alternating post (RHAP) knot has been suggested as an alternative owing to its nonslip nature and reproducibility in limited spaces. We explored whether the RHAP knot is noninferior to the square knot by assessing tensile strength. We conducted 10 trials for each baseline and knot configuration, using 3-0 silk and 3-0 polyglactin 910 sutures. We compared tensile strength between knot configurations at the point of knot failure between slippage and breakage. Maximal failure strength (mean ± SD) in square knots was reached with 4-throw in both silk (30 ± 1.5 N) and polyglactin 910 (39 ± 12 N). For RHAP knots, maximal failure strength was reached at 5-throw for both silk (31 ± 1.5 N) and polyglactin 910 (41 ± 13 N). In both sutures, there were no strength differences between 3-throw square and 4-throw RHAP, between 4-throw square and 5-throw RHAP, or between 5-throw square and 6-throw RHAP knots. Polyglactin 910 sutures, in all knot configurations, were more prone to slippage than silk sutures (p < 0.001). The difference in mean tensile strength could be attributed to the proportion of knot slippage versus breakage, which is material-dependent. Future studies can re-evaluate findings in monofilament sutures and objectively assess the reproducibility of square and RHAP knots in deep cavities. Our results indicate that RHAP knots composed of 1 extra throw provide equivalent strength to square knots and may be an alternative when performing hand-ties in limited cavities with either silk or polyglactin 910 sutures.

  1. Effect of water storage on ultimate tensile strength and mass changes of universal adhesives

    PubMed Central

    Bahrololumi, Nazanin; Najafi-Abrandabadi, Ahmad; Sadr, Alireza; Sheikh-Al-Eslamian, Seyedeh-Mahsa; Ghasemi, Amir

    2017-01-01

    Background The aim of the present study was to evaluate the influence of water storage on micro tensile strength (µTS) and mass changes (MC) of two universal adhesives. Material and Methods 10 disk-shaped specimens were prepared for each adhesive; Scotchbond Universal (SCU) All-Bond Universal (ABU) and Adper Single Bond 2 (SB2). At the baseline and after 1 day and 28 days of water storage, their mass were measured and compared to estimate water sorption and solubility. For µTS test, 20 dumbbell shaped specimens were also prepared for each adhesive in two subgroups of 1 day and 28 days water storage. Results MC was significantly lower for SCU and ABU than SB2 (P < 0.05) at both time intervals. In all three adhesives, the MC was significantly lower at 28 days compared to that at 1 day (P < 0.05). Similarly, µTS was significantly higher for SCU and ABU than SB2 at both storage intervals (P < 0.05). After 28 days, µTS increased significantly for universal adhesives (P < 0.05). Conclusions MC and µTS of adhesives were both material and time dependent when stored in water; both universal adhesives showed less water sorption and higher values of µTS than the control group. Key words:Absorption, dental adhesives, dentin-bonding agents, solubility, tensile strength. PMID:28149468

  2. Effect of water storage on ultimate tensile strength and mass changes of universal adhesives.

    PubMed

    Bahrololumi, Nazanin; Beglou, Amirreza; Najafi-Abrandabadi, Ahmad; Sadr, Alireza; Sheikh-Al-Eslamian, Seyedeh-Mahsa; Ghasemi, Amir

    2017-01-01

    The aim of the present study was to evaluate the influence of water storage on micro tensile strength (µTS) and mass changes (MC) of two universal adhesives. 10 disk-shaped specimens were prepared for each adhesive; Scotchbond Universal (SCU) All-Bond Universal (ABU) and Adper Single Bond 2 (SB2). At the baseline and after 1 day and 28 days of water storage, their mass were measured and compared to estimate water sorption and solubility. For µTS test, 20 dumbbell shaped specimens were also prepared for each adhesive in two subgroups of 1 day and 28 days water storage. MC was significantly lower for SCU and ABU than SB2 (P < 0.05) at both time intervals. In all three adhesives, the MC was significantly lower at 28 days compared to that at 1 day (P < 0.05). Similarly, µTS was significantly higher for SCU and ABU than SB2 at both storage intervals (P < 0.05). After 28 days, µTS increased significantly for universal adhesives (P < 0.05). MC and µTS of adhesives were both material and time dependent when stored in water; both universal adhesives showed less water sorption and higher values of µTS than the control group. Key words:Absorption, dental adhesives, dentin-bonding agents, solubility, tensile strength.

  3. Influence of post-superplastic forming practices on the tensile properties of aluminium-lithium alloys

    SciTech Connect

    Hales, S.J. ); Lippard, H.E. . Dept. of Materials Science)

    1994-06-01

    The effect of thermal processing following superplastic forming on the tensile properties of aluminum-lithium alloys is addressed. The starting materials consisted of alloys 8090, 2090, and X2095 (a Weldalite[trademark] 049 variant) in the form of commercial-grade superplastic sheet. Experience dictates that post-forming practices aimed at a slightly underaged T6 temper produce balanced engineering properties in these alloys. The objective of this study was to assess the potential to use a T5-type temper by eliminating the solution heat treatment and/or cold water quenching steps characteristic of T6 processing. The experimental procedures adopted ensured that the tensile properties compiled were representative of the bulk material Initially, the strengthening behavior of each alloy as a function of temper selection was established. Subsequently, aging practices that resulted in peak strength and balanced properties were identified for the baseline T6 temper and two T5 tempers. The implications for replacing a T6 temper with a T5-type temper, including rapid and slow cooling following forming, are discussed on the basis of the results.

  4. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1992-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the Space Shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. A stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. These methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  5. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1992-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the Space Shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. A stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. These methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  6. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  7. Analysis of tensile bond strengths using Weibull statistics.

    PubMed

    Burrow, Michael F; Thomas, David; Swain, Mike V; Tyas, Martin J

    2004-09-01

    Tensile strength tests of restorative resins bonded to dentin, and the resultant strengths of interfaces between the two, exhibit wide variability. Many variables can affect test results, including specimen preparation and storage, test rig design and experimental technique. However, the more fundamental source of variability, that associated with the brittle nature of the materials, has received little attention. This paper analyzes results from micro-tensile tests on unfilled resins and adhesive bonds between restorative resin composite and dentin in terms of reliability using the Weibull probability of failure method. Results for the tensile strengths of Scotchbond Multipurpose Adhesive (3M) and Clearfil LB Bond (Kuraray) bonding resins showed Weibull moduli (m) of 6.17 (95% confidence interval, 5.25-7.19) and 5.01 (95% confidence interval, 4.23-5.8). Analysis of results for micro-tensile tests on bond strengths to dentin gave moduli between 1.81 (Clearfil Liner Bond 2V) and 4.99 (Gluma One Bond, Kulzer). Material systems with m in this range do not have a well-defined strength. The Weibull approach also enables the size dependence of the strength to be estimated. An example where the bonding area was changed from 3.1 to 1.1 mm diameter is shown. Weibull analysis provides a method for determining the reliability of strength measurements in the analysis of data from bond strength and tensile tests on dental restorative materials.

  8. Progressive failure of large deformation composites under dynamic tensile loading

    NASA Astrophysics Data System (ADS)

    Xing, Liqun

    The applications of polymer based composite materials in structural components under dynamic loading have increased dramatically. The accurate understanding and modeling of the material mechanical behavior is the basis for the composite structure design and analysis. This research was designed to investigate the progressive failure nature of woven polymer-based composites under dynamic tensile loading conditions. A plain-woven E-glass/vinyl ester composite was selected and a generalized anisotropic material characterization procedure was developed. Off-axial tensile dynamic loading experiments with different strain rates and temperature was conducted. A nonlinear and rate dependent constitutive model used for the polymer-based composites under tensile dynamic tensile loading was constructed. The comparison shows a good match with testing data and a good prediction of stress to failure values. A hybrid method that combined the classical laminate theory with material microstructure analysis was presented to model the large strain to failure phenomenon. A single material parameter failure criteria based on Monkman-Grant concept was built to represent the materials anisotropic and rate dependency natural for tensile loading. And the strength concept based on the material constitution relationship and failure criteria was established to for structure analyses.

  9. Optical gain in single tensile-strained germanium photonic wire.

    PubMed

    de Kersauson, M; El Kurdi, M; David, S; Checoury, X; Fishman, G; Sauvage, S; Jakomin, R; Beaudoin, G; Sagnes, I; Boucaud, P

    2011-09-12

    We have investigated the optical properties of tensile-strained germanium photonic wires. The photonic wires patterned by electron beam lithography (50 μm long, 1 μm wide and 500 nm thick) are obtained by growing a n-doped germanium film on a GaAs substrate. Tensile strain is transferred in the germanium layer using a Si₃N₄ stressor. Tensile strain around 0.4% achieved by the technique corresponds to an optical recombination of tensile-strained germanium involving light hole band around 1690 nm at room temperature. We show that the waveguided emission associated with a single tensile-strained germanium wire increases superlinearly as a function of the illuminated length. A 20% decrease of the spectral broadening is observed as the pump intensity is increased. All these features are signatures of optical gain. A 80 cm⁻¹ modal optical gain is derived from the variable strip length method. This value is accounted for by the calculated gain material value using a 30 band k · p formalism. These germanium wires represent potential building blocks for integration of nanoscale optical sources on silicon.

  10. In vitro tensile strength of luting cements on metallic substrate.

    PubMed

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.

  11. Tensile and shear methods for measuring strength of bilayer tablets.

    PubMed

    Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin

    2017-05-15

    Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tensile strength of human pericardium treated with glutaraldehyde.

    PubMed

    Yamashita, Hiromasa; Ozaki, Shigeyuki; Iwasaki, Kiyotaka; Kawase, Isamu; Nozawa, Yukinari; Umezu, Mitsuo

    2012-01-01

    We have reconstructed aortic valves using autologous pericardium treated with glutaraldehyde since April 2007. However, the strength of the human pericardium has not been confirmed. We compared tensile strength between glutaraldehyde-treated human pericardium and aortic valve leaflets with various degrees of calcification to determine their suitability for use in aortic valve reconstruction. We measured the ultimate tensile strength and elasticity of samples of glutaraldehyde-treated pericardia (n = 8), non-calcified (n = 12), calcified (n = 9) and decalcified (n = 21) aortic leaflets collected from 23 patients who underwent aortic valve surgery. Aortic valves were decalcified using a cavitational ultrasonic surgical aspirator. The pericardium was immersed in 0.6% buffered glutaraldehyde for 10 minutes and then rinsed three times for 6 minutes each in normal saline. The ultimate tensile strength of the glutaraldehyde-treated human pericardium, non-calcified, calcified and decalcified leaflets was 10, 2.8, 1.0 and 0.8 MPa, respectively. The ultimate tensile strength of glutaraldehyde-treated human pericardium was 4 times higher than non-calcified leaflets, indicating its suitability for application to aortic valve reconstruction. Calcified leaflets were slightly stronger than decalcified leaflets. Thus, calcification can be removed without altering the tensile strength of valve materials.

  13. Effect of specimen geometry on tensile strength of cortical bone.

    PubMed

    Feng, Liang; Jasiuk, Iwona

    2010-11-01

    We investigate the effect of specimen geometry on the ultimate tensile strength of cortical bone measured by a tensile test. This article is motivated by the fact that there is no clear consensus in the literature on a suitable specimen shape for cortical bone testing. We consider three commonly used tensile test specimen shapes: strip, dumbbell with sharp junctions, and dumbbell with rounded junctions. We conduct this study computationally, using a finite element method, and experimentally by testing porcine femurs. Our results show that local stress concentration factors in the specimen lead to reduced values in the measured tensile strength. The higher the stress concentrations are, the lower is the measured strength. We find that the strip specimens are not a good choice due to high stress concentrations. For the same reason, dumbbell specimens with sharp junctions between the grip and gage sections should also be avoided. The dumbbell shaped tensile test specimens with an arc transition and a maximized radius of fillet are a better choice because such geometry lowers stress concentrations.

  14. Characterization of Damage in Triaxial Braid Composites Under Tensile Loading

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.

    2009-01-01

    Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.

  15. Capturing tensile size-dependency in polymer nanofiber elasticity.

    PubMed

    Yuan, Bo; Wang, Jun; Han, Ray P S

    2015-02-01

    As the name implies, tensile size-dependency refers to the size-dependent response under uniaxial tension. It defers markedly from bending size-dependency in terms of onset and magnitude of the size-dependent response; the former begins earlier but rises to a smaller value than the latter. Experimentally, tensile size-dependent behavior is much harder to capture than its bending counterpart. This is also true in the computational effort; bending size-dependency models are more prevalent and well-developed. Indeed, many have questioned the existence of tensile size-dependency. However, recent experiments seem to support the existence of this phenomenon. Current strain gradient elasticity theories can accurately predict bending size-dependency but are unable to track tensile size-dependency. To rectify this deficiency a higher-order strain gradient elasticity model is constructed by including the second gradient of the strain into the deformation energy. Tensile experiments involving 10 wt% polycaprolactone nanofibers are performed to calibrate and verify our model. The results reveal that for the selected nanofibers, their size-dependency begins when their diameters reduce to 600 nm and below. Further, their characteristic length-scale parameter is found to be 1095.8 nm.

  16. An In-situ Tensile Test Apparatus for Polymers in High Pressure Hydrogen

    SciTech Connect

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; Johnson, Kenneth I.; Skorski, Daniel C.; Tucker, Joseph C.; Roosendaal, Timothy J.; Dahl, Michael E.

    2014-10-10

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex-situ measurements of mechanical properties problematic. Designing in-situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in-situ tensile tester under high-pressure hydrogen environments up to 5,000 psi. Modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.

  17. An in situ tensile test apparatus for polymers in high pressure hydrogen.

    PubMed

    Alvine, K J; Kafentzis, T A; Pitman, S G; Johnson, K I; Skorski, D; Tucker, J C; Roosendaal, T J; Dahl, M E

    2014-10-01

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  18. An in situ tensile test apparatus for polymers in high pressure hydrogen

    SciTech Connect

    Alvine, K. J. Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E.

    2014-10-15

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  19. The Effect of Reprocessing on the Tensile Properties of Composites

    NASA Astrophysics Data System (ADS)

    Bodur, Mehmet Safa; Bakkal, Mustafa; Berkalp, Omer Berk; Sadikoglu, Telem Gok

    2011-01-01

    In this study, waste cotton fabric reinforced polymer matrix composite material has been manufactured by a custom made recycling extruder. Composites with different reinforcement ratios as 12,5%wt ( 12,5%wtRPE ) and 25%wt ( 25%wtRPE ) were tested for their mechanical properties such as tensile strength and young's modulus. The material was then granulated down to the size enough to be used in the extrusion process in order to observe the effects of reprocessing. Reprocessing leads to improve Tensile Strength of composite materials and slows down the reduction of tensile strength of polyethylene. It was observed that composite materials were highly affected by the fiber orientation and acts as anisotropic material under the load.

  20. Tensile properties of austempered ductile iron under thermomechanical treatment

    SciTech Connect

    Achary, J.

    2000-02-01

    A new processing method was investigated for improving the strength and elongation of austempered ductile iron (ADI) by grain refinement of parent austenite using thermomechanical treatment. The material was deformed at the austenitization temperature by single and multipass rolling before the austempering treatment. The effects of the amount of deformation, austenitization temperature, austempering temperatures, reaustenitization, and secondary deformation on the tensile properties were studied. The properties obtained using the method were compared with those of the ASTM standards. The effect of deformation on the graphite shape was also studied. Tensile strength/yield strength/elongation values were found to increase with increasing austenite deformation up to 40% and then to start decreasing. Tensile strength/yield strength and elongation values of 1,700 MPa/1,300 MPa/5% and 1,350 MPa/920 MPa/15% can be achieved with this method in the ranges of variables studied.

  1. Water's tensile strength measured using an optofluidic chip.

    PubMed

    Li, Z G; Xiong, S; Chin, L K; Ando, K; Zhang, J B; Liu, A Q

    2015-05-21

    In this paper, for the first time, the tensile strength of water is directly measured using an optofluidic chip based on the displacement of air-water interface deformation with homogeneous nucleation. When water in a microchannel is stretched dynamically via laser-induced shock reflection at the air-water interface, the shock pressures are determined by measuring the displacements of the deformed interface. Observation of the vapor bubbles is used as a probe to identify the cavitation threshold with a critical distance, and the tensile strength of water at 20 °C is measured to be -33.3 ± 2.8 MPa. This method can be extended to investigate the tensile strength of other soft materials such as glycerol, which is measured to be -59.8 ± 10.7 MPa at 20 °C.

  2. Tensile-stressed microelectromechanical apparatus and microelectromechanical relay formed therefrom

    DOEpatents

    Fleming, James G.

    2008-03-04

    A microelectromechanical (MEM) apparatus is disclosed which includes a shuttle suspended above a substrate by two or more sets of tensile-stressed beams which are operatively connected to the shuttle and which can comprise tungsten or a silicon nitride/polysilicon composite structure. Initially, the tensile stress in each set of beams is balanced. However, the tensile stress can be unbalanced by heating one or more of the sets of beams; and this can be used to move the shuttle over a distance of up to several tens of microns. The MEM apparatus can be used to form a MEM relay having relatively high contact and opening forces, and with or without a latching capability.

  3. Precision surveying using very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ryan, J. W.; Clark, T. A.; Coates, R.; Ma, C.; Robertson, D. S.; Corey, B. E.; Counselman, C. C.; Shapiro, I. I.; Wittels, J. J.; Hinteregger, H. F.

    1977-01-01

    Radio interferometry measurements were used to measure the vector baselines between large microwave radio antennas. A 1.24 km baseline in Massachusetts between the 36 meter Haystack Observatory antenna and the 18 meter Westford antenna of Lincoln Laboratory was measured with 5 mm repeatability in 12 separate experiments. Preliminary results from measurements of the 3,928 km baseline between the Haystack antenna and the 40 meter antenna at the Owens Valley Radio Observatory in California are presented.

  4. Tensile strength of cementitious materials under triaxial loading

    NASA Astrophysics Data System (ADS)

    Tsubota, Shuji

    1998-11-01

    A general tension-compression-compression (sigmasb1, sigmasb2=sigmasb3) failure criterion for brittle materials is mathematically developed using FEM analysis and experimentally verified by use of the cementitious composite axial tensile test (CCATT). This tensile failure criterion is based on the stress concentration derived from the classical theory of elasticity. This analytical approach shows the upper bound of the tension-compression-compression failure surface for brittle materials. Since the CCATT applies confining hydraulic pressure, a tensile specimen is subjected to triaxial loading defined by the principal stress ratio sigmasb1/|sigmasb2|. When lateral pressure increases, tensile strength decreases; therefore, stress concentration is defined as a function of the principal stress ratio. The model has three distinct regions of behavior corresponding to the principal stress ratio, 0≤sigmasb1/|sigmasb2|<0.9 (high-lateral pressure), 0.9≤sigmasb1/|sigmasb2|<3.0 (medium-lateral pressure), 3.0≤sigmasb1/|sigmasb2| (low-lateral pressure). The experimental failure line shows true tensile strength of cementitious materials under low-lateral pressure. The predicted nominal stress fsb{ta} with large size specimens for the CCATT is written as$fsb{ta}=gamma*{1/{Kt}}*alpha* pwhere gamma$ is the size effect obtained by experimental results; Kt is the stress concentration factor derived from triaxial loading. Tensile strength values from the CCATT are compared to experimental results from other tests such as the uniaxial tensile test and the split cylinder test. CCATT results are analyzed using Weibull theory to measure material reliability and to develop characteristic stresses for construction design. Failure analysis using fractography was conducted on fractured cementitious materials and composites. The failure analysis on test specimens correlated well with FEM stress distributions and with the principal stress ratio. The observed fracture behavior (fracture

  5. Electronic, mechanical and dielectric properties of silicane under tensile strain

    NASA Astrophysics Data System (ADS)

    Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.

    2015-05-01

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  6. Tensile properties of titanium electrolytically charged with hydrogen

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Otterson, D. A.

    1971-01-01

    Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.

  7. Tensile Strength of Natural Fiber Reinforced Polyester Composite

    NASA Astrophysics Data System (ADS)

    Ismail, Al Emran; Awang, Muhd. Khairudin; Sa'at, Mohd Hisham

    2007-05-01

    Nowadays, increasing awareness of replacing synthetic fiber such as glass fiber has emerged due to environmental problems and pollutions. Automotive manufacturers also seek new material especially biodegradable material to be non-load bearing application parts. This present work discussed on the effect of silane treatment on coir fiber reinforced composites. From the results of tensile tests, fibers treated with silane have attained maximum material stiffness. However, to achieve maximum ultimate tensile strength and strain at failure performances, untreated fibers work very well through fiber bridging and internal friction between fiber and polymeric matrix. Scanning electron microscope (SEM) observations have coincided with these results.

  8. Tensile and compressive behavior of a swirl mat composite

    SciTech Connect

    Ruggles, M.B.

    1998-07-01

    The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the US Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on one representative reference material--an isocyanurate (polyurethane) reinforced with continuous strand, swirl-mat E-glass. The present report describes tensile and compressive testing and results for the reference composite. Behavior trends and proportional limit are established for both tension and compression. Damage development due to tensile loading and strain rate effects are discussed.

  9. Kinetic studies on the tensile state of water in trees.

    PubMed

    Tributsch, Helmut; Cermak, Jan; Nadezhdina, Nadezhda

    2005-09-22

    The solar-powered generation and turnover of tensile, cohesive water in trees is described as a kinetic phenomenon of irreversible thermodynamics. A molecular kinetic model for tensile water formation and turnover is presented, which is found to be mathematically equivalent with an autocatalytic reaction (Brusselator). It is also shown to be consistent with the van der Waals equation for real liquid-gas systems, which empirically considers intermolecular forces. It can therefore be used to explain both the irreversible thermodynamics and the kinetics of the tensile liquid state of water. A nonlinear bistable evaporation behavior of tensile water is predicted, which has not yet been experimentally characterized in trees. Conventional sap flow techniques in combination with infrared imaging of heat flow around a local heat source were used to study the dynamics and energetics of water transport of trees during the eclipse of August 11, 1999. The evaporative "pulling force" in a tree was demonstrated with infrared techniques and shown to respond within seconds. While the ambient temperature during the eclipse did not drop by more than 2 degrees C, evaporative water transport was reduced by a factor of up to 2-3. The expected hysteresis (with an up to 50% decrease in energy-conversion-related entropy production) was measured, reflecting a bistable mode of conversion of solar energy into tensile water flow. This nonlinear (autocatalytic) phenomenon, together with tensile molecular order, damped the oscillating behavior of xylem tensile water, and its occasional all-or-none rupture (cavitation) can thus be explained by the nonlinear nature of intermolecular forces active in the water conduit/parenchyma environment. This characterizes the physical chemistry and energetics of tensile water in trees as an active-solar-energy-driven self-organizing process. Water is handled in the form of microcanonical ensembles and transformed into a stretched, metastable icelike state

  10. Electronic, mechanical and dielectric properties of silicane under tensile strain

    SciTech Connect

    Jamdagni, Pooja Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-05-15

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  11. Behind the (impedance) baseline in children.

    PubMed

    Salvatore, S; Salvatoni, A; Van Steen, K; Ummarino, D; Hauser, B; Vandenplas, Y

    2014-01-01

    Impedance baseline is a new parameter recently related to esophageal integrity. The aim of this study was to assess the effect of different factors on impedance baseline in pediatric patients. We analyzed the impedance baseline of 800 children with symptoms of gastroesophageal reflux. Mean impedance baseline was automatically calculated throughout 24-hour tracings. The presence of different age groups and of esophagitis was evaluated. Unpaired t-test, Spearman rank correlation, polynomial, and regression plot were used for statistical analysis. Age-related percentile curves were created. We considered a P-value<0.05 as statistically significant. Impedance baseline was significantly (P<0.001) lower in younger compared to older children up to 48 months. The mean increase of baseline per month was much higher in the first 36 months of life (47.5 vs. 2.9 Ohm in Channel 1 and 29.9 vs. 2.3 Ohm in Channel 6, respectively) than in older ages. Patients with esophagitis showed significantly decreased impedance baseline (P<0.05). Infants (especially in the first months of life) and young children present a significantly lower impedance baseline compared to older children both in proximal and distal esophagus. The presence of esophagitis may also determine a decreased impedance baseline regardless of the age of the patients.

  12. TAPIR--Finnish national geochemical baseline database.

    PubMed

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael

    2010-09-15

    In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various

  13. The importance of archiving baseline wilderness data

    Treesearch

    David N. Cole

    2007-01-01

    Baseline wilderness data are of considerable importance for several reasons. One of the primary values of wilderness is as a reference that contrasts with those lands where humans dominate the landscape. Leopold (1941) called wilderness "a base-datum of normality, a picture of how healthy land maintains itself." To realize this value, baseline data on...

  14. The Very-Long-Baseline Array.

    ERIC Educational Resources Information Center

    Kellermann, Kenneth I.; Thompson, A. Richard

    1988-01-01

    Describes the very-long-baseline array (VLBA) system of radio telescopes that will be completed in the early 1990s. Explains how the VLBA system works and the advantages over present technology. Compares associated international telescopes and very-long-baseline interferometers (VLBI). Illustrates applications for the VLBA and VLBI. (CW)

  15. 40 CFR 1042.825 - Baseline determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... adjust it differently, consistent with good engineering judgment. (d) Test the baseline engine four times according to the test procedures in subpart F of this part. The baseline emissions are the average of those...

  16. Longer-baseline telescopes using quantum repeaters.

    PubMed

    Gottesman, Daniel; Jennewein, Thomas; Croke, Sarah

    2012-08-17

    We present an approach to building interferometric telescopes using ideas of quantum information. Current optical interferometers have limited baseline lengths, and thus limited resolution, because of noise and loss of signal due to the transmission of photons between the telescopes. The technology of quantum repeaters has the potential to eliminate this limit, allowing in principle interferometers with arbitrarily long baselines.

  17. Error estimation for ORION baseline vector determination

    NASA Technical Reports Server (NTRS)

    Wu, S. C.

    1980-01-01

    Effects of error sources on Operational Radio Interferometry Observing Network (ORION) baseline vector determination are studied. Partial derivatives of delay observations with respect to each error source are formulated. Covariance analysis is performed to estimate the contribution of each error source to baseline vector error. System design parameters such as antenna sizes, system temperatures and provision for dual frequency operation are discussed.

  18. Multi-Baseline Stereo Using Surface Extraction.

    DTIC Science & Technology

    1996-11-24

    Nakahara, T. and Kanade, T. "Experiments in Multiple - Baseline Stereo" CMU-CS-93-102. 28 [16] Nakamura, Y., Matsuura, T., Satoh, K. and Ohta...of Computer Vision, 7:2, 1992:p. 143-162. [19] Okutomi, M. and Kanade, T. "A Multiple - Baseline Stereo" IEEE Trans, on PAMI, 1993. 15(4):p. 353-63

  19. The Very-Long-Baseline Array.

    ERIC Educational Resources Information Center

    Kellermann, Kenneth I.; Thompson, A. Richard

    1988-01-01

    Describes the very-long-baseline array (VLBA) system of radio telescopes that will be completed in the early 1990s. Explains how the VLBA system works and the advantages over present technology. Compares associated international telescopes and very-long-baseline interferometers (VLBI). Illustrates applications for the VLBA and VLBI. (CW)

  20. Surface, structural and tensile properties of proton beam irradiated zirconium

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  1. Polymer deformation gage measures thickness change in tensile tests

    NASA Technical Reports Server (NTRS)

    Broyles, H. F.; Broyles, H. H.

    1966-01-01

    Lightweight deformation gage attached to a polymer specimen determines the thickness changes undergone by the specimen during the testing of its tensile and elongation properties. Mechanical noise from outside sources is dampened when the assembly is hung on a light rubber band.

  2. Analyzing Tensile and Compressive Forces in Planar Trusses.

    ERIC Educational Resources Information Center

    Russell, Jeremiah V.

    1995-01-01

    Tensile and compressive forces in planar trusses can be analyzed using either the method of sections or the method of joints. This article summarizes and extends a project accomplished by a high school student using the method of joints and graphing calculators, spreadsheets, and matrix-manipulation software. (MKR)

  3. Cavitation contributes substantially to tensile creep in silicon nitride

    SciTech Connect

    Luecke, W.E.; Wiederhorn, S.M.; Hockey, B.J.; Krause, R.F. Jr.; Long, G.G.

    1995-08-01

    During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress ({dot {var_epsilon}} {proportional_to} {sigma}{sup n}, 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains t slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution-reprecipitation of silicon nitride.

  4. Porosity Defect Remodeling and Tensile Analysis of Cast Steel

    PubMed Central

    Sun, Linfeng; Liao, Ridong; Lu, Wei; Fu, Sibo

    2016-01-01

    Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain. PMID:28787919

  5. Void nucleation in spheroidized steels during tensile deformation

    SciTech Connect

    Fisher, Jr, J R

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy.

  6. Tensile experiments and SEM fractography on bovine subchondral bone.

    PubMed

    Braidotti, P; Bemporad, E; D'Alessio, T; Sciuto, S A; Stagni, L

    2000-09-01

    Subchondral bone undecalcified samples, extracted from bovine femoral heads, are subjected to a direct tensile load. The Young's modulus of each sample is determined from repeated tests within the elastic limit. In a last test, the tensile load is increased up to the specimen failure, determining the ultimate tensile strength. The investigation is performed on both dry and wet specimens. The measured Young's modulus for dry samples is 10.3+/-2.5GPa, while that of wet samples is 3.5+/-1.2GPa. The ultimate tensile strengths are 36+/-10 and 30+/-7.5MPa for dry and wet specimens, respectively. SEM micrographs of failure surfaces show characteristic lamellar bone structures, with lamellae composed of calcified collagen fibers. Rudimentary osteon-like structures are also observed. Failure surfaces of wet samples show a marked fiber pull-out, while delamination predominates in dry samples. The obtained results are interpreted on the basis of the deformation mechanisms typical of fiber-reinforced laminated composite materials.

