Science.gov

Sample records for 12s rdna gene

  1. Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida)

    PubMed Central

    2014-01-01

    Background The 5’ region of cytochrome oxidase I (COI) is the standard marker for DNA barcoding. However, COI has proved to be of limited use in identifying some species, and for some taxa, the coding sequence is not efficiently amplified by PCR. These deficiencies lead to uncertainty as to whether COI is the most suitable barcoding fragment for species identification of ticks. Methods In this study, we directly compared the relative effectiveness of COI, 16S ribosomal DNA (rDNA), nuclear ribosomal internal transcribed spacer 2 (ITS2) and 12S rDNA for tick species identification. A total of 307 sequences from 84 specimens representing eight tick species were acquired by PCR. Besides the 1,834 published sequences of 189 tick species from GenBank and the Barcode of Life Database, 430 unpublished sequences representing 59 tick species were also successfully screened by Bayesian analyses. Thereafter, the performance of the four DNA markers to identify tick species was evaluated by identification success rates given by these markers using nearest neighbour (NN), BLASTn, liberal tree-based or liberal tree-based (+threshold) methods. Results Genetic divergence analyses showed that the intra-specific divergence of each marker was much lower than the inter-specific divergence. Our results indicated that the rates of correct sequence identification for all four markers (COI, 16S rDNA, ITS2, 12S rDNA) were very high (> 96%) when using the NN methodology. We also found that COI was not significantly better than the other markers in terms of its rate of correct sequence identification. Overall, BLASTn and NN methods produced higher rates of correct species identification than that produced by the liberal tree-based methods (+threshold or otherwise). Conclusions As the standard DNA barcode, COI should be the first choice for tick species identification, while 16S rDNA, ITS2, and 12S rDNA could be used when COI does not produce reliable results. Besides, NN and BLASTn are

  2. Phylogeny of the eelpout genus Lycodes (Pisces, Zoarcidae) as inferred from mitochondrial cytochrome b and 12S rDNA.

    PubMed

    Møller, Peter R; Gravlund, Peter

    2003-03-01

    The bottom-dwelling and species-rich eelpout genus Lycodes Reinhardt has a great potential for the study of Arctic marine speciation. Subdivision of the genus has been based on single or few morphological characters (e.g., lateral line configuration) with contradicting results and phylogenetic approaches have not been attended. Here we present the first phylogenetic analysis of the genus employing DNA sequences of the mitochondrial genes cytochrome b and 12S rDNA (714 bp). The analysis with the two genes combined resulted in two equally parsimonious trees. In both cladograms most of the previously suggested subgroups are para- or polyphyletic, except for the so-called short-tailed Lycodes spp., with a short tail, a single mediolateral lateral line configuration and a shallow or filled otolith sulcus. The group of long-tailed Lycodes spp., with ventral or ventro-medio-lateral types of lateral line configuration and a deep otolith sulcus, appears to be paraphyletic, since Pacific and Atlantic species in this group are not each other's closest relatives. Thus, the short-tailed species are placed in a derived clade, indicating a secondary shortening of the tail, and a "slope to shore" type of evolution. This is not in accordance with earlier assumptions of the more elongate, deeper living species being the more derived. The basal position of long-tailed Pacific species supports earlier theories of Pacific origin of the genus/family. Small genetic differences between Arctic/Atlantic species indicate a rather recent radiation in these areas after the opening of the Bering Strait 3.0-3.5 million years ago. PMID:12644398

  3. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis.

    PubMed

    Simon-Blecher, N; Huchon, D; Achituv, Y

    2007-09-01

    The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids. Our phylogenetic results allowed us to reject previous classifications of Pyrgomatidae based on morphological characteristics. Our results also suggested the possibility of paraphyly of the Pyrgomatidae. The hydrocoral barnacle Wanella is not found on the same clade as the other pyrgomatids, but rather, with the free-living balanids. The basal position of Megatrema and Ceratoconcha is supported. The archeaobalanid Armatobalanus is grouped with Cantellius at the base of the Indo-Pacific pyrgomatines. Fusion of the shell plate and modification of the opercular valves are homoplasious features that occurred more than three times on different clades. The monophyly of the "Savignium" group, comprising four nominal genera, is also not supported, and the different taxa are placed on different clades. PMID:17560131

  4. Phylogenetic relationships linking Duttaphrynus (Amphibia: Anura: Bufonidae) species based on 12S and 16S rDNA sequences.

    PubMed

    Pratihar, Suman; Bhattacharya, Manojit; Deuti, Kaushik

    2016-07-01

    Genus Duttaphrynus (Amphibia: Anura: Bufonidae) is endemic to southwestern and southern China and throughout southern Asia. Duttaphrynus phylogeny was also under debate for many years. 12S and 16S rDNAs help us to elucidate Duttaphrynus phylogeny. PMID:26155970

  5. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants.

    PubMed

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes. PMID:27622766

  6. Development of a mitochondrial 12S rDNA analysis for distinguishing Sciuridae species with potential to transmit Ehrlichia and Borrelia species to feeding Amblyomma americanum (Acari: Ixodidae).

    PubMed

    Goessling, Lisa S; Allan, Brian F; Mandelbaum, Rachel S; Thach, Robert E

    2012-05-01

    Unique oligonucleotide probes were synthesized to distinguish among closely related vertebrate mitochondrial rDNA sequences present in residual bloodmeals in emergent Amblyomma americanum (L.) (Acari: Ixodidae) nymph life-stage ticks. Use of these probes enabled the identification of the Eastern gray squirrel as an important bloodmeal source in nymphs harboring Ehrlichia and Borrelia species. These results were confirmed by identifying these same bacterial genera in Eastern gray squirrel tissues. PMID:22679888

  7. Molecular dissection of the rDNA array and of the 5S rDNA gene in Meloidogyne artiellia: phylogenetic and diagnostic implications.

    PubMed

    Veronico, Pasqua; De Luca, Francesca; De Giorgi, Carla

    2004-06-01

    The sequence of a 13.423 nucleotide genomic fragment has been determined for the plant parasitic nematode Meloidogyne artiellia. It contains an entire rDNA cluster, the bordering intergenic regions and portions of the flanking coding regions. The sequence analysis of the rDNA repeats suggests homogeneity in M. artiellia, thus providing a further indication of the usefulness of these genes for the diagnostic identification of this species. The comparison of the secondary structures of the internal transcribed spacer 2 region in several Meloidogyne species indicates that RNA folding predictions can be used as a tool of potential diagnostic relevance. The other ribosomal gene, 5S rDNA, has been demonstrated to be functional and located near the trans-spliced leader sequences, in the same arrangement found in the distantly related nematode Caenorhabditis elegans but never in other Meloidogyne thus providing species-specific markers for the identification of several Thylenchida parasitic nematodes. PMID:15135452

  8. Molecular organization of the 5S rDNA gene type II in elasmobranchs.

    PubMed

    Castro, Sergio I; Hleap, Jose S; Cárdenas, Heiber; Blouin, Christian

    2016-04-01

    The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS. PMID:26488198

  9. Molecular systematics of hystricognath rodents: evidence from the mitochondrial 12S rRNA gene.

    PubMed

    Nedbal, M A; Allard, M W; Honeycutt, R L

    1994-09-01

    Nucleotide sequence variation among 22 representatives of 14 families of hystricognathid rodents was examined using an 814-bp region of the mitochondrial 12S ribosomal RNA (rRNA) gene composing domains I-III. The purpose of this study was twofold. First, the phylogenetic relationships among Old World phiomorph (primarily African) and New World caviomorph (primarily South American) families were investigated, with a special emphasis on testing hypotheses pertaining to the origin of New World families and the identification of major monophyletic groups. Second, divergence times derived from molecular data were compared to those suggested by the fossil record. The resultant 12S rRNA gene phylogeny, analyzed separately and in combination with other morphological and molecular data, supported a monophyletic Caviomorpha. This finding is counter to the idea of a multiple origin for the South American families. The most strongly supported relationships within the Caviomorpha were a monophyletic Octodontoidea (containing five families) and the placement of New World porcupines (family Erethizontidae) as the most divergent family. Although comparisons to other data were more equivocal, the most parsimonious 12S rRNA trees also supported a monophyletic Phiomorpha that could be subdivided into two major groups, a clade containing the Thryonomyoidea (Thryonomyidae and Petromuridae) plus Bathyergidae and the more divergent Hystricidae (Old World porcupines). No significant differences in rates of 12S rRNA gene divergence were observed for hystricognathids in comparison to other rodent groups. Although time since divergence estimates were influenced by the fossil dates chosen to calibrate absolute rates, the overall divergence times derived from both transversions only and Kimura corrected distances and calibrations using two independent dates revealed a divergence time between Old and New World groups dating in the Eocene. PMID:7820285

  10. Application of 12S rRNA gene for the identification of animal-derived drugs.

    PubMed

    Luo, Jiaoyang; Yan, Dan; Zhang, Da; Han, Yumei; Dong, Xiaoping; Yang, Yong; Deng, Kejun; Xiao, Xiaohe

    2011-01-01

    PURPOSE. Animal-derived drugs are the major source of biological products and traditional medicine, but they are often difficult to identify, causing confusion in the clinical application. Among these medicinal animals, a number of animal species are endangered, leading to the destruction of biodiversity. The identification of animal-derived drugs and their alternatives would be a first step toward biodiversity conservation and safe medication. Until now, no effective method for identifying animal-derived drugs has been demonstrated; DNA-based species identification presents a brand-new technique. METHODS. We designed primers to amplify a 523-bp fragment of 12S rRNA and generated sequences for 13 individuals within six medicinal animal species. We examined the efficiency of species recognition based on this sequence, and we also tested the taxonomic affiliations against the GenBank database. RESULTS. All the tested drugs were identified successfully, and a visible gap was found between the inter-specific and intra-specific variation. We further demonstrated the importance of data exploration in DNA-based species identification practice by examining the sequence characteristics of relative genera in GenBank. This region of the 12S rRNA gene had a 100% success rate of species recognition within the six medicinal animal species. CONCLUSIONS. We propose that the 12S rRNA locus might be universal for identifying animal-derived drugs and their adulterants. The development of 12S rRNA for indentifying animal-derived drugs that share a common gene target would contribute significantly to the clinical application of animal-derived drugs and the conservation of medicinal animal species. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page. PMID:21906480

  11. Molecular phylogeny and barcoding of Caulerpa (Bryopsidales) based on the tufA, rbcL, 18S rDNA and ITS rDNA genes.

    PubMed

    Kazi, Mudassar Anisoddin; Reddy, C R K; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters. PMID:24340028

  12. Molecular Phylogeny and Barcoding of Caulerpa (Bryopsidales) Based on the tufA, rbcL, 18S rDNA and ITS rDNA Genes

    PubMed Central

    Kazi, Mudassar Anisoddin; Reddy, C. R. K.; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters. PMID:24340028

  13. Physical map location of the human carboxypeptidase M gene (CPM) distal to D12S375 and proximal to D12S8 at chromosome 12q15

    SciTech Connect

    Kas, K.; Schoenmakers, E.F.P.M.; Van de Ven, W.J.M.

    1995-11-20

    Chromosome aberrations involving human chromosome 12 region q13-q15 are frequently observed in a wide variety of solid tumors, benign as well as malignant ones. In an approach to isolating through positional cloning the pathogenetically relevant genes, we have carried out directional chromosome walking from locus D12S8 toward the centromere. This resulted in the construction of a YAC contig consisting of 75 overlapping YAC clones, the composite insert DNA of which was about 6.5 Mb, and, more recently, in the identification of the high-mobility group protein gene, HMGI-C, as the target gene consistently found to be rearranged by the chromosome 12 aberrations in at least eight different mesenchymal tumor types. To establish sequence-tagged sites (STSs), we sequenced the ends of a number of YAC clones using the methodology described by Geurts et al. Within the right end sequences of CEPH mark 1 YAC 499C5, originally designated RM46 and now also known as D12S1501, a BLAST search revealed a stretch of 135 nucleotides that matches perfectly with known cDNA sequences of the human carboxypeptidase M gene, the chromosomal localization of which has not yet been established. The region of sequence identity starts at nucleotide 794 of the HUMC-ARM{sup 2} cDNA and ends coinciding with a splice donor site at nucleotide 930. It should be noted that the sequence similarity extends 2 bp into the intron sequence. 11 refs., 2 figs.

  14. More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance.

    PubMed

    Saka, Kimiko; Takahashi, Akihiro; Sasaki, Mariko; Kobayashi, Takehiko

    2016-05-19

    Genome instability triggers cellular senescence and is a common cause of cancer. The ribosomal RNA genes (rDNA), due to their repetitive structure, form a fragile site with frequent rearrangements. To identify eukaryotic factors that connect reduced genome stability to senescence we screened 4,876 strains of a Saccharomyces cerevisiae deletion library for aberrant rDNA and found 708 genes that contribute to its upkeep. 28 mutants caused abnormalities in non-rDNA chromosomes and among them 12 mutants have abnormalities both in rDNA and in non-rDNA chromosomes. Many mutated genes have not previously been implicated with genome maintenance nor their homologues with tumorigenesis in mammals. The link between rDNA state and senescence was broken after deletion of factors related with DNA polymerase ϵ. These mutations also suppressed the short lifespan phenotype of a sir2 mutant, suggesting a model in which molecular events at the heart of the replication fork induce abnormal rDNA recombination and are responsible for the emergence of an aging signal. PMID:26912831

  15. Identification of goat cashmere and sheep wool by PCR-RFLP analysis of mitochondrial 12S rRNA gene.

    PubMed

    Geng, Rong-Qing; Yuan, Chao; Chen, Yu-Lin

    2012-12-01

    The efficacy of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial 12S rRNA gene in identification of goat cashmere and sheep wool samples was evaluated. The specific fragments of the mitochondrial 12S rRNA gene, which were about 440 bp, were obtained using the PCR. Restriction enzyme digestion of the PCR products with endonucleases BspT I and Hinf I revealed species-specific RFLP patterns. Application of this technique on mixed samples could identify goat cashmere and sheep wool from each other within the proportion of 8:1. The technique, however, could detect only one species when the proportion of mixture was more than 9:1. The PCR-RFLP technique was demonstrated to possess potential value in precise identification of goat cashmere and sheep wool. PMID:22943150

  16. Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene.

    PubMed

    Ledje, C; Arnason, U

    1996-12-01

    The complete 12S rRNA gene of 32 carnivore species, including four feliforms and 28 caniforms, was sequenced. The sequences were aligned on the basis of their secondary structures and used in phylogenetic analyses that addressed several evolutionary relationships within the Caniformia. The analyses showed an unresolved polytomy of the basic caniform clades; pinnipeds, mustelids, procyonids, skunks, Ailurus (lesser panda), ursids, and canids. The polytomy indicates a major diversification of caniforms during a relatively short period of time. The lesser panda was distinct from other caniforms, suggesting its inclusion in a monotypic family, Ailuridae. The giant panda and the bears were joined on the same branch. The skunks are traditionally included in the family Mustelidae. The present analysis, however, showed a less close molecular relationship between the skunks and the remaining Mustelidae (sensu stricto) than between Mustelidae (sensu stricto) and Procyonidae, making Mustelidae (sensu lato) paraphyletic. The results suggest that the skunks should be included in a separate family, Mephitidae. Within the Pinnipedia, the grouping of walrus, sea lions, and fur seals was strongly supported. Analyses of a combined set of 12S rRNA and cytochrome b data were generally consistent with the findings based on each gene. PMID:8995061

  17. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  18. Mutational analysis of the mitochondrial 12S rRNA and tRNA{sup Ser(UCN)} genes in Tunisian patients with nonsyndromic hearing loss

    SciTech Connect

    Mkaouar-Rebai, Emna . E-mail: emna_mkaouar@mail2world.com; Tlili, Abdelaziz; Masmoudi, Saber; Louhichi, Nacim; Charfeddine, Ilhem; Amor, Mohamed Ben; Lahmar, Imed; Driss, Nabil; Drira, Mohamed; Ayadi, Hammadi; Fakhfakh, Faiza

    2006-02-24

    We explored the mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNA{sup Ser(UCN)} gene. We report here First mutational screening of the mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene.

  19. Cytogenetic Diversity and the Evolutionary Dynamics of rDNA Genes and Telomeric Sequences in the Ancistrus Genus (Loricariidae: Ancistrini).

    PubMed

    Favarato, Ramon Marin; Silva, Maelin da; Oliveira, Renildo Ribeiro de; Artoni, Roberto Ferreira; Feldberg, Eliana; Matoso, Daniele Aparecida

    2016-04-01

    The Ancistrus genus differs from other Ancistrini due to its wide karyotypic diversity, varied diploid numbers, differences in sex chromosomes, and large number of species, as well as its tendency to form small populations with low vagility. This study investigated the role of 5S and 18S rDNA and telomeric repetitive sequences in the evolution of the karyotypic macrostructure of seven species of the genus Ancistrus from the Central Amazon. The results indicate a strong correlation between the location of ribosomal sites and fragile sites in the genome, particularly of 5S rDNA sequences, which are associated, in some species, with telomeric sequences at the sites of chromosomal healing. Moreover, the occurrence of two lineages was observed with regard to the synteny of ribosomal genes. The species of the genus Ancistrus showed high chromosomal lability associated with breakpoints, which was characterized by the presence of repetitive DNA sequences and this process is suggested to be an evolutionary model for the rapid fixation of structural rearrangements. PMID:26829587

  20. Genes involved in the synthesis of the exopolysaccharide methanolan by the obligate methylotroph Methylobacillus sp strain 12S.

    PubMed

    Yoshida, Takako; Ayabe, Yuko; Yasunaga, Masaaki; Usami, Yusuke; Habe, Hiroshi; Nojiri, Hideaki; Omori, Toshio

    2003-02-01

    Methylobacillus sp. strain 12S produces an exopolysaccharide (EPS), methanolan, composed of glucose, mannose and galactose. Twenty-four ORFs flanking a Tn5 insertion site in an EPS-deficient mutant were identified, and 21 genes (epsCBAKLDEFGHIJMNOPQRSTU) were predicted to participate in methanolan synthesis on the basis of the features of the primary sequence. Gene disruption analyses revealed that epsABCEFGIJNOP and epsR are required for methanolan synthesis, whereas epsKD and epsH are not essential. EpsFG and EpsE showed homology with Wzc (chain length regulator) and Wza (export protein) of group 1 capsule-producing Escherichia coli, suggesting that methanolan was synthesized via a Wzy-like biosynthesis system. This possibility was supported by the fact that the putative hydropathy profiles of EpsH and EpsM were similar to those of Wzx and Wzy, which are also involved in the flipping of the repeating unit in the cytoplasmic membrane and the polymerization of the capsule in the Wzy-dependent system. EpsBJNOP and EpsR are probably glycosyltransferases involved in the synthesis of the repeating unit onto the lipid carrier. In particular, EpsB appeared to catalyse the initial transfer of the glucose moiety. On the basis of their predicted location in the cells, it is proposed that EpsI and EpsL are involved in methanolan export to the cell surface. E. coli strains expressing EpsQ, EpsS and EpsT showed enhanced activities of GDP-mannose pyrophosphorylase, UDP-galactose 4-epimerase and UDP-glucose pyrophosphorylase, respectively, revealing that they were responsible for the production of the activated compositional sugars of methanolan. EpsU contains a conserved a lytic transglycosylase motif, indicating that it could participate in the degradation of polysaccharides. EpsA and EpsK, which have conserved DNA-binding and cAMP-binding motifs, respectively, were deduced to be transcriptional regulators. In particular, EpsA seems to positively regulate the transcription of

  1. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes.

    PubMed Central

    Verhage, R A; Van de Putte, P; Brouwer, J

    1996-01-01

    Removal of UV-induced pyrimidine dimers from the individual strands of the rDNA locus in Saccharomyces cerevisiae was studied. Yeast rDNA, that is transcribed by RNA polymerase I(RNA pol I), is repaired efficiently, slightly strand-specific and independently of RAD26, which has been implicated in transcription-coupled repair of the RNA pol II transcribed RPB2 gene. No repair of rDNA is observed in rad1,2,3 and 14 mutants, demonstrating that dimer removal from this highly repetitive DNA is accomplished by nucleotide excision repair (NER). In rad7 and rad16 mutants, which are specifically deficient in repair of non-transcribed DNA, there is a clear preferential repair of the transcribed strand of rDNA, indicating that strand-specific and therefore probably transcription-coupled repair of RNA pol I transcribed genes does exist in yeast. Unexpectedly, the transcribed but not the non-transcribed strand of rDNA can be repaired in rad4 mutants, which seem otherwise completely NER-deficient. PMID:8604332

  2. Physical mapping of 18S and 5S rDNA loci and histone H3 gene in grasshopper species of the subfamily Gomphocerinae (Acrididae).

    PubMed

    Silva-Neto, L C; Bernardino, A C S; Loreto, V; Moura, R C

    2015-01-01

    In this study, fluorescence in situ hybridization (FISH) analysis was used to determine and compare the numbers and chromosomal locations of two multigene families (rDNA and histone H3) in four Neotropical species of gomphocerine grasshoppers. FISH using the 18S rDNA probe identified a single site on the S9 chromosome of Amblytropidia sp and Cauratettix borelli, a single site on chromosome M6 of Compsacris pulcher, and two sites (chromosomes L1 and L2) in Orphulella punctata. By contrast, FISH with a 5S rDNA probe identified dispersion of this sequence in the genomes of the four species, with evidence of intraspecific variations. Amblytropidia sp had six to eight FISH signals on autosomal chromosomes, while C. pulcher exhibited a signal only on the M5 bivalent. The histone H3 gene was less variable and was restricted to a single pair in all species. The conservation of the numbers and locations of 18S rDNA and H3 genes in conjunction with data from the literature was useful for evaluating karyotype evolution in this subfamily. The variation in the number and sizes of 5S rDNA sites indicates a process of recent dispersion that might have been mediated by transposition. PMID:26634462

  3. A duplicated NUCLEOLIN gene with antagonistic activity is required for chromatin organization of silent 45S rDNA in Arabidopsis.

    PubMed

    Durut, Nathalie; Abou-Ellail, Mohamed; Pontvianne, Frédéric; Das, Sadhan; Kojima, Hisae; Ukai, Seiko; de Bures, Anne; Comella, Pascale; Nidelet, Sabine; Rialle, Stéphanie; Merret, Remy; Echeverria, Manuel; Bouvet, Philippe; Nakamura, Kenzo; Sáez-Vásquez, Julio

    2014-03-01

    In plants as well as in animals, hundreds to thousands of 45S rRNA gene copies localize in Nucleolus Organizer Regions (NORs), and the activation or repression of specific sets of rDNA depends on epigenetic mechanisms. Previously, we reported that the Arabidopsis thaliana nucleolin protein NUC1, an abundant and evolutionarily conserved nucleolar protein in eukaryotic organisms, is required for maintaining DNA methylation levels and for controlling the expression of specific rDNA variants in Arabidopsis. Interestingly, in contrast with animal or yeast cells, plants contain a second nucleolin gene. Here, we report that Arabidopsis NUC1 and NUC2 nucleolin genes are both required for plant growth and survival and that NUC2 disruption represses flowering. However, these genes seem to be functionally antagonistic. In contrast with NUC1, disruption of NUC2 induces CG hypermethylation of rDNA and NOR association with the nucleolus. Moreover, NUC2 loss of function triggers major changes in rDNA spatial organization, expression, and transgenerational stability. Our analyses indicate that silencing of specific rRNA genes is mostly determined by the active or repressed state of the NORs and that nucleolin proteins play a key role in the developmental control of this process. PMID:24668745

  4. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella

    PubMed Central

    2010-01-01

    Comparison of 18S rDNA gene sequences is a very promising method for identification and classification of living organisms. Molecular identification and discrimination of different Dunaliella species were carried out based on the size of 18S rDNA gene and, number and position of introns in the gene. Three types of 18S rDNA structure have already been reported: the gene with a size of ~1770 bp lacking any intron, with a size of ~2170 bp consisting one intron near 5' terminus, and with a size of ~2570 bp harbouring two introns near 5' and 3' termini. Hereby, we report a new 18S rDNA gene arrangement in terms of intron localization and nucleotide sequence in a Dunaliella isolated from Iranian salt lakes (ABRIINW-M1/2). PCR amplification with genus-specific primers resulted in production of a ~2170 bp DNA band, which is similar to that of D. salina 18S rDNA gene containing only one intron near 5' terminus. Whilst, sequence composition of the gene revealed the lack of any intron near 5' terminus in our isolate. Furthermore, another alteration was observed due to the presence of a 440 bp DNA fragment near 3' terminus. Accordingly, 18S rDNA gene of the isolate is clearly different from those of D. salina and any other Dunaliella species reported so far. Moreover, analysis of ITS region sequence showed the diversity of this region compared to the previously reported species. 18S rDNA and ITS sequences of our isolate were submitted with accesion numbers of EU678868 and EU927373 in NCBI database, respectively. The optimum growth rate of this isolate occured at the salinity level of 1 M NaCl. The maximum carotenoid content under stress condition of intense light (400 μmol photon m-2 s-1), high salinity (4 M NaCl) and deficiency of nitrate and phosphate nutritions reached to 240 ng/cell after 15 days. PMID:20377865

  5. Sequence Characterization of Mitochondrial 12S rRNA Gene in Mouse Deer (Moschiola indica) for PCR-RFLP Based Species Identification

    PubMed Central

    Siddappa, Chandra Mohan; Saini, Mohini; Das, Asit; Sharma, Anil K.; Gupta, Praveen K.

    2013-01-01

    Mitochondrial 12S rRNA has proven to be a useful molecular marker for better conservation and management of the endangered species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the mitochondrial 12S rRNA gene has proven to be a reliable and efficient tool for the identification of different Indian deer species of family cervidae. In the present study, mitochondrial 12S rRNA gene sequence of mouse deer (Moschiola indica) belonging to the family Tragulidae was characterized and analysed in silico for its use in species identification. Genomic DNA was isolated from the hair follicles and mitochondrial 12S rRNA gene was amplified using universal primers. PCR product was cloned and sequenced for the first time. The sequence of mouse deer showed 90.04, 90.08, 90.04, 91.2, 90.04, and 90.08% identities with sika deer, sambar, hog deer, musk deer, chital, and barking deer, respectively. Restriction mapping in Lasergene (DNAstar Inc., Madison, WI, USA) revealed that mouse deer mitochondrial 12S rRNA gene sequence can be differentiated from the other deer species in PCR-RFLP using RsaI, DdeI, BsrI, and BstSFI. With the help of predicted pattern, mouse deer can be identified using genomic DNA from a variety of biomaterials, thereby providing molecular aid in wildlife forensics and conservation of the species. PMID:24455258

  6. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    PubMed Central

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  7. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA.

    PubMed

    Marcili, A; Lima, L; Cavazzana, M; Junqueira, A C V; Veludo, H H; Maia Da Silva, F; Campaner, M; Paiva, F; Nunes, V L B; Teixeira, M M G

    2009-05-01

    We characterized 15 Trypanosoma cruzi isolates from bats captured in the Amazon, Central and Southeast Brazilian regions. Phylogenetic relationships among T. cruzi lineages using SSU rDNA, cytochrome b, and Histone H2B genes positioned all Amazonian isolates into T. cruzi I (TCI). However, bat isolates from the other regions, which had been genotyped as T. cruzi II (TC II) by the traditional genotyping method based on mini-exon gene employed in this study, were not nested within any of the previously defined TCII sublineages, constituting a new genotype designated as TCbat. Phylogenetic analyses demonstrated that TCbat indeed belongs to T. cruzi and not to other closely related bat trypanosomes of the subgenus Schizotrypanum, and that although separated by large genetic distances TCbat is closest to lineage TCI. A genotyping method targeting ITS1 rDNA distinguished TCbat from established T. cruzi lineages, and from other Schizotrypanum species. In experimentally infected mice, TCbat lacked virulence and yielded low parasitaemias. Isolates of TCbat presented distinctive morphological features and behaviour in triatomines. To date, TCbat genotype was found only in bats from anthropic environments of Central and Southeast Brazil. Our findings indicate that the complexity of T. cruzi is larger than currently known, and confirmed bats as important reservoirs and potential source of T. cruzi infections to humans. PMID:19368741

  8. New polymorphic mtDNA restriction site in the 12S rRNA gene detected in Tunisian patients with non-syndromic hearing loss

    SciTech Connect

    Mkaouar-Rebai, Emna Tlili, Abdelaziz; Masmoudi, Saber; Charfeddine, Ilhem; Fakhfakh, Faiza

    2008-05-09

    The 12S rRNA gene was shown to be a hot spot for aminoglycoside-induced and non-syndromic hearing loss since several deafness-associated mtDNA mutations were identified in this gene. Among them, we distinguished the A1555G, the C1494T and the T1095C mutations and C-insertion or deletion at position 961. One hundred Tunisian patients with non-syndromic hearing loss and 100 hearing individuals were analysed in this study. A PCR-RFLP analysis with HaeIII restriction enzyme showed the presence of the A1555G mutation in the 12S rRNA gene in only one out of the 100 patients. In addition, PCR-RFLP and radioactive PCR revealed the presence of a new HaeIII polymorphic restriction site in the same gene of 12S rRNA site in 4 patients with non-syndromic hearing loss. UVIDOC-008-XD analyses showed the presence of this new polymorphic restriction site with a variable heteroplasmic rates at position +1517 of the human mitochondrial genome. On the other hand, direct sequencing of the entire mitochondrial 12S rRNA gene in the 100 patients and in 100 hearing individuals revealed the presence of the A750G and A1438G polymorphisms and the absence of the C1494T, T1095C and 961insC mutations in all the tested individuals. Sequencing of the whole mitochondrial genome in the 4 patients showing the new HaeIII polymorphic restriction site revealed only the presence of the A8860G transition in the MT-ATP6 gene and the A4769G polymorphism in the ND2 gene.

  9. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    PubMed Central

    2010-01-01

    Background In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units

  10. Phylogenetic relationships of Brazilian isolates of Pythium insidiosum based on ITS rDNA and cytochrome oxidase II gene sequences.

    PubMed

    Azevedo, M I; Botton, S A; Pereira, D I B; Robe, L J; Jesus, F P K; Mahl, C D; Costa, M M; Alves, S H; Santurio, J M

    2012-09-14

    Pythium insidiosum is an aquatic oomycete that is the causative agent of pythiosis. Advances in molecular methods have enabled increased accuracy in the diagnosis of pythiosis, and in studies of the phylogenetic relationships of this oomycete. To evaluate the phylogenetic relationships among isolates of P. insidiosum from different regions of Brazil, and also regarding to other American and Thai isolates, in this study a total of thirty isolates of P. insidiosum from different regions of Brazil was used and had their ITS1, 5.8S rRNA and ITS2 rDNA (ITS) region and the partial sequence of cytochrome oxidase II (COX II) gene sequenced and analyzed. The outgroup consisted of six isolates of other Pythium species and one of Lagenidium giganteum. Phylogenetic analyses of ITS and COX II genes were conducted, both individually and in combination, using four different methods: Maximum parsimony (MP); Neighbor-joining (NJ); Maximum likelihood (ML); and Bayesian analysis (BA). Our data supported P. insidiosum as monophyletic in relation to the other Pythium species, and COX II showed that P. insidiosum appears to be subdivided into three major polytomous groups, whose arrangement provides the Thai isolates as paraphyletic in relation to the Brazilian ones. The molecular analyses performed in this study suggest an evolutionary proximity among all American isolates, including the Brazilian and the Central and North America isolates, which were grouped together in a single entirely polytomous clade. The COX II network results presented signals of a recent expansion for the American isolates, probably originated from an Asian invasion source. Here, COX II showed higher levels bias, although it was the source of higher levels of phylogenetic information when compared to ITS. Nevertheless, the two markers chosen for this study proved to be entirely congruent, at least with respect to phylogenetic relationships between different isolates of P. insidiosum. PMID:22483240

  11. Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites.

    PubMed

    Sun, Hengyi; Zang, Xiaonan; Liu, Yuantao; Cao, Xiaofei; Wu, Fei; Huang, Xiaoyun; Jiang, Minjie; Zhang, Xuecheng

    2015-12-01

    Calcitonin participates in controlling homeostasis of calcium and phosphorus and plays an important role in bone metabolism. The aim of this study was to endow an industrial strain of Saccharomyces cerevisiae with the ability to express chimeric human/salmon calcitonin (hsCT) without the use of antibiotics. To do so, a homologous recombination plasmid pUC18-rDNA2-ura3-P pgk -5hsCT-rDNA1 was constructed, which contains two segments of ribosomal DNA of 1.1 kb (rDNA1) and 1.4 kb (rDNA2), to integrate the heterologous gene into host rDNA. A DNA fragment containing five copies of a chimeric human/salmon calcitonin gene (5hsCT) under the control of the promoter for phosphoglycerate kinase (P pgk ) was constructed to express 5hsCT in S. cerevisiae using ura3 as a selectable auxotrophic marker gene. After digestion by restriction endonuclease HpaI, a linear fragment, rDNA2-ura3-P pgk -5hsCT-rDNA1, was obtained and transformed into the △ura3 mutant of S. cerevisiae by the lithium acetate method. The ura3-P pgk -5hsCT sequence was introduced into the genome at rDNA sites by homologous recombination, and the recombinant strain YS-5hsCT was obtained. Southern blot analysis revealed that the 5hsCT had been integrated successfully into the genome of S. cerevisiae. The results of Western blot and ELISA confirmed that the 5hsCT protein had been expressed in the recombinant strain YS-5hsCT. The expression level reached 2.04 % of total proteins. S. cerevisiae YS-5hsCT decreased serum calcium in mice by oral administration and even 0.01 g lyophilized S. cerevisiae YS-5hsCT/kg decreased serum calcium by 0.498 mM. This work has produced a commercial yeast strain potentially useful for the treatment of osteoporosis. PMID:26254786

  12. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation

    PubMed Central

    Garcia, S; Kovařík, A

    2013-01-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. PMID:23512008

  13. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters.

    PubMed

    Beati, L; Keirans, J E

    2001-02-01

    A portion of mitochondrial 12S rDNA sequences (337-355 base pairs) and 63 morphological characters of 36 hard-tick species belonging to 7 genera were analyzed to determine the phylogenetic relationships among groups and species of Rhipicephalus and between the genera Rhipicephalus and Boophilus. Molecular and morphological data sets were first examined separately. The molecular data were analyzed by maximum parsimony (MP), maximum likelihood, and neighbor-joining distance methods; the morphological data were analyzed by MP After their level of congruence was evaluated by a partition homogeneity test, all characters were combined and analyzed by MP. The branches of the tree obtained by combining the data sets were better resolved than those of the trees inferred from the separate analyses. Boophilus is monophyletic and arose within Rhipicephalus. Boophilus species clustered with species of the Rhipicephalus evertsi group. Most of the clustering within Rhipicephalus was, however, consistent with previous classifications based on morphological data. Morphological characters were traced on the molecular reconstruction in order to identify characters diagnostic for monophyletic clades. Within the Rhipicephalus sanguineus complex, the sequences of specimens morphologically identified as Rhipicephalus turanicus were characterized by a high level of variability, indicating that R. turanicus-like morphology may cover a spectrum of distinct species. PMID:11227901

  14. Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence

    PubMed Central

    2012-01-01

    Background In plants, the 5 S rRNA genes usually occur as separate tandems (S-type arrangement) or, less commonly, linked to 35 S rDNA units (L-type). The activity of linked genes remains unknown so far. We studied the homogeneity and expression of 5 S genes in several species from family Asteraceae known to contain linked 35 S-5 S units. Additionally, their methylation status was determined using bisulfite sequencing. Fluorescence in situ hybridization was applied to reveal the sub-nuclear positions of rDNA arrays. Results We found that homogenization of L-type units went to completion in most (4/6) but not all species. Two species contained major L-type and minor S-type units (termed Ls-type). The linked genes dominate 5 S rDNA expression while the separate tandems do not seem to be expressed. Members of tribe Anthemideae evolved functional variants of the polymerase III promoter in which a residing C-box element differs from the canonical angiosperm motif by as much as 30%. On this basis, a more relaxed consensus sequence of a plant C-box: (5’-RGSWTGGGTG-3’) is proposed. The 5 S paralogs display heavy DNA methylation similarly as to their unlinked counterparts. FISH revealed the close association of 35 S-5 S arrays with nucleolar periphery indicating that transcription of 5 S genes may occur in this territory. Conclusions We show that the unusual linked arrangement of 5 S genes, occurring in several plant species, is fully compatible with their expression and functionality. This extraordinary 5 S gene dynamics is manifested at different levels, such as variation in intrachromosomal positions, unit structure, epigenetic modification and considerable divergence of regulatory motifs. PMID:22716941

  15. Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa.

    PubMed

    Cawthorn, Donna-Mareè; Steinman, Harris Andrew; Witthuhn, R Corli

    2012-01-01

    The development of DNA-based methods for the identification of fish species is important for fisheries research and control, as well as for the detection of unintentional or fraudulent species substitutions in the marketplace. The aim of this study was to generate a comprehensive reference database of DNA sequences from the mitochondrial 16S and 12S ribosomal RNA (rRNA) genes for 53 commercial fish species in South Africa and to evaluate the applicability of these genetic markers for the identification of fish at the species level. The DNA extracted from all target species was readily amplified using universal primers targeting both rRNA gene regions. Sequences from the 16S and 12S rRNA genes were submitted to GenBank for the first time for 34% and 53% of the fish species, respectively. Cumulative analysis of the 16S rRNA gene sequences revealed mean conspecific, congeneric and confamilial Kimura two parameter (K2P) distances of 0.03%, 0.70% and 5.10% and the corresponding values at the 12S level were 0.03%, 1.00% and 5.57%. K2P neighbour-joining trees based on both sequence datasets generally clustered species in accordance with their taxonomic classifications. The nucleotide variation in both the 16S and 12S sequences was suitable for identifying the large majority of the examined fish specimens to at least the level of genus, but was found to be less useful for the explicit differentiation of certain congeneric fish species. It is recommended that one or more faster-evolving DNA regions be analysed to confirm the identities of closely-related fish species in South Africa. PMID:21963445

  16. Population genetic structure of Cheyletus malaccensis (Acari: Cheyletidae) in China based on mitochondrial COI and 12S rRNA genes.

    PubMed

    Yang, Xiaoqiang; Ye, Qingtian; Xin, Tianrong; Zou, Zhiwen; Xia, Bin

    2016-06-01

    Cheyletus malaccensis is a predatory mite widely distributed in grain storages. It has been regarded as an important biological control agent for pest mites. In this study, we investigated the population genetic structure of C. malaccensis distributed in China based on the partial regions of mitochondrial COI and 12S rRNA genes. We collected 256 individuals of C. malaccensis from stored grain in 34 sites of China. We detected 50 COI gene haplotypes and nine 12S rRNA gene haplotypes. There were three clades in the haplotype network and Bayesian and maximum parsimony phylogenetic trees based on COI sequences, and two based on 12S rRNA sequences. The clustering of haplotypes was not correlated with their geographical distributions. The analysis of molecular variance, AMOVA, indicated that the genetic differentiation between populations was relatively weak. The major genetic differentiation was found within populations. We suggest that the genetic structure of C. malaccensis observed in this study may be the result of long-term climate fluctuations and recent human disturbances. PMID:26947027

  17. The effective expression of xylanase gene in Candida utilis by 18S rDNA targeted homologous recombination in pGLR9K.

    PubMed

    Wei, Wang; Hong-Lan, Yang; HuiFang, Bao; Daoyuan, Zhang; Qi-mu-ge, Shan; Woof, Andrew J

    2010-07-01

    In order to test whether 18S rDNA can influence positively xylanase gene effective expression in the yeast of Candida utilis, a targeting vector pGLR9K-XA was constructed by adding an interested gene xynA from Streptomyces olivaceoviridis into the vector pGLR9K which is constructed by ourselves. pGLR9K contains the 18S rDNA, GAP promoter and CYH resistance gene sequence, all of which is from C. utilis. Then the vector pGLR9K-XA was transformed into C. utilis. To test the vector and transformed system, PCR, Southern blot and DNS methods were used. The results showed that xylanase gene can be detected in the chromosome DNA of recombinant C. utilis and the enzyme activity of xylanase is up to 60 IU ml(-1) in the study. It is suggested that this system can be used to express exogenous genes in C. utilis as a bioreactors. This is the first report that xylanase gene was expressed in C. utilis. PMID:19731075

  18. Microbial rRNA: rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communitie...

  19. The mitochondrial 12S gene is a suitable marker of populations of Sarcoptes scabiei from wombats, dogs and humans in Australia.

    PubMed

    Skerratt, L F; Campbell, N J H; Murrell, A; Walton, S; Kemp, D; Barker, S C

    2002-04-01

    We sequenced part of the mitochondrial 12S ribosomal RNA gene of 23 specimens of Sarcoptes scabiei from eight wombats, one dog and three humans. Twelve of the 326 nucleotide positions varied among these mites and there were nine haplotypes (sequences) that differed by 1-8 nucleotides. Phylogenetic analyses indicated that these mites were from two lineages: (1) mites from wombats from Victoria, Australia, and mites from the humans and dog from the Northern Territory, Australia (haplotypes 1-4, 9); and (2) mites from the humans and dog from the Northern Territory (haplotypes 5-8). Mites from the three different hosts (wombats, a dog and humans) had not diverged phylogenetically; rather, these mites had similar 12S sequences. Thus, we conclude that these mites from wombats, humans and a dog are closely related, and that they diverged from a common ancestor relatively recently. This conclusion is consistent with the argument that people and/or their dogs introduced to Australia the S. scabiei mites that infect wombats in Australia . So, S. scabiei, which has been blamed for the extinction of populations of wombats in Australia, may be a parasitic mite that was introduced to Australia with people and/or their dogs. These data show that the mitochondrial 12S rRNA gene may be a suitable population marker of S. scabiei from wombats, dogs and humans in Australia. PMID:11999028

  20. Mutation of a Nopp140 gene dao-5 alters rDNA transcription and increases germ cell apoptosis in C. elegans.

    PubMed

    Lee, C-C; Tsai, Y-T; Kao, C-W; Lee, L-W; Lai, H-J; Ma, T-H; Chang, Y-S; Yeh, N-H; Lo, S J

    2014-01-01

    Human diseases of impaired ribosome biogenesis resulting from disruption of rRNA biosynthesis or loss of ribosomal components are collectively described as 'ribosomopathies'. Treacher Collins syndrome (TCS), a representative human ribosomopathy with craniofacial abnormalities, is attributed to mutations in the tcof1 gene that has a homologous gene called nopp140. Previous studies demonstrated that the dao-5 (dauer and aged animal overexpression gene 5) of Caenorhabditis elegans is a member of nopp140 gene family and plays a role in nucleogenesis in the early embryo. Here, we established a C. elegans model for studying Nopp140-associated ribosomopathy. A null dao-5 mutant ok542 with a semi-infertile phenotype showed a delay in gonadogenesis, as well as a higher incidence of germline apoptosis. These phenotypes in dao-5(ok542) are likely resulted from inefficient rDNA transcription that was observed by run-on analyses and chromatin immunoprecipitation (ChIP) assays measuring the RNA Pol I occupancy on the rDNA promoter. ChIP assays further showed that the modifications of acetylated histone 4 (H4Ac) and dimethylation at the lysine 9 of histone 3 (H3K9me2) around the rDNA promoter were altered in dao-5 mutants compared with the N2 wild type. In addition, activated CEP-1 (a C. elegans p53 homolog) activity was also linked to the loss of DAO-5 in terms of the transcriptional upregulation of two CEP-1 downstream effectors, EGL-1 and CED-13. We propose that the dao-5 mutant of C. elegans can be a valuable model for studying human Nopp140-associated ribosomopathy at the cellular and molecular levels. PMID:24722283

  1. Phylogenetic relationships among Japanese species of the family Sciuridae (Mammalia, Rodentia), inferred from nucleotide sequences of mitochondrial 12S ribosomal RNA genes.

    PubMed

    Oshida, T; Masuda, R; Yoshida, M C

    1996-08-01

    In order to investigate phylogenetic relationships of the family Sciuridae living in Japan, we sequenced partial regions (379 bases) of mitochondrial 12S rRNA genes in six species of Japanese and other Asian squirrels. Phylogenetic trees constructed by sequence data indicated that two genera of flying squirrels (Petaurista and Pteromys) were clustered in a group distinct from non-flying squirrels, suggesting a possible monophyletic relationships of these flying squirrels. The evolutionary distance between the Japanese squirrel (Sciurus lis) from Honshu island and the Eurasian red squirrel (Sciurus vulgaris) from Hokkaido island was comparable to intraspecific distances of the remaining species examined. PMID:8940915

  2. [Communities of Actynomicetes fungy in three vegetation types of the Colombian Amazon: abundance, morphotypes and the 16s rDNA gene].

    PubMed

    Cardona, Gladys Inés; Peña-Venegas, Clara Patricia; Ruiz-García, Manuel

    2009-12-01

    Among soil microorganisms, Actinomycetes play an important role in the sustainability of natural and agricultural systems: decomposition of organic matter; degradation of recalcitrant compounds like lignin; nitrogen fixation; degradation of agricultural chemicals and biological control in plants and animals. We evaluated their diversity in soils under three different vegetation covers (pasture, tropical primary forest and stubble) at two depths in the Southern Colombian Amazon border. We collected five replicates per vegetation type (in each, three samples at 0-20cm and three at 20-30cm; for a total of 30 samples). Abundance and phenotypic diversity were determined by plate counting. Genomic DNA was extracted from the isolates: the 16s rDNA gene was amplified with specific primers, and its genetic diversity was estimated by means of an amplified restriction analysis (ARDRA). Actynomicetes abundance varied with vegetation and depth, possibly reflecting presence of earthworms, macro-fauna and physico-chemical characteristics associated to fertility, as well as organic matter, total bases, and optimal capacity to cationic interchange. Primary forests had the highest diversity. Sixteen morpho-types (six genera) were identified; Streptomyces was the most abundant everywhere. The heterogeneity ofARDRA patterns prevented species identification because of the intra-species variability in sequences of 16s rDNA operons. This community is a biological indicator of landscape alteration and could include new bio-active compounds of pharmaceutical interest. PMID:20073339

  3. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored. PMID:17380356

  4. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product. PMID:26789074

  5. Haplotype Detection from Next-Generation Sequencing in High-Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima

    PubMed Central

    Boutte, Julien; Aliaga, Benoît; Lima, Oscar; Ferreira de Carvalho, Julie; Ainouche, Abdelkader; Macas, Jiri; Rousseau-Gueutin, Mathieu; Coriton, Olivier; Ainouche, Malika; Salmon, Armel

    2015-01-01

    Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5′-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies. PMID:26530424

  6. Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants.

    PubMed

    Stenøien, H K

    2008-03-01

    The evolutionary potential of bryophytes (mosses, liverworts and hornworts) has been debated for decades. Fossil record and biogeographical distribution patterns suggest very slow morphological evolution and the retainment of several ancient traits since the split with vascular plants some 450 million years ago. Many have argued that bryophytes may evolve as rapidly as higher plants on the molecular level, but this hypothesis has not been tested so far. Here, it is shown that mosses have experienced significantly lower rates of molecular evolution than higher plants within 18S rDNA (nuclear), rbcL (chloroplast) and nad5 (mitochondrial) genes. Mosses are on an average evolving 2-3 times slower than ferns, gymnosperms and angiosperms; and also green algae seem to be evolving faster than nonvascular plants. These results support the observation of a general correlation between morphological and molecular evolutionary rates in plants and also show that mosses are 'evolutionary sphinxes' regarding both morphological and molecular evolutionary potential. PMID:18205784

  7. Population genetic structure of the parasitic nematode Camallanus cotti inferred from DNA sequences of ITS1 rDNA and the mitochondrial COI gene.

    PubMed

    Wu, Shan G; Wang, Gui T; Xi, Bing W; Xiong, Fan; Liu, Tao; Nie, Pin

    2009-10-14

    The population genetic structure of fish parasitic nematode, Camallanus cotti, collected from the Yangtze River, Pearl River and Minjiang River in China was investigated. From these parasites, the approximately 730 bp of the first internal transcribed spacer of ribosomal DNA (ITS1 rDNA) and the 428bp of mitochondrial cytochrome c oxidase subunit I (COI) gene were sequenced. For the ITS1 rDNA data set, highly significant Fst values and low rates of migration were detected between the Pearl River group and both the Yangtze River (Fst=0.70, P<0.00001; Nm=0.21) and Minjiang River (Fst=0.73, P<0.00001; Nm=0.18) groups, while low Fst value (Fst=0.018, P>0.05) and high rate of migration (Nm=28.42) were found between the Minjiang and the Yangtze rivers. When different host/locality populations (subpopulations) within each river were considered, subpopulations between the Yangtze River and Minjiang River had low Fst values (3.72), while Pearl River subpopulations were significantly different from the Yangtze River and Minjiang River subpopulations (Fst>or=0.59; Nm<1). The COI gene data set revealed a similar genetic structure. Both phylogenetic analyses and a statistical parsimony network grouped the Pearl River haplotypes into one phylogroup, while the Yangtze River and Minjiang River haplotypes formed a second group. These results suggested that the Yangtze River and Minjiang River subpopulations constituted a single reproductive pool that was distinct from the Pearl River subpopulations. In addition, the present study did not find host-related genetic differentiation occurring in the same drainage. PMID:19632785

  8. Species authentication of commercial beef jerky based on PCR-RFLP analysis of the mitochondrial 12S rRNA gene.

    PubMed

    Chen, Shi-Yi; Liu, Yi-Ping; Yao, Yong-Gang

    2010-11-01

    In this study, we determined species-specific variations by analyzing the mitochondrial 12S rRNA gene sequence variation (∼440 bp) in 17 newly obtained sequences and 90 published cattle, yak, buffalo, goat, and pig sequences, which represent 62 breeds and 17 geographic regions. Based on the defined species-specific variations, two endonucleases, Alu I and Bfa I, were selected for species authentication using raw meat/tissue samples and the PCR-RFLP method. Goat and pig were identified using the Alu I enzyme, while cattle, yak, and buffalo were identified by digestion with Bfa I. Our approach had relatively high detection sensitivity of cattle DNA in mixed cattle and yak products, with the lowest detectable threshold equaling 20% of cattle DNA in a mixed cattle/yak sample. This method was successfully used to type commercial beef jerky products, which were produced by different companies utilizing various processing technologies. Our results show that several yak jerky products might be implicated in commercial fraud by using cattle meat instead of yak meat. PMID:21115170

  9. Correspondence regarding Ballana et al., "Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment".

    PubMed

    Abreu-Silva, R S; Batissoco, A C; Lezirovitz, K; Romanos, J; Rincon, D; Auricchio, M T B M; Otto, P A; Mingroni-Netto, R C

    2006-05-12

    Ballana et al. [E. Ballana, E. Morales, R. Rabionet, B. Montserrat, M. Ventayol, O. Bravo, P. Gasparini, X. Estivill, Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment, Biochem. Biophys. Res. Commun. 341 (2006) 950-957] detected a T1291C mutation segregating in a Cuban pedigree with hearing impairment. They interpreted it as probably pathogenic, based on family history, RNA conformation prediction and its absence in a control group of 95 Spanish subjects. We screened a sample of 203 deaf subjects and 300 hearing controls (110 "European-Brazilians" and 190 "African-Brazilians") for the mitochondrial mutations A1555G and T1291C. Five deaf subjects had the T1291C substitution, three isolated cases and two familial cases. In the latter, deafness was paternally inherited or segregated with the A1555G mutation. This doesn't support the hypothesis of T1291C mutation being pathogenic. Two "African-Brazilian" controls also had the T1291C substitution. Six of the seven T1291C-carriers (five deaf and two controls) had mitochondrial DNA of African origin, belonging to macrohaplogroup L1/L2. Therefore, these data point to T1291C substitution as most probably an African non-pathogenic polymorphism. PMID:16574076

  10. The evolutionary history of the genus Timarcha (Coleoptera, Chrysomelidae) inferred from mitochondrial COII gene and partial 16S rDNA sequences.

    PubMed

    Gómez-Zurita, J; Juan, C; Petitpierre, E

    2000-02-01

    The apterous genus Timarcha consists of three subgenera and more than 100 species in its Palearctic distribution, with specialized feeding on few plant families. Fifty-four sequences sampled from 31 taxa of the genus plus three outgroup leaf beetles were studied for their complete cytochrome oxidase II (COII) and a fragment of 16S rDNA mitochondrial genes, representing a total of about 1200 bp. Phylogenetic analyses using maximum-parsimony and distance methods for each gene separately and for the combined data set gave compatible topologies. The subgenus Metallotimarcha consistently appears in a basal position and is well differentiated from the remaining Timarcha, but no clear monophyletic grouping of Timarchostoma and Timarcha s. str. subgenera can be deduced from our analysis. Calibration of the molecular clock has been done using the opening of the Gibraltar Strait after the Messinian salinity crisis (about 5.5 MYA) as the biogeographic event causing disjunction of two particular taxa. Accordingly, the COII evolutionary rate has been estimated to be of 0.76 x 10(-8) substitution/site/year in Timarcha. Relation between phylogeny and host-plant use indicates widening of trophic regime as a derived character in Timarcha. PMID:10679162

  11. Testing the use of ITS rDNA and protein-coding genes in the generic and species delimitation of the lichen genus Usnea (Parmeliaceae, Ascomycota).

    PubMed

    Truong, Camille; Divakar, Pradeep K; Yahr, Rebecca; Crespo, Ana; Clerc, Philippe

    2013-08-01

    In lichen-forming fungi, traditional taxonomical concepts are frequently in conflict with molecular data, and identifying appropriate taxonomic characters to describe phylogenetic clades remains challenging in many groups. The selection of suitable markers for the reconstruction of solid phylogenetic hypotheses is therefore fundamental. The lichen genus Usnea is highly diverse, with more than 350 estimated species, distributed in polar, temperate and tropical regions. The phylogeny and classification of Usnea have been a matter of debate, given the lack of phenotypic characters to describe phylogenetic clades and the low degree of resolution of phylogenetic trees. In this study, we investigated the phylogenetic relationships of 52 Usnea species from across the genus, based on ITS rDNA, nuLSU, and two protein-coding genes RPB1 and MCM7. ITS comprised several highly variable regions, containing substantial genetic signal, but also susceptible to causing bias in the generation of the alignment. We compared several methods of alignment of ITS and found that a simultaneous optimization of alignment and phylogeny (using BAli-phy) improved significantly both the topology and the resolution of the phylogenetic tree. However the resolution was even better when using protein-coding genes, especially RPB1 although it is less variable. The phylogeny based on the concatenated dataset revealed that the genus Usnea is subdivided into four highly-supported clades, corresponding to the traditionally circumscribed subgenera Eumitria, Dolichousnea, Neuropogon and Usnea. However, characters that have been used to describe these clades are often homoplasious within the phylogeny and their parallel evolution is suggested. On the other hand, most of the species were reconstructed as monophyletic, indicating that combinations of phenotypic characters are suitable discriminators for delimitating species, but are inadequate to describe generic subdivisions. PMID:23603312

  12. Genetic variability and mycohost association of Ampelomyces quisqualis isolates inferred from phylogenetic analyses of ITS rDNA and actin gene sequences.

    PubMed

    Park, Mi-Jeong; Choi, Young-Joon; Hong, Seung-Beom; Shin, Hyeon-Dong

    2010-01-01

    Ampelomyces quisqualis complex is well known as the most common and widespread hyperparasite of the family Erysiphaceae, the cause of powdery mildew diseases. As commercial biopesticide products it is widely used to control the disease in field and plastic houses. Although genetic diversity within Ampelomyces isolates has been previously recognized, a single name A. quisqualis is still applied to all pycnidial intracellular hyperparasites of powdery mildew fungi. In this study, the phylogenetic relationships among Ampelomyces isolates originating from various powdery mildew fungi in Korea were inferred from Bayesian and maximum parsimony analyses of the sequences of ITS rDNA region and actin gene. In the phylogenetic trees, the Ampelomyces isolates could be divided into four distinct groups with high sequence divergences in both regions. The largest group, Clade 1, mostly accommodated Ampelomyces isolates originating from the mycohost Podosphaera spp. (sect. Sphaerotheca). Clade 2 comprised isolates from several genera of powdery mildews, Golovinomyces, Erysiphe (sect. Erysiphe), Arthrocladiella, and Phyllactinia, and was further divided into two subclades. An isolate obtained from Podosphaera (sect. Sphaerotheca) pannosa was clustered into Clade 3, with those from powdery mildews infecting rosaceous hosts. The mycohosts of Ampelomyces isolates in Clade 4 mostly consisted of species of Erysiphe (sect. Erysiphe, sect. Microsphaera, and sect. Uncinula). The present phylogenetic study demonstrates that Ampelomyces hyperparasite is indeed an assemblage of several distinct lineages rather than a sole species. Although the correlation between Ampelomyces isolates and their mycohosts is not obviously clear, the isolates show not only some degree of host specialization but also adaptation to their mycohosts during the evolution of the hyperparasite. PMID:20943134

  13. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    SciTech Connect

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin . E-mail: min-xin.guan@chmcc.org

    2006-04-21

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations.

  14. Rearrangement between the MYH11 gene at 16p13 and D12S158 at 12p13 in a case of acute myeloid leukemia M1 (AML-M1).

    PubMed

    La Starza, R; Wlodarska, I; Matteucci, C; Falzetti, D; Baens, M; Martelli, M F; Van den Berghe, H; Marynen, P; Mecucci, C

    1998-09-01

    A case of acute myeloid leukemia (AML) M1 with bone marrow eosinophilia was characterized by cytogenetics and fluorescence in situ hybridization (FISH). A complex karyotype including a der(12)t(12;17)(p12-13;q11) and a der(16)t(16;20)(p13;p11) was found at diagnosis. FISH studies with probes for chromosome 16 and for the short arm of chromosome 12 showed even more complex rearrangements. Analysis with a panel of probes for 12p showed that D12S158 spanned the breakpoint on the der(12). Unexpectedly, FISH signals were found on the der(12) and on the der(6) at band p13, the site of juxtaposition between the short arm of chromosome 16 and chromosome 20. Moreover, both YAC 854E2, containing the MYH11 gene, and cosmid ZIT133, encompassing the MYH11 breakpoint in inv(16) and t(16;16) of AML-M4 with eosinophilia, demonstrated fluorescent signals on the normal 16, on the der(16), and on the der(12). These data clearly support a reciprocal exchange between D12S158 at 12p13.3 and the MYH11 gene at 16p13. In addition, experiments with two PAC clones for the CBFB gene at 16q22 excluded the presence of a masked inv(16). An interstitial deletion, independent from the translocation and flanked by VWF and KRAS2, was also detected on the der(12). PMID:9713991

  15. Mapping of the human gene for a melanocyte protein Pmel 17 (D12S53E) to chromosome 12q13-q14

    SciTech Connect

    Kubota, Ryo; Wang, Yimin; Minoshima, Shinsei

    1995-03-20

    We have isolated several new cDNA clones that are differentially expressed in retina from a human retina cDNA library using a new combined method of subtractive hybridization and differential hybridization. Among these cDNAs, we found that cDNA clone BA7 was identical to the previously reported Pmel 17 cDNA in its nucleotide sequence. Pmel 17 mRNA is preferentially expressed in melanocytes, and the protein expressed in Escherichia coli cross-reacts with anti-tyrosinase antibodies. The mouse Pmel 17 gene was mapped to the pter-q21 region of human chromosome 12. In this paper, we present evidence precisely locating the human Pmel 17 gene to chromosome 12q13-q14. 7 refs., 1 fig.

  16. MRPS18CP2 alleles and DEFA3 absence as putative chromosome 8p23.1 modifiers of hearing loss due to mtDNA mutation A1555G in the 12S rRNA gene

    PubMed Central

    Ballana, Ester; Mercader, Josep Maria; Fischel-Ghodsian, Nathan; Estivill, Xavier

    2007-01-01

    Background Mitochondrial DNA (mtDNA) mutations account for at least 5% of cases of postlingual, nonsyndromic hearing impairment. Among them, mutation A1555G is frequently found associated with aminoglycoside-induced and/or nonsyndromic hearing loss in families presenting with extremely variable clinical phenotypes. Biochemical and genetic data have suggested that nuclear background is the main factor involved in modulating the phenotypic expression of mutation A1555G. However, although a major nuclear modifying locus was located on chromosome 8p23.1 and regardless intensive screening of the region, the gene involved has not been identified. Methods With the aim to gain insights into the factors that determine the phenotypic expression of A1555G mutation, we have analysed in detail different genetic and genomic elements on 8p23.1 region (DEFA3 gene absence, CLDN23 gene and MRPS18CP2 pseudogene) in a group of 213 A1555G carriers. Results Family based association studies identified a positive association for a polymorphism on MRPS18CP2 and an overrepresentation of DEFA3 gene absence in the deaf group of A1555G carriers. Conclusion Although none of the factors analysed seem to have a major contribution to the phenotype, our findings provide further evidences of the involvement of 8p23.1 region as a modifying locus for A1555G 12S rRNA gene mutation. PMID:18154640

  17. Variation in rDNA locus number and position among legume species and detection of 2 linked rDNA loci in the model Medicago truncatula by FISH.

    PubMed

    Abirached-Darmency, Mona; Prado-Vivant, Emilce; Chelysheva, Liudmila; Pouthier, Thomas

    2005-06-01

    Within Fabaceae, legume species have a variable genome size, chromosome number, and ploidy level. The genome distribution of ribosomal genes, easily detectable by fluorescent in situ hybridization (FISH), is a good tool for anchoring physical and genetic comparative maps. The organisation of 45S rDNA and 5S loci was analysed by FISH in the 4 closely related species: Pisum sativum, Medicago truncatula, Medicago sativa (2 diploid taxa), and Lathyrus sativus. The 2 types of rDNA arrays displayed interspecific variation in locus number and location, but little intraspecific variation was detected. In the model legume, M. truncatula, the presence of 2 adjacent 45S rDNA loci was demonstrated, and the location of the rDNA loci was independent of the general evolution of the genome DNA. The different parameters relative to clustering of the rDNA loci in specific chromosome regions and the possible basis of rDNA instability are discussed. PMID:16121252

  18. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants

    PubMed Central

    Kwan, Elizabeth X.; Wang, Xiaobin S.; Amemiya, Haley M.; Brewer, Bonita J.; Raghuraman, M. K.