  7. Improved molding process ensures plastic parts of higher tensile strength

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1968-01-01

    Single molding process ensures that plastic parts /of a given mechanical design/ produced from a conventional thermosetting molding compound will have a maximum tensile strength. The process can also be used for other thermosetting compounds to produce parts with improved physical properties.

  8. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  9. Compression and Tensile Creep of Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2005-01-01

    Compression creep and long term tensile creep studies were conducted on cast and extruded binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed in both compression and tension creep depending on stress and temperature although an asymmetrical response was observed under these two stress states. It was concluded that the primary creep of NiAl is limited by dislocation mobility. The stress exponents, n, for compression and tensile creep were similar varying between about 5 and 14. However, there were significant differences in the stress dependence of the activation energies for compression and tensile creep. The true activation energy for tensile creep, Q(sub c), was constant and equal to about 400 kJ/mol between 20 and 50 MPa but decreased to a constant value of 250 kJ/mol between 50 and 110 MPa. The activation energy was observed to be inversely stress dependent above 110 MPa. In contrast, Q(sub c) = 300 kJ/mol for compression creep was constant between 25 and 70 MPa and inversely dependent on the true stress above 70 MPa. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable natures of the atom-vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  10. Tensile forces on sutures in the human lateral knee meniscus.

    PubMed

    Staerke, Christian; Brettschneider, Olaf; Gröbel, Karl-Heinz; Becker, Roland

    2009-11-01

    Tensile strength is the most often reported parameter in biomechanical investigations of meniscal repair techniques. However, the magnitude of the tensile forces that actually occur on repaired lesions is not clear. The purpose of this study was to investigate if tensile forces occur on repaired lateral meniscal lesions, which could exceed the failure strength of common repair techniques. In human knees (n = 6), vertical-longitudinal lesions 25 mm in length were created in the posterior horn of the lateral meniscus at a distance of 3 mm from the meniscosynovial junction and the popliteal hiatus. A braided steel wire, resembling a vertical suture, was inserted into the meniscal tissue and fitted with a force transducer. The knees were mounted in an apparatus, which simulated weight bearing and non-weight bearing conditions. Repeated measurements were conducted with both internal and external rotation at flexion angles of 0 degrees , 30 degrees , 60 degrees , 90 degrees and 120 degrees . Weight loading alone caused no tension on the suture. Combined flexion and rotation generated mean forces between 0.5 and 4.1 N. No significant effect of the flexion angle or direction of rotation was found. If a minimum strength of 10 N was assumed for the common meniscal repair techniques, the tensile forces were well below this limit under all circumstances (P < 0.001). These data indicate that, within the range of motion investigated, no significant tensile forces occur on longitudinal lateral lesions. Forces other than tension and biological factors are of greater importance for the healing. Therefore, the assessment of repair techniques should not be based on alone the ability to resist high distraction forces.

  11. Compression and Tensile Creep of Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2005-01-01

    Compression creep and long term tensile creep studies were conducted on cast and extruded binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed in both compression and tension creep depending on stress and temperature although an asymmetrical response was observed under these two stress states. It was concluded that the primary creep of NiAl is limited by dislocation mobility. The stress exponents, n, for compression and tensile creep were similar varying between about 5 and 14. However, there were significant differences in the stress dependence of the activation energies for compression and tensile creep. The true activation energy for tensile creep, Q(sub c), was constant and equal to about 400 kJ/mol between 20 and 50 MPa but decreased to a constant value of 250 kJ/mol between 50 and 110 MPa. The activation energy was observed to be inversely stress dependent above 110 MPa. In contrast, Q(sub c) = 300 kJ/mol for compression creep was constant between 25 and 70 MPa and inversely dependent on the true stress above 70 MPa. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable natures of the atom-vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  12. Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester

    NASA Technical Reports Server (NTRS)

    Vailhe, Christophe

    2003-01-01

    The figure shows a fixture for measuring the tensile strength of the bond between an aluminum substrate and a thermally insulating polymeric foam. The specimen is meant to be representative of insulating foam on an aluminum tank that holds a cryogenic liquid. Prior to the development of this fixture, tensile tests of this type were performed on foam/substrate specimens immersed in cryogenic fluids. Because the specimens were cooled to cryogenic temperatures throughout their thicknesses, they tended to become brittle and to fracture at loads below true bond tensile strengths. The present fixture is equipped to provide a thermal gradient from cryogenic temperature at the foam/substrate interface to room temperature on the opposite foam surface. The fixture includes an upper aluminum block at room temperature and a lower aluminum block cooled to -423 F (approx. -253 C) by use of liquid helium. In preparation for a test, the metal outer surface (the lower surface) of a foam/substrate specimen is bonded to the lower block and the foam outer surface (the upper surface) of the specimen is bonded to the upper block. In comparison with the through-the-thickness cooling of immersion testing, the cryogenic-to-room-temperature thermal gradient that exists during testing on this fixture is a more realistic approximation of the operational thermal condition of sprayed insulating foam on a tank of cryogenic liquid. Hence, tensile tests performed on this fixture provide more accurate indications of operational bond tensile strengths. In addition, the introduction of the present fixture reduces the cost of testing by reducing the amount of cryogenic liquid consumed and the time needed to cool a specimen.

  13. Apparatus for tensile testing plate-type ceramic specimens

    DOEpatents

    Liu, K.C.

    1993-08-24

    Apparatus is described for gripping a plate-type tensile specimen having generally T-shaped end regions in a dynamic tension fatigue testing apparatus comprising an annular housing having an open-ended elongated cavity therein, a plurality of hydraulic piston means supported by the housing in a spaced array about the cavity, and a specimen-supporting plate means overlying the piston means at one end of the elongated cavity and displaceable by said piston means in a longitudinal direction with respect to the longitudinal axis of the cavity, said apparatus for gripping a flat plate-type tensile specimen comprising: a pair of elongated pull rods each having oppositely disposed first and second end regions; a pair of mounting means carried by said plate means with each mounting means for pivotally attaching the first end region of each of said pull rods in a central region of said plate means for supporting said pair of elongated pull rods in a side-by-side relationship along a common longitudinal centerline within said cavity; recess means in the second end region of each of said pull rods in adjacently disposed surface regions thereof with said recess means facing one another and each adapted to receive one side of one of the generally T-shaped end regions of the plate-type tensile specimen; and load-bearing means positionable in each of said recess means and adapted to bear against a shoulder on each side of the generally T-shaped end region of the plate-type tensile specimen when a tensile loading is applied thereon.

  14. Subtask 12G2: Effects of dynamically charged helium on tensile properties of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE). One property of vanadium-base alloys that is not well understood in terms of their potential use as fusion reactor structural materials is the effect of simultaneous generation of helium and neutron damage under conditions relevant to fusion reactor operation. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600{degrees}C in the Li-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-4Cr-4Ti, an alloy identified as the most promising vanadium-base alloy for fusion reactors on the basis of its superior baseline and irradiation properties. Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room-temperature ductilities of DHCE specimens were higher than those of non-DHCE specimens (in which there was negligible helium generation), whereas strengths were lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to tritium-trick experiments in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE. 25 refs., 2 figs., 3 tabs.

  15. Life Support Baseline Values and Assumptions Document

    NASA Technical Reports Server (NTRS)

    Anderson, Molly S.; Ewert, Michael K.; Keener, John F.; Wagner, Sandra A.

    2015-01-01

    The Baseline Values and Assumptions Document (BVAD) provides analysts, modelers, and other life support researchers with a common set of values and assumptions which can be used as a baseline in their studies. This baseline, in turn, provides a common point of origin from which many studies in the community may depart, making research results easier to compare and providing researchers with reasonable values to assume for areas outside their experience. With the ability to accurately compare different technologies' performance for the same function, managers will be able to make better decisions regarding technology development.

  16. TWRS technical baseline database manager definition document

    SciTech Connect

    Acree, C.D.

    1997-08-13

    This document serves as a guide for using the TWRS Technical Baseline Database Management Systems Engineering (SE) support tool in performing SE activities for the Tank Waste Remediation System (TWRS). This document will provide a consistent interpretation of the relationships between the TWRS Technical Baseline Database Management software and the present TWRS SE practices. The Database Manager currently utilized is the RDD-1000 System manufactured by the Ascent Logic Corporation. In other documents, the term RDD-1000 may be used interchangeably with TWRS Technical Baseline Database Manager.

  17. Tensile overpressure compartments on low-angle thrust faults

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2017-08-01

    Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ 1 > σ 2 > σ 3) when the pore-fluid pressure, P f, exceeds the least compressive stress by the rock's tensile strength. Such veins form perpendicular to σ 3, their incremental precipitation from hydrothermal fluid often reflected in `crack-seal' textures, demonstrating that the tensile overpressure state, σ 3' = ( σ 3 - P f) < 0, was repeatedly met. Systematic arrays of extension veins develop locally in both sub-metamorphic and metamorphic assemblages defining tensile overpressure compartments where at some time P f > σ 3. In compressional regimes ( σ v = σ 3), subhorizontal extension veins may develop over vertical intervals <1 km or so below low-permeability sealing horizons with tensile strengths 10 < T o < 20 MPa. This is borne out by natural vein arrays. For a low-angle thrust, the vertical interval where the tensile overpressure state obtains may continue down-dip over distances of several kilometres in some instances. The overpressure condition for hydraulic fracturing is comparable to that needed for frictional reshear of a thrust fault lying close to the maximum compression, σ 1. Under these circumstances, especially where the shear zone material has varying competence (tensile strength), affecting the failure mode, dilatant fault-fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault-fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along subduction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak ( τ < 40 MPa), consistent with weakening by near-lithostatically overpressured fluids. Portions of the subduction interface, especially towards the down-dip termination of

  18. 40 CFR 1042.825 - Baseline determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the family. (c) Remanufacture the engine according to OEM specifications (or equivalent). The engine is considered “the baseline engine” at this point. If the OEM specifications include a range...

  19. 40 CFR 1042.825 - Baseline determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the family. (c) Remanufacture the engine according to OEM specifications (or equivalent). The engine is considered “the baseline engine” at this point. If the OEM specifications include a range...

  20. 40 CFR 1042.825 - Baseline determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the family. (c) Remanufacture the engine according to OEM specifications (or equivalent). The engine is considered “the baseline engine” at this point. If the OEM specifications include a range...

  1. 40 CFR 1042.825 - Baseline determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the family. (c) Remanufacture the engine according to OEM specifications (or equivalent). The engine is considered “the baseline engine” at this point. If the OEM specifications include a range...

  2. Baseline Hearing Measurements in Alaskan Belugas

    DTIC Science & Technology

    2012-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Baseline Hearing Measurements in Alaskan Belugas T...Baseline Hearing Measurements in Alaskan Belugas 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...The work involved temporarily capturing 9 beluga whales during September 1-13, 2012. Hearing abilities were measured for 7 restrained animals using

  3. Tensile test of dumbbell-shaped specimen in thickness direction

    NASA Astrophysics Data System (ADS)

    Iizuka, Takashi

    2016-10-01

    Sheet metal forming is widely used in manufacturing shops, and evaluation of forming limit for sheet metal is important. However, specimen shape influences on the fracture of the sheet metal. As one of methods to decrease these effects, an uniaxial tensile test using specimen dumbbell-shaped in thickness direction had been examined using FEM analysis. In this study, actually specimen dumbbell-shaped in thickness direction was fabricated using a new incremental sheet forging method, and uniaxial tensile test was conducted. Load-stroke diagram, fracture morphologies, stress-strain curves and shape after fracture were investigated, and effects of specimen shape were considered. Elongation was larger as using specimen dumbbell-shaped in the width direction. Stress-strain curves until necking occurred were less influenced by specimen shape. However, yield stress decreased and local elongation increased as using specimen dumbbell-shaped in the width direction. The reasons why these tendencies showed were considered in the view of specimen shapes.

  4. Data characterizing tensile behavior of cenosphere/HDPE syntactic foam.

    PubMed

    Kumar, B R Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E; Gupta, Nikhil; Ramakrishna, Seeram

    2016-03-01

    The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites "Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine" (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model.

  5. Data characterizing tensile behavior of cenosphere/HDPE syntactic foam

    PubMed Central

    Kumar, B.R. Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E.; Gupta, Nikhil; Ramakrishna, Seeram

    2016-01-01

    The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites “Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine” (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model. PMID:26937472

  6. Tensile deformation mechanisms of ABS/PMMA/EMA blends

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Gao, J.; Lin, S. X.; Zhang, P.; Huang, J.; Xu, L. L.

    2014-08-01

    The tensile deformation mechanisms of acrylonitrile - butadiene - styrene (ABS) / polymethyl methacrylate (PMMA) blends toughened by ethylene methacrylate (EMA) copolymer was investigated by analysing the fracture morphology. ABS/PMMA was blended with EMA copolymer by melt mixing technique using co-rotating twin extruder. Tensile tests show that the elongation at break of ABS/PMMA blends can be efficiently improved with the increase in EMA content. Fracture morphology of ABS/PMMA/EMA blends reveals that the material yield induced by hollowing-out of EMA particles and its propagation into yield zone is the main toughening mechanism. Moreover, the appearance that EMA particles in the central area are given priority to hollowing-out may be related to the skin-core structure of the injection moulded parts caused by the different cooling rate between surface and inside in the process of injection moulding.

  7. Tensile and compressive mechanical behavior of twinned silicon carbide nanowires

    SciTech Connect

    Wang, Zhiguo; Li, Jingbo; Gao, Fei; Weber, William J.

    2010-04-01

    Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strains. The critical strain of the twinned nanowires can be enhanced by twin-stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are just stretched before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for the thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of the twinned SiC nanowires exhibits two differently failure modes, depending on the length and diameter of the nanowires, i.e. shell buckling for short length nanowires and columnar buckling for longer length nanowires.

  8. Tensile stress acoustic constants of unidirectional graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    1990-01-01

    Previously, the stress acoustic constants (SACs) of unidirectional graphite/epoxy composites were measured to determine the nonlinear moduli of this material. These measurements were made under compressive loading in order to obtain the sufficient number of values needed to calculate these moduli. However, because their strength in tension along fiber directions can be several times greater, most composites are used under tensile loading. Thus, it is important to characterize the nonlinear properties of these materials in tension as well. The SACs which are defined as the slope of the normalized change in ultrasonic 'natural' velocity as a function of stress were measured in a unidirectional laminate of T300/5208 graphite/epoxy. Tensile load was applied along the fiber axis with the ultrasonic waves propagating perpendicular to the fiber direction. Changes in velocity were measured using a pulsed phase locked loop ultrasonic interferometer with the nominal frequency of the ultrasonic waves being 2.25 MHz.

  9. Tensile Stress Acoustic Constants of Unidirectional Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    1990-01-01

    Previously, the stress acoustic constants (SAC's) of unidirectional graphite/epoxy composites were measured to determine the nonlinear moduli of this material. These measurements were made under compressive loading in order to obtain the sufficient number of values needed to calculate these moduli. However, because their strength in tension along fiber directions can be several times greater, most composites are used under tensile loading. Thus, it is important to characterize the nonlinear properties of these materials in tension as well. The SAC's which are defined as the slope of the normalized change in ultrasonic "natural" velocity as a function of stress were measured in a unidirectional laminate of T300/5208 graphite/epoxy. Tensile load was applied along the fiber axis with the ultrasonic waves propagating perpendicular to the fiber direction. Changes in velocity were measured using a pulsed phase locked loop ultrasonic interferometer with the nominal frequency of the ultrasonic waves being 2.25 MHz.

  10. Are tensile and compressive Young's moduli of compact bone different?

    PubMed

    Barak, Meir M; Currey, John D; Weiner, Steve; Shahar, Ron

    2009-01-01

    This study examines the question of whether the stiffness (Young's modulus) of secondary osteonal cortical bone is different in compression and tension. Electronic speckle pattern interferometry (ESPI) is used to measure concurrently the compressive and tensile strains in cortical bone beams tested in bending. ESPI is a non-contact method of measuring surface deformations over the entire region of interest of a specimen, tested wet. The measured strain distributions across the beam, and the determination of the location of the neutral axis, demonstrate in a statistically-robust way that the tensile Young's modulus is slightly (6%), but significantly greater than that of the compressive Young's modulus. It is also shown that within a relatively small bone specimen there are considerable variations in the modulus, presumably caused by structural inhomogeneities.

  11. Mini-tensile specimen application for sheets characterization

    NASA Astrophysics Data System (ADS)

    Džugan, J.; Rund, M.; Prantl, A.; Konopík, P.

    2017-02-01

    There are many cases when there is a shortage of the experimental material for detailed analysis and then small size specimens techniques becomes essential. The current paper deals with investigations of mini-tensile tests (MTT) application to metal sheets characterization. In the case of metal sheets assessment the most common are tensile tests for Lankford parameters and strain hardening determination. As most of the processes are not quasi-static and constant strain rate processes, thus assessment of strain rate hardening is also crucial part of the characterization. Previously developed and verified testing procedure of M-TTs for bulk materials is applied here for steel sheet made of DC01 characterization. Tests under quasi-static and dynamic loading conditions are carried out in order to describe above mentioned properties at room temperature. Accurate strain measurement is carried out with digital image correlation systems and results obtained with M-TTs are going to be confronted with standard size specimens’ results.

  12. Osmotic pressure induced tensile forces in tendon collagen

    NASA Astrophysics Data System (ADS)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  13. Tensile Characterization of FRP Rods for Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Micelli, F.; Nanni, A.

    2003-07-01

    The application of FRP rods as an internal or external reinforcement in new or damaged concrete structures is based on the development of design equations that take into account the mechanical properties of FRP material systems.The measurement of mechanical characteristics of FRP requires a special anchoring and protocol, since it is well known that these characteristics depend on the direction and content of fibers. In this study, an effective tensile test method is described for the mechanical characterization of FRP rods. Twelve types of glass and carbon FRP specimens with different sizes and surface characteristics were tested to validate the procedure proposed. In all, 79 tensile tests were performed, and the results obtained are discussed in this paper. Recommendations are given for specimen preparation and test setup in order to facilitate the further investigation and standardization of the FRP rods used in civil engineering.

  14. Effect of helium on tensile properties of vanadium alloys

    SciTech Connect

    Chung, H.M.; Billone, M.C.; Smith, D.L.

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  15. The Uniaxial Tensile Response of Porous and Microcracked Ceramic Materials

    SciTech Connect

    Pandey, Amit; Shyam, Amit; Watkins, Thomas R; Lara-Curzio, Edgar; Lara-Curzio, Edgar; Stafford, Randall; Hemker, Kevin J

    2014-01-01

    The uniaxial tensile stress-strain behavior of three porous ceramic materials was determined at ambient conditions. Test specimens in the form of thin beams were obtained from the walls of diesel particulate filter honeycombs and tested using a microtesting system. A digital image correlation technique was used to obtain full-field 2D in-plane surface displacement maps during tensile loading, and in turn, the 2D strains obtained from displacement fields were used to determine the Secant modulus, Young s modulus and initial Poisson s ratio of the three porous ceramic materials. Successive unloading-reloading experiments were performed at different levels of stress to decouple the linear elastic, anelastic and inelastic response in these materials. It was found that the stress-strain response of these materials was non-linear and that the degree of nonlinearity is related to the initial microcrack density and evolution of damage in the material.

  16. Tensile Strength of Epoxy Composites Reinforced with Fique Fibers

    NASA Astrophysics Data System (ADS)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Teles, Maria Carolina Andrade; Borges, Luiz Gustavo Xavier; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    Environmentally friendly composites, made from natural fibers, are among the most investigated and applied today. Natural fibers have showed advantages, such as, flexibility and toughness, if compared with synthetic fibers. This work investigates the tensile strength of epoxy composites reinforced with Fique fibers. The Fique fiber was extracted from Fique leaf presents some significant characteristic, but until now only few studies on Fique fiber were performed. Composites reinforced with up to 30% in volume of long, continuous and aligned Fique fibers were tested in an Instron machine at room temperature. The incorporation of Fique fibers increases the tensile strength of the composite. After fracture the specimens were analyzed by a SEM (scanning electron microscope).

  17. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass.

  18. Tensile Instability and Artificial Stresses in Impact Problems in SPH

    NASA Astrophysics Data System (ADS)

    Mehra, Vishal; D, Sijoy C.; Mishra, Vinayak; Chaturvedi, Shashank

    2012-07-01

    The smooth particle hydrodynamics (SPH) is a meshless computational technique that is popular in the modeling of impact and penetration problems. However, SPH is liable to a tensile instability that manifests itself as a bunching of nodes and formation of artificial voids and no generally accepted formulation exists to counter this instability. We examine the performance of two methods that have been proposed to deal with the tensile instability— the Monaghan artificial stresses and the Godunov-type SPH. The impact and penetration of 0.5 cm radii steel spheres on 2 mm thick aluminium plate at 3.1 km/s is chosen for comparison. We show that the artificial void formation in St-Al impact is suppressed but not eliminated by using Monaghan stresses while the void formation is entirely eliminated by using Godunov-type formulation of SPH that was proposed by Parshikov and Medin.

  19. Statistical data for the tensile properties of natural fibre composites.

    PubMed

    Torres, J P; Vandi, L-J; Veidt, M; Heiztmann, M T

    2017-06-01

    This article features a large statistical database on the tensile properties of natural fibre reinforced composite laminates. The data presented here corresponds to a comprehensive experimental testing program of several composite systems including: different material constituents (epoxy and vinyl ester resins; flax, jute and carbon fibres), different fibre configurations (short-fibre mats, unidirectional, and plain, twill and satin woven fabrics) and different fibre orientations (0°, 90°, and [0,90] angle plies). For each material, ~50 specimens were tested under uniaxial tensile loading. Here, we provide the complete set of stress-strain curves together with the statistical distributions of their calculated elastic modulus, strength and failure strain. The data is also provided as support material for the research article: "The mechanical properties of natural fibre composite laminates: A statistical study" [1].

  20. Apparatus for tensile testing plate-type ceramic specimens

    DOEpatents

    Liu, Kenneth C.

    1993-01-01

    Apparatus for tensile testing plate-type ceramic specimens having dogbone- or T-shaped end sections without introducing bending stresses in the specimens during the application of a dynamic tensile loading on the specimens is described. A pair of elongated pull rods disposed in a side-by-side relationship are used to grip the shoulders on each T-shaped end section. The pull rods are pivotally attached to a piston-displaceable, disk-shaped member so as to be longitudinally movable with respect to one another effecting the self-alignment thereof with the shoulders on the T-shaped end sections of the specimen to compensate for shoulders being located in different longitudinal positions.

  1. The tensile fatigue of wire rope: A new approach

    SciTech Connect

    Thorpe, T.W.; Rance, A.

    1983-05-01

    The fatigue behaviour in air and seawater of zinc coated steel wire taken from a 40 mm diameter wire rope has been studied. Seawater had little effect on short term tensile strength but it reduced fatigue life by an amount which increased with increasing mean stress and decreasing test frequency. The application of fretting during fatigue testing resulted in very low endurances, which were similar to those measured in fatigue tests on wire ropes.

  2. Tensile Properties of Hydrogels and of Snake Skin

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Savitzky, Alan H.; Rivera, Gabriel; Gehrke, Stevin H.

    2002-01-01

    Stimulus-responsive or 'smart' gels are of potential interest as sensors and actuators, in industrial separations, and as permeable delivery systems. In most applications, a certain degree of mechanical strength and toughness will be required, yet the large-strain behavior of gels has not been widely reported. Some exceptions include work on gelatin and other food gels, some characterization of soft gels applicable for in-vitro cell growth studies, and toughness determinations on commercial contact lens materials. In general, it can be anticipated that the gel stiffness will increase with increasing degree of crosslinking, but the tensile strength may go through a maximum. Gel properties can be tailored by varying not only the degree of crosslinking, but also the polymer concentration and the nature of the polymer backbone (e.g. its stiffness or solubility). Polypeptides provide an especially interesting case, where secondary structure affects trends in moduli and conformational transitions may accompany phase changes. A few papers on the tensile properties of responsive gels have begun to appear. The responsive hydrogel chosen for the present study, crosslinked hydroxypropylcellulose, shrinks over a rather narrow temperature range near 44 C. Some vertebrate skin is also subject to substantial strain. Among reptiles, the morphologies of the skin and scales show wide variations. Bauer et al. described the mechanical properties and histology of gecko skin; longitudinal tensile properties of snake skin were examined by Jayne with reference to locomotion. The present measurements focus on adaptations related to feeding, including the response of the skin to circumferential tension. Tensile properties will be related to interspecific and regional variation in skin structure and folding.

  3. Elastic-plastic analysis of the SS-3 tensile specimen

    SciTech Connect

    Majumdar, S.

    1998-09-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior.

  4. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    A statistical characterization for multicomponent brittle fibers in presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  5. Infliximab treatment reduces tensile strength in intestinal anastomosis.

    PubMed

    Jensen, Jonas Sanberg; Petersen, Nacie Bello; Biagini, Matteo; Bollen, Peter; Qvist, Niels

    2015-01-01

    The antitumor necrosis factor (infliximab [IFX]) has gained widespread use in the treatment of inflammatory bowel disease. However, several patients must undergo surgical treatment due to treatment failure and there is a potential risk that preoperative IFX treatment may have a negative effect on the healing process in intestinal anastomosis. The objective of this study was to examine the effect of repeated IFX treatment on anastomotic strength and degree of inflammation in the anastomotic line in the small intestine of rabbits. Thirty-two rabbits were randomized (2:1) to receive either repeated IFX treatment or placebo. On day 15, three separate end-to-end anastomoses were performed on the jejunum. On postoperative day 5, tensile strength and bursting pressure for the anastomoses were tested and histologic changes examined. We found a significantly reduced tensile strength in the IFX group (1.94 ± 0.44 N) compared with the placebo group (3.33 ± 0.39 N), (P < 0.001). Calculation of Spearman correlation coefficients showed a positive significant correlation between minimal tensile strength and serum values of IFX (coefficient = -0.63; P = 0.003) as well as number of sutures in the tested anastomosis (coefficient = 0.51; P = 0.024). The general histologic score was significantly higher in the placebo group (5.00 ± 1.26 versus 3.31 ± 1.65, P = 0.03). Repeated high-dose IFX treatment reduces tensile strength significantly in rabbits and should be investigated further as a potential risk factor of anastomotic dehiscence in inflammatory bowel disease surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Optical strain measuring techniques for high temperature tensile testing

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1987-01-01

    A number of optical techniques used for the analysis of in-plane displacements or strains are reviewed. The application would be for the high temperature, approximately 1430 C (2600 F), tensile testing of ceramic composites in an oxidizing atmosphere. General descriptions of the various techniques and specifics such as gauge lengths and sensitivities are noted. Also, possible problems with the use of each method in the given application are discussed.

  7. Evaluation of waterjet-machined metal matrix composite tensile specimens

    SciTech Connect

    Lavender, C.A.; Smith, M.T.

    1986-04-01

    Four magnesium/boron carbide metal matrix composite (MMC) tensile specimens fabricated using the waterjet machining method were evaluated in order to determine the effects of the waterjet material removal process on the composite material surface structure and properties. These results were then compared with data from material conventionally machined. Results showed that while waterjet cutting produces a rough surface finish and does not meet specified dimensional tolerances, the technique appears to be suitable for sectioning and rough machining of metal matrix composites.

  8. Tensile Properties of Epoxy Composites Reinforced with Continuous PALF Fibers

    NASA Astrophysics Data System (ADS)

    Glória, Gabriel O.; Altoé, Giulio R.; Moraes, Ygor M.; Loyola, Rômulo L.; Margem, Frederico M.; Monteiro, Sergio N.

    The tensile properties of DGEBA/TETA epoxy matrix composites reinforced with different amounts of PALF fibers were evaluated. Composites reinforced with up to 30% in volume of long, continuous and aligned PALF fibers were tested in an Instron machine at room temperature. The fracture was analyzed by SEM. This one revealed a weak fiber/matrix interface, which could be responsible for the performance of some properties. The results showed significant changes in the mechanical properties with the amount of PALF fibers.

  9. Tensile properties of Fe-16 at. % Al alloys

    SciTech Connect

    Sikka, V.K.

    1995-02-01

    A newly developed melting method for Fe-16 at. % Al alloy (FAPY) is described. Tensile data on the air-induction-melted (AIM) and vacuum-induction-melted (VIM) heats of FAPY after identical processing are presented. Optical, scanning electron micrographs (SEM), and microprobe analysis were carried out to explain the lower room-temperature ductility and more scatter in the data for the AIM material as opposed to the VIM material.

  10. Microshrink, Tensile Properties, and the Detection of Microshrink.

    DTIC Science & Technology

    1984-11-01

    objectives of this investigation wpfe to study the effect of microshrink on the tensile properties o0 ’ alloy 713C and to find nondestructive methods of detect...PROCEDURE To accomplish the above objectives, bars of alloy 713C were cast at 28350 F with mold temperatures of 1800 0 F, 19000 F, and 20000 F. The purpose...SUPPLEMENTARY NOTES * 19. KEY WORDS (Continue on revere* aide it neces sary and Identify by block number) -High temperature alloys - Mechanical

  11. The Tensile Strengths of Problem Shales and Clays

    DTIC Science & Technology

    1990-01-01

    companies involved in the exploration for crude oil is that of drilling wells. The most abundant rock drilled is shale. Some of these shales cause...is little or no correlation between tensile strengths obtained on reconstituted and intact rock samples and (3) the effect of confining pressure was...of the most common troublesome rocks drilled is shale. Shales are formed over geologic time in low energy environments, such as marine basins and

  12. Changes in ADC Caused by Tensile Loading of Rabbit Achilles Tendon: Evidence for Water Transport

    NASA Astrophysics Data System (ADS)

    Han, S.; Gemmell, S. J.; Helmer, K. G.; Grigg, P.; Wellen, J. W.; Hoffman, A. H.; Sotak, C. H.

    2000-06-01

    Water diffusion measurements were performed on rabbit Achilles tendons during static tensile loading and tendons in an unloaded state. The apparent diffusion coefficient (ADC) was measured along two directions: parallel and perpendicular to the long axis of the tendon. Tendons were studied after being prepared in two ways: (a) after being stored frozen in phosphate-buffered saline (PBS) and (b) freshly isolated. Statistically significant directional anisotropy was observed in the ADC in all tendons. The ADC was significantly greater in the direction parallel to the long axis of the tendon than in the perpendicular direction. The anisotropy is attributed to the greater restrictions seen by the water molecules in the perpendicular direction and is consistent with the known geometry of the tendon. Storage in PBS caused tendons to swell. This increased the ADC measured along both directions and reduced the anisotropy. The existence of anisotropy in the ADC was not related to the orientation of the specimen in the magnet. The ADC increased along both directions following the application of a 5-N tensile load; the increase was greatest along the perpendicular axis of the tendon. In order to determine whether load-related changes in the ADC reflected changes in interfibrilar spacing, we used electron microscopy to measure load-related changes in fibril spacing. Load-related changes in fiber spacing could not account for the observed changes in the ADC. The increase in ADC caused by loading was attributed to the extrusion of tendon water into a bulk phase along the outside surface of the tendon. In PBS-stored samples, enough fluid was extruded that it could be visualized. The transient response of the ADC to a 5-N tensile load was also studied. The absolute ADC in both directions increased with loading and recovered to baseline upon unloading. The transient changes in ADC, for both loading and unloading, had a mean time constant of approximately 15 min. The magnitude of

  13. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    PubMed

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  14. Tensile Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, Luri Robert; Szewczyk, Steve; Schwartz, Eric; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Wagener, Kenneth; Winey, Karen

    2015-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide tunable mechanical properties. We report tensile testing and in situ x-ray scattering measurements of a homologous series of precise poly(ethylene-co-acrylic acid) copolymers (pxAA). Upon variation of the number of backbone carbons (x = 9, 15, 21) between pendant acrylic acid groups along the linear polyethylene chain, these materials exhibit pronounced changes in both their tensile properties as well as their morphological evolution during deformation. The hierarchical layered acid aggregate structure coincides with the onset of a strain hardening mechanism and was observed in both a semi-crystalline sample (p21AA) as well as an amorphous sample (p15AA). The polymer with the shortest spacing between acid groups (p9AA) maintains a liquid-like distribution of acid aggregates during deformation, exhibiting low tensile strength which we attribute to facile acid exchange between acid aggregates during deformation. Our results indicate that the formation of the hierarchical layered structure, which coincides with polymer strain-hardening regime, originates from the associating acid groups cooperatively preventing disentanglement. NSF-DMR-1103858.

  15. Microstructure and tensile properties of tungsten at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shen, Tielong; Dai, Yong; Lee, Yongjoong

    2016-01-01

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250-300 °C for the HR tungsten and about 350 °C for the HF tungsten.

  16. The Tensile Behavior of High-Strength Carbon Fibers.

    PubMed

    Langston, Tye

    2016-08-01

    Carbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber's diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young's modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young's modulus) matched very well with the manufacturers' reported values at 20 mm gage lengths, but deviated significantly at other lengths.

  17. Tensile forces at the porcine anterior meniscal horn attachment.

    PubMed

    Stärke, Christian; Kopf, Sebastian; Gröbel, Karl-Heinz; Becker, Roland

    2009-12-01

    Tibiofemoral compression causes circumferential tension in the knee meniscus, which is transferred to the tibial bone at the anterior and posterior attachments. The objective of the study was to measure the resulting tensile forces at the horn attachment in a porcine model. The anterior horn attachment of the porcine medial meniscus (n = 10) was separated from the surrounding bone with a core reamer. A force transducer was installed such that tensile forces acting upon the now mobile horn attachment could be measured. The tibiofemoral joint was loaded in compression, starting at a preload of 30 N, with three 150-N increments, giving 180, 330, and 480 N load. Flexion angles of 0, 30, and 60 degrees were investigated. The average resultant tension at the horn attachment was 26.3, 40.6, and 55.4 N with full extension, 29.2, 47.8, and 62.2 N at 30 degrees flexion and 30.1, 49.6, and 68.1 N at 60 degrees flexion. The tibiofemoral compression had a significant effect on the tension (p < 0.001), whereas no influence of the flexion angle was found (p = 0.291). The study demonstrates that tibiofemoral compressive loads cause considerable tensile forces at the anterior meniscal horn attachment. The data are of interest for models of the repair or replacement of the knee menisci.

  18. Dentin adhesive tensile strength after Nd:YAG laser application

    NASA Astrophysics Data System (ADS)

    Lizarelli, Rosane F. Z.; Miranda, Walter G., Jr.; Eduardo, Carlos d. P.

    1999-05-01

    The authors evaluated, in vitro, the tensile strength of a hydrophilic adhesive on dentin surface, with and without previous treatment with high power Nd:YAG laser. Power of 1.0 W and 2.0 W with respective frequencies of 25 Hz and 50 Hz were used. Thirteen human extracted molars were prepared and randomly separated in five groups: GI, Nd:YAG laser with 1.0 W plus SBMPP (3M) adhesive system; GII, laser with 2.0 W, plus adhesive system; GIII, laser with 1.0 W; GIV, laser with 2.0 W; GV, adhesive system to treat dentin surface. To each group five samples with a composite bottom each, totalling in 25 samples, which were kept in distilled water, by 37°C, during 30 days. After that, thermal cycling was applied. After this period, the samples were submitted the tensile strength test to evaluate the necessary threshold of power to break up the adhesive bond of composite button from dentin surface. The statistical evaluation was done through variance analysis. Results showed that the values of tensile strength of the GV (26.4 kgf/cm2) were better than GI (4.6 kgf/cm2) which was the best laser group: GIII (2.4 kgf/cm2); GII (1.7 kgf/cm2) and GIV (1.2 kgf/cm2).

  19. Tensile Creep of Polycrystalline Near-Stoichiometric NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2002-01-01

    Long term tensile creep studies were conducted on binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed depending on stress and temperature. It was concluded that the creep of NiAl is limited by dislocation mobility. The stress exponent for creep, n, increased from 5.5 at 1200 K to 13.9 at 700 K. The true activation energy for creep, Qc, was constant and equal to about 400 kJ per mole between 20 and 50 MPa but decreased to a constant value of 250 kJ per mole between 50 and 110 MPa. The activation energy was observed to be stress dependent above 110 MPa. The tensile creep results reported in this investigation were compared with compression creep data reported in the literature. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable nature of the atom vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  20. Determination of Tensile Properties of Polymers at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Reiter, M.; Major, Z.

    2010-06-01

    In the field of high rate testing of polymers the measured properties are highly dependent on the applied methodology. Hence, the test setup as whole but in particular also the geometrical type of specimen plays a decisive role. The widely used standard for the determination of tensile properties of polymers (ISO527-2) was extended by a novel standard (ISO18872:2007), which is targeted on the determination of tensile properties at high strain rates. In this standard also a novel specimen shape is proposed. Hand in hand with the introduction of new specimen geometry the question of comparability arises. To point out the differences in stress-strain response of the ISO18872 specimen and the ISO527-2 multipurpose specimen tensile tests over a wide loading rate range were conducted in this paper. A digital image correlation system in combination with a high speed camera was used to characterize the local material behaviour. Different parameters like nominal stress, true stress, nominal strain, true strain as well as volumetric strain were determined and used to compare the two specimen geometries.

  1. Cavitation mechanisms during tensile creep of an advanced silicon nitride

    SciTech Connect

    Lofaj, F.; Okada, A.; Usami, H.

    1996-12-31

    Creep cavitation was investigated by electron microscopic methods after tensile creep tests of a self-reinforced silicon nitride conducted at temperatures ranging from 1250 to 1400{degrees}C. Fast and intensive cavitation in the amorphous secondary phase and slow growth of cavities inside the large silicon nitride grains were observed. Two basic types of cavities in glassy boundary phase were found; rounded cavities on the facets of large grains and irregular cavities in pockets among the matrix grains. A driving force for cavitation in boundary phase on large grain facets is concluded to be local tensile stress on local irregularities of facets produced on the interfaces between large grains and finer matrix grains during grain boundary sliding (GBS). Dilatant hydrostatic tensile stresses generated in a matrix due to GBS were thought to be responsible for cavitation in multigrain junctions. Small cavities formed on the facets and large cavities penetrating through the whole large grains of silicon nitride were found after long-term tests. The stresses transferred from matrix to large grains are suggested as a driving force for slow growth of small cavities on the facets and their later penetration inside the large silicon nitride grains. Basic cavitation mechanisms in amorphous phase are thought to be GBS and viscous flow while solution-precipitation is responsible for cavity growth in large silicon nitride grains.

  2. Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas C.; Robbins, Mark O.

    Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  3. Grain Boundary Diffusion in Copper Nanocrystals under Tensile Stress

    NASA Astrophysics Data System (ADS)

    Crosby, Kevin

    2003-03-01

    Recent experiments on the microstructure of copper thin films suggest that the Σ 3 twin grain boundary accounts for roughly 42% of all high angle boundaries. As grain boundaries provide high-mobility paths for mass-transport, diffusion near grain boundaries is a significant obstacle in integrated circuit technologies. Typically, in ultra-large scale integrated circuit (ULSIC) technologies, copper interconnects are under large tensile stresses (hundreds of MPa) due to thermal mismatch with an underlying substrate or overlying passivation layer. Using embedded atom potentials, I have examined diffusion near the Σ 3 <111> twin boundary for a range of applied strains. The effective, strain-dependent activation enthalpy for diffusion is computed and compared with a generalized Fick-type relation for diffusivity due to vacancy migration in elastic media under tensile strain. The analytic model predicts an exponential dependence of diffusivity on strain of the form D(ɛ)=D(0)(1+ɛ)^2 e^αɛ/kT, where ɛ is the tensile strain component, D(0) is the usual Arrhenius diffusivity, and α is proportional to the vacancy formation energy.

  4. Tensile bond strength of composite to air-abraded dentin.

    PubMed

    Geitel, Birgit; Wischnewski, Regine; Jahn, Klaus-Roland; Barthel, R Claudia; Zimmer, Stefan; Roulet, Jean-François

    2004-01-01

    This study evaluated the influence of air abrasive treatment of dentin surfaces on the tensile bond strength between dentin and two different composite-adhesive-systems Multi-Purpose/Z100 and OptiBond FL/Herculite XR). The crowns of 200 maxillary central incisors were embedded in resin and then ground to expose a dentin surface 5 mm in diameter. The surfaces were etched or abraded by using a KCP 1000 device with different treatment conditions. Adhesive systems were applied according to the manufacturer's instructions and composite cylinders were bonded to the conditioned dentinal surface using a split mold. Tensile bond strength values and failure modes were then determined. Tensile bond strength values of the acid-etched dentin-composite-interface were significantly higher than for the interface between air-abraded dentin and composite, independent of the composite-adhesive-system used. The light microscopic evaluation showed mainly adhesive and combined adhesive-cohesive fractures. Significantly more adhesive fractures could be observed between abraded dentin and composite than between etched dentin and composite.

  5. Dynamic tensile-failure-induced velocity deficits in rock

    NASA Technical Reports Server (NTRS)

    Rubin, Allan M.; Ahrens, Thomas J.

    1991-01-01

    Planar impact experiments were employed to induce dynamic tensile failure in Bedford limestone. Rock disks were impacted with aluminum and polymethyl methacralate (PMMA) flyer plates at velocities of 10 to 25 m/s. Tensile stress magnitudes and duration were chosen so as to induce a range of microcrack growth insufficient to cause complete spalling of the samples. Ultrasonic P- and S-wave velocities of recovered targets were compared to the velocities prior to impact. Velocity reduction, and by inference microcrack production, occurred in samples subjected to stresses above 35 MPa in the 1.3 microsec PMMA experiments and 60 MPa in the 0.5 microsec aluminum experiments. Using a simple model for the time-dependent stress-intensity factor at the tips of existing flaws, apparent fracture toughnesses of 2.4 and 2.5 MPa sq rt m are computed for the 1.3 and 0.5 microsec experiments. These are a factor of about 2 to 3 greater than quasi-static values. The greater dynamic fracture toughness observed may result from microcrack interaction during tensile failure. Data for water-saturated and dry targets are indistinguishable.

  6. Tensile Forces Originating from Cancer Spheroids Facilitate Tumor Invasion.

    PubMed

    Kopanska, Katarzyna S; Alcheikh, Yara; Staneva, Ralitza; Vignjevic, Danijela; Betz, Timo

    2016-01-01

    The mechanical properties of tumors and the tumor environment provide important information for the progression and characterization of cancer. Tumors are surrounded by an extracellular matrix (ECM) dominated by collagen I. The geometrical and mechanical properties of the ECM play an important role for the initial step in the formation of metastasis, presented by the migration of malignant cells towards new settlements as well as the vascular and lymphatic system. The extent of this cell invasion into the ECM is a key medical marker for cancer prognosis. In vivo studies reveal an increased stiffness and different architecture of tumor tissue when compared to its healthy counterparts. The observed parallel collagen organization on the tumor border and radial arrangement at the invasion zone has raised the question about the mechanisms organizing these structures. Here we study the effect of contractile forces originated from model tumor spheroids embedded in a biomimetic collagen I matrix. We show that contractile forces act immediately after seeding and deform the ECM, thus leading to tensile radial forces within the matrix. Relaxation of this tension via cutting the collagen does reduce invasion, showing a mechanical relation between the tensile state of the ECM and invasion. In turn, these results suggest that tensile forces in the ECM facilitate invasion. Furthermore, simultaneous contraction of the ECM and tumor growth leads to the condensation and reorientation of the collagen at the spheroid's surface. We propose a tension-based model to explain the collagen organization and the onset of invasion by forces originating from the tumor.

  7. Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires

    NASA Astrophysics Data System (ADS)

    Zhu, Zhongyunshen; Song, Yuxin; Chen, Qimiao; Zhang, Zhenpu; Zhang, Liyao; Li, Yaoyao; Wang, Shumin

    2017-07-01

    We theoretically investigate highly tensile-strained Ge nanowires laterally on GaSb. Finite element method has been used to simulate the residual elastic strain in the Ge nanowire. The total energy increment including strain energy, surface energy, and edge energy before and after Ge deposition is calculated in different situations. The result indicates that the Ge nanowire on GaSb is apt to grow along 〈100〉 rather than 〈110〉 in the two situations and prefers to be exposed by {105} facets when deposited a small amount of Ge but to be exposed by {110} when the amount of Ge exceeds a critical value. Furthermore, the conduction band minima in Γ-valley at any position in both situations exhibits lower values than those in L-valley, leading to direct bandgap transition in Ge nanowire. For the valence band, the light hole band maxima at Γ-point is higher than the heavy hole band maxima at any position and even higher than the conduction band minima for the hydrostatic strain more than ˜5.0%, leading to a negative bandgap. In addition, both electron and hole mobility can be enhanced by owing to the decrease of the effective mass under highly tensile strain. The results suggest that biaxially tensile-strained Ge nanowires hold promising properties in device applications.

  8. Assessing the Applicability of Digital Image Correlation (DIC) Technique in Tensile Testing of Fabric Composites

    DTIC Science & Technology

    2013-02-01

    progression of strain on the tool side of the tensile sample. ....................................8 Figure 6. Results of the tensile testing of the basalt ...5 Table 2. The results of tensile testing for the basalt sample. ..........................................................5 Table 3. Line... basalt samples. .............................................................................10 1 1. Introduction Before novel structural

  9. Modeling elastic tensile fractures in snow using nonlocal damage mechanics

    NASA Astrophysics Data System (ADS)

    Borstad, C. P.; McClung, D. M.

    2011-12-01

    The initiation and propagation of tensile fractures in snow and ice are fundamental to numerous important physical processes in the cryosphere, from iceberg calving to ice shelf rift propagation to slab avalanche release. The heterogeneous nature of snow and ice, their proximity to the melting temperature, and the varied governing timescales typically lead to nonlinear fracture behavior which does not follow the predictions of Linear Elastic Fracture Mechanics (LEFM). Furthermore, traditional fracture mechanics is formally inapplicable for predicting crack initiation in the absence of a pre-existing flaw or stress concentration. An alternative to fracture mechanics is continuum damage mechanics, which accounts for the material degradation associated with cracking in a numerically efficient framework. However, damage models which are formulated locally (e.g. stress and strain are defined as point properties) suffer from mesh-sensitive crack trajectories, spurious localization of damage and improper fracture energy dissipation with mesh refinement. Nonlocal formulations of damage, which smear the effects of the material heterogeneity over an intrinsic length scale related to the material microstructure, overcome these difficulties and lead to numerically efficient and mesh-objective simulations of the tensile failure of heterogeneous materials. We present the results of numerical simulations of tensile fracture initiation and propagation in cohesive snow using a nonlocal damage model. Seventeen beam bending experiments, both notched and unnotched, were conducted using blocks of cohesive dry snow extracted from an alpine snowpack. Material properties and fracture parameters were calculated from the experimental data using beam theory and quasi-brittle fracture mechanics. Using these parameters, a nonlocal isotropic damage model was applied to two-dimensional finite element meshes of the same scale as the experiments. The model was capable of simulating the propagation

  10. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that

  11. Biaxial tensile testing and constitutive modeling of human supraspinatus tendon.

    PubMed

    Szczesny, Spencer E; Peloquin, John M; Cortes, Daniel H; Kadlowec, Jennifer A; Soslowsky, Louis J; Elliott, Dawn M

    2012-02-01

    The heterogeneous composition and mechanical properties of the supraspinatus tendon offer an opportunity for studying the structure-function relationships of fibrous musculoskeletal connective tissues. Previous uniaxial testing has demonstrated a correlation between the collagen fiber angle distribution and tendon mechanics in response to tensile loading both parallel and transverse to the tendon longitudinal axis. However, the planar mechanics of the supraspinatus tendon may be more appropriately characterized through biaxial tensile testing, which avoids the limitation of nonphysiologic traction-free boundary conditions present during uniaxial testing. Combined with a structural constitutive model, biaxial testing can help identify the specific structural mechanisms underlying the tendon's two-dimensional mechanical behavior. Therefore, the objective of this study was to evaluate the contribution of collagen fiber organization to the planar tensile mechanics of the human supraspinatus tendon by fitting biaxial tensile data with a structural constitutive model that incorporates a sample-specific angular distribution of nonlinear fibers. Regional samples were tested under several biaxial boundary conditions while simultaneously measuring the collagen fiber orientations via polarized light imaging. The histograms of fiber angles were fit with a von Mises probability distribution and input into a hyperelastic constitutive model incorporating the contributions of the uncrimped fibers. Samples with a wide fiber angle distribution produced greater transverse stresses than more highly aligned samples. The structural model fit the longitudinal stresses well (median R(2) ≥ 0.96) and was validated by successfully predicting the stress response to a mechanical protocol not used for parameter estimation. The transverse stresses were fit less well with greater errors observed for less aligned samples. Sensitivity analyses and relatively affine fiber kinematics suggest that

  12. Baseline blood oxygenation modulates response amplitude

    PubMed Central

    Lu, Hanzhang; Zhao, Chenguang; Ge, Yulin; Lewis-Amezcua, Kelly

    2008-01-01

    Although BOLD fMRI provides a useful tool for probing neuronal activities, large inter-subject variations in signal amplitude are commonly observed. Understanding the physiologic basis for these variations will have a significant impact on many fMRI studies. First, the physiologic modulator can be used as a regressor to reduce variations across subjects, thereby improving statistical power for detecting group differences. Second, if a pathologic condition or a drug treatment is shown to change fMRI responses, monitoring this modulatory parameter is useful in correctly interpreting the fMRI changes to neuronal deficits/recruitments. Here we present evidence that the task-evoked fMRI signals are modulated by baseline blood oxygenation. To measure global blood oxygenation, we used a recently developed technique, T2-Relaxation-Under-Spin-Tagging MRI, yielding baseline oxygenation of 63.7±7.2% in sagittal sinus with an estimation error of 1.3%. It was found that individuals with higher baseline oxygenation tend to have a smaller fMRI signal and vice versa. For every 10% difference in baseline oxygenation across subjects, the BOLD and cerebral blood flow signal differ by -0.4% and -30.0%, respectively, when using visual stimulation. TRUST MRI is a useful measurement for fMRI studies to control for the modulatory effects of baseline oxygenation that are unique to each subject. PMID:18666103

  13. Baseline estimation from simultaneous satellite laser tracking

    NASA Technical Reports Server (NTRS)

    Dedes, George C.

    1987-01-01

    Simultaneous Range Differences (SRDs) to Lageos are obtained by dividing the observing stations into pairs with quasi-simultaneous observations. For each of those pairs the station with the least number of observations is identified, and at its observing epochs interpolated ranges for the alternate station are generated. The SRD observables are obtained by subtracting the actually observed laser range of the station having the least number of observations from the interpolated ranges of the alternate station. On the basis of these observables semidynamic single baseline solutions were performed. The aim of these solutions is to further develop and implement the SRD method in the real data environment, to assess its accuracy, its advantages and disadvantages as related to the range dynamic mode methods, when the baselines are the only parameters of interest. Baselines, using simultaneous laser range observations to Lageos, were also estimated through the purely geometric method. These baselines formed the standards the standards of comparison in the accuracy assessment of the SRD method when compared to that of the range dynamic mode methods. On the basis of this comparison it was concluded that for baselines of regional extent the SRD method is very effective, efficient, and at least as accurate as the range dynamic mode methods, and that on the basis of a simple orbital modeling and a limited orbit adjustment. The SRD method is insensitive to the inconsistencies affecting the terrestrial reference frame and simultaneous adjustment of the Earth Rotation Parameters (ERPs) is not necessary.

  14. Salton Sea sampling program: baseline studies

    SciTech Connect

    Tullis, R.E.; Carter, J.L.; Langlois, G.W.

    1981-04-13

    Baseline data are provided on three species of fish from the Salton Sea, California. The fishes considered were the orange mouth corvina (Cynoscion xanthulus), gulf croaker (Bairdiella icistius) and sargo (Anisotremus davidsonii). Morphometric and meristic data are presented as a baseline to aid in the evaluation of any physiological stress the fish may experience as a result of geothermal development. Analyses were made on muscle, liver, and bone of the fishes sampled to provide baseline data on elemental tissue burdens. The elements measured were: As, Br, Ca, Cu, Fe, Ga, K, Mn, Mi, Pb, Rb, Se, Sr, Zn, and Zr. These data are important if an environmentally sound progression of geothermal power production is to occur at the Salton Sea.

  15. Biodiversity informatics and the plant conservation baseline.

    PubMed

    Paton, Alan

    2009-11-01

    Primary baseline data on taxonomy and species distribution, and its integration with environmental variables, has a valuable role to play in achieving internationally recognised targets for plant diversity conservation, such as the Global Strategy for Plant Conservation. The importance of primary baseline data and the role of biodiversity informatics in linking these data to other environmental variables are discussed. The need to maintain digital resources and make them widely accessible is an additional requirement of institutions who already collect and maintain this baseline data. The lack of resources in many species-rich areas to gather these data and make them widely accessible needs to be addressed if the full benefit of biodiversity informatics on plant conservation is to be realised.

  16. Atmospheric media effects on ARIES baseline determination

    NASA Technical Reports Server (NTRS)

    Wu, S. C.

    1981-01-01

    Different types of media effects on ARIES baseline determination are compared. The effectiveness of simple ionospheric calibration models are studied. To perform the covariance analysis, an ARIES observation sequence needs to be assumed. For the current purposes, the observation sequence is selected to be that of experiment 80D over the JPL/Goldstone baseline (approximately 180 km). This experiment consisted of 96 observations over a period of approximately 25 hours on March 25 to 26, 1980. It is found through covariance analyses that the component most sensitive to media depends heavily upon the correlation, between the two stations, of the media effects. It is also found that relying on the cancellation of ionospheric delays between the two ray paths of VLBI observations at S band results in a large error in baseline length determination. High degree removal of ionospheric effects is possible with a crude model, providing correct diurnal peak and minimum ionospheric levels are input.

  17. Geochemical baseline studies of soil in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  18. Mechanical properties of gold twinned nanocubes under different triaxial tensile rates

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Zhang, Guowei; Luo, Gang; Sun, Xiaoqing; Zhao, Jianwei

    2016-08-01

    The gold twinned nanocubes under different triaxial tensile rates are explored by molecular dynamics simulation. Hydrostatic stress and Mises stress are defined in order to understand triaxial stresses. Twin boundaries prevent dislocations between twin boundaries from developing and dislocation angles are inconspicuous, which causes little difference between triaxial stresses. The mechanical properties of the nanocubes under low and high tensile rates are different. The curves of nanocubes under high tensile rates are more abrupt than those under low tensile rates. When the tensile rate is extremely big, the loadings are out of the nanocubes and there are not deformation and fracture in the internal nanocubes.

  19. The Fermilab short-baseline neutrino program

    SciTech Connect

    Camilleri, Leslie

    2015-10-15

    The Fermilab short-baseline program is a multi-facetted one. Primarily it searches for evidence of sterile neutrinos as hinted at by the MiniBooNE and LSND results. It will also measure a whole suite of ν-Argon cross sections which will be very useful in future liquid argon long-baseline projects. The program is based on MicroBooNE, already installed in the beam line, the recently approved LAr1-ND and the future addition of the refurbished ICARUS.

  20. Long-baseline Neutrino Oscillation at DUNE

    NASA Astrophysics Data System (ADS)

    Worcester, Elizabeth; DUNE Collaboration Collaboration

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) is a long-baseline neutrino oscillation experiment with primary physics goals of determining the neutrino mass hierarchy and measuring δc P with sufficient sensitivity to discover CP violation in neutrino oscillation. CP violation sensitivity in DUNE requires careful understanding of systematic uncertainty, with contributions expected from uncertainties in the neutrino flux, neutrino interactions, and detector effects. In this presentation, we will describe the expected sensitivity of DUNE to long-baseline neutrino oscillation parameters, how various aspects of the experimental design contribute to that sensitivity, and the planned strategy for constraining systematic uncertainty in these measurements.

  1. Optical Long Baseline Interferometry News (OLBIN)

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.; Malbet, Fabien

    2010-07-01

    The Optical Long Baseline Interferometry News (OLBIN) is a website and forum for scientists, engineers, and students who share a common interest in long-baseline stellar interferometry. Through OLBIN you will find links to projects devoted to stellar interferometry, as well as news items, recent papers and preprints, notices of upcoming meetings, and resources for further research. This paper describes the history of the website, how it has evolved to serve the community, and the current plans for its future development. The website can be found at http://olbin.jpl.nasa.gov/.

  2. Baseline automotive gas turbine engine development program

    NASA Technical Reports Server (NTRS)

    Wagner, C. E. (Editor); Pampreen, R. C. (Editor)

    1979-01-01

    Tests results on a baseline engine are presented to document the automotive gas turbine state-of-the-art at the start of the program. The performance characteristics of the engine and of a vehicle powered by this engine are defined. Component improvement concepts in the baseline engine were evaluated on engine dynamometer tests in the complete vehicle on a chassis dynamometer and on road tests. The concepts included advanced combustors, ceramic regenerators, an integrated control system, low cost turbine material, a continuously variable transmission, power-turbine-driven accessories, power augmentation, and linerless insulation in the engine housing.

  3. Baseline Day: A Student Teaching Enhancement.

    ERIC Educational Resources Information Center

    Montgomery, Bette; Braught, Loran R.

    1996-01-01

    Describes Indiana State University's baseline day program, which helps establish a strong beginning upon which student teachers can build. Student teachers take full responsibility of the classroom for 1 day within the first 4-10 days of their assignment. Evaluations of student and cooperating teachers indicate the program benefits all involved.…

  4. On Internal Validity in Multiple Baseline Designs

    ERIC Educational Resources Information Center

    Pustejovsky, James E.

    2014-01-01

    Single-case designs are a class of research designs for evaluating intervention effects on individual cases. The designs are widely applied in certain fields, including special education, school psychology, clinical psychology, social work, and applied behavior analysis. The multiple baseline design (MBD) is the most frequently used single-case…

  5. Preliminary design study of a baseline MIUS

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.; Shields, V. E.; Rippey, J. O.; Roberts, H. L.; Wadle, R. C.; Wallin, S. P.; Gill, W. L.; White, E. H.; Monzingo, R.

    1977-01-01

    Results of a conceptual design study to establish a baseline design for a modular integrated utility system (MIUS) are presented. The system concept developed a basis for evaluating possible projects to demonstrate an MIUS. For the baseline study, climate conditions for the Washington, D.C., area were used. The baseline design is for a high density apartment complex of 496 dwelling units with a planned full occupancy of approximately 1200 residents. Environmental considerations and regulations for the MIUS installation are discussed. Detailed cost data for the baseline MIUS are given together with those for design and operating variations under climate conditions typified by Las Vegas, Nevada, Houston, Texas, and Minneapolis, Minnesota. In addition, results of an investigation of size variation effects, for 300 and 1000 unit apartment complexes, are presented. Only conceptual aspects of the design are discussed. Results regarding energy savings and costs are intended only as trend information and for use in relative comparisons. Alternate heating, ventilation, and air conditioning concepts are considered in the appendix.

  6. National Cyberethics, Cybersafety, Cybersecurity Baseline Study

    ERIC Educational Resources Information Center

    Education Digest: Essential Readings Condensed for Quick Review, 2009

    2009-01-01

    This article presents findings from a study that explores the nature of the Cyberethics, Cybersafety, and Cybersecurity (C3) educational awareness policies, initiatives, curriculum, and practices currently taking place in the U.S. public and private K-12 educational settings. The study establishes baseline data on C3 awareness, which can be used…

  7. 75 FR 47291 - Notice of Baseline Filings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Baseline Filings July 29, 2010. ONEOK Gas Storage, L.L.C Docket No. PR10-67-000. Atmos Energy--Kentucky/Mid-States Division Docket No. PR10-68-000. Magic Valley...