    2016-01-01

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. PMID:27449518

  19. Identification of airborne bacterial and fungal species in the clinical microbiology laboratory of a university teaching hospital employing ribosomal DNA (rDNA) PCR and gene sequencing techniques.

    PubMed

    Nagano, Yuriko; Walker, Jim; Loughrey, Anne; Millar, Cherie; Goldsmith, Colin; Rooney, Paul; Elborn, Stuart; Moore, John

    2009-06-01

    Universal or "broad-range" PCR-based ribosomal DNA (rDNA) was performed on a collection of 58 isolates (n = 30 bacteria + 28 fungi), originating from environmental air from several locations within a busy clinical microbiology laboratory, supporting a university teaching hospital. A total of 10 bacterial genera were identified including both Gram-positive and Gram-negative genera. Gram-positive organisms accounted for 27/30 (90%) of total bacterial species, consisting of seven genera and included (in descending order of frequency) Staphylococcus, Micrococcus, Corynebacterium, Paenibacillus, Arthrobacter, Janibacter and Rothia. Gram-negative organisms were less frequently isolated 3/30 (10%) and comprised three genera, including Moraxella, Psychrobacter and Haloanella. Eight fungal genera were identified among the 28 fungal organisms isolated, including (in descending order of frequency) Cladosporium, Penicillium, Aspergillus, Thanatephorus, Absidia, Eurotium, Paraphaeosphaeria and Tritirachium, with Cladosporium accounting for 10/28 (35.7%) of the total fungal isolates. In conclusion, this study identified the presence of 10 bacterial and eight fungal genera in the air within the laboratory sampled. Although this reflected diversity of the microorganisms present, none of these organisms have been described previously as having an inhalational route of laboratory-acquired infection. Therefore, we believe that the species of organisms identified and the concentration levels of these airborne contaminants determined, do not pose a significant health and safety threat for immunocompotent laboratory personnel and visitors. PMID:20183192

  20. Polymorphisms in the 18S rDNA gene of Cystoisospora belli and clinical features of cystoisosporosis in HIV-infected patients.

    PubMed

    Resende, Deisy V; Pedrosa, André L; Correia, Dalmo; Cabrine-Santos, Marlene; Lages-Silva, Eliane; Meira, Wendell S F; Oliveira-Silva, Márcia B

    2011-03-01

    Intraspecific variability among Cystoisospora belli isolates and its clinical implications in human cystoisosporosis have not been established. In this study, the restriction fragment length polymorphisms in a 1.8-kb amplicon of the small subunit ribosomal DNA (SSU rDNA) of the parasite was investigated in 20 C. belli-positive stool samples obtained from 15 HIV-infected patients. Diarrheic syndrome was observed in all patients with cystoisosporosis and the number of diarrheic episodes per patient during hospitalization ranged from 1 to 26 (mean of 9.64 ± 9.30), with a mean duration of 2 to 12 days (mean of 5.90 ± 3 days). Three restriction profiles (RF) were generated with MboII digestion, which were named RFI, RFII, and RFIII. Two isolates obtained from a patient with extraintestinal cystoisosporosis showed distinct restriction profiles with MboII. This study demonstrates that patients can be infected with different C. belli genotypes, and this information may be useful for identifying new C. belli genotypes infecting humans. PMID:20967461

  1. Phylogenetic reconstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the 12S rRNA, 28S rRNA, and NADH1 genes: implications for classification, biogeography, and the evolution of web building behavior.

    PubMed

    Murphy, Nicholas P; Framenau, Volker W; Donnellan, Stephen C; Harvey, Mark S; Park, Yung-Chul; Austin, Andrew D

    2006-03-01

    Current knowledge of the evolutionary relationships amongst the wolf spiders (Araneae: Lycosidae) is based on assessment of morphological similarity or phylogenetic analysis of a small number of taxa. In order to enhance the current understanding of lycosid relationships, phylogenies of 70 lycosid species were reconstructed by parsimony and Bayesian methods using three molecular markers; the mitochondrial genes 12S rRNA, NADH1, and the nuclear gene 28S rRNA. The resultant trees from the mitochondrial markers were used to assess the current taxonomic status of the Lycosidae and to assess the evolutionary history of sheet-web construction in the group. The results suggest that a number of genera are not monophyletic, including Lycosa, Arctosa, Alopecosa, and Artoria. At the subfamilial level, the status of Pardosinae needs to be re-assessed, and the position of a number of genera within their respective subfamilies is in doubt (e.g., Hippasa and Arctosa in Lycosinae and Xerolycosa, Aulonia and Hygrolycosa in Venoniinae). In addition, a major clade of strictly Australasian taxa may require the creation of a new subfamily. The analysis of sheet-web building in Lycosidae revealed that the interpretation of this trait as an ancestral state relies on two factors: (1) an asymmetrical model favoring the loss of sheet-webs and (2) that the suspended silken tube of Pirata is directly descended from sheet-web building. Paralogous copies of the nuclear 28S rRNA gene were sequenced, confounding the interpretation of the phylogenetic analysis and suggesting that a cautionary approach should be taken to the further use of this gene for lycosid phylogenetic analysis. PMID:16503280

  2. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture.

    PubMed

    Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P H

    2014-05-01

    Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. PMID:24609384

  3. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene.

    PubMed

    Trcek, Janja

    2005-10-01

    Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for

  4. The A1555G Mutation in the 12S rRNA Gene of Human mtDNA: Recurrent Origins and Founder Events in Families Affected by Sensorineural Deafness

    PubMed Central

    Torroni, Antonio; Cruciani, Fulvio; Rengo, Chiara; Sellitto, Daniele; López-Bigas, Núria; Rabionet, Raquel; Govea, Nancy; López de Munain, Adolfo; Sarduy, Maritza; Romero, Lourdes; Villamar, Manuela; del Castillo, Ignacio; Moreno, Felipe; Estivill, Xavier; Scozzari, Rosaria

    1999-01-01

    Summary The mtDNA variation of 50 Spanish and 4 Cuban families affected by nonsyndromic sensorineural deafness due to the A1555G mutation in the 12S rRNA gene was studied by high-resolution RFLP analysis and sequencing of the control region. Phylogenetic analyses of haplotypes and detailed survey of population controls revealed that the A1555G mutation can be attributed to ⩾30 independent mutational events among the 50 Spanish families and that it occurs on mtDNA haplogroups that are common in all European populations. This indicates that the relatively high detection rate of this mutation in Spain is not due to sampling biases or to a single major founder event. Moreover, the distribution of these mutational events on different haplogroups is compatible with a random occurrence of the A1555G mutation and tends to support the conclusion that mtDNA backgrounds do not play a significant role in the expression of the mutation. Overall, these findings appear to indicate that the rare detection of this mutation in other populations is most likely due to inadequacy in patient ascertainment and molecular screening. This probable lack of identification of the A1555G mutation in subjects affected by sensorineural hearing loss implies that their maternally related relatives are not benefiting from presymptomatic detection and information concerning their increased risk of ototoxicity due to aminoglycoside treatments. PMID:10521300

  5. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes.

    PubMed

    Tiquia, S M; Ichida, J M; Keener, H M; Elwell, D L; Burtt, E H; Michel, F C

    2005-05-01

    Composting is one of the more economical and environmentally safe methods of recycling feather waste generated by the poultry industry, since 90% of the feather weight consists of crude keratin protein, and feathers contain 15% N. However, the keratin in waste feathers is resistant to biodegradation and may require the addition of bacterial inocula to enhance the degradation process during composting. Two keratin-degrading bacteria isolated from plumage of wild songbirds and identified as Bacillus licheneformis (OWU 1411T) and Streptomyces sp. (OWU 1441) were inoculated into poultry feather composts (1.13 x 10(8) cfu g(-1) feathers) and co-composted with poultry litter and straw in 200-l compost vessels. Composting temperatures, as well as CO(2) and NH(3) evolution, were measured in these vessels to determine the effects of inoculation on the rate and extent of poultry feather decomposition during composting. Terminal restriction fragment length polymorphisms of 16S rRNA genes were used to follow changes in microbial community structure during composting. The results indicated that extensive carbon conversion occurred in both treatments (55.5 and 56.1%). The addition of the bacterial inocula did not enhance the rate of waste feather composting. The microbial community structure over time was very similar in inoculated and uninoculated waste feather composts. PMID:15614566

  6. Novel genetic diversity within Anopheles punctimacula s.l.: phylogenetic discrepancy between the Barcode cytochrome c oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2).

    PubMed

    Loaiza, Jose R; Scott, Marilyn E; Bermingham, Eldredge; Sanjur, Oris I; Rovira, Jose R; Dutari, Larissa C; Linton, Yvonne-Marie; Bickersmith, Sara; Conn, Jan E

    2013-10-01

    Anopheles punctimacula s.l. is a regional malaria vector in parts of Central America, but its role in transmission is controversial due to its unresolved taxonomic status. Two cryptic species, An. malefactor and An. calderoni, have been previously confused with this taxon, and evidence for further genetic differentiation has been proposed. In the present study we collected and morphologically identified adult female mosquitoes of An. punctimacula s.l. from 10 localities across Panama and one in Costa Rica. DNA sequences from three molecular regions, the three prime end of the mitochondrial cytochrome c oxidase I gene (3' COI), the Barcode region in the five prime end of the COI (5' COI), and the rDNA second internal transcribed spacer (ITS2) were used to test the hypothesis of new molecular lineages within An. punctimacula s.l. Phylogenetic analyses using the 3' COI depicted six highly supported molecular lineages (A-F), none of which was An. malefactor. In contrast, phylogenetic inference with the 5' COI demonstrated paraphyly. Tree topologies based on the combined COI regions and ITS2 sequence data supported the same six lineages as the 3' COI alone. As a whole this evidence suggests that An. punctimacula s.l. comprises two geographically isolated lineages, but it is not clear whether these are true species. The phylogenetic structure of the An. punctimacula cluster as well as that of other unknown lineages (C type I vs C type II; D vs E) appears to be driven by geographic partition, because members of these assemblages did not overlap spatially. We report An. malefactor for the first time in Costa Rica, but our data do not support the presence of An. calderoni in Panama. PMID:23806568

  7. A Real-Time PCR Assay Based on 5.8S rRNA Gene (5.8S rDNA) for Rapid Detection of Candida from Whole Blood Samples.

    PubMed

    Guo, Yi; Yang, Jing-Xian; Liang, Guo-Wei

    2016-06-01

    The prevalence of Candida in bloodstream infections (BSIs) has increased. To date, the identification of Candida in BSIs still mainly relies on blood culture and serological tests, but they have various limitations. Therefore, a real-time PCR assay for the detection of Candida from whole blood is presented. The unique primers/probe system was designed on 5.8S rRNA gene (5.8S rDNA) of Candida genus. The analytical sensitivity was determined by numbers of positive PCRs in 12 repetitions. At the concentration of 10(1) CFU/ml blood, positive PCR rates of 100 % were obtained for C. albicans, C. parapsilosis, C. tropicalis, and C. krusei. The detection rate for C. glabrata was 75 % at 10(1) CFU/ml blood. The reaction specificity was 100 % when evaluating the assay using DNA samples from clinical isolates and human blood. The maximum CVs of intra-assay and inter-assay for the detection limit were 1.22 and 2.22 %, respectively. To assess the clinical applicability, 328 blood samples from 82 patients were prospectively tested and real-time PCR results were compared with results from blood culture. Diagnostic sensitivity of the PCR was 100 % using as gold standard blood culture, and specificity was 98.4 %. Our data suggest that the developed assay can be used in clinical laboratories as an accurate and rapid screening test for the Candida from whole blood. Although further evaluation is warranted, our assay holds promise for earlier diagnosis of candidemia. PMID:26687075

  8. Novel genetic diversity within Anopheles punctimacula s.l.: Phylogenetic discrepancy between the Barcode cytochrome c oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2)

    PubMed Central

    Loaiza, Jose R.; Scott, Marilyn E.; Bermingham, Eldredge; Sanjur, Oris I.; Rovira, Jose R.; Dutari, Larissa C.; Linton, Yvonne-Marie; Bickersmith, Sara; Conn, Jan E.

    2013-01-01

    Anopheles punctimacula s.l. is a regional malaria vector in parts of Central America, but its role in transmission is controversial due to its unresolved taxonomic status. Two cryptic species, An. malefactor and An. calderoni, have been previously confused with this taxon, and evidence for further genetic differentiation has been proposed. In the present study we collected and morphologically identified adult female mosquitoes of An. punctimacula s.l. from 10 localities across Panama and one in Costa Rica. DNA sequences from three molecular regions, the three prime end of the mitochondrial cytochrome c oxidase I gene (3´ COI), the Barcode region in the five prime end of the COI (5´ COI), and the rDNA second internal transcribed spacer (ITS2) were used to test the hypothesis of new molecular lineages within An. punctimacula s.l. Phylogenetic analyses using the 3´ COI depicted six highly supported molecular lineages (A–F), none of which was An. malefactor. In contrast, phylogenetic inference with the 5´ COI demonstrated paraphyly. Tree topologies based on the combined COI regions and ITS2 sequence data supported the same six lineages as the 3´ COI alone. As a whole this evidence suggests that An. punctimacula s.l. comprises two geographically isolated lineages, but it is not clear whether these are true species. The phylogenetic structure of the An. punctimacula cluster as well as that of other unknown lineages (C type I vs C type II; D vs E) appears to be driven by geographic partition, because members of these assemblages did not overlap spatially. We report An. malefactor for the first time in Costa Rica, but our data do not support the presence of An. calderoni in Panama. PMID:23806568

  9. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex.

    PubMed

    Chand Dakal, Tikam; Giudici, Paolo; Solieri, Lisa

    2016-01-01

    Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5' end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding. PMID:27501051

  10. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids

    PubMed Central

    2012-01-01

    Background Tandemly arranged nuclear ribosomal DNA (rDNA), encoding 18S, 5.8S and 26S ribosomal RNA (rRNA), exhibit concerted evolution, a pattern thought to result from the homogenisation of rDNA arrays. However rDNA homogeneity at the single nucleotide polymorphism (SNP) level has not been detailed in organisms with more than a few hundred copies of the rDNA unit. Here we study rDNA complexity in species with arrays consisting of thousands of units. Methods We examined homogeneity of genic (18S) and non-coding internally transcribed spacer (ITS1) regions of rDNA using Roche 454 and/or Illumina platforms in four angiosperm species, Nicotiana sylvestris, N. tomentosiformis, N. otophora and N. kawakamii. We compared the data with Southern blot hybridisation revealing the structure of intergenic spacer (IGS) sequences and with the number and distribution of rDNA loci. Results and Conclusions In all four species the intragenomic homogeneity of the 18S gene was high; a single ribotype makes up over 90% of the genes. However greater variation was observed in the ITS1 region, particularly in species with two or more rDNA loci, where >55% of rDNA units were a single ribotype, with the second most abundant variant accounted for >18% of units. IGS heterogeneity was high in all species. The increased number of ribotypes in ITS1 compared with 18S sequences may reflect rounds of incomplete homogenisation with strong selection for functional genic regions and relaxed selection on ITS1 variants. The relationship between the number of ITS1 ribotypes and the number of rDNA loci leads us to propose that rDNA evolution and complexity is influenced by locus number and/or amplification of orphaned rDNA units at new chromosomal locations. PMID:23259460

  11. rDNA genetic imbalance and nucleolar chromatin restructuring is induced by distant hybridization between Raphanus sativus and Brassica alboglabra.

    PubMed

    Long, Hong; Chen, Chunli; Wang, Bing; Feng, Yanni

    2015-01-01

    The expression of rDNA in hybrids inherited from only one progenitor refers to nucleolar dominance. The molecular basis for choosing which genes to silence remains unclear. We report genetic imbalance induced by distant hybridization correlates with formation of rDNA genes (NORs) in the hybrids between Raphanus sativus L. and Brassica alboglabra Bailey. Moreover, increased CCGG methylation of rDNA in F1 hybrids is concomitant with Raphanus-derived rDNA gene silencing and rDNA transcriptional inactivity revealed by nucleolar configuration restriction. Newly formed rDNA gene locus occurred through chromosomal in F1 hybrids via chromosomal imbalance. NORs are gained de novo, lost, and/or transposed in the new genome. Inhibition of methyltransferases leads to changes in nucleolar architecture, implicating a key role of methylation in control of nucleolar dominance and vital nucleolar configuration transition. Our findings suggest that gene imbalance and methylation-related chromatin restructuring is important for rDNA gene silencing that may be crucial for synthesis of specific proteins. PMID:25723542

  12. Relationships between parasitoid wasps (Hymenoptera: Braconidae: Opiinae), fruit flies (Diptera: Tephritidae) and their host plants based on 16S rRNA, 12S rRNA, and ND1 gene sequences

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. J.; Md-Zain, B. M.; Yaakop, S.

    2013-11-01

    Opiinae is among the l0 largest subfamilies under the family Braconidae. Opiines species have great potential as natural enemies against fruit fly pests. Before using them as a biological control agent, construction of the phylogenetic trees could facilitate in the molecular identification of individual species and their relationships among members of the Opiines, as well as between Opiines and their host plants. Larval specimens of tephritids were collected from four crop species at five localities throughout the Peninsular Malaysia. A total of 44 specimens of opiines had successfully emerged from the hosts, fruit fly larvae. The DNA sequences of 12S and 16S rRNA were obtained for the braconids while the mitochondrial ND1 sequences were obtained for the tephritids species through polymerase chain reaction. Maximum Parsimony and Bayesian trees were constructed by using PAUP 4.0b10 and MrBayes 3.1.2 to identify the relationships among the taxa. This study illustrates the phylogenetic relationships among parasitoid opiines collected and reared from parasitized fruit flies. The phylogenetic trees constructed based on the mitochondrial 12S and 16S rRNA sequences exhibited similar topology and sequence divergence. The opiines were divided into several clades and subclades according to the genus and species. Each clade also was supported by the similar host plants with high support values. However, their pests were not specific, except for Bactrocera cucurbitae. This study has reconfirmed the associations between Opiinae, tephritids, and host plants based on molecular data.

  13. macroH2A1 histone variant represses rDNA transcription.

    PubMed

    Cong, Rong; Das, Sadhan; Douet, Julien; Wong, Jiemin; Buschbeck, Marcus; Mongelard, Fabien; Bouvet, Philippe

    2014-01-01

    The regulation of ribosomal DNA transcription is an important step for the control of cell growth. Epigenetic marks such as DNA methylation and posttranslational modifications of canonical histones have been involved in this regulation, but much less is known about the role of histone variants. In this work, we show that the histone variant macroH2A1 is present on the promoter of methylated rDNA genes. The inhibition of the expression of macroH2A1 in human HeLa and HepG2 cells and in a mouse ES cell line resulted in an up to 5-fold increase of pre-rRNA levels. This increased accumulation of pre-rRNA is accompanied by an increase of the loading of RNA polymerase I and UBF on the rDNA without any changes in the number of active rDNA genes. The inhibition of RNA polymerase I transcription by actinomycin D or by knocking down nucleolin, induces the recruitment of macroH2A1 on the rDNA and the relocalization of macroH2A1 in the nucleolus. Interestingly, the inhibition of rDNA transcription induced by nucleolin depletion is alleviated by the inactivation of macroH2A1. These results demonstrate that macroH2A1 is a new factor involved in the regulation of rDNA transcription. PMID:24071584

  14. RNA Polymerase I and Fob1 contributions to transcriptional silencing at the yeast rDNA locus.

    PubMed

    Buck, Stephen W; Maqani, Nazif; Matecic, Mirela; Hontz, Robert D; Fine, Ryan D; Li, Mingguang; Smith, Jeffrey S

    2016-07-27

    RNA polymerase II (Pol II)-transcribed genes embedded within the yeast rDNA locus are repressed through a Sir2-dependent process called 'rDNA silencing'. Sir2 is recruited to the rDNA promoter through interactions with RNA polymerase I (Pol I), and to a pair of DNA replication fork block sites (Ter1 and Ter2) through interaction with Fob1. We utilized a reporter gene (mURA3) integrated adjacent to the leftmost rDNA gene to investigate localized Pol I and Fob1 functions in silencing. Silencing was attenuated by loss of Pol I subunits or insertion of an ectopic Pol I terminator within the adjacent rDNA gene. Silencing left of the rDNA array is naturally attenuated by the presence of only one intact Fob1 binding site (Ter2). Repair of the 2nd Fob1 binding site (Ter1) dramatically strengthens silencing such that it is no longer impacted by local Pol I transcription defects. Global loss of Pol I activity, however, negatively affects Fob1 association with the rDNA. Loss of Ter2 almost completely eliminates localized silencing, but is restored by artificially targeting Fob1 or Sir2 as Gal4 DNA binding domain fusions. We conclude that Fob1 and Pol I make independent contributions to establishment of silencing, though Pol I also reinforces Fob1-dependent silencing. PMID:27060141

  15. Copy Number of the Transposon, Pokey, in rDNA Is Positively Correlated with rDNA Copy Number in Daphnia obtusa

    PubMed Central

    LeRiche, Kaitlynn; Eagle, Shannon H. C.; Crease, Teresa J.

    2014-01-01

    Pokey is a class II DNA transposon that inserts into 28S ribosomal RNA (rRNA) genes and other genomic regions of species in the subgenus, Daphnia. Two divergent lineages, PokeyA and PokeyB have been identified. Recombination between misaligned rRNA genes changes their number and the number of Pokey elements. We used quantitative PCR (qPCR) to estimate rRNA gene and Pokey number in isolates from natural populations of Daphnia obtusa, and in clonally-propagated mutation accumulation lines (MAL) initiated from a single D. obtusa female. The change in direction and magnitude of Pokey and rRNA gene number did not show a consistent pattern across ∼87 generations in the MAL; however, Pokey and rRNA gene number changed in concert. PokeyA and 28S gene number were positively correlated in the isolates from both natural populations and the MAL. PokeyB number was much lower than PokeyA in both MAL and natural population isolates, and showed no correlation with 28S gene number. Preliminary analysis did not detect PokeyB outside rDNA in any isolates and detected only 0 to 4 copies of PokeyA outside rDNA indicating that Pokey may be primarily an rDNA element in D. obtusa. The recombination rate in this species is high and the average size of the rDNA locus is about twice as large as that in other Daphnia species such as D. pulicaria and D. pulex, which may have facilitated expansion of PokeyA to much higher numbers in D. obtusa rDNA than these other species. PMID:25490398

  16. Copy number of the transposon, Pokey, in rDNA is positively correlated with rDNA copy number in Daphnia obtuse [corrected].

    PubMed

    LeRiche, Kaitlynn; Eagle, Shannon H C; Crease, Teresa J

    2014-01-01

    Pokey is a class II DNA transposon that inserts into 28S ribosomal RNA (rRNA) genes and other genomic regions of species in the subgenus, Daphnia. Two divergent lineages, PokeyA and PokeyB have been identified. Recombination between misaligned rRNA genes changes their number and the number of Pokey elements. We used quantitative PCR (qPCR) to estimate rRNA gene and Pokey number in isolates from natural populations of Daphnia obtusa, and in clonally-propagated mutation accumulation lines (MAL) initiated from a single D. obtusa female. The change in direction and magnitude of Pokey and rRNA gene number did not show a consistent pattern across ∼ 87 generations in the MAL; however, Pokey and rRNA gene number changed in concert. PokeyA and 28S gene number were positively correlated in the isolates from both natural populations and the MAL. PokeyB number was much lower than PokeyA in both MAL and natural population isolates, and showed no correlation with 28S gene number. Preliminary analysis did not detect PokeyB outside rDNA in any isolates and detected only 0 to 4 copies of PokeyA outside rDNA indicating that Pokey may be primarily an rDNA element in D. obtusa. The recombination rate in this species is high and the average size of the rDNA locus is about twice as large as that in other Daphnia species such as D. pulicaria and D. pulex, which may have facilitated expansion of PokeyA to much higher numbers in D. obtusa rDNA than these other species. PMID:25490398

  17. Chromosome mapping of 18S rDNA and 5S rDNA by dual-color fluorescence in situ hybridization in the half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Jiang, L; Jiang, J; Liu, J; Yuan, J; Chen, Y; Zhang, Q; Wang, X

    2014-01-01

    Half-smooth tongue sole (Cynoglossus semilaevis) is an important aquaculture flatfish in China. Cytogenetic analysis has revealed that its sex determination system is female heterogametic (ZZ/ZW). The W chromosome is morphologically larger and has been considered evolutionarily younger than any other chromosome in the set. However, the genetic origin and evolution process of this neo-chromosome remains unclear. In this study, 2 tandem arrays of rRNA genes were chosen to address this question. Both the major rDNA (18S rDNA) and the minor rDNA (5S rDNA) were located on the C. semilaevis chromosomes by fluorescence in situ hybridization (FISH). Six 18S rDNA signals were observed on the centromeric regions of 3 pairs of autosomes in both males and females. In females, there was an additional 18S rDNA signal mapping to the telomeric region of the W chromosome long arm. With respect to the 5S rDNA, 12 signals were mapped to the centromeric regions of six pairs of autosomes. Two-color FISH further confirmed that the two pairs of the 5S rDNA signals were correspondingly located at the same positions of the same autosomes as those of the 18S rDNA signals. These results allowed us to speculate about the evolution process of the W chromosome. Chromosome fusions and repetitive sequence accumulations might have occurred in C. semilaevis. The synteny and non-synteny of C. semilaevis 18S rDNA and 5S rDNA might imply the original and evolutionary characteristics of this species. These findings will facilitate studies on karyotype evolution of the order Pleuronectiformes. PMID:25526196

  18. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  19. Protein kinase NII and the regulation of rDNA transcription in mammalian cells.

    PubMed Central

    Belenguer, P; Baldin, V; Mathieu, C; Prats, H; Bensaid, M; Bouche, G; Amalric, F

    1989-01-01

    Transcription of ribosomal RNA genes is generally accepted to correlate with cell growth. Using primary cultures of adult bovine aortic endothelial (ABAE) cells, we have shown that transcription of rDNA in confluent cells falls to 5% of the transcription level in growing cells. Protein kinase NII appears to be a limiting factor to promote rDNA transcription in isolated nuclei of confluent cells. Protein kinase NII was detected by immunocytochemistry in the cytoplasm, nuclei and nucleoli of growing cells while it was no longer present in nucleoli of confluent cells. The kinase activity, in isolated nuclei, was estimated by endogenous phosphorylation of a specific substrate, nucleolin. A 10% residual activity was present in confluent cell nuclei compared to growing cell nuclei. Concomitantly, the transcription 'in vitro' of rDNA in the corresponding nuclei was also highly reduced (by 85%). Addition of exogenous protein kinase NII to confluent cell nuclei induced a strong increase in the phosphorylation of specific proteins including nucleolin. In parallel, the transcription of rDNA was increased by a factor of 5, to nearly the level observed in nuclei prepared from growing cells. These data suggest that, in confluent cells, factors necessary for rDNA transcription machinery are present but inactive in the nucleolus and that the phosphorylation of one or several of these factors (nucleolin, topoisomerase I,...) by protein kinase NII is a key event in the regulation of rDNA transcription. Images PMID:2780290

  20. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit. PMID:27106499

  1. BEND3 represses rDNA transcription by stabilizing a NoRC component via USP21 deubiquitinase

    PubMed Central

    Khan, Abid; Giri, Sumanprava; Wang, Yating; Chakraborty, Arindam; Ghosh, Archit K.; Anantharaman, Aparna; Aggarwal, Vasudha; Sathyan, Kizhakke M.; Ha, Taekjip; Prasanth, Kannanganattu V.; Prasanth, Supriya G.

    2015-01-01

    Ribosome biogenesis dictates the translational capacity of cells. Several mechanisms establish and maintain transcriptional output from eukaryotic ribosomal DNA (rDNA) loci. rDNA silencing is one such mechanism that ensures the inactivity and hence the maintenance of a silenced state of a subset of rRNA gene copies. Whereas oncogenic agents stimulate rRNA gene transcription, tumor suppressors decrease rRNA gene transcription. We demonstrate in mammalian cells that BANP, E5R, and Nac1 (BEN) domain 3 (BEND3), a quadruple BEN domain-containing protein, localizes in nucleoli and binds to ribosomal RNA gene promoters to help repress rRNA genes. Loss of BEND3 increases histone H3K4 trimethylation and, correspondingly, decreases rDNA promoter DNA methylation, consistent with a role for BEND3 in rDNA silencing. BEND3 associates with the nucleolar-remodeling complex (NoRC), and SUMOylated BEND3 stabilizes NoRC component TTF-1–interacting protein 5 via association with ubiquitin specific protease 21 (USP21) debiquitinase. Our results provide mechanistic insights into how the novel rDNA transcription repressor BEND3 acts together with NoRC to actively coordinate the establishment of rDNA silencing. PMID:26100909

  2. BEND3 represses rDNA transcription by stabilizing a NoRC component via USP21 deubiquitinase.

    PubMed

    Khan, Abid; Giri, Sumanprava; Wang, Yating; Chakraborty, Arindam; Ghosh, Archit K; Anantharaman, Aparna; Aggarwal, Vasudha; Sathyan, Kizhakke M; Ha, Taekjip; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2015-07-01

    Ribosome biogenesis dictates the translational capacity of cells. Several mechanisms establish and maintain transcriptional output from eukaryotic ribosomal DNA (rDNA) loci. rDNA silencing is one such mechanism that ensures the inactivity and hence the maintenance of a silenced state of a subset of rRNA gene copies. Whereas oncogenic agents stimulate rRNA gene transcription, tumor suppressors decrease rRNA gene transcription. We demonstrate in mammalian cells that BANP, E5R, and Nac1 (BEN) domain 3 (BEND3), a quadruple BEN domain-containing protein, localizes in nucleoli and binds to ribosomal RNA gene promoters to help repress rRNA genes. Loss of BEND3 increases histone H3K4 trimethylation and, correspondingly, decreases rDNA promoter DNA methylation, consistent with a role for BEND3 in rDNA silencing. BEND3 associates with the nucleolar-remodeling complex (NoRC), and SUMOylated BEND3 stabilizes NoRC component TTF-1-interacting protein 5 via association with ubiquitin specific protease 21 (USP21) debiquitinase. Our results provide mechanistic insights into how the novel rDNA transcription repressor BEND3 acts together with NoRC to actively coordinate the establishment of rDNA silencing. PMID:26100909

  3. Nucleolin: dual roles in rDNA chromatin transcription.

    PubMed

    Durut, Nathalie; Sáez-Vásquez, Julio

    2015-02-01

    Nucleolin is a major nucleolar protein conserved in all eukaryotic organisms. It is a multifunctional protein involved in different cellular aspects like chromatin organization and stability, DNA and RNA metabolism, assembly of ribonucleoprotein complexes, cytokinesis, cell proliferation and stress response. The multifunctionality of nucleolin is linked to its tripartite structure, post-translational modifications and its ability of shuttling from and to the nucleolus/nucleoplasm and cytoplasm. Nucleolin has been now studied for many years and its activities and properties have been described in a number of excellent reviews. Here, we overview the role of nucleolin in RNA polymerase I (RNAPI) transcription and describe recent results concerning its functional interaction with rDNA chromatin organization. For a long time, nucleolin has been associated with rRNA gene expression and pre-rRNA processing. However, the functional connection between nucleolin and active versus inactive rRNA genes is still not fully understood. Novel evidence indicates that the nucleolin protein might be required for controlling the transcriptional ON/OFF states of rDNA chromatin in both mammals and plants. PMID:25225127

  4. Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p.

    PubMed Central

    Smith, J S; Brachmann, C B; Pillus, L; Boeke, J D

    1998-01-01

    Transcriptional silencing in Saccharomyces cerevisiae occurs at the silent mating-type loci HML and HMR, at telomeres, and at the ribosomal DNA (rDNA) locus RDN1. Silencing in the rDNA occurs by a novel mechanism that depends on a single Silent Information Regulator (SIR) gene, SIR2. SIR4, essential for other silenced loci, paradoxically inhibits rDNA silencing. In this study, we elucidate a regulatory mechanism for rDNA silencing based on the finding that rDNA silencing strength directly correlates with cellular Sir2 protein levels. The endogenous level of Sir2p was shown to be limiting for rDNA silencing. Furthermore, small changes in Sir2p levels altered rDNA silencing strength. In rDNA silencing phenotypes, sir2 mutations were shown to be epistatic to sir4 mutations, indicating that SIR4 inhibition of rDNA silencing is mediated through SIR2. Furthermore, rDNA silencing is insensitive to SIR3 overexpression, but is severely reduced by overexpression of full-length Sir4p or a fragment of Sir4p that interacts with Sir2p. This negative effect of SIR4 overexpression was overridden by co-overexpression of SIR2, suggesting that SIR4 directly inhibits the rDNA silencing function of SIR2. Finally, genetic manipulations of SIR4 previously shown to promote extended life span also resulted in enhanced rDNA silencing. We propose a simple model in which telomeres act as regulators of rDNA silencing by competing for limiting amounts of Sir2 protein. PMID:9649515

  5. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex

    PubMed Central

    Chand Dakal, Tikam; Giudici, Paolo; Solieri, Lisa

    2016-01-01

    Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5’ end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding. PMID:27501051

  6. Evolutionary Dynamics of rDNA Clusters in Chromosomes of Five Clam Species Belonging to the Family Veneridae (Mollusca, Bivalvia)

    PubMed Central

    Pérez-García, Concepción; Hurtado, Ninoska S.; Morán, Paloma; Pasantes, Juan J.

    2014-01-01

    The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescent in situ hybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata, Ruditapes philippinarum, Ruditapes decussatus, Dosinia exoleta, and Venus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae. While a single major rDNA cluster was found in each of the five species, the number of 5S rDNA clusters showed high interspecies variation. Major rDNA was either subterminal to the short arms or intercalary to the long arms of metacentric or submetacentric chromosomes, whereas minor rDNA signals showed higher variability. Major and minor rDNAs map to different chromosome pairs in all species, but in R. decussatus one of the minor rDNA gene clusters and the major rDNA cluster were located in the same position on a single chromosome pair. This interspersion of both sequences was confirmed by fiber FISH. Telomeric signals appeared at both ends of every chromosome in all species. FISH mapping data are discussed in relation to the molecular phylogenetic trees currently available for Veneridae. PMID:24967400

  7. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder.

    PubMed

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5'-external transcribed spacer/5'ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5'ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5'ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  8. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder

    PubMed Central

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H.

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5′-external transcribed spacer/5′ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5′ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5′ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  9. Dynamics of R1 and R2 elements in the rDNA locus of Drosophila simulans.

    PubMed Central

    Pérez-González, C E; Eickbush, T H

    2001-01-01

    The mobile elements R1 and R2 insert specifically into the rRNA gene locus (rDNA locus) of arthropods, a locus known to undergo concerted evolution, the recombinational processes that preserve the sequence homogeneity of all repeats. To monitor how rapidly individual R1 and R2 insertions are turned over in the rDNA locus by these processes, we have taken advantage of the many 5' truncation variants that are generated during the target-primed reverse transcription mechanism used by these non-LTR retrotransposons for their integration. A simple PCR assay was designed to reveal the pattern of the 5' variants present in the rDNA loci of individual X chromosomes in a population of Drosophila simulans. Each rDNA locus in this population was found to have a large, unique collection of 5' variants. Each variant was present at low copy number, usually one copy per chromosome, and was seldom distributed to other chromosomes in the population. The failure of these variants to spread to other units in the same rDNA locus suggests a strong recombinational bias against R1 and R2 that results in the individual copies of these elements being rapidly lost from the rDNA locus. This bias suggests a significantly higher frequency of R1 and R2 retrotransposition than we have previously suggested. PMID:11514447

  10. Evolutionary pattern of rDNA following polyploidy in Leymus (Triticeae: Poaceae).

    PubMed

    Fan, Xing; Liu, Jing; Sha, Li-Na; Sun, Gen-Lou; Hu, Zhi-Qin; Zeng, Jian; Kang, Hou-Yang; Zhang, Hai-Qin; Wang, Yi; Wang, Xiao-Li; Zhang, Li; Ding, Chun-Bang; Yang, Rui-Wu; Zheng, You-Liang; Zhou, Yong-Hong

    2014-08-01

    Ribosomal ITS polymorphism and its ancestral genome origin of polyploid Leymus were examined to infer the evolutionary outcome of rDNA gene following allopolyploid speciation and to elucidate the geographic pattern of ITS variation. The results demonstrated that different polyploids have experienced varying fates, including maintenance or homogenization of divergent arrays, occurrence of chimeric repeats and potential pseudogenes. Our data suggested that (1) the Ns, P/F, and St genomic types in Leymus were originated from Psathyrostachys, Agropyron/Eremopyrum, and Pseudoroegneria, respectively; (2) the occurrence of a higher proportion of Leymus species with predominant uniparental rDNA type might associate with the segmental allopolyploid origin, nucleolar dominance of alloploids, and rapid radiation of Leymus; (3) maintenance of multiple parental ITS types in allopolyploid might result from long generation times associated to vegetative multiplication, number and chromosomal location of ribosomal loci and/or recurrent hybridization; (4) the rDNA genealogical structure of Leymus species might associate with the geographic origins; and (5) ITS sequence clade shared by Leymus species from Central Asia, North America, and Nordic might be an outcome of ancestral ITS homogenization. Our results shed new light on understanding evolutionary outcomes of rDNA following allopolyploid speciation and geographic isolation. PMID:24780748

  11. Clinorotation influences rDNA and NopA100 localization in nucleoli

    NASA Astrophysics Data System (ADS)

    Sobol, M. A.; González-Camacho, F.; Rodríguez-Vilariño, V.; Kordyum, E. L.; Medina, F. J.

    The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts. The plant nucleolin homologue NopA100 is involved in the regulation of r-chromatin condensation/expansion and rDNA transcription as well as in rRNA processing. We have investigated with immunogold electron microscopy the location of nucleolar DNA and NopA100 in cress root meristematic cells grown under slow horizontal clinorotation, reproducing an important feature of microgravity, namely the absence of an orienting action of a gravity vector, compared to control conditions. We demonstrate redistribution of both rDNA and NopA100 in nucleolar subcomponents induced by clinorotation. Ribosomal DNA concentrated predominantly in fibrillar centers in the form of condensed r-chromatin inclusions and internal non condensed fibrils, redistributing from the dense fibrillar component and the transition zone between fibrillar centers and the dense fibrillar component, recognized as the loci of rDNA transcription. The content of NopA100 was much higher in the inner space of fibrillar centers and reduced in the dense fibrillar component as compared to the control. Based on these data, an effect of slow horizontal clinorotation in lowering the level of rDNA transcription as well as rRNA processing is suggested.

  12. Intraspecific polymorphism of rDNA among five Nosema bombycis isolates from different geographic regions in China.

    PubMed

    Liu, Handeng; Pan, Guoqing; Luo, Bo; Li, Tian; Yang, Qiong; Vossbrinck, Charles R; Debrunner-Vossbrinck, Bettina A; Zhou, Zeyang

    2013-05-01

    The microsporidian Nosema bombycis is the causative agent of pébrine, a highly infectious disease of the silkworm Bombyx mori. Three regions of the multicopy rDNA gene were examined in order to investigate the relationships among five Nosema isolates from various regions of China. Ribosomal DNA alleles are present on each of the 18 chromosomes of N. bombycis and show a high degree of variation. In this study the small subunit (SSU) rDNA, internal transcribed spacer (ITS) and intergenic spacer (IGS) regions for up to 10 different rDNA copies from each N. bombycis isolate were cloned and sequenced. As expected we see greater polymorphism in the ITS region (88 variable sites in 179 nucleotides) and IGS (200 variable sites in 279 nucleotides) than in the SSU rDNA (24 variable sites in 1232 nucleotides). Phylogenetic analysis shows greater differences between alleles within an isolate than between the same alleles from different isolates. The data reveal two very different groups, one from the Sichuan province and the other with a broad distribution including four provinces in southeast China and Japan. The Sichuan isolate does not have any rDNA alleles with sequences identical to those in the other isolates, implying that it is a separate, non-intermixing, population or perhaps a separate species from the other isolates. In light of the polymorphic nature of the rDNA alleles in N. bombycis and their presence on every chromosome, the rDNA gene may be useful for understanding the movement and ultimately the source of pébrine infections. PMID:23399511

  13. Multiple rDNA units distributed on all chromosomes of Nosema bombycis.

    PubMed

    Liu, Handeng; Pan, Guoqing; Song, Shihong; Xu, Jinshan; Li, Tian; Deng, Yanbo; Zhou, Zeyang

    2008-10-01

    Among Microsporidia, Nosema bombycis has a novel arrangement of LSUrRNA, SSUrRNA, ITS, IGS and 5SrRNA. To determine the distribution of rDNA among the chromosomes, we performed genome-wide screening and Southern blotting with three probes (SSU, ITS and IGS). Southern blotting revealed that ribosomal RNA genes are distributed on all chromosomes of N. bombycis, which is contrary to the previous result, which concluded that the N. bombycis rRNA genes were limited to a single chromosome. This wide distribution is similar to that of the rDNA unit of Encephalitozoon cuniculi. Screening of the N. bombycis genome detected 53 LSUrRNA elements, 43 SSUrRNA elements and 36 5SrRNA elements. However, it is still difficult to determine their loci on the chromosomes as the genomic map is unfinished. PMID:18640121

  14. Utility of internally transcribed spacer region of rDNA (ITS) and β-tubulin gene sequences to infer genetic diversity and migration patterns of Colletotrichum truncatum infecting Capsicum spp.

    PubMed

    Rampersad, Kandyce; Ramdial, Hema; Rampersad, Sephra N

    2016-01-01

    Anthracnose is among the most economically important diseases affecting pepper (Capsicum spp.) production in the tropics and subtropics. Of the three species of Colletotrichum implicated as causal agents of pepper anthracnose, C. truncatum is considered to be the most destructive in agro-ecosystems worldwide. However, the genetic variation and the migration potential of C. truncatum infecting pepper are not known. Five populations were selected for study and a two-locus (internally transcribed spacer region, ITS1-5.8S-ITS2, and β-tubulin, β-TUB) sequence data set was generated and used in the analyses. Sequences of the ITS region were less informative than β -tubulin gene sequences based on comparisons of DNA polymorphism indices. Trinidad had the highest genetic diversity and also had the largest effective population size in pairwise comparisons with the other populations. The Trinidad population also demonstrated significant genetic differentiation from the other populations. AMOVA and STRUCTURE analyses both suggested significant genetic variation within populations more so than among populations. A consensus Maximum Likelihood tree based on β-TUB gene sequences revealed very little intraspecific diversity for all isolates except for Trinidad. Two clades consisting solely of Trinidad isolates may have diverged earlier than the other isolates. There was also evidence of directional migration among the five populations. These findings may have a direct impact on the development of integrated disease management strategies to control C. truncatum infection in pepper. PMID:26843942

  15. When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine × schulzii trigenomic allopolyploid.

    PubMed

    Zozomová-Lihová, Judita; Mandáková, Terezie; Kovaříková, Alena; Mühlhausen, Andreas; Mummenhoff, Klaus; Lysak, Martin A; Kovařík, Aleš

    2014-09-01

    Recently formed allopolyploids represent an excellent system to study the impacts of hybridization and genomic duplication on genome structure and evolution. Here we explored the 35SrRNA genes (rDNA) in the Cardamine × schulzii allohexaploid that was formed by two subsequent hybridization events within the past c. 150 yr. The rDNA loci were analyzed by cloning, next generation sequencing (NGS), RT-PCR and FISH methods. The primary C. × insueta triploid hybrid derived from C. rivularis (♀) and C. amara (♂) had gene ratios highly skewed towards maternal sequences. Similarly, C. × schulzii, originating from the secondary hybridization event involving C. × insueta (♀) and C. pratensis (♂), showed a reduction in paternal rDNA homeologs despite an excess of chromosomes inherited from C. pratensis. We also identified novel rDNA loci in C. × schulzii, suggesting that lost loci might be slowly reinstalled by translocation (but not recombination) of genes from partner genomes. Prevalent clonal propagation of allopolyploids, C. × insueta and C. × schulzii, indicates that concerted evolution of rDNA may occur in the absence of extensive meiotic cycles. Adoption of NGS in rDNA variant analysis is highly informative for deciphering the evolutionary histories of allopolyploid species with ongoing homogenization processes. PMID:24916080

  16. Fragile Sites of 'Valencia' Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA.

    PubMed

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in 'Valencia' C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of 'Valencia' C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid 'Valencia' C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in 'Valencia' sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in 'Valencia' sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites. PMID:26977938

  17. Hot spots of DNA double-strand breaks in human rDNA units are produced in vivo.

    PubMed

    Tchurikov, Nickolai A; Yudkin, Dmitry V; Gorbacheva, Maria A; Kulemzina, Anastasia I; Grischenko, Irina V; Fedoseeva, Daria M; Sosin, Dmitri V; Kravatsky, Yuri V; Kretova, Olga V

    2016-01-01

    Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer genomics(1,2). There are nine hot spots of DSBs located in human rDNA units(3-6). Here we describe that the profiles of these hot spots coincide with the profiles of γ-H2AX or H2AX, strongly suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest γ-H2AX foci inside nucleoli in interphase chromosomes. In metaphase chromosomes, we observed that only some portion of rDNA clusters possess γ-H2AX foci and that all γ-H2AX foci co-localize with UBF-1 binding sites, which strongly suggests that only active rDNA units possess the hot spots of DSBs. Both γ-H2AX and UBF-1 are epigenetically inherited and thus indicate the rDNA units that were active in the previous cell cycle. These results have implications for diverse fields, including epigenetics and cancer genomics. PMID:27160357

  18. Chromosomal localization of 18S rDNA and telomere sequence in the aye-aye, Daubentonia madagascariensis.

    PubMed

    Rakotoarisoa, G; Hirai, Y; Go, Y; Kawamoto, Y; Shima, T; Koyama, N; Randrianjafy, A; Mora, R; Hirai, H

    2000-10-01

    Chromosomal localization of 18S rDNA and telomere sequence was attempted on the chromosomes of the aye-aye (2n = 30) using fluorescence in situ hybridization (FISH) and primed in situ labeling (PRINS), respectively. The rDNA was localized at the tip or whole of the short arm of acrocentric chromosomes 13 and 14 in all spreads observed. However, post-FISH silver-nitrate (Ag) staining showed that transcriptional activity of the rRNA genes was variable, particularly in chromosome 14, which was most frequently negative in one homologue carrying the smaller copy number of rDNA. This observation supports, at the molecular cytogenetic level, previous data concerning the relationship between the copy number of rDNA and its trancriptional activity. On the other hand, telomere sequence was localized only at the telomeric region of all chromosomes, the so-called telomere-only pattern, a characteristic similar to that of the greater bushbaby. These data may provide information on the chromosomal evolution of the lemur, because locations of rDNA and telomere sequences frequently offer important clues in reconstruction of karyotype differentiation. PMID:11245223

  19. Retrotransposable elements R1 and R2 in the rDNA units of Drosophila mercatorum: abnormal abdomen revisited.

    PubMed Central

    Malik, H S; Eickbush, T H

    1999-01-01

    R1 and R2 retrotransposable elements are stable components of the 28S rRNA genes of arthropods. While each retrotransposition event leads to incremental losses of rDNA unit expression, little is known about the selective consequences of these elements on the host genome. Previous reports suggested that in the abnormal abdomen (aa) phenotype of Drosophila mercatorum, high levels of rDNA insertions (R1) in conjunction with the under-replication locus (ur), enable the utilization of different ecological conditions via a population level shift to younger age. We have sequenced the R1 and R2 elements of D. mercatorum and show that the levels of R1- and R2-inserted rDNA units were inaccurately scored in the original studies of aa, leading to several misinterpretations. In particular, contrary to earlier reports, aa flies differentially underreplicate R1- and R2-inserted rDNA units, like other species of Drosophila. However, aa flies do not undergo the lower level of underreplication of their functional rDNA units (general underreplication) that is seen in wild-type strains. The lack of general underreplication is expected to confer a selective advantage and, thus, can be interpreted as an adaptation to overcome high levels of R1 and R2 insertions. These results allow us to reconcile some of the apparently contradictory effects of aa and the bobbed phenotype found in other species of Drosophila. PMID:9927458

  20. Hot spots of DNA double-strand breaks in human rDNA units are produced in vivo

    PubMed Central

    Tchurikov, Nickolai A.; Yudkin, Dmitry V.; Gorbacheva, Maria A.; Kulemzina, Anastasia I.; Grischenko, Irina V.; Fedoseeva, Daria M.; Sosin, Dmitri V.; Kravatsky, Yuri V.; Kretova, Olga V.

    2016-01-01

    Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer genomics1,2. There are nine hot spots of DSBs located in human rDNA units3–6. Here we describe that the profiles of these hot spots coincide with the profiles of γ-H2AX or H2AX, strongly suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest γ-H2AX foci inside nucleoli in interphase chromosomes. In metaphase chromosomes, we observed that only some portion of rDNA clusters possess γ-H2AX foci and that all γ-H2AX foci co-localize with UBF-1 binding sites, which strongly suggests that only active rDNA units possess the hot spots of DSBs. Both γ-H2AX and UBF-1 are epigenetically inherited and thus indicate the rDNA units that were active in the previous cell cycle. These results have implications for diverse fields, including epigenetics and cancer genomics. PMID:27160357

  1. Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus.

    PubMed

    Matyášek, Roman; Dobešová, Eva; Húska, Dalibor; Ježková, Ivana; Soltis, Pamela S; Soltis, Douglas E; Kovařík, Aleš

    2016-02-01

    Uniparental silencing of 35S rRNA genes (rDNA), known as nucleolar dominance (ND), is common in interspecific hybrids. Allotetraploid Tragopogon mirus composed of Tragopogon dubius (d) and Tragopogon porrifolius (p) genomes shows highly variable ND. To examine the molecular basis of such variation, we studied the genetic and epigenetic features of rDNA homeologs in several lines derived from recently and independently formed natural populations. Inbred lines derived from T. mirus with a dominant d-rDNA homeolog transmitted this expression pattern over generations, which may explain why it is prevalent among natural populations. In contrast, lines derived from the p-rDNA dominant progenitor were meiotically unstable, frequently switching to co-dominance. Interpopulation crosses between progenitors displaying reciprocal ND resulted in d-rDNA dominance, indicating immediate suppression of p-homeologs in F1 hybrids. Original p-rDNA dominance was not restored in later generations, even in those segregants that inherited the corresponding parental rDNA genotype, thus indicating the generation of additional p-rDNA and d-rDNA epigenetic variants. Despite preserved intergenic spacer (IGS) structure, they showed altered cytosine methylation and chromatin condensation patterns, and a correlation between expression, hypomethylation of RNA Pol I promoters and chromatin decondensation was apparent. Reversion of such epigenetic variants occurred rarely, resulting in co-dominance maintained in individuals with distinct genotypes. Generally, interpopulation crosses may generate epialleles that are not present in natural populations, underlying epigenetic dynamics in young allopolyploids. We hypothesize that highly expressed variants with distinct IGS features may induce heritable epigenetic reprogramming of the partner rDNA arrays, harmonizing the expression of thousands of genes in allopolyploids. PMID:26711705

  2. Physical Mapping of the 5S and 18S rDNA in Ten Species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): Evolutionary Tendencies in the Genus

    PubMed Central

    César Venere, Paulo; Thums Konerat, Jocicléia; Henrique Zawadzki, Cláudio; Ricardo Vicari, Marcelo; Margarido, Vladimir Pavan

    2014-01-01

    Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus. PMID:25405240

  3. The Pattern of R2 Retrotransposon Activity in Natural Populations of Drosophila simulans Reflects the Dynamic Nature of the rDNA Locus

    PubMed Central

    Zhou, Jun; Eickbush, Thomas H.

    2009-01-01

    The pattern and frequency of insertions that enable transposable elements to remain active in a population are poorly understood. The retrotransposable element R2 exclusively inserts into the 28S rRNA genes where it establishes long-term, stable relationships with its animal hosts. Previous studies with laboratory stocks of Drosophila simulans have suggested that control over R2 retrotransposition resides within the rDNA loci. In this report, we sampled 180 rDNA loci of animals collected from two natural populations of D. simulans. The two populations were found to have similar patterns of R2 activity. About half of the rDNA loci supported no or very low levels of R2 transcripts with no evidence of R2 retrotransposition. The remaining half of the rDNA loci had levels of R2 transcripts that varied in a continuous manner over almost a 100-fold range and did support new retrotransposition events. Structural analysis of the rDNA loci in 18 lines that spanned the range of R2 transcript levels in these populations revealed that R2 number and rDNA locus size varied 2-fold; however, R2 activity was not readily correlated with either of these parameters. Instead R2 activity was best correlated with the distribution of elements within the rDNA locus. Loci with no activity had larger contiguous blocks of rDNA units free of R2-insertions. These data suggest a model in which frequent recombination within the rDNA locus continually redistributes R2-inserted units resulting in changing levels of R2 activity within individual loci and persistent R2 activity within the population. PMID:19229317

  4. Phylogeny of the Eustigmatophyceae Based upon 18S rDNA, with Emphasis on Nannochloropsis.

    PubMed

    Andersen, R A; Brett, R W; Potter, D; Sexton, J P

    1998-02-01

    Complete 18S rDNA sequences were determined for 25 strains representing five genera of the Eustigmatophyceae, including re-examination of three strains with previously published sequences. Parsimony analysis of these and 44 published sequences for other heterokont chromophytes (unalignable sites removed) revealed that the Eustigmatophyceae were a monophyletic group. Analysis of eustigmatophyte taxa only (complete gene analyzed) supported the current familial classification scheme. Twenty one strains of Nannochloropsis were also examined using light microscopy. Gross morphology of cells was variable and overlapped among the strains; cell size was consistent within strains but sometimes varied considerably among strains of a species. The 18S rDNA of N. gaditana, N. oculata and N. salina was re-sequenced for strains used in previous publications and one or more nucleotide differences were found. Nucleotide sequences for Nannochloropsis species varied by up to 32 nucleotides. Identical sequences were found for six strains of N. salina, five strains of N. gadifana, four strains of N. granulata, and two strains of N. oculata, respectively. Four strains could not be assigned to described species and may represent two new species. The unique 18S rDNA sequences for each sibling species of Nannochloropsis demonstrates the presence of considerable genetic diversity despite the extremely simple morphology in this genus. PMID:23196114

  5. Chromosomal location of 18S and 5S rDNA sites in Triportheus fish species (Characiformes, Characidae)

    PubMed Central

    2009-01-01

    The location of 18S and 5S rDNA sites was determined in eight species and populations of the fish genus Triportheus by using fluorescent in situ hybridization (FISH). The males and females of all species had 2n = 52 chromosomes and a ZZ/ZW sex chromosome system. A single 18S rDNA site that was roughly equivalent to an Ag-NOR was detected on the short arms of a submetacentric pair in nearly all species, and up to two additional sites were also observed in some species. In addition, another 18S rDNA cluster was identified in a distal region on the long arms of the W chromosome; this finding corroborated previous evidence that this cluster would be a shared feature amongst Triportheus species. In T. angulatus, a heterozygotic paracentric inversion involving the short arms of one homolog of a metacentric pair was associated with NORs. The 5S rDNA sites were located on the short arms of a single submetacentric chromosomal pair, close to the centromeres, except in T. auritus, which had up to ten 5S rDNA sites. The 18S and 5S rDNA sites were co-localized and adjacent on the short arms of a chromosomal pair in two populations of T. nematurus. Although all Triportheus species have a similar karyotypic macrostructure, the results of this work show that in some species ribosomal genes may serve as species-specific markers when used in conjunction with other putatively synapomorphic features. PMID:21637644

  6. Complete structure of nuclear rDNA of the obligate plant parasite Plasmodiophora brassicae: intraspecific polymorphisms in the exon and group I intron of the large subunit rDNA.

    PubMed

    Niwa, Rieko; Kawahara, Ai; Murakami, Hiroharu; Tanaka, Shuhei; Ezawa, Tatsuhiro

    2011-07-01

    Plasmodiophora brassicae is a soil-borne obligate intracellular parasite in the phylum Cercozoa of the Rhizaria that causes clubroot disease of crucifer crops. To control the disease, understanding the distribution and infection routes of the pathogen is essential, and thus development of reliable molecular markers to discriminate geographic populations is required. In this study, the nuclear ribosomal RNA gene (rDNA) repeat unit of P. brassicae was determined, with particular emphasis on the structure of large subunit (LSU) rDNA, in which polymorphic regions were expected to be present. The complete rDNA complex was 9513bp long, which included the small subunit, 5.8S and LSU rDNAs as well as the internal transcribed spacer and intergenic spacer regions. Among eight field populations collected from throughout Honshu Island, Japan, a 1.1 kbp region of the LSU rDNA, including the divergent 8 domain, exhibited intraspecific polymorphisms that reflected geographic isolation of the populations. Two new group I introns were found in this region in six out of the eight populations, and the sequences also reflected their geographic isolation. The polymorphic region found in this study may have potential for the development of molecular markers for discrimination of field populations/isolates of this organism. PMID:21497131

  7. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    PubMed

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected. PMID:26497420

  8. Molecular analysis of a NOR site polymorphism in brown trout (Salmo trutta): organization of rDNA intergenic spacers.

    PubMed

    Castro, J; Sánchez, L; Martínez, P; Lucchini, S D; Nardi, I

    1997-12-01

    Using restriction endonuclease mapping, we have analyzed the organization of rDNA (DNA coding for ribosomal RNA (rRNA)) units in the salmonid fish Salmo trutta, as an initial step toward understand the molecular basis of a nucleolar organizer region (NOR) site polymorphism detected in this species. The size of the rDNA units ranged between 15 and 23 kb, with remarkable variation both within individuals and between populations. Three regions of internal tandem repetitiveness responsible for this length polymorphism were located to the intergenic spacers. NOR site polymorphic individuals showed a higher number of length classes, in some cases forming a complete 1 kb fragment ladder. The amount of rRNA genes was as much as 8-fold higher in polymorphic individuals compared with standard individuals. All individuals from the most polymorphic population showed a 14-kb insertion of unknown nature in a small proportion (below 25%) of the 28S rRNA genes. PMID:18464877

  9. GJB2 and mitochondrial 12S rRNA susceptibility mutations in sudden deafness.

    PubMed

    Chen, Kaitian; Sun, Liang; Zong, Ling; Wu, Xuan; Zhan, Yuan; Dong, Chang; Cao, Hui; Tang, Haocheng; Jiang, Hongyan

    2016-06-01

    Genetic susceptibility may play an important role in the pathogenesis of sudden deafness. However, the specific genes involved are largely unknown. We sought to explore the frequency of GJB2 and mitochondrial 12S rRNA susceptibility mutations in patients with sudden deafness. Between September 2011 and May 2012, 62 consecutive patients with sudden deafness were seen. In 50 of these, no etiological factors for sudden deafness were found. We detected GJB2 and mitochondrial 12S rRNA variants by direct sequencing in these 50 patients and in 53-aged matched controls with normal hearing. In addition, we undertook functional analyses of the mitochondrial mutations which we detected, applying structural and phylogenetic analysis. GJB2 sequencing identified six mutations, including three pathogenic mutations (c.235delC, c.299-300delAT, c.109G>A) and three polymorphisms, in the study participants, giving an allele frequency of 15.0 %. A homozygous c.109G>A mutation was detected in two participants. A total of 16 variants in mitochondrial 12S rRNA gene were identified in the participants. No significant differences were found in GJB2 heterozygosity or in mitochondrial 12S rRNA variants between patients with sudden deafness and in controls. Our results suggest that the homozygous GJB2 c.109G>A mutation may be a cause of sudden deafness involving both ears. This finding should increase awareness of the likely role of genetic factors in the etiology of sudden deafness in general. PMID:26119842

  10. Structural alterations of the ribosomal RNA genes in leukemic cells.

    PubMed

    Smirnova, I A

    1992-01-01

    Cloned 6.7 kb EcoR1 fragment of mice rDNA was used as a hybridization probe for rDNA structure analysis in mice, rat and calf haemopoietic tumor and normal cells. EcoR1, BglII and Pst1 restriction fragment length polymorphism (RFLP) was found in neoplastic rDNA and was not revealed in normal ones. The rRNA gene rearrangements were observed not only in spacer region but in coding sequences of the genes. Leukemic cells reveal also rDNA amplification. A role of genetic rearrangements of rDNA for mechanisms of carcinogenesis is suggested. PMID:1342066

  11. Plant rDNA database: update and new features

    PubMed Central

    Garcia, Sònia; Gálvez, Francisco; Gras, Airy; Kovařík, Aleš; Garnatje, Teresa

    2014-01-01

    The Plant rDNA database (www.plantrdnadatabase.com) is an open access online resource providing detailed information on numbers, structures and positions of 5S and 18S-5.8S-26S (35S) ribosomal DNA loci. The data have been obtained from >600 publications on plant molecular cytogenetics, mostly based on fluorescent in situ hybridization (FISH). This edition of the database contains information on 1609 species derived from 2839 records, which means an expansion of 55.76 and 94.45%, respectively. It holds the data for angiosperms, gymnosperms, bryophytes and pteridophytes available as of June 2013. Information from publications reporting data for a single rDNA (either 5S or 35S alone) and annotation regarding transcriptional activity of 35S loci now appears in the database. Preliminary analyses suggest greater variability in the number of rDNA loci in gymnosperms than in angiosperms. New applications provide ideograms of the species showing the positions of rDNA loci as well as a visual representation of their genome sizes. We have also introduced other features to boost the usability of the Web interface, such as an application for convenient data export and a new section with rDNA–FISH-related information (mostly detailing protocols and reagents). In addition, we upgraded and/or proofread tabs and links and modified the website for a more dynamic appearance. This manuscript provides a synopsis of these changes and developments. Database URL: http://www.plantrdnadatabase.com PMID:24980131

  12. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A<->T+C<->G in the mitogenome of Kamimuria wangi.