  8. The Geobiosphere Emergy Baseline: A synthesis

    EPA Science Inventory

    Following the Eighth Biennial Emergy Conference (January, 2014), the need for revisiting the procedures and assumptions used to compute the Geobiosphere Emergy Baseline (GEB) emerged as a necessity to strengthen the method of Emergy Accounting and remove sources of ambiguity and ...

  9. MPCP Longitudinal Educational Growth Study Baseline Report

    ERIC Educational Resources Information Center

    Witte, John F.; Wolf, Patrick J.; Cowen, Joshua M.; Fleming, David J.; Lucas-McLean, Juanita

    2008-01-01

    This report focuses on the initial design, implementation and baseline results of the five-year Longitudinal Educational Growth Study (LEGS) of the Milwaukee Parental Choice Program (MPCP) being conducted by the School Choice Demonstration Project (SCDP). The LEGS will be the first evaluation of the participant effects of the MPCP using…

  10. Waste management project technical baseline description

    SciTech Connect

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  11. The Geobiosphere Emergy Baseline: A synthesis

    EPA Science Inventory

    Following the Eighth Biennial Emergy Conference (January, 2014), the need for revisiting the procedures and assumptions used to compute the Geobiosphere Emergy Baseline (GEB) emerged as a necessity to strengthen the method of Emergy Accounting and remove sources of ambiguity and ...

  12. How Valid Are the Portland Baseline Essays?

    ERIC Educational Resources Information Center

    Martel, Erich

    1991-01-01

    Portland, Oregon's "African-American Baseline Essays," widely used in creating multicultural curricula, inaccurately depicts ancient Egyptians as black people and Olmec civilization as derived from African influences. The authors advance racial theories long abandoned by mainline Africa scholars, attribute mystical powers to pyramids,…

  13. 75 FR 49918 - Notice of Baseline Filings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Baseline Filings August 6, 2010. Enbridge Pipelines (East Texas) L.P Docket No. PR10-71-000. Pacific Gas and Electric Company Docket No. PR10-72-000. Kinder Morgan...

  14. Solid Waste Program technical baseline description

    SciTech Connect

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  15. Baseline and Multimodal UAV GCS Interface Design

    DTIC Science & Technology

    2013-03-01

    partition in the GCS experiment room ...................................................................... 9 Figure 3. Questionnaire for qualifications...reporting. The question on age was added to the existing questionnaire in the training session. In the training session, participants were asked to complete...the questionnaire after two practice scenarios were played. The questionnaire was used in running of the baseline condition. The second change was

  16. National Cyberethics, Cybersafety, Cybersecurity Baseline Study

    ERIC Educational Resources Information Center

    Education Digest: Essential Readings Condensed for Quick Review, 2009

    2009-01-01

    This article presents findings from a study that explores the nature of the Cyberethics, Cybersafety, and Cybersecurity (C3) educational awareness policies, initiatives, curriculum, and practices currently taking place in the U.S. public and private K-12 educational settings. The study establishes baseline data on C3 awareness, which can be used…

  17. Space Station Freedom baseline operations concept

    NASA Technical Reports Server (NTRS)

    Paules, Granville

    1991-01-01

    The Baseline Operations Concept is designed to support the multiflight-multistage assembly sequence and post-Permanent Manned Configuration (PMC) era for the Space Station Freedom (SSF). Initial implementation of procedures and systems are consistent with experience gained during the operation of the Shuttle and Spacelab.

  18. Statistical issues in long baseline neutrino physics

    NASA Astrophysics Data System (ADS)

    Tonazzo, Alessandra; LBNO Collaboration

    2015-04-01

    An animated debate has been ongoing in the neutrino community on how to estimate and quote the expected sensitivity of future long-baseline neutrino experiments to key parameters such as Mass Hierarchy or CP violation. We will present an overview of some items covered by recent papers and will detail the approach chosen by the LBNO Collaboration to present its results.

  19. Tensile behavior of pb-sn solder/cu joints

    NASA Astrophysics Data System (ADS)

    Quan, Lenora; Frear, Darrel; Grivas, Dennis; Morris, J. W.

    1987-05-01

    Solders of nominal 95Pb-5Sn and 60Sn-40Pb were used to join Cu plates. The effect of ternary additions of In, Ag, Sb, and Bi to the near-eutectic solder were also investigated. Bulk solder and interfacial joint microstructures were characterized for each solder alloy. The solder joints were strained to failure in tension; joint strength and failure mode were determined. 95Pb-5Sn/Cu and 60Sn-40Pb/Cu specimens were tested both as-processed and after reflow. 95Pb-5Sn/Cu as-processed and reflow specimens failed in tension in a ductile mode. Voids initiated at β-Sn precipitates in the as-processed specimens and at the Cu3Sn intermetallic in the reflow specimens. 60Sn-40Pb/Cu failed transgranularly through the Cu6Sn5 intermetallic in both the as-processed and reflow conditions. The joint tensile strength of the reflow specimens was approximately half that of the as-processed specimens for both the high-Pb and near-eutectic alloys. The Cu6Sn{5} intermetallic dominated the tensile failure mode of the near-eutectic solder/Cu joints. The fracture path of the near-eutectic alloys with ternary additions depended on the presence of Cu6Sn5 rods in the solder within the Cu plates. Specimens with ternary additions of In and Ag contained only interfacial intermetallics and exhibited interfacial failure at the Cu6Sn5. Joints manufactured with ternary additions of Sb and Bi contained rods of Cu6Sn5 within the solder. Tensile failure of the Sb and Bi specimens occurred through the solder at the Cu6Sn5 rods.

  20. Effect of storage on tensile material properties of bovine liver.

    PubMed

    Lu, Yuan-Chiao; Kemper, Andrew R; Untaroiu, Costin D

    2014-01-01

    Cadaveric tissue models play an important role in the assessment and optimization of novel restraint systems for reducing abdominal injuries. However, the effect of tissue preservation by means of freezing on the material properties of abdominal tissues remains unknown. The goal of this study was to investigate the influence of frozen storage time on the material responses of the liver parenchyma in tensile loading. Specimens from ten bovine livers were equally divided into three groups: fresh, 30-day frozen storage, and 60-day frozen storage. All preserved specimens were stored at -12°C. Dog-bone specimens from each preservation group were randomly assigned to one of three strain rates (0.01s(-1), 0.1s(-1), and 1.0s(-1)) and tested to failure in tensile loading. The local material response recorded at the tear location and the global material response of the whole specimen of the liver parenchyma specimens were investigated based on the experimental data and optimized analytical material models. The local and global failure strains decreased significantly between fresh specimens and specimens preserved for 30 days (p<0.05), and between fresh specimens and specimens preserved for 60 days (p<0.05) for all three loading rates. Changes on the material model parameters were also observed between fresh and preserved specimens. Preservation by means of frozen storage was found to affect both the material and failure response of bovine liver parenchyma in tensile loading. The stiffness of the tissue increased with increased preservation time and increased strain rate. In summary, significant changes (p<0.05) between the failure strain of previously frozen liver parenchyma samples and fresh samples were demonstrated at both global and local levels in this study. In addition, nonlinear and viscoelastic characteristics of the liver parenchyma were observed in tension for both fresh and preserved samples.

  1. Tensile Forces Originating from Cancer Spheroids Facilitate Tumor Invasion

    PubMed Central

    Kopanska, Katarzyna S.; Alcheikh, Yara; Staneva, Ralitza; Vignjevic, Danijela; Betz, Timo

    2016-01-01

    The mechanical properties of tumors and the tumor environment provide important information for the progression and characterization of cancer. Tumors are surrounded by an extracellular matrix (ECM) dominated by collagen I. The geometrical and mechanical properties of the ECM play an important role for the initial step in the formation of metastasis, presented by the migration of malignant cells towards new settlements as well as the vascular and lymphatic system. The extent of this cell invasion into the ECM is a key medical marker for cancer prognosis. In vivo studies reveal an increased stiffness and different architecture of tumor tissue when compared to its healthy counterparts. The observed parallel collagen organization on the tumor border and radial arrangement at the invasion zone has raised the question about the mechanisms organizing these structures. Here we study the effect of contractile forces originated from model tumor spheroids embedded in a biomimetic collagen I matrix. We show that contractile forces act immediately after seeding and deform the ECM, thus leading to tensile radial forces within the matrix. Relaxation of this tension via cutting the collagen does reduce invasion, showing a mechanical relation between the tensile state of the ECM and invasion. In turn, these results suggest that tensile forces in the ECM facilitate invasion. Furthermore, simultaneous contraction of the ECM and tumor growth leads to the condensation and reorientation of the collagen at the spheroid’s surface. We propose a tension-based model to explain the collagen organization and the onset of invasion by forces originating from the tumor. PMID:27271249

  2. Tensile behavior of irradiated manganese-stabilized stainless steel

    SciTech Connect

    Klueh, R.L.

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  3. The effect of grain size on dynamic tensile extrusion behaviour

    NASA Astrophysics Data System (ADS)

    Park, Leeju; Kim, Hack Jun; Kim, Seok Bong

    2015-09-01

    Dynamic tensile extrusion (DTE) tests were conducted on coarse grained and ultrafine grained (UFG) OFHC Cu, Interstitial free (IF) Steel, and pure Ta. Equal channel angular pressing (ECAP) of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm) to the conical extrusion die at a speed of ˜500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and compared with each other. The DTE fragmentation behavior of CG and UFG was numerically simulated by the LS-DYNA FEM code.

  4. Strain rate effects on tensile strength of iron green bodies

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Kuroyanagi, Yuki; Häggblad, Hans-Åke; Jonsén, Pär; Gustafsson, Gustaf

    2015-09-01

    Impact tensile strength of iron green bodies with densities of 7.2 and 7.4 g/cm3 was examined by Brazilian test using the split-Hopkinson pressure bar (Kolsky bar) method. The powder material used for the experiments was a press-ready premix containing Distaloy AE, graphite, and lubricant. During dynamic compression, the failure behavior of specimens was observed using a high-speed video camera. The failure stress and failure behavior of dynamic compressive tests were compared with those of static compressive tests.

  5. Physical characteristics affecting the tensile failure properties of compact bone.

    PubMed

    Currey, J D

    1990-01-01

    Compact bone specimens from a wide variety of reptiles, birds, and mammals were tested in tension, and their failure properties related to mineral volume fraction, porosity and histological orientation. The principal findings were that the ultimate strain and the work under the stress-strain curve declined sharply with mineralisation, as did the stress and strain appearing after the specimen had yielded. Ultimate tensile strength was not simply related to any combination of the possible explanatory variables, but some relatively poorly mineralised bones, notably antlers, had high stresses at failure. These high strengths were allowed by a great increase in stress after the bones had yielded at quite low stresses.

  6. Tensile and fatigue behavior of tungsten/copper composites

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Gabb, Timothy P.; Kim, Y. S.

    1989-01-01

    Work on W/Cu unidirectional composites was initiated to study the behavior of this ductile-ductile composite system under thermomechanical fatigue and to examine the applicability of fatigue-life prediction methods for thermomechanical fatigue of this metal matrix composite. The first step was to characterize the tensile behavior of four ply, 10 vol. percent W/Cu plates at room and elevated temperatures. Fatigue tests were conducted in load control on 0 degree specimens at 260 C. The maximum cyclic stress was varied but the minimum cyclic stress was kept constant. All tests were performed in vacuum. The strain at failure increased with increasing maximum cyclic stress.

  7. Predicting Tensile Strengths of Boron/Aluminum Composites

    NASA Technical Reports Server (NTRS)

    Decarlo, J. A.

    1982-01-01

    To develop predictive theory to account for time/temperature effect of B/A1 composites, series of deformation and fracture studies was performed on commercial boron fibers over wide ranges of stress, stress application time, and temperature. By combining these single fiber results with fracture theory for metal matrix composites, design formulas were derived that describe B/A1 composite tensile and stress rupture strengths as function of time and temperature. Using derived formulas, calculated and experimental results agree to within 3 percent.

  8. Achieving large uniform tensile ductility in nanocrystalline metals.

    PubMed

    Wang, Y M; Ott, R T; Hamza, A V; Besser, M F; Almer, J; Kramer, M J

    2010-11-19

    Synchrotron x-ray diffraction and high-resolution electron microscopy revealed the origin of different strain hardening behaviors (and dissimilar tensile ductility) in nanocrystalline Ni and nanocrystalline Co. Planar defect accumulations and texture evolution were observed in Co but not in Ni, suggesting that interfacial defects are an effective passage to promote strain hardening in truly nanograins. Twinning becomes less significant in Co when grain sizes reduce to below ~15 nm. This study offers insights into achieving excellent mechanical properties in nanocrystalline materials.

  9. Tensile Yielding of Multi-Wall Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, Kyeongjae; Srivastava, Deepak; Parks, John W. (Technical Monitor)

    2002-01-01

    The tensile yielding of multiwall carbon nanotubes (MWCNTs) has been studied using Molecular Dynamics simulations and a Transition State Theory based model. We find a strong dependence of the yielding on the strain rate. A critical strain rate has been predicted above/below which yielding strain of a MWCNT is larger/smaller than that of the corresponding single-wall carbon nanotubes. At experimentally feasible strain rate of 1% /hour and T = 300K, the yield strain of a MWCNT is estimated to be about 3-4 % higher than that of an equivalent SWCNT (Single Wall Carbon Nanotube), in good agreement with recent experimental observations.

  10. Tensile failure of water due to shock wave interactions

    NASA Astrophysics Data System (ADS)

    Boteler, J. M.; Sutherland, G. T.

    2004-12-01

    A series of low stress shock impact experiments were performed on water to examine the dynamic response under tension and establish a lower bound for water rupture or cavitation threshold. The experimental cell configuration permitted particle velocity measurements at the water-air free surface separated by a 5-μm-thick aluminized Mylar diaphragm. Water samples were triply distilled, de-ionized, and degassed prior to experiments. The average tensile strength for shock-induced cavitation in the water was found to be 8.7±0.2MPa. Experiments are compared with hydrocode simulations using a simple fracture criterion and published experimental data.

  11. Tensile and Microindentation Stress-Strain Curves of Al-6061

    SciTech Connect

    Weaver, Jordan S; Khosravani, Ali; Castillo, Andrew; Kalidind, Surya R

    2016-07-13

    Recent spherical microindentation stress-strain protocols were developed and validated on Al-6061 (DOI: 10.1186/s40192-016-0054-3). The scaling factor between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9. The microindentation stress-strain protocols were then applied to a microstructurally graded sample in an effort to extract high throughput process-property relationships. The tensile and microindentation force-displacement and stress-strain data are presented in this data set.

  12. Microstructure evolution during tensile loading histories of a polyurea

    SciTech Connect

    Rinaldi, R.G.; Boyce, M.C.; Weigand, S.J.; Londono, D.J.; Guise, M.W.

    2012-02-07

    The evolution in the hard/soft domain microstructure of an elastomeric-like polyurea during different tensile loading histories was studied using in situ small- and wide-angle X-ray scattering (SAXS/WAXS). The nonlinear stress-strain behavior is initially stiff with a rollover yield to a more compliant response; unloading is highly nonlinear showing substantial hysteresis while also exhibiting significant recovery. Reloading reveals a substantially more compliant 'softened' behavior and dramatically reduced hysteresis. WAXS peaks monitor characteristic dimensions of regular features within the hard domains; the peak location remains unchanged with tensile deformation indicating no separation of the internal structure within a domain, but the peak intensity becomes anisotropic with deformation evolving in a reversible manner consistent with orientation due to stretch. The SAXS profiles provide information between major hard domains. SAXS peaks are found to shift with tensile loading in a relatively affine manner up to a tensile true strain of {approx}0.4, which, using a Bragg reduction to aid interpretation, reveals an axial increase and a transverse decrease in interdomain spacings; this evolution is reversible for strains less than {approx}0.4. Increasing axial strain beyond a true strain of {approx}0.4 is accompanied by a dramatic, progressive, and irreversible reduction in axial Bragg spacing, indicating a breakdown in the hard domain aggregate network structure. A four-point pattern is seen to develop during stretching. The breakdown in networked structure during a first load cycle gives a new structure for subsequent load cycles, which is seen to evolve in a reversible manner for strains less than or equal to the prior maximum strain. However, for strains exceeding the prior maximum strain excursion, additional breakdown is found. These SAXS results show that a breakdown in the hard domain aggregate network structure is a governing mechanism for the large

  13. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    Necessary to the development and understanding of brittle fiber reinforced composites is a means to statistically describe fiber strength and strain-to-failure behavior. A statistical characterization for multicomponent brittle fibers is presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  14. Refined Estimation Of Thermal Tensile Stresses In Bolts

    NASA Technical Reports Server (NTRS)

    Rash, Larry C.

    1994-01-01

    Thermal changes in tensile stresses and strains in bolt and in corresponding compressive stresses and strains in bolted material estimated more accurately by use of equations incorporating two refinements over previous equations. Elasticity of bolted material and radial thermal expansion also taken into account. Refined equations improve design and analysis of bolted joints assembled at one temperature (e.g., room temperature) and in which specified minimum tension must be maintained (and/or specified maximum tension not exceeded) at higher or lower operational temperature.

  15. Refined Estimation Of Thermal Tensile Stresses In Bolts

    NASA Technical Reports Server (NTRS)

    Rash, Larry C.

    1994-01-01

    Thermal changes in tensile stresses and strains in bolt and in corresponding compressive stresses and strains in bolted material estimated more accurately by use of equations incorporating two refinements over previous equations. Elasticity of bolted material and radial thermal expansion also taken into account. Refined equations improve design and analysis of bolted joints assembled at one temperature (e.g., room temperature) and in which specified minimum tension must be maintained (and/or specified maximum tension not exceeded) at higher or lower operational temperature.

  16. Tensile Properties of Poly (N-vinyl caprolactam) Gels

    NASA Technical Reports Server (NTRS)

    Morgret, Leslie D.; Hinkley, Jeffrey A.

    2004-01-01

    N-vinyl caprolactam was copolymerized with ethylene glycol dimethacrylate using a free-radical initiator in alcohol/water solution. The resulting gels were thermally-responsive in water, undergoing an approximate fivefold reversible volume shrinkage between room temperature and ca. 50 C. Tensile testing showed that the stress-strain behavior was qualitatively different in the collapsed state above the temperature-induced transition. At the higher temperature, gels were stiffer, more ductile, and showed greater time dependence. Implications for the design of gel actuators are briefly discussed.

  17. On the off-axis tensile test for unidirectional composites

    NASA Technical Reports Server (NTRS)

    Nemeth, M. P.; Herakovich, C. T.; Post, D.

    1982-01-01

    The off axis tensile test was examined experimentally to obtain actual displacement fields over the surface of graphite polyimide coupon specimens. The experimental results were compared with approximate analytical solutions and generated finite element results. An optical method of high sensitivity moire interferometry was used to determine the actual displacements to high precision. The approximate analytical solution and the finite element results compare very favorably with the measured centerline displacements in the test section, and the finite element displacement fields provide excellent agreement with the moire displacements throughout the specimen. A 15 degree fiber orientation and coupon aspect ratios of 5 and 15 are presented.

  18. Accelerated Best Basis Inventory Baselining Task

    SciTech Connect

    SASAKI, L.M.

    2001-10-19

    The baselining effort was recently proposed to bring the Best-Basis Inventory (BBI) and Question No.8 of the Tank Interpretive Report (TIR) for all 177 tanks to the current standards and protocols and to prepare a TIR Question No.8 if one is not already available. This plan outlines the objectives and methodology of the accelerated BBI baselining task. BBI baselining meetings held during December 2000 resulted in a revised BBI methodology and an initial set of BBI creation rules to be used in the baselining effort. The objectives of the BBI baselining effort are to: (1) Provide inventories that are consistent with the revised BBI methodology and new BBI creation rules. (2) Split the total tank waste in each tank into six waste phases, as appropriate (Supernatant, saltcake solids, saltcake liquid, sludge solids, sludge liquid, and retained gas). In some tanks, the solids and liquid portions of the sludge and/or saltcake may be combined into a single sludge or saltcake phase. (3) Identify sampling events that are to be used for calculating the BBIs. (4) Update waste volumes for subsequent reconciliation with the Hanlon (2001) waste tank summary. (5) Implement new waste type templates. (6) Include any sample data that might have been unintentionally omitted in the previous BBI and remove any sample data that should not have been included. Sample data to be used in the BBI must be available on TWINS. (7) Ensure that an inventory value for each standard BBI analyte is provided for each waste component. Sample based inventories for supplemental BBI analytes will be included when available. (8) Provide new means and confidence interval reports if one is not already available and include uncertainties in reporting inventory values.

  19. 40 CFR 74.20 - Data for baseline and alternative baseline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.20 Data for baseline and alternative baseline. (a) Acceptable data. (1) The designated representative of a combustion... based on such data. (2) The following data shall be submitted for the combustion source for the...

  20. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  1. Tensile fracture characterization of braze joined copper-to-CFC coupon assemblies

    NASA Astrophysics Data System (ADS)

    Trester, P. W.; Valentine, P. G.; Johnson, W. R.; Chin, E.; Reis, E. E.; Colleraine, A. P.

    1996-10-01

    A vacuum brazing process was used to join a broad spectrum of carbon-fiber reinforced carbon matrix composite (CFC) materials, machined into cylindrical coupons, between coupons of oxygen-free copper, the braze alloy was a copper-base alloy which contained only low activation elements (Al, Si, and Ti) relative to a titanium baseline specification. This demonstration was of particular importance for plasma facing components (PFCs) under design for use in the Tokamak Physics Experiment (TPX); the braze investigation was conducted by General Atomics for the Princeton Plasma Physics Laboratory. A tensile test of each brazed assembly was conducted. The results from the braze processing, testing, and fracture characterization studies of this reporting support the use of CFC's of varied fiber architecture and matrix processing in PFC designs for TPX. Further, the copper braze alloy investigated is now considered to be a viable candidate for a low-activation bond design. The prediction of plasma disruption-induced loads on the PFCs in TPX requires that joint strength between CFC tiles and their copper substrate be considered in design analysis and CFC selection.

  2. Baseline Neurocognitive Performance in Professional Lacrosse Athletes

    PubMed Central

    Plancher, Kevin D.; Brooks-James, Ariana; Nissen, Carl W.; Diduch, B. Kent; Petterson, Stephanie C.

    2014-01-01

    Background: Concussions have become a major public health concern for both youth and professional athletes. The long-term consequences of concussion can be debilitating or even life threatening. To reduce these concerns, baseline neurocognitive performance can aid decision making in postconcussion recovery and return to play for athletes sustaining concussions. To date, these data are not available for lacrosse athletes. Purpose: To present baseline neurocognitive performance for Major League Lacrosse (MLL) players and to determine differences between athletes with and without a history of concussion. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A retrospective review was conducted of Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) scores from MLL players who completed baseline testing from June 2010 to June 2011. Inclusion required a valid baseline test and no history of concussion in the 3 months prior to testing. Means ± standard deviations were computed for all demographic variables and ImPACT composite scores including visual and verbal memory, reaction time, and visual motor processing speed. Independent-samples t tests were used to determine differences between athletes with and without a history of concussion. Results: Valid baseline ImPACT testing was available for 235 MLL athletes (mean age, 25.1 ± 3.0 years). Forty percent of MLL athletes (n = 94) reported a history of concussion, with 14% of those (n = 13) reporting a history of 3 or more previous concussions. There were no differences on any demographic variables between MLL athletes with and without a history of concussion. MLL athletes with a history of concussion had lower ImPACT composite scores than those without a history of concussion, although only the verbal memory composite was found to be statistically significant (MLL with concussion, 83.2 ± 10.8 vs MLL without concussion, 86.9 ± 9.5; P = .007). Conclusion: This study establishes baseline Im

  3. Tensile bond strength between custom tray and elastomeric impression material.

    PubMed

    Maruo, Yukinori; Nishigawa, Goro; Oka, Morihiko; Minagi, Shogo; Irie, Masao; Suzuki, Kazuomi

    2007-05-01

    The aim of this study was to investigate how to achieve sufficient and stable adhesive strength between impression material and tray. Impression materials were molded between autopolymerizing resin columns, and tensile strength was measured as a function of these factors: tray storage time (1, 2, 4, 7, and 10 days), adhesive drying time (0, 1, 5, 10, and 15 minutes), and tray surface roughness (air abrasion, bur-produced roughness, and no treatment). Tensile bond strength was not affected by tray storage time throughout the entire evaluation period of 10 days. As for tray adhesive drying time, Reprosil and Exaimplant yielded extremely low values for drying times of 10 minutes or less (P<0.05), while Imprint II and Impregum were not influenced by drying time. Vinyl polysiloxane achieved the highest adhesive strength with bur-produced roughness, which was significantly higher than with air abrasion or no treatment (P<0.05), whereas polyether achieved the lowest value with bur-produced roughness (P<0.05). It was concluded that surface treatment of custom tray should be adapted to the type of impression material used to achieve optimum bond strength.

  4. Lifetimes of fiber composites under sustained tensile loading

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

    1977-01-01

    Results are presented for a study intended to summarize lifetime data on several fiber/epoxy composite materials subjected to sustained uniaxial tensile loading, to report preliminary results of an accelerated test method for predicting the life of simple composites, and to describe related work in progress on pressure vessels and other filament-wound structures. The lifetime performance of the tested composites was compared by plotting the percent of ultimate strength (applied fiber stress normalized with respect to fiber failure stress in a composite) versus lifetime. In terms of performance in long-term tensile applications, the tested composites are ranked in the following order: graphite/epoxy, Be wire/epoxy, Aramid/epoxy, and S-glass/epoxy. The accelerated test using temperature and stress to simulate the passage of time proves to be encouraging, at least in the case of the Aramid/epoxy composite. The potential of a statistical analysis based on Weibull distribution analyses or a power law relationship is demonstrated.

  5. In situ tensile and creep testing of lithiated silicon nanowires

    SciTech Connect

    Boles, Steven T.; Kraft, Oliver; Thompson, Carl V.; Mönig, Reiner

    2013-12-23

    We present experimental results for uniaxial tensile and creep testing of fully lithiated silicon nanowires. A reduction in the elastic modulus is observed when silicon nanowires are alloyed with lithium and plastic deformation becomes possible when the wires are saturated with lithium. Creep testing was performed at fixed force levels above and below the tensile strength of the material. A linear dependence of the strain-rate on the applied stress was evident below the yield stress of the alloy, indicating viscous deformation behavior. The observed inverse exponential relationship between wire radius and strain rate below the yield stress indicates that material transport was controlled by diffusion. At stress levels approaching the yield strength of fully lithiated silicon, power-law creep appears to govern the strain-rate dependence on stress. These results have direct implications on the cycling conditions, rate-capabilities, and charge capacity of silicon and should prove useful for the design and construction of future silicon-based electrodes.

  6. In situ tensile fracture toughness of surficial cohesive marine sediments

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce D.; Barry, Mark A.; Boudreau, Bernard P.; Jumars, Peter A.; Dorgan, Kelly M.

    2012-02-01

    This study reports the first in situ measurements of tensile fracture toughness, K IC, of soft, surficial, cohesive marine sediments. A newly developed probe continuously measures the stress required to cause tensile failure in sediments to depths of up to 1 m. Probe measurements are in agreement with standard laboratory methods of K IC measurements in both potter's clay and natural sediments. The data comprise in situ depth profiles from three field sites in Nova Scotia, Canada. Measured K IC at two muddy sites (median grain size of 23-50 μm) range from near zero at the sediment surface to >1,800 Pa m1/2 at 0.2 m depth. These profiles also appear to identify the bioturbated/mixed depth. K IC for a sandy site (>90% sand) is an order of magnitude lower than for the muddy sediments, and reflects the lack of cohesion/adhesion. A comparison of K IC, median grain size, and porosity in muddy sediments indicates that consolidation increases fracture strength, whereas inclusion of sand causes weakening; thus, sand-bearing layers can be easily identified in K IC profiles. K IC and vane-measured shear strength correlate strongly, which suggests that the vane measurements should perhaps be interpreted as shear fracture toughness, rather than shear strength. Comparison of in situ probe-measured values with K IC of soils and gelatin shows that sediments have a K IC range intermediate between denser compacted soils and softer, elastic gelatin.

  7. Incipient and Progressive Damage in Polyethylene Under Extreme Tensile Conditions

    SciTech Connect

    Furmanski, Jevan; Brown, Eric; Trujillo, Carl P.; Martinez, Daniel Tito; Gray, George T. III

    2012-06-07

    The Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) test was developed at LANL by Gray and coworkers to probe the tensile response of materials at large strains (>1) and high strain-rates (>1000/s) by firing projectiles through a conical die at 300-700 m/s. This technique has recently been applied to various polymers, such as the fluoropolymers PTFE (Teflon) and the chemically similar PCTFE, which respectively exhibited catastrophic fragmentation and distributed dynamic necking. This work details investigations of the Dyn-Ten-Ext response of high density polyethylene, both to failure and sub-critical conditions. At large extrusion ratios ({approx}7.4) and high velocities, such as those previously employed, HDPE catastrophically fragmented in a craze-like manner in the extruded jet. At more modest extrusion ratios and high velocities the specimen extruded a stable jet that ruptured cleanly, and at lower velocities was recovered intact after sustaining substantial internal damage. Thermomechanical finite element simulations showed that the damage corresponded to a locus of shear stress in the presence of hydrostatic tension. X-ray computed tomography corroborated the prediction of a shear damage mechanism by finding the region of partially damaged material to consist of macroscopic shear-mode cracks nearly aligned with the extrusion axis, originating from the location of damage inception.

  8. Tensile/Shear Behaviour of Multi-stitched/Nano Composites

    NASA Astrophysics Data System (ADS)

    Bilisik, Kadir; Kaya, Gaye

    2017-02-01

    This study aims to investigate tensile/shear behavior of multi-stitched/nano composites. For this purpose, non-stitched, non-stitched/nano, multi-stitched and multi-stitched/nano composites were made. It was shown that the warp/filling tensile strength and modulus of composites were slightly reduced in both multi-stitched and multi-stitched/nano composites due to fiber breakage that resulted from the multi-stitching process. In addition, there were not significant differences between non-stitched and multi-stitched structures. The non-stitched/nano composite showed slightly higher in-plane shear strength compared with the non-stitched composite. The in-plane shear strength of the non-stitched composite, on the other hand, increased steadily compared to the multi-stitched composite because of the stitching process and the interface between the stitching yarn and polymer matrix. Stitching significantly improved the delamination resistance in the multi-stitched and multi-stitched/nano composites experienced a small amount of damaged areas. The incorporation of nano silica improved the damage resistance of multi-stitched composites. Therefore, the damaged tolerance composite was developed with stitching and the addition of the nano silica for various industrial applications, such as electronic boards.

  9. Mechanochromic behavior of a luminescent silicone rubber under tensile deformation

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Ju; Lee, Sang Hwan; Jeong, Kwang-Un; Nah, Changwoon

    2016-09-01

    A novel mechanochromic elastomer based on silicone rubber and coumarin 6 dye have been prepared with various concentrations of the dye ranges from 2wt.% to a maximum of 5wt.% by solution mixing technique. After evaporating the solvent, cured samples were prepared as thin films using compression molding at 170° C. The optimum composition of the dye in rubber composites was determined based on the mechanochromic performance characterized with ultraviolet/visible (UV/Vis) spectrometer, x-ray diffraction (XRD) and spectrofluorometer (FL). The UV/Vis spectrometer monitors the dye aggregation in polymer film during the tensile deformation. The XRD monitors the change in size of dye aggregates. The FL monitors the optical response during tensile deformation due to the re-arrangement of dyes. As increasing a mechanical deformation to the polymeric composite film, UV/Vis absorption intensity was decreased and the FL emission wavelength was moved to decrease wavelength because of breaking dye aggregations. Also, XRD intensity peak was decreased, which dye aggregations were broken after mechanical deformation.

  10. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    SciTech Connect

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-28

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr{sub 2}O{sub 3} decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  11. Through-the-thickness tensile strength of textile composites

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Ifju, Peter G.

    1994-01-01

    A series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D and 3D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. The through-the-thickness deformations were characterized using moire interferometry. Failures were significantly different between the 2D and 3D materials. The 2D materials delaminated between layers due to out-of-plane tensile stresses. The strength of the 2D textile composites did not increase relative to the tapes. The 3D materials failed due to the formation of radial cracks caused by high circumferential stresses along the inner radius. A circumferential crack similar to the 2D materials produced the final failure. Final failure in the 3D materials occurred at a lower bending moment than in other materials. The early failures were caused by radial crack formation rather than low through-the-thickness strength.

  12. Effect of voids on the tensile properties of vanadium nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Deng, Huiqiu; Xiao, Shifang; Hu, Wangyu

    2013-05-01

    Vanadium alloys are one of the candidates for first-wall materials. Due to the impact of high energy neutrons and transmutation helium during a fusion reaction, voids will be formed and the mechanical properties of the first-wall materials will be degraded. It is necessary to investigate the effect of voids on the mechanical behavior of the material. In the present paper, the tensile properties of vanadium nanowires with a void have been studied with molecular dynamics simulations. During a deformation process, the generation of <1 1 1>/{1 1 2} stacking faults to form twinnings in vanadium nanowires. The void facilitates the nanowire’s rupture and alters the deformation behavior of nanowires. For the nanowire with a void, the twin initiates near the vicinity of the void rather than a random location as in a nanowire without void. Twinning boundaries propagate towards the ends of nanowire until the whole wire transforms from the initial orientation (z-<0 0 1>) to a new configuration (z-<1 1 0>) with a rotation of 90° under a tensile stress. The nucleation and growth of the twin is inhibited as void size increases, and the nanowires crack is mainly induced by the disordering of vanadium atoms near the void rather than twinning deformation for large size void. A critical effective cross sectional width is determined for different deformation mechanisms. reserved

  13. Tensile properties of bioactive fibers for tissue engineering applications.

    PubMed

    De Diego, M A; Coleman, N J; Hench, L L

    2000-01-01

    Cell transplantation using biocompatible, biodegradable scaffolds offers the possibility of creating or regenerating tissue to replace organ function when deficiency arises. The role of these temporary substrates is to support and guide the expanding cell culture until it becomes structurally integrated with the host tissue. 45S5 Bioglass(R) is a 4-component, melt-derived bioactive glass, which has been approved for human clinical use by the Food and Drug Administration. The biocompatibility and biodegradability of 45S5 Bioglass(R) are long established, whereas research into its performance as an extracellular scaffold is currently underway. In this study the tensile strengths (93 +/- 8 and 82 +/- 14 MPa), elongation to fracture (0.7 +/- 0.05%) and Weibull's moduli (3.0 and 3.5) of 45S5 Bioglass(R) fibers (mean diameters 193 and 280 microm) for tissue engineering applications are reported. The tensile strengths of the fibers are compared with those of bulk 45S5 Bioglass(R) and a range of biodegradable polymer materials currently used in the field of tissue engineering. Aspects of glass and fiber technology relevant to the design and manufacture of extracellular ceramic scaffolds are also discussed. Copyright 2000 John Wiley & Sons, Inc.

  14. Tensile stress and creep in thermally grown oxide.

    PubMed

    Veal, Boyd W; Paulikas, Arvydas P; Hou, Peggy Y

    2006-05-01

    Structural components that operate at high temperatures (for example, turbine blades) rely on thermally grown oxide (TGO), commonly alumina, for corrosion protection. Strains that develop in TGOs during operation can reduce the protectiveness of the TGO. However, the occurrence of growth strains in TGOs, and mechanisms that cause them, are poorly understood. It is accepted that compressive strains can develop as oxygen and metal atoms meet to form new growth within constrained oxide. More controversial is the experimental finding that large tensile stresses, close to 1 GPa, develop during isothermal growth conditions in alumina TGO formed on a FeCrAlY alloy. Using a novel technique based on synchrotron radiation, we have confirmed these previous results, and show that the tensile strain develops as the early oxide, (Fe,Cr,Al)(2)O(3), converts to alpha-Al2O3 during the growth process. This allows us to model the strain behaviour by including creep and this diffusion-controlled phase change.

  15. Effects of parachute-ribbon surface treatments on tensile strength

    SciTech Connect

    Auerbach, I.; Whinery, L.D.; Johnson, D.W.; Mead, K.E.; Sheldon, D.D.

    1986-01-01

    Routine quality-assurance evaluations of nylon ribbons used on test-deployed parachutes revealed tensile-strength degradation had occurred in some of the ribbons. The degradation occurred exclusively in some of the noncritical skirt ribbons with stenciled blue-ink identification markings. Although the strength loss was excessive, the reliability of the parachute was not affected. These results motivated an accelerated-aging study of the effects on tensile strength of not only the inks but also of the sizing chemicals that are used to coat fabrics in parachute construction. Nylon ribbons and Kevlar webbing were treated with these materials and stored both under ambient conditions and at 60/sup 0/C (140/sup 0/F) for periods of time up to eight months. Small increases in strength developed under ambient conditions whereas small decreases developed at elevated temperatures. Samples stored in glass degraded more than those stored in stainless steel. None of these laboratory results correlated with those obtained from parachutes. Possible explanations for the lack of a correlation are provided in this paper. Additional studies are in progress.

  16. Tensile/Shear Behaviour of Multi-stitched/Nano Composites

    NASA Astrophysics Data System (ADS)

    Bilisik, Kadir; Kaya, Gaye

    2017-07-01

    This study aims to investigate tensile/shear behavior of multi-stitched/nano composites. For this purpose, non-stitched, non-stitched/nano, multi-stitched and multi-stitched/nano composites were made. It was shown that the warp/filling tensile strength and modulus of composites were slightly reduced in both multi-stitched and multi-stitched/nano composites due to fiber breakage that resulted from the multi-stitching process. In addition, there were not significant differences between non-stitched and multi-stitched structures. The non-stitched/nano composite showed slightly higher in-plane shear strength compared with the non-stitched composite. The in-plane shear strength of the non-stitched composite, on the other hand, increased steadily compared to the multi-stitched composite because of the stitching process and the interface between the stitching yarn and polymer matrix. Stitching significantly improved the delamination resistance in the multi-stitched and multi-stitched/nano composites experienced a small amount of damaged areas. The incorporation of nano silica improved the damage resistance of multi-stitched composites. Therefore, the damaged tolerance composite was developed with stitching and the addition of the nano silica for various industrial applications, such as electronic boards.

  17. Distinct Tensile Response of Model Semi-flexible Elastomer Networks

    NASA Astrophysics Data System (ADS)

    Aguilera-Mercado, Bernardo M.; Cohen, Claude; Escobedo, Fernando A.

    2011-03-01

    Through coarse-grained molecular modeling, we study how the elastic response strongly depends upon nanostructural heterogeneities in model networks made of semi-flexible chains exhibiting both regular and realistic connectivity. Idealized regular polymer networks have been shown to display a peculiar elastic response similar to that of super-tough natural materials (e.g., organic adhesives inside abalone shells). We investigate the impact of chain stiffness, and the effect of including tri-block copolymer chains, on the network's topology and elastic response. We find in some systems a dual tensile response: a liquid-like behavior at small deformations, and a distinct saw-tooth shaped stress-strain curve at moderate to large deformations. Additionally, stiffer regular networks exhibit a marked hysteresis over loading-unloading cycles that can be deleted by heating-cooling cycles or by performing deformations along different axes. Furthermore, small variations of chain stiffness may entirely change the nature of the network's tensile response from an entropic to an enthalpic elastic regime, and micro-phase separation of different blocks within elastomer networks may significantly enhance their mechanical strength. This work was supported by the American Chemical Society.

  18. Highly tensile-strained Ge/InAlAs nanocomposites

    PubMed Central

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material. PMID:28128282

  19. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-01

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100-1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  20. Dynamic yield and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M.; Frage, N.

    2014-05-01

    Fully dense alumina samples with 0.6 μm grain size were produced from alumina powder using Spark Plasma Sintering and tested in two types of VISAR-instrumented planar impact tests. In the tests of the first type the samples of 0.28 to 6-mm thickness were loaded by 1-mm tungsten impactors accelerated up to a velocity of about 1 km/s. These tests were aimed to study the Hugoniot elastic limit (HEL) of the SPS-processed alumina and the decay of the elastic precursor wave with propagation distance. In the second type of test the samples of ~3-mm thickness were loaded by 1-mm copper impactors accelerated up to velocities 100-1000 m/s. These tests were aimed to study the dynamic tensile (spall) strength of the alumina. The data on tensile fracture of the alumina demonstrate a monotonic decline of the spall strength with the amplitude of the loading stress pulse. The data on the decay of the elastic precursor wave allows for determining the rates of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of shock-induced inelastic deformation and, thus, to derive some conclusions concerning the mechanisms responsible of the deformation.

  1. Dynamic yield and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, Inna; Zaretsky, E.; Kalabukhov, S.; Dariel, M.; Frage, N.

    2013-06-01

    Fully dense alumina samples with 0.6- μ grain size were produced from alumina powder using Spark Plasma Sintering and tested in two types of VISAR-instrumented planar impact tests.. In the tests of the first type the samples of 0.28 to 6-mm thickness were loaded by 1-mm tungsten impactors accelerated up to velocity of about 1 km/s. These tests were aimed to study of the Hugoniot elastic limit (HEL) of the SPS-processed alumina and the decay of the elastic precursor wave with the propagation distance. In the second type of the tests the samples of ~ 3-mm thickness were loaded by 1-mm copper impactors accelerated up to velocities 100-1000 m/s was. These tests were aimed to the study of the dynamic tensile (spall) strength of the alumina. The data on the decay of the elastic precursor wave allow determining the rates of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced plastic deformation and, thus, to derive some conclusions concerning the mechanisms responsible of the deformation. The data on the tensile fracture of the alumina demonstrate a monotonous decline of the spall strength with the amplitude of the loading stress pulse.

  2. Three-dimensional brittle shear fracturing by tensile crack interaction.

    PubMed

    Healy, David; Jones, Richard R; Holdsworth, Robert E

    2006-01-05

    Faults in brittle rock are shear fractures formed through the interaction and coalescence of many tensile microcracks. The geometry of these microcracks and their surrounding elastic stress fields control the orientation of the final shear fracture surfaces. The classic Coulomb-Mohr failure criterion predicts the development of two conjugate (bimodal) shear planes that are inclined at an acute angle to the axis of maximum compressive stress. This criterion, however, is incapable of explaining the three-dimensional polymodal fault patterns that are widely observed in rocks. Here we show that the elastic stress around tensile microcracks in three dimensions promotes a mutual interaction that produces brittle shear planes oriented obliquely to the remote principal stresses, and can therefore account for observed polymodal fault patterns. Our microcrack interaction model is based on the three-dimensional solution of Eshelby, unlike previous models that employed two-dimensional approximations. Our model predicts that shear fractures formed by the coalescence of interacting mode I cracks will be inclined at a maximum of 26 degrees to the axes of remote maximum and intermediate compression. An improved understanding of brittle shear failure in three dimensions has important implications for earthquake seismology and rock-mass stability, as well as fluid migration in fractured rocks.

  3. Influence of water exposure on the tensile strength of composites.

    PubMed

    Söderholm, K J; Roberts, M J

    1990-12-01

    The objective of this study was to investigate whether water storage causes permanent damage to composites by determining how the tensile strength of nine different composite materials changes with both water storage and water storage followed by dehydration. Eighteen samples (ASTM-D Specification 1708-66) of each of the nine materials were prepared and divided into three groups of six samples each. Group I was stored dry at 60 degrees C, while Groups II and III were stored in distilled water at 60 degrees C. After six months, Groups I and II were subjected to tensile testing, while Group III was transferred to a desiccator and dehydrated for two weeks at 60 degrees C before this group was tested in tension. Mean values, pooled by storage group independent of material, revealed a significant (p less than 0.05) reduction in strength for both Groups II and III relative to Group I. These findings prove that water has an irreversible effect on most dental composites. A comparison of Group II with Group III data revealed that the samples which were aged in water and tested (Group II) were significantly (p less than 0.05) weaker than the dehydrated samples (Group III). However, some products within Group III did not show any tendency to recover their strength after dehydration.

  4. ROLE OF SCALE FACTOR DURING TENSILE TESTING OF SMALL SPECIMENS

    SciTech Connect

    Gussev, Maxim N; Busby, Jeremy T; Field, Kevin G; Sokolov, Mikhail A; Gray, Mr. Sean

    2014-01-01

    The influence of scale factor (tensile specimen geometry and dimensions) on mechanical test results was investigated for different widely used types of small specimens (SS-1, SS-2, SS-3, and SS-J3) and a set of materials. It was found that the effect of scale factor on the accurate determination of yield stress, ultimate tensile stress, and uniform elongation values was weak; however, clear systematic differences were observed and should be accounted for during interpretation of results. In contrast, total elongation values were strongly sensitive to variations in specimen geometry. Modern experimental methods like digital image correlation allow the impact of scale factor to be reduced. Using these techniques, it was shown that true stress true strain curves describing strain-hardening behavior were very close for different specimen types. The limits of miniaturization are discussed, and an ultra-miniature specimen concept was suggested and evaluated. This type of specimen, as expected, may be suitable for SEM and TEM in situ testing.

  5. Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing

    DOE PAGES

    Ge, Ting; Grest, Gary S.; Robbins, Mark O.

    2014-09-26

    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and interfacial fracture energy GI are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small t welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze ismore » formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GI is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GI increases as t1/2 before saturating at the average bulk fracture energy Gb. As in previous studies of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GI is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GI << Gb.« less

  6. Absence of rippling in graphene under biaxial tensile strain

    NASA Astrophysics Data System (ADS)

    Rakshit, Bipul; Mahadevan, Priya

    2010-10-01

    Recent experiments [C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn, and T. F. Heinz, Nature (London) 462, 339 (2009)10.1038/nature08569] on graphene grown on ultraflat substrates have found no rippling in graphene when subject to temperature cycling. Unsupported/unstrained films of graphene as well as films grown on various substrates on the other hand have been found to show rippling effects. As graphene grown on a substrate is invariably strained, we examine the behavior of the out-of-plane acoustic-phonon mode with biaxial tensile strain. This mode is generally associated with the rippling of graphene. We find that it can be fit to a relation of the form w2=Ak4+Bk2 , where w and k are the frequency and wave vector, respectively. The coefficient A is found to show a weak dependence on strain while B is found to increase linearly with strain. The strain-induced hardening explains the absence of rippling in graphene subject to biaxial strain. In addition, we find that graphene when subject to a biaxial tensile strain is found to undergo a structural transition with the mode at K going soft at a strain percentage of 15%.

  7. [An Algorithm for Correcting Fetal Heart Rate Baseline].

    PubMed

    Li, Xiaodong; Lu, Yaosheng

    2015-10-01

    Fetal heart rate (FHR) baseline estimation is of significance for the computerized analysis of fetal heart rate and the assessment of fetal state. In our work, a fetal heart rate baseline correction algorithm was presented to make the existing baseline more accurate and fit to the tracings. Firstly, the deviation of the existing FHR baseline was found and corrected. And then a new baseline was obtained finally after treatment with some smoothing methods. To assess the performance of FHR baseline correction algorithm, a new FHR baseline estimation algorithm that combined baseline estimation algorithm and the baseline correction algorithm was compared with two existing FHR baseline estimation algorithms. The results showed that the new FHR baseline estimation algorithm did well in both accuracy and efficiency. And the results also proved the effectiveness of the FHR baseline correction algorithm.

  8. CASA Uno GPS orbit and baseline experiments

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Ho, C. S.; Abusali, P. A. M.; Tapley, B. D.

    1990-01-01

    CASA Uno data from sites distributed in longitude from Australia to Europe have been used to determine orbits of the GPS satellites. The characteristics of the orbits determined from double difference phase have been evaluated through comparisons of two-week solutions with one-week solutions and by comparisons of predicted and estimated orbits. Evidence of unmodeled effects is demonstrated, particularly associated with the orbit planes that experience solar eclipse. The orbit accuracy has been assessed through the repeatability of unconstrained estimated baseline vectors ranging from 245 km to 5400 km. Both the baseline repeatability and the comparison with independent space geodetic methods give results at the level of 1-2 parts in 100,000,000. In addition, the Mojave/Owens Valley (245 km) and Kokee Park/Ft. Davis (5409 km) estimates agree with VLBI and SLR to better than 1 part in 100,000,000.

  9. Baseline Microstructural Characterization of Outer 3013 Containers

    SciTech Connect

    Zapp, Phillip E.; Dunn, Kerry A

    2005-07-31

    Three DOE Standard 3013 outer storage containers were examined to characterize the microstructure of the type 316L stainless steel material of construction. Two of the containers were closure-welded yielding production-quality outer 3013 containers; the third examined container was not closed. Optical metallography and Knoop microhardness measurements were performed to establish a baseline characterization that will support future destructive examinations of 3013 outer containers in the storage inventory. Metallography revealed the microstructural features typical of this austenitic stainless steel as it is formed and welded. The grains were equiaxed with evident annealing twins. Flow lines were prominent in the forming directions of the cylindrical body and flat lids and bottom caps. No adverse indications were seen. Microhardness values, although widely varying, were consistent with annealed austenitic stainless steel. The data gathered as part of this characterization will be used as a baseline for the destructive examination of 3013 containers removed from the storage inventory.

  10. CASA Uno GPS orbit and baseline experiments

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Ho, C. S.; Abusali, P. A. M.; Tapley, B. D.

    1990-01-01

    CASA Uno data from sites distributed in longitude from Australia to Europe have been used to determine orbits of the GPS satellites. The characteristics of the orbits determined from double difference phase have been evaluated through comparisons of two-week solutions with one-week solutions and by comparisons of predicted and estimated orbits. Evidence of unmodeled effects is demonstrated, particularly associated with the orbit planes that experience solar eclipse. The orbit accuracy has been assessed through the repeatability of unconstrained estimated baseline vectors ranging from 245 km to 5400 km. Both the baseline repeatability and the comparison with independent space geodetic methods give results at the level of 1-2 parts in 100,000,000. In addition, the Mojave/Owens Valley (245 km) and Kokee Park/Ft. Davis (5409 km) estimates agree with VLBI and SLR to better than 1 part in 100,000,000.

  11. NV Diamond Micro-Magnetometer Baseline Studies

    DTIC Science & Technology

    2009-08-12

    30-Jun-2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Final report -- NY diamond micro- magnetometer baseline studies W9llNF-08-l-0245 5b. GRANT... magnetometer gives a significant advantage. Most ofthe effort concentrated on improving the sensitivity of a single NY to the level where it could be used to...SUBJECT TERMS magnetometers diamond nitrogen-vacacny 16. SECURITY CLASSIFICATION OF: 17. LIMITATIONOF 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT

  12. Baseline Assessment of the Domestic Airline Industry

    DTIC Science & Technology

    1992-04-01

    largest investor-owned airlines and has developed a route system that spans North America, Asia , the South Pacific, and Europe. As with most major...of the US Scheduled Airline Industry, "Air Transport 1991", ATA, page 3. (20)US Department of Transportation, Federal Aviation Administration, FAA...AD-A262 147 1992 Executive Research Project DIS 12 Baseline Assessment of the Domestic Airline Industry Colonel Michael W. Wooley U. S. Air Force

  13. The Advanced Noise Control Fan Baseline Measurements

    NASA Technical Reports Server (NTRS)

    McAllister, Joseph; Loew, Raymond A.; Lauer, Joel T.; Stuliff, Daniel L.

    2009-01-01

    The NASA Glenn Research Center s (NASA Glenn) Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. As part of a complete upgrade, current baseline and acoustic measurements were documented. Extensive in-duct, farfield acoustic, and flow field measurements are reported. This is a follow-on paper to documenting the operating description of the ANCF.

  14. Systematic errors in long baseline oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2006-02-01

    This article gives a brief overview of long baseline neutrino experiments and their goals, and then describes the different kinds of systematic errors that are encountered in these experiments. Particular attention is paid to the uncertainties that come about because of imperfect knowledge of neutrino cross sections and more generally how neutrinos interact in nuclei. Near detectors are planned for most of these experiments, and the extent to which certain uncertainties can be reduced by the presence of near detectors is also discussed.

  15. Approach for environmental baseline water sampling

    USGS Publications Warehouse

    Smith, K.S.

    2011-01-01

    Samples collected during the exploration phase of mining represent baseline conditions at the site. As such, they can be very important in forecasting potential environmental impacts should mining proceed, and can become measurements against which future changes are compared. Constituents in stream water draining mined and mineralized areas tend to be geochemically, spatially, and temporally variable, which presents challenges in collecting both exploration and baseline water-quality samples. Because short-term (daily) variations can complicate long-term trends, it is important to consider recent findings concerning geochemical variability of stream-water constituents at short-term timescales in designing sampling plans. Also, adequate water-quality information is key to forecasting potential ecological impacts from mining. Therefore, it is useful to collect baseline water samples adequate tor geochemical and toxicological modeling. This requires complete chemical analyses of dissolved constituents that include major and minor chemical elements as well as physicochemical properties (including pH, specific conductance, dissolved oxygen) and dissolved organic carbon. Applying chemical-equilibrium and appropriate toxicological models to water-quality information leads to an understanding of the speciation, transport, sequestration, bioavailability, and aquatic toxicity of potential contaminants. Insights gained from geochemical and toxicological modeling of water-quality data can be used to design appropriate mitigation and for economic planning for future mining activities.

  16. Ictal onset baseline shifts and infraslow activity.

    PubMed

    Rampp, Stefan; Stefan, Hermann

    2012-08-01

    Ictal onset baseline shifts, in surface and intracranial EEG, have been shown to localize focal epilepsies. However, whether direct current EEG amplifiers are required to detect infraslow activity is unresolved. We retrospectively analyzed intracranial EEG data from 24 patients with temporal lobe seizures, who underwent long-term invasive EEG investigation and subsequent surgery. Data were recorded using a DeltaMed/Natus (Paris, France) system with Braintronics Brainbox EEG-1164 (Almere, The Netherlands) with an input filter of 0.1 Hz. Visual comparison of infraslow activity with seizure activity in conventional frequency bands was performed using BESA software (Megis, Gräfeling, Germany). Ictal onset baseline shifts were seen in 52 of 88 partial seizures and in all 11 secondarily generalized tonic-clonic seizures. They preceded ictal activity in conventional frequencies in some cases by several seconds. Topographical distribution was concordant with seizure onsets and distant sites with suspected involvement in seizure generation. It is concluded that ictal onset baseline shifts can be detected by commonly used EEG systems with an input filter of 0.1 Hz and may contribute to identify seizure onset and areas involved in seizure generation.

  17. Efficient Wide Baseline Structure from Motion

    NASA Astrophysics Data System (ADS)

    Michelini, Mario; Mayer, Helmut

    2016-06-01

    This paper presents a Structure from Motion approach for complex unorganized image sets. To achieve high accuracy and robustness, image triplets are employed and (an approximate) camera calibration is assumed to be known. The focus lies on a complete linking of images even in case of large image distortions, e.g., caused by wide baselines, as well as weak baselines. A method for embedding image descriptors into Hamming space is proposed for fast image similarity ranking. The later is employed to limit the number of pairs to be matched by a wide baseline method. An iterative graph-based approach is proposed formulating image linking as the search for a terminal Steiner minimum tree in a line graph. Finally, additional links are determined and employed to improve the accuracy of the pose estimation. By this means, loops in long image sequences are implicitly closed. The potential of the proposed approach is demonstrated by results for several complex image sets also in comparison with VisualSFM.

  18. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  19. Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu

    In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.

  20. Tensile Properties and Failure Mechanism of 3D Woven Hollow Integrated Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cai, Deng'an; Zhou, Guangming; Lu, Fangzhou

    2017-01-01

    Tensile properties and failure mechanism of 3D woven hollow integrated sandwich composites are investigated experimentally, theoretically and numerically in this paper. Firstly, the tensile properties are obtained by quasi-static tensile tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results shows that the tensile performances of the warp are better than that of the weft. By observing the broken specimens, it is found that the touch parts between yarns are the main failure regions under tension. Then, a theoretical method is developed to predict the tensile properties. By comparing with the experimental data, the accuracy of the theoretical method is verified. Simultaneously, a finite element model is established to predict the tensile behavior of the composites. The numerical results agree well with the experimental data. Moreover, the simulated progressive damages show that the contact regions in the warp and weft tension are both the initial failure areas.

  1. Effect of Strain Rate on Tensile Properties of Carbon Fiber Epoxy-Impregnated Bundle Composite

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-03-01

    The tensile tests for high tensile strength polyacrylonitrile (PAN)-based (T1000GB) carbon fiber epoxy-impregnated bundle composite at various strain rates ranging from 3.33 × 10-5 to 6.0 × 102 s-1 (various crosshead speeds ranging from 8.33 × 10-7 to 1.5 × 101 m/s) were investigated. The statistical distributions of the tensile strength were also evaluated. The results clearly demonstrated that the tensile strength of bundle composite slightly increased with an increase in the strain rate (crosshead speed) and the Weibull modulus of tensile strength for the bundle composite decreased with an increase in the strain rate (crosshead speed), there is a linear relation between the Weibull modulus and the average tensile strength on log-log scale.

  2. Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed

    2017-03-01

    Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.

  3. ARTICULAR CARTILAGE TENSILE INTEGRITY: MODULATION BY MATRIX DEPLETION IS MATURATION-DEPENDENT

    PubMed Central

    Asanbaeva, Anna; Tam, Johnny; Schumacher, Barbara L.; Klisch, Stephen M.; Masuda, Koichi; Sah, Robert L.

    2008-01-01

    Articular cartilage function depends on the molecular composition and structure of its extracellular matrix (ECM). The collagen network (CN) provides cartilage with tensile integrity, but must also remodel during growth. Such remodeling may depend on matrix molecules interacting with the CN to modulate the tensile behavior of cartilage. The objective of this study was to determine the effects of increasingly selective matrix depletion on tensile properties of immature and mature articular cartilage, and thereby establish a framework for identifying molecules involved in CN remodeling. Depletion of immature cartilage with guanidine, chondroitinase ABC, chondroitinase AC, and Streptomyces hyaluronidase markedly increased tensile integrity, while the integrity of mature cartilage remained unaltered after depletion with guanidine. The enhanced tensile integrity after matrix depletion suggests that certain ECM components of immature matrix serve to inhibit CN interactions and may act as modulators of physiological alterations of cartilage geometry and tensile properties during growth/maturation. PMID:18394422

  4. Tensile strength and failure load of sutures for robotic surgery.

    PubMed

    Abiri, Ahmad; Paydar, Omeed; Tao, Anna; LaRocca, Megan; Liu, Kang; Genovese, Bradley; Candler, Robert; Grundfest, Warren S; Dutson, Erik P

    2017-08-01

    Robotic surgical platforms have seen increased use among minimally invasive gastrointestinal surgeons (von Fraunhofer et al. in J Biomed Mater Res 19(5):595-600, 1985. doi: 10.1002/jbm.820190511 ). However, these systems still suffer from lack of haptic feedback, which results in exertion of excessive force, often leading to suture failures (Barbash et al. in Ann Surg 259(1):1-6, 2014. doi: 10.1097/SLA.0b013e3182a5c8b8 ). This work catalogs tensile strength and failure load among commonly used sutures in an effort to prevent robotic surgical consoles from exceeding identified thresholds. Trials were thus conducted on common sutures varying in material type, gauge size, rate of pulling force, and method of applied force. Polydioxanone, Silk, Vicryl, and Prolene, gauges 5-0 to 1-0, were pulled till failure using a commercial mechanical testing system. 2-0 and 3-0 sutures were further tested for the effect of pull rate on failure load at rates of 50, 200, and 400 mm/min. 3-0 sutures were also pulled till failure using a da Vinci robotic surgical system in unlooped, looped, and at the needle body arrangements. Generally, Vicryl and PDS sutures had the highest mechanical strength (47-179 kN/cm(2)), while Silk had the lowest (40-106 kN/cm(2)). Larger diameter sutures withstand higher total force, but finer gauges consistently show higher force per unit area. The difference between material types becomes increasingly significant as the diameters decrease. Comparisons of identical suture materials and gauges show 27-50% improvement in the tensile strength over data obtained in 1985 (Ballantyne in Surg Endosc Other Interv Tech 16(10):1389-1402, 2002. doi: 10.1007/s00464-001-8283-7 ). No significant differences were observed when sutures were pulled at different rates. Reduction in suture strength appeared to be strongly affected by the technique used to manipulate the suture. Availability of suture tensile strength and failure load data will help define software safety

  5. 40 CFR 80.915 - How are the baseline toxics value and baseline toxics volume determined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petitions EPA to exclude such data on the basis of data quality, per § 80.91(d)(6), and receives permission from EPA to exclude such data. (b)(1) A refinery's or importer's baseline toxics value is...