    PubMed

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA. PMID:25865623

  13. A Pol V–Mediated Silencing, Independent of RNA–Directed DNA Methylation, Applies to 5S rDNA

    PubMed Central

    Douet, Julien; Tutois, Sylvie; Tourmente, Sylvette

    2009-01-01

    The plant-specific RNA polymerases Pol IV and Pol V are essential to RNA–directed DNA methylation (RdDM), which also requires activities from RDR2 (RNA–Dependent RNA Polymerase 2), DCL3 (Dicer-Like 3), AGO4 (Argonaute), and DRM2 (Domains Rearranged Methyltransferase 2). RdDM is dedicated to the methylation of target sequences which include transposable elements, regulatory regions of several protein-coding genes, and 5S rRNA–encoding DNA (rDNA) arrays. In this paper, we have studied the expression of the 5S-210 transcript, a marker of silencing release at 5S RNA genes, to show a differential impact of RNA polymerases IV and V on 5S rDNA arrays during early development of the plant. Using a combination of molecular and cytological assays, we show that Pol IV, RDR2, DRM2, and Pol V, actors of the RdDM, are required to maintain a transcriptional silencing of 5S RNA genes at chromosomes 4 and 5. Moreover, we have shown a derepression associated to chromatin decondensation specific to the 5S array from chromosome 4 and restricted to the Pol V–loss of function. In conclusion, our results highlight a new role for Pol V on 5S rDNA, which is RdDM–independent and comes specifically at chromosome 4, in addition to the RdDM pathway. PMID:19834541

  14. [Rapid detection of Pseudomonas aeruginosa by the fluorescence quantitative PCR assay targeting 16S rDNA].

    PubMed

    Xue, Li-Jun; Wang, Yong-Zhi; Ren, Hao; Tong, Yi-Min; Zhao, Ping; Zhu, Shi-Ying; Qi, Zhong-Tian

    2006-09-01

    The 16S rDNA specific primers were designed for rapid detection of Pseudomonas aeruginosa (PA) by the fluorescence quantitative PCR (FQ-PCR) assay, based upon multiple sequence alignment and phylogenetic tree analysis of the 16S rDNAs of over 20 bacteria. After extraction of PA genomic DNA, the target 16S rDNA fragment was amplified by PCR with specific primers, and used to construct recombinant pMDT-Pfr plasmid, the dilution gradients of which were subjected to the standard quantitation curve in FQ-PCR assay. Different concentrations of PA genomic DNA were detected by FQ-PCR in a 20microL of reaction system with SYBR Green I. At the same time, various genomic DNAs of Staphylococcus aureus, Salmonella typhi, Shigella flexneri, Proteus vulgaris, Staphylococcus epidermidis, Escherichia coli, and Mycobacterium tuberculosis were used as negative controls to confirm specificity of the FQ-PCR detection assay. Results demonstrated that the predicted amplified product of designed primers was of high homology only with PA 16S rDNA, and that sensitivity of the FQ-PCR assay was of 3.6pg/microL of bacterial DNA or (2.1 x 10(3) +/- 3.1 x 10(2)) copies/microL of 16S rDNA, accompanied with high specificity, and that the whole detection process including DNA extraction could be completed in about two hours. In contrast to traditional culture method, the FQ-PCR assay targeting 16S rDNA gene can be used to detect PA rapidly, which exhibits perfect application prospect in future. PMID:17037203

  15. Fragile Sites of ‘Valencia’ Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA

    PubMed Central

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in ‘Valencia’ C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of ‘Valencia’ C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid ‘Valencia’ C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in ‘Valencia’ sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in ‘Valencia’ sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites. PMID:26977938

  16. Spectroscopic confirmation of DES12S2a

    NASA Astrophysics Data System (ADS)

    Brown, P. J.; Krisciunas, K.; Marshall, J.; Suntzeff, N.; Ahn, E.; Finley, D.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Bloom, J. S.; Kim, A.; Nugent, P.; Perlmutter, S.; Thomas, R. C.; Desai, S.; Paech, K.; Smith, R. C.; Kessler, R.; Covarrubias, R. A.; Cane, R.; Fischer, J. A.; Gilhool, S.; Gladney, L.; Gupta, R.; Mosher, J.; Sako, M.; Campbell, H.; D'Andrea, C.; Nichol, R.; Papadopoulos, A.; Sullivan, M.; March, M.; Smith, M.; Barbary, K.; Bernstein, J. P.; Biswas, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.

    2013-02-01

    We report optical spectroscopy of a supernova (SN) candidate discovered by the Dark Energy Supernova Survey (ATel #4668). The spectrum (450-1000 nm) of DES12S2a was obtained with the 9.2-m Hobby-Eberly Telescope (+Marcario Low-Resolution Spectrograph) by J. Caldwell. The spectrum shows a blue continuum with a narrow H-alpha emission feature atop a broader component indicative of a type IIn SN. The phase at the date of the spectrum given below is based on the DES light curves.

  17. R1 and R2 retrotransposition and deletion in the rDNA loci on the X and Y chromosomes of Drosophila melanogaster.

    PubMed Central

    Pérez-González, César E; Burke, William D; Eickbush, Thomas H

    2003-01-01

    The non-LTR retrotransposons R1 and R2 insert into the 28S rRNA genes of arthropods. Comparisons among Drosophila lineages have shown that these elements are vertically inherited, while studies within species have indicated a rapid turnover of individual copies (elimination of old copies and the insertion of new copies). To better understand the turnover of R1 and R2, 200 retrotranspositions and nearly 100 eliminations have been scored in the Harwich mutation-accumulation lines of Drosophila melanogaster. Because the rDNA arrays in D. melanogaster are present on the X and Y chromosomes and no exchanges were detected in these lines, it was possible to show that R1 retrotranspositions occur predominantly in the male germ line, while R2 retrotranspositions were more evenly divided between the germ lines of both sexes. The rate of elimination of elements from the Y rDNA array was twice that of the X rDNA array with both chromosomal loci containing regions where the rate of elimination was on average eight times higher. Most R1 and R2 eliminations appear to occur by large intrachromosomal events (i.e., loop-out events) that involve multiple rDNA units. These findings are interpreted in light of the known abundance of R1 and R2 elements in the X and Y rDNA loci of D. melanogaster. PMID:14573479

  18. Asymmetric Epigenetic Modification and Elimination of rDNA Sequences by Polyploidization in Wheat[W

    PubMed Central

    Guo, Xiang

    2014-01-01

    rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity. PMID:25415973

  19. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat.

    PubMed

    Guo, Xiang; Han, Fangpu

    2014-11-01

    rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity. PMID:25415973

  20. Secondray structure and sequence of ITS2-rDNA of the Egyptian malaria vector Anopheles pharoensis (Theobald).

    PubMed

    Wassim, Nahla M

    2014-04-01

    Out of the twelve Anophelines present in Egypt, only five species known to be malaria vectors. Anopheles (An.) pharoensis proved to be the important vector all over Egypt, especially in the Delta. Anopheles sergenti proved to be the primary vector in the Oases of the Western Desert, An. multicolor in Faiyoum, An. stephensi in the Red Sea Coast, and An. superpictus in Sinai. Genomic DNA was isolated from single adult mosquito of An. pharoensis (Sahel Sudanese form), PCR was performed to amplify ITS2 region of rDNA using specific primers for 5.8S and 28S rDNA genes. The amplicons were purified, directly sequenced and aligned to the sequence of the same region of An. gambiae, using clustalw2. The length of ITS2-rDNA of An. pharoensis was 411bp. The GC content of the ITS2 reported 53% is consistent with spacer base composition in Anopheles species. The similarity between the two species was 52% and genetic distance was 0.46.Variable simple sequence repeats (SSRs) are found at low frequency. The secondary structure of rDNA-ITS2was predicted by MFOLD and was -192; 60 to-195.32 kilocalories/mole. PMID:24961025

  1. Comparison of rDNA sequences from colchicine treated and untreated sporocysts of Phyllodistomum folium and Bucephalus polymorphus (Digenea).

    PubMed

    Stunzenas, Virmantas; Cryan, Jason R; Molloy, Daniel P

    2004-09-01

    The most frequently used antimitotic agent in cytogenetic studies is colchicine. We investigated whether the initial treatment of trematodes for karyological analysis with colchicine would have mutagenic or degradational effect on rDNA sequences. Dreissena polymorpha is the intermediate host of Phyllodistomum folium and Bucephalus polymorphus, and the sporocyst stage of these trematode species develop, respectively, in the gills and gonads of this mussel. Sporocysts of P. folium and B. polymorphus were obtained from D. polymorpha collected from waterbodies in Belarus and in Lithuania. 5.8S and 28S rDNA genes, ITS1 and ITS2 of P folium and B. polymorphus were sequenced and compared, and no nucleotide sequence differences between colchicine treated and untreated trematodes were found. Based on these results, we conclude that colchicine treatment for 3-5 h has no mutagenic or degradational effect on rDNA sequences. During the course of this investigation, two genetically different P. folium samples were noted in Belarus. PMID:15468529

  2. 18S rDNA dataset profiling microeukaryotic populations within Chicago area nearshore waters

    PubMed Central

    Searle, Daniel; Sible, Emily; Cooper, Alexandria; Putonti, Catherine

    2016-01-01

    Despite their critical role in the aquatic food web and nutrient cycling, microeukaryotes within freshwater environments are under-studied. Herein we present the first high-throughput molecular survey of microeukaryotes within Lake Michigan. Every two weeks from May 13 to August 5, 2014, we collected surface water samples from the nearshore waters of four Chicago area beaches: Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach. Four biological replicates were collected for each sampling date and location, resulting in 112 samples. Eighty-nine of these samples were surveyed through targeted sequencing of the V7 and V8 regions of the 18S rDNA gene. Both technical and biological replicates were sequenced and are included in this dataset. Raw sequence data is available via NCBI’s SRA database (BioProject PRJNA294919). PMID:26904716

  3. 18S rDNA dataset profiling microeukaryotic populations within Chicago area nearshore waters.

    PubMed

    Searle, Daniel; Sible, Emily; Cooper, Alexandria; Putonti, Catherine

    2016-03-01

    Despite their critical role in the aquatic food web and nutrient cycling, microeukaryotes within freshwater environments are under-studied. Herein we present the first high-throughput molecular survey of microeukaryotes within Lake Michigan. Every two weeks from May 13 to August 5, 2014, we collected surface water samples from the nearshore waters of four Chicago area beaches: Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach. Four biological replicates were collected for each sampling date and location, resulting in 112 samples. Eighty-nine of these samples were surveyed through targeted sequencing of the V7 and V8 regions of the 18S rDNA gene. Both technical and biological replicates were sequenced and are included in this dataset. Raw sequence data is available via NCBI's SRA database (BioProject PRJNA294919). PMID:26904716

  4. Altered gravity influences rDNA and NopA100 localization in nucleoli

    NASA Astrophysics Data System (ADS)

    Sobol, M. A.; Kordyum, E. L.

    Fundamental discovery of gravisensitivity of cells no specified to gravity perception focused increasing attention on an elucidation of the mechanisms involved in altered gravity effects at the cellular and subcellular levels. The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts with ribosomal and nonribosomal proteins. The mechanisms inducing the changes in the subcomponents of the nucleolus that is morphologically defined yet highly dynamic structure are still unknown in detail. To understand the functional organization of the nucleolus as in the control as under altered gravity conditions it is essential to determine both the precise location of rDNA and the proteins playing the key role in rRNA processing. Lepidium sativum seeds were germinated in 1% agar medium on the slow horizontal clinostat (2 rpm) and in the stationary conditions. We investigated the root meristematic cells dissected from the seedlings grown in darkness for two days. The investigations were carried out with anti-DNA and anti-NopA100 antibodies labeling as well as with TdT procedure, and immunogold electron microscopy. In the stationary growth conditions, the anti-DNA antibody as well TdT procedure were capable of detecting fibrillar centers (FCs) and the dense fibrillar component (DFC) in the nucleolus. In FCs, gold particles were revealed on the condensed chromatin inclusions, internal fibrils of decondensed rDNA and the transition zone FC-DFC. Quantitatively, FCs appeared 1,5 times more densely labeled than DFC. NopA100 was localized in FCs and in DFC. In FCs, the most of protein was revealed in the transition zone FC-DFC. After a quantitative study, FCs and the transition zone FC-DFC appeared to contain NopA100 1,7 times more than DFC. Under the conditions of altered gravity, quantitative data clearly showed a redistribution of nucleolar DNA and NopA100 between FCs and DFC in comparison with the control. In

  5. Molecular systematics of the genus Troglophilus (Rhaphidophoridae, Orthoptera) in Turkey: mitochondrial 16S rDNA evidences

    PubMed Central

    Taylan, Mehmet Sait; Russo, Claudio Di; Rampini, Mauro; Ketmaier, Valerio

    2013-01-01

    Abstract This study focuses on the evolutionary relationships among Turkish species of the cave cricket genus Troglophilus.Fifteen populations were studied for sequence variation in a fragment (543 base pairs) of the mitochondrial DNA (mtDNA) 16S rDNA gene (16S) to reconstruct their phylogenetic relationships and biogeographic history. Genetic data retrieved three main clades and at least three divergent lineages that could not be attributed to any of the taxa known for the area. Molecular time estimates suggest that the diversification of the group took place between the Messinian and the Plio-Pleistocene. PMID:23653493

  6. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  7. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae).

    PubMed

    Vierna, J; Jensen, K T; Martínez-Lage, A; González-Tizón, A M

    2011-08-01

    The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at -25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant. PMID:21364693

  8. Comparative Studies of 5S rDNA Profiles and Cyt b Sequences in two Onychostoma Species (Cyprinidae)

    PubMed Central

    Han, Chiao-Chuan; Yen, Tsair-Bor; Chen, Nian-Cih; Tseng, Mei-Chen

    2015-01-01

    Onychostoma barbatulum and O. alticorpus, two primarily freshwater cyprinid fish, have similar morphological characters and partially overlapping ecological habitats. In order to explore the genetic differences between these two species, chromosomal characteristics and genetic variations were examined by fluorescence in situ hybridization (FISH) of 5S rDNA and cytochrome (Cyt) b gene analysis. Ten specimens of O. barbatulum and O. alticorpus were collected from the Nanzihsian Stream in southern Taiwan. FISH revealed that the 5S rDNA loci of O. barbatulum and O. alticorpus were found at a pericentromeric and subtelomeric position, respectively, in a pair of submetacentric chromosomes. Cyt b genes were amplified and sequenced from five individuals of each species. Intraspecific genetic distances ranged from 0.001–0.004 in O. barbatulum and from 0.001–0.006 in O. alticorpus. Genetic distances between these two species ranged from 0.132–0.142. The phylogenetic tree showed these two species are not sister species. In conclusion, FISH cytogenetic information and Cyt b gene analyses indicated that these two species have significantly different genetic characteristics; nevertheless, their morphological similarities may be due to environmental adaptation. PMID:26690426

  9. Species markers for equine strongyles detected in intergenic rDNA by PCR-RFLP.

    PubMed

    Gasser, R B; Stevenson, L A; Chilton, N B; Nansen, P; Bucknell, D G; Beveridge, I

    1996-10-01

    Five species of equine strongyle belonging to the subfamily Strongylinae (Strongylus edentatus, S. equinus, S. vulgaris, Oesophagodontus robustus and Triodontophorus serratus) and 11 species belonging to the subfamily Cyathostominae (Poteriostomum imparidentatum, P. ratzii, Cylicocyclus insignis, Cc. leptostomus, Cc. nassatus, Cylicostephanus calicatus, Cs. longibursatus, Cs. goldi, Cyathostomum catinatum, Cy. labiatum and Cy. pateratum) were characterized using a polymerase chain reaction-linked restriction fragment length polymorphism technique (PCR-RFLP). Internal transcribed spacer ribosomal DNA was amplified from genomic DNA by polymerase chain reaction (PCR) using conserved primers, digested separately with six restriction endonucleases (AluI, BfaI, CfoI, Hae III, VSpI and XbaI) and the fragments separated by agarose gel electrophoresis. The PCR products of the three Strongylus species were approx. 90-100 bp smaller in size compared with those of the other 13 species. The PCR-RFLP analysis of the rDNA region spanning the first and second internal transcribed spacers plus the 5.85 rDNA gene (ITS+) produced characteristic patterns for each of the 16 species examined, and no variation in RFLP patterns was detected within the species Cy. catinatum, where multiple isolates were analysed. The study demonstrates that the internal transcribed spacer sequences provide genetic markers for the species identification of a range of equine strongyles. These markers will be of use for the identification of egg and larval stages, where morphological characters alone are unreliable. The results also indicate that the spacer sequences will be of use to study the systematics of equine strongyles. PMID:8910892

  10. Male meiosis, heterochromatin characterization and chromosomal location of rDNA in Microtomus lunifer (Berg, 1900) (Hemiptera: Reduviidae: Hammacerinae)

    PubMed Central

    Poggio, María Georgina; Bressa, María José; Papeschi, Alba Graciela

    2011-01-01

    Abstract In the present work, we analysed the male meiosis, the content and distribution of heterochromatin and the number and location of nucleolus organizing regions in Microtomus lunifer (Berg, 1900) by means of standard technique, C- and fluorescent bandings, and fluorescent in situ hybridization with an 18S rDNA probe. This species is the second one cytogenetically analysed within the Hammacerinae. Its male diploid chromosome number is 31 (2n=28+X1X2Y), including a minute pair of m-chromosomes. The diploid autosomal number and the presence of m-chromosomes are similar to those reported in Microtomus conspicillaris (Drury, 1782) (2n=28+XY). However, Microtomus lunifer has a multiple sex chromosome system X1X2Y (male) that could have originated by fragmentation of the ancestral X chromosome. Taking into account that Microtomus conspicillaris and Microtomus lunifer are the only two species within Reduviidae that possess m-chromosomes, the presence of this pair could be a synapomorphy for the species of this genus. C- and fluorescent bandings showed that the amount of heterochromatin in Microtomus lunifer was small, and only a small CMA3 bright band was observed in the largest autosomal pair at one terminal region. FISH with the 18S rDNA probe demonstrated that ribosomal genes were terminally placed on the largest autosomal pair. Our present results led us to propose that the location of rDNA genes could be associated with variants of the sex chromosome systems in relation with a kind of the sex chromosome systems within this family. Furthermore, the terminal location of NOR in the largest autosomal pair allowed us to use it as a chromosome marker and, thus, to infer that the kinetic activity of both ends is not a random process, and there is an inversion of this activity. PMID:24260616

  11. Cytogenetic Analysis and Chromosomal Characteristics of the Polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China

    PubMed Central

    Wang, Haishan; Luo, Xuan; You, Weiwei; Dong, Yunwei; Ke, Caihuan

    2015-01-01

    We report on novel chromosomal characteristics of Haliotis discus hannai from a breeding population at Fujian, China. The karyotypes of H. discus hannai we obtained from an abalone farm include a common type 2n = 36 = 10M + 8SM (82%) and two rare types 2n = 36 = 11M + 7SM (14%) and 2n = 36 = 10M + 7SM + 1ST (4%). The results of silver staining showed that the NORs of H. discus hannai were usually located terminally on the long arms of chromosome pairs 14 and 17, NORs were also sometimes located terminally on the short arms of other chromosomes, either metacentric or submetacentric pairs. The number of Ag-nucleoli ranged from 2 to 8, and the mean number was 3.61 ± 0.93. Among the scored interphase cells, 41% had 3 detectable nucleoli and 37% had 4 nucleoli. The 18S rDNA FISH result is the first report of the location of 18S rDNA genes in H. discus hannai. The 18S rDNA locations were highly polymorphic in this species. Copies of the gene were observed in the terminal of long or/and short arms of submetacentric or/and metacentric chromosomes. Using FISH with probe for vertebrate-like telomeric sequences (CCCTAA)3 displayed positive green FITC signals at telomere regions of all analyzed chromosome types. We found about 7% of chromosomes had breaks in prophase. A special form of nucleolus not previously described from H. discus hannai was observed in some interphase cells. It consists of many small silver-stained nucleoli gathered together to form a larger nucleolus and may correspond to prenucleolar bodies. PMID:25699679

  12. Linkage analyses in british pedigrees suggest a single locus for Darier disease and narrow the location to the interval between D12S105 and D12S129

    SciTech Connect

    Carter, S.A.; Bryce, S.D.; Bashir, R.

    1994-11-15

    Darier disease is a dominantly inherited skin disorder in which there appears to be abnormal adhesion between keratinocytes. The authors and others have shown that the disease in some British pedigrees is closely linked to markers mapping to 12q23-q24.1. In the present study they have defined crossovers that enable narrowing the location of the disease gene to the interval between the D12S105 and the D12S129 markers. This interval may be expected to be on the order of about 4 cM on the basis of linkage data obtained using the primary CEPH reference families. The data provide further evidence for locus homogeneity: each of four large British pedigrees, two of which have previously been subjected to preliminary characterization, shows statistically significant evidence for linkage to markers mapping to 12q23-q24.1. 12 refs., 4 figs., 1 tab.

  13. Evidence for 5S rDNA Horizontal Transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families

    PubMed Central

    2012-01-01

    Background The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). Results Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. Conclusions A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes

  14. Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA.

    PubMed

    Bråte, Jon; Logares, Ramiro; Berney, Cédric; Ree, Dan Kristofer; Klaveness, Dag; Jakobsen, Kjetill S; Shalchian-Tabrizi, Kamran

    2010-09-01

    Protist parasites are ecologically important, as they can have great impact on host population dynamics and functioning of entire ecosystems. Nevertheless, little is known about their prevalence in aquatic habitats. Here, we investigate the diversity and distributional patterns of the protist parasites Perkinsus and Parvilucifera (Perkinsea). Our approach included 454 pyrosequencing of the 18S rDNA gene obtained from a high-altitude lake (Lake Finsevatn, Norway) and phylogenetic analyses of all publicly available sequences related to Perkinsea. The applied PCR primers target a 450 bp region that encompass the variable V4 region of the 18S rDNA gene and have been optimized for the Titanium upgrade of the 454 technology. Nearly 5000 sequences longer than 150 bp were recovered from nearly all eukaryotic supergroups, and of those, 13 unique sequences were affiliated to Perkinsea. Thus, our new strategy for 454 amplicon sequencing was able to recover a large diversity of distantly related eukaryotes and previously unknown species of Perkinsea. In addition, we identified 40 Perkinsea sequences in GenBank generated by other recent diversity surveys. Importantly, phylogenetic analyses of these sequences identified 17 habitat-specific marine and freshwater clades (PERK 1-17). Hence, only a few successful transitions between these habitats have taken place over the entire history of Perkinsea, suggesting that the boundary between marine and fresh waters may constitute a barrier to cross-colonizations for intracellular parasites. PMID:20393574

  15. Analysis of Sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae.

    PubMed Central

    Cockell, M M; Perrod, S; Gasser, S M

    2000-01-01

    Silent information regulator (Sir) 2 is a limiting component of the Sir2/3/4 complex, which represses transcription at subtelomeric and HM loci. Sir2p also acts independently of Sir3p and Sir4p to influence chromatin organization in the rDNA locus. Deleted and mutated forms of Sir2p have been tested for their ability to complement and/or to disrupt silencing. The highly conserved C-terminal domain of Sir2p (aa 199-562) is insufficient to restore repression at either telomeric or rDNA reporters in a sir2Delta background and fails to nucleate silencing when targeted to an appropriate reporter gene. However, its expression in an otherwise wild-type strain disrupts telomeric repression. Similarly, a point mutation (P394L) within this conserved core inactivates the full-length protein but renders it dominant negative for all types of silencing. Deletion of aa 1-198 from Sir2(394L) eliminates its dominant negative effect. Thus we define two distinct functional domains in Sir2p, both essential for telomeric and rDNA repression: the conserved core domain found within aa 199-562 and a second domain that encompasses aa 94-198. Immunolocalization and two-hybrid studies show that aa 94-198 are required for the binding of Sir2p to Sir4p and for the targeting of Sir2p to the nucleolus through another ligand. The globular core domain provides an essential silencing function distinct from that of targeting or Sir complex formation that may reflect its reported mono-ADP-ribosyl transferase activity. PMID:10757754

  16. Mitochondrial 12S ribosomal RNA A1555G mutation associated with cardiomyopathy and hearing loss following high-dose chemotherapy and repeated aminoglycoside exposure.

    PubMed

    Skou, Anne-Sofie; Tranebjærg, Lisbeth; Jensen, Tim; Hasle, Henrik

    2014-02-01

    A 19-month-old girl with the A1555G mitochondrial mutation in the 12S ribosomal RNA gene and acute myelogenous leukemia developed dilated cardiomyopathy and bilateral sensorineural hearing loss before undergoing allogeneic stem cell transplantation. She had received gentamicin during episodes of febrile neutropenia. Testing for the A1555G mutation is recommended in patients frequently treated with aminoglycosides. PMID:24252789

  17. Targeted knock-down of a structurally atypical zebrafish 12S-lipoxygenase leads to severe impairment of embryonic development

    PubMed Central

    Haas, Ulrike; Raschperger, Elisabeth; Hamberg, Mats; Samuelsson, Bengt; Tryggvason, Karl; Haeggström, Jesper Z.

    2011-01-01

    Lipoxygenases (LO) are a class of dioxygenases, which form hydroperoxy, hydroxy, and epoxy derivatives of arachidonic acid with distinct positional and stereochemical configurations. In man, there are two known types of 12-LO that are distinguished by their expression patterns and catalytic properties. The platelet 12S-LO plays a role in platelet aggregation and 12R-LO seems to be important for normal skin function. Using BLAST searches of the zebrafish (zf) genome we identified one candidate zf12-LO gene with 43% identity with human 12R-LO at the mRNA level and the deduced primary sequence carried the so called “Coffa” structural determinant (Gly residue) for R stereoselectivity of LOs. However, incubations of recombinant, purified, zf12-LO with arachidonic acid revealed exclusive formation of 12(S)-hydroperoxy-eicosatetraenoic acid. Further studies with immunohistochemistry showed prominent expression of zf12-LO in the cell nuclei of skin epithelium, the epithelial lining of the stomodeum, and the pharyngeal pouches in zf embryos. To probe its function, zf12-LO was subjected to targeted knock-down in zf embryos, resulting in the development of a severe phenotype, characterized by abnormal development of the brain, the eyes, and the tail as well as pericardial and yolk sac edema. Hence, we have identified a unique vertebrate 12S-LO that breaks the current structure-function paradigms for S and R stereo-specificity and with critical roles in normal embryonic development. PMID:22143766

  18. The establishment of species-specific primers for the molecular identification of ten stored-product psocids based on ITS2 rDNA.

    PubMed

    Zhao, Zi-Hua; Cui, Bing-Yi; Li, Zhi-Hong; Jiang, Fan; Yang, Qian-Qian; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun

    2016-01-01

    Psocids are important stored product pests found worldwide that can be spread through grain trade. Most stored-product psocids, including eggs, nymphs, and adults, are very small (~1 mm) and difficult to identify morphologically. Here, we collected 10 economically important stored-product Liposcelis spp. psocids (L. bostrychophila, L. entomophila, L. decolor, L. paeta, L. brunnea, L. corrodens, L. mendax, L. rufa, L. pearmani, and L. tricolor) from 35 geographical locations in 5 countries (China, Czech Republic, Denmark, Germany, and the United States). The ITS2 rDNA gene was extracted and sequenced. The interspecific genetic distance of the stored-product psocids was significantly higher than the intraspecific genetic distance according to the barcoding gap analysis. Ten pairs of species-specific primers based on the ITS2 rDNA were developed for psocid identification. The sensitivity estimation indicated that the species-specific primers could correctly amplify the target ITS2 gene and successfully identify psocids at 1.0 ng/mL. Additionally, these species-specific primers could quantify specificity and identify 10 stored-product psocids; this approach could also be used to accurately identify other stored-product psocids. This work provides a practical approach for the precise examination of 10 stored-product psocid species and also contributes to the development of an identification method using ITS2 rDNA. PMID:26880378

  19. The establishment of species-specific primers for the molecular identification of ten stored-product psocids based on ITS2 rDNA

    PubMed Central

    Zhao, Zi-Hua; Cui, Bing-Yi; Li, Zhi-Hong; Jiang, Fan; Yang, Qian-Qian; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun

    2016-01-01

    Psocids are important stored product pests found worldwide that can be spread through grain trade. Most stored-product psocids, including eggs, nymphs, and adults, are very small (~1 mm) and difficult to identify morphologically. Here, we collected 10 economically important stored-product Liposcelis spp. psocids (L. bostrychophila, L. entomophila, L. decolor, L. paeta, L. brunnea, L. corrodens, L. mendax, L. rufa, L. pearmani, and L. tricolor) from 35 geographical locations in 5 countries (China, Czech Republic, Denmark, Germany, and the United States). The ITS2 rDNA gene was extracted and sequenced. The interspecific genetic distance of the stored-product psocids was significantly higher than the intraspecific genetic distance according to the barcoding gap analysis. Ten pairs of species-specific primers based on the ITS2 rDNA were developed for psocid identification. The sensitivity estimation indicated that the species-specific primers could correctly amplify the target ITS2 gene and successfully identify psocids at 1.0 ng/mL. Additionally, these species-specific primers could quantify specificity and identify 10 stored-product psocids; this approach could also be used to accurately identify other stored-product psocids. This work provides a practical approach for the precise examination of 10 stored-product psocid species and also contributes to the development of an identification method using ITS2 rDNA. PMID:26880378

  20. Targeting of the human F8 at the multicopy rDNA locus in Hemophilia A patient-derived iPSCs using TALENickases.

    PubMed

    Pang, Jialun; Wu, Yong; Li, Zhuo; Hu, Zhiqing; Wang, Xiaolin; Hu, Xuyun; Wang, Xiaoyan; Liu, Xionghao; Zhou, Miaojin; Liu, Bo; Wang, Yanchi; Feng, Mai; Liang, Desheng

    2016-03-25

    Hemophilia A (HA) is a monogenic disease due to lack of the clotting factor VIII (FVIII). This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding but there is no cure for HA until very recently. In this study, we derived induced pluripotent stem cells (iPSCs) from patients with severe HA and used transcription activator-like effector nickases (TALENickases) to target the factor VIII gene (F8) at the multicopy ribosomal DNA (rDNA) locus in HA-iPSCs, aiming to rescue the shortage of FVIII protein. The results revealed that more than one copy of the exogenous F8 could be integrated into the rDNA locus. Importantly, we detected exogenous F8 mRNA and FVIII protein in targeted HA-iPSCs. After they were differentiated into endothelial cells (ECs), the exogenous FVIII protein was still detectable. Thus, it is showed that the multicopy rDNA locus could be utilized as an effective target site in patient-derived iPSCs for gene therapy. This strategy provides a novel iPSCs-based therapeutic option for HA and other monogenic diseases. PMID:26921444

  1. Distribution of Mosquitoes in the South East of Argentina and First Report on the Analysis Based on 18S rDNA and COI Sequences

    PubMed Central

    Díaz-Nieto, Leonardo M.; Maciá, Arnaldo; Parisi, Gustavo; Farina, Juan L.; Vidal-Domínguez, María E.; Perotti, M. Alejandra; Berón, Corina M.

    2013-01-01

    Although Mar del Plata is the most important city on the Atlantic coast of Argentina, mosquitoes inhabiting such area are almost uncharacterized. To increase our knowledge in their distribution, we sampled specimens of natural populations. After the morphological identification based on taxonomic keys, sequences of DNA from small ribosomal subunit (18S rDNA) and cytochrome c oxidase I (COI) genes were obtained from native species and the phylogenetic analysis of these sequences were done. Fourteen species from the genera Uranotaenia, Culex, Ochlerotatus and Psorophora were found and identified. Our 18S rDNA and COI-based analysis indicates the relationships among groups at the supra-species level in concordance with mosquito taxonomy. The introduction and spread of vectors and diseases carried by them are not known in Mar del Plata, but some of the species found in this study were reported as pathogen vectors. PMID:24098700

  2. [Investigation of bacterial diversity in the biological desulfurization reactor for treating high salinity wastewater by the 16S rDNA cloning method].

    PubMed

    Liu, Wei-Guo; Liang, Cun-Zhen; Yang, Jin-Sheng; Wang, Gui-Ping; Liu, Miao-Miao

    2013-02-01

    The bacterial diversity in the biological desulfurization reactor operated continuously for 1 year was studied by the 16S rDNA cloning and sequencing method. Forty clones were randomly selected and their partial 16S rDNA genes (ca. 1,400 bp) were sequenced and blasted. The results indicated that there were dominant bacterias in the biological desulfurization reactor, where 33 clones belonged to 3 different published phyla, while 1 clone belonged to unknown phylum. The dominant bacterial community in the system was Proteobacteria, which accounted for 85.3%. The bacterial community succession was as follows: the gamma-Proteobacteria(55.9%), beta-Proteobacteria(17.6%), Actinobacteridae (8.8%), delta-Proteobacteria (5.9%) , alpha-Proteobacteria(5.9%), and Sphingobacteria (2.9%). Halothiobacillus sp. ST15 and Thiobacillus sp. UAM-I were the major desulfurization strains. PMID:23668153

  3. Encephalitozoon cuniculi (Microspora) genome: physical map and evidence for telomere-associated rDNA units on all chromosomes

    PubMed Central

    Brugère, Jean-François; Cornillot, Emmanuel; Méténier, Guy; Bensimon, Aaron; Vivarès, Christian P.

    2000-01-01

    A restriction map of the 2.8-Mb genome of the unicellular eukaryote Encephalitozoon cuniculi (phylum Microspora), a mammal-infecting intracellular parasite, has been constructed using two restriction enzymes with 6 bp recognition sites (BssHII and MluI). The fragments resulting from either single digestions of the whole molecular karyotype or double digestions of 11 individual chromosomes have been separated by two-dimensional pulsed field gel electrophoresis (2D-PFGE) procedures. The average distance between successive restriction sites is ~19 kb. The terminal regions of the chromosomes show a common pattern covering ~15 kb and including one 16S–23S rDNA unit. Results of hybridisation and molecular combing experiments indicate a palindromic-like orientation of the two subtelomeric rDNA copies on each chromosome. We have also located 67 DNA markers (clones from a partial E.cuniculi genomic library) by hybridisation to restriction fragments. Partial or complete sequencing has revealed homologies with known protein-coding genes for 32 of these clones. Evidence for two homologous chromosomes III, with a size difference (3 kb) related to a subtelomeric deletion/insertion event, argues for diploidy of E.cuniculi. The physical map should be useful for both the whole genome sequencing project and studies on genome plasticity of this widespread parasite. PMID:10773069

  4. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons

    PubMed Central

    2011-01-01

    Background Urine within the urinary tract is commonly regarded as "sterile" in cultivation terms. Here, we present a comprehensive in-depth study of bacterial 16S rDNA sequences associated with urine from healthy females by means of culture-independent high-throughput sequencing techniques. Results Sequencing of the V1V2 and V6 regions of the 16S ribosomal RNA gene using the 454 GS FLX system was performed to characterize the possible bacterial composition in 8 culture-negative (<100,000 CFU/ml) healthy female urine specimens. Sequences were compared to 16S rRNA databases and showed significant diversity, with the predominant genera detected being Lactobacillus, Prevotella and Gardnerella. The bacterial profiles in the female urine samples studied were complex; considerable variation between individuals was observed and a common microbial signature was not evident. Notably, a significant amount of sequences belonging to bacteria with a known pathogenic potential was observed. The number of operational taxonomic units (OTUs) for individual samples varied substantially and was in the range of 20 - 500. Conclusions Normal female urine displays a noticeable and variable bacterial 16S rDNA sequence richness, which includes fastidious and anaerobic bacteria previously shown to be associated with female urogenital pathology. PMID:22047020

  5. Molecular phylogeny of endophytic isolates of Ampelomyces from Iran based on rDNA ITS sequences.

    PubMed

    Jamali, Samad

    2015-01-01

    During 2012, five isolates of pycnidial fungi were recovered from roots of tomato (Solanum lycopersicum) plants in Iran. Based on morphological characteristics the presence of Ampelomyces was documented. To confirm morphological identification and clarify the placement of endophytic isolates of Ampelomyces, DNA was extracted from isolates using a genomic DNA purification Kit. Region of internal transcribed spacers 1, 2 and 5.8S genes of rDNA were amplified using ITS4 and ITS1 universal primer set. Amplicons were purified, sequenced and submitted to the GenBank. The resulting sequence (600 bp) was submitted to a BLAST search to find most similar sequences in GenBank. The ITS sequences of isolates obtained in Iran were compared to those of other related authentic sequences obtained from GenBank. Iranian endophytic isolates had 100 % similarity of among themselves, while all isolates of Ampelomyces sequences analyzed had an average of 95.2 % (range 87-100 %) similarity. When Ampelomyces ITS sequences were analyzed by both distance-based and maximum parsimony methods, the Ampelomyces isolates were segregate into 11 distinct clades. The ITS sequences of endophytic isolates obtained in Iran were identical with endophytic isolates from other country including USA, Australia, Hungary and Spain. Our analyses of phylogenetic data showed that endophytic isolates from Iran and other countries are distinct group. The high ITS sequence-divergence values and the phylogenetic analysis suggested the isolates of Ampelomyces in the clades are not closely related and indeed a problematic species complex. PMID:25245955

  6. Development of a Broad-Range 23S rDNA Real-Time PCR Assay for the Detection and Quantification of Pathogenic Bacteria in Human Whole Blood and Plasma Specimens

    PubMed Central

    Gaibani, Paolo; Mariconti, Mara; Bua, Gloria; Bonora, Sonia; Sassera, Davide; Landini, Maria Paola; Mulatto, Patrizia; Novati, Stefano; Bandi, Claudio; Sambri, Vittorio

    2013-01-01

    Molecular methods are important tools in the diagnosis of bloodstream bacterial infections, in particular in patients treated with antimicrobial therapy, due to their quick turn-around time. Here we describe a new broad-range real-time PCR targeting the 23S rDNA gene and capable to detect as low as 10 plasmid copies per reaction of targeted bacterial 23S rDNA gene. Two commercially available DNA extraction kits were evaluated to assess their efficiency for the extraction of plasma and whole blood samples spiked with different amount of either Staphylococcus aureus or Escherichia coli, in order to find the optimal extraction method to be used. Manual QIAmp extraction method with enzyme pre-treatment resulted the most sensitive for detection of bacterial load. Sensitivity of this novel assay ranged between 10 and 103 CFU per PCR reaction for E. coli and S. aureus in human whole blood samples depending on the extraction methods used. Analysis of plasma samples showed a 10- to 100-fold reduction of bacterial 23S rDNA in comparison to the corresponding whole blood specimens, thus indicating that whole blood is the preferential sample type to be used in this real-time PCR protocol. Our results thus show that the 23S rDNA gene represents an optimal target for bacteria quantification in human whole blood. PMID:23586027

  7. [Analysis of DNA homology and 16S rDNA sequence of rhizobia, a new phenotypic subgroup, isolated from Xizang Autonomous Region of China].

    PubMed

    Wang, Su-ying; Yang, Xiao-li; Li, Hai-feng; Liu, Jie

    2006-02-01

    Based on the studies of numerical taxonomy, the seven rhizobial strains isolated from the root nodules of leguminous plants Trigonella spp. and Astragalus spp. growing in the Xizang Autonomous Region of China constituted a new phenotypic subgroup, where wide phenotypic and genotypic diversity among legume crops had been reported due to complex terrain and various climate. The new phenotypic subgroup were further identified to clarify its taxonomic position by DNA homology analysis and 16S rDNA gene sequencing. The mol% G + C ratio of the DNA among members of the new subgroup ranged from 59.5 to 63.3 mol% as determined by T (m) assay. The levels of DNA relatedness, determined by using the DNA liquid hybridization method, among the members of the new subgroup were between 74.3% and 92.3%, while level of DNA relatedness between the central strains XZ2-3 of the new subgroup and the type strains of known species of Rhizobium was less than 47.4%. These results indicated that the new phenotypic subgroup is a DNA homological group different from described species of Rhizobium. Therefore, this new phenotypic subgroup was supposed to be a new species in the genus of Rhizobium since the strains in the same species generally exhibit levels of DNA homology ranging from 70 to 100%. A systematic identification method-16S rDNA gene sequence comparison was carried out to determine the phylogenetic relationships of the new subgroup with the described species of Rhizobium. The GenBank accession number for the 16S rDNA sequence of the central strain XZ2-3 of the new subgroup is DQ099745. The full-length 16S rDNA gene sequence were sequenced by chain terminator techniques and analyzed with PHYLIP. The phylogenetic trees were constructed by using the programs DRAWTREE. The phylogenetic analysis indicated that new subgroup occupy a independent sub-branch in phylogenetic tree. The sequence similarities between the center strain XZ2-3 and the closest relatives, strain R. leguminosarum USDA

  8. Cadmium increases catechol 2,3-dioxygenase activity in Variovorax sp. 12S, a metal-tolerant and phenol-degrading strain.

    PubMed

    Hupert-Kocurek, Katarzyna; Saczyńska, Agnieszka; Piotrowska-Seget, Zofia

    2013-11-01

    A Gram-negative bacterium, designated as strain 12S, was isolated from a heavy metal-polluted soil. According to the biochemical characteristics, FAME analysis, and 16S rRNA gene sequence analysis, the isolated strain was identified as Variovorax sp. 12S. In the presence of 0.1 mM cadmium, 12S was able to completely utilize up to 1.5 mM of phenol as the sole carbon and energy source in an MSM-TRIS medium. Degradation of phenol was accompanied by a slow bacterial growth rate and an extension of the lag phase. The cells grown on phenol showed catechol 2,3-dioxygenase (C23O) activity. The activity of C23O from 12S cultivated in medium with Cd(2+) was almost 20 % higher than in the control. Since environmental contamination with aromatic compounds is often accompanied by the presence of heavy metals, Variovorax sp. 12S and its C23O appear to be very powerful and useful tools in the biotreatment of wastewaters and soil decontamination. PMID:23934429

  9. Using the Multiple Analysis Approach to Reconstruct Phylogenetic Relationships among Planktonic Foraminifera from Highly Divergent and Length-polymorphic SSU rDNA Sequences

    PubMed Central

    Aurahs, Ralf; Göker, Markus; Grimm, Guido W.; Hemleben, Vera; Hemleben, Christoph; Schiebel, Ralf; Kučera, Michal

    2009-01-01

    The high sequence divergence within the small subunit ribosomal RNA gene (SSU rDNA) of foraminifera makes it difficult to establish the homology of individual nucleotides across taxa. Alignment-based approaches so far relied on time-consuming manual alignments and discarded up to 50% of the sequenced nucleotides prior to phylogenetic inference. Here, we investigate the potential of the multiple analysis approach to infer a molecular phylogeny of all modern planktonic foraminiferal taxa by using a matrix of 146 new and 153 previously published SSU rDNA sequences. Our multiple analysis approach is based on eleven different automated alignments, analysed separately under the maximum likelihood criterion. The high degree of congruence between the phylogenies derived from our novel approach, traditional manually homologized culled alignments and the fossil record indicates that poorly resolved nucleotide homology does not represent the most significant obstacle when exploring the phylogenetic structure of the SSU rDNA in planktonic foraminifera. We show that approaches designed to extract phylogenetically valuable signals from complete sequences show more promise to resolve the backbone of the planktonic foraminifer tree than attempts to establish strictly homologous base calls in a manual alignment. PMID:20140067

  10. Chromosomal localization of 5S rDNA in Chinese shrimp ( Fenneropenaeus chinensis): a chromosome-specific marker for chromosome identification

    NASA Astrophysics Data System (ADS)

    Huan, Pin; Zhang, Xiaojun; Li, Fuhua; Zhao, Cui; Zhang, Chengsong; Xiang, Jianhai

    2010-03-01

    Chinese shrimp ( Fenneropenaeus chinensis) is an economically important aquaculture species in China. However, cytogenetic and genomic data is limited in the organism partly because the chromosomes are difficult to isolate and analyze. In this study, fluorescence in-situ hybridization (FISH) was used to identify the chromosomes of F. chinensis. The 5S ribosomal RNA gene (rDNA) of F. chinensis was isolated, cloned and then used as a hybridization probe. The results show that the 5S rDNA was located on one pair of homologous chromosomes in F. chinensis. In addition, triploid shrimp were used to evaluate the feasibility of chromosome identification using FISH and to validate the method. It was confirmed that 5S rDNA can be used as a chromosome-specific probe for chromosome identification in F. chinensis. The successful application of FISH in F. chinensis shows that chromosome-specific probes can be developed and this finding will facilitate further research on the chromosomes of penaeid shrimps.

  11. Inhibition of DNA Methylation Alters Chromatin Organization, Nuclear Positioning and Activity of 45S rDNA Loci in Cycling Cells of Q. robur

    PubMed Central

    Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2′-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  12. Inhibition of DNA methylation alters chromatin organization, nuclear positioning and activity of 45S rDNA loci in cycling cells of Q. robur.

    PubMed

    Bočkor, Vedrana Vičić; Barišić, Darko; Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2'-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  13. In β-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects.

    PubMed

    Almuzzaini, Bader; Sarshad, Aishe A; Rahmanto, Aldwin S; Hansson, Magnus L; Von Euler, Anne; Sangfelt, Olle; Visa, Neus; Farrants, Ann-Kristin Östlund; Percipalle, Piergiorgio

    2016-08-01

    Actin and nuclear myosin 1 (NM1) are regulators of transcription and chromatin organization. Using a genome-wide approach, we report here that β-actin binds intergenic and genic regions across the mammalian genome, associated with both protein-coding and rRNA genes. Within the rDNA, the distribution of β-actin correlated with NM1 and the other subunits of the B-WICH complex, WSTF and SNF2h. In β-actin(-/-) mouse embryonic fibroblasts (MEFs), we found that rRNA synthesis levels decreased concomitantly with drops in RNA polymerase I (Pol I) and NM1 occupancies across the rRNA gene. Reintroduction of wild-type β-actin, in contrast to mutated forms with polymerization defects, efficiently rescued rRNA synthesis underscoring the direct role for a polymerization-competent form of β-actin in Pol I transcription. The rRNA synthesis defects in the β-actin(-/-) MEFs are a consequence of epigenetic reprogramming with up-regulation of the repressive mark H3K4me1 (monomethylation of lys4 on histone H3) and enhanced chromatin compaction at promoter-proximal enhancer (T0 sequence), which disturb binding of the transcription factor TTF1. We propose a novel genome-wide mechanism where the polymerase-associated β-actin synergizes with NM1 to coordinate permissive chromatin with Pol I transcription, cell growth, and proliferation.-Almuzzaini, B., Sarshad, A. A. , Rahmanto, A. S., Hansson, M. L., Von Euler, A., Sangfelt, O., Visa, N., Farrants, A.-K. Ö., Percipalle, P. In β-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects. PMID:27127100

  14. Prevalence of Mitochondrial 12S rRNA Mutations Associated with Aminoglycoside Ototoxicity

    ERIC Educational Resources Information Center

    Guan, Min-Xin

    2005-01-01

    The mitochondrial DNA (mtDNA) 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic A1555G and C1494T mutations at a highly conserved decoding region of the 12S rRNA have been associated with hearing loss. These two mutations account for a significant number of…

  15. Interplay of RNA Pol IV and ROS1 during post-embryonic 5S rDNA chromatin remodeling.

    PubMed

    Douet, Julien; Blanchard, Bertrand; Cuvillier, Claudine; Tourmente, Sylvette

    2008-12-01

    We have investigated the chromatin structure of 5S rDNA, a heterochromatic pericentromeric tandemly repeated family, at 2, 3, 4 and 5 days post-germination. Our results revealed a large-scale reorganization of 5S rDNA chromatin that occurs during the first days of development. Unexpectedly, there is a decondensation followed by a 're'condensation of 5S rDNA chromatin, to obtain almost mature nuclei 5 d post-germination. The reorganization of 5S rDNA chromatin is accompanied by a rapid and active demethylation of 5S rDNA mediated by the ROS1 (repressor of silencing 1) demethylase, whereas the plant-specific RNA polymerase IV (Pol IV) is essential to the 5S chromatin 're'condensation. In conclusion, Pol IV and ROS1 collaborate to unlock the 5S rDNA chromatin inherited from the seed, and establish adult features. PMID:18845569

  16. Mutations of mitochondrial 12S rRNA in gastric carcinoma and their significance

    PubMed Central

    Han, Cheng-Bo; Ma, Jia-Ming; Xin, Yan; Mao, Xiao-Yun; Zhao, Yu-Jie; Wu, Dong-Ying; Zhang, Su-Min; Zhang, Yu-Kui

    2005-01-01

    AIM: To detect the variations of mitochondrial 12S rRNA in patients with gastric carcinoma, and to study their significance and the relationship between these variations and the genesis of gastric carcinoma. METHODS: PCR amplified mitochondrial 12S rRNA of 44 samples including 22 from gastric carcinoma tissues and 22 from adjacent normal tissues, was detected by direct DNA sequencing. Then laser capture microdissection technique (LCM) was used to separate the cancerous cells and dysplasia cells with specific mutations. Denaturing high performance liquid chromatography (DHPLC) plus allele-specific PCR (AS-PCR), nest-PCR and polyacrylamide gel electrophoresis (PAGE) were used to further evaluate this mutant property and quantitative difference of mutant type between cancerous and dysplasia cells. Finally, RNAdraw biosoft was used to analyze the RNA secondary structure of mutant-type 12S rRNA. RESULTS: Compared with Mitomap database, some new variations were found, among which np652 G insertion and np716 T-G transversion were found only in cancerous tissues. There was a statistic difference in the frequency of 12S rRNA variation between intestinal type (12/17, 70.59%) and diffusive type (5/17, 29.41%) of gastric carcinoma (P<0.05). DHPLC analysis showed that 12S rRNA np652 G insertion and np716 T-G transversion were heteroplasmic mutations. The frequency of 12S rRNA variation in cancerous cells was higher than that in dysplasia cells (P<0.01). 12S rRNA np652 G insertion showed obviously negative effects on the stability of 12S rRNA secondary structure, while others such as T-G transversion did not. CONCLUSION: The mutations of mitochondrial 12S rRNA may be associated with the occurrence of intestinal-type gastric carcinoma. Most variations exist both in gastric carcinomas and in normal tissues, and they might not be the characteristics of tumors. However, np652 G insertion and np716 T-G transversion may possess some molecular significance in gastric carcinogenesis

  17. Mitochondrial 12S rRNA A827G mutation is involved in the genetic susceptibility to aminoglycoside ototoxicity

    SciTech Connect

    Xing Guangqian; Chen Zhibin; Wei Qinjun; Tian Huiqin; Li Xiaolu; Zhou Aidong; Bu Xingkuan; Cao Xin . E-mail: caoxin@njmu.edu.cn

    2006-08-11

    We have analyzed the clinical and molecular characterization of a Chinese family with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluations revealed that only those family members who had a history of exposure to aminoglycoside antibiotics subsequently developed hearing loss, suggesting mitochondrial genome involvement. Sequence analysis of the mitochondrial 12S rRNA and tRNA{sup Ser(UCN)} genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, a mutation that was identified previously in a few sporadic patients and in another Chinese family with non-syndromic deafness. The pathogenicity of the A827G mutation is strongly supported by the occurrence of the same mutation in two independent families and several genetically unrelated subjects. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. However, incomplete penetrance of hearing impairment indicates that the A827G mutation itself is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Indeed, aminoglycosides may contribute to the phenotypic manifestation of the A827G mutation in this family. In contrast with the congenital or early-onset hearing impairment in another Chinese family carrying the A827G mutation, three patients in this pedigree developed hearing loss only after use of aminoglycosides. This discrepancy likely reflects the difference of genetic backgrounds, either mitochondrial haplotypes or nuclear modifier genes, between two families.

  18. Frequency and spectrum of mitochondrial 12S rRNA variants in 440 Han Chinese hearing impaired pediatric subjects from two otology clinics

    PubMed Central

    2011-01-01

    Background Aminoglycoside ototoxicity is one of the common health problems. Mitochondrial 12S rRNA mutations are one of the important causes of aminoglycoside ototoxicity. However, the incidences of 12S rRNA mutations associated with aminoglycoside ototoxicity are less known. Methods A total of 440 Chinese pediatric hearing-impaired subjects were recruited from two otology clinics in the Ningbo and Wenzhou cities of Zhejiang Province, China. These subjects underwent clinical, genetic evaluation and molecular analysis of mitochondrial 12S rRNA. Resultant mtDNA variants were evaluated by structural and phylogenetic analysis. Results The study samples consisted of 227 males and 213 females. The age of all participants ranged from 1 years old to 18 years, with the median age of 9 years. Ninety-eight subjects (58 males and 40 females) had a history of exposure to aminoglycosides, accounting for 22.3% cases of hearing loss in this cohort. Molecular analysis of 12S rRNA gene identified 41 (39 known and 2 novel) variants. The incidences of the known deafness-associated 1555A > G, 1494C > T and 1095T > C mutations were 7.5%, 0.45% and 0.91% in this entire hearing-impaired subjects, respectively, and 21.4%, 2% and 2% among 98 subjects with aminoglycoside ototoxicity, respectively. The structural and phylogenetic evaluations showed that a novel 747A > G variant and known 839A > G, 1027A > G, 1310C > T and 1413T > C variants conferred increased sensitivity to aminoglycosides or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants were polymorphisms. Of 44 subjects carrying one of definite or putative deafness-related 12S rRNA variants, only one subject carrying the 1413T > C variant harbored the 235DelC/299DelAT mutations in the GJB2 gene, while none of mutations in GJB2 gene was detected in other 43 subjects. Conclusions Mutations in mitochondrial 12S rRNA accounted for ~30% cases

  19. Analysis of the unexplored features of rrs (16S rDNA) of the Genus Clostridium

    PubMed Central

    2011-01-01

    Background Bacterial taxonomy and phylogeny based on rrs (16S rDNA) sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of rrs sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their rrs phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, Clostridium represents a large genus of around 110 species of significant biotechnological and medical importance. Certain Clostridium strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods. Results Seven hundred sixty five rrs sequences (> 1200 nucleotides, nts) belonging to 110 Clostridium species were analyzed. On the basis of 404 rrs sequences belonging to 15 Clostridium species, we have developed species specific: (i) phylogenetic framework, (ii) signatures (30 nts) and (iii) in silico restriction enzyme (14 Type II REs) digestion patterns. These tools allowed: (i) species level identification of 95 Clostridium sp. which are presently classified up to genus level, (ii) identification of 84 novel Clostridium spp. and (iii) potential reduction in the number of Clostridium species represented by small populations. Conclusions This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic losses and mortality

  20. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    PubMed

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions. PMID:22510214

  1. Sources of Blood Meals of Sylvatic Triatoma guasayana near Zurima, Bolivia, Assayed with qPCR and 12S Cloning

    PubMed Central

    Lucero, David E.; Ribera, Wilma; Pizarro, Juan Carlos; Plaza, Carlos; Gordon, Levi W.; Peña, Reynaldo; Morrissey, Leslie A.; Rizzo, Donna M.; Stevens, Lori

    2014-01-01

    Background In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps). Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia. Methodology/Principal Findings We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens), five for chicken (Gallus gallus) and unicolored blackbird (Agelasticus cyanopus), and one for opossum (Monodelphis domestica). Using the qPCR assay we detected chicken (13 vectors), and human (14 vectors) blood meals as well as an additional blood meal source, Canis sp. (4 vectors). Conclusions/Significance We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors. PMID:25474154

  2. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    USGS Publications Warehouse

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F., Jr.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  3. Thinking beside the box: Should we care about the non-coding strand of the 16S rRNA gene?

    PubMed

    Garcia-Mazcorro, Jose F; Barcenas-Walls, Jose R

    2016-08-01

    The 16S rRNA gene (16S rDNA) codes for RNA that plays a fundamental role during translation in the ribosome and is used extensively as a marker gene to establish relationships among bacteria. However, the complementary non-coding 16S rDNA (nc16S rDNA) has been ignored. An idea emerged in the course of analyzing bacterial 16S rDNA sequences in search for nucleotide composition and substitution patterns: Does the nc16S rDNA code? If so, what does it code for? More importantly: Does 16S rDNA evolution reflect its own evolution or the evolution of its counterpart nc16S rDNA? The objective of this minireview is to discuss these thoughts. nc strands often encode small RNAs (sRNAs), ancient components of gene regulation. nc16S rDNA sequences from different bacterial groups were used to search for possible matches in the Bacterial Small Regulatory RNA Database. Intriguingly, the sequence of one published sRNA obtained from Legionella pneumophila (GenBank: AE0173541) showed high non-random similarity with nc16S rDNA corresponding in part to the V5 region especially from Legionella and relatives. While the target(s) of this sRNA is unclear at the moment, its mere existence might open up a new chapter in the use of the 16S rDNA to study relationships among bacteria. PMID:27412167

  4. Morphology and 18S rDNA of Henneguya gurlei (Myxosporea) from Ameiurus nebulosus (Siluriformes) in North Carolina

    USGS Publications Warehouse

    Iwanowicz, L.R.; Iwanowicz, D.D.; Pote, L.M.; Blazer, V.S.; Schill, W.B.

    2008-01-01

    Henneguya gurlei was isolated from Ameiurus nebulosus captured in North Carolina and redescribed using critical morphological features and 18S small-subunit ribosomal RNA (SSU rDNA) gene sequence. Plasmodia are white, spherical, or subspherical, occur in clusters, measure up to 1.8 mm in length, and are located on the dorsal, pectoral, and anal fins. Histologically, plasmodia are located in the dermis and subdermally, and the larger cysts disrupt the melanocyte pigment layer. The spore body is lanceolate, 18.2 ?? 0.3 ??m (range 15.7-20.3) in length, and 5.4 ?? 0.1 ??m (range 3.8-6.1) in width in valvular view. The caudal appendages are 41.1 ?? 1.1 ??m (range 34.0-49.7) in length. Polar capsules are pyriform and of unequal size. The longer polar capsule measures 6.2 ?? 0.1 ??m (range 5.48-7.06), while the shorter is 5.7 ?? 0.1 ??m (range 4.8-6.4) in length. Polar capsule width is 1.2 ?? 0.03 ??m (range 1.0-1.54). The total length of the spore is 60.9 ?? 1.2 ??m (range 48.7-68.5). Morphologically, this species is similar to other species of Henneguya that are known to infect ictalurids. Based on SSU rDNA sequences, this species is most closely related to H. exilis and H. ictaluri, which infect Ictalurus punctatus. ?? American Society of Parasitologists 2008.

  5. Identification of signature and primers specific to genus Pseudomonas using mismatched patterns of 16S rDNA sequences

    PubMed Central

    Purohit, HJ; Raje, DV; Kapley, A

    2003-01-01

    Background Pseudomonas, a soil bacterium, has been observed as a dominant genus that survives in different habitats with wide hostile conditions. We had a basic assumption that the species level variation in 16S rDNA sequences of a bacterial genus is mainly due to substitutions rather than insertion or deletion of bases. Keeping this in view, the aim was to identify a region of 16S rDNA sequence and within that focus on substitution prone stretches indicating species level variation and to derive patterns from these stretches that are specific to the genus. Results Repeating elements that are highly conserved across different species of Pseudomonas were considered as guiding markers to locate a region within the 16S gene. Four repeating patterns showing more than 80% consistency across fifty different species of Pseudomonas were identified. The sub-sequences between the repeating patterns yielded a continuous region of 495 bases. The sub-sequences after alignment and using Shanon's entropy measure yielded a consensus pattern. A stretch of 24 base positions in this region, showing maximum variations across the sampled sequences was focused for possible genus specific patterns. Nine patterns in this stretch showed nearly 70% specificity to the target genus. These patterns were further used to obtain a signature that is highly specific to Pseudomonas. The signature region was used to design PCR primers, which yielded a PCR product of 150 bp whose specificity was validated through a sample experiment. Conclusions The developed approach was successfully applied to genus Pseudomonas. It could be tried in other bacterial genera to obtain respective signature patterns and thereby PCR primers, for their rapid tracking in the environmental samples. PMID:12769821

  6. Further data on the microsatellite locus D12S67 in worldwide populations: an unusual distribution of D12S67 alleles in Native Americans.

    PubMed

    Mitchell, R J; Federle, L; Sofro, A S; Papiha, S S; Briceno, I; Bernal, J E

    2000-08-01

    We report the frequencies of alleles at the microsatellite locus D12S67 in 2 widely separated ethnic groups of the world: 2 populations from Sulawesi, an island in the Indonesian archipelago, and 5 Native American tribes of Colombia, South America. The allele frequencies in the Minihasans and Torajans of Sulawesi are similar to each other (but the modal class allele is different) and in general agreement with those reported in mainland Asian groups, but different from both Europeans and Chinese Han of Taiwan. The 5 Native American tribes (Arsario, Kogui, Ijka, Wayuu, and Coreguaje) display different allele frequencies from those seen in Sulawesi populations, in other groups from Europe and mainland Asia, and in Chinese Han of Taiwan. Native Americans exhibit a bimodal distribution of alleles, unlike other groups, with significant differences among the tribes. The Arsario and Kogui have no admixture with Europeans or Africans and are the most distinctive, while the Wayuu have the most admixture and show most similarity to other groups. The data suggest that nonadmixed Native Americans may be quite distinctive with respect to this marker. The most common allele varies across the 5 tribes, from 249 base pairs to 261 base pairs. All samples exhibit Hardy-Weinberg genotype proportions; heterozygosities are lowest in the 2 nonadmixed Native American tribes. Examination of all the available data indicates that some east Asian and southeast Asian groups are characterized by a high frequency of smaller sized D12S67 alleles, while other populations have a greater proportion of the larger sized alleles. The cumulative, though still highly restricted, population data on locus D12S67 demonstrate that it may be of considerable value in anthropological genetic studies of ethnic groups. Data are required on Native Americans outside Colombia before this marker can be used in admixture studies of this group. PMID:11048795

  7. Complete Sequence Construction of the Highly Repetitive Ribosomal RNA Gene Repeats in Eukaryotes Using Whole Genome Sequence Data.

    PubMed

    Agrawal, Saumya; Ganley, Austen R D

    2016-01-01

    The ribosomal RNA genes (rDNA) encode the major rRNA species of the ribosome, and thus are essential across life. These genes are highly repetitive in most eukaryotes, forming blocks of tandem repeats that form the core of nucleoli. The primary role of the rDNA in encoding rRNA has been long understood, but more recently the rDNA has been implicated in a number of other important biological phenomena, including genome stability, cell cycle, and epigenetic silencing. Noncoding elements, primarily located in the intergenic spacer region, appear to mediate many of these phenomena. Although sequence information is available for the genomes of many organisms, in almost all cases rDNA repeat sequences are lacking, primarily due to problems in assembling these intriguing regions during whole genome assemblies. Here, we present a method to obtain complete rDNA repeat unit sequences from whole genome assemblies. Limitations of next generation sequencing (NGS) data make them unsuitable for assembling complete rDNA unit sequences; therefore, the method we present relies on the use of Sanger whole genome sequence data. Our method makes use of the Arachne assembler, which can assemble highly repetitive regions such as the rDNA in a memory-efficient way. We provide a detailed step-by-step protocol for generating rDNA sequences from whole genome Sanger sequence data using Arachne, for refining complete rDNA unit sequences, and for validating the sequences obtained. In principle, our method will work for any species where the rDNA is organized into tandem repeats. This will help researchers working on species without a complete rDNA sequence, those working on evolutionary aspects of the rDNA, and those interested in conducting phylogenetic footprinting studies with the rDNA. PMID:27576718

  8. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells.