  6. The Effect of Applied Tensile Stress on Localized Corrosion in Sensitized AA5083

    DTIC Science & Technology

    2015-09-01

    100°C. The sensitized samples were subjected to elastic tensile loading using a 4-point bend rig while being exposed to a 0.6 molar saltwater solution ...TENSILE STRESS ON LOCALIZED CORROSION IN SENSITIZED AA5083 by Roy T. Johnston September 2015 Thesis Advisor: Sarath K. Menon Co...AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE THE EFFECT OF APPLIED TENSILE STRESS ON LOCALIZED CORROSION IN SENSITIZED AA5083 5

  7. Tensile mechanical properties tests of non-standard component in high temperature

    NASA Astrophysics Data System (ADS)

    Su, Wei; Liu, Renhuai; Song, Fangfang; Zhu, Junhua

    2017-05-01

    This paper makes research on tensile mechanical properties tests of heater component in electron gun. Tests are studied to get tensile property of heater component at the room and elevated temperature. Though improving test clamping appliance and experimental methods, discussing tensile fracture analysis, rupture mechanism is obtained by in situ observation using scanning electron microscope (SEM). To facilitate engineering application, materials suggestion is given at the end of the paper.

  8. Size and temperature dependence of the tensile mechanical properties of zinc blende CdSe nanowires

    NASA Astrophysics Data System (ADS)

    Fu, Bing; Chen, Na; Xie, Yiqun; Ye, Xiang; Gu, Xiao

    2013-11-01

    The effect of size and temperature on the tensile mechanical properties of zinc blende CdSe nanowires is investigated by all atoms molecular dynamic simulation. We found the ultimate tensile strength and Young's modulus will decrease as the temperature and size of the nanowire increase. The size and temperature dependence are mainly attributed to surface effect and thermally elongation effect. High reversibility of tensile behavior will make zinc blende CdSe nanowires suitable for building efficient nanodevices.

  9. Tensile strength of various nylon PA6 specimen modes

    NASA Astrophysics Data System (ADS)

    Raz, Karel; Zahalka, Martin

    2017-05-01

    This article explores the influence of production technique on the strength of nylon parts. Identical specimens were manufactured by various techniques. The material of specimens was nylon PA6. 3D printing and injection molding were used, with various orientations of printed layers, and various orientations of specimens in the working space of the 3D printer. The variants are described in detail. A special mold was used for the injection molding process in order to make specimens with and without a weld line. The effect of this weld line was evaluated. All specimens were tested using the standard tensile test configuration. The strength was compared. It was found that the same plastic material has very different mechanical properties depending on the production process.

  10. Lifetimes of fiber composites under sustained tensile loading

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

    1977-01-01

    A description is presented of the test techniques which have been used to apply sustained uniaxial tensile loading to fiber/epoxy composites. The fiber types used include S-glass, aramid, graphite, and beryllium wire. The applied load vs lifetime data for four composite materials are presented in graphs. Attention is given to a statistical analysis of data, a performance comparison of various composites, the age effect on the strength of composites, the applicability of the lifetime data to complex composites, and aspects of accelerated test method development. It is found that the lifetime of a composite under a sustained load varies widely. Depending on the composite system, the minimum life typically differs from the maximum life by a factor of 100 to 1000. It is in this connection recommended that a use of average life data should be avoided in serious design calculations.

  11. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds

    NASA Astrophysics Data System (ADS)

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Gruber, Hermann J.; Cui, Yidan; Traxler, Lukas; Siligan, Christine; Park, Sungsu; Hinterdorfer, Peter

    2016-09-01

    Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion.

  12. A microdynamic version of the tensile test machine

    NASA Technical Reports Server (NTRS)

    Glaser, R. J.

    1991-01-01

    Very large space structures require structural reactions to control forces associated with nanometer-level displacements; JPL has accordingly built a tensile test machine capable of mN-level force measurements and nm-level displacement measurements, with a view to the study of structural linear joining technology at the lower limit of its resolution. The tester is composed of a moving table that is supported by six flexured legs and a test specimen cantilevered off the table to ground. Three vertical legs contain piezoactuators allowing changes in length up to 200 microns while generating axial load and bending moments. Displacements between ground and table are measured by means of three laser-interferometric channels.

  13. Improved specimen recovery in tensile split Hopkinson bar

    PubMed Central

    Isakov, Matti; Hiermaier, Stefan; Kuokkala, Veli-Tapani

    2014-01-01

    This paper presents an improved specimen recovery method for the tensile split Hopkinson bar (TSHB) technique. The method is based on the trapping of residual stress waves with the use of momentum trap bars. As is well known, successful momentum trapping in TSHB is highly sensitive to experimental uncertainties, especially on the incident bar side of the set-up. However, as is demonstrated in this paper, significant improvement in the reliability of specimen recovery is obtained by using two momentum trap bars in contact with the incident bar. This makes the trapping of the reflected wave insensitive to striker speed and removes the need for a precision set gap between the incident bar and the momentum trap. PMID:25071235

  14. Prediction of residual tensile strength of transversely impacted composite laminates

    NASA Technical Reports Server (NTRS)

    Lal, K. M.

    1982-01-01

    The response to low velocity impact of graphite-epoxy T300/5208 composite laminates is discussed. Steel balls of 3/8 inch, 5/8 inch, and 1 inch diameter were the projectiles. Impact energy was limited to 1.2 joules. Impacted specimens were ultrasonically C scanned to determine the impact damaged region. The threshold value of impact energy for impact damage was found to be approximately 0.3 joules. A model was developed to predict the tensile residual strength of impact damaged specimens from fracture mechanics concepts. Impacted specimens were tested in tension to provide a fracture data base. The experimental results agreed well with the predictions from fracture mechanics. In this study, the maximum impact velocity used to simulate the low velocity transverse impact from common objects like tool drops was 10 m/s.

  15. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds

    PubMed Central

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Gruber, Hermann J.; Cui, Yidan; Traxler, Lukas; Siligan, Christine; Park, Sungsu; Hinterdorfer, Peter

    2016-01-01

    Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion. PMID:27652888

  16. Tensile adhesion testing methodology for thermally sprayed coatings

    NASA Technical Reports Server (NTRS)

    Berndt, Christopher C.

    1990-01-01

    The structure of thermally sprayed coatings consists of lamellae which are oriented parallel to the substrate surface. The lamellae separate and fracture by distinctive mechanisms which are reflected in the failure morphology, and these may be described as adhesive (between the coating and substrate), cohesive (within the coating), or mixed mode. There is a large variability in the failure stress for any nominally identical group of coatings. A lower bound for the fracture toughness of alumina coatings can be calculated as 0.2 MNm exp -3/2. The coating strength values may also be treated as belonging to the statistical distribution of the Weibull function. The Weibull modulus of the coating strength varied from 1.4 to 3.8. This analysis infers that the flaw size within coatings is highly variable and that the flaws are nonuniformly dispersed. The present work focuses on the question of whether tensile adhesion tests are an appropriate testing method for thermally sprayed materials.

  17. Effect of tensile and torsion on GMI in amorphous wire

    NASA Astrophysics Data System (ADS)

    Blanco, J. M.; Zhukov, A.; Gonzalez, J.

    1999-05-01

    GMI effect, Δ Z/Z = [ Z( H) - Z( Hmax)]/ Z( Hmax) has been measured in (Fe 0.94Co 0.06) 72.5B 15Si 12.5 wire under tensile, σ ten, and torsional, σ tor, stresses. Generally Δ Z/Z( H) dependence has a non-monotonic shape with a maximum at certain axial magnetic field, Hm. Both tension and torsion modify Δ Z/Z( H) dependence. Application of tension results in an increase of Hm with σ ten. Torsional stress dependence of GMI effect has asymmetry with a maximum at torsion angle, φ, around + 12π/m in as-cast wire, when Δ Z/Z is around 250%. An increase of Δ Z/Zm up to 350% and change of Δ Z/Z(φ) dependence towards a nearly symmetric shape have been observed after Joule heating.

  18. Dynamical in situ nuclear-magnetic-resonance tensile apparatus

    NASA Astrophysics Data System (ADS)

    Hackelöer, H. J.; Kanert, O.; Tamler, H.; De Hosson, J. Th. M.

    1983-03-01

    A combination of a servohydraulic tensile machine and NMR pulse spectrometer is described enabling nuclear-spin relaxation rates to be recorded simultaneously with stress-strain data incorporating tension as well as compression of nonmetallic as well as of metallic samples. The data of the mechanical system are as follows: Maximum load: 5000 N; minimum deformation speed: 10 μm s-1, maximum deformation speed: 3×105 μm s-1; deformation stroke: digitally controlled between 1 and 8×103 μm; bandwidth: dc to 1 kHz; resolution: 2-4 μm; temperature conditions of the sample: from 80 to 570 K. The operation and performance of the system is described by means of experiments observing nuclear-spin relaxation rates which are induced by the movement of dislocations due to the finite deformation rate of the sample.

  19. Stress Relaxation in Tensile Deformation of 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Li, Jiaojiao; Ding, Wei; Zhao, Shuangjun; Chen, Jun

    2017-01-01

    Improved ductility by stress relaxation has been reported in different kinds of steels. The influence of stress relaxation and its parameters on the ductility of 304 stainless steel has not been established so far. Stress relaxation behavior during tensile tests at different strain rates is studied in 304 stainless steel. It is observed that stress relaxation can obviously increase the elongation of 304 stainless steel in all cases. The elongation improvement of interrupted tension reaches to 14.9% compared with monotonic tension at 0.05 s-1. Contradicting with the published results, stress drop during stress relaxation increases with strain at all strain rates. It is related with dislocation motion velocity variation and martensitic transformation.

  20. Measured iron-gallium alloy tensile properties under magnetic fields

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Flatau, Alison B.

    2004-07-01

    Tension testing is used to identify Galfenol material properties under low level DC magnetic bias fields. Dog bone shaped specimens of single crystal Fe100-xGax, where 17<=x<=33, underwent tensile testing along two crystalographic axis orientations, [110] and [100]. The material properties being investigated and calculated from measured quantities are: Young's modulus and Poisson's ratio. Data are presented that demonstrate the dependence of these material properties on applied magnetic field levels and provide a preliminary assessment of the trends in material properties for performance under varied operating conditions. The elastic properties of Fe-Ga alloys were observed to be increasingly anisotropic with rising Ga content for the stoichiometries examined. The largest elastic anisotropies were manifested in [110] Poisson's ratios of as low as -0.63 in one specimen. This negative Poisson's ratio creates a significant in-plane auxetic behavior that could be exploited in applications that capitalize on unique area effects produced under uniaxial loading.

  1. Tensile strength and the mining of black holes.

    PubMed

    Brown, Adam R

    2013-11-22

    There are a number of important thought experiments that involve raising and lowering boxes full of radiation in the vicinity of black hole horizons. This Letter looks at the limitations placed on these thought experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider than a single wavelength of the Hawking quanta, and puts a severe constraint on the operation of "space elevators" near black holes. In particular, it is shown that proposals for mining black holes by lowering boxes near the horizon, collecting some Hawking radiation, and dragging it out to infinity cannot proceed nearly as rapidly as has previously been claimed. As a consequence of this limitation, the boxes and all the moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon with strings.

  2. Method and device for tensile testing of cable bundles

    DOEpatents

    Robertson, Lawrence M; Ardelean, Emil V; Goodding, James C; Babuska, Vit

    2012-10-16

    A standard tensile test device is improved to accurately measure the mechanical properties of stranded cables, ropes, and other composite structures wherein a witness is attached to the top and bottom mounting blocks holding the cable under test. The witness is comprised of two parts: a top and a bottom rod of similar diameter with the bottom rod having a smaller diameter stem on its upper end and the top rod having a hollow opening in its lower end into which the stem fits forming a witness joint. A small gap is present between the top rod and the larger diameter portion of the bottom rod. A standard extensometer is attached to the top and bottom rods of the witness spanning this small witness gap. When a force is applied to separate the mounting blocks, the gap in the witness expands the same length that the entire test specimen is stretched.

  3. Tensile stress-strain behavior of graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Garber, D. P.

    1982-01-01

    The tensile stress-strain behavior of a variety of graphite/epoxy laminates was examined. Longitudinal and transverse specimens from eleven different layups were monotonically loaded in tension to failure. Ultimate strength, ultimate strain, and strss-strain curves wee obtained from four replicate tests in each case. Polynominal equations were fitted by the method of least squares to the stress-strain data to determine average curves. Values of Young's modulus and Poisson's ratio, derived from polynomial coefficients, were compared with laminate analysis results. While the polynomials appeared to accurately fit the stress-strain data in most cases, the use of polynomial coefficients to calculate elastic moduli appeared to be of questionable value in cases involving sharp changes in the slope of the stress-strain data or extensive scatter.

  4. Tensile stress-strain behavior of boron/aluminum laminates

    NASA Technical Reports Server (NTRS)

    Sova, J. A.; Poe, C. C., Jr.

    1978-01-01

    The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.

  5. Regional dynamic tensile properties of the TMJ disc.

    PubMed

    Snider, G R; Lomakin, J; Singh, M; Gehrke, S H; Detamore, M S

    2008-11-01

    Although the TMJ disc has been well-characterized under tension and compression, dynamic viscoelastic regional and directional variations have heretofore not been investigated. We hypothesized that the intermediate zone under mediolateral tension would exhibit lower dynamic moduli compared with the other regions of the disc under either mediolateral or anteroposterior tension. Specimens were prepared from porcine discs (3 regions/direction), and dynamic tensile sweeps were performed at 1% strain over a frequency range of 0.1 to 100 rad/sec. Generally, the intermediate zone possessed the lowest storage and loss moduli, and the highest loss tangent. This study further accentuates the known distinct character of the intermediate zone by showing for the first time that these differences also extend to dynamic behavior, perhaps implicating the TMJ disc as a structure primarily exposed to predominantly anteroposterior tension via anterior and posterior attachments, with a need for great distension mediolaterally across the intermediate zone.

  6. Development of Manila Hemp Fiber Epoxy Composite with High Tensile Properties Through Handpicking Fiber Fragments

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Takagi, Hitoshi; Yang, Zhimao

    Manila hemp fibers are separated to several sequent fragments from single fiber. The tensile strength of each fiber fragments and their epoxy composite are measured, followed by scanning electronic microscopic (SEM) analysis. The results show that the tensile strength of fiber fragments is almost constant along fiber. For composite, the tensile strength first increases and then decreases at the position near to root. The Young's modulus presents increasing with location from root to top for fiber and composite. Microstructure analysis indicates that the difference of tensile properties between fiber fragments derive from the difference of fiber diameter.

  7. The effect of microalloying additions on the tensile properties of polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Behbehani, M. K.

    1992-01-01

    The presently evaluated 0.1 at. pct Fe and Ga additions to NiAl, while beneficial in the case of monocrystalline NiAl ductility, does not improve ductility in the polycrystalline case; it also has little effect on tensile properties. A similar microalloying addition of Zr, by contrast, significantly depressed the tensile ductility of NiAl, and nearly doubled the brittle-to-ductile transition temperature (BDTT). The dependence of tensile properties on temperature was in all cases similar; tensile elongations remained low and constant until the BDTT was reached, and then dramatically increased.

  8. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  9. Tensile and creep behavior of a silicon carbide fiber-reinforced aluminosilicate composite

    SciTech Connect

    Khobaib, M.; Zawada, L.

    1991-08-01

    Tensile and tensile creep tests were conducted with a Nicalon/aluminosilicate (Si-C-O/1723) glass composite. Tensile tests were conducted at room temperature, and the creep tests were conducted at 600, 700, and 750 C. Room temperature tensile test failure features exhibited a tortuous crack path and extensive fiber pull-out. The failure features in creep were characterized by flat fracture and little fiber pull-out. The environment appeared to play a significant role in creep failure of this composite system. 6 refs.

  10. Tensile Tests of Round-head, Flat-head, and Brazier-head Rivets

    NASA Technical Reports Server (NTRS)

    Schuette, Evan H; Bartone, Leonard M; Mandel, Merven W

    1944-01-01

    An investigation was conducted to determine the tensile strength of round-head (AN43C), flat-head(AN442), and brazier-head (AN4556) aluminum-alloy rivets because of the scarcity of information on the tensile strength of rivets. The results of the investigation are presented as curves that show the variation of the ratio of the tensile strength of the rivet to the tensile strength of the rivet crank with the ratio of the sheet thickness to the rivet diameter for the different types of rivet.

  11. The tensile strength properties of CFRPs and GRRPs for Unnes electric car body material

    NASA Astrophysics Data System (ADS)

    Khumaedi, Muhammad; Sumbodo, Wirawan; Widodo, Rahmat Doni

    2016-04-01

    This paper describes composite materials tensile testing of electric car body material. The UNNES electric car body must be developed using a high strength and lightweight material. A fiber-reinforced plastic composite is widely used for the concerned objective. Selection of the type of composites, variations in fiber orientation, and the number of fiber layers will affect the tensile strength of the material. Composite materials use Carbon-fiber-reinforced plastics (CFRPs) and glass-fiber-reinforced plastics (GFRPs) variation to the fiber areal weight, variations in fiber orientation and the number of fiber layers. The CFRPs areal weight consists of 230 gsm and 400 gsm. The GFRPsareal weight consists of 400 gsm and 600 gsm. Fibre orientationsconsist of 0° and 45°. Number of fiber layers consists of one layer and two layers. Various variations were then tested to figure out their tensile to get ultimate tensile strength of materials. Standard test method for tensile test was conducted using ASTM D3039. Tensile specimen geometry used a type of balanced and symmetric fiber orientation, with 25mm in width, 250 mm in length, and 2.5 mm in thickness. The result shows that the more fiber areal weight and the layer number were used, the more its tensile strength would increase, beside it increased the ultimate tensile strength of the material for both glass and carbon fiber with 0o and 45o fiber arientation. Fiber plain wave with 45o has greater tensile strength compared to any other variation.

  12. Effect of surface treatments on tensile properties of hemp fiber reinforced polypropylene composites

    NASA Astrophysics Data System (ADS)

    Ma, Li; He, Lujv; Zhang, Libin

    2017-04-01

    Three forms of hemp fiber (untreated, treated with sodium hydroxide solution and treated with sodium hydroxide solution followed by three-aminopropyltriethoxysilane) reinforced polypropylene composites were prepared. The effects of chemical treatments on tensile properties of the composites were studied. The results show that alkali treatment followed by three-aminopropyltriethoxysilane treatment significantly improves the tensile properties. In particular, the specific tensile strengths of alkali-silane treated composites with 30% fiber content are only 4% lower than those of composites reinforced with glass fiber. Scanning electron microscopy examination shows that the improvements in tensile properties can be attributed to better bonding between the fiber and matrix.

  13. Tensile strength on friction stir processed AMg5 (5083) aluminum alloy

    NASA Astrophysics Data System (ADS)

    Chumaevsky, A. V.; Eliseev, A. A.; Filippov, A. V.; Rubtsov, V. E.; Tarasov, S. Yu.

    2016-11-01

    The results of the tensile tests carried out both on AMg5 (5083) aluminum alloy samples base and those obtained using friction stir processing technique are reported. The tensile test samples have been prepared from the friction stir processed plates so that their tensile axis was parallel to the processing direction. The maximum tensile strength of the processed samples was 9% higher than of the base metal. The fractographic examination shows the presence of flat areas inherent of the brittle fracture in all three friction processed samples. The load-extension curves show that friction stir processing may suppress the serrated yielding.

  14. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    NASA Astrophysics Data System (ADS)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  15. Novel approach to tensile testing of micro- and nanoscale fibers

    NASA Astrophysics Data System (ADS)

    Tan, E. P. S.; Lim, C. T.

    2004-08-01

    Due to the strength and size of the micro- and nanoscale fibers, larger conventional universal testing machines are not suitable in performing stretch test of such fibers. Existing microtensile testing machines are custom-made and are complex and expensive to construct. Here, a novel method of using an existing atomic force microscope (AFM)-based nanoindenation system for the tensile testing of microscale or bundled nanoscale fibers is proposed. The microscale poly (L-lactic-co-glycolic acid) fiber (˜25 μm diameter) was used as an example to illustrate this technique. The microfiber was first attached to a nanoindenter tip and the base via a custom-made holder to ensure that the microfiber was taut and vertically aligned. The force transducer of the nanoindenter was used to measure the tensile force required to stretch the microfiber. The microfiber was stretched using the stepper motor of the AFM system. The elongation of the microfiber was measured by subtracting the elongation of the transducer spring from the total elongation of the microfiber and transducer spring. A plot of the load against elongation of the microfiber was then obtained. The stress and strain of the microfiber was measured by subtracting the elongation of the transducer spring from the total elongation of the microfiber was then obtained. The stress and strain of the microfiber was obtained by dividing the load and elongation by cross-sectional area and gauge length, respectively. With this data, the mechanical behavior of the sample at small strains can be studied. This system is able to provide a high load resolution of 80 nN and displacement resolution of 0.5 nm. However, maximum load and sample elongation is limited and handling of the sample still remains a challenge.

  16. Modified ring stretch tensile testing of Zr-1Nb cladding

    SciTech Connect

    Cohen, A.B.; Majumdar, S.; Ruther, W.E.; Billone, M.C.; Chung, H.M.; Neimark, L.A.

    1998-03-01

    In a round robin effort between the US Nuclear Regulatory Commission, Institut de Protection et de Surete Nucleaire in France, and the Russian Research Centre-Kurchatov Institute, Argonne National Laboratory conducted 16 modified ring stretch tensile tests on unirradiated samples of zr-1Nb cladding, which is used in Russian VVER reactors. Test were conducted at two temperatures (25 and 400 C) and two strain rates (0.001 and 1 s{sup {minus}1}). At 25 C and 0.001 s{sup {minus}1}, the yield strength (YS), ultimate tensile strength (UTS), uniform elongation (UE), and total elongation (TE) were 201 MPa, 331 MPa, 18.2%, and 57.6%, respectively. At 400 C and 0.001 s{sup {minus}1}, the YS, UTS, UE, and TE were 109 MPa, 185 MPa, 15.4%, and 67.7%, respectively. Finally, at 400 C and 1 s{sup {minus}1}, the YS, UTS, UE, and TE were 134 MPa, 189 MPa, 18.9%, and 53.4%, respectively. The high strain rate tests at room temperature were not successful. Test results proved to be very sensitive to the amount of lubrication used on the inserts; because of the large contact area between the inserts and specimen, too little lubrication leads to significantly higher strengths and lower elongations being reported. It is also important to note that only 70 to 80% of the elongation takes place in the gauge section, depending on specimen geometry. The appropriate percentage can be estimated from a simple model or can be calculated from finite-element analysis.

  17. Modeling the tensile behavior of human Achilles tendon.

    PubMed

    Lewis, G; Shaw, K M

    1997-01-01

    Uniaxial quasi-static tensile stress, sigma versus strain, epsilon, data were obtained from 29 cadaveric Achilles tendons (donor ages: 36 to 100 years), at a strain rate of either 10 or 100%/s. These results were then used in modeling the elastic component of the tensile deformational behavior of this tissue. Two approaches were taken. In the first, it was shown that the following constitutive relation provided an excellent fit to the elastic section of the sigma-epsilon curve, sigma = C epsilon exp[D epsilon + F epsilon 2], with C, D and F being material constants, whose values for the present dataset were found to be C = 2.00 +/- 0.99, D = 0.089 +/- 0.087 and F = -0.0047 +/- 0.0095. The values of these coefficients were not statistically significantly affected by either donor age or test strain rate. In the second approach, the value of the modulus of elasticity of a filamentary polymer matrix composite material was computed as a function of various combinations of values of the modulus of elasticity of the fiber, the modulus of elasticity of the matrix, and angle of orientation of the principal material axes with respect to the reference coordinate axes (theta) for a fiber volume fraction of 0.6 and a material Poisson's ratio of 0.4. By comparing these results with the experimentally-obtained values of the tangent modulus of elasticity of the tendons (defined as the slope of the linear section of the post-toe zone in the sigma-epsilon plot), and assuming that the tendon may be idealized as a filamentary polymer matrix composite material, the suggestion is made that the winding angle of the fibers (collagen fibrils) in the tendon (taken to be equal to theta) is about 6 degrees.

  18. Mechanical characterization of stomach tissue under uniaxial tensile action.

    PubMed

    Jia, Z G; Li, W; Zhou, Z R

    2015-02-26

    In this article, the tensile properties of gastric wall were investigated by using biomechanical test and theoretical analysis. The samples of porcine stomach strips from smaller and greater curvature of the stomach were cut in longitudinal and circumferential direction, respectively. The loading-unloading, stress relaxation, strain creep, tensile fracture tests were performed at mucosa-submucosa, serosa-muscle and intact layer, respectively. Results showed that the biomechanical properties of the porcine stomach depended on the layers, orientations and locations of the gastric wall and presented typical viscoelastic, nonlinear and anisotropic mechanical properties. During loading-unloading test, the stress of serosa-muscle layer in the longitudinal direction was 15-20% more than that in the circumferential direction at 12% stretch ratio, while it could reach about 40% for the intact layer and 50% for the mucosa-submucosa layer. The results of stress relaxation and strain creep showed that the variation degree was obviously faster in the circumferential direction than that in the longitudinal direction, and the ultimate residual values were also different for the different layers, orientations and locations. In the process of fracture test, the serosa-muscle layer fractured firstly followed by the mucosa-submucosa layer when the intact layer was tested, the longitudinal strips firstly began to fracture and the required stress value was about twice as much as that in the circumferential strips. The anisotropy and heterogeneity of mechanical characterization of the porcine stomach were related to its complicated geometry, structure and functions. The results would help us to understand the biomechanics of soft organ tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing

    SciTech Connect

    Ge, Ting; Grest, Gary S.; Robbins, Mark O.

    2014-09-26

    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and interfacial fracture energy GI are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small t welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GI is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GI increases as t1/2 before saturating at the average bulk fracture energy Gb. As in previous studies of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GI is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GI << Gb.

  20. Baseline Chromatin Modification Levels May Predict ...

    EPA Pesticide Factsheets

    Traditional toxicological paradigms have relied on factors such as age, genotype, and disease status to explain variability in responsiveness to toxicant exposure; however, these are neither sufficient to faithfully identify differentially responsive individuals nor are they modifiable factors that can be leveraged to mitigate the exposure effects. Unlike these factors, the epigenome is dynamic and shaped by an individual's environment. We sought to determine whether baseline levels of specific chromatin modifications correlated with the interindividual variability in their ozone (03)-mediated induction in an air-liquid interface model using primary human bronchial epithelial cells from a panel of 11 donors. We characterized the relationship between the baseline abundance of 6 epigenetic markers with established roles as key regulators of gene expression-histone H3 lysine 4 trimethylation (H3K4me3), H3K27 acetylation (H3K27ac), pan­acetyl H4 (H4ac), histone H3K27 di/trimethylation (H3K27me2/3), unmodified H3, and5-hydroxymethylcytosine (5-hmC)-and the variability in the 03-induced expression of IL-8, IL-6, COX2, and HMOX1. Baseline levels of H3K4me3, H3K27me2/3, and 5-hmC, but not H3K27ac, H4ac, and total H3, correlated with the interindividual variability in 03-mediated induction of HMOX1 and COX2. In contrast, none of the chromatin modifications that we examined correlated with the induction of IL-8 and IL-6. From these findings, we propose an "epigenetic see

  1. Spectrometer Baseline Control Via Spatial Filtering

    NASA Technical Reports Server (NTRS)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  2. Optimization of the CLIC Baseline Collimation System

    SciTech Connect

    Resta-Lopez, Javier; Angal-Kalinin, Deepa; Fernandez-Hernando, Juan; Jackson, Frank; Dalena, Barbara; Schulte, Daniel; Tomas, Rogelio; Seryi, Andrei; /SLAC

    2012-07-06

    Important efforts have recently been dedicated to the improvement of the design of the baseline collimation system of the Compact Linear Collider (CLIC). Different aspects of the design have been optimized: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers have also been reviewed to minimize wakefields; in addition, the optics design have been polished to improve the collimation efficiency. This paper describes the current status of the CLIC collimation system after this optimization.

  3. Baseline Graphite Initial Mechanical Test Report

    SciTech Connect

    Mark Carroll; Randy Lloyd

    2009-09-01

    The Next Generation Nuclear Plant (NGNP) Project is tasked with selecting a high temperature gas reactor technology that will be capable of generating electricity and supplying large amounts of process heat. The NGNP is presently being designed as a helium-cooled high temperature gas reactor (HTGR) with a large graphite core. The graphite baseline characterization project is conducting the research and development (R&D) activities deemed necessary to fully qualify nuclear-grade graphite for use in the NGNP reactor. One of the major fundamental objectives of the project is establishing nonirradiated thermomechanical and thermophysical properties by characterizing lot-to-lot and billet-to-billet variations (for probabilistic baseline data needs) through extensive data collection and statistical analysis. The reactor core will be made up of stacks of graphite moderator blocks. In order to gain a more comprehensive understanding of the varying characteristics in a wide range of suitable graphites, any of which can be classified as “nuclear grade,” an experimental program has been initiated to develop an extensive database of the baseline characteristics of numerous candidate graphites. Various factors known to affect the properties of graphite will be investigated, including specimen size, spatial location within a graphite billet, specimen orientation within a billet (either parallel to [P] or transverse to [T] the long axis of the as-produced billet), and billet-to-billet variations within a lot or across different production lots. Because each data point is based on a certain position within a given billet of graphite, particular attention must be paid to the traceability of each specimen and its spatial location and orientation within each billet. The evaluation of these properties is discussed in the Graphite Technology Development Plan (Windes et. al 2007). One of the key components in the evaluation of these graphite types will be mechanical testing of

  4. Dispersion analysis for baseline reference mission 2

    NASA Technical Reports Server (NTRS)

    Snow, L. S.

    1975-01-01

    A dispersion analysis considering uncertainties (or perturbations) in platform, vehicle, and environmental parameters was performed for baseline reference mission (BRM) 2. The dispersion analysis is based on the nominal trajectory for BRM 2. The analysis was performed to determine state vector and performance dispersions (or variations) which result from the indicated uncertainties. The dispersions are determined at major mission events and fixed times from liftoff (time slices). The dispersion results will be used to evaluate the capability of the vehicle to perform the mission within a specified level of confidence and to determine flight performance reserves.

  5. Spectrometer Baseline Control Via Spatial Filtering

    NASA Technical Reports Server (NTRS)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  6. SRP baseline hydrogeologic investigation: Aquifer characterization

    SciTech Connect

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  7. SRP baseline hydrogeologic investigation, Phase 2

    SciTech Connect

    Bledsoe, H.W.

    1987-11-01

    As discussed in the program plan for the Savannah River Plant (SRP) Baseline Hydrogeologic Investigation, this program has been implemented for the purpose of updating and improving the current state of knowledge and understanding of the hydrogeologic systems underlying the Savannah River Plant (SRP). The objective of the program is to install a series of observation well clusters (wells installed in each major water bearing formation at the same site) at key locations across the plant site in order to: (1) provide detailed information on the lithology, stratigraphy, and groundwater hydrology, (2) provide observation wells to monitor the groundwater quality, head relationships, gradients, and flow paths.

  8. SRP Baseline Hydrogeologic Investigation, Phase 3

    SciTech Connect

    Bledsoe, H.W.

    1988-08-01

    The SRP Baseline Hydrogeologic Investigation was implemented for the purpose of updating and improving the knowledge and understanding of the hydrogeologic systems underlying the SRP site. Phase III, which is discussed in this report, includes the drilling of 7 deep coreholes (sites P-24 through P-30) and the installation of 53 observation wells ranging in depth from approximately 50 ft to more than 970 ft below the ground surface. In addition to the collection of geologic cores for lithologic and stratigraphic study, samples were also collected for the determination of physical characteristics of the sediments and for the identification of microorganisms.

  9. Effect of temperature and microstructure on tensile and tensile creep properties of titanium silicon carbide in air

    NASA Astrophysics Data System (ADS)

    Radovic, Miladin

    The ternary carbide, Ti3SiC2, combines some of the best attributes of ceramics and metals. It is stable in inert atmospheres to temperatures above 2200°C, stiff and yet is readily machinable, oxidation, fatigue and thermal shock resistant and damage tolerant. Thus, Ti3SiC 2 is good candidate material for high temperature structural application. The aim of this work was to characterize its tensile and tensile creep properties. The mechanical behavior of Ti3SiC2 is characterized by a brittle-to-ductile (BTD) transition that is a function of strain rate. Its high strain rate sensitivity (≈0.50--0.6) is in the range that is more typical for superplastic materials, although it does not exhibit other attributes of superplasticity. Polycrystalline samples do not exhibit linear elastic behavior in tension even at room temperature. Room temperature loading-unloading tests result in closed hysteresis loops when the stress exceeds ≈120 MPa, suggesting that the mechanical response can be described as anelastic (viscoelastic). At high temperatures (1200°C) intense stress relaxation takes place; cycling loading-unloading tests at high temperature and low strain rates, demonstrate that the samples continue to elongate even during unloading, suggesting that Ti3SiC2 deforms viscoplastically. Tensile creep curves exhibit primary, steady state and tertiary regimes. The minimum creep rate can be represented by power law equation with a stress exponent of 1.5 for fine-grained (3--5 mum) samples, and 2 for coarse-grained (100--300 mum) ones. For both microstructures the activation energy for creep is ≈450 kJ/mol. The dependence on grain size is quite weak, implying that diffusion creep and/or creep mechanisms based on grain boundary sliding do not play a central role. Results of strain transient dip tests suggest that large internal stresses are developed during creep. Those internal stresses are believed to result in recoverable (anelastic) strains during unloading. The

  10. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...

  11. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...

  12. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...

  13. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...

  14. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's...

  15. Analysis of baseline gene expression levels from ...

    EPA Pesticide Factsheets

    The use of gene expression profiling to predict chemical mode of action would be enhanced by better characterization of variance due to individual, environmental, and technical factors. Meta-analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies has yielded useful information on baseline fluctuations in gene expression. A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Sciences Institute's Technical Committee on the Application of Genomics in Mechanism Based Risk Assessment in order to provide a public resource for assessments of variability in baseline gene expression. Data from over 500 Affymetrix microarrays from control rat liver and kidney were collected from 16 different institutions. Thirty-five biological and technical factors were obtained for each animal, describing a wide range of study characteristics, and a subset were evaluated in detail for their contribution to total variability using multivariate statistical and graphical techniques. The study factors that emerged as key sources of variability included gender, organ section, strain, and fasting state. These and other study factors were identified as key descriptors that should be included in the minimal information about a toxicogenomics study needed for interpretation of results by an independent source. Genes that are the most and least variable, gender-selectiv

  16. Long-baseline neutrino oscillation experiments

    SciTech Connect

    Crane, D.; Goodman, M.

    1994-12-31

    There is no unambiguous definition for long baseline neutrino oscillation experiments. The term is generally used for accelerator neutrino oscillation experiments which are sensitive to {Delta}m{sup 2} < 1.0 eV{sup 2}, and for which the detector is not on the accelerator site. The Snowmass N2L working group met to discuss the issues facing such experiments. The Fermilab Program Advisory Committee adopted several recommendations concerning the Fermilab neutrino program at their Aspen meeting immediately prior to the Snowmass Workshop. This heightened the attention for the proposals to use Fermilab for a long-baseline neutrino experiment at the workshop. The plan for a neutrino oscillation program at Brookhaven was also thoroughly discussed. Opportunities at CERN were considered, particularly the use of detectors at the Gran Sasso laboratory. The idea to build a neutrino beam from KEK towards Superkamiokande was not discussed at the Snowmass meeting, but there has been considerable development of this idea since then. Brookhaven and KEK would use low energy neutrino beams, while FNAL and CERN would plan have medium energy beams. This report will summarize a few topics common to LBL proposals and attempt to give a snapshot of where things stand in this fast developing field.

  17. Geodetic long baseline interferometry research in Canada

    NASA Technical Reports Server (NTRS)

    Langley, R. B.; Petrachenko, W. T.; Canon, W. H.

    1980-01-01

    The objectives and results of several studies using the Canadian long baseline interferometry system (LBI) are presented. The precision of measurements from radio telescopes at the Algonquin Radio Observatory (ARO), Lake Traverse, Ontario; the Owens Valley Radio Observatory (OVRO), Big Pine, California; and the Chilbolton Observatory (CHIL), Chilbolton, England, is discussed. Also, since LBI is insensitive to the uncertainty in the geocentric gravitational constant, it is a very useful technique for determining the scales of the coordinate systems used by other precise techniques. Beginning in May 1977, a number of LBI observing sessions were accompanied by simultaneous satellite Doppler observations. The baseline components obtained from the satellite Doppler observations were compared to the LBI values. The weighted mean scale bias of the NSWC 9Z-2 satellite Doppler coordinate system relative to the LBI system was found to be 0.42 + or - 0.05 PPM. The weighted mean difference in the origin of longitude was found to be 0.87 sec + or - 0.01 while the difference in declination origin was found to be 0.06 sec + or - 0.01.

  18. Environmental baseline conditions for impact assessment of unconventional gas exploitation: the G-Baseline project

    NASA Astrophysics Data System (ADS)

    Kloppmann, Wolfram; Mayer, Berhard; Millot, Romain; Parker, Beth L.; Gaucher, Eric; Clarkson, Christopher R.; Cherry, John A.; Humez, Pauline; Cahill, Aaron

    2015-04-01

    A major scientific challenge and an indispensible prerequisite for environmental impact assessment in the context of unconventional gas development is the determination of the baseline conditions against which potential environmental impacts on shallow freshwater resources can be accurately and quantitatively tested. Groundwater and surface water resources overlying the low-permeability hydrocarbon host rocks containing shale gas may be impacted to different extents by naturally occurring saline fluids and by natural gas emanations. Baseline assessments in areas of previous conventional hydrocarbon production may also reveal anthropogenic impacts from these activities not related to unconventional gas development. Once unconventional gas exploitation has started, the baseline may be irrevocably lost by the intricate superposition of geogenic and potential anthropogenic contamination by stray gas, formation waters and chemicals used during hydraulic fracturing. The objective of the Franco-Canadian NSERC-ANR project G-Baseline is to develop an innovative and comprehensive methodology of geochemical and isotopic characterization of the environmental baseline for water and gas samples from all three essential zones: (1) the production zone, including flowback waters, (2) the intermediate zone comprised of overlying formations, and (3) shallow aquifers and surface water systems where contamination may result from diverse natural or human impacts. The outcome will be the establishment of a methodology based on innovative tracer and monitoring techniques, including traditional and non-traditional isotopes (C, H, O, S, B, Sr, Cl, Br, N, U, Li, Cu, Zn, CSIA...) for detecting, quantifying and modeling of potential leakage of stray gas and of saline formation water mixed with flowback fluids into fresh groundwater resources and surface waters taking into account the pathways and mechanisms of fluid and gas migration. Here we present an outline of the project as well as first

  19. Baseline tests for arc melter vitrification of INEL buried wastes. Volume II: Baseline test data appendices

    SciTech Connect

    Oden, L.L.; O`Conner, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  20. Laboratory simulations of tensile (hydro) fracture via cyclical fluid pressurisation

    NASA Astrophysics Data System (ADS)

    Benson, P. M.; Heap, M. J.; Lavallee, Y.; Flaws, A.; Hess, K.; Selvadurai, A. P.; Dingwell, D. B.

    2011-12-01

    During magma ascent, cracking and faulting of the host rock provide conduits for the movement of magmatic fluids. The spatial and temporal formation of such conduits, driven largely by pressurized magmas in the form of dykes, is of key importance in the volcano-tectonic system. In particular, it is known that both a fracture mechanical (brittle) mechanism (due to the propagating dyke tip) as well as a petrological mechanism (due to the elevated pressure-temperature environment), play roles in dyke propagation. As the use of elevated temperatures in the laboratory is technically challenging, early work has tended to concentrate either on analogue setups using gelatine and other materials that are fractured by injection of coloured water or - for simulation of representative pressures - a simplified experimental setup at modest (room) temperatures. Here, we overcome these difficulties by simulating magma intrusion in the laboratory through an experimental protocol that compresses a 'conduit' of magma encapsulated inside a hollow cylindrical shell. A well-controlled stress is then imposed onto the conduit which has the effect of transmitting this force onto the inner wall of the surrounding shell. Although we present our work with a view to investigating fluid driven tensile fracture applicable to high temperature processes, this general protocol may be used to analyse a wide range of processes whereby direct fluid pressure is used to fracture a host medium. To analyse the system, we make use of a number of well-known fracture mechanics methods allied to independently measured rheological parameters for the inner conduit to develop a model to explain (a) the stress relaxations, and (b) the peak stress measured at failure, as well as the observed interactions between the ductile inner conduit and brittle outer shell, interpreted as analogous to dykes driving though a volcanic edifice. We show that (a), the coupling of stress, strain and seismic data through time can be

  1. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  2. The JLC/NLC Baseline Design

    SciTech Connect

    Tenenbaum, Peter G

    2003-05-28

    The JLC/NLC is a normal conducting linear collider based on X-band RF technology. The collider is designed to cover the center-of-mass energy range from 90 GeV to 1.3 TeV with a luminosity of 2 to 3 x 10{sup 34} cm{sup -2} s{sup -1} between 500 GeV and 1 TeV. The X-band RF system, which is based on the operating NLC Test Accelerator X-band RF system, was recently modified in a way that will ensure a less expensive and faster demonstration of a full RF sub-unit. In this paper, the baseline beam parameters and RF system design for the JLC/NLC will be described, along with the demonstration schedule.

  3. In-Space Manufacturing Baseline Property Development

    NASA Technical Reports Server (NTRS)

    Stockman, Tom; Schneider, Judith; Prater, Tracie; Bean, Quincy; Werkheiser, Nicki

    2016-01-01

    The In-Space Manufacturing (ISM) project at NASA Marshall Space Flight Center currently operates a 3D FDM (fused deposition modeling) printer onboard the International Space Station. In order to enable utilization of this capability by designer, the project needs to establish characteristic material properties for materials produced using the process. This is difficult for additive manufacturing since standards and specifications do not yet exist for these technologies. Due to availability of crew time, there are limitations to the sample size which in turn limits the application of the traditional design allowables approaches to develop a materials property database for designers. In this study, various approaches to development of material databases were evaluated for use by designers of space systems who wish to leverage in-space manufacturing capabilities. This study focuses on alternative statistical techniques for baseline property development to support in-space manufacturing.

  4. An automated approach to configuration baseline documentation

    SciTech Connect

    Blake, G.D.; Khan, M.A.

    1990-01-01

    This paper presents Public Service Electric and Gas Company's (PSE and G's) automated approach to configuration base-line documentation (CBD) for Salem units 1 and 2 and Hope Creek. The CBD project is a proactive project, similar to what is commonly termed a design basis documentation program in the nuclear utility industry. The data information management system (DIMS) element of the CBD project is expected to automate the CBD development, review/approval, control, maintenance, and distribution of CBD and the subsequent integration of the CBD into the day-to-day design processes of PSE and G's nuclear engineering department. The DIMS project scope emphasizes streamlined, swift, and accurate design information retrieval system hardware and software; proper and controlled screening of stored design information; legible storage of design information; and more efficient and user-friendly information handling. This paper discusses the selection and implementation of an integrated optical imaging and textual search technology.

  5. The OPERA long baseline neutrino oscillation experiment

    NASA Astrophysics Data System (ADS)

    Wilquet, G.

    2008-05-01

    OPERA is a long baseline neutrino oscillation experiment designed to observe the appearance of vτ in a pure vμ beam in the parameter space indicated by the atmospheric neutrinos oscillation signal. The detector is situated in the underground LNGS laboratory under 3 800 water meter equivalent at a distance of 730 km from CERN where the CNGS neutrino beam to which it is exposed originates. It consists of two identical 0.68 kilotons lead/nuclear emulsion targets, each instrumented with a tracking device and complemented by a muon spectrometer. The concept and the status of the detector are described and the first results obtained with cosmic rays and during two weeks of beam commissioning in 2006 are reported.

  6. Spacecraft attitude calibration/verification baseline study

    NASA Technical Reports Server (NTRS)

    Chen, L. C.

    1981-01-01

    A baseline study for a generalized spacecraft attitude calibration/verification system is presented. It can be used to define software specifications for three major functions required by a mission: the pre-launch parameter observability and data collection strategy study; the in-flight sensor calibration; and the post-calibration attitude accuracy verification. Analytical considerations are given for both single-axis and three-axis spacecrafts. The three-axis attitudes considered include the inertial-pointing attitudes, the reference-pointing attitudes, and attitudes undergoing specific maneuvers. The attitude sensors and hardware considered include the Earth horizon sensors, the plane-field Sun sensors, the coarse and fine two-axis digital Sun sensors, the three-axis magnetometers, the fixed-head star trackers, and the inertial reference gyros.

  7. Mujeres en accion: design and baseline data.

    PubMed

    Keller, Colleen; Fleury, Julie; Perez, Adriana; Belyea, Michael; Castro, Felipe G

    2011-10-01

    The majority of programs designed to promote physical activity in older Hispanic women includes few innovative theory-based interventions that address cultural relevant strategies. The purpose of this report is to describe the design and baseline data for Mujeres en Accion, a physical activity intervention to increase regular physical activity, and cardiovascular health outcomes among older Hispanic women. Mujeres en Accion [Women in Action for Health], a 12 month randomized controlled trial to evaluate the effectiveness of a social support physical activity intervention in midlife and older Hispanic women. This study tests an innovative intervention, Mujeres en Accion, and includes the use of a theory-driven approach to intervention, explores social support as a theoretical mediating variable, use of a Promotora model and a Community Advisory group to incorporate cultural and social approaches and resources, and use of objective measures of physical activity in Hispanic women.

  8. Intensity interferometry: optical imaging with kilometer baselines

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2016-07-01

    Optical imaging with microarcsecond resolution will reveal details across and outside stellar surfaces but requires kilometer-scale interferometers, challenging to realize either on the ground or in space. Intensity interferometry, electronically connecting independent telescopes, has a noise budget that relates to the electronic time resolution, circumventing issues of atmospheric turbulence. Extents up to a few km are becoming realistic with arrays of optical air Cherenkov telescopes (primarily erected for gamma-ray studies), enabling an optical equivalent of radio interferometer arrays. Pioneered by Hanbury Brown and Twiss, digital versions of the technique have now been demonstrated, reconstructing diffraction-limited images from laboratory measurements over hundreds of optical baselines. This review outlines the method from its beginnings, describes current experiments, and sketches prospects for future observations.

  9. Pentek concrete scabbling system: Baseline report

    SciTech Connect

    1997-07-31

    The Pentek scabbling technology was tested at Florida International University (FIU) and is being evaluated as a baseline technology. This report evaluates it for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek concrete scabbling system consisted of the MOOSE{reg_sign}, SQUIRREL{reg_sign}-I, and SQUIRREL{reg_sign}-III scabblers. The scabblers are designed to scarify concrete floors and slabs using cross-section, tungsten carbide tipped bits. The bits are designed to remove concrete in 318 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  10. Mujeres en Accion: Design and Baseline Data

    PubMed Central

    Fleury, Julie; Perez, Adriana; Belyea, Michael; Castro, Felipe G.

    2015-01-01

    The majority of programs designed to promote physical activity in older Hispanic women includes few innovative theory-based interventions that address cultural relevant strategies. The purpose of this report is to describe the design and baseline data for Mujeres en Accion, a physical activity intervention to increase regular physical activity, and cardiovascular health outcomes among older Hispanic women. Mujeres en Accion [Women in Action for Health], a 12 month randomized controlled trial to evaluate the effectiveness of a social support physical activity intervention in midlife and older Hispanic women. This study tests an innovative intervention, Mujeres en Accion, and includes the use of a theory-driven approach to intervention, explores social support as a theoretical mediating variable, use of a Promotora model and a Community Advisory group to incorporate cultural and social approaches and resources, and use of objective measures of physical activity in Hispanic women. PMID:21298400

  11. Tensile Deformation and Adiabatic Heating in Post-Yield Response of Polycarbonate

    DTIC Science & Technology

    2015-11-01

    measurements performed on the specimen during deformation. In this study, American Society for Testing and Materials tensile dog -bone PC specimens were used...adiabatic heat generation to be quantified. 2. Experiments ASTM D638-1018 standard polymer tensile dog -bone specimens were cut out of 5.75-mm-thick PC

  12. Tensile testing of nylon and Kevlar parachute materials under Federal specified temperature and relative humidity conditions

    SciTech Connect

    Botner, W.T.

    1980-01-01

    A small 10-ft x 12-ft temperature and relative humidity controlled room for tensile testing of parachute materials is presented. Tensile tests of nylon and Kevlar parachute materials indicate there is a negligible change in break strength of test samples soaked in the controlled environment vs samples soaked in ambient conditions.

  13. The relation between the tensile strength and the hardness of metals

    NASA Technical Reports Server (NTRS)

    Schwarz, O

    1930-01-01

    This report presents methods determining the hardness and tensile strength of metals by showing the effect and dependence of the hardness numbers on the strain-hardening. Relations between the hardness numbers and the ordinary stress-strain diagrams and tensile strength are given. Procedures for finding the Brinell strength are also presented.

  14. EVALUATION OF A RING TEST FOR DETERMINING THE TENSILE STRENGTH OF MORTARS AND CONCRETE.

    DTIC Science & Technology

    The purpose of this paper is to report the results of an evaluation of a specific type of test procedure, the ring tensile test , which results in a...strength’ and the techniques used to obtain them by other investigators over the years with the exception of the work involving the ring tensile test . Some

  15. 10 Degree Off-Axis Tensile Test for Intralaminar Shear Characterization of Fiber Composites.

    DTIC Science & Technology

    1976-04-01

    A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the...from Mod-I/epoxy, T-300/epoxy, and S-glass/ epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is

  16. In situ EBSD during tensile test of aluminum AA3003 sheet.

    PubMed

    Kahl, Sören; Peng, Ru Lin; Calmunger, Mattias; Olsson, Björn; Johansson, Sten

    2014-03-01

    Miniature tensile-test specimens of soft-annealed, weakly textured AA3003 aluminum sheet in 0.9 mm thickness were deformed until fracture inside a scanning electron microscope. Tensile strength measured by the miniature tensile test stage agreed well with the tensile strength by regular tensile testing. Strain over the microscope field of view was determined from changes in positions of constituent particles. Slip lines were visible in secondary electron images already at 0.3% strain; activity from secondary slip systems became apparent at 2% strain. Orientation rotation behavior of the tensile load axis with respect to the crystallographic axes agreed well with previously reported trends for other aluminum alloys. Start of the fracture and tensile crack propagation were documented in secondary electron images. The region of fracture nucleation included and was surrounded by many grains that possessed high Schmid factors at zero strain. Crystal lattice rotation angles in the grains surrounding the initial fracture zone were higher than average while rotations inside the initial fracture zone were lower than average for strains from zero to 31%. The orientation rotation behavior of the tensile load axes of the grains around the fracture zone deviated from the average behavior in this material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Tensile-strength apparatus applies high strain-rate loading with minimum shock

    NASA Technical Reports Server (NTRS)

    Cotrill, H. E., Jr.; Mac Glashan, W. F., Jr.

    1966-01-01

    Tensile-strength testing apparatus employs a capillary bundle through which a noncompressible fluid is extruded and a quick-release valve system. This apparatus applies the test loads at relatively constant very high strain rates with minimal shock and vibration to the tensile specimen and apparatus.

  18. 49 CFR Appendix A to Subpart C of... - Illustrations: Cylinder Tensile Sample

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Illustrations: Cylinder Tensile Sample A Appendix A to Subpart C of Part 178 Transportation Other Regulations Relating to Transportation PIPELINE AND... Part 178—Illustrations: Cylinder Tensile Sample The following figures illustrate the...

  19. 49 CFR Appendix A to Subpart C of... - Illustrations: Cylinder Tensile Sample

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Illustrations: Cylinder Tensile Sample A Appendix A to Subpart C of Part 178 Transportation Other Regulations Relating to Transportation (Continued... Part 178—Illustrations: Cylinder Tensile Sample The following figures illustrate the...

  20. 49 CFR Appendix A to Subpart C of... - Illustrations: Cylinder Tensile Sample

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Illustrations: Cylinder Tensile Sample A Appendix A to Subpart C of Part 178 Transportation Other Regulations Relating to Transportation (Continued... Part 178—Illustrations: Cylinder Tensile Sample The following figures illustrate the...

  1. 49 CFR Appendix A to Subpart C of... - Illustrations: Cylinder Tensile Sample

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Illustrations: Cylinder Tensile Sample A Appendix A to Subpart C of Part 178 Transportation Other Regulations Relating to Transportation (Continued... Part 178—Illustrations: Cylinder Tensile Sample The following figures illustrate the...

  2. Owning the program technical baseline for future space systems acquisition: program technical baseline tracking tool

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.; Hant, James J.; Kizer, Justin R.; Min, Inki A.; Siedlak, Dennis J. L.; Yoh, James

    2017-05-01

    The U.S. Air Force (USAF) has recognized the needs for owning the program and technical knowledge within the Air Force concerning the systems being acquired to ensure success. This paper extends the previous work done by the authors [1-2] on the "Resilient Program Technical Baseline Framework for Future Space Systems" and "Portfolio Decision Support Tool (PDST)" to the development and implementation of the Program and Technical Baseline (PTB) Tracking Tool (PTBTL) for the DOD acquisition life cycle. The paper describes the "simplified" PTB tracking model with a focus on the preaward phases and discusses how to implement this model in PDST.

  3. Tightly coupled long baseline/ultra-short baseline integrated navigation system

    NASA Astrophysics Data System (ADS)

    Batista, Pedro; Silvestre, Carlos; Oliveira, Paulo

    2016-06-01

    This paper proposes a novel integrated navigation filter based on a combined long baseline/ultra short baseline acoustic positioning system with application to underwater vehicles. With a tightly coupled structure, the position, linear velocity, attitude, and rate gyro bias are estimated, considering the full nonlinear system dynamics without resorting to any algebraic inversion or linearisation techniques. The resulting solution ensures convergence of the estimation error to zero for all initial conditions, exponentially fast. Finally, it is shown, under simulation environment, that the filter achieves very good performance in the presence of sensor noise.

  4. Tensile strength of bilayered ceramics and corresponding glass veneers

    PubMed Central

    Champirat, Tharee; Jirajariyavej, Bundhit

    2014-01-01

    PURPOSE To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS Blocks of core ceramics (IPS e.max® Press and Lava™ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and 1 mm2 in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max® Ceram and Lava™ Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS The mean microtensile bond strength of IPS e.max® Press/IPS e.max® Ceram (43.40 ± 5.51 MPa) was significantly greater than that of Lava™ Frame/Lava™ Ceram (31.71 ± 7.03 MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava™ Frame/Lava™ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava™ Ceram, while the bond strength of bilayered IPS e.max® Press/IPS e.max® Ceram was significantly greater than tensile strength of monolithic IPS e.max® Ceram. CONCLUSION Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials. PMID:25006377

  5. Weldability evaluation of high tensile plates using GMAW process

    NASA Astrophysics Data System (ADS)

    Datta, R.; Mukerjee, D.; Rohira, K. L.; Veeraraghavan, R.

    1999-08-01

    High tensile plates, SAILMA-450 high impact (HI) (yield strength, 45 kg/mm2 minimum; ultimate tensile strength, 57 kg/mm2 minimum; elongation, 19% minimum; Charpy impact energy 2.0 kg.m at -20 °C minimum) were successfully developed at the Steel Authority of India Ltd., up to 32 mm plate thickness. Since then the steel has been extensively used for the fabrication of impellers, bridges, excavators, and mining machineries, where welding is an important processing step. The present study deals with the weldability properties of SAILMA-450 HI plates employing the gas metal arc welding process and carbon dioxide gas. Implant and elastic restraint cracking tests were conducted to assess the cold cracking resistance of the weld joint under different welding conditions. The static fatigue limit values were found to be in excess of minimum specified yield strength at higher heat input levels (9.4 and 13.0 kJ/cm), indicating adequate cold cracking resistance. The critical restraint intensities, K cr, were found to vary between 720 and 1280 kg/mm2, indicating that the process can be utilized for fabrication of structures involving moderate to low restraint intensities (200 to 1000 kg/mm2). Lamellar tear tests conducted using full thickness plates at heat input levels ranging from 10 to 27 kJ/cm showed no incidence of lamellar tear upon visual, ultrasonic, and four-section macroexamination. These tests were repeated using machined plates, such that the midthickness of the plates (segregated zone) corresponded to the heat affected zone of the weld. No cracks were observed, indicating good lamellar tear resistance of the weld joint. Optimized welding conditions were formulated based on these tests. The weld joint was subjected to extensive tests to assess the physical properties and soundness of the weld joint. The weld joint exhibited good strength (64.7 kg/mm2) and impact toughness (5.7 and 3.5 kg.m at -20 °C for weld metal and heat affected zone properties. Crack tip

  6. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  7. Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.; Song, Y. D.; Sun, Y. C.

    2015-07-01

    The tensile behavior of cross-ply C/SiC ceramic-matrix composites (CMCs) at room temperature has been investigated. Under tensile loading, the damage evolution process was observed with an optical microscope. A micromechanical approach was developed to predict the tensile stress-strain curve, which considers the damage mechanisms of transverse multicracking, matrix multicracking, fiber/matrix interface debonding, and fiber fracture. The shear-lag model was used to describe the microstress field of the damaged composite. By combining the shear-lag model with different damage models, the tensile stress-strain curve of cross-ply CMCs corresponding to each damage stage was modeled. The predicted tensile stress-strain curves of cross-ply C/SiC composites agreed with experimental data.

  8. Newly Designed Tensile Test System for in vitro Measurement of Mechanical Properties of Cytoskeletal Filaments

    NASA Astrophysics Data System (ADS)

    Deguchi, Shinji; Ohashi, Toshiro; Sato, Masaaki

    A tensile test system for isolated cytoskeletal filaments, which enables to control strain rate, was newly designed. A pair of piezo-driven cantilevers were used to manipulate the specimen and to measure tensile load from the deflection of one of the cantilevers. The displacements of the cantilevers were optically and electrically detected. The specimen strain, determined from the cantilever displacements, was used as a feedback signal. We proposed a servo-system for strain rate control in which a desired path for the strain transition was designated. The path was chosen as a triangular-shape waveform against time, along which the strain rate is kept constant. We measured tensile properties of a single stress fiber isolated from a smooth muscle cell with this system to obtain a stretching stiffness of 45nN per strain. Performance evaluation and the tensile test demonstrated that the system enabled to carry out strain rate-controlled tensile test.