    PubMed

    Kwasniewska, Jolanta; Grabowska, Marta; Kwasniewski, Miroslaw; Kolano, Bozena

    2012-06-01

    We used comet-fluorescence in situ hybridization (FISH) in the model plant species Crepis capillaris following exposure of seedlings to maleic hydrazide (MH). FISH with 5S and 25S rDNA probes was applied to comets obtained under alkaline conditions to establish whether these DNA regions were preferentially involved in comet tail formation. MH treatment induced significant fragmentation of nuclear DNA and of rDNA loci. A 24-h post-treatment recovery period allowed a partial reversibility of MH-induced damage on nuclear and rDNA regions. Analyses of FISH signals demonstrated that rDNA sequences were always involved in tail formation and that 5S rDNA was more frequently present in the tail than 25S rDNA, regardless of treatment. The involvement of 25S rDNA in nucleolus formation and differences in chromatin structure between the two loci may explain the different susceptibility of the 25S and 5S rDNA regions to migrate into the tail. This work is the first report on the application of FISH to comet preparations from plants to analyze the distribution and repair of DNA damage within specific genomic regions after mutagenic treatment. Moreover, our work suggests that comet-FISH in plants may be a useful tool for environmental monitoring assessment. PMID:22556029

  9. A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan

    PubMed Central

    Kwan, Elizabeth X.; Foss, Eric J.; Tsuchiyama, Scott; Alvino, Gina M.; Kruglyak, Leonid; Kaeberlein, Matt; Raghuraman, M. K.; Brewer, Bonita J.; Kennedy, Brian K.; Bedalov, Antonio

    2013-01-01

    Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics. PMID:23505383

  10. Differentiation of anaerobic polycentric fungi by rDNA PCR-RFLP.

    PubMed

    Fliegerová, K; Mrázek, J; Voigt, K

    2006-01-01

    The suitability of restriction fragment length polymorphism (RFLP) analysis of the ribosomal DNA cluster for discriminating two genera of anaerobic polycentric fungi, Orpinomyces and Anaeromyces, was determined. Three PCR-amplified DNA fragments--nuclear small subunit (SSU; 18S rDNA), the nuclear large subunit (LSU; 28S rDNA) and internal transcribed spacer (ITS)--were restricted with endonucleases AluI, DraI, HinfI and MboI. Although the SSU DNA fragment could be restricted successfully by all four enzymes, no differences were observed between restriction patterns of Orpinomyces and Anaeromyces. The most polymorphic restriction pattern between Orpinomyces and Anaeromyces resulted from cleavage of LSU rDNA fragments cut by AluI and HinfI and ITS fragment cut by DraI and HinfI. Genus-specific RFLP patterns were determined for Orpinomyces and Anaeromyces genera; the results showed that the PCR-RFLP analysis of rDNA offers an easy and rapid tool for differentiation of two polycentric genera of anaerobic fungi, which could be hardly separated on the basis of morphology. PMID:17007423

  11. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences.

    PubMed

    Duff, R J; Nickrent, D L

    1999-03-01

    Phylogenetic relationships among embryophytes (tracheophytes, mosses, liverworts, and hornworts) were examined using 21 newly generated mitochondrial small-subunit (19S) rDNA sequences. The "core" 19S rDNA contained more phylogenetically informative sites and lower homoplasy than either nuclear 18S or plastid 16S rDNA. Results of phylogenetic analyses using parsimony (MP) and likelihood (ML) were generally congruent. Using MP, two trees were obtained that resolved either liverworts or hornworts as the basal land plant clade. The optimal ML tree showed hornworts as basal. That topology was not statistically different from the two MP trees, thus both appear to be equally viable evolutionary hypotheses. High bootstrap support was obtained for the majority of higher level embryophyte clades named in a recent morphologically based classification, e.g., Tracheophyta, Euphyllophytina, Lycophytina, and Spermatophytata. Strong support was also obtained for the following monophyletic groups: hornworts, liverworts, mosses, lycopsids, leptosporangiate and eusporangiate ferns, gymnosperms and angiosperms. This molecular analysis supported a sister relationship between Equisetum and leptosporangiate ferns and a monophyletic gymnosperms sister to angiosperms. The topologies of deeper clades were affected by taxon inclusion (particularly hornworts) as demonstrated by jackknife analyses. This study represents the first use of mitochondrial 19S rDNA for phylogenetic purposes and it appears well-suited for examining intermediate to deep evolutionary relationships among embryophytes. PMID:10077500

  12. [Analysis of 5S rDNA changes in synthetic allopolyploids Triticum x Aegilops].

    PubMed

    Shcherban', A B; Sergeeva, E M; Badaeva, E D; Salina, E A

    2008-01-01

    By the example of three synthetic allopolyploids: Aegilops sharonensis x Ae. umbellulata (2n =28), Triticum urartu x Ae. tauschii (2n =28), T. dicoccoides x Ae. tauschii (2n =42) the 5S rDNA changes at the early stage of allopolyploidization were investigated. Using fluorescent in situ hybridization (FISH), the quantitative changes affecting the separate loci of one of the parental genomes were revealed in plants of S3 generation of each hybrid combination. Souther hybridization with genomic DNA of allopolyploid T. urartu x Ae. tauschii (TMU38 x TQ27) revealed lower intensity of the fragments from Ae. tauschii compared with the T. urartu fragments. It may be confirmation of the reduction of signal on 1D chromosome that was revealed in this hybrid using FISH. Both appearance of a new 5S rDNA fragments and full disappearance of fragments from parental species were not showed by Southern hybridization, as well as PCR-analysis of 5-15 plants of S2-S3 generations. The changes were not found under comparison of primary structure of nine 5S rDNA sequences of allopolyploid TMU38 x TQ27 with analogous sequences from parental species genomes. The observable similarity by FISH results of one of the studied synthetic allopolyploids with natural allopolyploid of similar genome composition indicates the early formation of unique for each allopolyploid 5S rDNA organization. PMID:18856060

  13. Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination

    PubMed Central

    Fredsøe, Jacob; Nielsen, Ida; Pedersen, Jakob Madsen; Bentsen, Iben Bach; Lisby, Michael; Bjergbaek, Lotte; Andersen, Anni H

    2015-01-01

    Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2) and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3) display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB) during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3) in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time. PMID:26630413

  14. Molecular rDNA phylogeny of Telotylenchidae Siddiqi, 1960 and evaluation of tail termini

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three stunt nematode species, Tylenchorhynchus leviterminalis, T. claytoni and Bitylenchus dubius were characterized with segments of small subunit 18S and large subunit 28S rDNA sequences and placed in molecular phylogenetic context with other taxa of Telotylechidae in GenBank. In 18S trees, the sp...

  15. Relationships between rDNA, Nop1 and Sir complex in biotechnologically relevant distillery yeasts.

    PubMed

    Adamczyk, Jagoda; Deregowska, Anna; Potocki, Leszek; Kuna, Ewelina; Kaplan, Jakub; Pabian, Sylwia; Kwiatkowska, Aleksandra; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    Distillery yeasts are poorly characterized physiological group among the Saccharomyces sensu stricto complex. As industrial yeasts are under constant environmental stress during fermentation processes and the nucleolus is a stress sensor, in the present study, nucleolus-related parameters were evaluated in 22 commercially available distillery yeast strains. Distillery yeasts were found to be a heterogeneous group with a variable content and length of rDNA and degree of nucleolus fragmentation. The levels of rDNA were negatively correlated with Nop1 (r = -0.59, p = 0.0038). Moreover, the protein levels of Sir transcriptional silencing complex and longevity regulators, namely Sir1, Sir2, Sir3 and Fob1, were studied and negative correlations between Sir2 and Nop1 (r = -0.45, p = 0.0332), and between Sir2 and Fob1 (r = -0.49, p = 0.0211) were revealed. In general, S. paradoxus group of distillery yeasts with higher rDNA pools and Sir2 level than S. bayanus group was found to be more tolerant to fermentation-associated stress stimuli, namely mild cold/heat stresses and KCl treatment. We postulate that rDNA state may be considered as a novel factor that may modulate a biotechnological process. PMID:27329282

  16. Karyotyping and in situ chromosomal localization of rDNA sites in black cumin Bunium persicum (Boiss) B. Fedtsch,1915 (Apiaceae)

    PubMed Central

    Chahota, R. K.; Mukai, Y.; Chaudhary, H.K.; Kishore, Naval; Sharma, T.R.

    2011-01-01

    Abstract The fluorescent in situ hybridization (FISH) technique has been applied to somatic chromosomes in the medicinally important species, Bunium persicum, to elucidate its karyotypes. The bicolour FISH technique involving 18S-5.8S-26S and 5S ribosomal RNA genes as probes was used to assign physical localization and measurement of rDNA sites on homologous pairs of chromosomes. The two 18S-5.8S-26S rRNA gene sites were at the terminal regions of the short arms of the chromosomes 1 and 2 involving NOR region of chromosome 1. The 5S rDNA sites were found on subtelomeric region of the long arm of the chromosome number 5 and at interstitial regions of the short arm of chromosome 7. Based on direct visual analysis of chromosome length, morphology and position of FISH signals, a pioneer attempt has been made to construct metaphase karyotype in Bunium persicum, an endangered medicinal plant of North Western Himalayas. PMID:24260640

  17. Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in China inferred from mtDNA and rDNA ITS markers.

    PubMed

    Zhang, Lijuan; Li, Hu; Li, Shujuan; Zhang, Aibing; Kou, Fei; Xun, Huaizhu; Wang, Pei; Wang, Ying; Song, Fan; Cui, Jianxin; Cui, Jinjie; Gouge, Dawn H; Cai, Wanzhi

    2015-01-01

    Phylogeographic patterns of some extant plant and vertebrate species have been well studied; however, they are poorly understood in the majority of insects. The study documents analysis of mitochondrial (COI, CYTB and ND5) and nuclear (5.8S rDNA, ITS2 and 28S rDNA) data from 419 individuals of Adelphocoris suturalis, which is one of the main cotton pests found in the 31 locations in China and Japan involved in the study. Results show that the species is highly differentiated between populations from central China and peripheral China regions. Analysis of molecular variance showed a high level of geographical differentiation at different hierarchical levels. Isolation-by-distance test showed no significant correlation between genetic distance and geographical distance among A. suturalis populations, which suggested gene flow is not restricted by distance. In seven peripheral populations, the high levels of genetic differentiation and the small Nem values implied that geographic barriers were more likely restrict gene flow. Neutrality tests and the Bayesian skyline plot suggested population expansion likely happened during the cooling transition between Last Interglacial and Last Glacial Maximum. All lines of evidence suggest that physical barriers, Pleistocene climatic oscillations and geographical heterogeneity have affected the population structure and distribution of this insect in China. PMID:26388034

  18. Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in China inferred from mtDNA and rDNA ITS markers

    PubMed Central

    Zhang, Lijuan; Li, Hu; Li, Shujuan; Zhang, Aibing; Kou, Fei; Xun, Huaizhu; Wang, Pei; Wang, Ying; Song, Fan; Cui, Jianxin; Cui, Jinjie; Gouge, Dawn H.; Cai, Wanzhi

    2015-01-01

    Phylogeographic patterns of some extant plant and vertebrate species have been well studied; however, they are poorly understood in the majority of insects. The study documents analysis of mitochondrial (COI, CYTB and ND5) and nuclear (5.8S rDNA, ITS2 and 28S rDNA) data from 419 individuals of Adelphocoris suturalis, which is one of the main cotton pests found in the 31 locations in China and Japan involved in the study. Results show that the species is highly differentiated between populations from central China and peripheral China regions. Analysis of molecular variance showed a high level of geographical differentiation at different hierarchical levels. Isolation-by-distance test showed no significant correlation between genetic distance and geographical distance among A. suturalis populations, which suggested gene flow is not restricted by distance. In seven peripheral populations, the high levels of genetic differentiation and the small Nem values implied that geographic barriers were more likely restrict gene flow. Neutrality tests and the Bayesian skyline plot suggested population expansion likely happened during the cooling transition between Last Interglacial and Last Glacial Maximum. All lines of evidence suggest that physical barriers, Pleistocene climatic oscillations and geographical heterogeneity have affected the population structure and distribution of this insect in China. PMID:26388034

  19. Chromosomal Mapping of Repetitive DNA Sequences in Five Species of Astyanax (Characiformes, Characidae) Reveals Independent Location of U1 and U2 snRNA Sites and Association of U1 snRNA and 5S rDNA.

    PubMed

    Silva, Duilio M Z A; Utsunomia, Ricardo; Pansonato-Alves, José C; Oliveira, Cláudio; Foresti, Fausto

    2015-01-01

    Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are currently available about other repetitive sequences. Here, the chromosomal location of small nuclear RNA genes, identified as U1 and U2 snRNA clusters, was established and compared to the distribution of 5S rDNA and histone clusters in 5 Astyanax species (A. paranae, A. fasciatus, A. bockmanni, A. altiparanae, and A. jordani) using FISH. The cytogenetic mapping of U1 and U2 snRNA demonstrated a conserved pattern in the number of sites per genome independent of the location in Astyanax species. The location of the U1 snRNA gene was frequently associated with 5S rDNA sequences, indicating a possible interaction between the distinct repetitive DNA families. Finally, comparisons involving the location of U1 and U2 snRNA clusters in the chromosomes of Astyanax species revealed a very diverse pattern, suggesting that many rearrangements have occurred during the diversification process of this group. PMID:26329975

  20. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications

    PubMed Central

    2012-01-01

    Background 45S rDNA sites are the most widely documented chromosomal regions in eukaryotes. The analysis of the distribution of these sites along the chromosome in several genera has suggested some bias in their distribution. In order to evaluate if these loci are in fact non-randomly distributed and what is the influence of some chromosomal and karyotypic features on the distribution of these sites, a database was built with the position and number of 45S rDNA sites obtained by FISH together with other karyotypic data from 846 plant species. Results In angiosperms the most frequent numbers of sites per diploid karyotype were two and four, suggesting that in spite of the wide dispersion capacity of these sequences the number of rDNA sites tends to be restricted. The sites showed a preferential distribution on the short arms, mainly in the terminal regions. Curiously, these sites were frequently found on the short arms of acrocentric chromosomes where they usually occupy the whole arm. The trend to occupy the terminal region is especially evident in holokinetic chromosomes, where all of them were terminally located. In polyploids there is a trend towards reduction in the number of sites per monoploid complement. In gymnosperms, however, the distribution of rDNA sites varied strongly among the sampled families. Conclusions The location of 45S rDNA sites do not vary randomly, occurring preferentially on the short arm and in the terminal region of chromosomes in angiosperms. The meaning of this preferential location is not known, but some hypotheses are considered and the observed trends are discussed. PMID:23181612

  1. Effects of altered gravity on a distribution of rDNA and nucleolar proteins and the expression of nucleolar proteins in plants

    NASA Astrophysics Data System (ADS)

    Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier

    The nucleolus is an inner nuclear organelle originated from the activity of hundreds of rRNA genes, typically spanning several megabases. It morphologically reflects the functional events leading to ribosome biogenesis, from the transcription of rDNA through the processing of nascent pre-rRNA to the assembly of pre-ribosomes. A typical nucleolus consists of three major elements, namely fibrillar centers (FCs), the dense fibrillar component (DFC), and granular component (GC). The rate of ribosome biosynthesis and the subnucleolar structure are reliable monitors of the general level of cell metabolism and, consequently, of the rate of cellular growth, being influenced with many external factors, among which altered gravity could be included. Thus, we can hypothesize that the structural organization of the nucleolar subcomponents and the level, distribution and quantitative/qualitative characteristics of the nucleolar proteins would be changed under conditions of altered gravity. To confirm our hypothesis, we applied parallel procedures, such as cytochemistry, immunofluorescence, confocal laser microscopy, immunogold electron microscopy, monoand bi-dimensional electrophoresis and immunoblotting in root meristematic cells from two-day cress seedlings grown under slow horizontal clinorotation (2 rpm) and in stationary control. The complex model of the ultrastructural organization and functions of the nucleolus was created based on the location of rDNA and the nucleolar proteins fibrillarin, NhL90 and NhL68, these latter being cress nucleolin homologues. The principal stages of ribosome biogenesis, namely ribosomal gene activation, rDNA transcription and pre-rRNA processing were reflected in this model. Compared to the pattern shown in control ground gravity conditions, we found firstly a redistribution of both rDNA and nucleolar proteins in nucleolar subcomponents, induced by clinorotation. Under the conditions of altered gravity, nucleolar DNA concentrated

  2. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss

    PubMed Central

    Lu, Jianxin; Li, Zhiyuan; Zhu, Yi; Yang, Aifen; Li, Ronghua; Zheng, Jing; Cai, Qin; Peng, Guanghua; Zheng, Wuwei; Tang, Xiaowen; Chen, Bobei; Chen, Jianfu; Liao, Zhisu; Yang, Li; Li, Yongyan; You, Junyan; Ding, Yu; Yu, Hong; Wang, Jindan; Sun, Dongmei; Zhao, Jianyue; Xue, Ling; Wang, Jieying; Guan, Min-Xin

    2010-01-01

    In this report, we investigated the frequency and spectrum of mitochondrial 12S rRNA variants in a large cohort of 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mutational analysis of 12S rRNA gene in these subjects identified 68 (54 known and 14 novel) variants. The frequencies of known 1555A>G and 1494C>T mutations were 3.96% and 0.18%, respectively, in this cohort with nonsyndromic and aminoglycoside-induced hearing loss. Prevalence of other putative deafness-associated mutation at positions 1095 and 961 were 0.61% and 1.7% in this cohort, respectively. Furthermore, the 745A>G, 792C>T, 801A>G, 839A>G, 856A>G, 1027A>G, 1192C>T, 1192C>A, 1310C>T, 1331A>G, 1374A>G and 1452T>C variants conferred increased sensitivity to ototoxic drugs or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants appeared to be polymorphisms. Moreover, 65 Chinese subjects carrying the 1555A>G mutation exhibited bilateral and sensorineural hearing loss. A wide range of severity, age-of-onset and audiometric configuration was observed among these subjects. In particular, the sloping and flat shaped patterns were the common audiograms in individuals carrying the 1555A>G mutation. The phenotypic variability in subjects carrying these 12S rRNA mutations indicated the involvement of nuclear modifier genes, mitochondrial haplotypes, epigenetic and environmental factors in the phenotypic manifestation of these mutations. Therefore, our data demonstrated that mitochondrial 12S rRNA is the hot spot for mutations associated with aminoglycoside ototoxicity. PMID:20100600

  3. Genomic architecture and inheritance of human ribosomal RNA gene clusters

    PubMed Central

    Stults, Dawn M.; Killen, Michael W.; Pierce, Heather H.; Pierce, Andrew J.

    2008-01-01

    The finishing of the Human Genome Project largely completed the detailing of human euchromatic sequences; however, the most highly repetitive regions of the genome still could not be assembled. The 12 gene clusters producing the structural RNA components of the ribosome are critically important for cellular viability, yet fall into this unassembled region of the Human Genome Project. To determine the extent of human variation in ribosomal RNA gene content (rDNA) and patterns of rDNA cluster inheritance, we have determined the physical lengths of the rDNA clusters in peripheral blood white cells of healthy human volunteers. The cluster lengths exhibit striking variability between and within human individuals, ranging from 50 kb to >6 Mb, manifest essentially complete heterozygosity, and provide each person with their own unique rDNA electrophoretic karyotype. Analysis of these rDNA fingerprints in multigenerational human families demonstrates that the rDNA clusters are subject to meiotic rearrangement at a frequency >10% per cluster, per meiosis. With this high intrinsic recombinational instability, the rDNA clusters may serve as a unique paradigm of potential human genomic plasticity. PMID:18025267

  4. Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants

    PubMed Central

    Muchová, Veronika; Amiard, Simon; Mozgová, Iva; Dvořáčková, Martina; Gallego, Maria E; White, Charles; Fajkus, Jiří

    2015-01-01

    Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability. PMID:25359579

  5. Assessment of Helminth Biodiversity in Wild Rats Using 18S rDNA Based Metagenomics

    PubMed Central

    Tsai, Isheng J.; Palomares-Rius, Juan Emilio; Yoshida, Ayako; Ogura, Yoshitoshi; Hayashi, Tetsuya; Maruyama, Haruhiko; Kikuchi, Taisei

    2014-01-01

    Parasite diversity has important implications in several research fields including ecology, evolutionary biology and epidemiology. Wide-ranging analysis has been restricted because of the difficult, highly specialised and time-consuming processes involved in parasite identification. In this study, we assessed parasite diversity in wild rats using 18S rDNA-based metagenomics. 18S rDNA PCR products were sequenced using an Illumina MiSeq sequencer and the analysis of the sequences using the QIIME software successfully classified them into several parasite groups. The comparison of the results with those obtained using standard methods including microscopic observation of helminth parasites in the rat intestines and PCR amplification/sequencing of 18S rDNA from isolated single worms suggests that this new technique is reliable and useful to investigate parasite diversity. PMID:25340824

  6. The world in a river? A preliminary analysis of the 16S rDNA variability of Tubifex species (Clitellata: Tubificidae) from the Lambro River.

    PubMed

    Crottini, Angelica; Marotta, Roberto; Barbuto, Michela; Casiraghi, Maurizio; Ferraguti, Marco

    2008-09-01

    Tubifex tubifex Müller, 1774 is a cosmopolitan freshwater tubificid widely used as a model in ecotoxicology, population dynamics and developmental biology. It is traditionally recognized as a polytypic species and in Lambro River (Milano, Northern Italy) it occurs in two of the three recognized forms, named "tubifex" and "blanchardi", alternatively considered as ecological forms or distinct species. To investigate the genetic differentiation of the populations occurring in the Lambro River we sequenced a fragment of the 16S rDNA mitochondrial gene. T. blanchardi, characterized by a low genetic diversity, was genetically segregated from the other sympatric T. tubifex. The ancestral state reconstruction was used to define the morphological traits that support its distinctness. On the contrary, the other T. tubifex from the Lambro community, although morphologically indistinguishable, revealed an astonishing degree of genetic variability, both between and within the three identified clades that proved to be genetically isolated. Using samples from the mixed Lambro River community and from other countries around the world we present an overview of the species complex' 16S rDNA variability. Our results show that the genetic variability did not sensibly increase widening the data set, suggesting that the Lambro River populations meet the species' worldwide genetic variability. PMID:18625325

  7. Formal Revision of the Alexandrium tamarense Species Complex (Dinophyceae) Taxonomy: The Introduction of Five Species with Emphasis on Molecular-based (rDNA) Classification

    PubMed Central

    John, Uwe; Litaker, R. Wayne; Montresor, Marina; Murray, Shauna; Brosnahan, Michael L.; Anderson, Donald M.

    2015-01-01

    The Alexandrium tamarense species complex is one of the most studied marine dinoflagellate groups due to its ecological, toxicological and economic importance. Several members of this complex produce saxitoxin and its congeners – potent neurotoxins that cause paralytic shellfish poisoning. Isolates from this complex are assigned to A. tamarense, A. fundyense, or A. catenella based on two main morphological characters: the ability to form chains and the presence/absence of a ventral pore between Plates 1′ and 4′. However, studies have shown that these characters are not consistent and/or distinctive. Further, phylogenies based on multiple regions in the rDNA operon indicate that the sequences from morphologically indistinguishable isolates partition into five clades. These clades were initially named based on their presumed geographic distribution, but recently were renamed as Groups I–V following the discovery of sympatry among some groups. In this study we present data on morphology, ITS/5.8S genetic distances, ITS2 compensatory base changes, mating incompatibilities, toxicity, the sxtA toxin synthesis gene, and rDNA phylogenies. All results were consistent with each group representing a distinct cryptic species. Accordingly, the groups were assigned species names as follows: Group I, A. fundyense; Group II, A. mediterraneum; Group III, A. tamarense; Group IV, A. pacificum; Group V, A. australiense. PMID:25460230

  8. Secondary structure of expansion segment D1 in LSU rDNA from Arachnida and its phylogenetic application in Eriophyoid mites and in Acari.

    PubMed

    Wang, Zheng-Hang; Zhao, Ya-E; Xu, Yang; Hu, Li; Chen, Yi-Meng

    2015-12-01

    An increasing number of researchers have applied secondary-structure based multiple alignments of rDNA genes in phylogeny. These studies mostly depended on a few valuable divergent domains in LSU and SSU rDNA. Yet other divergent domains, e.g. D1, were poorly investigated and rarely used. However, these domains might contain additional evolutionary data and play a vital role in DNA-based phylogenetic study. Here, we investigated all available D1 sequences of Arachnida taxa and predicted corresponding secondary structures to help identify homologous positions in the D1 region. Long insertions were found exclusive to Eriophyoidea and folded into three newly proposed helices. Non-Acari taxa were all GC rich. In Acari, most Trombidiformes and all Mesostigmata (Parasitiformes) taxa were AT rich and Ixodida (Parasitiformes) GC rich; however there was no consistent base bias in Sarcoptiformes sequences. For Eriophyoid mites, genera Cecidophyopsis and Aceria were both well supported in MP, NJ, ME and ML tress based on D1 sequences, and clusters of Cecidophyopsis species were identical with former study. This demonstrated that the D1 region could act as a valuable molecular marker in phylogenetic reconstruction of Eriophyoidea. Additionally, D1 has been proven suitable in phylogenetic analysis at the family and genus level in Acari, but not in Opiliones. PMID:26420464

  9. Quantum speciation in Aegilops: Molecular cytogenetic evidence from rDNA cluster variability in natural populations

    PubMed Central

    Raskina, Olga; Belyayev, Alexander; Nevo, Eviatar

    2004-01-01

    Data are presented on quantum speciation in the Sitopsis section of the genus Aegilops (Poaceae, Monocotyledones). Two small, peripheral, isolated, wild populations of annual cross-pollinated Ae. speltoides and annual self-pollinated Ae. sharonensis are located 30 m apart on different soil types. Despite the close proximity of the two species and their close relatedness, no mixed groups are known. Comparative molecular cytogenetic analysis based on the intrapopulation variability of rRNA-encoding DNA (rDNA) chromosomal patterns of individual Ae. speltoides geno-types revealed an ongoing dynamic process of permanent chromosomal rearrangements. Chromosomal mutations can arise de novo and can be eliminated. Analysis of the progeny of the investigated genotypes testifies that inheritance of de novo rDNA sites happens frequently. Heterologous recombination and/or transposable elements-mediated rDNA transfer seem to be the mechanisms for observed chromosomal repatterning. Consequently, several modified genomic forms, intermediate between Ae. speltoides and Ae. sharonensis, permanently arise in the studied wild population of Ae. speltoides, which make it possible to recognize Ae. sharonensis as a derivative species of Ae. speltoides, as well as to propose rapidness and canalization of quantum speciation in Sitopsis species. PMID:15466712

  10. Taiwanese Trichogramma of Asian Corn Borer: Morphology, ITS-2 rDNA Characterization, and Natural Wolbachia Infection

    PubMed Central

    Wu, Li-Hsin; Hoffmann, Ary A.; Thomson, Linda J.

    2016-01-01

    Egg parasitoids of the genus Trichogramma are natural enemies of many lepidopteran borers in agricultural areas around the world. It is important to identify the correct species and ideally focus on endemic Trichogramma for pest control in particular crops. In this study, Trichogramma wasps were collected from parasitized eggs of Asian corn borer in Southwestern Taiwan. Three Trichogramma species, Trichogramma ostriniae Pang and Chen, Trichogramma chilonis Ishii, and T. sp. y, were identified based on morphology and the nucleotide sequence of the internal transcribed spacer 2 (ITS-2) region of rDNA. Although T. ostriniae and T. sp. y appear to be morphologically similar, ITS-2 identity between these two taxa is only 89%. Surprisingly, a commercially released Trichogramma colony thought to be T. chilonis possessed 99% identity (ITS-2) with the field T. sp. y individuals. This suggests past contamination leading to subsitution of the laboratory-reared T. chilonis colony by T. sp. y. Natural populations of all three Trichogramma species were found to be infected by a single Wolbachia strain which was identified using a wsp gene sequence. PMID:26896674

  11. Taiwanese Trichogramma of Asian Corn Borer: Morphology, ITS-2 rDNA Characterization, and Natural Wolbachia Infection.

    PubMed

    Wu, Li-Hsin; Hoffmann, Ary A; Thomson, Linda J

    2016-01-01

    Egg parasitoids of the genus Trichogramma are natural enemies of many lepidopteran borers in agricultural areas around the world. It is important to identify the correct species and ideally focus on endemic Trichogramma for pest control in particular crops. In this study, Trichogramma wasps were collected from parasitized eggs of Asian corn borer in Southwestern Taiwan. Three Trichogramma species, Trichogramma ostriniae Pang and Chen, Trichogramma chilonis Ishii, and T. sp. y, were identified based on morphology and the nucleotide sequence of the internal transcribed spacer 2 (ITS-2) region of rDNA. Although T. ostriniae and T. sp. y appear to be morphologically similar, ITS-2 identity between these two taxa is only 89%. Surprisingly, a commercially released Trichogramma colony thought to be T. chilonis possessed 99% identity (ITS-2) with the field T. sp. y individuals. This suggests past contamination leading to subsitution of the laboratory-reared T. chilonis colony by T. sp. y. Natural populations of all three Trichogramma species were found to be infected by a single Wolbachia strain which was identified using a wsp gene sequence. PMID:26896674

  12. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Gebhardt, Katharina; Knebelsberger, Thomas

    2015-09-01

    We morphologically analyzed 79 cephalopod specimens from the North and Baltic Seas belonging to 13 separate species. Another 29 specimens showed morphological features of either Alloteuthis mediaor Alloteuthis subulata or were found to be in between. Reliable identification features to distinguish between A. media and A. subulata are currently not available. The analysis of the DNA barcoding region of the COI gene revealed intraspecific distances (uncorrected p) ranging from 0 to 2.13 % (average 0.1 %) and interspecific distances between 3.31 and 22 % (average 15.52 %). All species formed monophyletic clusters in a neighbor-joining analysis and were supported by bootstrap values of ≥99 %. All COI haplotypes belonging to the 29 Alloteuthis specimens were grouped in one cluster. Neither COI nor 18S rDNA sequences helped to distinguish between the different Alloteuthis morphotypes. For species identification purposes, we recommend the use of COI, as it showed higher bootstrap support of species clusters and less amplification and sequencing failure compared to 18S. Our data strongly support the assumption that the genus Alloteuthis is only represented by a single species, at least in the North Sea. It remained unclear whether this species is A. subulata or A. media. All COI sequences including important metadata were uploaded to the Barcode of Life Data Systems and can be used as reference library for the molecular identification of more than 50 % of the cephalopod fauna known from the North and Baltic Seas.

  13. The phylogeny of native and exotic scallops cultured in China based on 16S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Liu, Baozhong; Dong, Bo; Xiang, Jianhai; Wang, Zaizhao

    2007-01-01

    Scallops of the Family Pectinidae are a valuable resource in marine industry of the world. Understanding the phylogeny of the family is important for the development of the industry. In this study, partial 16S mitochondrial rDNA genes were obtained from 8 scallop species that are commonly cultured indigenous and transplanted species in China. Phylogenetic relationships of Pectinidae were analyzed based on the 8 sequences and other 5 published ones in GenBank, representing 9 genera of the family. The molecular phylogeny trees were constructed using 3 methods with software PHYLIP. The results showe that total 13 species of scallops clustered in 4 clades. Pecten maximus joins P. jacobaeus then Amusium pleuronectes in cluster, indicating close relationship of genus Amusium with Pecten in evolution. P. yessoensis is close to Chlamys farreri and C. islandica. No enough material was available to single out genus Patinopecten as an independent monophyletic subfamily. The position of Adamussium colbecki indicates that it is far from genus Pecten but near to genus Chlamys in evolution.

  14. Molecular organization of the 25S-18S rDNA IGS of Fagus sylvatica and Quercus suber: a comparative analysis.

    PubMed

    Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2014-01-01

    The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5'-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5'-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5'-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼ 2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family. PMID:24893289

  15. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury

    PubMed Central

    2012-01-01

    Background Clinical dogma is that healthy urine is sterile and the presence of bacteria with an inflammatory response is indicative of urinary tract infection (UTI). Asymptomatic bacteriuria (ABU) represents the state in which bacteria are present but the inflammatory response is negligible. Differentiating ABU from UTI is diagnostically challenging, but critical because overtreatment of ABU can perpetuate antimicrobial resistance while undertreatment of UTI can result in increased morbidity and mortality. In this study, we describe key characteristics of the healthy and ABU urine microbiomes utilizing 16S rRNA gene (16S rDNA) sequencing and metaproteomics, with the future goal of utilizing this information to personalize the treatment of UTI based on key individual characteristics. Methods A cross-sectional study of 26 healthy controls and 27 healthy subjects at risk for ABU due to spinal cord injury-related neuropathic bladder (NB) was conducted. Of the 27 subjects with NB, 8 voided normally, 8 utilized intermittent catheterization, and 11 utilized indwelling Foley urethral catheterization for bladder drainage. Urine was obtained by clean catch in voiders, or directly from the catheter in subjects utilizing catheters. Urinalysis, urine culture and 16S rDNA sequencing were performed on all samples, with metaproteomic analysis performed on a subsample. Results A total of 589454 quality-filtered 16S rDNA sequence reads were processed through a NextGen 16S rDNA analysis pipeline. Urine microbiomes differ by normal bladder function vs. NB, gender, type of bladder catheter utilized, and duration of NB. The top ten bacterial taxa showing the most relative abundance and change among samples were Lactobacillales, Enterobacteriales, Actinomycetales, Bacillales, Clostridiales, Bacteroidales, Burkholderiales, Pseudomonadales, Bifidobacteriales and Coriobacteriales. Metaproteomics confirmed the 16S rDNA results, and functional human protein-pathogen interactions were noted in

  16. Molecular analysis of complete ssu to lsu rdna sequence in the harmful dinoflagellate alexandrium tamarense (korean isolate, HY970328M)

    NASA Astrophysics Data System (ADS)

    Ki, Jang-Seu; Han, Myung-Soo

    2005-09-01

    New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

  17. Epigeneitc silencing of ribosomal RNA genes by Mybbp1a

    PubMed Central

    2012-01-01

    Background Transcription of the ribosomal RNA gene repeats by Pol I occurs in the nucleolus and is a fundamental step in ribosome biogenesis and protein translation. Due to tight coordination between ribosome biogenesis and cell proliferation, transcription of rRNA and stable maintenance of rDNA clusters are thought to be under intricate control by intercalated mechanisms, particularly at the epigenetic level. Methods and Results Here we identify the nucleolar protein Myb-binding protein 1a (Mybbp1a) as a novel negative regulator of rRNA expression. Suppression of rDNA transcription by Mybbp1a was linked to promoter regulation as illustrated by its binding to the chromatin around the hypermethylated, inactive rDNA gene promoters. Our data further showed that downregulation of Mybbp1a abrogated the local DNA methylation levels and histone marks associated with gene silencing, and altered the promoter occupancy of various factors such UBF and HDACs, consequently leading to elevated rRNA expression. Mechanistically, we propose that Mybbp1a maintains rDNA repeats in a silenced state while in association with the negative epigenetic modifiers HDAC1/2. Conclusions Results from our present work reveal a previously unrecognized co-repressor role of Mybbp1a in rRNA expression. They are further consistent with the scenario that Mybbp1a is an integral constituent of the rDNA epigenetic regulation that underlies the balanced state of rDNA clusters. PMID:22686419

  18. Phylogenetic relationships among higher Nemertean (Nemertea) Taxa inferred from 18S rDNA sequences.

    PubMed

    Sundberg, P; Turbeville, J M; Lindh, S

    2001-09-01

    We estimated the phylogenetic relationships of 15 nemertean (phylum Nemertea) species from the four subclasses Hoplo-, Hetero-, Palaeo-, and Bdellonemertea with 18S rDNA sequence data. Three outgroup taxa were used for rooting: Annelida, Platyhelminthes, and Mollusca. Parsimony and maximum-likelihood analyses supported the monophyletic status of the Heteronemertea and a taxon consisting of hoplonemerteans and Bdellonemertea, while indicating that Palaeonemertea is paraphyletic. The monophyletic status of the two nemertean classes Anopla and Enopla is not supported by the data. The unambiguous clades are well supported, as assessed by a randomization test (bootstrapping) and branch support values. PMID:11527461

  19. Structures of Pathogenic Fungal FKBP12s Reveal Possible Self-Catalysis Function

    PubMed Central

    Tonthat, Nam K.; Juvvadi, Praveen Rao; Zhang, Hengshan; Lee, Soo Chan; Venters, Ron; Spicer, Leonard; Steinbach, William J.; Heitman, Joseph

    2016-01-01

    ABSTRACT Invasive fungal infections remain difficult to treat and require novel targeting strategies. The 12-kDa FK506-binding protein (FKBP12) is a ubiquitously expressed peptidyl-prolyl isomerase with considerable homology between fungal pathogens and is thus a prime candidate for future targeting efforts to generate a panfungal strategy. Despite decades of research on FKBPs, their substrates and mechanisms of action remain unclear. Here we describe structural, biochemical, and in vivo analyses of FKBP12s from the pathogenic fungi Candida albicans, Candida glabrata, and Aspergillus fumigatus. Strikingly, multiple apo A. fumigatus and C. albicans FKBP12 crystal structures revealed a symmetric, intermolecular interaction involving the deep insertion of an active-site loop proline into the active-site pocket of an adjacent subunit. Such interactions have not been observed in previous FKBP structures. This finding indicates the possibility that this is a self-substrate interaction unique to the A. fumigatus and C. albicans fungal proteins that contain this central proline. Structures obtained with the proline in the cis and trans states provide more data in support of self-catalysis. Moreover, cysteine cross-linking experiments captured the interacting dimer, supporting the idea that it forms in solution. Finally, genetic studies exploring the impact of mutations altering the central proline and an adjacent residue provide evidence that any dimeric state formed in vivo, where FKBP12 concentrations are low, is transient. Taken together, these findings suggest a unique mechanism of self-substrate regulation by fungal FKBP12s, lending further novel understanding of this protein for future drug-targeting efforts. PMID:27118592

  20. Allele-specific PCR for detecting the deafness-associated mitochondrial 12S rRNA mutations.

    PubMed

    Ding, Yu; Xia, Bo-Hou; Liu, Qi; Li, Mei-Ya; Huang, Shui-Xian; Zhuo, Guang-Chao

    2016-10-10

    Mutations in mitochondrial 12S rRNA (MT-RNR1) are the important causes of sensorineural hearing loss. Of these mutations, the homoplasmic m.1555A>G or m.1494C>T mutation in the highly conserved A-site of MT-RNR1 gene has been found to be associated with both aminoglycoside-induced and non-syndromic hearing loss in many families worldwide. Since the m.1555A>G and m.1494C>T mutations are sensitive to ototoxic drugs, therefore, screening for the presence of these mutations is important for early diagnosis and prevention of deafness. For this purpose, we recently developed a novel allele-specific PCR (AS-PCR) which is able to simultaneously detect these mutations. To assess its accuracy, in this study, we employed this method to screen the frequency of m.1555A>G and m.1494C>T mutations in 200 deafness patients and 120 healthy subjects. Consequently, four m.1555A>G and four m.1494C>T mutations were identified; among these, only one patient with the m.1494C>T mutation had an obvious family history of hearing loss. Strikingly, clinical evaluation showed that this family exhibited a high penetrance of hearing loss. In particular, the penetrances of hearing loss were 80% with the aminoglycoside included and 20% when excluded. PCR-Sanger sequencing of the mitochondrial genomes confirmed the presence of the m.1494C>T mutation and identified a set of polymorphisms belonging to mitochondrial haplogroup A. However, the lack of functional variants in mitochondrial and nuclear modified genes (GJB2 and TRMU) in this family indicated that mitochondrial haplogroup and nuclear genes may not play important roles in the phenotypic expression of the m.1494C>T mutation. Thus, other modification factors, such as environmental factor, aminoglycosides or epigenetic modification may have contributed to the high penetrance of hearing loss in this family. Taken together, our data showed that this assay is an effective approach that could be used for detection the deafness-associated MT-RNR1

  1. Relationship between organization and function of ribosomal genes in Drosophila melanogaster

    SciTech Connect

    Karpen, G.H.

    1987-01-01

    In most eukaryotic organisms, the genes that encode the 18S and 28S ribosomal RNAs (rDNA genes) are tandemly repeated, and are located in constitutive heterochromatin and/or centromeric or telomeric regions. P-element mediated transformation was used to investigate the relationship between rDNA organization and function in Drosophila melanogaster. Tritiated-uridine incorporation under heat shock conditions and in situ hybridization to rRNA were used to demonstrate that a single rDNA gene inserted into euchromatin can be transcribed at a high rate, in polytene nuclei. P-element-mediated transformation of a single Drosophila rDNA gene was also utilized to investigate the ability of ribosomal DNA to organize a nucleolus. Cytological approaches demonstrated that structures resembling the endogenous nucleoli were preferentially associated with four different sites of rDNA insertion, in polytene nuclei. These mini-nucleoli also contained components specific to the nucleolus, as shown by in situ hybridization to rRNA and indirect immunofluorescence with an antibody that binds to Drosophila nucleoli. The transformed genes were able to partially rescue mutant phenotypes due to a deficiency of rDNA, indicating that the mini-nucleoli were functional.

  2. Localization of 5S and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper.

    PubMed

    Kwon, Jin-Kyung; Kim, Byung-Dong

    2009-02-28

    The loci of the 5S and 45S rRNA genes were localized on chromosomes in five species of Capsicum, namely, annuum, chacoense, frutescens, baccatum, and chinense by FISH. The 5S rDNA was localized to the distal region of one chromosome in all species observed. The number of 45S rDNA loci varied among species; one in annuum, two in chacoense, frutescens, and chinense, and four in baccatum, with the exceptions that 'CM334' of annuum had three loci and 'tabasco' of frutescens had one locus. 'CM334'-derived BAC clones, 384B09 and 365P05, were screened with 5S rDNA as a probe, and BACs 278M03 and 262A23 were screened with 25S rDNA as a probe. Both ends of these BAC clones were sequenced. FISH with these BAC probes on pachytenes from 'CM334' plant showed one 5S rDNA locus and three 45S rDNA loci, consistent with the patterns on the somatic chromosomes. The 5S rDNA probe was also applied on extended DNA fibers to reveal that its coverage measured as long as 0.439 Mb in the pepper genome. FISH techniques applied on somatic and meiotic chromosomes and fibers have been established for chili to provide valuable information about the copy number variation of 45S rDNA and the actual physical size of the 5S rDNA in chili. PMID:19277503

  3. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice.

    PubMed

    Allen, Julie M; Burleigh, J Gordon; Light, Jessica E; Reed, David L

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  4. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice

    PubMed Central

    Burleigh, J. Gordon; Light, Jessica E.; Reed, David L.

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  5. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples

    PubMed Central

    2015-01-01

    Background Next-generation sequencing (NGS) technology has transformed metagenomics because the high-throughput data allow an in-depth exploration of a complex microbial community. However, accurate species identification with NGS data is challenging because NGS sequences are relatively short. Assembling 16S rDNA segments into longer sequences has been proposed for improving species identification. Current approaches, however, either suffer from amplification bias due to one single primer or insufficient 16S rDNA reads in whole genome sequencing data. Results Multiple primers were used to amplify different 16S rDNA segments for 454 sequencing, followed by 454 read classification and assembly. This permitted targeted sequencing while reducing primer bias. For test samples containing four known bacteria, accurate and near full-length 16S rDNAs of three known bacteria were obtained. For real soil and sediment samples containing dioxins in various concentrations, 16S rDNA sequences were lengthened by 50% for about half of the non-rare microbes, and 16S rDNAs of several microbes reached more than 1000 bp. In addition, reduced primer bias using multiple primers was illustrated. Conclusions A new experimental and computational pipeline for obtaining long 16S rDNA sequences was proposed. The capability of the pipeline was validated on test samples and illustrated on real samples. For dioxin-containing samples, the pipeline revealed several microbes suitable for future studies of dioxin chemistry. PMID:26681335

  6. Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera.

    PubMed

    Gokhman, Vladimir E; Anokhin, Boris A; Kuznetsova, Valentina G

    2014-08-01

    Karyotypes of six species belonging to three main clades of parasitoid Hymenoptera, the superfamilies Ichneumonoidea (Ichneumonidae: Ichneumon amphibolus), Cynipoidea (Cynipidae: Diplolepis rosae) and Chalcidoidea (Eurytomidae: Eurytoma robusta, Eu. serratulae and Eu. compressa, and Torymidae: Torymus bedeguaris) were studied using FISH with 18S rDNA and telomeric (TTAGG)n probes. Haploid karyotypes of D. rosae, Eu. robusta and Eu. serratulae carried the only 18S rDNA hybridization signal, whereas those of I. amphibolus and Eu. compressa carried three and two rDNA clusters respectively. In addition, three rDNA sites were visualized in the aneuploid female of T. bedeguaris. The number of rDNA clusters in parasitoid Hymenoptera generally correlates to the chromosome number. Apart from the overwhelming majority of the studied species of aculeate Hymenoptera, no hybridization signals were obtained from FISH with the telomeric (TTAGG)n probe in the examined parasitoid species. These data suggest absence of the canonical (TTAGG)n insect telomeric motif in the Ichneumonoidea, Cynipoidea and Chalcidoidea, and perhaps in parasitoid Hymenoptera in general. PMID:24992984

  7. Using an intervening sequence of Faecalibacterium 16S rDNA to identify poultry feces.

    PubMed

    Shen, Zhenyu; Duan, Chuanren; Zhang, Chao; Carson, Andrew; Xu, Dong; Zheng, Guolu

    2013-10-15

    This study was designed to identify poultry feces-specific marker(s) within sequences of Faecalibacterium 16S rDNA for detecting poultry fecal pollution in water. Bioinformatics tools were used in the comparative analysis of 7,458 sequences of Faecalibacterium 16S rDNA, reportedly associated with various poultry (chicken and turkey) and animal species. One intervening sequence (IVS) within between the hypervariable region 1 and the conserved region 2, designated as IVS-p, was found to be unique to poultry feces. Based on this sequence, a PCR assay (PCR-p) was developed. The PCR-p produced an amplicon of 132 bp only in the test when fecal or wastewater samples from poultry were used, but not when using fecal or wastewater samples from other sources. The non-poultry sources included feces of beef or dairy cattle, dog, horse, human, domestic or wild geese, seagull, sheep, swine, and wild turkey. These data indicate that IVS-p may prove to be a useful genetic marker for the specific identification of poultry fecal pollution in environmental waterways. Furthermore, results of data mining and PCR assay indicate that the IVS-p may have a broad geographic distribution. This report represents initial evidence of the potential utility of ribosomal intervening sequences as genetic markers for tracking host sources of fecal pollution in waterways. PMID:24011842

  8. Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA.

    PubMed Central

    Wesson, D M; McLain, D K; Oliver, J H; Piesman, J; Collins, F H

    1993-01-01

    The two internal transcribed spacers (ITS1 and ITS2) of rDNA of three members of the Ixodes ricinus "complex" (Acari: Ixodidae) were sequenced. Sequence variation was assessed for the North American species I. scapularis, I. dammini, and I. pacificus at three levels: within individual/population, between individuals of different geographic origin within a species, and between species. Both spacers are highly variable, particularly with regard to small deletions and additions which may arise via replication slippage. Homogenization of rDNA multigene arrays for particular sequence variants appears to occur at a relatively rapid rate, since I. pacificus sequences differ from the others at numerous invariant sites, facilitating the use of these sequences to assess sibling species relationships. Based on maximum parsimony and two distance methods (unweighted pair-group with arithmetic means and neighbor-joining), sequence variation in ITS1 and ITS2 suggests that I. scapularis and I. dammini are not distinct species and that even individuals from geographically isolated locations are very similar. Individuals from geographically separated populations of I. pacificus appear to be relatively less closely related to each other but distinct from those of I. scapularis/dammini. In I. scapularis/dammini, diversity within and between individuals from geographic populations contributed equally to total sequence diversity. PMID:8234280

  9. Protein purification in multicompartment electrolyzers for crystal growth of r-DNA products in microgravity

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Casale, Elena; Carter, Daniel; Snyder, Robert S.; Wenisch, Elisabeth; Faupel, Michel

    1990-01-01

    Recombinant-DNA (deoxyribonucleic acid) (r-DNA) proteins, produced in large quantities for human consumption, are now available in sufficient amounts for crystal growth. Crystallographic analysis is the only method now available for defining the atomic arrangements within complex biological molecules and decoding, e.g., the structure of the active site. Growing protein crystals in microgravity has become an important aspect of biology in space, since crystals that are large enough and of sufficient quality to permit complete structure determinations are usually obtained. However even small amounts of impurities in a protein preparation are anathema for the growth of a regular crystal lattice. A multicompartment electrolyzer with isoelectric, immobiline membranes, able to purify large quantities of r-DNA proteins is described. The electrolyzer consists of a stack of flow cells, delimited by membranes of very precise isoelectric point (pI, consisting of polyacrylamide supported by glass fiber filters containing Immobiline buffers and titrants to uniquely define a pI value) and very high buffering power, able to titrate all proteins tangent or crossing such membranes. By properly selecting the pI values of two membranes delimiting a flow chamber, a single protein can be kept isoelectric in a single flow chamber and thus, be purified to homogeneity (by the most stringent criterion, charge homogeneity).

  10. Phylogenetic relationships between Bacillus species and related genera inferred from 16s rDNA sequences

    PubMed Central

    Wei Wang, Mi Sun

    2009-01-01

    Neighbor-joining, maximum-parsimony, minimum-evolution, maximum-likelihood and Bayesian trees constructed based on 16S rDNA sequences of 181 type strains of Bacillus species and related taxa manifested nine phylogenetic groups. The phylogenetic analysis showed that Bacillus was not a monophyletic group. B. subtilis was in Group 1. Group 4, 6 and 8 respectively consisted of thermophiles, halophilic or halotolerant bacilli and alkaliphilic bacilli. Group 2, 4 and 8 consisting of Bacillus species and related genera demonstrated that the current taxonomic system did not agree well with the 16S rDNA evolutionary trees. The position of Caryophanaceae and Planococcaceae in Group 2 suggested that they might be transferred into Bacillaceae, and the heterogeneity of Group 2 implied that some Bacillus species in it might belong to several new genera. Group 9 was mainly comprised of the genera (excluding Bacillus) of Bacillaceae, so some Bacillus species in Group 9: B. salarius, B. qingdaonensis and B. thermcloacae might not belong to Bacillus. Four Bacillus species, B. schlegelii, B. tusciae, B. edaphicus and B. mucilaginosus were clearly placed outside the nine groups. PMID:24031394

  11. Phylogenetic position of the Phacotaceae within the Chlamydophyceaeas revealed by analysis of 18S rDNA and rbcL sequences.

    PubMed

    Hepperle, D; Nozaki, H; Hohenberger, S; Huss, V A; Morita, E; Krienitz, L

    1998-10-01

    Four genera of the Phacotaceae (Phacotus, Pteromonas, Wislouchiella, Dysmorphococcus), a family of loricated green algal flagellates within the Volvocales, were investigated by means of transmission electron microscopy and analysis of the nuclear encoded small-subunit ribosomal RNA (18S rRNA) genes and the plastid-encoded rbcL genes. Additionally, the 18S rDNA of Haematococcus pluvialis and the rbcL sequences of Chlorogonium elongatum, C. euchlorum, Dunaliella parva, Chloromonas serbinowii, Chlamydomonas radiata, and C. tetragama were determined. Analysis of ultrastructural data justified the separation of the Phacotaceae into two groups. Phacotus, Pteromonas, and Wislouchiella generally shared the following characters: egg-shaped protoplasts, a single pyrenoid with planar thylakoid double-lamellae, three-layered lorica, flagellar channels as part of the central lorica layer, mitochondria located in the central cytoplasm, lorica development that occurs in mucilaginous zoosporangia that are to be lysed, and no acid-resistant cell walls. Dysmorphococcus was clearly different in each of the characters mentioned. Direct comparison of sequences of Phacotus lenticularis, Pteromonas sp., Pteromonas protracta, and Wislouchiella planctonica revealed DNA sequence homologies of >/=98. 0% within the 18S gene and 93.9% within the rbcL gene. D. globosus was quite different from these species, with a maximum of 92.9% homology in the 18S rRNA and gene. It showed major similarities to the 18S rDNA of Dunaliella salina, with 95.3%, and to the rbcL sequence of Chlamydomonas tetragama, with 90.3% sequence homology. Additionally, the Phacotaceae sensu stricto exclusively shared 10 (rbcL: 4) characters which were present neither in other Chlamydomonadales nor in Dysmorphococcus globosus. Different phylogenetic analysis methods confirmed the hypothesis that the Phacotaceae are polyphyletic. The Phacotaceae sensu stricto form a stable cluster with affinities to the

  12. Initial results on the molecular phylogeny of the Nudibranchia (Gastropoda, Opisthobranchia) based on 18S rDNA data.

    PubMed

    Wollscheid, E; Wägele, H

    1999-11-01

    This study investigated nudibranch phylogeny on the basis of 18S rDNA sequence data. 18S rDNA sequence data of 19 taxa representing the major living orders and families of the Nudibranchia were analyzed. Representatives of the Cephalaspidea, Anaspidea, Gymnomorpha, Prosobranchia, and Pulmonata were also sequenced and used as outgroups. An additional 28 gastropod sequences taken from GenBank were also included in our analyses. Phylogenetic analyses of these more than 50 gastropod taxa provide strong evidence for support of the monophyly of the Nudibranchia. The monophyly of the Doridoidea, Cladobranchia, and Aeolidoidea within the Nudibranchia are also strongly supported. Phylogenetic utility and information content of the 18S rDNA sequences for Nudibranchia, and Opisthobranchia in general, are examined using the program SplitsTree as well as phylogenetic reconstructions using distance and parsimony approaches. 0Results based on these molecular data are compared with hypotheses about nudibranch phylogeny inferred from morphological data. PMID:10603252

  13. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    PubMed

    Holland, Michelle L; Lowe, Robert; Caton, Paul W; Gemma, Carolina; Carbajosa, Guillermo; Danson, Amy F; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E; Rakyan, Vardhman K

    2016-07-29

    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults. PMID:27386920

  14. 16S rDNA analysis of archaea indicates dominance of Methanobacterium and high abundance of Methanomassiliicoccaceae in rumen of Nili-Ravi buffalo.

    PubMed

    Paul, S S; Deb, S M; Dey, A; Somvanshi, S P S; Singh, D; Rathore, R; Stiverson, J

    2015-10-01

    The molecular diversity of rumen methanogens was investigated using 16S rDNA gene library prepared from the rumen contents of Nili-Ravi buffaloes. Microbial genomic DNA was isolated from four adult male fistulated buffaloes and PCR conditions were set up using specific primers. Amplified product was cloned into a suitable vector, and the inserts of positive clones were sequenced. A total of 142 clones were examined, and the analysis revealed 46 species level (0.01 distance) operational taxonomic units (OTUs). Twenty six OTUs comprising 89 clones (63% of the total clones) were taxonomically assigned to Methanobacterium genus and the majority of them had highest percent identity with Methanobacterium flexile among cultured methanogens. Five OTUs comprising 27 clones (19% of total clones) were taxonomically assigned to Methanomicrobium genus and these clones showed highest sequence identity with Methanomicrobium mobile. Only two OTUs comprising 6 clones (4% of total clones) were assigned to Methanobrevibacter genus. A total of 17 clones belonging to 10 species level OTUs showed highest percent identity (ranging from 85 to 95%) with Methanomassilicoccus luminyensis and were taxonomically classified as Methanomassiliicocaceae. Out of the 142 rDNA clones, 112 clones, which constitute 79% of the total clones representing 42 OTUs, had less than 98.5% sequence identity with any of the cultured strains of methanogens and represent novel species of methanogens. This study has revealed the largest assortment of hydrogenotrophic methanogen phylotypes ever identified from the rumen of Nili-Ravi buffaloes. The study indicates that Methanobacterium is the most dominant methanogen in the rumen of Nili-Ravi buffalo. This is also the first report on the presence of methanogens phylogenetically close to M. luminyensis, an H2 dependent methylotrophic methanogen, in the rumen of buffaloes at such a high level of abundance. PMID:26103451

  15. Distribution of tritium labeled 12(S) hydroxy-eicosatetraenoic acid (12-HETE) in the rat.

    PubMed

    Clouet, P; Niot, I; Bouchard, P; Gree, R; Lellouche, J P; Beaucourt, J P; Fonlupt, P; Duperray, B; Bezard, J; Lagarde, M

    1991-07-01

    The in vivo metabolism of 12-(S)-Hydroxy-eicosatetraenoic acid (12-HETE), the end-lipoxygenase product of arachidonic acid in platelets, has been investigated in the rat. Fifty microcuries of 5,6-[3H]-12-HETE (50 Ci/mmol) were injected to anesthetized rats and the radioactivity was followed in plasma. At the end of the experiment, various organs of the animal were removed and the radioactivity attached to them was determined. The label of the plasma plateaued to approximately one third of the initial radioactivity ten minutes after the injection. Among the various organs tested (brain, heart, intestine, kidney, liver, lungs, spleen, testis/uterus) the kidney was far the most active to accumulate 12-HETE and/or its labeled metabolites, and no radioactivity could be detected in urine during the course of the experiment. The analysis of lipid extracts from the various tissues revealed that 12-HETE was not accumulating in its unesterified form but was likely bound to phospholipids. We conclude that, although the label providing from the initial 12-HETE did not completely disappear from plasma, circulating 12-HETE cannot be considered as a circulating marker of cell activation. PMID:1771238

  16. Electron microscopic in situ hybridization and autoradiography: Localization and transcription of rDNA in human lymphocyte nucleoli

    SciTech Connect

    Wachtler, F.; Mosgoeller, W.S.; Schwarzacher, H.G. )

    1990-04-01

    The distribution of ribosomal DNA (rDNA) in the nucleoli of human lymphocytes was revealed by in situ hybridization with a nonautoradiographic procedure at the electron microscopic level. rDNA is located in the dense fibrillar component of the nucleolus but not in the fibrillar centers. In the same cells the incorporation of tritiated uridine takes place in the dense fibrillar component of the nucleolus as seen by autoradiography followed by gold latensification. From these findings it can be concluded that the transcription of ribosomal DNA takes place in the dense fibrillar component of the nucleolus.

  17. Adaptation of a membrane bioreactor to 1,2-dichloroethane revealed by 16S rDNA pyrosequencing and dhlA qPCR.

    PubMed

    Munro, Jacob E; Liew, Elissa F; Coleman, Nicholas V

    2013-01-01

    A pilot-scale membrane bioreactor (MBR) was tested for bioremediation of 1,2-dichloroethane (DCA) in groundwater. Pyrosequencing of 16S rDNA was used to study changes in the microbiology of the MBR over 137 days, including a 67 day initial adaptation phase of increasing DCA concentration. The bacterial community in the MBR was distinct from those in soil and groundwater at the same site, and was dominated by alpha- and beta- proteobacteria, including Rhodobacter, Methylibium, Rhodopseudomonas, Methyloversatilis, Caldilinea, Thiobacillus, Azoarcus, Hyphomicrobium, and Leptothrix. Biodegradation of DCA in the MBR began after 26 days, and was sustained for the remainder of the experiment. A quantitative PCR (qPCR) assay for the dehalogenase gene dhlA was developed to monitor DCA-degrading bacteria in the MBR, and a positive correlation was seen between dhlA gene abundance and the cumulative amount of DCA that had entered the MBR. Genera previously associated with aerobic DCA biodegradation (Xanthobacter, Ancylobacter, Azoarcus) were present in the MBR, and the abundance of Azoarcus correlated well with dhlA gene abundance. This study shows that MBRs can be an effective method for removal of DCA from groundwater, and that the dhlA qPCR is a rapid and sensitive method for detection of DCA-degrading bacteria. PMID:24175727

  18. Organization of rRNA structural genes in the archaebacterium Thermoplasma acidophilum.

    PubMed Central

    Tu, J; Zillig, W

    1982-01-01

    In the archaebacterium Thermoplasma acidophilum, each of the structural genes for 5S, 16S and 23S rRNA occur once per genome. In contrast to those of eubacteria and eukaryotes, they appear unlinked. The distance between the 16S and the 23S rDNA is at least 7.5 Kb, that between 23S and 5S rDNA at least 6 Kb and that between 16S and 5S rDNA at least 1.5 Kb. No linkage between those genes has been found by the analysis of recombinant plasmids carrying Bam HI and Hind III rDNA fragments as by hybridizing those plasmids to fragments of Thermoplasma DNA generated by 6 individual restriction endonucleases, recognizing hexanucleotide sequences. Images PMID:7155894

  19. Molecular characterization of Gastrodiscoides hominis (Platyhelminthes: Trematoda: Digenea) inferred from ITS rDNA sequence analysis.

    PubMed

    Goswami, L M; Prasad, P K; Tandon, V; Chatterjee, A

    2009-06-01

    Gastrodiscoides hominis (Digenea: Paramphistomata: Gastrodiscidae) is an amphistomid intestinal fluke of pigs causing gastrodiscoidiosis. With the use of molecular tools assisting the conventional diagnostic procedures, we aimed at finding out molecular characterization of G. hominis using PCR amplifications of rDNA ITS (1, 2) sequences. The sequences obtained (GenBank accession numbers EF027096, EF027097, EF027098, EU887294, and EU887295) were compared with available sequences of other digenean parasites, particularly those having a zoonotic potential in the northeastern region of India. The BLAST search revealed a close similarity with members of the family Paramphistomidae, showing maximum similarity with the amphistome, Homalogaster paloniae (subfamily Paramphistominae). Based on various tree construction methods, phylogeny of G. hominis is discussed. PMID:19198879

  20. Molecular Taxonomy of Ganoderma cupreum from Southern India Inferred from ITS rDNA Sequences Analysis

    PubMed Central

    2013-01-01

    Ganoderma is a cosmopolitan wood-rot basidiomycete that has been extensively studied for its pathogencity and medicinal properties. Identification of Ganoderma based on macro-microscopic features led to large number of synonyms which resulted in 250 taxonomic names. A Ganoderma species collected from Courtallam, Tamil Nadu was identified as G. cupreum. Phylogenetic analysis inferred from internal transcribed spacer rDNA region resolved the Indian isolate MYC1 as Ganoderma cupreum which clustered with Australian and Asian "cupreum" clade with 85% bootstrap support BS and shared 99% and 98% nucleotide similarity with Malaysian and Australian 'cupreum' respectively. This study represents the first molecular evidence of G. cupreum from Asian origin. PMID:24493948

  1. Combining denaturing gradient gel electrophoresis of 16S rDNA V3 region and 16S-23S rDNA spacer region polymorphism analyses for the identification of staphylococci from Italian fermented sausages.