  9. The dynamic tensile strength of ice and ice-silicate mixtures

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1983-01-01

    The dynamic tensile strength of icy media is measured at strain rates on the order of 10,000/sec to aid in the understanding of impact and cratering phenomena. Compressed samples consisting of ice and ice-silicate mixtures with 5 and 30 wt % sand were impacted at temperatures between 230 and 250 K by projectile plexiglas plates imparting the required strain rates in less than 0.75 microsec. Taking the tensile stress corresponding to the transition from intact to spalled or fragmented samples as the dynamic tensile strength, strengths of 17, 20 and 22 MPa were obtained for the pure ice, 5 wt % sand, and 30 wt % sand specimens, respectively. The values lie considerably above those observed in static testing. A continuum fracturing model is used to obtain relations between tensile strength and stress rate as well as to derive stress and damage histories during tensile loading and the size distribution of icy fragments as a function of strain rate.

  10. [The properties of dentin and resinified dentin in the tensile test].

    PubMed

    Xu, J

    1989-07-01

    The purpose of this study is to evaluate the effect of resinifying therapy to the hard tissue of tooth by using measurement of the tensile strength. The fresh extracted maxillary anterior teeth having been cleaned and sterilized were divided into two groups. The control group was placed into 9% N-saline solution of 37 +/- 1 degrees C. The experimental group was treated with resinifying therapy. The tensile specimens were shaped by turning in a lathe until it satisfied the tensile test requirement of Mechanics of Materials except that they were hollow. A set of special split jig was made for this test. Instron Universal Testing Machine was used for measuring the load on the specimens. The loading speed was 0.05 mm/min. The straining meter was used to measure the tensile strain. The result revealed that tensile strength of resinifying dentin was little lower than that of unresinified dentin. The resinified dentin didn't increases stiffness or brittleness.

  11. Flexural and tensile strength developments of various shape carbon fiber-reinforced lightweight cementitious composites

    SciTech Connect

    Kim, T.J.; Park, C.K.

    1998-07-01

    Effects of three types of carbon fiber shapes (C, round, and hollow shape) on tensile and flexural strength developments of randomly oriented carbon-fiber-reinforced lightweight cement composites (CFRLC) were investigated. C-shape CFRLC (C-CFRLC) showed higher tensile and flexural strength development than any other shape. C-CFRLC loading V{sub f} = 3% in particular increased about 40% in tensile and flexural strength, compared to round shape CFRLC (R-CFRLC). Hollow-shape CFRLC (H-CFRLC) showed slightly higher tensile and flexural strength than R-CFRLC. C-CFRLC presented stronger fiber-matrix interfacial adhesive force, due to mechanical anchorage into the matrix, than any other fibers. Silica fume significantly influences the increase of tensile and flexural strength for the CFRLC.

  12. The effects of Si doping on dislocation movement and tensile stress in GaN films

    NASA Astrophysics Data System (ADS)

    Moram, M. A.; Kappers, M. J.; Massabuau, F.; Oliver, R. A.; Humphreys, C. J.

    2011-04-01

    Dislocations in undoped GaN move in response to the in-plane tensile stress present during film growth. Dislocation movement during growth relieves tensile stress, produces arrays of a-type dislocations and reduces the overall dislocation density, with preferential reduction of (a+c)-type dislocations. However, Si-doping limits dislocation movement, limiting the relief of the tensile stress that develops during growth and limiting dislocation reduction, probably due to the formation of Si impurity atmospheres at dislocations. Consequently, Si-doped films are under relatively greater tensile stress compared to undoped GaN films grown under similar conditions. Alternative dopants could be chosen to reduce tensile stress development, such as Ge.

  13. Evaluation of the tensile strength of the human ureter--preliminary results.

    PubMed

    Shilo, Yaniv; Pichamuthu, Joseph E; Averch, Timothy D; Vorp, David A

    2014-12-01

    Ureteral injuries such as avulsion are directly related to mechanical damage of the ureter. Understanding the tensile strength of this tissue may assist in prevention of iatrogenic injuries. Few published studies have looked at the mechanical properties of the animal ureter and, of those, none has determined the tensile strength of the human ureter. Therefore, the purpose of this work was to determine the tensile strength of the human ureter. We harvested 11 human proximal ureters from patients who were undergoing nephrectomy for either kidney tumors or nonfunctioning kidney. The specimens were then cut into multiple circumferentially and longitudinally oriented tissue strips for tensile testing. Strips were uniaxially stretched to failure in a tensile testing machine. The corresponding force and displacement were recorded. Finally, stress at failure was noted as the tensile strength of the sample. Circumferential tensile strength was also compared in the proximal and distal regions of the specimens. The tensile strength of the ureter in circumferential and longitudinal orientations was found to be 457.52±33.74 Ncm(-2) and 902.43±122.08 Ncm(-2), respectively (P<0.001). The circumferential strength in the proximal portion of the ureter was 409.89±35.13 Ncm(-2) in comparison with 502.89±55.85 Ncm(-2) in the distal portion (P=0.08). The circumferential tensile strength of the ureter was found to be significantly lower than the longitudinal strength. Circumferential tensile strength was also lower with more proximal parts of the ureter. This information may be important for the design of "intelligent" devices and simulators to prevent complications.

  14. Evaluation of the tensile strength of the human ureter - Preliminary results.

    PubMed

    Shilo, Yaniv; Pichamuthu, Joseph E; Averch, Timothy D; Vorp, David A

    2014-09-15

    Introduction: Ureteral injuries such as avulsion are directly related to mechanical damage of the ureter. Understanding the tensile strength of this tissue may assist in prevention of iatrogenic injuries. Few published studies have looked at the mechanical properties of the animal ureter, and of those none have determined the tensile strength of the human ureter. Therefore, the purpose of this work was to determine the tensile strength of the human ureter. Materials and Methods: We harvested 11 human proximal ureters from patients who were undergoing nephrectomy for either kidney tumors or non-functioning kidney. The specimens were then cut into multiple circumferentially and longitudinally-oriented tissue strips for tensile testing. Strips were uniaxially stretched to failure in a tensile testing machine. The corresponding force and displacement were recorded. Finally, stress at failure was noted as the tensile strength of the sample. Circumferential tensile strength was also compared in the proximal and distal regions of the specimens. Results: The tensile strength of the ureter in circumferential and longitudinal orientations was found to be 457.52±33.74 Ncm-2 and 902.43±122.08 Ncm-2, respectively (p<0.001). The circumferential strength in the proximal portion of the ureter was 409.89±35.13 Ncm-2 in comparison to 502.89±55.85 Ncm-2 in the distal portion (p=0.08). Conclusions: The circumferential tensile strength of the ureter was found to be significantly lower than the longitudinal strength. Circumferential tensile strength was also lower with more proximal parts of the ureter. This information may be important for the design of "intelligent" devices and simulators in order to prevent complications.

  15. Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Tae; Park, Leeju; Kim, Hak Jun; Kim, Seok Bong; Lee, Chong Soo

    2014-08-01

    Dynamic tensile extrusion (DTE) tests with the strain rate order of ~105 s-1 were conducted on coarse grained (CG) Cu and ultrafine grained (UFG) Cu. ECAP of 16 passes with route Bc was employed to fabricate UFG Cu. DTE tests were carried out by launching the sphere samples to the conical extrusion die at a speed of ~475 m/sec in a vacuumed gas gun system. UFG Cu was fragmented into 3 pieces and showed a DTE elongation of ~340%. CG Cu exhibited a larger DTE elongation of ~490% with fragmentation of 4 pieces. During DTE tests, dynamic recrystallization occurred in UFG Cu, but not in CG Cu. In order to examine the DTE behavior of CG Cu and UFG Cu under very high strain rates, a numerical analysis was undertaken by using a commercial finite element code (LS-DYNA 2D axis-symmetric model) with the Johnson - Cook model. The numerical analysis correctly predicted fragmentation and DTE elongation of CG Cu. But, the experimental DTE elongation of UFG Cu was much smaller than that predicted by the numerical analysis. This difference is discussed in terms of microstructural evolution of UFG Cu during DTE tests.

  16. Tensile tests of ITER TF conductors jacket materials

    NASA Astrophysics Data System (ADS)

    Anashkin, O. P.; Kеilin, V. E.; Krivykh, A. V.; Diev, D. N.; Dinisilov, A. S.; Shcherbakov, V. I.; Tronza, V. I.

    2012-06-01

    The set of very tough requirements has been formulated for TF jacket materials with extremely high plasticity at liquid helium temperature. The stainless steel 316LN-IG is recommended to be used for TF jacket tubes. Samples of 316LN-IG tubes (whole tubes and sub-size samples) made of the material from the same electro slag remelt have been tested in different conditions - as received tubes and tubes after prescribed compaction, 2.5% deformation at room temperature and heat treatment at 650 0C, 200 hours. The tensile tests were carried out at room, liquid nitrogen and liquid helium temperatures down to 4.2 K, meeting corresponding ASME and ASTM requirements. The low temperature testing devices are described. The tests results for sub-size samples and whole tubes show that the latter tests are considerably more representative and important for butt weld qualification at LHe temperature. It was observed that the ferromagnetic properties of all samples and especially of butt welds increase with lowering the temperature and increasing the degree of deformation. At LHe temperature a non-uniform and highly localized serrated deformations were observed.

  17. FE analysis strategies for structural materials with small tensile strength

    SciTech Connect

    Borri, A. ); Sorace, S. )

    1993-05-01

    A review of the smeared crack approach to the finite element analysis of small tensile strength (STS) materials is presented. The most widely applied strategies for crack modeling, shear transfer mechanism, and the definition of the mechanical constitutive laws and failure critically discussed. The models and special options in the ANSYS, ADINA, and ABAQUS programs are considered in detail, and applied to the analysis of a square panel under boundary pressures. The three solutions were compared in terms of the final broadening of the panel cracked zones. The results of the analysis of an hemispherical dome over a cylindrical drum are also presented. The Romulus Temple in the Roman Forum was the reference structure for this FE model. The problem was analyzed by a special procedure using the ANSYS concrete element. The results were compared with those of a discrete crack solution which reproduced the real cracked configuration of the building, and then with an experimental survey carried out by the flat jack technique.

  18. TENSILE TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect

    Duncan, A; Thad Adams, T; Ps Lam, P

    2007-05-02

    An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.

  19. Mechanochromism of a luminescent natural rubber under tensile deformation

    NASA Astrophysics Data System (ADS)

    Ha, Jimin; Park, Minwook; Jeong, Kwang-Un; Nah, Changwoon

    2016-09-01

    Various examples are reported of chromogenic materials composed of a functional dye covalently linked to the polymer chains or physically dispersed in the continuous macromolecular matrix, the latter appears to be a more sustainable route for the industrial scale-up of these materials. In this study, a mechanochromic elastomer was prepared by physically dispersing dye materials into a rubber matrix by solution mixing technique. The employed rubber is natural rubber (NR). The NR was chosen because of its ability of strain-induced crystallization. Perylene diimide I is selected after considering its aggregachromic nature and affinity with rubber matrix. The optimum composition of dye in rubber composites was determined based on the mechanochromic performance characterized with ultraviolet/visible (UV/Vis) spectrometer, x-ray diffraction (XRD) and spectrofluorometer (FL). The UV/Vis spectrometer and FL monitor the optical responses, such as absorbance and emission property, under tensile deformation due to the breakage of dye aggregates. Spectroscopic analysis with polarization monitors the breakage of dye aggregates and anisotropic property of the sample. The XRD monitors the change in size of dye aggregates. With polarization filtering, the breakage of dye aggregates are clearly observed and anisotropic property of the sample is also confirmed. The XRD results indicate that dye aggregates were broken during stretching because the shear force is applied to dye aggregates.

  20. Tensile properties of ADI material in water and gaseous environments

    SciTech Connect

    Rajnovic, Dragan; Balos, Sebastian; Sidjanin, Leposava; Eric Cekic, Olivera; Grbovic Novakovic, Jasmina

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  1. Tensile creep of alumina-silicon carbide ``nanocomposites``

    SciTech Connect

    Thompson, A.M.; Chan, H.M.; Harmer, M.P.

    1997-09-01

    The tensile creep behavior of an (Al{sub 2}O{sub 3}-SiC) nanocomposite that contains 5 vol% of 0.15 {micro}m SiC particles is examined in air under constant-load conditions. For a stress level of 100 MPa and in the temperature range of 1,200--1,300 C, the SiC reduces the creep rate of Al{sub 2}O{sub 3} by 2--3 orders of magnitude. In contrast to Al{sub 2}O{sub 3}, the nanocomposite exhibits no primary or secondary stages, with only tertiary creep being observed. Microstructural examination reveals extensive cavitation that is associated with SiC particles that are located at the Al{sub 2}O{sub 3} grain boundaries. Failure of the nanocomposite occurs via growth of subcritical cracks that are nucleated preferentially at the gauge corners. A modified test procedure enables creep lifetimes to be estimated and compared with creep rupture data. Several possible roles of the SiC particles are considered, including (1) chemical alteration of the Al{sub 2}O{sub 3} grain boundaries, (2) retarded diffusion along the Al{sub 2}O{sub 3}-SiC interface, and (3) inhibition of the accommodation process (either grain-boundary sliding or grain-boundary migration).

  2. Biaxial tensile tests of the porcine ascending aorta.

    PubMed

    Deplano, Valérie; Boufi, Mourad; Boiron, Olivier; Guivier-Curien, Carine; Alimi, Yves; Bertrand, Eric

    2016-07-05

    One of the aims of this work is to develop an original custom built biaxial set-up to assess mechanical behavior of soft tissues. Stretch controlled biaxial tensile tests are performed and stereoscopic digital image correlation (SDIC) is implemented to measure the 3D components of the generated displacements. Using this experimental device, the main goal is to investigate the mechanical behavior of porcine ascending aorta in the more general context of human ascending aorta pathologies. The results highlight that (i) SDIC arrangement allows accurate assessment of displacements and so stress strain curves, (ii) porcine ascending aorta has a nearly linear and anisotropic mechanical behavior until 30% of strain, (iii) porcine ascending aorta is stiffer in the circumferential direction than in the longitudinal one, (iv) the material coefficient representing the interaction between the two loading directions is thickness dependent, (v) taking into account the variability of the samples the stress values are independent of the stretch rate in the range of values from 10(-3) to 10(-1)s(-1) and finally, (vi) unlike other segments of the aorta, 4-month-old pigs ascending aorta is definitely not a relevant model to investigate the mechanical behavior of the human ascending aorta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Analysis of creep strain during tensile fatigue of cortical bone.

    PubMed

    Cotton, John R; Zioupos, Peter; Winwood, Keith; Taylor, Mark

    2003-07-01

    During fatigue tests of cortical bone specimens, at the unload portion of the cycle (zero stress) non-zero strains occur and progressively accumulate as the test progresses. This non-zero strain is hypothesised to be mostly, if not entirely, describable as creep. This work examines the rate of accumulation of this strain and quantifies its stress dependency. A published relationship determined from creep tests of cortical bone (Journal of Biomechanics 21 (1988) 623) is combined with knowledge of the stress history during fatigue testing to derive an expression for the amount of creep strain in fatigue tests. Fatigue tests on 31 bone samples from four individuals showed strong correlations between creep strain rate and both stress and "normalised stress" (sigma/E) during tensile fatigue testing (0-T). Combined results were good (r(2)=0.78) and differences between the various individuals, in particular, vanished when effects were examined against normalised stress values. Constants of the regression showed equivalence to constants derived in creep tests. The universality of the results, with respect to four different individuals of both sexes, shows great promise for use in computational models of fatigue in bone structures.

  4. Direct laboratory tensile testing of select yielding rock bolt systems

    SciTech Connect

    VandeKraats, J.D.; Watson, S.O.

    1996-08-01

    Yielding rock bolt support systems have been developed to accommodate ground movement in shifting ground such as in coal operations; in creeping ground such as salt, trona, and potash; and in swelling ground associated with some clays. These systems, designed to remain intact despite ground movement, should enhance mine safety and help contain costs in areas where rebolting of rigid non-yielding systems is typically required. Four such systems were tested in straight tensile pulls in the laboratory. They include the Slip Nut System from Dywidag Systems International USA, Inc., Ischebeck`s bolt mounted Titan Load Indicator, Rocky Mountain Bolt Company`s Yielding Cable Bolt, and a rock bolt installed variation of the yielding steel post developed by RE/SPEC Inc. The first two systems are currently marketed products and the latter two are prototype systems. Each system responds to load and displacement by yielding in an unique manner. All are designed to yield at predetermined loads. A description of each system and its yield function is provided. Each system was tested over its prescribed yield range in a test machine. At least five tests were performed on each system. Each system yielded and continued to provide support according to its design. Each shows promise for ground control use in shifting or creeping rock. This work helps to illustrate the comparative differences in performance between these specialized systems and the applications where they may be most useful.

  5. Tensile strain-induced softening of iron at high temperature

    PubMed Central

    Li, Xiaoqing; Schönecker, Stephan; Simon, Eszter; Bergqvist, Lars; Zhang, Hualei; Szunyogh, László; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2015-01-01

    In weakly ferromagnetic materials, already small changes in the atomic configuration triggered by temperature or chemistry can alter the magnetic interactions responsible for the non-random atomic-spin orientation. Different magnetic states, in turn, can give rise to substantially different macroscopic properties. A classical example is iron, which exhibits a great variety of properties as one gradually removes the magnetic long-range order by raising the temperature towards its Curie point of  = 1043 K. Using first-principles theory, here we demonstrate that uniaxial tensile strain can also destabilise the magnetic order in iron and eventually lead to a ferromagnetic to paramagnetic transition at temperatures far below . In consequence, the intrinsic strength of the ideal single-crystal body-centred cubic iron dramatically weakens above a critical temperature of ~500 K. The discovered strain-induced magneto-mechanical softening provides a plausible atomic-level mechanism behind the observed drop of the measured strength of Fe whiskers around 300–500 K. Alloying additions which have the capability to partially restore the magnetic order in the strained Fe lattice, push the critical temperature for the strength-softening scenario towards the magnetic transition temperature of the undeformed lattice. This can result in a surprisingly large alloying-driven strengthening effect at high temperature as illustrated here in the case of Fe-Co alloy. PMID:26556127

  6. High Strain Rate Tensile Testing of DOP-26 Iridium

    SciTech Connect

    Schneibel, Joachim H; Carmichael Jr, Cecil Albert; George, Easo P

    2007-11-01

    The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

  7. Tensile strain-induced softening of iron at high temperature.

    PubMed

    Li, Xiaoqing; Schönecker, Stephan; Simon, Eszter; Bergqvist, Lars; Zhang, Hualei; Szunyogh, László; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2015-11-10

    In weakly ferromagnetic materials, already small changes in the atomic configuration triggered by temperature or chemistry can alter the magnetic interactions responsible for the non-random atomic-spin orientation. Different magnetic states, in turn, can give rise to substantially different macroscopic properties. A classical example is iron, which exhibits a great variety of properties as one gradually removes the magnetic long-range order by raising the temperature towards its Curie point of  TC°= 1043 K. Using first-principles theory, here we demonstrate that uniaxial tensile strain can also destabilise the magnetic order in iron and eventually lead to a ferromagnetic to paramagnetic transition at temperatures far below TC°. In consequence, the intrinsic strength of the ideal single-crystal body-centred cubic iron dramatically weakens above a critical temperature of ~500 K. The discovered strain-induced magneto-mechanical softening provides a plausible atomic-level mechanism behind the observed drop of the measured strength of Fe whiskers around 300-500 K. Alloying additions which have the capability to partially restore the magnetic order in the strained Fe lattice, push the critical temperature for the strength-softening scenario towards the magnetic transition temperature of the undeformed lattice. This can result in a surprisingly large alloying-driven strengthening effect at high temperature as illustrated here in the case of Fe-Co alloy.

  8. Measurements of radiated elastic wave energy from dynamic tensile cracks

    NASA Technical Reports Server (NTRS)

    Boler, Frances M.

    1990-01-01

    The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.

  9. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy

    PubMed Central

    Musani, Smita; Musani, Iqbal; Dugal, Ramandeep; Habbu, Nitin; Madanshetty, Pallavi; Virani, Danish

    2013-01-01

    Background: The purpose of this study was to evaluate and compare the micro tensile bond strength of two metal bonding resin cements to sandblasted cobalt chromium alloy. Materials & Methods: Eight, Cobalt chromium alloy blocks of dimensions 10x5x5 mm were cast, finished and polished. One of the faces of each alloy block measuring 5x5mm was sandblasted with 50 μm grit alumina particles. The alloy blocks were then cleaned in an ultrasonic cleaner for 1 min and then air dried with an air stream. The Sandblasted surfaces of the two alloy blocks were bonded together with 2 different metal bonding resin systems (Panavia F Kuraray and DTK Kleber – Bredent). The samples were divided into 2 groups (n=4). Group 1- Two Co-Cr blocks were luted with Panavia cement. Group 2- Two Co-Cr blocks were luted with DTK Kleber-Bredent cement. The bonded samples were cut with a diamond saw to prepare Microtensile bars of approximately 1mm x 1mm x 6mm. Thirty bars from each group were randomly separated into 2 subgroups (n=15) and left for 3hrs (baseline) as per manufacturer's instructions while the other group was aged for 24hrs in 370C water, prior to loading to failure under tension at a cross head speed of 1mm/min. Failure modes were determined by means of stereomicroscopy (sm). Statistical analysis was performed through one way – ANOVA. Results: Significant variation in micro-tensile bond strength was observed between the two metal bonding resin systems. Conclusion: DTK showed higher mean bond strength values than Panavia F cement both at baseline and after aging. How to cite this article: Musani S, Musani I, Dugal R, Habbu N, Madanshetty P, Virani D. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy. J Int Oral Health 2013;5(5):73-8. PMID:24324308

  10. The First SLR Double-Difference Baseline

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen; Haagmans, Roger; Floberghagen, Rune; Cacciapuoti, Luigi; Sierk, Bernd; Kirchner, Georg; Rodriguez, Jose; Wilkinson, Matthew; Sherwood, Rob; Appleby, Graham

    2013-04-01

    We introduce the SLR double-difference approach of space geodesy. With real and simulated SLR measurements it is shown how common SLR biases are removed by forming SLR double-differences, i.e. station range biases, common retro-reflector effects and orbit errors (GNSS) for baselines up to e.g. 5000 km. In this way we obtain SLR observables of utmost precision and accuracy. We show how remaining noise in the SLR measurements nicely averages out, leading to orbit-free and bias-free estimation of station coordinates, local ties between different space geodesy techniques and precise comparison of optical/microwave tropospheric effects. It shall be noted that SLR scale is preserved by double-differencing. When ETALON and LAGEOS satellites are observed by SLR, any orbit error propagates directly into estimated station coordinates. However, by forming differences between two satellites and two ground stations this orbit error can be eliminated. Both satellites need to be observed quasi-simultaneously in the same tracking sessions in order that station range bias and common retro-reflector effects are removed by differencing. When SLR measurements from GRZL and HERL SLR stations are taken to GLONASS and LAGEOS satellites and processed in double-difference mode, clear common orbit errors are visible in the SLR residuals from both stations. The same stands for small range biases that are visible between the consecutive observing sessions and are removed by forming SLR baselines. Longer SLR passes reveal other interesting systematic effects common to both stations at mm-level. An error in the order of 4-6 cm RMS was introduced to GNSS orbits, however the effect on station coordinates in negligible over such a short SLR baseline. We show how with just one-two SLR double-difference passes one can estimate station coordinates at mm-level. When in parallel, both GNSS satellites are observed with microwave measurements, one can estimate very accurate local ties by comparing (or

  11. Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)

    SciTech Connect

    J. H. Jackson; S. P. Teysseyre

    2012-02-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials of interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.

  12. Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)

    SciTech Connect

    J. H. Jackson; S. P. Teysseyre

    2012-10-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials of interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.

  13. The London low emission zone baseline study.

    PubMed

    Kelly, Frank; Armstrong, Ben; Atkinson, Richard; Anderson, H Ross; Barratt, Ben; Beevers, Sean; Cook, Derek; Green, Dave; Derwent, Dick; Mudway, Ian; Wilkinson, Paul

    2011-11-01

    On February 4, 2008, the world's largest low emission zone (LEZ) was established. At 2644 km2, the zone encompasses most of Greater London. It restricts the entry of the oldest and most polluting diesel vehicles, including heavy-goods vehicles (haulage trucks), buses and coaches, larger vans, and minibuses. It does not apply to cars or motorcycles. The LEZ scheme will introduce increasingly stringent Euro emissions standards over time. The creation of this zone presented a unique opportunity to estimate the effects of a stepwise reduction in vehicle emissions on air quality and health. Before undertaking such an investigation, robust baseline data were gathered on air quality and the oxidative activity and metal content of particulate matter (PM) from air pollution monitors located in Greater London. In addition, methods were developed for using databases of electronic primary-care records in order to evaluate the zone's health effects. Our study began in 2007, using information about the planned restrictions in an agreed-upon LEZ scenario and year-on-year changes in the vehicle fleet in models to predict air pollution concentrations in London for the years 2005, 2008, and 2010. Based on this detailed emissions and air pollution modeling, the areas in London were then identified that were expected to show the greatest changes in air pollution concentrations and population exposures after the implementation of the LEZ. Using these predictions, the best placement of a pollution monitoring network was determined and the feasibility of evaluating the health effects using electronic primary-care records was assessed. To measure baseline pollutant concentrations before the implementation of the LEZ, a comprehensive monitoring network was established close to major roadways and intersections. Output-difference plots from statistical modeling for 2010 indicated seven key areas likely to experience the greatest change in concentrations of nitrogen dioxide (NO2) (at least 3

  14. Shifting environmental baselines in the Red Sea.

    PubMed

    Price, A R G; Ghazi, S J; Tkaczynski, P J; Venkatachalam, A J; Santillan, A; Pancho, T; Metcalfe, R; Saunders, J

    2014-01-15

    The Red Sea is among the world's top marine biodiversity hotspots. We re-examined coastal ecosystems at sites surveyed during the 1980s using the same methodology. Coral cover increased significantly towards the north, mirroring the reverse pattern for mangroves and other sedimentary ecosystems. Latitudinal patterns are broadly consistent across both surveys and with results from independent studies. Coral cover showed greatest change, declining significantly from a median score of 4 (1000-9999 m(2)) to 2 (10-99m(2)) per quadrat in 2010/11. This may partly reflect impact from coastal construction, which was evident at 40% of sites and has significantly increased in magnitude over 30 years. Beach oil has significantly declined, but shore debris has increased significantly. Although substantial, levels are lower than at some remote ocean atolls. While earlier reports have suggested that the Red Sea is generally healthy, shifting environmental baselines are evident from the current study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Resetting predator baselines in coral reef ecosystems

    PubMed Central

    Bradley, Darcy; Conklin, Eric; Papastamatiou, Yannis P.; McCauley, Douglas J.; Pollock, Kydd; Pollock, Amanda; Kendall, Bruce E.; Gaines, Steven D.; Caselle, Jennifer E.

    2017-01-01

    What did coral reef ecosystems look like before human impacts became pervasive? Early efforts to reconstruct baselines resulted in the controversial suggestion that pristine coral reefs have inverted trophic pyramids, with disproportionally large top predator biomass. The validity of the coral reef inverted trophic pyramid has been questioned, but until now, was not resolved empirically. We use data from an eight-year tag-recapture program with spatially explicit, capture-recapture models to re-examine the population size and density of a key top predator at Palmyra atoll, the same location that inspired the idea of inverted trophic biomass pyramids in coral reef ecosystems. Given that animal movement is suspected to have significantly biased early biomass estimates of highly mobile top predators, we focused our reassessment on the most mobile and most abundant predator at Palmyra, the grey reef shark (Carcharhinus amblyrhynchos). We estimated a density of 21.3 (95% CI 17.8, 24.7) grey reef sharks/km2, which is an order of magnitude lower than the estimates that suggested an inverted trophic pyramid. Our results indicate that the trophic structure of an unexploited reef fish community is not inverted, and that even healthy top predator populations may be considerably smaller, and more precarious, than previously thought. PMID:28220895

  16. LTC vacuum blasting machine (metal): Baseline report

    SciTech Connect

    1997-07-31

    The LTC coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC coating removal system consisted of several hand tools, a Roto Peen scaler, and a needlegun. They are designed to remove coatings from steel, concrete, brick, and wood. These hand tools are used with the LTC PTC-6 vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. The dust exposure was minimal but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  17. Pentek metal coating removal system: Baseline report

    SciTech Connect

    1997-07-31

    The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  18. Arc melter demonstration baseline test results

    SciTech Connect

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process.

  19. Resetting predator baselines in coral reef ecosystems.

    PubMed

    Bradley, Darcy; Conklin, Eric; Papastamatiou, Yannis P; McCauley, Douglas J; Pollock, Kydd; Pollock, Amanda; Kendall, Bruce E; Gaines, Steven D; Caselle, Jennifer E

    2017-02-21

    What did coral reef ecosystems look like before human impacts became pervasive? Early efforts to reconstruct baselines resulted in the controversial suggestion that pristine coral reefs have inverted trophic pyramids, with disproportionally large top predator biomass. The validity of the coral reef inverted trophic pyramid has been questioned, but until now, was not resolved empirically. We use data from an eight-year tag-recapture program with spatially explicit, capture-recapture models to re-examine the population size and density of a key top predator at Palmyra atoll, the same location that inspired the idea of inverted trophic biomass pyramids in coral reef ecosystems. Given that animal movement is suspected to have significantly biased early biomass estimates of highly mobile top predators, we focused our reassessment on the most mobile and most abundant predator at Palmyra, the grey reef shark (Carcharhinus amblyrhynchos). We estimated a density of 21.3 (95% CI 17.8, 24.7) grey reef sharks/km(2), which is an order of magnitude lower than the estimates that suggested an inverted trophic pyramid. Our results indicate that the trophic structure of an unexploited reef fish community is not inverted, and that even healthy top predator populations may be considerably smaller, and more precarious, than previously thought.

  20. Camera Trajectory fromWide Baseline Images

    NASA Astrophysics Data System (ADS)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the