    PubMed

    Blaiotta, Giuseppe; Pennacchia, Carmelina; Ercolini, Danilo; Moschetti, Giancarlo; Villani, Francesco

    2003-09-01

    Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (PCR-DGGE) and 16S-23S rDNA intergenic spacer region polymorphism (ISR-PCR) analyses were tested as tool for differentiation of staphylococcal strains commonly isolated from fermented sausages. Variable V3 regions of 25 staphylococcal reference strains and 96 wild strains of species belonging to the genera Staphylococcus, Micrococcus and Kocuria were analyzed. PCR-DGGE profiles obtained were species-specific for S. sciuri, S. haemolyticus, S. hominis, S. auricularis, S. condimenti, S. kloosi, S. vitulus, S. succinus, S. pasteuri, S. capitis and S. (Macrococcus) caseolyticus. Moreover, 7 groups could be distinguished gathering the remaining species as result of the separation of the V3 rDNA amplicons in DGGE. Furthermore, the combination of the results obtained by PCR-DGGE and ISR-PCR analyses allowed a clear differentiation of all the staphylococcal species analysed, with exception of the pairs S. equorum-S. cohnii and S. carnosus-S. schleiferi. The suitability of both molecular techniques and of the combination their results for the identification of staphylococci was validated analysing partial nucleotide sequence of the 16S rDNA of a representative number of wild strains. PMID:14529185

  2. Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha.

    PubMed

    Klabunde, J; Diesel, A; Waschk, D; Gellissen, G; Hollenberg, C P; Suckow, M

    2002-05-01

    We have investigated the methylotrophic yeast Hansenula polymorpha as a host for the co-integration and expression of multiple heterologous genes using an rDNA integration approach. The ribosomal DNA (rDNA) of H. polymorpha was found to consist of a single rDNA cluster of about 50-60 repeats of an 8-kb unit located on chromosome II. A 2.4-kb segment of H. polymorpha rDNA encompassing parts of the 25S, the complete 5S and the non-transcribed spacer region between 25S and 18S rDNA was isolated and inserted into conventional integrative H. polymorpha plasmids harboring the Saccharomyces- cerevisiae-derived URA3 gene for selection. These rDNA plasmids integrated homologously into the rDNA repeats of a H. polymorpha (odc1) host as several independent clusters. Anticipating that this mode of multiple-cluster integration could be used for the simultaneous integration of several distinct rDNA plasmids, the host strain was co-transformed with a mixture of up to three different plasmids, all bearing the same URA3 selection marker. Transformations indeed resulted in mitotically stable strains harboring one, two, or all three plasmids integrated into the rDNA. The overall copy number of the plasmids integrated did not exceed the number of rDNA repeats present in the untransformed host strain, irrespective of the number of different plasmids involved. Strains harboring different plasmids co-expressed the introduced genes, resulting in functional proteins. Thus, this approach provides a new and attractive tool for the rapid generation of recombinant strains that simultaneously co-produce several proteins in desired stoichiometric ratios. PMID:12021801

  3. Molecular rDNA phylogeny of Telotylenchidae Siddiqi, 1960 and evaluation of tail termini

    PubMed Central

    Carta, L. K.; Skantar, A. M.; Handoo, Z. A.

    2010-01-01

    Three stunt nematode species, Tylenchorhynchus leviterminalis, T. dubius and T. claytoni were characterized with segments of small subunit 18S and large subunit 28S rDNA sequence and placed in molecular phylogenetic context with other polyphyletic taxa of Telotylenchidae. Based upon comparably sized phylogenetic breadth of outgroups and ingroups, the 28S rDNA contained three times the number of phylogenetically informative alignment characters relative to the alignment total compared to the larger 18S dataset even though there were fewer than half the number of taxa represented. Tail shapes and hyaline termini were characterized for taxa within these subfamily trees, and variability discussed for some related species. In 18S trees, similar terminal tail thickness was found in a well-supported clade of three Tylenchorhynchus: broad-tailed T. leviterminalis branched outside relatively narrow-tailed T. claytoni and T. nudus. Terminal tail thickness within Merliniinae, Telotylenchinae and related taxa showed a mosaic distribution. Thick-tailed Trophurus, Macrotrophurus and putative Paratrophurus did not group together in the 18S tree. Extremely thickened tail termini arose at least once in Amplimerlinius and Pratylenchoides among ten species of Merliniinae plus three Pratylenchoides, and three times within twelve taxa of Telotylenchinae and Trophurinae. Conflicting generic and family nomenclature based on characters such as pharyngeal overlap are discussed in light of current molecular phylogeny. Contrary to some expectations from current taxonomy, Telotylenchus and Tylenchorhynchus cf. robustus did not cluster with three Tylenchorhynchus spp. Two putative species of Neodolichorhynchus failed to group together, and two populations of Scutylenchus quadrifer demonstrated as much or greater genetic distance between them than among three related species of Merlinius. PMID:22736870

  4. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai. PMID:23996126

  5. Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms.

    PubMed

    Cloix, C; Tutois, S; Mathieu, O; Cuvillier, C; Espagnol, M C; Picard, G; Tourmente, S

    2000-05-01

    A physical map of a pericentromeric region of chromosome 5 containing a 5S rDNA locus and spanning approximately 1000 kb was established using the CIC YAC clones. Three 5S rDNA arrays were resolved in this YAC contig by PFGE analysis and we have mapped different types of sequences between these three blocks. 5S rDNA units from each of these three arrays of chromosome 5, and from chromosomes 3 and 4, were isolated by PCR. A total of 38 new DNA sequences were obtained. Two types of 5S rDNA repeated units exist: the major variant with 0.5-kb repeats and one with short repeats (251 bp) only detected on YAC 11A3 from chromosome 3. Although the 38 sequences displayed noticeable heterogeneity, we were able to group them according to their 5S array origin. The presence of 5S array-specific variants was confirmed with the restriction polymorphism study of all the YACs carrying 5S units. PMID:10810091

  6. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  7. Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis.

    PubMed

    Pandya, P R; Singh, K M; Parnerkar, S; Tripathi, A K; Mehta, H H; Rank, D N; Kothari, R K; Joshi, C G

    2010-01-01

    Bacterial communities in buffalo rumen were characterized using a culture-independent approach for a pooled sample of rumen fluid from 3 adult Surti buffaloes. Buffalo rumen is likely to include species of various bacterial phyla, so 16S rDNA sequences were amplified and cloned from the sample. A total of 191 clones were sequenced and similarities to known 16S rDNA sequences were examined. About 62.82% sequences (120 clones) had >90% similarity to the 16S rDNA database sequences. Furthermore, about 34.03% of the sequences (65 clones) were 85-89% similar to 16S rDNA database sequences. For the remaining 3.14%; the similarity was lower than 85% Phylogenetic analyses were also used to infer the makeup of bacterial communities in the rumen of Surti buffalo. As a result, we distinguished 42 operational taxonomic units (OTUs) based on unique 16S r DNA sequences: 19 OTUs affiliated to an unidentified group (45.23% of total OTUs), 11 OTUs of the phylum Firmicutes, also known as the low G+C group (26.19%), 7 OTUs of the Cytophaga-Flexibacter-Bacteroides phylum (16.66%), 4 OTUs of Spirochaetes (9.52%), and 1 OTU of Actinobacteria (2.38%). These include 10 single-clone OTUs, so Good's coverage (94.76%) of 16S rRNA libraries indicated that sequences identified in the libraries represent the majority of bacterial diversity present in rumen. PMID:20720314

  8. Methanogen diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis.

    PubMed

    Singh, K M; Tripathi, A K; Pandya, P R; Parnerkar, S; Rank, D N; Kothari, R K; Joshi, C G

    2012-06-01

    The methanogenic communities in buffalo rumen were characterized using a culture-independent approach of a pooled sample of rumen fluid from three adult Surti buffaloes. Buffalo rumen is likely to include species of various methanogens, so 16S rDNA sequences were amplified and cloned from the sample. A total of 171 clones were sequenced to examine 16S rDNA sequence similarity. About 52.63% sequences (90 clones) had ≥ 90% similarity, whereas, 46.78% of the sequences (81 clones) were 75-89% similar to 16S rDNA database sequences, respectively. Phylogenetic analyses were also used to infer the makeup of methanogenic communities in the rumen of Surti buffalo. As a result, we distinguished 23 operational taxonomic units (OTUs) based on unique 16S rDNA sequences: 12 OTUs (52.17%) affiliated to Methanomicrobiales order, 10 OTUs (43.47%) of the order Methanobacteriales and one OTU (4.34%) of Methanosarcina barkeri like clone, respectively. In addition, the population of Methanomicrobiales and Methabacteriales orders were also observed, accounting 4% and 2.17% of total archea. This study has revealed the largest assortment of hydrogenotrophic methanogens phylotypes ever identified from rumen of Surti buffaloes. PMID:21507441

  9. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  10. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno.

    PubMed

    Ravasi, D F; Peduzzi, S; Guidi, V; Peduzzi, R; Wirth, S B; Gilli, A; Tonolla, M

    2012-05-01

    Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past. PMID:22433067

  11. Macrolide Resistance in Treponema pallidum Correlates With 23S rDNA Mutations in Recently Isolated Clinical Strains

    PubMed Central

    Molini, Barbara J.; Tantalo, Lauren C.; Sahi, Sharon K.; Rodriguez, Veronica I.; Brandt, Stephanie L.; Fernandez, Mark C.; Godornes, Charmie B.; Marra, Christina M.; Lukehart, Sheila A.

    2016-01-01

    Background High rates of 23S rDNA mutations implicated in macrolide resistance have been identified in Treponema pallidum samples from syphilis patients in many countries. Nonetheless, some clinicians have been reluctant to abandon azithromycin as a treatment for syphilis, citing the lack of a causal association between these mutations and clinical evidence of drug resistance. Although azithromycin resistance has been demonstrated in vivo for the historical Street 14 strain, no recent T. pallidum isolates have been tested. We used the well-established rabbit model of syphilis to determine the in vivo efficacy of azithromycin against 23S rDNA mutant strains collected in 2004 to 2005 from patients with syphilis in Seattle, Wash. Methods Groups of 9 rabbits were each infected with a strain containing 23S rDNA mutation A2058G (strains UW074B, UW189B, UW391B) or A2059G (strains UW228B, UW254B, and UW330B), or with 1 wild type strain (Chicago, Bal 3, and Mexico A). After documentation of infection, 3 animals per strain were treated with azithromycin, 3 were treated with benzathine penicillin G, and 3 served as untreated control groups. Treatment efficacy was documented by darkfield microscopic evidence of T. pallidum, serological response, and rabbit infectivity test. Results Azithromycin uniformly failed to cure rabbits infected with strains harboring either 23S rDNA mutation, although benzathine penicillin G was effective. Infections caused by wild type strains were successfully treated by either azithromycin or benzathine penicillin G. Conclusions A macrolide resistant phenotype was demonstrated for all strains harboring a 23S rDNA mutation, demonstrating that either A2058G or A2059G mutation confers in vivo drug resistance. PMID:27513385

  12. The use of 16S and 16S-23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes.

    PubMed

    Jeng, R S; Svircev, A M; Myers, A L; Beliaeva, L; Hunter, D M; Hubbes, M

    2001-02-01

    The identification of Gram-negative pathogenic and non-pathogenic bacteria commonly isolated from an orchard phylloplane may result in a time consuming and tedious process for the plant pathologist. The paper provides a simple "one-step" protocol that uses the polymerase chain reaction (PCR) to amplify intergenic spacer regions between 16S and 23S genes and a portion of 16S gene in the prokaryotic rRNA genetic loci. Amplified 16S rDNA, and restriction fragment length polymorphisms (RFLP) following EcoRI digestion produced band patterns that readily distinguished between the plant pathogen Erwinia amylovora (causal agent of fire blight in pear and apple) and the orchard epiphyte Pantoea agglomerans (formerly E. herbicola). The amplified DNA patterns of 16S-23S spacer regions may be used to differentiate E. amylovora at the intraspecies level. Isolates of E. amylovora obtained from raspberries exhibited two major fragments while those obtained from apples showed three distinct amplified DNA bands. In addition, the size of the 16S-23S spacer region differs between Pseudomonas syringae and Pseudomonas fluorescens. The RFLP pattern generated by HaeIII digestion may be used to provide a rapid and accurate identification of these two common orchard epiphytes. PMID:11166101

  13. Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana.

    PubMed

    Campell, B R; Song, Y; Posch, T E; Cullis, C A; Town, C D

    1992-03-15

    We have isolated a genomic clone containing Arabidopsis thaliana 5S ribosomal RNA (rRNA)-encoding genes (rDNA) by screening an A. thaliana library with a 5S rDNA probe from flax. The clone isolated contains seven repeat units of 497 bp, plus 11 kb of flanking genomic sequence at one border. Sequencing of individual subcloned repeat units shows that the sequence of the 5S rRNA coding region is very similar to that reported for other flowering plants. Four A. thaliana ecotypes were found to contain approx. 1000 copies of 5S rDNA per haploid genome. Southern-blot analysis of genomic DNA indicates that 5S rDNA occurs in long tandem arrays, and shows the presence of numerous restriction-site polymorphisms among the six ecotypes studied. PMID:1348233

  14. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  15. Identification of a potential fungal species by 18S rDNA for ligninases production.

    PubMed

    Ferhan, M; Santos, S N; Melo, I S; Yan, N; Sain, M

    2013-12-01

    Fungal species for ligninases production was investigated by 18S ribosomal DNA sequence analysis. Two primer sets were chosen to amplify a major part of the 18S rDNA, which resulted in intense PCR product of approximately 550-820 bp in size per sample. The results suggest that the 18S rDNA-based approach is a useful tool for identification of unknown potential fungal species for ligninases production. The isolated fungal species produces mainly manganese peroxidase (MnP). The enzyme oxidized a variety of the usual MnP substrates, including lignin related polyphenols. Time course studies showed that maximum production of ligninolytic enzymes MnP (64 IU L⁻¹), lignin peroxidase (26.35 IU L⁻¹), and laccase (5.44 IU L⁻¹), respectively, were achieved after 10 days of cultivation under optimum conditions. Furthermore, the biological decolorization of Remazol Brilliant Blue R dye following 10 days of cultivation was 94 %. NCBI BLAST was used to search for closest matched sequences in the GenBank database and based on sequence homology the first BLAST hit was Dothioraceae sp. LM572 with accession number EF060858.1. PMID:23744034

  16. Ectomycorrhizal iconoclasts: the ITS rDNA diversity and nitrophilic tendencies of fetid Russula.

    PubMed

    Avis, Peter G

    2012-01-01

    Fetid Russula are frequently dominant ectomycorrhizal fungi, and some appear to be especially nitrophilic. However, little is known about their phylogenetic relationships or how common nitrophilic traits are in this group. This study addresses this gap and presents a phylogenetic analysis of ITS rDNA sequences and a meta-analysis of studies that examine ectomycorrhizal fungi response to nitrogen increase. The phylogenetic analysis indicates that (i) this lineage contains numerous unidentified taxa; (ii) the taxa have distinct geographic distributions; and (iii) the misuse of names such as R amoenolens, R. foetens or R. pectinatoides is common. Twenty-three well supported phylotypes were identified and include clades specific to western North America, eastern North America, Europe and Asia, while morphologically similar collections from tropical-equatorial regions are distinct. The metaanalysis shows that nitrophilic tendencies appear throughout fetid Russulas suggesting that this character is not an isolated trait within this subgenus but instead is a more general feature of the group overall. Mapping these tendencies across a broader portion of the Russulaceae shows that this trait is more regularly found in the basal Russula lineages and Lactarius spp., suggesting that this ability evolved early in these fungi. PMID:22495448

  17. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  18. TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters.

    PubMed

    Xu, Yinfeng; Wan, Wei; Shou, Xin; Huang, Rui; You, Zhiyuan; Shou, Yanhong; Wang, Lingling; Zhou, Tianhua; Liu, Wei

    2016-07-01

    Cells control their metabolism through modulating the anabolic and catabolic pathways. TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2), participates in cell catabolism by serving as a promoter of autophagy. Here we uncover a novel function of TP53INP2 in protein synthesis, a major biosynthetic and energy-consuming anabolic process. TP53INP2 localizes to the nucleolus through its nucleolar localization signal (NoLS) located at the C-terminal domain. Chromatin immunoprecipitation (ChIP) assays detected an association of TP53INP2 with the ribosomal DNA (rDNA), when exclusion of TP53INP2 from the nucleolus repressed rDNA promoter activity and the production of ribosomal RNA (rRNA) and proteins. The removal of TP53INP2 also impaired the association of the POLR1/RNA polymerase I preinitiation complex (PIC) with rDNA. Further, TP53INP2 interacts directly with POLR1 PIC, and is required for the assembly of the complex. These data indicate that TP53INP2 promotes ribosome biogenesis through facilitating rRNA synthesis at the nucleolus, suggesting a dual role of TP53INP2 in cell metabolism, assisting anabolism on the nucleolus, and stimulating catabolism off the nucleolus. PMID:27172002

  19. Variability of 18rDNA loci in four lace bug species (Hemiptera, Tingidae) with the same chromosome number

    PubMed Central

    Golub, Natalia V.; Golub, Viktor B.; Kuznetsova, Valentina G.

    2015-01-01

    Abstract Male karyotypes of Elasmotropis testacea (Herrich-Schaeffer, 1835), Tingis cardui (Linnaeus, 1758), Tingis crispata (Herrich-Schaeffer, 1838), and Agramma femorale Thomson, 1871 (Heteroptera, Cimicomorpha, Tingidae) were analyzed using conventional chromosome staining and FISH with 18S rDNA and (TTAGG)n telomeric probes. The FISH technique was applied for the first time in the Tingidae. In spite of the fact that all species showed the same chromosome number (2n = 12 + XY), they have significant differences in the number and position of rDNA loci. FISH with the classical insect (TTAGG)n probe produced no signals on chromosomes suggesting telomeres in lace bugs to be of some other molecular composition. Tingidae share absence of the (TTAGG)n telomeric sequence with all so far studied taxa of the advanced true bug infraorders Cimicomorpha and Pentatomomorpha. PMID:26753071

  20. Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets.

    PubMed

    Bucar, F; Schneider, I; Ogmundsdóttir, H; Ingólfsdóttir, K

    2004-11-01

    Several lichen compounds, i.e. lobaric acid (1), a beta-orcinol depsidone from Stereocaulon alpinum L., (+)-protolichesterinic acid (2), an aliphatic alpha-methylene-gamma-lactone from Cetraria islandica Laur. (Parmeliaceae), (+)-usnic acid (3), a dibenzofuran from Cladonia arbuscula (Wallr.) Rabenh. (Cladoniaceae), parietin (4), an anthraquinone from Xanthoria elegans (Link) Th. Fr. (Calaplacaceae) and baeomycesic acid (5), a beta-orcinol depside isolated from Thamnolia vermicularis (Sw.) Schaer. var. subuliformis (Ehrh.) Schaer. were tested for inhibitory activity on platelet-type 12(S)-lipoxygenase using a cell-based in vitro system in human platelets. Lobaric acid (1) and (+)-protolichesterinic acid (2) proved to be pronounced inhibitors of platelet-type 12(S)-lipoxygenase, whereas baeomycesic acid (5) showed only weak activity (inhibitory activity at a concentration of 100 microg/ml: (1) 93.4+/-6.62%, (2) 98,5+/-1.19%, 5 14.7+/-2.76%). Usnic acid (3) and parietin (4) were not active at this concentration. 1 and 2 showed a clear dose-response relationship in the range of 3.33-100 microg/ml. According to the calculated IC50 values the highest inhibitory activity was observed for the depsidone 1 (IC50 = 28.5 microM) followed by 2 (IC50 = 77.0 microM). The activity of 1 was comparable to that of the flavone baicalein, which is known as a selective 12(S)-lipoxygenase inhibitor (IC50 = 24.6 microM). PMID:15636173

  1. Molecular characterization of Stictodora tridactyla (Trematoda: Heterophyidae) from Kuwait Bay using rDNA ITS and mtCO1.

    PubMed

    Al-Kandari, Wafa Y; Alnaqeeb, Majed A; Isaac, Asha M; Al-Bustan, Suzanne A

    2015-11-01

    Stictodora tridactyla is an intestinal fluke in the family Heterophyidae that parasitizes shorebirds and mammals, including humans. Its metacercarial cyst stage was reported in the Arabian killifish, Aphanius dispar, at Kuwait Bay. In the present study, Cerithidea cingulata was found to serve as the first intermediate host of S. tridactyla. In order to establish the snail-fish link in the life cycle of S. tridactyla, complete sequences of ribosomal DNA internal transcribed spacer region 1 and 2 (rDNA ITS1 and ITS2) and partial sequence of cytochrome oxidase subunit 1 were obtained for metacercarial cysts isolated from the fish A. dispar and rediae isolated from the snail C. cingulata. Sequence alignment demonstrated that these larval stages belong to the same heterophyid species, S. tridactyla. Phylogenetic analysis based on rDNA ITS1, ITS2, and mtCO1 confirmed the position of S. tridactyla within the Heterophyidae and found it to cluster with Haplorchis spp. The present study represents the first molecular study correlating the larval stages of S. tridactyla using rDNA ITS1, ITS2, and mtCO1 and examining the phylogenetic relationships of S. tridactyla with different heterophyid species. PMID:26268569

  2. Wild Termitomyces Species Collected from Ondo and Ekiti States Are More Related to African Species as Revealed by ITS Region of rDNA

    PubMed Central

    Oyetayo, Victor Olusegun

    2012-01-01

    Molecular identification of eighteen Termitomyces species collected from two states, Ondo and Ekiti in Nigeria was carried out using the internal transcribed spacer (ITS) region. The amplicons obtained from rDNA of Termitomyces species were compared with existing sequences in the NCBI GenBank. The results of the ITS sequence analysis discriminated between all the Termitomyces species (obtained from Ondo and Ekiti States) and Termitomyces sp. sequences obtained from NCBI GenBank. The degree of similarity of T1 to T18 to gene of Termitomyces sp. obtained from NCBI ranges between 82 and 99 percent. Termitomyces species from Garbon with ascension number AF321374 was the closest relative of T1 to T18 except T12 that has T. eurhizus and T. striatus as the closet relative. Phylogenetic tree generated with ITS sequences obtained from NCBI GenBank data revealed that T1 to T18 are more related to Termitomyces species indigenous to African countries such as Senegal, Congo, and Gabon. PMID:22649309

  3. Morphology and SSU rDNA sequence analysis of two hypotrichous ciliates (Protozoa, Ciliophora, Hypotrichia) including the new species Metaurostylopsis parastruederkypkeae n. sp.

    NASA Astrophysics Data System (ADS)

    Lu, Borong; Wang, Chundi; Huang, Jie; Shi, Yuhong; Chen, Xiangrui

    2016-05-01

    The morphology and phylogeny of two hypotrichous ciliates, Metaurostylopsis parastruederkypkeae n. sp. and Neourostylopsis flavicana (Wang et al., 2011) Chen et al., 2013 were investigated based on morphology, infraciliature and the small subunit (SSU) ribosomal RNA gene (rRNA) sequence. The new species, M. parastruederkypkeae n. sp. was identified according to its characteristics: body shape ellipsoidal, size about (165-200) × (45-60) μm in vivo, cell color reddish; two types of cortical granules including wheat grain-like and yellow-greenish larger ones along the marginal cirri rows and dorsal kineties and dot-like and reddish smaller ones, grouped around marginal cirri on ventral side and arranged in short lines on dorsal side; 26-41 adoral membranelles; three frontal and one parabuccal, five to seven frontoterminal, one buccal, and three to six transverse cirri; seven to thirteen midventral pairs; five to nine unpaired ventral cirri, five to seven left and three to five right marginal rows; and three complete dorsal kineties. Phylogenetic analysis based on SSU rDNA sequences showed that both Metaurostylopsis and Neourostylopsis are monophyletic. As the internal relationship between and within both genera are not clear, further studies on the species in these two genera are necessary. The key characteristics of all known twelve Metaurostylopsis-Apourostylopsis-Neourostylopsis species complex were updated.

  4. Evaluation of direct 16S rDNA sequencing as a metagenomics-based approach to screening bacteria in bottled water.

    PubMed

    Hansen, Trine; Skånseng, Beate; Hoorfar, Jeffrey; Löfström, Charlotta

    2013-09-01

    Deliberate or accidental contamination of food, feed, and water supplies poses a threat to human health worldwide. A rapid and sensitive detection technique that could replace the current labor-intensive and time-consuming culture-based methods is highly desirable. In addition to species-specific assays, such as PCR, there is a need for generic methods to screen for unknown pathogenic microorganisms in samples. This work presents a metagenomics-based direct-sequencing approach for detecting unknown microorganisms, using Bacillus cereus (as a model organism for B. anthracis) in bottled water as an example. Total DNA extraction and 16S rDNA gene sequencing were used in combination with principle component analysis and multicurve resolution to study detection level and possibility for identification. Results showed a detection level of 10(5) to 10(6) CFU/L. Using this method, it was possible to separate 2 B. cereus strains by the principal component plot, despite the close sequence resemblance. A linear correlation between the artificial contamination level and the relative amount of the Bacillus artificial contaminant in the metagenome was observed, and a relative amount value above 0.5 confirmed the presence of Bacillus. The analysis also revealed that background flora in the bottled water varied between the different water types that were included in the study. This method has the potential to be adapted to other biological matrices and bacterial pathogens for fast screening of unknown bacterial threats in outbreak situations. PMID:23971801

  5. Karyotype divergence and spreading of 5S rDNA sequences between genomes of two species: darter and emerald gobies ( Ctenogobius , Gobiidae).

    PubMed

    Lima-Filho, P A; Bertollo, L A C; Cioffi, M B; Costa, G W W F; Molina, W F

    2014-01-01

    Karyotype analyses of the cryptobenthic marine species Ctenogobius boleosoma and C. smaragdus were performed by means of classical and molecular cytogenetics, including physical mapping of the multigene 18S and 5S rDNA families. C. boleosoma has 2n = 44 chromosomes (2 submetacentrics + 42 acrocentrics; FN = 46) with a single chromosome pair each carrying 18S and 5S ribosomal sites; whereas C. smaragdus has 2n = 48 chromosomes (2 submetacentrics + 46 acrocentrics; FN = 50), also with a single pair bearing 18S rDNA, but an extensive increase in the number of GC-rich 5S rDNA sites in 21 chromosome pairs. The highly divergent karyotypes among Ctenogobius species contrast with observations in several other marine fish groups, demonstrating an accelerated rate of chromosomal evolution mediated by both chromosomal rearrangements and the extensive dispersion of 5S rDNA sequences in the genome. PMID:24643007

  6. 18S rDNA Sequences from Microeukaryotes Reveal Oil Indicators in Mangrove Sediment

    PubMed Central

    Santos, Henrique F.; Cury, Juliano C.; Carmo, Flavia L.; Rosado, Alexandre S.; Peixoto, Raquel S.

    2010-01-01

    Background Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. Methodology/Principal Findings We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. Conclusions/Significance We believe that

  7. Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing.

    PubMed

    Portune, Kevin J; Pérez, M Carmen; Álvarez-Hornos, F Javier; Gabaldón, Carmen

    2015-01-01

    Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods. PMID:24950754

  8. Mitochondrial haplotypes may modulate the phenotypic manifestation of the deafness-associated 12S rRNA 1555A>G mutation

    PubMed Central

    Lu, Jianxin; Qian, Yaping; Li, Zhiyuan; Yang, Aifen; Zhu, Yi; Li, Ronghua; Yang, Li; Tang, Xiaowen; Chen, Bobei; Ding, Yu; Li, Yongyan; You, Junyan; Zheng, Jing; Tao, Zhihua; Zhao, Fuxin; Wang, Jindan; Sun, Dongmei; Zhao, Jianyue; Meng, Yanzi; Guan, Min-Xin

    2009-01-01

    Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ~3.96% for the 1555A>G mutation in this hearing impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G

  9. Prevalence of the A1555G (12S rRNA) and tRNASer(UCN) mitochondrial mutations in hearing-impaired Brazilian patients.

    PubMed

    Abreu-Silva, R S; Lezirovitz, K; Braga, M C C; Spinelli, M; Pirana, S; Della-Rosa, V A; Otto, P A; Mingroni-Netto, R C

    2006-02-01

    Mitochondrial mutations are responsible for at least 1% of the cases of hereditary deafness, but the contribution of each mutation has not yet been defined in African-derived or native American genetic backgrounds. A total of 203 unselected hearing-impaired patients were screened for the presence of the mitochondrial mutation A1555G in the 12S rRNA gene and mutations in the tRNASer(UCN) gene in order to assess their frequency in the ethnically admixed Brazilian population. We found four individuals with A1555G mutation (2%), which is a frequency similar to those reported for European-derived populations in unselected samples. On the other hand, complete sequencing of the tRNASer(UCN) did not reveal reported pathogenic substitutions, namely A7445G, 7472insC, T7510C, or T7511C. Instead, other rare substitutions were found such as T1291C, A7569G, and G7444A. To evaluate the significance of these findings, 110 "European-Brazilians" and 190 "African-Brazilians" unrelated hearing controls were screened. The T1291C, A7569G and G7444A substitutions were each found in about 1% (2/190) of individuals of African ancestry, suggesting that they are probably polymorphic. Our results indicate that screening for the A1555G mutation is recommended among all Brazilian deaf patients, while testing for mutations in the tRNASer(UCN) gene should be considered only when other frequent deafness-causing mutations have been excluded or in the presence of a maternal transmission pattern. PMID:16470309

  10. Molecular cytogenetic analysis of the Appenine endemic cyprinid fish Squalius lucumonis and three other Italian leuciscines using chromosome banding and FISH with rDNA probes.

    PubMed

    Rossi, Anna Rita; Milana, Valentina; Hett, Anne Kathrin; Tancioni, Lorenzo

    2012-12-01

    Karyotype and other chromosomal characteristics of the Appenine endemic cyprinid fish, Toscana stream chub Squalius lucumonis, were analysed using conventional banding and FISH with 45S and 5S rDNA probes. The diploid chromosome number (2n = 50) and karyotype characteristics including pericentromeric heterochromatic blocks and GC-rich CMA(3)-positive sites corresponding to both positive Ag-NORs and 45S rDNA loci on the short arms of a single medium-sized submetacentric chromosome pair were consistent with those found in most European leuciscine cyprinids. On other hand, 5S rDNA FISH in the Toscana stream chub and three other Italian leuciscines, S. squalus, Rutilus rubilio and Telestes muticellus, revealed a species-specific hybridization pattern, i.e. signals on four (S. lucumonis), three (S. squalus and R. rubilio) and two (T. muticellus) chromosome pairs. Whereas all the species shared the 5S rDNA loci on the largest subtelocentric chromosome pair, a "leuciscine" cytotaxonomic marker, S. lucumonis showed both classes of rDNA loci tandem aligned on the short arms of chromosome pair No. 12. The present findings suggest that the observed high variability of 5S rDNA loci provides a powerful tool for investigation of karyotype differentiation in karyologically conservative leuciscine fishes. PMID:23238894

  11. Diversity and Recombination of Dispersed Ribosomal DNA and Protein Coding Genes in Microsporidia

    PubMed Central

    Ironside, Joseph Edward

    2013-01-01

    Microsporidian strains are usually classified on the basis of their ribosomal DNA (rDNA) sequences. Although rDNA occurs as multiple copies, in most non-microsporidian species copies within a genome occur as tandem arrays and are homogenised by concerted evolution. In contrast, microsporidian rDNA units are dispersed throughout the genome in some species, and on this basis are predicted to undergo reduced concerted evolution. Furthermore many microsporidian species appear to be asexual and should therefore exhibit reduced genetic diversity due to a lack of recombination. Here, DNA sequences are compared between microsporidia with different life cycles in order to determine the effects of concerted evolution and sexual reproduction upon the diversity of rDNA and protein coding genes. Comparisons of cloned rDNA sequences between microsporidia of the genus Nosema with different life cycles provide evidence of intragenomic variability coupled with strong purifying selection. This suggests a birth and death process of evolution. However, some concerted evolution is suggested by clustering of rDNA sequences within species. Variability of protein-coding sequences indicates that considerable intergenomic variation also occurs between microsporidian cells within a single host. Patterns of variation in microsporidian DNA sequences indicate that additional diversity is generated by intragenomic and/or intergenomic recombination between sequence variants. The discovery of intragenomic variability coupled with strong purifying selection in microsporidian rRNA sequences supports the hypothesis that concerted evolution is reduced when copies of a gene are dispersed rather than repeated tandemly. The presence of intragenomic variability also renders the use of rDNA sequences for barcoding microsporidia questionable. Evidence of recombination in the single-copy genes of putatively asexual microsporidia suggests that these species may undergo cryptic sexual reproduction, a

  12. Retroposons do jump: a B2 element recently integrated in an 18S rDNA gene.

    PubMed Central

    Oberbäumer, I

    1992-01-01

    Several cDNA clones were isolated from cDNA libraries constructed with mRNA longer than 28S RNA from the murine cell line PYS-2/12. The plasmids have inserts containing 1-1.2 kb of the ribosomal 5' external transcribed spacer followed by nearly 700 nt of sequence for 18S rRNA and ending with a B2 element (retroposon). The cloned sequence differed in a few positions from published ribosomal sequences. The 3' adjacent genomic sequence was obtained by polymerase chain reaction (PCR) and showed that the B2 element has a poly(A) tail of about 50 nt and is surrounded by perfect direct repeats of 15 nt. Analysis of genomic DNA from several murine cell lines revealed that PYS cells contain at least one copy of 18S RNA with the B2 element which is not present in the genome of other murine cell lines derived from the same teratocarcinoma. Similarly, rRNA transcripts containing the B2 element were only detected in PYS cells. According to the publication dates of the different cell lines, the B2 element must have been integrated into an rRNA transcription unit during the years 1970 through 1974 thus proving that retroposons (SINEs) can still be inserted into the genome in our times. Images PMID:1311830

  13. Characterization of Fecal Microbiota from a Salmonella Endemic Cattle Herd as Determined by Oligonucleotide Fingerprinting of RDNA Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal (GI) tract microbiota is composed of complex communities. For all species examined thus far, culture and molecular analyses show that these communities are highly diverse and individuals harbor unique consortia. These microorganisms are influenced by the diet, host, and environm...

  14. rRNA genes from the lower chordate Herdmania momus: structural similarity with higher eukaryotes.

    PubMed Central

    Degnan, B M; Yan, J; Hawkins, C J; Lavin, M F

    1990-01-01

    Ascidians, primitive chordates that have retained features of the likely progenitors to all vertebrates, are a useful model to study the evolutionary relationship of chordates to other animals. We have selected the well characterized ribosomal RNA (rRNA) genes to investigate this relationship, and we describe here the cloning and characterization of an entire ribosomal DNA (rDNA) tandem repeat unit from a lower chordate, the ascidian Herdmania momus. rDNA copy number and considerable sequence differences were observed between two H. momus populations. Comparison of rDNA primary sequence and rRNA secondary structures from H. momus with those from other well characterized organisms, demonstrated that the ascidians are more closely related to other chordates than invertebrates. The rDNA tandem repeat makes up a larger percentage (7%) of the genome of this animal than in other higher eukaryotes. The total length of the spacer and transcribed region in H. momus rDNA is small compared to most higher eukaryotes, being less than 8 kb, and the intergenic spacer region consists of smaller internal repeats. Comparative analysis of rDNA sequences has allowed the construction of secondary structures for the 18S, 5.8S and 26S rRNAs. Images PMID:2263465

  15. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene.

    PubMed Central

    Kurtzman, C P; Robnett, C J

    1997-01-01

    Clinically important species of Candida and related organisms were compared for extent of nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA (rDNA) gene. This rDNA region is sufficiently variable to allow reliable separation of all known clinically significant yeast species. Of the 204 described species examined, 21 appeared to be synonyms of previously described organisms. Phylogenetic relationships among the species are presented. PMID:9114410

  16. Genetic Structure Inferred from Mitochondrial 12S Ribosomal RNA Sequence of Oncomelania quadrasi, the Intermediate Snail Host of Schistosoma japonicum in the Philippines

    PubMed Central

    Saijuntha, Weerachai; Jarilla, Blanca; Leonardo, Alvin K.; Sunico, Louie S.; Leonardo, Lydia R.; Andrews, Ross H.; Sithithaworn, Paiboon; Petney, Trevor N.; Kirinoki, Masashi; Kato-Hayashi, Naoko; Kikuchi, Mihoko; Chigusa, Yuichi; Agatsuma, Takeshi

    2014-01-01

    Species and subspecies of the Oncomelania hupensis species complex are recognized as intermediate hosts of Schistosoma japonicum. Of these species and subspecies, O. quadrasi is distributed throughout the Philippines. This study used 12S ribosomal RNA sequences to explore the genetic structure of O. quadrasi populations in the Philippines. Three subspecies, O. h. hupensis, O. h. formosana, and O. h. chiui of this group were also examined. The phylogenetic tree and haplotypes network showed that O. quadrasi separated from the subspecies. Ten O. quadrasi haplotypes (Oq1–Oq10) clustered in relation to their geographic origin. Genetic differentiation (FST) and estimated gene flow (Nm) among populations showed significant differences, ranging from 0.556–1.000 to 0.00–0.74, respectively. Genetic differences among groups (FCT = 0.466), populations within a group (FSC = 0.727), and populations (FST = 0.854) were observed. These results indicate that the O. quadrasi populations in the Philippines have a substructure associated with their geographic origin. PMID:24686739

  17. Regulation of Arabidopsis thaliana 5S rRNA Genes.

    PubMed

    Vaillant, Isabelle; Tutois, Sylvie; Cuvillier, Claudine; Schubert, Ingo; Tourmente, Sylvette

    2007-05-01

    The Arabidopsis thaliana genome comprises around 1,000 copies of 5S rRNA genes encoding both major and minor 5S rRNAs. In mature wild-type leaves, the minor 5S rRNA genes are silent. Using different mutants of DNA methyltransferases (met1, cmt3 and met1 cmt3), components of the RNAi pathway (ago4) or post-translational histone modifier (hda6/sil1), we show that the corresponding proteins are needed to maintain proper methylation patterns at heterochromatic 5S rDNA repeats. Using reverse transcription-PCR and cytological analyses, we report that a decrease of 5S rDNA methylation at CG or CNG sites in these mutants leads to the release of 5S rRNA gene silencing which occurred without detectable changes of the 5S rDNA chromatin structure. In spite of severely reduced DNA methylation, the met1 cmt3 double mutant revealed no increase in minor 5S rRNA transcripts. Furthermore, the release of silencing of minor 5S rDNAs can be achieved without increased formation of euchromatic loops by 5S rDNA, and is independent from the global heterochromatin content. Additionally, fluorescence in situ hybridization with centromeric 180 bp repeats confirmed that these highly repetitive sequences, in spite of their elevated transcriptional activity in the DNA methyltransferase mutants (met1, cmt3 and met1 cmt3), remain within chromocenters of the mutant nuclei. PMID:17412735

  18. Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast.

    PubMed Central

    Gangloff, S; Zou, H; Rothstein, R

    1996-01-01

    The genomic stability of the rDNA tandem array in yeast is tightly controlled to allow sequence homogenization and at the same time prevent deleterious rearrangements. In our study, we show that gene conversion, and not unequal sister chromatid exchange, is the predominant recombination mechanism regulating the expansion and contraction of the rDNA array. Furthermore, we found that RAD52, which is essential for gene conversion, is required for marker duplication stimulated in the absence of the two yeast type I topoisomerases. Our results have implications for the mechanisms regulating genomic stability of repetitive sequence families found in all eukaryotes. Images PMID:8612596

  19. Synthesis in Escherichia coli of human adenovirus type 12 transforming proteins encoded by early region 1A 13S mRNA and 12S mRNA.

    PubMed Central

    Kimelman, D; Lucher, L A; Brackmann, K H; Symington, J S; Ptashne, M; Green, M

    1984-01-01

    Human adenovirus (Ad)-encoded early region 1A (E1A) tumor (T) antigens have been implicated in the positive regulation of viral early genes, the positive and negative regulation of some cellular genes, and cell immortalization and transformation. To further study the Ad E1A T antigens and to facilitate their purification, we have cloned cDNA copies of the Ad12 E1A 13S mRNA and 12S mRNA downstream of a hybrid Escherichia coli trp-lac (tac) promoter. Up to 8% of the protein synthesized in E. coli cells transformed by each of the two different Ad12 E1A cDNA constructs were immunoprecipitated as a Mr 47,000 protein by antibody to a synthetic peptide encoded in the Ad12 E1A DNA sequence. Both proteins produced in E. coli appear to be authentic and complete Ad12 E1A T antigens because they possess (i) the Ad12 E1A NH2-terminal amino acid sequence predicted from the DNA sequence; (ii) the Ad12 E1A COOH-terminal sequence, as shown by immunoprecipitation with anti-peptide antibody; and (iii) a molecular weight and an acidic isoelectric point similar to that of the E1A T antigens synthesized in Ad12-infected and transformed mammalian cells. The T antigens were purified to near homogeneity in yields of 100-200 micrograms per g wet weight of transformed E. coli cells. Images PMID:6387701

  20. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing.

    PubMed

    Eastman, Alexander W; Yuan, Ze-Chun

    2014-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID

  1. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis.

    PubMed Central

    Godon, J J; Zumstein, E; Dabert, P; Habouzit, F; Moletta, R

    1997-01-01

    The bacterial community structure of a fluidized-bed reactor fed by vinasses (wine distillation waste) was analyzed. After PCR amplification, four small-subunit (SSU) rDNA clone libraries of Bacteria, Archaea, Procarya, and Eucarya populations were established. The community structure was determined by operational taxonomic unit (OTU) phylogenetic analyses of 579 partial rDNA sequences (about 500 bp long). A total of 146 OTUs were found, comprising 133, 6, and 7 from the Bacteria, Archaea, and Eucarya domains, respectively. A total of 117 bacterial OTU were affiliated with major phyla: low-G+C gram-positive bacteria, Cytophaga-Flexibacter-Bacteroides, Proteobacteria, high-G+C gram-positive bacteria, and Spirochaetes, where the clone distribution was 34, 26, 17, 6, and 4%, respectively. The other 16 bacterial OTUs represent 13% of the clones. They were either affiliated with narrow phyla such as Planctomyces-Chlamydia, green nonsulfur bacteria, or Synergistes, or deeply branched on the phylogenetic tree. A large number of bacterial OTUs are not closely related to any other hitherto determined sequences. The most frequent bacterial OTUs represents less than 5% of the total bacterial SSU rDNA sequences. However, the 20 more frequent bacterial OTUs describe at least 50% of these sequences. Three of the six Archaea OTUs correspond to 95% of the Archaea population and are very similar to already known methanogenic species: Methanosarcina barkeri, Methanosarcina frisius, and Methanobacterium formicicum. In contrast, the three other Archaea OTUs are unusual and are related to thermophilic microorganisms such as Crenarchaea or Thermoplasma spp. Five percent of the sequences analyzed were chimeras and were removed from the analysis. PMID:9212428

  2. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing

    PubMed Central

    Eastman, Alexander W.; Yuan, Ze-Chun

    2015-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID

  3. Identification of a 5S rDNA spacer type specific Triticum urartu and wheats containing the T. urartu genome.

    PubMed

    Allaby, R G; Brown, T A

    2000-04-01

    A PCR system was designed to amplify 5S spacer rDNA specifically from homeologous chromosome 1 in a variety of species representative of the Aegilops and Triticum genera. Two polymerase chain reaction (PCR) primer combinations were used, one of which appears to be apomorphic in nature and specific to chromosome 1A in Triticum urartu and tetraploid and hexaploid wheats containing the AA genome donated by T. urartu. The value of studying single repeat types to investigate the molecular evolution of 5S-rDNA arrays is considered. PMID:10791812

  4. 16S and 23S plastid rDNA phylogenies of Prototheca species and their auxanographic phenotypes1

    PubMed Central

    Ewing, Aren; Brubaker, Shane; Somanchi, Aravind; Yu, Esther; Rudenko, George; Reyes, Nina; Espina, Karen; Grossman, Arthur; Franklin, Scott

    2014-01-01

    Because algae have become more accepted as sources of human nutrition, phylogenetic analysis can help resolve the taxonomy of taxa that have not been well studied. This can help establish algal evolutionary relationships. Here, we compare Auxenochlorella protothecoides and 23 strains of Prototheca based on their complete 16S and partial 23S plastid rDNA sequences along with nutrient utilization (auxanographic) profiles. These data demonstrate that some of the species groupings are not in agreement with the molecular phylogenetic analyses and that auxanographic profiles are poor predictors of phylogenetic relationships. PMID:25937672

  5. Identification of the Bacterial Community of Maple Sap by Using Amplified Ribosomal DNA (rDNA) Restriction Analysis and rDNA Sequencing

    PubMed Central

    Lagacé, L.; Pitre, M.; Jacques, M.; Roy, D.

    2004-01-01

    The bacterial community of maple sap was characterized by analysis of samples obtained at the taphole of maple trees for the 2001 and 2002 seasons. Among the 190 bacterial isolates, 32 groups were formed according to the similarity of the banding patterns obtained by amplified ribosomal DNA restriction analysis (ARDRA). A subset of representative isolates for each ARDRA group was identified by 16S rRNA gene fragment sequencing. Results showed a wide variety of organisms, with 22 different genera encountered. Pseudomonas and Ralstonia, of the γ- and β-Proteobacteria, respectively, were the most frequently encountered genera. Gram-positive bacteria were also observed, and Staphylococcus, Plantibacter, and Bacillus were the most highly represented genera. The sampling period corresponding to 50% of the cumulative sap flow percentage presented the greatest bacterial diversity according to its Shannon diversity index value (1.1). γ-Proteobacteria were found to be dominant almost from the beginning of the season to the end. These results are providing interesting insights on maple sap microflora that will be useful for further investigation related to microbial contamination and quality of maple products and also for guiding new strategies on taphole contamination control. PMID:15066796

  6. KMo12S14

    NASA Astrophysics Data System (ADS)

    Villars, P.; Cenzual, K.; Daams, J.; Gladyshevskii, R.; Shcherban, O.; Dubenskyy, V.; Melnichenko-Koblyuk, N.; Pavlyuk, O.; Savysyuk, I.; Stoyko, S.; Sysa, L.

    This document is part of Subvolume A6 `Structure Types. Part 6: Space Groups (166) R-3m - (160) R3m' of Volume 43 `Crystal Structures of Inorganic Compounds' of Landolt-Börnstein - Group III `Condensed Matter'.

  7. Interordinal mammalian relationships: evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences.

    PubMed

    Lavergne, A; Douzery, E; Stichler, T; Catzeflis, F M; Springer, M S

    1996-10-01

    The complete mitochondrial 12S rRNA sequences of 5 placental mammals belonging to the 3 orders Sirenia, Proboscidea, and Hyracoidea are reported together with phylogenetic analyses (distance and parsimony) of a total of 51 mammalian orthologues. This 12S rRNA database now includes the 2 extant proboscideans (the African and Asiatic elephants Loxodonta africana and Elephas maximus), 2 of the 3 extant sirenian genera (the sea cow Dugong dugon and the West Indian manatee Trichechus manatus), and 2 of the 3 extant hyracoid genera (the rock and tree hyraxes Procavia capensis and Dendrohyrax dorsalis). The monophyly of the 3 orders Sirenia, Proboscidea, and Hyracoidea is supported by all kinds of analysis. There are 23 and 3 diagnostic subsitutions shared by the 2 proboscideans and the 2 hyracoids, respectively, but none by the 2 sirenians. The 2 proboscideans exhibit the fastest rates of 12S rRNA evolution among the 11 placental orders studied. Based on various taxonomic sampling methods among eutherian orders and marsupial outgroups, the most strongly supported clade in our comparisons clusters together the 3 orders Sirenia, Proboscidea, and Hyracoidea in the superorder Paenungulata. Within paenungulates, the grouping of sirenians and proboscideans within the mirorder Tethytheria is observed. This branching pattern is supported by all analyses by high bootstrap percentages (BPs) and decay indices. When only one species is selected per order or suborder, the taxonomic sampling leads to a relative variation in bootstrap support of 53% for Tethytheria (BPs ranging from 44 to 93%) and 7% for Paernungulata (92-99%). When each order or suborder is represented by two species, this relative variation decreased to 10% for Tethytheria (78-87%) and 3% for Paenungulata (96-99%). Two nearly exclusive synapomorphies for paenungulates are identified in the form of one transitional compensatory change, but none were detected for tethytherians. Such a robust and reliable resolution of

  8. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH

    PubMed Central

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G. incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G. raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution. PMID:23826377

  9. Molecular phylogenetics at the Felsenstein zone: approaching the Strepsiptera problem using 5.8S and 28S rDNA sequences.

    PubMed

    Hwang, U W; Kim, W; Tautz, D; Friedrich, M

    1998-06-01

    Recent efforts to reconstruct the phylogenetic position of the insect order Strepsiptera have elicited a major controversy in molecular phylogenetics. We sequenced the 5.8S rDNA and major parts of the 28S rDNA 5' region of the strepsipteran species Stylops melittae. Their evolutionary dynamics were analyzed together with previously published insect rDNA sequences to identify tree estimation bias risks and to explore additional sources of phylogenetic information. Several major secondary structure changes were found as being autapomorphic for the Diptera, the Strepsiptera, or the Archaeognatha. Besides elevated substitution rates a significant AT bias was present in dipteran and strepsipteran 28S rDNA which, however, was restricted to stem sites in the Diptera while also affecting single-stranded sites in the Strepsiptera. When dipteran taxa were excluded from tree estimation all methods consistently supported the placement of Strepsiptera to within the Holometabola. When dipteran taxa were included maximum likelihood continued to favor a sister-group relationship of Strepsiptera with Mecoptera while remaining methods strongly supported a sister-group relationship with Diptera. Parametric bootstrap analysis revealed maximum likelihood as a consistent estimator if rate heterogeneity across sites was taken into account. Though the position of Strepsiptera within Holometabola remains elusive, we conclude that the evolution of dipteran and strepsipteran rDNA involved similar yet independent changes of substitution parameters. PMID:9667995

  10. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses.

    PubMed

    Lee, Jiyoung; Phung, Nguyet Thu; Chang, In Seop; Kim, Byung Hong; Sung, Ha Chin

    2003-06-27

    A fuel cell-type electrochemical device has been used to enrich microbes oxidizing acetate with concomitant electricity generation without using an electron mediator from activated sludge. The device generated a stable current of around 5 mA with complete oxidation of 5 mM acetate at the hydraulic retention time of 2.5 h after 4 weeks of enrichment. Over 70% of electrons available from acetate oxidation was recovered as current. Carbon monoxide or hydrogen did not influence acetate oxidation or current generation from the microbial fuel cell (MFC). Denaturing gradient gel electrophoresis showed that DNA extracted from the acetate-enriched MFC had different 16S rDNA patterns from those of sludge or glucose+glutamate-enriched MFCs. Nearly complete 16S rDNA sequence analyses showed that diverse bacteria were enriched in the MFC fed with acetate. Electron microscopic observations showed biofilm developed on the electrode, but not microbial clumps observed in MFCs fed with complex fuel such as glucose and wastewater from a corn-processing factory. PMID:12829284

  11. Identification of Thiobacillus ferrooxidans strains based on restriction fragment length polymorphism analysis of 16S rDNA.

    PubMed

    Kamimura, K; Wakai, S; Sugio, T

    2001-01-01

    The 16S rDNA sequences from ten strains of Thiobacillus ferrooxidans were amplified by PCR. The products were compared by performing restriction fragment length polymorphism (RFLP) analysis with restriction endonucleases Alu I, Hap II, Hha I, and Hae III. The RFLP patterns revealed that T. ferrooxidans could be distinguished from other iron- or sulphur-oxidizing bacteria such as T. thiooxidans NB1-3, T. caldus GO-1, Leptospirillum ferrooxidans and the marine iron-oxidizing bacterium strain KU2-11. The RFLP patterns obtained with Alu I, Hap II, and Hae III were the same for nine strains of T. ferrooxidans except for strain ATCC 13661. The RFLP patterns for strains NASF-1 and ATCC 13661 with Hha I were distinct from those for other T. ferrooxidans strains. The 16S rDNA sequence of T. ferrooxidans NASF-1 possessed an additional restriction site for Hha I. These results show that iron-oxidizing bacteria isolated from natural environments were rapidly identified as T. ferrooxidans by the method combining RFLP analysis with physiological analysis. PMID:11414499

  12. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences. PMID:26812576

  13. Genus-specific profile of acetic acid bacteria by 16S rDNA PCR-DGGE.

    PubMed

    De Vero, Luciana; Giudici, Paolo

    2008-06-30

    An effective method for grouping acetic acid bacteria (AAB) genera was defined and evaluated as a tool for preliminary screening of the major AAB species involved in vinegar production. Acetobacter, Gluconobacter, Gluconacetobacter, Asaia, Neoasaia, Saccharibacter, Frateuria and Kozakia AAB strains were screened on the basis of the 16S rDNA sequences using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique. The DGGE profile of all the strains tested, consisted of one single band of approximately 330 bp for each strain and allowed their clustering. The results obtained clearly reflected in silico phylogenetic analysis of the AAB species used in this study, in fact, the species with a higher 16S rDNA sequence homology showed a similar electrophoretic profile. In particular almost all the species belonging to the genus Gluconacetobacter showed a DGGE pattern nearly identical and well distinct from all the other AAB genera. Furthermore by PCR-DGGE it was possible to clearly group the species more frequently recovered from vinegar fermentation which are mainly distributed in the genera Acetobacter, Gluconobacter and Gluconacetobacter. PMID:17919758

  14. Telonemia-specific environmental 18S rDNA PCR reveals unknown diversity and multiple marine-freshwater colonizations

    PubMed Central

    2010-01-01

    Background Recent surveys of eukaryote 18S rDNA diversity in marine habitats have uncovered worldwide distribution of the heterotrophic eukaryote phylum Telonemia. Here we investigate the diversity and geographic distribution of Telonemia sequences by in-depth sequencing of several new 18S rDNA clone libraries from both marine and freshwater sites by using a Telonemia-specific PCR strategy. Results In contrast to earlier studies that have employed eukaryote-wide PCR design, we identified a large and unknown diversity of phylotypes and the first rigorous evidence for several freshwater species, altogether comprising 91 unique sequences. Phylogenies of these and publicly available sequences showed 20 statistically supported sub-clades as well as several solitary phylotypes with no clear phylogenetic affiliation. Most of these sub-clades were composed of phylotypes from different geographic regions. Conclusions By using specific PCR primers we reveal a much larger diversity of Telonemia from environmental samples than previously uncovered by eukaryote-wide primers. The new data substantially diminish the geographic structuring of clades identified in earlier studies. Nevertheless, since these clades comprise several distinct phylotypes we cannot exclude endemicity at species level. We identified two freshwater clades and a few solitary phylotypes, implying that Telonemia have colonized freshwater habitats and adapted to the different environmental and ecological conditions at independent occasions. PMID:20534135

  15. Binding of 12-s-12 dimeric surfactants to calf thymus DNA: Evaluation of the spacer length influence.

    PubMed

    Sarrión, Beatriz; Bernal, Eva; Martín, Victoria Isabel; López-López, Manuel; López-Cornejo, Pilar; García-Calderón, Margarita; Moyá, María Luisa

    2016-08-01

    Several cationic dimeric surfactants have shown high affinity towards DNA. Bis-quaternary ammonium salts (m-s-m) have been the most common type of dimeric surfactants investigated and it is generally admitted that those that posses a short spacer (s≤3) show better efficiency to bind or compact DNA. However, experimental results in this work show that 12-s-12 surfactants with long spacers make the surfactant/ctDNA complexation more favorable than those with short spacers. A larger contribution of the hydrophobic interactions, which control the binding Gibbs energy, as well as a higher average charge of the surfactant molecules bound to the nucleic acid, which favors the electrostatic attractions, could explain the experimental observations. Dimeric surfactants with intermediate spacer length seem to be the less efficient for DNA binding. PMID:27108208

  16. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  17. TURKEY FECAL MICROBIAL COMMUNITY STRUCTURE AND ECOLOGICAL FUNCTIONS REVEALED BY 16S RDNA AND METAGENOME SEQUENCES

    EPA Science Inventory

    Turkey feces are an important source of fecal waste in the United States. With the exception of isolated studies on bacterial pathogens, little is known about the type of bacteria inhabiting the turkey gut. In order to understand the microbial diversity and functional genes assoc...

  18. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes

    PubMed Central

    Spoz, Aneta; Boron, Alicja; Porycka, Katarzyna; Karolewska, Monika; Ito, Daisuke; Abe, Syuiti; Kirtiklis, Lech; Juchno, Dorota

    2014-01-01

    Abstract The crucian carp Carassius carassius (Linnaeus, 1758) is a species with restricted and decreasing distribution in Europe. Six males and six females of the species from the Baltic Sea basin in Poland were examined to show sequentially CMA3/AgNO3 staining pattern, DAPI staining, and, for the first time in literature, molecular cytogenetic analysis using double-colour fluorescence in situ hybridisation (FISH) with 28S and 5S rDNA probes. The karyotype consisted of 20 m, 36 sm and 44 sta chromosomes, NF=156. The AgNO3 stained NORs were most frequently located terminally in the short arms of two sm and two sta elements, and CMA3-positive sites were also observed suggesting abundant GC-rich repetitive DNA in the regions. Other CMA3-positive sites in the short arms of six to ten sm and sta chromosomes were detected. The results based on 28S rDNA FISH confirmed the location of rDNA sites. DAPI-negative staining of NORs suggested the scarcity of AT-rich DNA in the regions. FISH with 5S rDNA probe revealed 8–14 loci (ten and 12 in respectively 49 and 29% of metaphases). They were located in two sm and eight to ten sta chromosomes and six of them were larger than others. Simultaneously, mapping of the two rDNA families on the chromosomes of C. carassius revealed that both 28S and 5S rDNA probes were located in different chromosomes. Molecular cytogenetic data of C. carassius presented here for the first time give an important insight into the structure of chromosomes of this polyploid and declining species and may be useful in its systematics. PMID:25349674

  19. Molecular Characterization of Stool Microbiota in HIV-Infected Subjects by Panbacterial and Order-Level 16S Ribosomal DNA (rDNA) Quantification and Correlations with Immune Activation

    PubMed Central

    Ellis, Collin L.; Ma, Zhong-Min; Mann, Surinder K.; Li, Chin-Shang; Wu, Jian; Knight, Thomas H.; Yotter, Tammy; Hayes, Timothy L.; Maniar, Archana H.; Troia-Cancio, Paolo V.; Overman, Heather A; Torok, Natalie J.; Albanese, Anthony; Rutledge, John C.; Miller, Christopher J.; Pollard, Richard B.; Asmuth, David M.

    2011-01-01

    Background The relationship between gut microbial community composition at the higher-taxonomic order-level and local and systemic immunologic abnormalities in HIV disease may provide insight into how bacterial translocation impacts HIV disease. Methods Antiretroviral (ART)-naive HIV patients underwent upper endoscopy before and nine months after starting ART. Duodenal tissue was paraffin-embedded for immunohistochemical analysis (IHC) and digested for FACS for T-cell subsets and immune activation (CD38+/HLA-DR+) enumeration. Stool samples were provided from patients and controls for comparison. Metagenomic microbial DNA was extracted from feces for optimized 16S ribosomal RNA gene (rDNA) real-time qPCR assays designed to quantify panbacterial loads and the relative abundances of proinflammatory Enterobacteriales order, and the dominant Bacteroidales and Clostridiales orders. Results Samples from 10 HIV-subjects prior to initiating, and from 6 subjects receiving, ART were available for analysis. There was a trend for a greater proportion of Enterobacteriales in HIV-positive subjects compared to controls (p=0.099). There were significant negative correlations between total bacterial load and duodenal CD4+ and CD8+ T-cell activation levels (r= −0.74, p= 0.004 and r= −0.67, p=0.013, respectively). The proportions of Enterobacteriales and Bacteroidales were significantly correlated with duodenal CD4+ T-cell depletion and peripheral CD8+ T-cell activation, respectively. Conclusions These data represent the first report of quantitative molecular and cellular correlations between total/universal and order-level gut bacterial populations and GALT levels of immune activation in HIV-infected subjects. The correlations between lower overall 16S rDNA levels and tissue immune activation suggest that the gut microbiome may contribute to immune activation and influence HIV progression. PMID:21436711

  20. Distribution and 16S rDNA sequences of Argas monachus (Acari: Argasidae), a soft tick parasite of Myiopsitta monachus (Aves: Psittacidae).

    PubMed

    Mastropaolo, Mariano; Turienzo, Paola; Di Iorio, Osvaldo; Nava, Santiago; Venzal, José M; Guglielmone, Alberto A; Mangold, Atilio J

    2011-11-01

    Specimens of Argas monachus Keirans et al. were collected from Myiopsitta monachus nests in 42 localities in Argentina and Paraguay from 2006 to 2010. A list of localities where this tick has been found is presented. 16S rDNA sequences of specimens of A. monachus from different localities were compared to confirm whether they belong to the same specific taxon. Argas monachus is present in the phytogeographic provinces of Chaco, Espinal, and Monte, but not in the Pampa (all from de Chaco Domain) where the host is well distributed. No differences were found among 16S rDNA sequences of geographically distant specimens. PMID:21739257

  1. 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression.

    PubMed

    Honn, Kenneth V; Guo, Yande; Cai, Yinlong; Lee, Menq-Jer; Dyson, Gregory; Zhang, Wenliang; Tucker, Stephanie C

    2016-06-01

    Previously we identified and deorphaned G-protein-coupled receptor 31 (GPR31) as the high-affinity 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] receptor (12-HETER1). Here we have determined its distribution in prostate cancer tissue and its role in prostate tumorigenesis using in vitro and in vivo assays. Data-mining studies strongly suggest that 12-HETER1 expression positively correlates with the aggressiveness and progression of prostate tumors. This was corroborated with real-time PCR analysis of human prostate tumor tissue arrays that revealed the expression of 12-HETER1 positively correlates with the clinical stages of prostate cancers and Gleason scores. Immunohistochemistry analysis also proved that the expression of 12-HETER1 is positively correlated with the grades of prostate cancer. Knockdown of 12-HETER1 in prostate cancer cells markedly reduced colony formation and inhibited tumor growth in animals. To discover the regulatory factors, 5 candidate 12-HETER1 promoter cis elements were assayed as luciferase reporter fusions in Chinese hamster ovary (CHO) cells, where the putative cis element required for gene regulation was mapped 2 kb upstream of the 12-HETER1 transcriptional start site. The data implicate 12-HETER1 in a critical new role in the regulation of prostate cancer progression and offer a novel alternative target for therapeutic intervention.-Honn, K. V., Guo, Y., Cai, Y., Lee, M.-J., Dyson, G., Zhang, W., Tucker, S. C. 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression. PMID:26965684

  2. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis

    PubMed Central

    Tyx, Robert E.; Stanfill, Stephen B.; Keong, Lisa M.; Rivera, Angel J.; Satten, Glen A.; Watson, Clifford H.

    2016-01-01

    The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products. PMID:26784944

  3. Molecular phylogenetics of eimeriid coccidia (Eimeriidae, Eimeriorina, Apicomplexa, Alveolata): A preliminary multi-gene and multi-genome approach.

    PubMed

    Ogedengbe, Joseph D; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2015-11-01

    Coccidia possess three distinct genomes: nuclear, mitochondrial, and plastid. Sequences from five genes located on these three genomes were used to reconstruct the phylogenetic relationships of members of the phylum Apicomplexa: 18S rDNA sequences from the nuclear (nu) genome, partial cytochrome c oxidase subunit I sequences from the mitochondrial (mt) genome, and partial 16S and 23S rDNA sequences and RNA polymerase B sequences from plastid (pl) genomes. Maximum parsimony, maximum likelihood, and Bayesian inference were used in conjunction with nuclear substitution models generated from data subsets in the analyses. Major groups within the Apicomplexa were well supported with the mitochondrial, nuclear, and a combination of mitochondrial, nuclear and concatenated plastid gene sequences. However, the genus Eimeria was paraphyletic in phylogenetic trees based on the nuclear gene. Analyses using the individual genes (18S rDNA and cytochrome c oxidase subunit I) resolved the various apicomplexan groups with high Bayesian posterior probabilities. The multi-gene, multi-genome analyses based on concatenated nu 18S rDNA, pl 16S, pl 23S, pl rPoB, pl rPoB1, and mt COI sequences appeared useful in resolving phylogenetic relationships within the phylum Apicomplexa. Genus-level relationships, or higher, appear best supported by 18S rDNA analyses, and species-level analyses are best investigated using mt COI sequences; for parasites for which both loci are available, nuclear 18S rDNA sequences combined with mitochondrial COI sequences provide a compact and informative molecular dataset for inferring the evolutionary relationships taxa in the Apicomplexa. PMID:26319519

  4. Molecular evolution of rDNA in early diverging Metazoa: First comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera

    PubMed Central

    2008-01-01

    Background The cytoplasmic ribosomal small subunit (SSU, 18S) ribosomal RNA (rRNA) is the most frequently-used gene for molecular phylogenetic studies. However, information regarding its secondary structure is neglected in most phylogenetic analyses. Incorporation of this information is essential in order to apply specific rRNA evolutionary models to overcome the problem of co-evolution of paired sites, which violates the basic assumption of the independent evolution of sites made by most phylogenetic methods. Information about secondary structure also supports the process of aligning rRNA sequences across taxa. Both aspects have been shown to increase the accuracy of phylogenetic reconstructions within various taxa. Here, we explore SSU rRNA secondary structures from the three extant classes of Phylum Porifera (Grant, 1836), a pivotal, but largely unresolved taxon of early branching Metazoa. This is the first phylogenetic study of poriferan SSU rRNA data to date that includes detailed comparative secondary structure information for all three sponge classes. Results We found base compositional and structural differences in SSU rRNA among Demospongiae, Hexactinellida (glass sponges) and Calcarea (calcareous sponges). We showed that analyses of primary rRNA sequences, including secondary structure-specific evolutionary models, in combination with reconstruction of the evolution of unusual structural features, reveal a substantial amount of additional information. Of special note was the finding that the gene tree topologies of marine haplosclerid demosponges, which are inconsistent with the current morphology-based classification, are supported by our reconstructed evolution of secondary structure features. Therefore, these features can provide alternative support for sequence-based topologies and give insights into the evolution of the molecule itself. To encourage and facilitate the application of rRNA models in phylogenetics of early metazoans, we present 52 SSU r

  5. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA.

    PubMed Central

    Wada, H; Satoh, N

    1994-01-01

    Almost the entire sequences of 18S rDNA were determined for two chaetognaths, five echinoderms, a hemichordate, and two urochordates (a larvacean and a salp). Phylogenetic comparisons of the sequences, together with those of other deuterostomes (an ascidian, a cephalochordate, and vertebrates) and protostomes (an arthropod and a mollusc), suggest the monophyly of the deuterostomes, with the exception of the chaetognaths. Chaetognaths may not be a group of deuterostomes. The deuterostome group closest to vertebrates was the group of cephalochordates. Ascidians, larvaceans, and salps seem to form a discrete group (urochordates), in which the early divergence of larvaceans is evident. These results support the hypothesis that chordates evolved from free-living ancestors. PMID:8127885

  6. 28s rDNA group-I introns: a powerful tool for identifying strains of Beauveria brongniartii.

    PubMed

    Neuvéglise, C; Brygoo, Y; Riba, G

    1997-04-01

    The nuclear ribosomal DNA of the entomopathogenic fungus Beauveria brongniartii is polymorphic in terms of both restriction site and length. Insertions of 350-450 bp long, identified as group-I introns, were detected in the 28s rDNA. A panel of 47 strains of B. brongniartii, two B. bassiana and one Metarhizium anisopliae of various geographical and biological origins were found to contain 14 variant forms of intron differing in size and restriction pattern, at four different positions. Twelve types of ribosomal large subunit were defined on the basis of variant distribution and compared with strain clustering based on internal transcribed spacers analysis. There was a correlation between the characteristic introns and isolates collected from the sugar cane pest Hoplochelus marginalis. Primers for polymerase chain reaction amplification were chosen from these variants, and used to develop a specific method for detecting strains pathogenic towards Hoplochelus. PMID:9131812

  7. Description of the male, redescription of the female and 16S rDNA sequence of Ixodes aulacodi (Ixodidae).

    PubMed

    Chiţimia-Dobler, Lidia; D'Amico, Gianluca; Yao, Patrick Kouassi; Kalmár, Zsuzsa; Gherman, Călin Mircea; Mihalca, Andrei Daniel; Estrada-Peña, Agustin

    2016-04-01

    Ixodes (Afrixodes) aulacodiArthur, 1956 is a poorly known species that has been recorded predominantly in the wet countries of western and central Africa, mainly associated to the greater cane rat Thryonomys swinderianus (Temmink). We herein redescribe the female, describe the male (ascribed to the species from specimens found in copula) and provide the 16S rDNA sequence. We also provide complete illustrations of the adults based on specimens found on greater cane rats in Ivory Coast. Ixodes aulacodi is included in the group of species of the subgenus Afrixodes that have horseshoe shaped anal groove, and which lack auriculae and cornua. The female is easily separated when compared with other species because of a unique combination of characters: All the coxae have internal spurs, coxa II has two external spurs, syncoxae are absent, and trochanters I-III have one spur each. The male has a notched hypostome and lacks syncoxae, auriculae and cornua. PMID:26803353

  8. FISH-mapping of the 5S rDNA locus in chili peppers (Capsicum-Solanaceae).

    PubMed

    Aguilera, Patricia M; Debat, Humberto J; Scaldaferro, Marisel A; Martí, Dardo A; Grabiele, Mauro

    2016-03-01

    We present here the physical mapping of the 5S rDNA locus in six wild and five cultivated taxa of Capsicum by means of a genus-specific FISH probe. In all taxa, a single 5S locus per haploid genome that persistently mapped onto the short arm of a unique metacentric chromosome pair at intercalar position, was found. 5S FISH signals of almost the same size and brightness intensity were observed in all the analyzed taxa. This is the first cytological characterization of the 5S in wild taxa of Capsicum by using a genus-derived probe, and the most exhaustive and comprehensive in the chili peppers up to now. The information provided here will aid the cytomolecular characterization of pepper germplasm to evaluate variability and can be instrumental to integrate physical, genetic and genomic maps already generated in the genus. PMID:26959315

  9. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  10. Loop mediated isothermal amplification of 5.8S rDNA for specific detection of Tritrichomonas foetus.

    PubMed

    Oyhenart, Jorge; Martínez, Florencia; Ramírez, Rosana; Fort, Marcelo; Breccia, Javier D

    2013-03-31

    Tritrichomonas foetus is the causative agent of bovine trichomonosis, a sexually transmitted disease leading to infertility and abortion. A test based on loop mediated isothermal amplification (LAMP) targeting the 5.8S rDNA subunit was designed for the specific identification of T. foetus. The LAMP assay was validated using 28 T. foetus and 35 non-T. foetus trichomonads strains. It did not exhibit cross-reaction with closely related parasites commonly found in smegma cultures like Tetratrichomonas spp. and Pentatrichomonas hominis. Bovine smegma did not show interferences for the detection of the parasite and, the sensitivity of the method (4×10(3) CFU/mL, approximately 10 cells/reaction) was slightly higher than that found for PCR amplification with TFR3 and TFR4 primers. The LAMP approach has potential applications for diagnosis and control of T. foetus and, practical use for low skill operators in rural areas. PMID:23265811

  11. Short communication: Genetic variants of Sarcocystis cruzi in infected Malaysian cattle based on 18S rDNA.

    PubMed

    Ng, Yit Han; Fong, Mun Yik; Subramaniam, Vellayan; Shahari, Shahhaziq; Lau, Yee Ling

    2015-12-01

    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population. PMID:26679818

  12. Sequence analysis of the rDNA internal transcribed spacer 2 of five species of South American human malaria mosquitoes.

    PubMed

    Fritz, G N

    1998-03-01

    The rDNA internal transcribed spacer 2 (ITS2) was sequenced for 5 species of mosquitoes that may be important vectors of human malaria in certain regions of South America and are difficult to distinguish by morphology: Anopheles evansae, An. nuneztovari, An. rangeli, An. strodei and An. trinkae. ITS2 sequences from samples collected in Ecuador, Bolivia, Venezuela and Brazil were aligned and compared in order to determine the usefulness of this spacer for the elaboration of species specific primers and DNA probes. The ITS2 was found to be different in size (ranging from 333 to 397 bp) and sequence between all pairs of species. Highly variable regions were found primarily at the 3' end of the spacer and were interspersed with relatively conserved sites. Instraspecific sequence variation was limited to a single transversion between specimens of An. rangeli from distant geographic locations suggesting concerted evolution and homogenization of the ITS2. PMID:10520449

  13. 12S-lipoxygenase protein associates with {alpha}-actin fibers in human umbilical artery vascular smooth muscle cells

    SciTech Connect

    Weisinger, Gary . E-mail: gary_w@tasmc.health.gov.il; Limor, Rona; Marcus-Perlman, Yonit; Knoll, Esther; Kohen, Fortune; Schinder, Vera; Firer, Michael; Stern, Naftali

    2007-05-11

    The current study sets out to characterize the intracellular localization of the platelet-type 12S-lipoxygenase (12-LO), an enzyme involved in angiotensin-II induced signaling in vascular smooth muscle cells (VSMC). Immunohistochemical analysis of VSMC in vitro or human umbilical arteries in vivo showed a clear cytoplasmic localization. On immunogold electron microscopy, 12-LO was found primarily associated with cytoplasmic VSMC muscle fibrils. Upon angiotensin-II treatment of cultured VSMC, immunoprecipitated 12-LO was found bound to {alpha}-actin, a component of the cytoplasmic myofilaments. 12-LO/{alpha}-actin binding was blocked by VSMC pretreatment with the 12-LO inhibitors, baicalien or esculetine and the protein synthesis inhibitor, cycloheximide. Moreover, the binding of 12-LO to {alpha}-actin was not associated with 12-LO serine or tyrosine phosphorylation. These observations suggest a previously unrecognized angiotensin-II dependent protein interaction in VSMC through which 12-LO protein may be trafficked, for yet undiscovered purposes towards the much more abundantly expressed cytoskeletal protein {alpha}-actin.

  14. RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins.

    PubMed

    Mayan, Maria D

    2013-01-01

    The replication of genomic DNA is limited to a single round per cell cycle. The first component, which recognises and remains bound to origins from recognition until activation and replication elongation, is the origin recognition complex. How origin recognition complex (ORC) proteins remain associated with chromatin throughout the cell cycle is not yet completely understood. Several genome-wide studies have undoubtedly demonstrated that RNA polymerase II (RNAP-II) binding sites overlap with replication origins and with the binding sites of the replication components. RNAP-II is no longer merely associated with transcription elongation. Several reports have demonstrated that RNAP-II molecules affect chromatin structure, transcription, mRNA processing, recombination and DNA repair, among others. Most of these activities have been reported to directly depend on the interaction of proteins with the C-terminal domain (CTD) of RNAP-II. Two-dimensional gels results and ChIP analysis presented herein suggest that stalled RNAP-II molecules bound to the rDNA chromatin participate in the anchoring of ORC proteins to origins during the G1 and S-phases. The results show that in the absence of RNAP-II, Orc1p, Orc2p and Cdc6p do not bind to origins. Moreover, co-immunoprecipitation experiments suggest that Ser2P-CTD and hypophosphorylated RNAP-II interact with Orc1p. In the context of rDNA, cryptic transcription by RNAP-II did not negatively interfere with DNA replication. However, the results indicate that RNAP-II is not necessary to maintain the binding of ORCs to the origins during metaphase. These findings highlight for the first time the potential importance of stalled RNAP-II in the regulation of DNA replication. PMID:23308214

  15. Ce53Fe12S90X3 (X = Cl, Br, I): the first rare-earth transition-metal sulfide halides.

    PubMed

    Mills, Allison M; Ruck, Michael

    2006-06-26

    The compounds Ce53Fe12S90X3 (X = Cl, Br, I), which represent the first examples of rare-earth transition-metal sulfide halides, were prepared using the reactive-flux method, through reaction of Ce2S3, FeS, or Fe and S in a CeX3 flux at 1320 K. Their structures were determined by single-crystal X-ray diffraction. The compounds are isostructural, crystallizing in the trigonal space group Rm with Z = 1 [Ce53Fe12S90Cl3, a = 13.9094(9) A, c = 21.604(2) A, V = 3619.7(4) A3; Ce(53)Fe(12)S(90)Br(3), a = 13.916(1) A, c = 21.824(2) A, V = 3660.0(5) A3; Ce53Fe12S90I3, a = 13.863(3) A, c = 21.944(6) A, V = 3652(2) A3]. The structure adopted is a stuffed variant of the La52Fe12S90 structure type. Fe2S9 dimers of face-sharing octahedra are linked by face- and vertex-sharing capped CeS6 trigonal prisms, forming a three-dimensional framework containing cuboctahedral cavities of two sizes. The smaller cavities accommodate alternative sites for disordered cerium atoms. The larger cavities, which remain empty in the parent structure, are filled by halogen atoms in Ce53Fe12S90X3. Alternatively, the structure can be described as a 9-fold superstructure of the Mn5Si3 structure type (P6(3)/mcm), with a = a' and c = 3c'. Temperature-dependent magnetic susceptibility measurements suggest that Ce53Fe12S90I3 may order antiferromagnetically at low temperatures. PMID:16780341

  16. Sequence variation within the rRNA gene loci of 12 Drosophila species

    PubMed Central

    Stage, Deborah E.; Eickbush, Thomas H.

    2007-01-01

    Concerted evolution maintains at near identity the hundreds of tandemly arrayed ribosomal RNA (rRNA) genes and their spacers present in any eukaryote. Few comprehensive attempts have been made to directly measure the identity between the rDNA units. We used the original sequencing reads (trace archives) available through the whole-genome shotgun sequencing projects of 12 Drosophila species to locate the sequence variants within the 7.8–8.2 kb transcribed portions of the rDNA units. Three to 18 variants were identified in >3% of the total rDNA units from 11 species. Species where the rDNA units are present on multiple chromosomes exhibited only minor increases in sequence variation. Variants were 10–20 times more abundant in the noncoding compared with the coding regions of the rDNA unit. Within the coding regions, variants were three to eight times more abundant in the expansion compared with the conserved core regions. The distribution of variants was largely consistent with models of concerted evolution in which there is uniform recombination across the transcribed portion of the unit with the frequency of standing variants dependent upon the selection pressure to preserve that sequence. However, the 28S gene was found to contain fewer variants than the 18S gene despite evolving 2.5-fold faster. We postulate that the fewer variants in the 28S gene is due to localized gene conversion or DNA repair triggered by the activity of retrotransposable elements that are specialized for insertion into the 28S genes of these species. PMID:17989256

  17. Search for Basonuclin Target Genes

    PubMed Central

    Wang, Junwen; Zhang, Shengliang; Schultz, Richard M.; Tseng, Hung

    2006-01-01

    Basonuclin (Bnc 1) is a transcription factor that has an unusual ability to interact with promoters of both RNA polymerases I and II. The action of basonuclin is mediated through three pairs of evolutionarily conserved zinc fingers, which produce three DNase I footprints on the promoters of rDNA and the basonuclin gene. Using these DNase footprints, we built a computational model for the basonuclin DNA-binding module, which was used to identify in silico potential RNA polymerase II target genes in the human and mouse promoter databases. The target genes of basonuclin show that it regulates the expression of proteins involved in chromatin structure, transcription/DNA-binding, ion-channels, adhesion/cell-cell junction, signal transduction and intracellular transport. Our results suggest that basonuclin, like MYC, may coordinate transcriptional activities among the three RNA polymerases. But basonuclin regulates a distinctive set of pathways, which differ from that regulated by MYC. PMID:16919236

  18. Randomly Detected Genetically Modified (GM) Maize (Zea mays L.) near a Transport Route Revealed a Fragile 45S rDNA Phenotype

    PubMed Central

    Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee

    2013-01-01

    Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a “beads-on-a-string” fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed. PMID:24040165

  19. Variation in copy number of the 28S rDNA of Aspergillus fumigatus measured by droplet digital PCR and analog quantitative real-time PCR.

    PubMed

    Alanio, Alexandre; Sturny-Leclère, Aude; Benabou, Marion; Guigue, Nicolas; Bretagne, Stéphane

    2016-08-01

    Droplet digital PCR (ddPCR) after DNA digestion yielded a 28S rDNA copy number of 61 to 86 copies/genome when testing 10 unrelated Aspergillus fumigatus isolates, higher than with quantitative PCR. Unfortunately, ddPCR after DNA digestion did not improve the sensitivity of our PCR assay when testing serum patients with invasive aspergillosis. PMID:27316653

  20. Phylogenetic analysis of encapsulated and non-encapsulated Trichinella species by studying the 5S rDNA tandemly repeated intergenic region.

    PubMed

    van der Giessen, J W B; Fonville, M; Briels, I; Pozio, E

    2005-09-01

    The identification of sequence regions in the genomes of pathogens which can be useful to distinguish among species and genotypes, is of great importance for epidemiological, molecular, and phylogenetic studies. The 5S ribosomal DNA intergenic spacer region has been identified as a good target to distinguish among eight Trichinella species and genotypes. The recent discovery of two non-encapsulated species in this genus, Trichinella papuae and Trichinella zimbabwensis, which can infect both mammals and reptiles, has suggested analyzing their 5S rDNA. Amplification of the tandem repeats of the 5S rDNA intergenic region of encapsulated species of Trichinella shows a 751bp fragment, whereas the three non-encapsulated species show a fragment of 800bp with T. pseudospiralis showing an additional fragment of 522bp. Although the size of the 800bp PCR fragments of T. papuae and T. zimbabwensis are similar to that of T. pseudospiralis, there are differences in the 5S rDNA intergenic regions among the three non-encapsulated species. Phylogenetic analysis of the 5S rDNA intergenic regions shows a clustering together of the three non-encapsulated Trichinella species that is well separated from the encapsulated ones. In addition, a single PCR-based method allows distinguishing non-encapsulated and encapsulated species. PMID:16076532

  1. Chromosomal localization of 45S rDNA, sex-specific C values, and heterochromatin distribution in Coccinia grandis (L.) Voigt.

    PubMed

    Bhowmick, Biplab Kumar; Yamamoto, Masashi; Jha, Sumita

    2016-01-01

    Coccinia grandis is a widely distributed dioecious cucurbit in India, with heteromorphic sex chromosomes and X-Y sex determination mode. The present study aids in the cytogenetic characterization of four native populations of this plant employing distribution patterns of 45S rDNA on chromosomes and guanine-cytosine (GC)-rich heterochromatin in the genome coupled with flow cytometric determination of genome sizes. Existence of four nucleolar chromosomes could be confirmed by the presence of four telomeric 45S rDNA signals in both male and female plants. All four 45S rDNA sites are rich in heterochromatin evident from the co-localization of telomeric chromomycin A (CMA)(+ve) signals. The size of 45S rDNA signal was found to differ between the homologues of one nucleolar chromosome pair. The distribution of heterochromatin is found to differ among the male and female populations. The average GC-rich heterochromatin content of male and female populations is 23.27 and 29.86 %, respectively. Moreover, the male plants have a genome size of 0.92 pg/2C while the female plants have a size of 0.73 pg/2C, reflecting a huge genomic divergence between the genders. The great variation in genome size is owing to the presence of Y chromosome in the male populations, playing a multifaceted role in sexual divergence in C. grandis. PMID:25795278

  2. Dysfunction of Chromatin Assembly Factor 1 Induces Shortening of Telomeres and Loss of 45S rDNA in Arabidopsis thaliana[W][OA

    PubMed Central

    Mozgová, Iva; Mokroš, Petr; Fajkus, Jiří

    2010-01-01

    Chromatin Assembly Factor 1 (CAF1) is a three-subunit H3/H4 histone chaperone responsible for replication-dependent nucleosome assembly. It is composed of CAC 1-3 in yeast; p155, p60, and p48 in humans; and FASCIATA1 (FAS1), FAS2, and MULTICOPY SUPPRESSOR OF IRA1 in Arabidopsis thaliana. We report that disruption of CAF1 function by fas mutations in Arabidopsis results in telomere shortening and loss of 45S rDNA, while other repetitive sequences (5S rDNA, centromeric 180-bp repeat, CACTA, and Athila) are unaffected. Substantial telomere shortening occurs immediately after the loss of functional CAF1 and slows down at telomeres shortened to median lengths around 1 to 1.5 kb. The 45S rDNA loss is progressive, leaving 10 to 15% of the original number of repeats in the 5th generation of mutants affecting CAF1, but the level of the 45S rRNA transcripts is not altered in these mutants. Increasing severity of the fas phenotype is accompanied by accumulation of anaphase bridges, reduced viability, and plant sterility. Our results show that appropriate replication-dependent chromatin assembly is specifically required for stable maintenance of telomeres and 45S rDNA. PMID:20699390

  3. EXTraS discovery of an 1.2-s X-ray pulsar in M 31

    NASA Astrophysics Data System (ADS)

    Esposito, P.; Israel, G. L.; Belfiore, A.; Novara, G.; Sidoli, L.; Rodríguez Castillo, G. A.; De Luca, A.; Tiengo, A.; Haberl, F.; Salvaterra, R.; Read, A. M.; Salvetti, D.; Sandrelli, S.; Marelli, M.; Wilms, J.; D'Agostino, D.

    2016-03-01

    During a search for coherent signals in the X-ray archival data of XMM-Newton, we discovered a modulation at 1.2 s in 3XMM J004301.4+413017 (3X J0043), a source lying in the direction of an external arm of M 31. This short period indicates a neutron star (NS). Between 2000 and 2013, the position of 3X J0043 was imaged by public XMM-Newton observations 35 times. The analysis of these data allowed us to detect an orbital modulation at 1.27 d and study the long-term properties of the source. The emission of the pulsar was rather hard (most spectra are described by a power law with Γ < 1) and, assuming the distance to M 31, the 0.3-10 keV luminosity was variable, from ˜3 × 1037 to 2 × 1038 erg s-1. The analysis of optical data shows that, while 3X J0043 is likely associated to a globular cluster in M 31, a counterpart with V ≳ 22 outside the cluster cannot be excluded. Considering our findings, there are two main viable scenarios for 3X J0043: a peculiar low-mass X-ray binary, similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary resembling Her X-1. Regardless of the exact nature of the system, 3X J0043 is the first accreting NS in M 31 in which the spin period has been detected.

  4. Partnering to reduce waste at Y-12 through Y-12's multi-organizational reduce/reuse/recycle team

    SciTech Connect

    Jackson, J.G.; Patterson, A.L.; Wiginton, M.C.; Yeager, A.L.; Donnelly, J.P.; Ostergaard, A.P.; Cornwell, S.E.

    2007-07-01

    BWXT Y-12, L.L.C., the Maintenance and Operations (M and O) contractor at the Y-12 National Security Complex (Y-12), practices pollution prevention in daily operations because it recognizes that the implementation of pollution prevention (P2) projects impacting all waste types, discharges, and emissions at the complex saves resources across the board. Projects that reduce solid industrial waste save numerous resources, including valuable landfill space. At Y- 12, most of the solid industrial waste that is not reduced, reused, or recycled is transported to an industrial waste landfill located on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). While the current landfill still has capacity, in the past the industrial waste generation across the ORR was impacted when the new landfill was not available to receive waste, but the old landfill was reaching capacity. The potential of having waste with absolutely nowhere to go is simply not an option for a facility with ongoing operations. Avoiding this potential scenario in the memorable past has made Y-12 very aware of the importance of reducing all waste types. While Y-12 aggressively pursues pollution prevention implementation on all waste types, this paper will highlight the use of systems, people, and pollution prevention integration in projects used by Y-12 to holistically reduce the amount of industrial waste being sent to the on-site landfill. Specifically, the design and use of Y-12's Environmental Management System (EMS), the creation of a multi-disciplinary team, and the buy-in and creativity of the site project, Infrastructure Reduction (IR), that generates the largest volumes of waste will be discussed. (authors)

  5. Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription

    PubMed Central

    Tsai, Yi-Tzang; Lin, Chen-I; Chen, Hung-Kai; Lee, Kuo-Ming; Hsu, Chia-Yi; Yang, Shun-Jen

    2008-01-01

    The short arms of five human acrocentric chromosomes contain ribosomal gene (rDNA) clusters where numerous mini-nucleoli arise at the exit of mitosis. These small nucleoli tend to coalesce into one or a few large nucleoli during interphase by unknown mechanisms. Here, we demonstrate that the N- and C-terminal domains of a nucleolar protein, hNopp140, bound respectively to α-satellite arrays and rDNA clusters of acrocentric chromosomes for nucleolar formation. The central acidic-and-basic repeated domain of hNopp140, possessing a weak self-self interacting ability, was indispensable for hNopp140 to build up a nucleolar round-shaped structure. The N- or the C-terminally truncated hNopp140 caused nucleolar segregation and was able to alter locations of the rDNA transcription, as mediated by detaching the rDNA repeats from the acrocentric α-satellite arrays. Interestingly, an hNopp140 mutant, made by joining the N- and C-terminal domains but excluding the entire central repeated region, induced nucleolar disruption and global chromatin condensation. Furthermore, RNAi knockdown of hNopp140 resulted in dispersion of the rDNA and acrocentric α-satellite sequences away from nucleolus that was accompanied by rDNA transcriptional silence. Our findings indicate that hNopp140, a scaffold protein, is involved in the nucleolar assembly, fusion, and maintenance. PMID:18253863

  6. Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss.

    PubMed

    O'Sullivan, Mary; Rutland, Paul; Lucas, Deirdre; Ashton, Emma; Hendricks, Sebastian; Rahman, Shamima; Bitner-Glindzicz, Maria

    2015-02-15

    The mitochondrial DNA mutation m.1555A>G predisposes to hearing loss following aminoglycoside antibiotic exposure in an idiosyncratic dose-independent manner. However, it may also cause maternally inherited hearing loss in the absence of aminoglycoside exposure or any other clinical features (non-syndromic hearing loss). Although m.1555A>G was identified as a cause of deafness more than twenty years ago, the pathogenic mechanism of this mutation of ribosomal RNA remains controversial. Different mechanistic concepts have been proposed. Most recently, evidence from cell lines and animal models suggested that patients with m.1555A>G may have more 12S rRNA N6, N6-dimethyladenosine (m(6) 2A) methylation than controls, so-called 'hypermethylation'. This has been implicated as a pathogenic mechanism of mitochondrial dysfunction but has yet to be validated in patients. 12S m(6) 2A rRNA methylation, by the mitochondrial transcription factor 1 (TFB1M) enzyme, occurs at two successive nucleotides (m.1584A and m.1583A) in close proximity to m.1555A>G. We examined m(6) 2A methylation in 14 patients with m.1555A>G, and controls, and found all detectable 12S rRNA transcripts to be methylated in both groups. Moreover, different RNA samples derived from the same patient (lymphocyte, fibroblast and lymphoblast) revealed that only transformed cells contained some unmethylated 12S rRNA transcripts, with all detectable 12S rRNA transcripts derived from primary samples m(6) 2A-methylated. Our data indicate that TFB1M 12S m(6) 2A rRNA hypermethylation is unlikely to be a pathogenic mechanism and may be an artefact of previous experimental models studied. We propose that RNA methylation studies in experimental models should be validated in primary clinical samples to ensure that they are applicable to the human situation. PMID:25305075

  7. Application of Faecalibacterium 16S rDNA genetic marker for accurate identification of duck faeces.

    PubMed

    Sun, Da; Duan, Chuanren; Shang, Yaning; Ma, Yunxia; Tan, Lili; Zhai, Jun; Gao, Xu; Guo, Jingsong; Wang, Guixue

    2016-04-01

    The aim of this study was to judge the legal duty of pollution liabilities by assessing a duck faeces-specific marker, which can exclude distractions of residual bacteria from earlier contamination accidents. With the gene sequencing technology and bioinformatics method, we completed the comparative analysis of Faecalibacterium sequences, which were associated with ducks and other animal species, and found the sequences unique to duck faeces. Polymerase chain reaction (PCR) and agarose gel electrophoresis techniques were used to verify the reliability of both human and duck faeces-specific primers. The duck faeces-specific primers generated an amplicon of 141 bp from 43.3 % of duck faecal samples, 0 % of control samples and 100 % of sewage wastewater samples that contained duck faeces. We present here the initial evidence of Faecalibacterium-based applicability as human faeces-specificity in China. Meanwhile, this study represents the initial report of a Faecalibacterium marker for duck faeces and suggests an independent or supplementary environmental biotechnology of microbial source tracking (MST). PMID:26743644

  8. Intraspecific diversity within Diaporthe helianthi: evidence from rDNA intergenic spacer (IGS) sequence analysis.

    PubMed

    Pecchia, Susanna; Mercatelli, Elisabetta; Vannacci, Giovanni

    2004-04-01

    Diaporthe helianthi is the causal agent of sunflower stem canker, a serious pathogen of sunflower in Europe but recorded sporadically in Italy. The genetic diversity of D. helianthi isolates from different geographic origins (Argentina, France, Italy, Yugoslavia, Romania) was investigated using IGS sequences. A 400 bp fragment of the portion of the IGS region flanking the 5' end of the 18S gene was amplified from each isolate. The aligned nucleotide sequences showed intraspecific sequence homology from 99-100% among French/Yugoslavian isolates to 95-100% among Italian isolates. French/Yugoslavian isolates shared 90-92% sequence homology with Italian isolates. The phylogenetic tree obtained from the aligned data revealed three separate groups. Group 1 included all isolates from France and former Yugoslavia and one isolate from Argentina; Group 2 included all Italian isolates and one isolate from Argentina. The most distantly related isolate was that from Romania (Group 3). The average genetic distances among isolates within Group 1 and within Group 2 were 0.22 and 3.29 respectively. The analysis showed that all isolates originating from countries where severe outbreaks of the disease are reported annually (France and former Yugoslavia) form a well defined taxon characterized by relatively low variability. This group is distinct from the group formed by isolates originating from Italy, whose variability is relatively much higher. Results obtained revealed a marked differentiation among pathogen isolates, and members of Group 1 seem not yet to have spread into Italian sunflower-growing areas. PMID:15180160

  9. Two group I ribozymes with different functions in a nuclear rDNA intron.

    PubMed Central

    Decatur, W A; Einvik, C; Johansen, S; Vogt, V M

    1995-01-01

    DiSSU1, a mobile intron in the nuclear rRNA gene of Didymium iridis, was previously reported to contain two independent catalytic RNA elements. We have found that both catalytic elements, renamed GIR1 and GIR2, are group I ribozymes, but with differing functionality. GIR2 carries out the several reactions associated with self-splicing. GIR1 carries out a hydrolysis reaction at an internal processing site (IPS-1). These conclusions are based on the catalytic properties of RNAs transcribed in vitro. Mutation of the P7 pairing segment of GIR2 abrogated self-splicing, while mutation of P7 in GIR1 abrogated hydrolysis at the IPS-1. Much of the P2 stem and all of the associated loop could be deleted without effect on self-splicing. These results are accounted for by a secondary structure model, in which a long P2 pairing segment brings the 5' splice site to the GIR2 catalytic core. GIR1 is the smallest natural group I ribozyme yet reported and is the first example of a group I ribozyme whose presumptive biological function is hydrolysis. We hypothesize that GIR1-mediated cleavage of the excised intron RNA functions in the generation and expression of the mRNA for the intron-encoded endonuclease I-DirI. Images PMID:7556099

  10. Epidemiologic Study of Malassezia Yeasts in Patients with Malassezia Folliculitis by 26S rDNA PCR-RFLP Analysis

    PubMed Central

    Ko, Jong Hyun; Choe, Yong Beom; Ahn, Kyu Joong

    2011-01-01

    Background So far, studies on the inter-relationship between Malassezia and Malassezia folliculitis have been rather scarce. Objective We sought to analyze the differences in body sites, gender and age groups, and to determine whether there is a relationship between certain types of Malassezia species and Malassezia folliculitis. Methods Specimens were taken from the forehead, cheek and chest of 60 patients with Malassezia folliculitis and from the normal skin of 60 age- and gender-matched healthy controls by 26S rDNA PCR-RFLP. Results M. restricta was dominant in the patients with Malassezia folliculitis (20.6%), while M. globosa was the most common species (26.7%) in the controls. The rate of identification was the highest in the teens for the patient group, whereas it was the highest in the thirties for the control group. M. globosa was the most predominant species on the chest with 13 cases (21.7%), and M. restricta was the most commonly identified species, with 17 (28.3%) and 12 (20%) cases on the forehead and cheek, respectively, for the patient group. Conclusion Statistically significant differences were observed between the patient and control groups for the people in their teens and twenties, and in terms of the body site, on the forehead only. PMID:21747616

  11. Epidemiologic Study of Malassezia Yeasts in Acne Patients by Analysis of 26S rDNA PCR-RFLP

    PubMed Central

    Song, Young Chan; Hahn, Hyung Jin; Kim, Ji Young; Ko, Jong Hyun; Choe, Yong Beom; Ahn, Kyu Joong

    2011-01-01

    Background Although acne is a common follicular inflammatory dermatosis, studies of the relationship between Malassezia yeasts and acne have rarely been conducted. Objective We sought to identify Malassezia yeasts from acne patients and establish a relationship between specific types of species of Malassezia and acne. Methods Sixty acne patients were enrolled. Each strain obtained was identified as one of eleven species by 26S rDNA PCR-RFLP. We then compared these data with those of age- and sex-matched healthy subjects. Results Growth of Malassezia was evident in fewer patients with acne (50%) in comparison to controls (70.6%). M. restricta was dominant in patients with acne (23.9%), whereas M. globosa was most common (26.7%) in healthy controls. In the patients group, the rate was the highest (71.7%) in the twenties and, in terms of body site, the rate was the highest (60%) in the chest. In the control group, the rate was the highest (75.0%) in the thirties and in the forehead (85.0%). Conclusion The detection rate of Malassezia yeasts was conspicuously low in the acne patients group. Statistically significant differences were observed between the patient and the control groups in the twenties and thirties, and in terms of body site, in the forehead and chest. PMID:21909202

  12. Development of a novel rDNA based plasmid for enhanced cell surface display on Yarrowia lipolytica

    PubMed Central

    2012-01-01

    In this study, a novel rDNA based plasmid was developed for display of heterologous proteins on the cell surface of Yarrowia lipolytica using the C-terminal end of the glycosylphosphatidylinositol (GPI) anchored Y. lipolytica cell wall protein 1 (YlCWP1). mCherry was used as a model protein to assess the efficiency of the constructed plasmid. Y. lipolytica transformants harbouring the expression cassettes showed a purple colour phenotype on selective YNB-casamino plates as compared to control cells indicating that mCherry was displayed on the cells. Expression of mCherry on cells of Y. lipolytica was confirmed by both fluorescent microscopy and flow cytometry. Furthermore, SDS-PAGE analysis and matrix-assisted laser desorption/ionization (MALDI)-time-of (TOF)-mass spectrometry (MS) peptide mass fingerprinting (PMF) confirmed that the protein cleaved from the yeast cells using enterokinase was mCherry. Efficient cleavage of mCherry reported in this work offers an alternative purification method for displayed heterologous proteins on Y. lipolytica cells using the plasmid constructed in this study. The developed displaying system offers great potential for industrial production and purification of heterologous proteins at low cost. PMID:22608131

  13. Detection of novel organisms associated with salpingitis, by use of 16S rDNA polymerase chain reaction.

    PubMed

    Hebb, Jennifer K; Cohen, Craig R; Astete, Sabina G; Bukusi, Elizabeth A; Totten, Patricia A

    2004-12-15

    Although Chlamydia trachomatis and Neisseria gonorrhoeae are established causes of salpingitis, the majority of cases have no known etiology. We used broad-range 16S rDNA polymerase chain reaction to identify novel, possibly uncultivable, bacteria associated with salpingitis and identified bacterial 16S sequences in Fallopian-tube specimens from 11 (24%) of 45 consecutive women with laparoscopically confirmed acute salpingitis (the case patients) and from 0 of 44 women seeking tubal ligations (the control subjects) at Kenyatta National Hospital, Nairobi, Kenya. Bacterial phylotypes most closely related to Leptotrichia spp. were detected as the sole phylotypes in 1, and mixed with other bacterial phylotypes in 2, specimens. Novel bacterial phylotypes and those associated with bacterial vaginosis, including Atopobium vaginae, were identified in 3 specimens. N. gonorrhoeae and Streptococcus pyogenes were identified in 2 and 1 specimens, respectively. The finding of novel phylotypes associated with salpingitis has important implications for the etiology, pathogenesis, and treatment of this important reproductive-tract disease syndrome. PMID:15551209

  14. Characterization of Lactobacillus from Algerian Goat'S Milk Based on Phenotypic, 16S rDNA Sequencing and their Technological Properties.

    PubMed

    Marroki, Ahmed; Zúñiga, Manuel; Kihal, Mabrouk; Pérez-Martínez, Gaspar

    2011-01-01

    Nineteen strains of Lactobacillus isolated from goat's milk from farms in north-west of Algeria were characterized. Isolates were identified by phenotypic, physiological and genotypic methods and some of their important technological properties were studied. Phenotypic characterization was carried out by studying physiological, morphological characteristics and carbohydrate fermentation patterns using API 50 CHL system. Isolates were also characterized by partial 16S rDNA sequencing. Results obtained with phenotypic methods were correlated with the genotypic characterization and 13 isolates were identified as L. plantarum, two isolates as L. rhamnosus and one isolate as L. fermentum. Three isolates identified as L. plantarum by phenotypic characterization were found to be L. pentosus by the genotypic method. A large diversity in technological properties (acid production in skim milk, exopolysaccharide production, aminopeptidase activity, antibacterial activity and antibiotic susceptibility) was observed. Based on these results, two strains of L. plantarum (LbMS16 and LbMS21) and one strain of L. rhamnosus (LbMF25) have been tentatively selected for use as starter cultures in the manufacture of artisanal fermented dairy products in Algeria. PMID:24031617

  15. Robertsonian polymorphism in the marine gastropod, Nucella lapillus: advances in karyology using rDNA loci and NORs.

    PubMed

    Pascoe, P L; Patton, S J; Critcher, R; Dixon, D R

    1996-03-01

    Previous studies of the Robertsonian polymorphism in the Atlantic dog-whelk, Nucella lapillus (2n = 26-36), have been limited by the inability to identify unequivocally individual chromosomes in the karyotype. This species, as with many other marine invertebrates, has proven largely refractory to the standard (mammalian) chromosome-banding techniques. In this study, fluorescence in situ hybridization (FISH) using a rDNA probe was applied to the metaphase chromosomes of the 2n = 26 and 2n = 36 forms of N. lapillus. The results were compared with silver-staining of the nucleolar organizer regions (NORs). The FISH technique was shown to be more sensitive and less intrinsically prone to variation than the silver-staining method. An additional NOR/rDNA locus was observed in the 2n = 36 form which, to date, has not been seen in any 2n = 26 population. The 2n = 36 karyotype is described for a south-west UK population that differs from that reported previously in the literature. After fission, Robertsonian metacentrics are shown to correspond to at least one subtelocentric product. PMID:8601340

  16. Next-generation sequencing analysis of off-ladder alleles due to migration shift caused by sequence variation at D12S391 locus.

    PubMed

    Fujii, Koji; Watahiki, Haruhiko; Mita, Yusuke; Iwashima, Yasuki; Miyaguchi, Hajime; Kitayama, Tetsushi; Nakahara, Hiroaki; Mizuno, Natsuko; Sekiguchi, Kazumasa

    2016-09-01

    In short tandem repeat (STR) analysis, length polymorphisms are detected by capillary electrophoresis (CE). At most STR loci, mobility shift due to sequence variation in the repeat region was thought not to affect the typing results. In our recent population studies of 1501 Japanese individuals, off-ladder calls were observed at the D12S391 locus using PowerPlex Fusion in nine samples for allele 22, one sample for allele 25, and one sample for allele 26. However, these samples were typed as ordinary alleles within the bins using GlobalFiler. In this study, next-generation sequencing analysis using MiSeq was performed for the D12S391 locus from the 11 off-ladder samples and 33 other samples, as well as the allelic ladders of PowerPlex Fusion and GlobalFiler. All off-ladder allele 22 in the nine samples had [AGAT]11[AGAC]11 as a repeat structure, while the corresponding allele was [AGAT]15[AGAC]6[AGAT] for the PowerPlex Fusion ladder, and [AGAT]13[AGAC]9 for the GlobalFiler ladder. Overall, as the number of [AGAT] in the repeat structure decreased at the D12S391 locus, the peak migrated more slowly using PowerPlex Fusion, the reverse strand of which was labeled, and it migrated more rapidly using GlobalFiler, the forward strand of which was labeled. The allelic ladders of both STR kits were reamplified with our small amplicon D12S391 primers and their mobility was also examined. In conclusion, off-ladder observations of allele 22 at the D12S391 locus using PowerPlex Fusion were mainly attributed to a relatively large difference of the repeat structure between its allelic ladder and off-ladder allele 22. PMID:27591542

  17. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin

    PubMed Central

    2011-01-01

    Background Scarabaeinae beetles show a high level of macro-chromosomal variability, although the karyotypic organization of heterochromatin and multigene families (rDNAs and histone genes) is poorly understood in this group. To better understand the chromosomal organization and evolution in this group, we analyzed the karyotypes, heterochromatin distribution and chromosomal locations of the rRNAs and histone H3 genes in beetles belonging to eight tribes from the Scarabaeinae subfamily (Coleoptera, Scarabaeidae). Results The number of 18S rRNA gene (a member of the 45S rDNA unit) sites varied from one to 16 and were located on the autosomes, sex chromosomes or both, although two clusters were most common. Comparison of the 45S rDNA cluster number and the diploid numbers revealed a low correlation value. However, a comparison between the number of 45S rDNA sites per genome and the quantity of heterochromatin revealed (i) species presenting heterochromatin restricted to the centromeric/pericentromeric region that contained few rDNA sites and (ii) species with a high quantity of heterochromatin and a higher number of rDNA sites. In contrast to the high variability for heterochromatin and 45S rDNA cluster, the presence of two clusters (one bivalent cluster) co-located on autosomal chromosomes with the 5S rRNA and histone H3 genes was highly conserved. Conclusions Our results indicate that the variability of the 45S rDNA chromosomal clusters is not associated with macro-chromosomal rearrangements but are instead related to the spread of heterochromatin. The data obtained also indicate that both heterochromatin and the 45S rDNA loci could be constrained by similar evolutionary forces regulating spreading in the distinct Scarabaeinae subfamily lineages. For the 5S rRNA and the histone H3 genes, a similar chromosomal organization could be attributed to their association/co-localization in the Scarabaeinae karyotypes. These data provide evidence that different evolutionary

  18. 16S rDNA sequence analysis of bacterial isolates from biodeteriorated mural paintings in the Servilia tomb (Necropolis of carmona, Seville, Spain).

    PubMed

    Heyrman, J; Swings, J

    2001-11-01

    Bacteria were isolated from damaged mural paintings of the Servilia tomb (necropolis of Carmona, Seville, Spain). Selected strains, representative for different clusters of isolates with similar fatty acid profiles, were analysed by 16S rDNA sequence analysis. Bacillus is the dominant genus among the isolates: members of the rRNA species complexes of B. megaterium, B. pumilus and B. firmus were found as well as several other Bacillus species. One group of halotolerant isolates falls in the Bacillus sensu lato group, with closest relatedness to the genera Salibacillus and Virgibacillus. Other genera found are Artbrobacter, Micrococcus, Streptomyces, Sphingomonas, Paenibacillus, and a genus closely related to Paracraurococcus. Many isolates showed low 16S rDNA sequence similarities with the closest related database entries, a strong indication for the presence of several new species among the isolates. PMID:11822679

  19. Molecular confirmation of the genomic constitution of Douglasdeweya (Triticeae: Poaceae): demonstration of the utility of the 5S rDNA sequence as a tool for haplome identification.

    PubMed

    Baum, Bernard R; Johnson, Douglas A

    2008-06-01

    A new genus Douglasdeweya containing the two species, Douglasdeweya deweyi and D. wangii was published in 2005 by Yen et al. based upon the results of cytogenetical and morphological findings. The genome constitution of Douglasdeweya-PPStSt-allowed its segregation from the genus Pseudoroegneria which contains the StSt or StStStSt genomes. Our previous work had demonstrated the utility of using 5S rDNA units, especially the non-transcribed spacer sequence variation, for the resolution of genomes (haplomes) previously established by cytology. Here, we show that sequence analysis of the 5S DNA units from these species strongly supports the proposed species relationships of Yen et al. (Can J Bot 83:413-419, 2005), i.e., the PP genome from Agropyron and the StSt genome from Pseudoroegneria. Analysis of the 5S rDNA units constitutes a powerful tool for genomic research especially in the Triticeae. PMID:18421479

  20. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples. PMID:15183874

  1. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies

    PubMed Central

    Beckers, Bram; Op De Beeck, Michiel; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2016-01-01

    Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs. PMID:27242686

  2. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies.

    PubMed

    Beckers, Bram; Op De Beeck, Michiel; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2016-01-01

    Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs. PMID:27242686

  3. A comparative cytogenetic study of Drosophila parasitoids (Hymenoptera, Figitidae) using DNA-binding fluorochromes and FISH with 45S rDNA probe.

    PubMed

    Gokhman, Vladimir E; Bolsheva, Nadezhda L; Govind, Shubha; Muravenko, Olga V

    2016-06-01

    Karyotypes of Leptopilina boulardi (Barbotin, Carton et Keiner-Pillault, 1979) (n = 9), L. heterotoma (Thomson, 1862) (n = 10), L. victoriae Nordlander, 1980 (n = 10) and Ganaspis xanthopoda (Ashmead, 1896) (n = 9) (Hymenoptera, Figitidae) were studied using DNA-binding ligands with different base specificity [propidium iodide (PI), chromomycin A3 (CMA3) and 4',6-diamidino-2-phenylindole (DAPI)], and fluorescence in situ hybridization (FISH) with a 45S rDNA probe. Fluorochrome staining was similar between the different fluorochromes, except for a single CMA3- and PI-positive and DAPI-negative band per haploid karyotype of each species. FISH with 45S rDNA probe detected a single rDNA site in place of the bright CMA3-positive band, thus identifying the nucleolus organizing region (NOR). Chromosomal locations of NORs were similar for both L. heterotoma and L. victoriae, but strongly differed in L. boulardi as well as in G. xanthopoda. Phylogenetic aspects of NOR localization in all studied species are briefly discussed. PMID:27150102

  4. Reconstructing the Phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea Based on rbcL and 18S rDNA Sequences

    PubMed Central

    Sun, Sang-Mi; Yang, Seung Hwan

    2016-01-01

    Capsosiphon fulvescens is a filamentous green algae in the class Ulvophyceae. It has been consumed as food with unique flavor and soft texture to treat stomach disorders and hangovers, and its economic value justifies studying its nutritional and potential therapeutic effects. In contrast to these applications, only a few taxonomic studies have been conducted on C. fulvescens. In particular, classification and phylogenetic relationships of the C. fulvescens below the order level are controversial. To determine its phylogenetic position in the class, we used rbcL and 18S rDNA sequences as molecular markers to construct phylogenetic trees. The amplified rbcL and 18S rDNA sequences from 4 C. fulvescens isolates (Jindo, Jangheung, Wando, and Koheung, Korea) were used for phylogenetic analysis by employing three different phylogenetic methods: neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML). The rbcL phylogenetic tree showed that all taxa in the order Ulvales were clustered as a monophyletic group and resolved the phylogenetic position of C. fulvescens in the order Ulotrichales. The significance of our study is that the 18S rDNA phylogenetic tree shows the detailed taxonomic position of C. fulvescens. In our result, C. fulvescens is inferred as a member of Ulotrichaceae, along with Urospora and Acrosiphonia. PMID:27190985

  5. Molecular systematic of three species of Oithona (Copepoda, Cyclopoida) from the Atlantic Ocean: comparative analysis using 28S rDNA.

    PubMed

    Cepeda, Georgina D; Blanco-Bercial, Leocadio; Bucklin, Ann; Berón, Corina M; Viñas, María D

    2012-01-01

    Species of Oithona (Copepoda, Cyclopoida) are highly abundant, ecologically important, and widely distributed throughout the world oceans. Although there are valid and detailed descriptions of the species, routine species identifications remain challenging due to their small size, subtle morphological diagnostic traits, and the description of geographic forms or varieties. This study examined three species of Oithona (O. similis, O. atlantica and O. nana) occurring in the Argentine sector of the South Atlantic Ocean based on DNA sequence variation of a 575 base-pair region of 28S rDNA, with comparative analysis of these species from other North and South Atlantic regions. DNA sequence variation clearly resolved and discriminated the species, and revealed low levels of intraspecific variation among North and South Atlantic populations of each species. The 28S rDNA region was thus shown to provide an accurate and reliable means of identifying the species throughout the sampled domain. Analysis of 28S rDNA variation for additional species collected throughout the global ocean will be useful to accurately characterize biogeographical distributions of the species and to examine phylogenetic relationships among them. PMID:22558245

  6. Cytoskeletal protein filamin A is a nucleolar protein that suppresses ribosomal RNA gene transcription.

    PubMed

    Deng, Wensheng; Lopez-Camacho, Cesar; Tang, Jen-Yang; Mendoza-Villanueva, Daniel; Maya-Mendoza, Apolinar; Jackson, Dean A; Shore, Paul

    2012-01-31

    Filamin A (FLNA) is an actin-binding protein with a well-established role in the cytoskeleton, where it determines cell shape and locomotion by cross-linking actin filaments. Mutations in FLNA are associated with a wide range of genetic disorders. Here we demonstrate a unique role for FLNA as a nucleolar protein that associates with the RNA polymerase I (Pol I) transcription machinery to suppress rRNA gene transcription. We show that depletion of FLNA by siRNAs increased rRNA expression, rDNA promoter activity and cell proliferation. Immunodepletion of FLNA from nuclear extracts resulted in a decrease in rDNA promoter-driven transcription in vitro. FLNA coimmunoprecipitated with the Pol I components actin, TIF-IA, and RPA40, and their occupancy of the rDNA promoter was increased in the absence of FLNA in vivo. The FLNA actin-binding domain is essential for the suppression of rRNA expression and for inhibiting recruitment of the Pol I machinery to the rDNA promoter. These findings reveal an additional role for FLNA as a regulator of rRNA gene expression and have important implications for our understanding of the role of FLNA in human disease. PMID:22307607

  7. Coexistence of mitochondrial 12S rRNA C1494T and CO1/tRNA{sup Ser(UCN)} G7444A mutations in two Han Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing loss

    SciTech Connect

    Yuan Huijun; Chen Jing; Liu Xin; Cheng Jing; Wang Xinjian; Yang Li; Yang Shuzhi; Cao Juyang; Kang Dongyang; Dai Pu; Zha, Suoqiang; Han Dongyi Young Wieyen Guan Minxin

    2007-10-12

    Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA{sup Ser(UCN)} G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA{sup Ser(UCN)} G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.

  8. Glycogen synthase kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells.

    PubMed

    Sarshad, Aishe A; Corcoran, Martin; Al-Muzzaini, Bader; Borgonovo-Brandter, Laura; Von Euler, Anne; Lamont, Douglas; Visa, Neus; Percipalle, Piergiorgio

    2014-06-01

    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation. PMID:24901984

  9. Who are the active players of the Iberian Margin deep biosphere? Microbial diversity of borehole U1385 through analysis of 16S rDNA and rRNA

    NASA Astrophysics Data System (ADS)

    Russell, J. A.; Orsi, W.; Edgcomb, V. P.; Biddle, J.

    2013-12-01

    Microbial community structure and activity in marine deep subsurface environments across the globe have been assayed using various molecular biology tools including 16S rDNA sequencing, microarrays, FISH/CARD-FISH, and metagenomics. Many studies involving these techniques are DNA-based. This limits study of microbial function in these environments as DNA does not degrade as quickly as RNA and may lead to misinterpreting relic microbial genes as important for present-day activity. In this study, the diversity of bacteria and archaea from sediments of the Iberian Margin IODP borehole U1385 was analyzed from bulk extracted DNA and RNA at seven different depths ranging from 10 to 123 meters below seafloor (mbsf). Presented data suggests that the picture of microbial diversity obtained from DNA is markedly different from that seen through analysis of RNA. IODP borehole U1385 offers a great comparison to ODP Site 1229, a well characterized borehole on the Peru Margin. Similar sediment depositional history and geochemistry will allow exploration of what represents a 'typical' continental margin sediment microbial community or if microbial endemism is established despite similar conditions. This study represents the first molecular exploration of sediment microbial communities from the Iberian Margin IODP Site U1385.

  10. NF-κB mediates the 12(S)-HETE-induced endothelial to mesenchymal transition of lymphendothelial cells during the intravasation of breast carcinoma cells

    PubMed Central

    Vonach, C; Viola, K; Giessrigl, B; Huttary, N; Raab, I; Kalt, R; Krieger, S; Vo, T P N; Madlener, S; Bauer, S; Marian, B; Hämmerle, M; Kretschy, N; Teichmann, M; Hantusch, B; Stary, S; Unger, C; Seelinger, M; Eger, A; Mader, R; Jäger, W; Schmidt, W; Grusch, M; Dolznig, H; Mikulits, W; Krupitza, G

    2011-01-01

    Background: The intravasation of breast cancer into the lymphendothelium is an early step of metastasis. Little is known about the mechanisms of bulky cancer invasion into lymph ducts. Methods: To particularly address this issue, we developed a 3-dimensional co-culture model involving MCF-7 breast cancer cell spheroids and telomerase-immortalised human lymphendothelial cell (LEC) monolayers, which resembles intravasation in vivo and correlated the malignant phenotype with specific protein expression of LECs. Results: We show that tumour spheroids generate ‘circular chemorepellent-induced defects' (CCID) in LEC monolayers through retraction of LECs, which was induced by 12(S)-hydroxyeicosatetraenoic acid (HETE) secreted by MCF-7 spheroids. This 12(S)-HETE-regulated retraction of LECs during intravasation particularly allowed us to investigate the key regulators involved in the motility and plasticity of LECs. In all, 12(S)-HETE induced pro-metastatic protein expression patterns and showed NF-κB-dependent up-regulation of the mesenchymal marker protein S100A4 and of transcriptional repressor ZEB1 concomittant with down-regulation of the endothelial adherence junction component VE-cadherin. This was in accordance with ∼50% attenuation of CCID formation by treatment of cells with 10 μ Bay11-7082. Notably, 12(S)-HETE-induced VE-cadherin repression was regulated by either NF-κB or by ZEB1 since ZEB1 siRNA knockdown abrogated not only 12(S)-HETE-mediated VE-cadherin repression but inhibited VE-cadherin expression in general. Interpretation: These data suggest an endothelial to mesenchymal transition-like process of LECs, which induces single cell motility during endothelial transmigration of breast carcinoma cells. In conclusion, this study demonstrates that the 12(S)-HETE-induced intravasation of MCF-7 spheroids through LECs require an NF-κB-dependent process of LECs triggering the disintegration of cell–cell contacts, migration, and the generation of CCID

  11. Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses

    PubMed Central

    Liu, X.-Z.; Wang, Q.-M.; Theelen, B.; Groenewald, M.; Bai, F.-Y.; Boekhout, T.

    2015-01-01

    The Tremellomycetes (Basidiomycota) contains a large number of unicellular and dimorphic fungi with stable free-living unicellular states in their life cycles. These fungi have been conventionally classified as basidiomycetous yeasts based on physiological and biochemical characteristics. Many currently recognised genera of these yeasts are mainly defined based on phenotypical characters and are highly polyphyletic. Here we reconstructed the phylogeny of the majority of described anamorphic and teleomorphic tremellomycetous yeasts using Bayesian inference, maximum likelihood, and neighbour-joining analyses based on the sequences of seven genes, including three rRNA genes, namely the small subunit of the ribosomal DNA (rDNA), D1/D2 domains of the large subunit rDNA, and the internal transcribed spacer regions (ITS 1 and 2) of rDNA including 5.8S rDNA; and four protein-coding genes, namely the two subunits of the RNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB). With the consideration of morphological, physiological and chemotaxonomic characters and the congruence of phylogenies inferred from analyses using different algorithms based on different data sets consisting of the combined seven genes, the three rRNA genes, and the individual protein-coding genes, five major lineages corresponding to the orders Cystofilobasidiales, Filobasidiales, Holtermanniales, Tremellales, and Trichosporonales were resolved. A total of 45 strongly supported monophyletic clades with multiple species and 23 single species clades were recognised. This phylogenetic framework will be the basis for the proposal of an updated taxonomic system of tremellomycetous yeasts that will be compatible with the current taxonomic system of filamentous basidiomycetes accommodating the ‘one fungus, one name’ principle. PMID:26955196

  12. Bacterial rRNA Genes Associated with Soil Suppressiveness against the Plant-Parasitic Nematode Heterodera schachtii

    PubMed Central

    Yin, Bei; Valinsky, Lea; Gao, Xuebiao; Becker, J. Ole; Borneman, James

    2003-01-01

    The goal of this study was to identify bacteria involved in soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Since H. schachtii cysts isolated from the suppressive soil can transfer this beneficial property to nonsuppressive soils, analysis of the cyst-associated microorganisms should lead to the identification of the causal organisms. Our experimental approach was to identify bacterial rRNA genes (rDNA) associated with H. schachtii cysts obtained from soil mixtures with various levels of suppressiveness. We hypothesized that we would be able to identify bacteria involved in the suppressiveness by correlating population shifts with differing levels of suppressiveness. Soil treatments containing different amounts of suppressive and fumigation-induced nonsuppressive soils exhibited various levels of suppressiveness after two nematode generations. The 10%-suppressive-soil treatment contained numbers of eggs per gram of soil similar to those of the 100%-suppressive-soil treatment, indicating that the suppressive factor(s) had been transferred. Bacterial rDNA associated with H. schachtii cysts were identified using a culture-independent method termed oligonucleotide fingerprinting of rRNA genes. Bacteria from five major taxonomic groups (Actinobacteria, Cytophaga-Flexibacter-Bacteroides, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria) were identified. Three bacterial rDNA groups contained clones that were more prevalent in the highly suppressive soil treatments than in the less suppressive treatments, indicating a potential involvement in the H. schachtii suppressiveness. When these three groups were examined with specific PCR analyses performed on H. schachtii cysts that developed in soils treated with three biocidal compounds, only one bacterial rDNA group with moderate to high sequence identity to rDNA from several Rhizobium species and uncultured α-proteobacterial clones was consistently associated with the highly

  13. B chromosomes showing active ribosomal RNA genes contribute insignificant amounts of rRNA in the grasshopper Eyprepocnemis plorans.

    PubMed

    Ruiz-Estévez, Mercedes; Badisco, Liesbeth; Broeck, Jozef Vanden; Perfectti, Francisco; López-León, María Dolores; Cabrero, Josefa; Camacho, Juan Pedro M

    2014-12-01

    The genetic inertness of supernumerary (B) chromosomes has recently been called into question after finding several cases of gene activity on them. The grasshopper Eyprepocnemis plorans harbors B chromosomes containing large amounts of ribosomal DNA (rDNA) units, some of which are eventually active, but the amount of rRNA transcripts contributed by B chromosomes, compared to those of the standard (A) chromosomes, is unknown. Here, we address this question by means of quantitative PCR (qPCR) for two different ITS2 amplicons, one coming from rDNA units located in both A and B chromosomes (ITS2(A+B)) and the other being specific to B chromosomes (ITS2(B)). We analyzed six body parts in nine males showing rDNA expression in their B chromosomes in the testis. Amplification of the ITS2(B) amplicon was successful in RNA extracted from all six body parts analyzed, but showed relative quantification (RQ) values four orders of magnitude lower than those obtained for the ITS(A+B) amplicon. RQ values differed significantly between body parts for the two amplicons, with testis, accessory gland and wing muscle showing threefold higher values than head, gastric cecum and hind leg. We conclude that the level of B-specific rDNA expression is extremely low even in individuals where B chromosome rDNA is not completely silenced. Bearing in mind that B chromosomes carry the largest rDNA cluster in the E. plorans genome, we also infer that the relative contribution of B chromosome rRNA genes to ribosome biogenesis is insignificant, at least in the body parts analyzed. PMID:24997085

  14. Arbuscular mycorrhizal infection changes the bacterial 16 S rDNA community composition in the rhizosphere of maize.

    PubMed

    Marschner, P; Crowley, D; Lieberei, R

    2001-12-01

    Mycorrhizal and non-mycorrhizal (NM) maize plants were grown for 4 or 7 weeks in an autoclaved quartz sand-soil mix. Half of the NM plants were supplied with soluble P (NM-HP) while the other half (NM-LP), like the mycorrhizal plants, received poorly soluble Fe and Al phosphate. The mycorrhizal plants were inoculated with Glomus mosseae or G. intraradices. Soil bacteria and those associated with the mycorrhizal inoculum were reintroduced by adding a filtrate of a low P soil and of the inocula. At 4 and 7 weeks, plants were harvested and root samples were taken from the root tip (0-1 cm), the subapical zone (1-2 cm) and the mature root zone at the site of lateral root emergence. DNA was extracted from the roots with adhering soil. At both harvests, the NM-HP plants had higher shoot dry weight than the plants grown on poorly soluble P. Mycorrhizal infection of both fungi ranged between 78% and 93% and had no effect on shoot growth or shoot P content. Eubacterial community compositions were examined by polymerase chain reaction-denaturing gradient gel electrophoresis of 16 S rDNA, digitisation of the band patterns and multivariate analysis. The community composition changed with time and was root zone specific. The differences in bacterial community composition in the rhizosphere between the NM plants and the mycorrhizal plants were greater at 7 than at 4 weeks. The two fungi had similar bacterial communities after 4 weeks, but these differed after 7 weeks. The observed differences are probably due to changes in substrate composition and amount in the rhizosphere. PMID:24549350

  15. 18S rDNA analysis of alkenone-producing haptophyte(s) preserved in surface sediments of Lake Toyoni, Japan

    NASA Astrophysics Data System (ADS)

    McColl, J. L.; Couto, J.; Bendle, J. A.; Henderson, A. C.; Seki, O.; Phoenix, V. R.; Toney, J. L.

    2013-12-01

    Alkenones (long chain ketones) are readily preserved in sedimentary archives and have the potential to provide quantitative reconstructions of past water temperature. Alkenones are produced by a limited number of haptophyte algae in the marine and also some lacustrine systems. However, lakes are heterogeneous: an individual lake will have a unique combination of ecological conditions, haptophyte species and seasonal alkenone production that contributes to the sedimentary record. Haptophyte algae species have different sensitivities to temperature; therefore identifying the alkenone producer(s) prior to down-core temperature reconstructions is critical before selecting the most appropriate temperature calibration. We present a study from Lake Toyoni, a freshwater lake in Hokkaido, Japan that has alkenones preserved in surface sediments. The aim of this study is to identify the alkenone producer(s) within the lake using 18S rDNA analyses. Preserved rDNA of planktonic phototrophic algae was extracted from surface sediments of Lake Toyoni and phylogenetic analyses of the rDNA sequences suggest alkenones are produced by a single haptophyte within the class Prymnesiophyceae (order Isochrysidales). The Lake Toyoni alkenone-producer shares a distinct phylotype with a haptophyte reported from water filter samples collected in Lake BrayaSø, Greenland (D'Andrea et al., 2006). Similarity between the 18S rDNA sequences from Lake Toyoni and Lake BrayaSø provides a basis for applying (and updating) the Greenland lake temperature calibration. Applying this temperature calibration (T°C = 40.8 [UK37] + 31.8, R2=0.96; n=34) to the surface sediment alkenone unsaturation index from Lake Toyoni gives an estimated lake surface temperature (LST) of 8°C. This is in line with observed LST at Lake Toyoni, which ranges between 7 - 22°C (Apr 2011 to Nov 2011). The occurrence and identification of a single alkenone producer in Lake Toyoni means problems posed by a mixture of haptophytes in

  16. Genes and Gene Therapy

    MedlinePlus

    ... a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  17. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  18. Stereoselective chemo-enzymatic oxidation routes for (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene

    PubMed Central

    Görner, Christian; Hirte, Max; Huber, Stephanie; Schrepfer, Patrick; Brück, Thomas

    2015-01-01

    The diterpene (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene from the marine brown alga Dilophus spiralis belongs to the dolabellanes natural product family and has antimicrobial activity against multi-drug resistant Staphylococcus aureus. Recently, we generated a CotB2 diterpene synthase mutant (W288G), which instead of its native product cyclooctat-9-en-7-ol, generates (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene. In vivo CotB2 W288G reconstitution in an Escherichia coli based terpene production system, allowed efficient production of this olefinic macrocycle. To diversify the 3,7,18-dolabellatriene bioactivity we evaluated chemical and enzymatic methods for selective oxidation. Epoxidation by acetic peracid, which was formed in situ by a lipase catalyzed reaction of acetic acid with H2O2, provided efficient access to two monooxidized dolabellanes and to a novel di-epoxidated dolabellane species. These compounds could act as synthons en-route to new dolabellanes with diversified bioactivities. Furthermore, we demonstrate the almost quantitative 3,7,18-dolabellatriene conversion into the new, non-natural compound (1R,3E,7E,11S,12S,18R)-dolabella-3,7-diene-20-ol by hydroboration–oxidation with an enantiomeric excess of 94%, for the first time. PMID:26528263

  19. 12(S)-HETE increases intracellular Ca(2+) in lymph-endothelial cells disrupting their barrier function in vitro; stabilization by clinical drugs impairing calcium supply.

    PubMed

    Nguyen, Chi Huu; Brenner, Stefan; Huttary, Nicole; Li, Yuanfang; Atanasov, Atanas Georgiev; Dirsch, Verena M; Holzner, Silvio; Stadler, Serena; Riha, Juliane; Krieger, Sigurd; Milovanovic, Danijela; Fristiohardy, Adryan; Simonitsch-Klupp, Ingrid; Dolznig, Helmut; Saiko, Philipp; Szekeres, Thomas; Giessrigl, Benedikt; Jäger, Walter; Krupitza, Georg

    2016-09-28

    Secretion of 12(S)-HETE by breast cancer emboli provokes "circular chemorepellent induced defects" (CCIDs) in the adjacent lymphatic vasculature facilitating their intravasation and lymph node metastasis which determines prognosis. Therefore, elucidating the mechanism of lymph endothelial cell (LEC) wall disintegration may provide cues for anti-metastatic intervention. The role of intracellular free Ca(2+) for CCID formation was investigated in LECs using MCF-7 or MDA-MB231 breast cancer cell spheroids in a three-dimensional cell co-culture model. 12(S)-HETE elevated the Ca(2+) level in LEC by activating PLC/IP3. Downstream, the Ca(2+)-calmodulin kinase MYLK contributed to the phosphorylation of Ser19-MLC2, LEC contraction and CCID formation. Approved clinical drugs, lidoflazine, ketotifen, epiandrosterone and cyclosporine, which reportedly disturb cellular calcium supply, inhibited 12(S)-HETE-induced Ca(2+) increase, Ser19-MLC2 phosphorylation and CCID formation. This treatment strategy may reduce spreading of breast cancer through lymphatics. PMID:27390016

  20. Na2.9KMo12S14: a novel quaternary reduced molybdenum sulfide containing Mo12 clusters with a channel structure

    PubMed Central

    Gougeon, Patrick; Gall, Philippe; Salloum, Diala

    2013-01-01

    The crystal structure of tris­odium potassium dodeca­molybdenum tetra­deca­sulfide, Na2.9 (2)KMo12S14, consists of Mo12S14S6 cluster units inter­connected through inter­unit Mo—S bonds and delimiting channels in which the Na+ cations are disordered. The cluster units are centered at Wyckoff positions 2d and have point-group symmetry 3.2. The K atom lies on sites with 3.2 symmetry (Wyckoff site 2c) between two consecutive Mo12S14S6 units. One of the three independent S atoms and one Na atom lie on sites with 3.. symmetry (Wyckoff sites 4e and 4f). The other Na atom occupies a 2b position with -3.. symmetry. The crystal studied was a merohedral twin with refined components of 0.4951 (13) and 0.5049 (13). PMID:23794969

  1. Ribosomal RNA genes of Trypanosoma brucei. Cloning of a rRNA gene containing a mobile element.

    PubMed Central

    Hasan, G; Turner, M J; Cordingley, J S

    1982-01-01

    An ordered restriction map of the ribosomal RNA genes of Trypanosoma brucei brucei is presented. Bgl II fragments of T.b.brucei genomic DNA were cloned into pAT 153, and the clones containing rDNA identified. Restriction maps were established and the sense strands identified. One clone was shown by heteroduplex mapping to contain a 1.1 kb inserted sequence which was demonstrated to be widely distributed throughout the genomes of members of the subgenus Trypanozoon. However, in two other subgenera of Trypanosoma, Nannomonas and Schizotrypanum, the sequence is far less abundant. Analysis of the genomic DNA from two serodemes of T.b.brucei showed that the sequence was present in the rRNA of only one of them, implying that the sequence is a mobile element and that its appearance in rDNA is a comparitively recent occurrence. Images PMID:6294613

  2. Molecular organization of 5S rDNAs in Rajidae (Chondrichthyes): Structural features and evolution of piscine 5S rRNA genes and nontranscribed intergenic spacers.

    PubMed

    Pasolini, Paola; Costagliola, Domenico; Rocco, Lucia; Tinti, Fausto

    2006-05-01

    The genomic and gene organisation of 5S rDNA clusters have been extensively characterized in bony fish and eukaryotes, providing general issues for understanding the molecular evolution of this multigene DNA family. By contrast, the 5S rDNA features have been rarely investigated in cartilaginous fish (only three species). Here, we provide evidence for a dual 5S rDNA gene system in the Rajidae by sequence analysis of the coding region (5S) and adjacent nontranscribed spacer (NTS) in five Mediterranean species of rays (Rajidae), and in a large number of piscine taxa including lampreys and bony fish. As documented in several bony fish, two functional 5S rDNA types were found here also in the rajid genome: a short one (I) and a long one (II), distinguished by distinct 5S and NTS sequences. That the ancestral piscine genome had these two 5S rDNA loci might be argued from the occurrence of homologous dual gene systems that exist in several fish taxa and from 5S phylogenetic relationships. An extensive analysis of NTS-II sequences of Rajidae and Dasyatidae revealed the occurrence of large simple sequence repeat (SSR) regions that are formed by microsatellite arrays. The localization and organization of SSR within the NTS-II are conserved in Rajiformes since the Upper Cretaceous. The direct correlation between the SSRs extension and the NTS length indicated that they might play a role in the maintenance of the larger 5S rDNA clusters in rays. The phylogenetic analysis indicated that NTS-II is a valuable systematic tool limited to distantly related taxa of Rajiformes. PMID:16612546

  3. MOLECULAR AND PATHOLOGICAL CHARACTERIZATION OF RICE SHEATH BLIGHT PATHOGEN ISOLATES FROM ARKANSAS USING RDNA-INTERNAL TRANSCRIBED SPACER SEQUENCES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice sheath blight, caused by Rhizoctonia solani Kühn (anastomosis group AG1-IA), is a serious disease worldwide. R. solani has a broad host range and no complete genetic resistance is available among cultivated rices. As first step to identify sheath blight resistance gene(s), molecular character...

  4. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)1

    PubMed Central

    Stenger, Brianna L.S.; Clark, Mark E.; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W.; Dyer, Neil W.; Schultz, Jessie L.; McEvoy, John M.

    2015-01-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89–95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73–5.04 μm) × 3.94 μm (3.50–4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  5. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus).

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Dyer, Neil W; Schultz, Jessie L; McEvoy, John M

    2015-06-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  6. 12(S)-hydroxyeicosatetraenoic acid and 13(S)-hydroxyoctadecadienoic acid regulation of protein kinase C-alpha in melanoma cells: role of receptor-mediated hydrolysis of inositol phospholipids.

    PubMed Central

    Liu, B; Khan, W A; Hannun, Y A; Timar, J; Taylor, J D; Lundy, S; Butovich, I; Honn, K V

    1995-01-01

    Protein kinase C (PKC) isoenzymes are essential components of cell signaling. In this study, we investigated the regulation of PKC-alpha in murine B16 amelanotic melanoma (B16a) cells by the monohydroxy fatty acids 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] and 13(S)-hydroxyoctadecadienoic acid [13(S)-HODE]. 12(S)-HETE induced a translocation of PKC-alpha to the plasma membrane and focal adhesion plaques, leading to enhanced adhesion of B16a cells to the matrix protein fibronectin. However, 13(S)-HODE inhibited these 12(S)-HETE effects on PKC-alpha. A receptor-mediated mechanism of action for 12(S)-HETE and 13(S)-HODE is supported by the following findings. First, 12(S)-HETE triggered a rapid increase in cellular levels of diacylglycerol and inositol trisphosphate in B16a cells. 13(S)-HODE blocked the 12(S)-HETE-induced bursts of both second messengers. Second, the 12(S)-HETE-increased adhesion of B16a cells to fibronectin was sensitive to inhibition by a phospholipase C inhibitor and pertussis toxin. Finally, a high-affinity binding site (Kd = 1 nM) for 12(S)-HETE was detected in B16a cells, and binding of 12(S)-HETE to B16a cells was effectively inhibited by 13(S)-HODE (IC50 = 4 nM). In summary, our data provide evidence that regulation of PKC-alpha by 12(S)-HETE and 13(S)-HODE may be through a guanine nucleotide-binding protein-linked receptor-mediated hydrolysis of inositol phospholipids. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7568126

  7. Phylogenetic utility of ribosomal genes for reconstructing the phylogeny of five Chinese satyrine tribes (Lepidoptera, Nymphalidae)

    PubMed Central

    Yang, Mingsheng; Zhang, Yalin

    2015-01-01

    Abstract Satyrinae is one of twelve subfamilies of the butterfly family Nymphalidae, which currently includes nine tribes. However, phylogenetic relationships among them remain largely unresolved, though different researches have been conducted based on both morphological and molecular data. However, ribosomal genes have never been used in tribe level phylogenetic analyses of Satyrinae. In this study we investigate for the first time the phylogenetic relationships among the tribes Elymniini, Amathusiini, Zetherini and Melanitini which are indicated to be a monophyletic group, and the Satyrini, using two ribosomal genes (28s rDNA and 16s rDNA) and four protein-coding genes (EF-1α, COI, COII and Cytb). We mainly aim to assess the phylogenetic informativeness of the ribosomal genes as well as clarify the relationships among different tribes. Our results show the two ribosomal genes generally have the same high phylogenetic informativeness compared with EF-1α; and we infer the 28s rDNA would show better informativeness if the 28s rDNA sequence data for each sampling taxon are obtained in this study. The placement of the monotypic genus Callarge Leech in Zetherini is confirmed for the first time based on molecular evidence. In addition, our maximum likelihood (ML) and Bayesian inference (BI) trees consistently show that the involved Satyrinae including the Amathusiini is monophyletic with high support values. Although the relationships among the five tribes are identical among ML and BI analyses and are mostly strongly-supported in BI analysis, those in ML analysis are lowly- or moderately- supported. Therefore, the relationships among the related five tribes recovered herein need further verification based on more sampling taxa. PMID:25878526

  8. Fragile sites of 45S rDNA of Lolium multiflorum are not hotspots for chromosomal breakages induced by X-ray.

    PubMed

    Rocha, Laiane Corsini; Mittelmann, Andrea; Houben, Andreas; Techio, Vânia Helena

    2016-07-01

    Sites of 45S rDNA of Lolium are regions denominated fragile sites (FSs), constituting regions slightly stained with DAPI due to increased DNA unpacking in metaphasic chromosomes. Considered to be fragile regions in the genome, the FSs might be more responsive to induced breaks and result in chromosomal fragments and rearrangements, unless repairing mechanisms such as recombination or de novo telomere formation play a role at the break site of the DNA. Thus, this study aimed at investigating if SFs from Lolium are hotspots for the occurrence of breakages induced by X-ray and if they are regions favorable to synthesize new telomeres, using Hordeum vulgare as a comparative model. Lolium multiflorum and H. vulgare seedlings were irradiated with 20 and 50 Gy X-ray and evaluated one day following the irradiation and at 7-days intervals for a 28-days period, using FISH technique with 45S rDNA and Arabidopsis-type telomere probes in order to investigate the presence of chromosomal breakages and new telomere formation. H. vulgare did not survive after a few days of irradiation due to the increased rate of abnormalities. L. multiflorum also exhibited chromosomal abnormalities following the exposure, yet over the 28-days trial it had a decrease in the chromosomal damage rate and formation of de novo telomere has not been detected along this time. Despite being considered to be fragile regions in the genome, the 45S rDNA sites of Lolium are not hotspots to chromosomal breakages after the induction of breakages. PMID:27174104

  9. The karyotype and 5S rRNA genes from Spanish individuals of the bat species Rhinolophus hipposideros (Rhinolophidae; Chiroptera).

    PubMed

    Puerma, Eva; Acosta, Manuel J; Barragán, Maria José L; Martínez, Sergio; Marchal, Juan Alberto; Bullejos, Mónica; Sánchez, Antonio

    2008-11-01

    The karyotype of individuals of the species Rhinolophus hipposideros from Spain present a chromosome number of 2n = 54 (NFa = 62). The described karyotype for these specimens is very similar to another previously described in individual from Bulgaria. However, the presence of one additional pair of autosomal acrocentric chromosomes in the Bulgarian karyotype and the differences in X chromosome morphology indicated that we have described a new karyotype variant in this species. In addition, we have analyzed several clones of 1.4 and 1 kb of a PstI repeated DNA sequence from the genome of R. hipposideros. The repeated sequence included a region with high identity with the 5S rDNA genes and flanking regions, with no homology with GenBank sequences. Search for polymerase III regulatory elements demonstrated the presence of type I promoter elements (A-box, Intermediate Element and C-box) in the 5S rDNA region. In addition, upstream regulatory elements, as a D-box and Sp1 binding sequences, were present in flanking regions. All data indicated that the cloned repeated sequences are the functional rDNA genes from this species. Finally, FISH demonstrated the presence of rDNA in nine chromosome pairs, which is surprising as most mammals have only one carrier chromosome pair. PMID:18066670

  10. Development of a PCR assay based on the 16S-23S rDNA internal transcribed spacer for identification of strictly anaerobic bacterium Zymophilus.

    PubMed

    Felsberg, Jurgen; Jelínková, Markéta; Kubizniaková, Petra; Matoulková, Dagmar

    2015-06-01

    PCR-primers were designed for identification of strictly anaerobic bacteria of the genus Zymophilus based on genus-specific sequences of the 16S-23S rDNA internal transcribed spacer region. The specificity of the primers was tested against 37 brewery-related non-target microorganisms that could potentially occur in the same brewery specimens. None DNA was amplified from any of the non-Zymophilus strains tested including genera from the same family (Pectinatus, Megasphaera, Selenomonas), showing thus 100% specificity. PCR assay developed in this study allows an extension of the spectra of detected beer spoilage microorganisms in brewery laboratories. PMID:25725268

  11. A meta-analysis and systematic review of the prevalence of mitochondrially encoded 12S RNA in the general population: Is there a role for screening neonates requiring aminoglycosides?

    PubMed Central

    Ibekwe, Titus S.; Bhimrao, Sanjiv K.; Westerberg, Brian D.; Kozak, Frederick K.

    2015-01-01

    Background: This was a meta-analysis and systematic review to determine the global prevalence of the mitochondrially encoded 12S RNA (MT-RNR1) genetic mutation in order to assess the need for neonatal screening prior to aminoglycoside therapy. Materials and Methods: A comprehensive search of MEDLINE, EMBASE, Ovid, Database of Abstracts of Reviews of Effect, Cochrane Library, Clinical Evidence and Cochrane Central Register of Trials was performed including cross-referencing independently by 2 assessors. Selections were restricted to human studies in English. Meta-analysis was done with MetaXL 2013. Results: Forty-five papers out of 295 met the criteria. Pooled prevalence in the general population for MT-RNR1 gene mutations (A1555G, C1494T, A7445G) was 2% (1–4%) at 99%. Conclusion: Routine screening for MT-RNR1 mutations in the general population prior to treatment with aminoglycosides appear desirable but poorly supported by the weak level of evidence available in the literature. Routine screening in high-risk (Chinese and Spanish) populations appear justified. PMID:26168747

  12. The coexistence of mitochondrial ND6 T14484C and 12S rRNA A1555G mutations in a Chinese family with Leber's hereditary optic neuropathy and hearing loss

    SciTech Connect

    Wei Qiping; Zhou Xiangtian; Yang Li; Sun Yanhong; Zhou Jian; Li Guang; Jiang, Robert; Lu Fan; Qu Jia . E-mail: jqu@wzmc.net; Guan Minxin . E-mail: min-xin.guan@cchmc.org

    2007-06-15

    We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, the coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations.

  13. In Situ Gene Mapping of Two Genes Supports Independent Evolution of Sex Chromosomes in Cold-Adapted Antarctic Fish

    PubMed Central

    Ghigliotti, Laura; Cheng, C.-H. Christina; Bonillo, Céline; Coutanceau, Jean-Pierre; Pisano, Eva

    2013-01-01

    Two genes, that is, 5S ribosomal sequences and antifreeze glycoprotein (AFGP) genes, were mapped onto chromosomes of eight Antarctic notothenioid fish possessing a X1X1X2X2/X1X2Y sex chromosome system, namely, Chionodraco hamatus and Pagetopsis macropterus (family Channichthyidae), Trematomus hansoni, T. newnesi, T. nicolai, T. lepidorhinus, and Pagothenia borchgrevinki (family Nototheniidae), and Artedidraco skottsbergi (family Artedidraconidae). Through fluorescence in situ hybridization (FISH), we uncovered distinct differences in the gene content of the Y chromosomes in the eight species, with C. hamatus and P. macropterus standing out among others in bearing 5S rDNA and AFGP sequences on their Y chromosomes, respectively. Both genes were absent from the Y chromosomes of any analyzed species. The distinct patterns of Y and non-Y chromosome association of the 5S rDNA and AFGP genes in species representing different Antarctic fish families support an independent origin of the sex heterochromosomes in notothenioids with interesting implications for the evolutionary/adaptational history of these fishes living in a cold-stable environment. PMID:23509694

  14. DNA homologies of ribosomal RNA genes of Neurospora species

    SciTech Connect

    Mukhopadhyay, D.K.; Mimiko, R.; Dutta, S.K.

    1980-01-01

    Ribosomal RNA genes (rDNAs) of Neurospora crassa contain DNA sequences which code for 17S, 5.8S, and 26S rRNAs, in addition to internal and external spacers. As has been reported for many eukaryotes, the DNA sequences which code for 17S, 5.8S, and 26S rRNAs in Neurospora species are probably conserved while the internal and external spacer regions are probably variable sequences. Extensive electron microscopic studies of 45S precursor rRNA of several cold and warm blooded animals confirm that spacer regions vary extensively from species to species. It was desirable to know whether such differences in rDNA sequences exist between Neurospora species. Any such difference should be detectable using standard procedures for DNA homology studies rDNA sequences were isolated from N. crassa mycelial cells using the procedure described previously. The purified rDNA was /sup 3/H-labeled (by nick translation) and reassociated with total DNA isolated from the heterothallic species N. crassa and from three homothalliospecies: N. dodgei, N. lineolata, and N. africana. In addition, /sup 32/P-labeled total DNA of N. crassa was reannealed with unlabeled bulk DNA from N. crassa, N. dodgei, and N. lineolata.

  15. Mitochondrial COX2 G7598A Mutation May Have a Modifying Role in the Phenotypic Manifestation of Aminoglycoside Antibiotic-Induced Deafness Associated with 12S rRNA A1555G Mutation in a Han Chinese Pedigree

    PubMed Central

    Chen, Tianbin; Liu, Qicai; Jiang, Ling; Liu, Can

    2013-01-01

    Recent studies suggest that certain mitochondrial haplogroup markers and some specific variants in mitochondrial haplogroup may also influence the phenotypic expression of particular mitochondrial disorders. In this report, the clinical, genetic, and molecular characterization were identified in a Chinese pedigree with the aminoglycoside antibiotic (AmAn)-induced deafness and nonsyndromic hearing loss (NSHL). The pathogenic gene responsible for this hereditary NSHL pedigree was determined by Microarray chip, which possessed the nine NSHL hot-spot mutations, including GJB2 (35delG, 176dell6bp, 235de1C, and 299delAT), GJB3 (538C>T), SLC26A4 (IVS7-2A>G and 2168A>G), and mitochondrial DNA (mtDNA) 12S rRNA (C1494T and A1555G). Only the homoplasmic A1555G mutation was detected, which was confirmed by direct sequencing. Also, real-time amplification refractory mutation system quantitative polymerase chain reaction methodology was performed to calculate the A1555G mutation load. The proband's complete mtDNA genome were amplified and direct sequencing was performed to determine the mitochondrial haplogroup and private mutations. The proband's mitochondrial haplogroup belonges to M7b1 and a private mutation MTCOX2 G7598A (p.Ala 5 Thr) is found. Phylogenetic analysis of COX2 polypeptide sequences demonstrates that the alanine residue is relatively conserved, but owing to the missense mutation (p.Ala 5 Thr), its side chain hydrophobicity will be changed, and what is more, as it is adjacent to a glutamine residue, which is highly conserved and hydrophilic, in an evolutionary stable domain; G7598A (p.Ala 5 Thr) may alter the protein secondary structure and physiological function of COX2 and, thus, aggravate the mitochondrial dysfunction conferred by the A1555G mutation. Furthermore, the G7598A mutation is absent in 100 unrelated healthy controls; therefore, G7598A (p.Ala 5 Thr) in the mitochondrial haplogoup M7b1 may have a modifying role, enhancing its penetrance and severity

  16. Comparison of VITEK2, MALDI-TOF MS, and 16S rDNA sequencing for identification of Myroides odoratus and Myroides odoratimimus.

    PubMed

    Schröttner, Percy; Rudolph, Wolfram W; Eing, Bodo R; Bertram, Sebastian; Gunzer, Florian

    2014-06-01

    The genus Myroides comprises the 2 medically relevant species Myroides odoratus and Myroides odoratimimus that are rare opportunistic pathogens and cause infections in immunocompromised patients. A fast identification of Myroides is of importance because these bacterial strains show multiple resistance against antibiotics and therefore limit treatment options. They are associated, for instance, with urinary tract infections, sepsis, meningitis, pneumonia, and infectious cellulitis. Since more and more Myroides spp. are being described, additional potentially pathogenic bacteria may be identified in the future demanding the need for fast and reliable identification methods at species level. However, to date, only molecular approaches meet these demands. In this study, we, therefore, attempt to define an appropriate method other than DNA fingerprinting that will permit a comparable efficacy and, possibly, a more economical strain identification. For this purpose, we compared 2 widely used automated diagnostic systems (VITEK 2 [bioMérieux, Nürtingen, Germany] and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) [Bruker Daltonics, Bremen, Germany]) and correlated the results to 16S rDNA sequencing data. In total, we analyzed 22 strains collected in the course of routine diagnostics. In this study, we demonstrate that VITEK 2 reliably identifies the genus Myroides but cannot differentiate between M. odoratimimus and M. odoratus. In contrast to this, both MALDI-TOF MS and 16S rDNA sequencing efficiently distinguish between the 2 species. PMID:24666701

  17. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae sedis).

    PubMed

    Moriya, M; Nakayama, T; Inouye, I

    2000-05-01

    A new heterotrophic flagellate Wobblia lunata gen. et sp. nov. is described. This organism usually attaches to the substratum showing a wobbling motion, and sometimes glides on the substratum or swims freely in the medium. W. lunata has various features characteristic of the stramenopiles. These include a hairy flagellum with tripartite tubular hairs, a mitochondrion with tubular cristae, arrangement of flagellar apparatus components and a double helix in the flagellar transition zone. W. lunata shares a double helix with heterotrophic stramenopiles, including Developayella elegans, oomycetes, hyphochytrids, opalinids and proteromonads, and could be placed in the phylum Bigyra Cavalier-Smith. However, from 18S rDNA tree analysis, these organisms form two distantly-related clades in the stramenopiles, and Wobblia appears at the base of the stramenopiles. Evaluation of morphological features and comparison of 18S rDNA sequences indicate that W. lunata is a member of the stramenopiles, but it is distinct from any other stramenopiles so far described. Its phylogenetic position within the stramenopiles is uncertain and therefore W. lunata is described as a stramenopile incertae sedis. PMID:10896132

  18. The phylogenetic position of the Loimoidae Price, 1936 (Monogenoidea: Monocotylidea) based on analyses of partial rDNA sequences and morphological data.

    PubMed

    Boeger, W A; Kritsky, D C; Domingues, M V; Bueno-Silva, M

    2014-06-01

    Phylogenetic analyses of partial sequences of 18S and 28S rDNA of some monogenoids, including monocotylids and a specimen of Loimosina sp. collected from a hammerhead shark off Brazil, indicated that the Loimoidae (as represented by the specimen of Loimosina sp.) represents an in-group taxon of the Monocotylidae. In all analyses, the Loimoidae fell within a major monocotylid clade including species of the Heterocotylinae, Decacotylinae, and Monocotylinae. The Loimoidae formed a terminal clade with two heterocotyline species, Troglocephalus rhinobatidis and Neoheterocotyle rhinobatis, for which it represented the sister taxon. The following morphological characters supported the clade comprising the Loimoidae, Heterocotylinae, Decacotylinae and Monocotylinae: single vagina present, presence of a narrow deep anchor root, and presence of a marginal haptoral membrane. The presence of cephalic pits was identified as a putative synapomorphy for the clade (Loimoidae (T. rhinobatidis, N. rhinobatis)). Although rDNA sequence data support the rejection of the Loimoidae and incorporating its species into the Monocotylidae, this action was not recommended pending a full phylogenetic analysis of morphological data. PMID:24491371

  19. Morphology and Small Subunit rDNA Phylogeny of Two New Marine Urostylid Ciliates, Caudiholosticha marina sp. nov. and Nothoholosticha flava sp. nov. (Ciliophora, Hypotrichia).

    PubMed

    Li, Ju; Chen, Xumiao; Xu, Kuidong

    2016-07-01

    Two marine urostylid ciliates, Caudiholosticha marina sp. nov. and Nothoholosticha flava sp. nov., isolated from intertidal sediment in the Yellow Sea, are investigated using morphological and small subunit rDNA phylogenetic analyses. Caudiholosticha marina is 210-310 μm × 40-55 μm in vivo, and has 10-20 macronuclear nodules, 23-37 midventral cirral pairs extending to 5-8 transverse cirri, and two caudal cirri. It differs from congeners by its marine habitat, larger size, macronuclear arrangement pattern and high number of midventral pairs. Molecular phylogenetic analyses indicate a polyphyly of Caudiholosticha. Nothoholosticha flava is yellow to brownish and 240-320 μm × 40-60 μm sized, and has a bipartite adoral zone, six frontal cirri in atypical bicorona, usually four frontoterminal, one buccal and 5-7 transverse cirri and 28-54 midventral pairs. Phylogenetic analyses allocate N. flava as sister of N. fasciola, type of the genus. The two Nothoholosticha species differ distinctly by the presence/absence of frontoterminal cirri, a feature often used to define genera in the Hypotrichia. However, the SSU rDNA sequence similarity between these two species is 99.3%, which weakens the justification for separating the new isolate at genus level. The taxonomic significance of frontoterminal cirri is discussed based on morphological and molecular data. PMID:26663360

  20. Determination of fruit origin by using 26S rDNA fingerprinting of yeast communities by PCR-DGGE: preliminary application to Physalis fruits from Egypt.

    PubMed

    El Sheikha, Aly Farag; Condur, Ana; Métayer, Isabelle; Nguyen, Doan Duy Le; Loiseau, Gérard; Montet, Didier

    2009-10-01

    The determination of geographical origin is a demand of the traceability system of import-export food products. One hypothesis for tracing the source of a product is by global analysis of the microbial communities of the food and statistical linkage of this analysis to the geographical origin of the food. For this purpose, a molecular technique employing 26S rDNA profiles generated by PCR-DGGE was used to detect the variation in yeast community structures of three species of Physalis fruit (Physalis ixocarpa Brat, Physalis pubescens L, Physalis pruinosa L) from four Egyptian regions (Qalyoubia, Minufiya, Beheira and Alexandria Governments). When the 26S rDNA profiles were analysed by multivariate analysis, distinct microbial communities were detected. The band profiles of Physalis yeasts from different Governments were specific for each location and could be used as a bar code to discriminate the origin of the fruits. This method is a new traceability tool which provides fruit products with a unique biological bar code and makes it possible to trace back the fruits to their original location. PMID:19784935

  1. Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana.

    PubMed Central

    Lim, K Y; Skalicka, K; Koukalova, B; Volkov, R A; Matyasek, R; Hemleben, V; Leitch, A R; Kovarik, A

    2004-01-01

    An approximately 135-bp sequence called the A1/A2 repeat was isolated from the transcribed region of the 26-18S rDNA intergenic spacer (IGS) of Nicotiana tomentosiformis. Fluorescence in situ hybridization (FISH) and Southern blot analysis revealed its occurrence as an independent satellite (termed an A1/A2 satellite) outside of rDNA loci in species of Nicotiana section Tomentosae. The chromosomal location, patterns of genomic dispersion, and copy numbers of its tandemly arranged units varied between the species. In more distantly related Nicotiana species the A1/A2 repeats were found only at the nucleolar organizer regions (NOR). There was a trend toward the elimination of the A1/A2 satellite in N. tabacum (tobacco), an allotetraploid with parents closely related to the diploids N. sylvestris and N. tomentosiformis. This process may have already commenced in an S(3) generation of synthetic tobacco. Cytosine residues in the IGS were significantly hypomethylated compared with the A1/A2 satellite. There was no clear separation between the IGS and satellite fractions in sequence analysis of individual clones and we found no evidence for CG suppression. Taken together the data indicate a dynamic nature of the A1/A2 repeats in Nicotiana genomes, with evidence for recurrent integration, copy number expansions, and contractions. PMID:15126410

  2. Molecular analysis of the genus Mitragyna existing in Thailand based on rDNA ITS sequences and its application to identify a narcotic species: Mitragyna speciosa.

    PubMed

    Sukrong, Suchada; Zhu, Shu; Ruangrungsi, Nijsiri; Phadungcharoen, Thatree; Palanuvej, Chanida; Komatsu, Katsuko

    2007-07-01

    In Thailand, there are four Mitragyna species; M. speciosa, M. hirsuta, M. diversifolia, and M. rotundifolia. One, M. speciosa, is a narcotic plant and has medicinal importance for its opium-like effect. Since the use of M. speciosa has been forbidden in Thailand, the leaves of M. diversifolia or others are frequently used as substitutes but are not considered as effective. Therefore, accurate authentication of M. speciosa is essential for both medicinal and forensic purposes. The nucleotide sequences of internal transcribed spacers (ITS) and the 5.8S coding region of nuclear ribosomal DNA (rDNA) of the Mitragyna species were analyzed. The whole length of ITS1-5.8S-ITS2 region was 608 bp in M. speciosa, 607 bp in the other species. Nineteen sites of nucleotide substitutions and 3 sites of 1-bp indels were observed, and M. speciosa showed specific sequence differed from the others. Based on the ITS sequences, a distinctive site recognized by a restriction enzyme XmaI in M. speciosa was found and then PCR-restriction fragment length polymorphism (RFLP) analysis was established to differentiate M. speciosa from the others. By the method, a 409-bp PCR fragment of ITS1-5.8S (partial) rDNA region from M. speciosa was cleaved into two fragments of 119 bp and 290 bp while the other species remained undigested. This method provides an effective and accurate identification of M. speciosa. PMID:17603168

  3. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP

    PubMed Central

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction—Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies. PMID:27242682

  4. A yeast transcription system for the 5S rRNA gene.

    PubMed Central

    van Keulen, H; Thomas, D Y

    1982-01-01

    A cell-free extract of yeast nuclei that can specifically transcribe cloned yeast 5S rRNA genes has been developed. Optima for transcription of 5S rDNA were determined and conditions of extract preparation leading to reproducible activities and specificities established. The major in vitro product has the same size and oligonucleotide composition as in vivo 5S rRNA. The in vitro transcription extract does not transcribe yeast tRNA genes. The extract does increase the transcription of tRNA genes packaged in chromatin. Images PMID:7145700

  5. 'Candidatus Phytoplasmas pruni', a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    X-disease is one of the most serious diseases known in peach (Prunus persica). Based on RFLP analysis of 16S rRNA gene sequences, peach X-disease phytoplasma strains from eastern and western United States and eastern Canada were classified in 16S rDNA RFLP group 16SrIII, subgroup A. Phylogenetic a...

  6. [Unusual motifs of the nucleotide sequence adjacent to the putative transcription initiation site in the rDNA intergenic spacer of diploid wheat Triticum urartu Thum. ex Gandil, T. boeoticum Boiss, and T. monococcum L].

    PubMed

    Akhunov, E D; Chemeris, A V; Vakhitov, V A

    1997-11-01

    In the intergenic spacer (IGS) of rDNA of diploid wheats Triticum urartu, T. boeoticum, and T. monococcum, the uncommon motives adjacent to the site of transcription initiation (TIS) are revealed. They are located in the region from -6 to +1 relative to the putative TIS and are not encountered in cereals studied earlier. In T. urartu and T. boeoticum, the motif TACTATG has been revealed, in T. monococcum--TATTATG, while diploid Aegilops speltoides has the motif TATAGTA, typical of the remaining cereal species. The TIS-surrounding rDNA IGS region of diploid wheats was compared to the correspondent known rDNA IGS regions of different plant and animal species. PMID:9480224

  7. RINT-1 interacts with MSP58 within nucleoli and plays a role in ribosomal gene transcription.

    PubMed

    Yang, Chuan-Pin; Kuo, Yu-Liang; Lee, Yi-Chao; Lee, Kuen-Haur; Chiang, Chi-Wu; Wang, Ju-Ming; Hsu, Che-Chia; Chang, Wen-Chang; Lin, Ding-Yen

    2016-09-16

    The nucleolus is the cellular site of ribosomal (r)DNA transcription and ribosome biogenesis. The 58-kDa microspherule protein (MSP58) is a nucleolar protein involved in rDNA transcription and cell proliferation. However, regulation of MSP58-mediated rDNA transcription remains unknown. Using a yeast two-hybrid system with MSP58 as bait, we isolated complementary (c)DNA encoding Rad50-interacting protein 1 (RINT-1), as a MSP58-binding protein. RINT-1 was implicated in the cell cycle checkpoint, membrane trafficking, Golgi apparatus and centrosome dynamic integrity, and telomere length control. Both in vitro and in vivo interaction assays showed that MSP58 directly interacts with RINT-1. Interestingly, microscopic studies revealed the co-localization of MSP58, RINT-1, and the upstream binding factor (UBF), a rRNA transcription factor, in the nucleolus. We showed that ectopic expression of MSP58 or RINT-1 resulted in decreased rRNA expression and rDNA promoter activity, whereas knockdown of MSP58 or RINT-1 by siRNA exerted the opposite effect. Coexpression of MSP58 and RINT-1 robustly decreased rRNA synthesis compared to overexpression of either protein alone, whereas depletion of RINT-1 from MSP58-transfected cells enhanced rRNA synthesis. We also found that MSP58, RINT-1, and the UBF were associated with the rDNA promoter using a chromatin immunoprecipitation assay. Because aberrant ribosome biogenesis contributes to neoplastic transformation, our results revealed a novel protein complex involved in the regulation of rRNA gene expression, suggesting a role for MSP58 and RINT-1 in cancer development. PMID:27530925

  8. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks

    EPA Science Inventory

    The goal of this study was to characterize microbial eukaryotes over a 12 month period, so as to provide insight into the occurrence of potentially important predators and bacterial hosts in hot and cold premise plumbing. Nearly 6,300 partial (600 bp) 18S rRNA gene sequences from...

  9. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    SciTech Connect

    Son, Ora; Kim, Sunghan; Shin, Yun-jeong; Kim, Woo-Young; Koh, Hee-Jong; Cheon, Choong-Ill

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  10. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification

    PubMed Central

    Sonnenberg, Rainer; Nolte, Arne W; Tautz, Diethard

    2007-01-01

    Background Identification of species via DNA sequences is the basis for DNA taxonomy and DNA barcoding. Currently there is a strong focus on using a mitochondrial marker for this purpose, in particular a fragment from the cytochrome oxidase I gene (COI). While there is ample evidence that this marker is indeed suitable across a broad taxonomic range to delineate species, it has also become clear that a complementation by a nuclear marker system could be advantageous. Ribosomal RNA genes could be suitable for this purpose, because of their global occurrence and the possibility to design universal primers. However, it has so far been assumed that these genes are too highly conserved to allow resolution at, or even beyond the species level. On the other hand, it is known that ribosomal gene regions harbour also highly divergent parts. We explore here the information content of two adjacent divergence regions of the large subunit ribosomal gene, the D1-D2 region. Results Universal primers were designed to amplify the D1-D2 region from all metazoa. We show that amplification products in the size between 800–1300 bp can be obtained across a broad range of animal taxa, provided some optimizations of the PCR procedure are implemented. Although the ribosomal genes occur in multiple copies in the genomes, we find generally very little intra-individual polymorphism (<< 0.1% on average) indicating that concerted evolution is very effective in most cases. Studies in two fish taxa (genus Cottus and genus Aphyosemion) show that the D1-D2 LSU sequence can resolve even very closely related species with the same fidelity as COI sequences. In one case we can even show that a mitochondrial transfer must have occurred, since the nuclear sequence confirms the taxonomic assignment, while the mitochondrial sequence would have led to the wrong classification. We have further explored whether hybrids between species can be detected with the nuclear sequence and we show for a test case of

  11. Comparative Phylogenetic Assignment of Environmental Sequences of Genes Encoding 16S rRNA and Numerically Abundant Culturable Bacteria from an Anoxic Rice Paddy Soil

    PubMed Central

    Hengstmann, Ulf; Chin, Kuk-Jeong; Janssen, Peter H.; Liesack, Werner

    1999-01-01

    We used both cultivation and direct recovery of bacterial 16S rRNA gene (rDNA) sequences to investigate the structure of the bacterial community in anoxic rice paddy soil. Isolation and phenotypic characterization of 19 saccharolytic and cellulolytic strains are described in the accompanying paper (K.-J. Chin, D. Hahn, U. Hengstmann, W. Liesack, and P. H. Janssen, Appl. Environ. Microbiol. 65:5042–5049, 1999). Here we describe the phylogenetic positions of these strains in relation to 57 environmental 16S rDNA clone sequences. Close matches between the two data sets were obtained for isolates from the culturable populations determined by the most-probable-number counting method to be large (3 × 107 to 2.5 × 108 cells per g [dry weight] of soil). This included matches with 16S rDNA similarity values greater than 98% within distinct lineages of the division Verrucomicrobia (strain PB90-1) and the Cytophaga-Flavobacterium-Bacteroides group (strains XB45 and PB90-2), as well as matches with similarity values greater than 95% within distinct lines of descent of clostridial cluster XIVa (strain XB90) and the family Bacillaceae (strain SB45). In addition, close matches with similarity values greater than 95% were obtained for cloned 16S rDNA sequences and bacteria (strains DR1/8 and RPec1) isolated from the same type of rice paddy soil during previous investigations. The correspondence between culture methods and direct recovery of environmental 16S rDNA suggests that the isolates obtained are representative geno- and phenotypes of predominant bacterial groups which account for 5 to 52% of the total cells in the anoxic rice paddy soil. Furthermore, our findings clearly indicate that a dual approach results in a more objective view of the structural and functional composition of a soil bacterial community than either cultivation or direct recovery of 16S rDNA sequences alone. PMID:10543822

  12. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology.

    PubMed

    Giribet, G; Distel, D L; Polz, M; Sterrer, W; Wheeler, W C

    2000-09-01

    Triploblastic relationships were examined in the light of molecular and morphological evidence. Representatives for all triploblastic "phyla" (except Loricifera) were represented by both sources of phylogenetic data. The 18S ribosomal (rDNA) sequence data for 145 terminal taxa and 276 morphological characters coded for 36 supraspecific taxa were combined in a total evidence regime to determine the most consistent picture of triploblastic relationships for these data. Only triploblastic taxa are used to avoid rooting with distant outgroups, which seems to happen because of the extreme distance that separates diploblastic from triploblastic taxa according to the 18S rDNA data. Multiple phylogenetic analyses performed with variable analysis parameters yield largely inconsistent results for certain groups such as Chaetognatha, Acoela, and Nemertodermatida. A normalized incongruence length metric is used to assay the relative merit of the multiple analyses. The combined analysis having the least character incongruence yields the following scheme of relationships of four main clades: (1) Deuterostomia [((Echinodermata + Enteropneusta) (Cephalochordata (Urochordata + Vertebrata)))]; (2) Ecdysozoa [(((Priapulida + Kinorhyncha) (Nematoda + Nematomorpha)) ((Onychophora + Tardigrada) Arthropoda))]; (3) Trochozoa [((Phoronida + Brachiopoda) (Entoprocta (Nemertea (Sipuncula (Mollusca (Pogonophora (Echiura + Annelida)))))))]; and (4) Platyzoa [((Gnathostomulida (Cycliophora + Syndermata)) (Gastrotricha + Plathelminthes))]. Chaetognatha, Nemertodermatida, and Bryozoa cannot be assigned to any one of these four groups. For the first time, a data analysis recognizes a clade of acoelomates, the Platyzoa (sensu Cavalier-Smith, Biol. Rev. 73:203-266, 1998). Other relationships that corroborate some morphological analyses are the existence of a clade that groups Gnathostomulida + Syndermata (= Gnathifera), which is expanded to include the enigmatic phylum Cycliophora, as sister group

  13. Intragenomic sequence variation at the ITS1 - ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: mollusca)

    USGS Publications Warehouse

    Hoy, Marshal S.; Rodriguez, Rusty J.

    2013-01-01

    Molecular genetic analysis was conducted on two populations of the invasive non-native New Zealand mud snail (Potamopyrgus antipodarum), one from a freshwater ecosystem in Devil's Lake (Oregon, USA) and the other from an ecosystem of higher salinity in the Columbia River estuary (Hammond Harbor, Oregon, USA). To elucidate potential genetic differences between the two populations, three segments of nuclear ribosomal DNA (rDNA), the ITS1-ITS2 regions and the 18S and 28S rDNA genes were cloned and sequenced. Variant sequences within each individual were found in all three rDNA segments. Folding models were utilized for secondary structure analysis and results indicated that there were many sequences which contained structure-altering polymorphisms, which suggests they could be nonfunctional pseudogenes. In addition, analysis of molecular variance (AMOVA) was used for hierarchical analysis of genetic variance to estimate variation within and among populations and within individuals. AMOVA revealed significant variation in the ITS region between the populations and among clones within individuals, while in the 5.8S rDNA significant variation was revealed among individuals within the two populations. High levels of intragenomic variation were found in the ITS regions, which are known to be highly variable in many organisms. More interestingly, intragenomic variation was also found in the 18S and 28S rDNA, which has rarely been observed in animals and is so far unreported in Mollusca. We postulate that in these P. antipodarum populations the effects of concerted evolution are diminished due to the fact that not all of the rDNA genes in their polyploid genome should be essential for sustaining cellular function. This could lead to a lessening of selection pressures, allowing mutations to accumulate in some copies, changing them into variant sequences.                   

  14. Accumulation of Pharmaceuticals, Enterococcus, and Resistance Genes in Soils Irrigated with Wastewater for Zero to 100 Years in Central Mexico

    PubMed Central

    Siebe, Christina; Willaschek, Elisha; Sakinc, Tuerkan; Huebner, Johannes; Amelung, Wulf; Grohmann, Elisabeth; Siemens, Jan

    2012-01-01

    Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19–28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15×10−3±0.22×10−3 copies/16S rDNA) than in non-irrigated soils (4.35×10−5±1.00×10−5 copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61×10–4±0.59×10−4 versus 2.99×10−5±0.26×10−5 copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in

  15. A gene for Holt-Oram syndrome maps to chromosome 12q24.1

    SciTech Connect

    Bonnet, D.; Pelet, A.; Sidi, D.

    1994-09-01

    Originally described in 1960, Holt-Oram syndrome (HOS, MIM:142900) is a rare autosomal dominant disorder of unknown origin (1/100,000 live births) characterized by congenital septal heart defects with associated malformations of upper limbs. We have reported on the mapping of a gene causing HOS to the distal long arm of chromosome 12 (12q21-qter) by linkage analysis in 9 multiplex families (Zmax=8.19 at the D12S354 locus). In addition, multipoint linkage analysis provided evidence for mapping of the disease locus to the genetic interval (7cM) defined by loci D12S105 and D12S79. In situ hybridization of YACs containing the flanking loci D12S105 and D12S79 demonstrates that the HOS locus maps to 12q24.1 thus exluding the candidate genes KOX20 and KOX1. We tested three HOS multiplex families with polydactily or without heart defect and showed that they do not map to chromosome 12q (homog-test: {chi}{sup 2}=13.28, p=0.0001). This observation supports the view that genetic heterogeneity holds true for typical HOS only. The mapping of a gene for HOS is, to our knowledge, the first chromosomal localization of a gene responsible for congenital septal defect in human. The characterization of the disease causing gene will hopefully shed light on the molecular mechanisms that govern heart septation and limb development in the early stages of embryogenesis.

  16. Comparative cytogenomics of poultry: mapping of single gene and repeat loci in the Japanese quail (Coturnix japonica).

    PubMed

    McPherson, Marla C; Robinson, Charmaine M; Gehlen, Lida P; Delany, Mary E

    2014-04-01

    Well-characterized molecular and cytogenetic maps are yet to be established in Japanese quail (Coturnix japonica). The aim of the current study was to cytogenetically map and determine linkage of specific genes and gene complexes in Japanese quail through the use of chicken (Gallus gallus) and turkey (Meleagris gallopavo) genomic DNA probes and conduct a comparative study among the three genomes. Chicken and turkey clones were used as probes on mitotic metaphase and meiotic pachytene stage chromosomes of the three species for the purpose of high-resolution fluorescence in situ hybridization (FISH). The genes and complexes studied included telomerase RNA (TR), telomerase reverse transcriptase (TERT), 5S rDNA, 18S-5.8S-28S rDNA (i.e., nucleolus organizer region (NOR)), and the major histocompatibility complex (MHC). The telomeric profile of Japanese quail was investigated through the use of FISH with a TTAGGG-PNA probe. A range of telomeric array sizes were confirmed as found for the other poultry species. Three NOR loci were identified in Japanese quail, and single loci each for TR, TERT, 5S rDNA and the MHC-B. The MHC-B and one NOR locus were linked on a microchromosome in Japanese quail. We confirmed physical linkage of 5S rDNA and the TR gene on an intermediate-sized chromosome in quail, similar to both chicken and turkey. TERT localized to CJA 2 in quail and the orthologous chromosome region in chicken (GGA 2) and in turkey (MGA 3). The cytogenetic profile of Japanese quail was further developed by this study and synteny was identified among the three poultry species. PMID:24604153

  17. Higher Level Phylogeny and the First Divergence Time Estimation of Heteroptera (Insecta: Hemiptera) Based on Multiple Genes

    PubMed Central

    Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic. PMID:22384163

  18. Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera) based on multiple genes.

    PubMed

    Li, Min; Tian, Ying; Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic. PMID:22384163

  19. Conformational changes of DNA in the presence of 12-s-12 gemini surfactants (s=2 and 10). Role of the spacer's length in the interaction surfactant-polynucleotide.

    PubMed

    García, J P; Marrón, E; Martín, V I; Moyá, M L; Lopez-Cornejo, P

    2014-06-01

    A multifaceted study on the interaction of calf-thymus DNA with two different cationic gemini surfactants alkanediyl-α-ω-bis(dodecyldimethyl-amonium)bromide, 12-s-12,2Br(-) (with s=2, G2, and 10, G10) was carried out. The measurements were done at different molar ratios X=[surfactant]/[DNA]. Results show two different conformational changes in DNA: a first compaction of the polynucleotide corresponding to a partial conformational (not total) change of DNA from an extended coil state to a globular state that happens at the lower molar ratio X. A second change corresponds to a breaking of the partial condensation, that is, the transition from the compacted state to a new more extended conformation (for the higher X values) different to the initial extension. According to circular dichroism spectra and dynamic light scattering measurements, this new state of DNA seems to be similar to a ψ-phase. Measurements confirm that interactions involved in the compaction are different to those previously obtained for the analog surfactant CTAB. X values at which the conformational changes happen depend on the length of the spacer in the surfactant along with the charge of the polar heads. PMID:24736044

  20. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes.

    PubMed

    Piscor, Diovani; Parise-Maltempi, Patricia Pasquali

    2016-03-01

    The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes. PMID:26835745

  1. Morphology, ultrastructure, and small subunit rDNA phylogeny of the marine heterotrophic flagellate Goniomonas aff. amphinema.

    PubMed

    Martin-Cereceda, Mercedes; Roberts, Emily C; Wootton, Emma C; Bonaccorso, Elisa; Dyal, Patricia; Guinea, Almudena; Rogers, Dale; Wright, Chris J; Novarino, Gianfranco

    2010-01-01

    Marine goniomonads have a worldwide distribution but ultrastructural information has not been available so far. An isolate of the heterotrophic marine nanoflagellate Goniomonas (G. aff. amphinema) from North Wales (UK) has been studied, providing information on its morphology and cellular structure using video, electron, laser scanning confocal microscopy (LSCM), and atomic force microscopy. Here, we describe a new feature, a granular area, potentially involved in particle capture and feeding. The binding of the lectin wheat germ agglutinin to the granular area of cells with discharged ejectisomes indicates the adhesive nature of this novel feature. The presence of a microtubular intracellular cytopharynx, apparently also used for feeding, has been revealed by LSCM. The small subunit rRNA gene of the isolate has been sequenced (1,788 bp). Phylogenetic results corroborate significant genetic divergence within the marine members of Goniomonas. This work highlights the need for integrated morphological, ultrastructural, and molecular investigation when describing and studying heterotrophic nanoflagellates. PMID:20015186

  2. Microbial Diversity of Bovine Mastitic Milk as Described by Pyrosequencing of Metagenomic 16s rDNA

    PubMed Central

    Oikonomou, Georgios; Machado, Vinicius Silva; Santisteban, Carlos; Schukken, Ynte Hein; Bicalho, Rodrigo Carvalho

    2012-01-01

    Dairy cow mastitis is an important disease in the dairy industry. Different microbial species have been identified as causative agents in mastitis, and are traditionally diagnosed by bacterial culture. The objective of this study was to use metagenomic pyrosequencing of bacterial 16S rRNA genes to investigate bacterial DNA diversity in milk samples of mastitic and healthy dairy cows and compare the results with those obtained by classical bacterial culture. One hundred and thirty-six milk samples were collected from cows showing signs of mastitis and used for microbiological culture. Additionally, 20 milk samples were collected from healthy quarters. Bacterial DNA was isolated from the same milk samples and the 16S rRNA genes were individually amplified and pyrosequenced. Discriminant analysis showed that the groups of samples that were most clearly different from the rest and thus easily discriminated were the normal milk samples from healthy cows and those characterised by culture as Trueperella pyogenes and Streptococcus spp. The mastitis pathogens identified by culture were generally among the most frequent organisms detected by pyrosequencing, and in some cases (Escherichia coli, Klebsiella spp. and Streptococcus uberis mastitis) the single most prevalent microorganism. Trueperella pyogenes sequences were the second most prevalent sequences in mastitis cases diagnosed as Trueperella pyogenes by culture, Streptococcus dysgalactiae sequences were the second most prevalent sequences in mastitis cases diagnosed as Streptococcus dysgalactiae by culture, and Staphyloccocus aureus sequences were the third most prevalent in mastitis cases diagnosed as Staphylococcus aureus by culture. In samples that were aerobic culture negative, pyrosequencing identified DNA of bacteria that are known to cause mastitis, DNA of bacteria that are known pathogens but have so far not been associated with mastitis, and DNA of bacteria that are currently not known to be pathogens. A

  3. Genes and gene regulation

    SciTech Connect

    MacLean, N.

    1988-01-01

    Genetics has long been a central topic for biologists, and recent progress has captured the public imagination as well. This book addresses questions that are at the leading edge of this continually advancing discipline. In tune with the increasing emphasis on molecular biology and genetic engineering, this text emphasizes the molecular aspects of gene expression, and the evolution of gene sequence organization and control. It reviews the genetic material of viruses, bacteria, and of higher organisms. Cells and organisms are compared in terms of gene numbers, their arrangements within a cell, and the control mechanisms which regulate the activity of genes.

  4. Chromosome mapping of ribosomal genes and histone H4 in the genus Radacridium (Romaleidae)

    PubMed Central

    Anjos, Allison; Loreto, Vilma; de Souza, Maria José

    2013-01-01

    In this study, two species of Romaleidae grasshoppers, Radacridium mariajoseae and R.nordestinum, were analyzed after CMA3/DA/DAPI sequential staining and fluorescence in situ hybridization (FISH) to determine the location of the 18S and 5S rDNA and histone H4 genes. Both species presented karyotypes composed of 2n = 23, X0 with exclusively acrocentric chromosomes. CMA3+ blocks were detected after CMA3/DA/DAPI staining in only one medium size autosome bivalent and in the X chromosome in R. mariajoseae. On the other hand, all chromosomes, except the L1 bivalent, of R. nordestinum presented CMA3+ blocks. FISH analysis showed that the 18S genes are restricted to the X chromosome in R. mariajoseae, whereas these genes were located in the L2, S9 and S10 autosomes in R. nordestinum. In R. mariajoseae, the 5S rDNA sites were localized in the in L1 and L2 bivalents and in the X chromosome. In R. nordestinum, the 5S genes were located in the L2, L3, M4 and M5 pairs. In both species the histone H4 genes were present in a medium size bivalent. Together, these data evidence a great variability of chromosome markers and show that the 18S and 5S ribosomal genes are dispersed in the Radacridium genome without a significant correlation. PMID:24130439

  5. Mixed heterolobosean and novel gregarine lineage genes from culture ATCC 50646: Long-branch artefacts, not lateral gene transfer, distort α-tubulin phylogeny.

    PubMed

    Cavalier-Smith, Thomas

    2015-04-01

    Contradictory and confusing results can arise if sequenced 'monoprotist' samples really contain DNA of very different species. Eukaryote-wide phylogenetic analyses using five genes from the amoeboflagellate culture ATCC 50646 previously implied it was an undescribed percolozoan related to percolatean flagellates (Stephanopogon, Percolomonas). Contrastingly, three phylogenetic analyses of 18S rRNA alone, did not place it within Percolozoa, but as an isolated deep-branching excavate. I resolve that contradiction by sequence phylogenies for all five genes individually, using up to 652 taxa. Its 18S rRNA sequence (GQ377652) is near-identical to one from stained-glass windows, somewhat more distant from one from cooling-tower water, all three related to terrestrial actinocephalid gregarines Hoplorhynchus and Pyxinia. All four protein-gene sequences (Hsp90; α-tubulin; β-tubulin; actin) are from an amoeboflagellate heterolobosean percolozoan, not especially deeply branching. Contrary to previous conclusions from trees combining protein and rRNA sequences or rDNA trees including Eozoa only, this culture does not represent a major novel deep-branching eukaryote lineage distinct from Heterolobosea, and thus lacks special significance for deep eukaryote phylogeny, though the rDNA sequence is important for gregarine phylogeny. α-Tubulin trees for over 250 eukaryotes refute earlier suggestions of lateral gene transfer within eukaryotes, being largely congruent with morphology and other gene trees. PMID:25769111

  6. Preliminary evaluation of the use of soil bacterial 16S rDNA DNA markers in sediment fingerprinting in two small endorheic lagoons in southern Spain

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Landa del Castillo, Blanca; Guzman, Gema; Petticrew, Ellen L.; Owens, Phillip N.

    2016-04-01

    bulk community of DNA was extracted from 250 mg of soil samples (three replicates per sample) using the procedure described in Landa et al. (2014). The bacterial 16S rRNA gene V1-V2 hypervariable regions were amplified in polymerase chain reaction (PCR). The sequencing procedure was performed according to the manufacturer's recommendations using MiSeq Reagent Kit v2 for 300 cycles on MiSeq desktop sequencer. The raw dataset for each sample consisted of the number of counts for each of the 6640 operational taxonomic units (OTU) analyzed. All the screening and analysis was performed independently for each lagoon. Given the large number of OTUs, a first screening was made discarding any OTU that did not presented at least five samples with counts >20 for that OTU. This lowered the number of OTUs to 205 in Dulce and 217 in Zoñar. Because of the limited number of samples, we did not perform independent analysis for each soil depth. All the analyses were performed twice; one with the original number of counts and another with the normalized number of counts. We screened the OTU following a 4-step method to determine those with the best ability to discriminate among the three potential source areas. These steps were: 1) eliminate OTUs with no readings or very few, that could be experimental noise; 2) keep only OTUs that are different among source areas; 3) eliminate OTUs that range outside of feasible solutions to explain average values found in sediment; and 4) eliminate OTUs with the largest variability. Afterwards, several over-determined mixing models were solved considering different combinations of OTUs using limSolve (Soetaert et al., 2014) in R. Preliminary results show that 0.2 to 0.6 % of the searched OTUs (i.e. 14 to 42) had the potential for use in the mixing models after the four-step screening process. The results indicate a large variability in the number of counts among the samples from different areas within the subcatchments ranging, on average, from 49 to

  7. Differential gene expression in neurospora crassa cell types: amplification of rRNA genes. Progress report, July 1979-30 June 1980

    SciTech Connect

    Dutta, S.K.

    1980-01-01

    The significant results obtained during 1979 to 1980 of the current research program are as follows: (1) the differential rRNA gene amplification in germinated conidia of N.crassa was confirmed. N.crassa rDNAs showed differences in degrees of homology with isolated DNAs from other Neurospora species which could be due to heterogeneity in internal spacers. Studies with N.crassa rDNA clones were initiated to study their heterogeneities. The organization of the Institutional Biohazard Committee (IBC) for Recombinant DNA research was completed and necessary certifications for the laboratory and the workers were obtained in accordance with the P/sub 2/EK/sub 1/ containment regulation of N.I.H. Known 17S and 26S N.crassa rDNA probes are being used to detect differences, if any, in restriction cleavage sites in rDNAs of different cell types and developmental mutants of N.crassa. DNAs from these N.crassa cells are restricted with EcoR/sub 1/ and Hind III and cleaved fragments separated by gel electrophoresis are transferred into nitrocellulose papers. Experiments are underway now to see if there are any changes in cleavage sites by annealing with /sup 32/P or /sup 3/H-17S or 26S rDNA probes followed by autoradiography.

  8. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis.

    PubMed

    Hwang, Ok-Hwa; Raveendar, Sebastian; Kim, Young-Ju; Kim, Ji-Hun; Choi, Jung-Woo; Kim, Tae-Hun; Choi, Dong-Yoon; Jeon, Che Ok; Cho, Sung-Back; Lee, Kyung-Tai

    2014-11-01

    The concentration of major odor-causing compounds including phenols, indoles, short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) in response to the addition of powdered horse radish (PHR) and spent mushroom compost (SMC) was compared with control non-treated slurry (CNS) samples. A total of 97,465 rDNAs sequence reads were generated from three different samples (CNS, n = 2; PHR, n = 3; SMC, n = 3) using bar-coded pyrosequencing. The number of operational taxonomic units (OTUs) was lower in the PHR slurry compared with the other samples. A total of 11 phyla were observed in the slurry samples, while the phylogenetic analysis revealed that the slurry microbiome predominantly comprised members of the Bacteroidetes, Firmicutes, and Proteobacteria phyla. The rarefaction analysis showed the bacterial species richness varied among the treated samples. Overall, at the OTU level, 2,558 individual genera were classified, 276 genera were found among the three samples, and 1,832 additional genera were identified in the individual samples. A principal component analysis revealed the differences in microbial communities among the CNS, PHR, and SMC pig slurries. Correlation of the bacterial community structure with the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted pathways showed that the treatments altered the metabolic capabilities of the slurry microbiota. Overall, these results demonstrated that the PHR and S MC treatments significantly reduced the malodor compounds in pig slurry (P < 0.05). PMID:25359269

  9. Identification of group-I introns in the 28s rDNA of the entomopathogenic fungus Beauveria brongniartii.

    PubMed

    Neuvéglise, C; Brygoo, Y

    1994-12-01

    The length of the 28s ribosomal DNA differs significantly between two strains (Bt102 and Bt114) of the entomopathogenic fungus Beauveria brongniartii. RFLP analysis on PCR products revealed the presence of three insertional elements of 350-450 bp in strain Bt114. One of the insertions has been cloned and sequenced and shown to possess all the characteristic sequences and secondary structures of a group-IC intron. Its length is 428 bp and it is devoid of any long open reading frame. The distribution of this intron elsewhere in the genome of Bt114, as well as in the chromosomal ribosomal DNA, was studied. It seems to be present as seven copies in different genes not corresponding to the mitochondrial DNA. The presence of the intron in other strains of B. brongniartii was examined by the hybridization method. Some of them seemed to possess introns with a similar core although others presented no homology with the cloned fragment. PMID:7750145

  10. Community analysis of arbuscular mycorrhizal fungi in roots of Poncirus trifoliata and Citrus reticulata based on SSU rDNA.

    PubMed

    Wang, Peng; Wang, Yin

    2014-01-01

    Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliata L. Raf.) and red tangerine (Citrus reticulata Blanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus of Glomus Sensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering with Glomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards. PMID:25162057

  11. Extremely low penetrance of deafness associated with the mitochondrial 12S rRNA mutation in 16 Chinese families: Implication for early detection and prevention of deafness

    SciTech Connect

    Dai Pu; Liu Xin; Han Dongyi . E-mail: hdy301@263.net; Qian Yaping; Huang Deliang; Yuan Huijun; Li Weiming; Yu Fei; Zhang Ruining; Lin Hongyan; He Yong; Yu Youjun; Sun Quanzhu; Qin Huaiyi; Li Ronghua; Zhang Xin; Kang Dongyang; Cao Juyang; Young Wieyen . E-mail: ywy301@163.net; Guan Minxin |. E-mail: min-xin.guan@cchmc.org

    2006-02-03

    Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of 16 Chinese pedigrees (a total of 246 matrilineal relatives) with aminoglycoside-induced impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: being bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss, ranging from 4% to 18%, with an average of 8%. In particular, nineteen of 246 matrilineal relatives in these pedigrees had aminoglycoside-induced hearing loss. Mutational analysis of the mtDNA in these pedigrees showed the presence of homoplasmic 12S rRNA A1555G mutation, which has been associated with hearing impairment in many families worldwide. The extremely low penetrance of hearing loss in these Chinese families carrying the A1555G mutation strongly supports the notion that the A1555G mutation itself is not sufficient to produce the clinical phenotype. Children carrying the A1555G mutation are susceptible to the exposure of aminoglycosides, thereby inducing or worsening hearing impairment, as in the case of these Chinese families. Using those genetic and molecular approaches, we are able to diagnose whether children carry the ototoxic mtDNA mutation. Therefore, these data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside therapy, and eventually to decrease the incidence of deafness.

  12. 12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid suppresses UV-induced IL-6 synthesis in keratinocytes, exerting an anti-inflammatory activity

    PubMed Central

    Lee, Jin-Wook; Ryu, Ho-Cheol; Ng, Yee Ching; Kim, Cheolmin; Wei, Jun-Dong; Sabaratnam, Vikineswary

    2012-01-01

    12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) is an enzymatic product of prostaglandin H2 (PGH2) derived from cyclooxygenase (COX)-mediated arachidonic acid metabolism. Despite the high level of 12-HHT present in tissues and bodily fluids, its precise function remains largely unknown. In this study, we found that 12-HHT treatment in HaCaT cells remarkably down-regulated the ultraviolet B (UVB) irradiation-induced synthesis of interleukin-6 (IL-6), a pro-inflammatory cytokine associated with cutaneous inflammation. In an approach to identify the down-stream signaling mechanism by which 12-HHT down-regulates UVB-induced IL-6 synthesis in keratinocytes, we observed that 12-HHT inhibits the UVB-stimulated activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB). In addition, we found that 12-HHT markedly up-regulates MAPK phosphatase-1 (MKP-1), a critical negative regulator of p38 MAPK. When MKP-1 was suppressed by siRNA knock-down, the 12-HHT-mediated inhibitory effects on the UVB-stimulated activation of p38 MAPK and NF-κB, as well as the production of IL-6, were attenuated in HaCaT cells. Taken together, our results suggest that 12-HHT exerts anti-inflammatory effect via up-regulation of MKP-1, which negatively regulates p38 MAPK and NF-κB, thus attenuating IL-6 production in UVB-irradiated HaCaT cells. Considering the critical role of IL-6 in cutaneous inflammation, our findings provide the basis for the application of 12-HHT as a potential anti-inflammatory therapeutic agent in UV-induced skin diseases. PMID:22391335

  13. Studying Genes

    MedlinePlus

    ... Area What are genes? Genes are sections of DNA that contain instructions for making the molecules—many ... material in an organism. This includes genes and DNA elements that control the activity of genes. Does ...

  14. Differentiation of Listeria monocytogenes and Listeria innocua by 16S rRNA genes and intraspecies discrimination of Listeria monocytogenes strains by random amplified polymorphic DNA polymorphisms.

    PubMed Central

    Czajka, J; Bsat, N; Piani, M; Russ, W; Sultana, K; Wiedmann, M; Whitaker, R; Batt, C A

    1993-01-01

    Differences in the 16S rRNA genes (16S rDNA) which can be used to discriminate Listeria monocytogenes from Listeria innocua have been detected. The 16S rDNA were amplified by polymerase chain reaction with a set of oligonucleotide primers which flank a 1.5-kb fragment. Sequence differences were observed in the V2 region of the 16S rDNA both between L. monocytogenes Scott A and L. innocua and between different L. monocytogenes serotypes. Although L. monocytogenes SLCC2371 had the same V2 region sequence as L. innocua, the two species were different within the V9 region at nucleotides 1259 and 1292, in agreement with previous studies (R.-F. Wang, W.-W. Cao, and M.G. Johnson, Appl. Environ. Microbiol. 57:3666-3670, 1991). Intraspecies discrimination of L. monocytogenes strains was achieved by using the patterns generated by random amplified polymorphic DNA primers. Although some distinction can be made within the L. monocytogenes species by their 16S rDNA sequence, a far greater discrimination within species could be made by generating random amplified polymorphic DNA patterns from chromosomal DNA. By using a number of 10-bp primers, unique patterns for each isolate which in all cases examined differentiate between various L. monocytogenes serotypes, even though they may have the same 16S rRNA sequences, could be generated. Images PMID:8439157

  15. Design of Vibrio 16S rRNA gene specific primers and their application in the analysis of seawater Vibrio community

    NASA Astrophysics Data System (ADS)

    Yong, Liu; Guanpin, Yang; Hualei, Wang; Jixiang, Chen; Xianming, Shi; Guiwei, Zou; Qiwei, Wei; Xiuqin, Sun

    2006-04-01

    The pathogenic species of genus Vibrio cause vibriosis, one of the most prevalent diseases of maricultured animals and seafood consumers. Monitoring their kinetics in the chain of seafood production, processing and consumption is of great importance for food and mariculture safety. In order to enrich Vibrio-representing 16S ribosomal RNA gene (rDNA) fragments and identify these bacteria further real-timely and synchronously among bacterial flora in the chain, a pair of primers that selectively amplify Vibrio 16S rDNA fragments were designed with their specificities and coverage testified in the analysis of seawater Vibrio community. The specificities and coverage of two primers, VF169 and VR744, were determined theoretically among bacterial 16S rDNAs available in GenBank by using BLAST program and practically by amplifying, Vibrio 16S rDNA fragments from seawater DNA. More than 88.3% of sequences in GenBank, which showed identical matches with VR744, belong to Vibrio genus. A total of 33 clones were randomly selected and sequenced. All of the sequences showed their highest similarities to and clustered around those of diverse known Vibrio species. The primers designed are capable of retrieving a wide range of Vibrio 16S rDNA fragments specifically among bacterial flora in seawater, the most important natural environment of seafood cultivation.

  16. Characterization of recombinant bacteriophages containing mosquito ribosomal RNA genes

    SciTech Connect

    Park, Y.J.

    1988-01-01

    A family of nine recombinant bacteriophages containing rRNA genes from cultured cells of the mosquito, Aedes albopictus, has been isolated by screening two different genomic DNA libraries - Charon 30 and EMBL 3 using {sup 32}P-labeled 18S and 28S rRNA as probes. These nine recombinant bacteriophages were characterized by restriction mapping, Southern blotting, and S1 nuclease analysis. The 18S rRNA coding region contains an evolutionarily conserved EcoRI site near the 3{prime}-end, and measures 1800 bp. The 28S rRNA genes were divided into {alpha} and {beta} coding regions measuring 1750 bp and 2000 bp, respectively. The gap between these two regions measures about 340 bp. No insertion sequences were found in the rRNA coding regions. The entire rDNA repeat unit had a minimum length of 15.6 kb, including a nontranscribed spacer region. The non-transcribed spacer region of cloned A. albopictus rDNA contained a common series of seven PvuI sites within a 1250 bp region upstream of the 18S rRNA coding region, and a proportion of this region also showed heterogeneity both in the length and in the restriction sites.

  17. Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes.

    PubMed

    Peterson, Kevin J

    2004-06-01

    Because of their importance for proper development of the bilaterian embryo, Hox genes have taken center stage for investigations into the evolution of bilaterian metazoans. Taxonomic surveys of major protostome taxa have shown that Hox genes are also excellent phylogenetic markers, as specific Hox genes are restricted to one of the two great protostome clades, the Lophotrochozoa or the Ecdysozoa, and thus support the phylogenetic relationships as originally deduced by 18S rDNA studies. Deuterostomes are the third major group of bilaterians and consist of three major phyla, the echinoderms, the hemichordates, and the chordates. Most morphological studies have supported Hemichordata+Chordata, whereas molecular studies support Echinodermata+Hemichordata, a clade known as Ambulacraria. To test these competing hypotheses, complete or near complete cDNAs of eight Hox genes and four Parahox genes were isolated from the enteropneust hemichordate Ptychodera flava. Only one copy of each Hox gene was isolated suggesting that the Hox genes of P. flava are arranged in a single cluster. Of particular importance is the isolation of three posterior or Abd-B Hox genes; these genes are only shared with echinoderms, and thus support the monophyly of Ambulacraria. PMID:15120410

  18. Epidemiologic Study of Malassezia Yeasts in Seborrheic Dermatitis Patients by the Analysis of 26S rDNA PCR-RFLP

    PubMed Central

    Oh, Byung Ho; Choe, Yong Beom; Ahn, Kyu Joong

    2010-01-01

    Background This case-control study concerns a molecular biological method based on the data gathered from a group of Korean subjects to examine the distribution of Malassezia yeasts in seborrheic dermatitis (SD) patients. Cultures for Malassezia yeasts were taken from the foreheads, cheeks and chests of 60 patients with SD and in 60 healthy controls of equivalent age. Objective The purpose of this study is to identify the relationship between certain species of Malassezia and SD. This was done by analyzing the differences in the distribution of Malassezia species in terms of age and body parts of the host with healthy controls. Methods 26S rDNA PCR-RFLP, a fast and accurate molecular biological method, was used to overcome the limits of morphological and biochemical methods. Results The positive Malassezia culture rate was 51.7% in patients with SD, which was lower than that of healthy adults (63.9%). M. restricta was dominant in patients with SD (19.5%). Likewise, M. restricta was identified as a common species (20.5%) in healthy controls. In the ages 31~40, M. restricta was found to be the most common species (31.6%) among SD patients. Conclusion According to the results of the study, the most frequently isolated species was M. restricta (19.5%) in patients with SD. There was no statistically significant difference in the distribution of Malassezia species between the SD patients and healthy control groups. PMID:20548904

  19. A contribution to the taxonomy of the genus Rinodina (Physciaceae, lichenized Ascomycotina) using combined ITS and mtSSU rDNA data

    PubMed Central

    NADYEINA, Olga; GRUBE, Martin; MAYRHOFER, Helmut

    2011-01-01

    To test the phylogenetic position of phenotypically peculiar species in the Physciaceae we generated 47 new sequences (26 of nrITS region and 21 of mtSSU rDNA) from 19 crustose taxa of Physciaceae mainly from the genus Rinodina. Phylogenetic analysis confirmed the Buellia and Physcia groups. The analysis revealed a considerable variability of characters traditionally used for classification, especially in the delimitation of the genera Buellia and Rinodina. While ascus types agree well with the distinction of the Buellia and Physcia groups, none of the other traditional characters, including excipulum type and ascospore thickening, were consistent within subclades of the Physcia group. We suggest that both excipulum type and ascospore characters are rather dynamic in the evolution of Rinodina species and only appear consistent in morphologically more complex foliose and fruticose groups, which are characterized by thallus characters not present in the crustose groups. Two recent taxonomic changes are supported by molecular characters: Endohyalina insularis (syn. ‘Rinodina’ insularis) and Rinodina lindingeri (syn. ‘Buellia’ lindingeri). In addition Rinodina parvula (syn. ‘Buellia’ parvula) is reinstated. New records for Endohyalina brandii, E. diederichii, E. insularis and Rinodina albana are presented. PMID:22121298

  20. Discriminatory profile of rDNA sites and trend for acrocentric chromosome formation in the genus Trachinotus Lacépède, 1801 (Perciformes, Carangidae).

    PubMed

    Jacobina, Uedson Pereira; Vicari, Marcelo Ricardo; Bertollo, Luiz Antonio Carlos; Molina, Wagner Franco

    2012-01-01

    Chromosomal traits have provided valuable information for phylogeny and taxonomy of several fish groups. Three Atlantic Carangidae species of the genus Trachinotus Lacépède, 1801 (Trachinotus goodei Jordan et Evermann, 1896, Trachinotus carolinus (Linnaeus, 1766)and Trachinotus falcatus (Linnaeus, 1758)) were investigated, having 2n=48 chromosomes but different chromosomal arms (FN number), i.e., 52, 56 and 58, respectively, in view of the different number of two-armed chromosomes found in their karyotypes. Thus, Trachinotus goodei, Trachinotus carolinus and Trachinotus falcatus present a progressive distancefrom the probable basal karyotype proposed for Perciformes (2n=48 acrocentrics, FN=48). At first sight, these findings do not agree with the phylogenetic hypothesis based on mitochondrial sequences, where Trachinotus goodei appear as the most derived species, followed by Trachinotus falcatus and Trachinotus carolinus, respectively. However, the chromosomal mapping of ribosomal DNAs was informative for clarifying this apparent conflict. Indeed, the multiple 5S and 18S rDNA sites found in Trachinotus goodei corroborate the most derived condition for this species. In this sense, the occurrence of the unexpected number of two-armed chromosomes and FN value for this species, as well as for Trachinotus carolinus, must be due to additional rounds of acrocentric formation in these species, modifying the macrostructure of their karyotypes. PMID:24260676

  1. Genetic variation and relationships in Laetiporus sulphureus s. lat., as determined by ITS rDNA sequences and in vitro growth rate.

    PubMed

    Vasaitis, Rimvydas; Menkis, Audrius; Lim, Young Woon; Seok, Soonja; Tomsovsky, Michal; Jankovsky, Libor; Lygis, Vaidotas; Slippers, Bernard; Stenlid, Jan

    2009-03-01

    The aim of this study was to characterise the genetic variation and molecular relationships of the brown rot polypore, Laetiporus sulphureus s. lat., from Europe, South America, Africa, and Asia, using ITS sequences of the nu-rDNA and by comparing the growth rate in vitro. In a NJ analysis of the sequences of 130 individuals of L. sulphureus s. lat., eight distinct clusters emerged, supported by BS values of 70-100%. Within each cluster, the ITS rDNA sequence variation was below 3%. The sequences were also analysed together with Laetiporus sequences available from GenBank. Results demonstrated the possible presence of L. huroniensis in Europe (invalidly named L. montanus) and L. gilbertsonii in South America, and provided more information on the Pan-American and European distribution of one of the clades, currently known in North America as L. sulphureus. L. conifericola formed a separate distinct clade. Moreover, the analysis revealed two unknown Laetiporus taxa in Korea, one in South Africa, and one in Europe. As L. sulphureus is described from Europe (France), and we show that more than one taxon exist here, it is presently not possible to define L. sulphureus s. str. Certain biological differences between some of the clades (in vitro growth rates, chemical composition, and pigmentation) were demonstrated and discussed. PMID:19073254

  2. Molecular Identification and Differentiation of Fasciola Isolates Using PCR- RFLP Method Based on Internal Transcribed Spacer (ITS1, 5.8S rDNA, ITS2)

    PubMed Central

    Mahami-Oskouei, M; Dalimi, A; Forouzandeh-Moghadam, M; Rokni, MB

    2011-01-01

    Background In this study, we used both ITS1 and ITS2 for molecular identification of Fasciola species. Methods The region between 18S and 28S of ribosomal DNA was used in PCR-RFLP method for molecular identification of Fasciola species. Ninety trematodes of Fasciola were collected during abattoir inspection from livers of naturally infected sheep and cattle from Khorasan, East Azerbaijan, and Fars provinces in Iran. After DNA extraction, PCR was performed to amplify region ITS1, 5.8S rDNA, ITS2. To select a suitable restriction enzyme, we sequenced and analyzed the PCR products of F. hepatica and F. gigantica samples from sheep and cattle. Tsp509I fast digest restriction enzyme was selected for RFLP method that caused the separation specifically of Fasciola species. Results The fragment approximately 1000bp in all of the Fasciola samples was amplified and then digested with the Tsp509I restriction endonuclease. Seventy F. hepatica and 20 F. gigantica were identified of total 90 Fasciola isolates. Conclusion The new PCR-RFLP assay using Tsp509I restriction enzyme provides a simple, practical, fast, low cost, and reliable method for identification and differentiation of Fasciola isolates. PMID:22347295

  3. A molecular phylogeny of the Dactylogyridae sensu Kritsky & Boeger (1989) (Monogenea) based on the D1-D3 domains of large subunit rDNA.

    PubMed

    Simková, A; Matejusová, I; Cunningham, C O

    2006-07-01

    Phylogenetic analyses based on the partial large subunit rDNA (LSU) sequences of polyonchoinean monogeneans belonging to the Dactylogyridea and Monocotylidea were generated to investigate relationships among various subfamilies of the Dactylogyridae sensu Kritsky & Boeger, 1989. Monophyly of the Dactylogyridae was supported by all analyses performed. Status of the Ancyrocephalidae sensu Bychowsky & Nagibina, 1978 and Ancyrocephalinae sensu Kritsky & Boeger, 1989 was revised based on the present data. All phylogenetic analyses indicated polyphyletic origins of the Ancyrocephalidae and Ancyrocephalinae. Freshwater species of Ancyrocephalinae (Actinocleidus, Ancyrocephalus, Cleidodiscus and Urocleidus) and Ancylodiscoidinae (Thaparocleidus) collected from the fish in European waters were positioned at the base of the Dactylogyridae. The Dactylogyrinae formed a monophyletic group, sister to a clade including the Pseudodactylogyrinae and the tropical and subtropical Ancyrocephalinae. Analyses including only data set on Dactylogyridea were focused on relationships between representatives of the Asian and European Dactylogyrus species. Dactylogyrus species formed a monophyletic group, and the parasite colonization appeared to follow the dispersal history of the Cyprinidae from Asia to Europe. Three lineages of Dactylogyrus species were recognized: the first including species specific to hosts of Asian origin, the second by Dactylogyrus species from Chinese fish hosts, and the third included Dactylogyrus species from European cyprinids and one species from a percid host. The position of D. cryptomeres from Gobio gobio seems to be unresolved. PMID:16515727

  4. Phylogeny of the ectomycorrhizal mushroom genus Alnicola (Basidiomycota, Cortinariaceae) based on rDNA sequences with special emphasis on host specificity and morphological characters.

    PubMed

    Moreau, Pierre-Arthur; Peintner, Ursula; Gardes, Monique

    2006-03-01

    Alnicola (=Naucoria, pro parte) is a mushroom genus of strictly temperate, obligately ectomycorrhizal species, traditionally included in the family Cortinariaceae. Most Alnicola spp. are primarily host specific on Alnus, although a few are mycobionts of Salix or other hosts. The different species of Alnicola exhibit unique morphological (cystidia, pileipellis) and cytological (dikaryotic or monokaryotic hyphae) characters. This makes the genus Alnicola of particular interest for studying the evolution of host specificity and morphological characters in ectomycorrhizal basidiomycetes. We used a combination of classical morphological and phylogenetic methods (rDNA ITS and LSU sequences) to address the following questions: (i) Is Alnicola monophyletic? And (ii) Are characters like host specificity or microscopical structures synapomorphic for certain clades? The study included nearly all currently known European Alnicola sp. Our results demonstrated that, on one hand, the genus Alnicola is polyphyletic, with sistergroup relationships to Hebeloma, Anamika or the clades /Hymenogaster I and /Hymenogaster II. On the other hand, Alnicola splits into three well-supported clades corresponding to the sections Alnicola, Submelinoides, and Salicicolae. The strict host-specificity to Alnus is a derived character and has occurred at least twice. The following morphological characters are synapomorphic for defined clades: the spindle-shaped hymenial cystidia for sect. Alnicola, the hymeniform pileipellis for sect. Submelinoides, and monocaryotic/clampless hyphae for sect. Salicicolae and its sistergroup /Hymenogaster II. As a taxonomical consequence, polyphyly of Alnicola implies that the sects. Submelinoides and Salicicolae need to be segregated from Alnicola. PMID:16314113

  5. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing

    PubMed Central

    Min, Byeng R.; Solaiman, Sandra; Shange, Raymon

    2014-01-01

    Eighteen Kiko-cross meat goats (n = 6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB) to 46.5% (control) and 47.1% (15% PB). Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%), Methanosphaera (3.3, 2.3, and 3.4%), and Methanobacteriaceae (1.2, 0.6, and 0.7%) population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P = 0.05) with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats. PMID:24669219

  6. Food Targeting: A Real-Time PCR Assay Targeting 16S rDNA for Direct Quantification of Alicyclobacillus spp. Spores after Aptamer-Based Enrichment.

    PubMed

    Hünniger, Tim; Felbinger, Christine; Wessels, Hauke; Mast, Sophia; Hoffmann, Antonia; Schefer, Anna; Märtlbauer, Erwin; Paschke-Kratzin, Angelika; Fischer, Markus

    2015-05-01

    Spore-forming Alicyclobacillus spp. are able to form metabolites that induce even in small amounts an antiseptical or medicinal off-flavor in fruit juices. Microbial contaminations could occur by endospores, which overcame the pasteurization process. The current detection method for Alicyclobacillus spp. can take up to 1 week because of microbiological enrichment. In a previous study, DNA aptamers were selected and characterized for an aptamer-driven rapid enrichment of Alicyclobacillus spp. spores from orange juice by magnetic separation. In the present work, a direct quantification assay for Alicyclobacillus spp. spores was developed to complete the two-step approach of enrichment and detection. After mechanical treatment of the spores, the isolated DNA was quantified in a real-time PCR-assay targeting 16S rDNA. The assay was evaluated by the performance requirements of the European Network of Genetically Modified Organisms Laboratories (ENGL). Hence, the presented method is applicable for direct spore detection from orange juice in connection with an enrichment step. PMID:25880790

  7. Ichthyophonus parasite phylogeny based on ITS rDNA structure prediction and alignment identifies six clades, with a single dominant marine type

    USGS Publications Warehouse

    Gregg, Jacob; Thompson, Rachel L.; Purcell, Maureen; Friedman, Carolyn S.; Hershberger, Paul

    2016-01-01

    Despite their widespread, global impact in both wild and cultured fishes, little is known of the diversity, transmission patterns, and phylogeography of parasites generally identified as Ichthyophonus. This study constructed a phylogeny based on the structural alignment of internal transcribed spacer (ITS) rDNA sequences to compare Ichthyophonus isolates from fish hosts in the Atlantic and Pacific oceans, and several rivers and aquaculture sites in North America, Europe, and Japan. Structure of the Ichthyophonus ITS1–5.8S–ITS2 transcript exhibited several homologies with other eukaryotes, and 6 distinct clades were identified within Ichthyophonus. A single clade contained a majority (71 of 98) of parasite isolations. This ubiquitous Ichthyophonus type occurred in 13 marine and anadromous hosts and was associated with epizootics in Atlantic herring, Chinook salmon, and American shad. A second clade contained all isolates from aquaculture, despite great geographic separation of the freshwater hosts. Each of the 4 remaining clades contained isolates from single host species. This study is the first to evaluate the genetic relationships among Ichthyophonus species across a significant portion of their host and geographic range. Additionally, parasite infection prevalence is reported in 16 fish species.

  8. Cytogenetic analysis on geographically distant parthenogenetic populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones, Buthidae): karyotype, constitutive heterochromatin and rDNA localization

    PubMed Central

    Adilardi, Renzo Sebastián; Affilastro, Andrés Alejandro Ojanguren; Martí, Dardo Andrea; Mola, Liliana María

    2014-01-01

    Abstract Tityus trivittatus Kraepelin, 1898 is the most medically important scorpion species of Argentina, and parthenogenetic populations are present in the major cities of this country. We performed a detailed cytogenetic analysis of specimens of three synanthropic parthenogenetic populations, all distant about 900 km from each other, using Ag-NOR, C-banding, DAPI/CMA3 staining and FISH with autologous 28S rDNA probes. The karyotype of females and embryos from the three populations showed 2n=6, with two large and four middle-sized holokinetic chromosomes. Constitutive heterochromatin was found in terminal and interstitial location and its pattern allowed the identification of three chromosome pairs. NORs were found on the terminal heterochromatic region of one pair of middle-sized chromosomes. The use of fluorochromes to characterize heterochromatin showed the absence of GC-rich heterochromatin and a low and variable number of AT-rich heterochromatic regions. We propose that a possible explanation for the lack of karyotypic variation between these geographically distant populations could be a recent colonization of urban areas by human means of synanthropic specimens from a single lineage of northeastern Argentina. PMID:25147621

  9. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP)

    PubMed Central

    Dowd, Scot E; Callaway, Todd R; Wolcott, Randall D; Sun, Yan; McKeehan, Trevor; Hagevoort, Robert G; Edrington, Thomas S

    2008-01-01

    Background The microbiota of an animal's intestinal tract plays important roles in the animal's overall health, productivity and well-being. There is still a scarcity of information on the microbial diversity in the gut of livestock species such as cattle. The primary reason for this lack of data relates to the expense of methods needed to generate such data. Here we have utilized a bacterial tag-encoded FLX 16s rDNA amplicon pyrosequencing (bTEFAP) approach that is able to perform diversity analyses of gastrointestinal populations. bTEFAP is relatively inexpensive in terms of both time and labor due to the implementation of a novel tag priming method and an efficient bioinformatics pipeline. We have evaluated the microbiome from the feces of 20 commercial, lactating dairy cows. Results Ubiquitous bacteria detected from the cattle feces included Clostridium, Bacteroides, Porpyhyromonas, Ruminococcus, Alistipes, Lachnospiraceae, Prevotella, Lachnospira, Enterococcus, Oscillospira, Cytophage, Anaerotruncus, and Acidaminococcus spp. Foodborne pathogenic bacteria were detected in several of the cattle, a total of 4 cows were found to be positive for Salmonella spp (tentative enterica) and 6 cows were positive for Campylobacter spp. (tentative lanienae). Conclusion Using bTEFAP we have examined the microbiota in the feces of cattle. As these methods continue to mature we will better understand the ecology of the major populations of bacteria the lower intestinal tract. This in turn will allow for a better understanding of ways in which the intestinal microbiome contributes to animal health, productivity and wellbeing. PMID:18652685

  10. Ichthyophonus parasite phylogeny based on ITS rDNA structure prediction and alignment identifies six clades, with a single dominant marine type.

    PubMed

    Gregg, Jacob L; Powers, Rachel L; Purcell, Maureen K; Friedman, Carolyn S; Hershberger, Paul K

    2016-07-01

    Despite their widespread, global impact in both wild and cultured fishes, little is known of the diversity, transmission patterns, and phylogeography of parasites generally identified as Ichthyophonus. This study constructed a phylogeny based on the structural alignment of internal transcribed spacer (ITS) rDNA sequences to compare Ichthyophonus isolates from fish hosts in the Atlantic and Pacific oceans, and several rivers and aquaculture sites in North America, Europe, and Japan. Structure of the Ichthyophonus ITS1-5.8S-ITS2 transcript exhibited several homologies with other eukaryotes, and 6 distinct clades were identified within Ichthyophonus. A single clade contained a majority (71 of 98) of parasite isolations. This ubiquitous Ichthyophonus type occurred in 13 marine and anadromous hosts and was associated with epizootics in Atlantic herring, Chinook salmon, and American shad. A second clade contained all isolates from aquaculture, despite great geographic separation of the freshwater hosts. Each of the 4 remaining clades contained isolates from single host species. This study is the first to evaluate the genetic relationships among Ichthyophonus species across a significant portion of their host and geographic range. Additionally, parasite infection prevalence is reported in 16 fish species. PMID:27409236

  11. Cryptic diversity of free-living parabasalids, Pseudotrichomonas keilini and Lacusteria cypriaca n. g., n. sp., as inferred from small subunit rDNA sequences.

    PubMed

    Yubuki, Naoji; Céza, Vít; Cepicka, Ivan; Yabuki, Akinori; Inagaki, Yuji; Nakayama, Takeshi; Inouye, Isao; Leander, Brian S

    2010-01-01

    Ultrastructural and molecular phylogenetic evidence indicate that the Parabasalia consists of seven main subgroups: the Trichomonadida, Honigbergiellida, Hypotrichomonadida, Tritrichomonadida, Cristamonadida, Spirotrichonymphida, and Trichonymphida. Only five species of free-living parabasalids are known: Monotrichomonas carabina, Ditrichomonas honigbergii, Honigbergiella sp., Tetratrichomonas undula, and Pseudotrichomonas keilini. Phylogenetic analyses show that free-living species do not form a clade and instead branch in several different positions within the context of their parasitic relatives. Because the diversity of free-living parabasalids is poorly understood, the systematics of these lineages is in a significant state of disarray. In order to better understand the phylogenetic distribution of free-living parabasalids, we sequenced the small subunit rDNA from three different strains reminiscent of P. keilini; the strains were isolated from different geographical locations: (1) mangrove sediments in Japan and (2) sediments in Cyprus. These data demonstrated that the free-living parabasalids P. keilini and Lacusteria cypriaca n. g., n. sp., form a paraphyletic assemblage near the origin of a clade consisting mostly of parasitic trichomonadids (e.g. Trichomonas vaginalis). This paraphyletic distribution of similar morphotypes indicates that free-living trichomonadids represent a compelling example of morphostasis that provides insight into the suite of features present in the most recent free-living ancestor of their parasitic relatives. PMID:20880033

  12. Morphology and 18S rDNA phylogeny of Hemicycliostyla sphagni (Ciliophora, Hypotricha) from Brazil with redefinition of the genus Hemicycliostyla.

    PubMed

    Paiva, Thiago da Silva; Borges, Bárbara do Nascimento; da Silva-Neto, Inácio Domingos; Harada, Maria Lúcia

    2012-01-01

    Morphology of the urostylid ciliate Hemicycliostyla sphagni Stokes, 1886, the type of Hemicycliostyla Stokes, 1886, is investigated based on live and protargol-impregnated specimens from a Brazilian population. The absence of transverse cirri, which has been considered the main diagnostic feature of Hemicycliostyla, separating it from Pseudourostyla Borror, 1972, was found to vary within the studied population, with 50% of the specimens exhibiting inconspicuous and/or rudimentary transverse cirri. A redefinition of Hemicycliostyla was possible based on combined features of interphase and divisional morphogenesis: Retroextendia Berger, 2006, with bi- or multicoronal frontal cirral pattern; fronto-terminal cirri present; multiple left and right marginal cirral rows that replicate independently via within-row development, each parental row producing one primordium per divider; caudal cirri lacking; and presence/absence of transverse cirri may be intrapopulationally variable. Phylogenetic analyses of the 18S rDNA marker unambiguously placed H. sphagni as sister group of Pseudourostyla franzi Foissner, 1987, which is herein transferred to Hemicycliostyla as Hemicycliostyla franzi comb. nov. PMID:21357456

  13. Phylogenetic relationships of the soybean sudden death syndrome pathogen Fusarium solani f. sp. phaseoli inferred from rDNA sequence data and PCR primers for its identification.

    PubMed

    O'Donnell, K; Gray, L E

    1995-01-01

    Phylogenetic relationships of several species within the Fusarium solani-complex were investigated using characters from the nuclear ribosomal DNA. Genetic variation within 24 isolates, including 5 soybean sudden death syndrome (SDS) strains, was assessed using rDNA sequence data and restriction fragment length polymorphic markers. By these techniques, the causal agent of soybean SDS was identified as F. solani f. sp. phaseoli. In separate cladistic analyses, Plectosphaerella cucumerina and Nectria cinnabarina or F. ventricosum were used for rooting purposes. Monophyly of the F. solani-complex was strongly supported by bootstrap and decay analyses. Parsimony analysis indicates that this complex is composed of a number of phylogenetically distinct species, including Neocosmospora vasinfecta, F. solani f. sp. phaseoli, and biological species designated as MPI, MPV, and MPVI of N. haematococca. The results demonstrate complete congruence between biological and phylogenetic species within the N. haematococca-complex. In addition, DNA sequence data were used to design a PCR primer pair which could specifically amplify DNA from isolates of the SDS pathogen from infected plants. PMID:7579615

  14. The Molecular through Ecological Genetics of Abnormal Abdomen in Drosophila Mercatorum. VI. the Non-Neutrality of the Y Chromosome Rdna Polymorphism

    PubMed Central

    Hollocher, H.; Templeton, A. R.

    1994-01-01

    An association between quantitative variation of rDNA on the Y chromosome and male expression of the juvenilized, adult cuticle of the abnormal abdomen syndrome has been found for Drosophila mercatorum. Many pleiotropic effects of this syndrome have been described previously for females, but little was known about possible pleiotropic effects in males. The effects on males open up new avenues for the action of natural selection operating on the system. In females, the syndrome causes an increase in egg-to-adult development time, precocious sexual maturation, increased fecundity and decreased longevity. In addition to the cuticle phenotype, in males abnormal abdomen causes delayed sexual maturation, increased longevity, and decreased mating success, yet no change in egg-to-adult development time. Thus the syndrome has opposing fitness effects in the two sexes, which may help explain the genetic polymorphism observed in this system. Although investigated intensively, associations between naturally occurring Y-linked polymorphism and fitness phenotypes have not been found in Drosophila melanogaster. PMID:8013914

  15. Discriminatory profile of rDNA sites and trend for acrocentric chromosome formation in the genus Trachinotus Lacépède, 1801 (Perciformes, Carangidae)

    PubMed Central

    Jacobina, Uedson Pereira; Vicari, Marcelo Ricardo; Bertollo, Luiz Antonio Carlos; Molina, Wagner Franco

    2012-01-01

    Abstract Chromosomal traits have provided valuable information for phylogeny and taxonomy of several fish groups. Three Atlantic Carangidae species of the genus Trachinotus Lacépède, 1801 (Trachinotus goodei Jordan et Evermann, 1896, Trachinotus carolinus (Linnaeus, 1766)and Trachinotus falcatus (Linnaeus, 1758)) were investigated, having 2n=48 chromosomes but different chromosomal arms (FN number), i.e., 52, 56 and 58, respectively, in view of the different number of two-armed chromosomes found in their karyotypes. Thus, Trachinotus goodei, Trachinotus carolinus and Trachinotus falcatus present a progressive distancefrom the probable basal karyotype proposed for Perciformes (2n=48 acrocentrics, FN=48). At first sight, these findings do not agree with the phylogenetic hypothesis based on mitochondrial sequences, where Trachinotus goodei appear as the most derived species, followed by Trachinotus falcatus and Trachinotus carolinus, respectively. However, the chromosomal mapping of ribosomal DNAs was informative for clarifying this apparent conflict. Indeed, the multiple 5S and 18S rDNA sites found in Trachinotus goodei corroborate the most derived condition for this species. In this sense, the occurrence of the unexpected number of two-armed chromosomes and FN value for this species, as well as for Trachinotus carolinus, must be due to additional rounds of acrocentric formation in these species, modifying the macrostructure of their karyotypes. PMID:24260676

  16. Detection and identification of Trypanosoma of African livestock through a single PCR based on internal transcribed spacer 1 of rDNA.

    PubMed

    Desquesnes, M; McLaughlin, G; Zoungrana, A; Dávila, A M

    2001-05-01

    Primers hybridising with the rDNA cistron have previously been evaluated for PCR diagnosis specific for kinetoplastids, and shown to detect and differentiate the Trypanosoma brucei complex and Trypanosoma cruzi. Kin1 and Kin2 primers, amplifying internal transcribed spacer 1, were subsequently evaluated for the diagnosis of African livestock trypanosomosis. Based on the size of the PCR products obtained, Kin primers allowed detection and identification of three Trypanosoma congolense types (savannah, forest and Kenya Coast), with distinction among themselves and from the subgenus Trypanozoon (T. brucei spp., Trypanosoma evansi and Trypanosoma equiperdum), Trypanosoma vivax, Trypanosoma simiae and Trypanosoma theileri. These primers were shown to be suitable for the sensitive and type-specific diagnosis of African livestock trypanosome isolates through a single PCR even in the case of multi-taxa samples. With field samples (buffy-coat from cattle blood) sensitivity was close to the sensitivity observed in single reactions with the classical specific primers for the Trypanozoon subgenus and T. congolense-type savannah, but was lower for detection of T. vivax. Additional reaction, improvement of DNA preparation, and/or new primers design are necessary to improve the sensitivity for detection of T. vivax in field samples. However, these primers are suitable for isolate typing through a single PCR. PMID:11334950

  17. Molecular phylogenetic studies based on rDNA ITS, cpDNA trnL intron sequence and cladode characteristics in nine Protasparagus taxa.

    PubMed

    Saha, Partha Sarathi; Ray, Sudipta; Sengupta, Mainak; Jha, Sumita

    2015-07-01

    The genus Asparagus comprises three subgenera of cladode bearing plants: Protasparagus, Asparagus, and Myrsiphyllum. The interspecific delimitation of the subgenus Protasparagus is ill-defined till date. In the present study, interspecific phylogenetic relationships among nine taxa of Protasparagus based on ribosomal DNA internal transcribed spacer region (ITS1-5.8S-ITS2) sequence and the chloroplast DNA trnL intron sequence conservation with their cladode morphology, anatomy, and stomatal characteristics have been analyzed for the first time. The monophyletic subgenus Protasparagus could be resolved into four strongly supported distinct subclades (I, II, III and IV) suggesting that the rDNA and cpDNA molecular phylogenies are explicitly congruent with the cladode characteristics of the subgenus Protasparagus. The present study also confirms the existing subgeneric classification of the genus Asparagus with the monophyletic origin of the dioecious subgenus Asparagus. The present work brings out phylogenetic and taxonomic relationships within the studied taxa of the subgenus Protasparagus therefore providing important background information for further studies on biogeography of a wide range of species. PMID:25534258

  18. Identification, Detection, and Enumeration of Human Bifidobacterium Species by PCR Targeting the Transaldolase Gene

    PubMed Central

    Requena, Teresa; Burton, Jeremy; Matsuki, Takahiro; Munro, Karen; Simon, Mary Alice; Tanaka, Ryuichiro; Watanabe, Koichi; Tannock, Gerald W.

    2002-01-01

    Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations. PMID:11976117

  19. Morphometric and molecular data on two mitochondrial genes of a newly discovered chimaeran fish ( Hydrolagus melanophasma, Chondrichthyes)

    NASA Astrophysics Data System (ADS)

    De La Cruz-Agüero, José; García-Rodríguez, Francisco Javier; Cota-Gómez, Víctor Manuel; Melo-Barrera, Felipe Neri; González-Armas, Rogelio

    2012-06-01

    Fresh and preserved (type material) specimens of the black ghost chimaera Hydrolagus melanophasma were compared for morphometric characteristics. A molecular comparison was also performed on two mitochondrial gene sequences (12S rRNA and 16S rRNA gene sequences). While significant differences in measurements were found, the differences were not attributable to sexual dimorphism or the quality of the specimens, but to the sample size and the type of statistical tests. The result of the genetic characterization showed that 12S rRNA and 16S rRNA genes represented robust molecular markers that characterized the species.

  20. Phylogenetic analysis of oryx species using partial sequences of mitochondrial rRNA genes.

    PubMed

    Khan, H A; Arif, I A; Al Farhan, A H; Al Homaidan, A A

    2008-01-01

    We conducted a comparative evaluation of 12S rRNA and 16S rRNA genes of the mitochondrial genome for molecular differentiation among three oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) with respect to two closely related outgroups, addax and roan. Our findings showed the failure of 12S rRNA gene to differentiate between the genus Oryx and addax, whereas a 342-bp partial sequence of 16S rRNA accurately grouped all five taxa studied, suggesting the utility of 16S rRNA segment for molecular phylogeny of oryx at the genus and possibly species levels. PMID:19048493

  1. Bacterial diversity in Philippine fermented mustard (burong mustasa) as revealed by 16S rRNA gene analysis.

    PubMed

    Larcia, L L H; Estacio, R C; Dalmacio, L M M

    2011-12-01

    Previous studies on the bacterial profile of burong mustasa, a traditional Philippine fermented food, had been conducted using culture-dependent techniques. Since these methods may underestimate the total microbiota of a sample, a culture-independent study was done to determine the bacterial diversity in burong mustasa through molecular biology techniques. Bacterial DNA was isolated from fermented mustard samples at different stages of fermentation. The isolated genomic DNA was amplified by PCR using specific primers for the 16S ribosomal RNA gene (16S rDNA). The 1.5 kb amplicons obtained were subjected to nested PCR using primers for the internal variable region of the 16S rDNA. The 585 bp nested PCR amplicons were then subjected to denaturing gradient gel electrophoresis (DGGE) to separate the different bacteria present in each sample. Distinct and unique bands in the DGGE profile were excised, reamplified, purified and sequenced for bacterial identification. Molecular cloning of the 1.5 kb 16S rDNA was also performed using the pGEM-T Easy Vector System. The cloned gene was sequenced for bacterial identification. The identified microbiota in burong mustasa at different stages of fermentation include lactic acid bacteria and several uncultured bacteria (initial up to the final stages); acetic acid bacteria (middle stage); and Streptobacillus and Fusobacterium species (initial stage). The potential probiotic bacteria found in burong mustasa are Weissella and Lactobacillus. PMID:22146686

  2. Phylogenetic position of the genus Cyrtostrombidium, with a description of Cyrtostrombidium paralongisomum nov. spec. and a redescription of Cyrtostrombidium longisomum Lynn & Gilron, 1993 (Protozoa, Ciliophora) based on live observation, protargol impregnation, and 18S rDNA sequences.

    PubMed

    Tsai, Sheng-Fang; Chen, Wei-Ting; Chiang, Kuo-Ping

    2015-01-01

    We redescribe Cyrtostrombidium longisomum Lynn & Gilron, 1993, the type species of the genus Cyrtostrombidium, and describe the new species Cyrtostrombidium paralongisomum n. sp. using live observation, protargol staining and molecular data. The morphological characters of these two species are clearly distinct, i.e., dikinetid numbers in the girdle and ventral kineties; however, it is difficult to separate them by 18S rDNA sequences because they differ by only 8 bp, indicating that 18S rDNA sequences are insufficient for separating different species in the genus Cyrtostrombidium. We not only observed the position of the oral primordium in the genus Cyrtostrombidium but also observed a possibly homoplasious trait, a dorsal split in the girdle kinety, in (1) Apostrombidium, (2) Varistrombidium, and (3) Cyrtostrombidium/Williophrya. This partially supports the hypothesis of somatic ciliary pattern evolution recently put forth by Agatha and Strüder-Kypke. PMID:25227509

  3. Double trouble for grasshopper molecular systematics: intra-individual heterogeneity of both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer ribosomal DNA sequences in Hesperotettix viridis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hesperotettix viridis grasshoppers (Orthoptera: Acrididae:Melanoplinae) exhibit intra-individual variation in both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer (ITS) ribosomal DNA sequences. These findings violate core assumptions underlying DNA sequence data obtained via pol...

  4. Non-random distribution of methyl-CpG sites and non-CpG methylation in the human rDNA promoter identified by next generation bisulfite sequencing.

    PubMed

    Pietrzak, Maciej; Rempala, Grzegorz A; Nelson, Peter T; Hetman, Michal

    2016-07-01

    A next generation bisulfite sequencing (NGBS) was used to study rDNA promoter methylation in human brain using postmortem samples of the parietal cortex. Qualitative analysis of patterns of CpG methylation was performed at the individual rDNA unit level. CpG site-specific differences in methylation frequency were observed with the core promoter harboring three out of four most methylated CpGs. Moreover, there was an overall trend towards co-methylation for all possible pairs of 26 CpG sites. The hypermethylated CpGs from the core promoter were also most likely to be co-methylated. Finally, although rare, non-CpG (CpH) methylation was detected at several sites with one of them confirmed using the PspGI-qPCR assay. Similar trends were observed in samples from control individuals as well as patients suffering of Alzheimer's disease (AD), mild cognitive impairment (MCI) or ataxia telangiectasia (AT). Taken together, while some methyl-CpG sites including those in the core promoter may have relatively greater inhibitory effect on rRNA transcription, co-methylation at multiple sites may be required for full and/or long lasting silencing of human rDNA. PMID:27008990

  5. A Sequence-Specific Interaction between the Saccharomyces cerevisiae rRNA Gene Repeats and a Locus Encoding an RNA Polymerase I Subunit Affects Ribosomal DNA Stability

    PubMed Central

    Cahyani, Inswasti; Cridge, Andrew G.; Engelke, David R.; Ganley, Austen R. D.

    2014-01-01

    The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within the Saccharomyces cerevisiae genome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e., RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within the RPA135-tK(CUU)P intergenic region that is involved in the interaction. We demonstrate that the RPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not govern RPA135 transcription. Instead, replacement of a 605-bp region within the RPA135-tK(CUU)P intergenic region results in a reduction in the RPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between the RPA135-tK(CUU)P and rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome. PMID:25421713

  6. Karyotypic diversification in Mytilus mussels (Bivalvia: Mytilidae) inferred from chromosomal mapping of rRNA and histone gene clusters

    PubMed Central

    2014-01-01

    Background Mussels of the genus Mytilus present morphologically similar karyotypes that are presumably conserved. The absence of chromosome painting probes in bivalves makes difficult verifying this hypothesis. In this context, we comparatively mapped ribosomal RNA and histone gene families on the chromosomes of Mytilus edulis, M. galloprovincialis, M. trossulus and M. californianus by fluorescent in situ hybridization (FISH). Results Major rRNA, core and linker histone gene clusters mapped to different chromosome pairs in the four taxa. In contrast, minor rRNA gene clusters showed a different behavior. In all Mytilus two of the 5S rDNA clusters mapped to the same chromosome pair and one of them showed overlapping signals with those corresponding to one of the histone H1 gene clusters. The overlapping signals on mitotic chromosomes became a pattern of alternate 5S rRNA and linker histone gene signals on extended chromatin fibers. Additionally, M. trossulus showed minor and major rDNA clusters on the same chromosome pair. Conclusion The results obtained suggest that at least some of the chromosomes bearing these sequences are orthologous and that chromosomal mapping of rRNA and histone gene clusters could be a good tool to help deciphering some of the many unsolved questions in the systematic classification of Mytilidae. PMID:25023072

  7. On the value of nuclear and mitochondrial gene sequences for reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae)

    PubMed Central

    Cameron, Kenneth M.

    2009-01-01

    Background and Aims Most molecular phylogenetic studies of Orchidaceae have relied heavily on DNA sequences from the plastid genome. Nuclear and mitochondrial loci have only been superficially examined for their systematic value. Since 40% of the genera within Vanilloideae are achlorophyllous mycoheterotrophs, this is an ideal group of orchids in which to evaluate non-plastid gene sequences. Methods Phylogenetic reconstructions for Vanilloideae were produced using independent and combined data from the nuclear 18S, 5·8S and 26S rDNA genes and the mitochondrial atpA gene and nad1b-c intron. Key Results These new data indicate placements for genera such as Lecanorchis and Galeola, for which plastid gene sequences have been mostly unavailable. Nuclear and mitochondrial parsimony jackknife trees are congruent with each other and previously published trees based solely on plastid data. Because of high rates of sequence divergence among vanilloid orchids, even the short 5·8S rDNA gene provides impressive levels of resolution and support. Conclusions Orchid systematists are encouraged to sequence nuclear and mitochondrial gene regions along with the growing number of plastid loci available. PMID:19251715

  8. Ampelomyces mycoparasites from apple powdery mildew identified as a distinct group based on single-stranded conformation polymorphism analysis of the rDNA ITS region.

    PubMed

    Szentiványi, Orsolya; Kiss, Levente; Russell, John C; Kovács, Gábor M; Varga, Krisztina; Jankovics, Tünde; Lesemann, Silke; Xu, Xiang-Ming; Jeffries, Peter

    2005-04-01

    Pycnidial fungi belonging to the genus Ampelomyces are the most common natural antagonists of powdery mildews worldwide. During a study of the interactions between apple powdery mildew (Podosphaera leucotricha) and Ampelomyces mycoparasites, 52 new Ampelomyces isolates were obtained from P. leucotricha and, in addition, 13 new isolates from other species of the Erysiphaceae in four European countries. Their genetic diversity was screened using single-stranded conformation polymorphism (SSCP) analysis of the internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA). For comparison, 24 isolates obtained from genetic resource collections or other sources were included in this study. Based on the ITS-SSCP patterns, the isolates were placed in eight groups. The isolates belonged to two types based on their growth in culture. The faster-growing and the slower-growing isolates were included in different SSCP groups. A phylogenetic analysis of the ITS sequences of representatives of these groups confirmed the results obtained with the SSCP method, and showed that the faster-growing isolates do not belong to Ampelomyces as suggested by earlier studies. All the isolates from P. leucotricha fell into a distinct SSCP group of genetically homogeneous isolates. This suggests that Ampelomyces mycoparasites which occur in apple powdery mildew are slightly different from the other Ampelomyces groups which contain mycoparasites from various powdery mildew species. This may be because the main growth period of Ampelomyces mycoparasites in apple powdery mildew is isolated in time from that of Ampelomyces isolates that occur in other species of the Erysiphaceae. P. leucotricha starts its life-cycle early in the season, usually in March-April, while most powdery mildews are active in the same environments only late in the year. PMID:15912930

  9. Variations of SSU rDNA group I introns in different isolates of Cordyceps militaris and the loss of an intron during cross-mating.

    PubMed

    Lian, Tiantian; Yang, Tao; Sun, Junde; Guo, Suping; Yang, Huaijun; Dong, Caihong

    2014-08-01

    Cordyceps militaris, the type species of genus Cordyceps, is one of the most popular mushrooms and a nutraceutical in eastern Asia. It is considered a model organism for the study of Cordyceps species because it can complete its life cycle when cultured in vitro. In the present study, the occurrence and sequence variation of SSU rDNA group I introns, Cmi.S943 and Cmi.S1199, among different isolates of C. militaris were analyzed. Based on the secondary structure predictions, the Cmi.S943 intron has been placed in subgroup IC1, and the Cmi.S1199 intron has been placed in subgroup IE. No significant similarity between Cmi.S943 and Cmi.S1199 suggested different origins. Three genotypes, based on the frequency and distribution of introns, were described to discriminate the 57 surveyed C. militaris strains. It was found that the genotype was related to the stroma characteristics. The stromata of all of the genotype II strains, which possessed only Cmi.S943, could produce perithecium. In contrast, the stromata of all genotype III strains, which had both Cmi.S943 and Cmi.S1199, could not produce perithecium. Cmi.S1199 showed the lowest level of intra-specific variation among the tested strains. Group I introns can be lost during strain cross-mating. Therefore, we presumed that during cross-mating and recombination, intron loss could be driven by positive Darwinian selection due to the energetic cost of transcribing long introns. PMID:24996897

  10. Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons.

    PubMed

    Rodrigues, Viviane D; Torres, Tatiana T; Ottoboni, Laura M M

    2014-11-01

    Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences. PMID:25129578

  11. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    PubMed Central

    Azwai, S.M.; Alfallani, E.A.; Abolghait, S.K.; Garbaj, A.M.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Rayes, H.M.; Barbieri, I.; Eldaghayes, I.M.

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169

  12. Evaluation of the effects of intrapartum antibiotic prophylaxis on newborn intestinal microbiota using a sequencing approach targeted to multi hypervariable 16S rDNA regions.

    PubMed

    Aloisio, Irene; Quagliariello, Andrea; De Fanti, Sara; Luiselli, Donata; De Filippo, Carlotta; Albanese, Davide; Corvaglia, Luigi Tommaso; Faldella, Giacomo; Di Gioia, Diana

    2016-06-01

    Different factors are known to influence the early gut colonization in newborns, among them the perinatal use of antibiotics. On the other hand, the effect on the baby of the administration of antibiotics to the mother during labor, referred to as intrapartum antibiotic prophylaxis (IAP), has received less attention, although routinely used in group B Streptococcus positive women to prevent the infection in newborns. In this work, the fecal microbiota of neonates born to mothers receiving IAP and of control subjects were compared taking advantage for the first time of high-throughput DNA sequencing technology. Seven different 16S rDNA hypervariable regions (V2, V3, V4, V6 + V7, V8, and V9) were amplified and sequenced using the Ion Torrent Personal Genome Machine. The results obtained showed significant differences in the microbial composition of newborns born to mothers who had received IAP, with a lower abundance of Actinobacteria and Bacteroidetes as well as an overrepresentation of Proteobacteria. Considering that the seven hypervariable regions showed different discriminant ability in the taxonomic identification, further analyses were performed on the V4 region evidencing in IAP infants a reduced microbial richness and biodiversity, as well as a lower number of bacterial families with a predominance of Enterobacteriaceae members. In addition, this analysis pointed out a significant reduction in Bifidobacterium spp. strains. The reduced abundance of these beneficial microorganisms, together with the increased amount of potentially pathogenic bacteria, may suggest that IAP infants are more exposed to gastrointestinal or generally health disorders later in age. PMID:26971496

  13. Sequencer-Based Capillary Gel Electrophoresis (SCGE) Targeting the rDNA Internal Transcribed Spacer (ITS) Regions for Accurate Identification of Clinically Important Yeast Species

    PubMed Central

    Chen, Sharon C.-A.; Wang, He; Zhang, Li; Fan, Xin; Xu, Zhi-Peng; Cheng, Jing-Wei; Kong, Fanrong; Zhao, Yu-Pei; Xu, Ying-Chun

    2016-01-01

    Accurate species identification of Candida, Cryptococcus, Trichosporon and other yeast pathogens is important for clinical management. In the present study, we developed and evaluated a yeast species identification scheme by determining the rDNA internal transcribed spacer (ITS) region length types (LTs) using a sequencer-based capillary gel electrophoresis (SCGE) approach. A total of 156 yeast isolates encompassing 32 species were first used to establish a reference SCGE ITS LT database. Evaluation of the ITS LT database was then performed on (i) a separate set of (n = 97) clinical isolates by SCGE, and (ii) 41 isolates of 41 additional yeast species from GenBank by in silico analysis. Of 156 isolates used to build the reference database, 41 ITS LTs were identified, which correctly identified 29 of the 32 (90.6%) species, with the exception of Trichosporon asahii, Trichosporon japonicum and Trichosporon asteroides. In addition, eight of the 32 species revealed different electropherograms and were subtyped into 2–3 different ITS LTs each. Of the 97 test isolates used to evaluate the ITS LT scheme, 96 (99.0%) were correctly identified to species level, with the remaining isolate having a novel ITS LT. Of the additional 41 isolates for in silico analysis, none was misidentified by the ITS LT database except for Trichosporon mucoides whose ITS LT profile was identical to that of Trichosporon dermatis. In conclusion, yeast identification by the present SCGE ITS LT assay is a fast, reproducible and accurate alternative for the identification of clinically important yeasts with the exception of Trichosporon species. PMID:27105313

  14. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya.

    PubMed

    Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169

  15. Phylogenetic analysis of LSU and SSU rDNA group I introns of lichen photobionts associated with the genera Xanthoria and Xanthomendoza (Teloschistaceae, lichenized Ascomycetes)

    PubMed Central

    Nyati, Shyam; Bhattacharya, Debashish; Werth, Silke; Honegger, Rosmarie

    2013-01-01

    We studied group I introns in sterile cultures of selected groups of lichen photobionts, focusing on Trebouxia species associated with Xanthoria s. lat. (including Xanthomendoza spp.; lichen-forming ascomycetes). Group I introns were found inserted after position 798 (Escherichia coli numbering) in the large subunit (LSU) rRNA in representatives of the green algal genera Trebouxia and Asterochloris. The 798 intron was found in about 25% of Xanthoria photobionts including several reference strains obtained from algal culture collections. An alignment of LSU-encoded rDNA intron sequences revealed high similarity of these sequences allowing their phylogenetic analysis. The 798 group I intron phylogeny was largely congruent with a phylogeny of the Internal Transcribed Spacer Region (ITS), indicating that the insertion of the intron most likely occurred in the common ancestor of the genera Trebouxia and Asterochloris. The intron was vertically inherited in some taxa, but lost in others. The high sequence similarity of this intron to one found in Chlorella angustoellipsoidea suggests that the 798 intron was either present in the common ancestor of Trebouxiophyceae, or that its present distribution results from more recent horizontal transfers, followed by vertical inheritance and loss. Analysis of another group I intron shared by these photobionts at small subunit (SSU) position 1512 supports the hypothesis of repeated lateral transfers of this intron among some taxa, but loss among others. Our data confirm that the history of group I introns is characterized by repeated horizontal transfers, and suggests that some of these introns have ancient origins within Chlorophyta. PMID:24415800

  16. Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin

    PubMed Central

    Mlinarec, J.; Šatović, Z.; Malenica, N.; Ivančić-Baće, I.; Besendorfer, V.

    2012-01-01

    Background and Aims In the genus Anemone two small groups of taxa occur with the highest ploidy levels 2n = 6x = 48, belonging to the closely related clades: the montane/alpine Baldensis clade and the more temperate Multifida clade. To understand the formation of polyploids within these groups, the evolution of allohexaploid A. baldensis (AABBDD, 2n = 6x = 48) from Europe and allotetraploid Anemone multifida (BBDD, 2n = 4x = 32) from America was analysed. Methods Internal transcribed spacer and non-transcribed spacer sequences were used as molecular markers for phylogenetic analyses. Cytogenetic studies, including genomic in situ hybridization with genomic DNA of potential parental species as probe, fluorescence in situ hybridization with 5S and 18S rDNA as probes and 18S rDNA restriction analyses, were used to identify the parental origin of chromosomes and to study genomic changes following polyploidization. Key Results This study shows that A. multifida (BBDD, 2n= 4x = 32) and A. baldensis (AABBDD, 2n = 6x = 48) are allopolyploids originating from the crosses of diploid members of the Multifida (donor of the A and B subgenomes) and Baldensis groups (donor of the D subgenome). The A and B subgenomes are closely related to the genomes of A. sylvestris, A. virginiana and A. cylindrica, indicating that these species or their progeny might be the ancestral donors of the B subgenome of A. multifida and A and B subgenomes of A. baldensis. Both polyploids have undergone genomic changes such as interchromosomal translocation affecting B and D subgenomes and changes at rDNA sites. Anemone multifida has lost the 35S rDNA loci characteristic of the maternal donor (B subgenome) and maintained only the rDNA loci of the paternal donor (D subgenome). Conclusions It is proposed that A. multifida and A. baldensis probably had a common ancestor and their evolution was facilitated by vegetation changes during the Quaternary, resulting in their present disjunctive distribution. PMID

  17. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria

    SciTech Connect

    Field, K.G.; Gordon, D.; Wright, T.

    1997-01-01

    Small-subunit (SSU) ribosomal DNA (rDNA) gene clusters are phylogenetically related sets of SSU rRNA genes, commonly encountered in genes amplified from natural populations. Genetic variability in gene clusters could result form artifacts (polymerase error or PCR chimera formation), microevolution (variation among rrn copies within strains), or macroevolution (genetic divergence correlated with long-term evolutionary divergence). To better understand gene clusters, this study assessed genetic diversity and distribution of a single environmental SSU rDNA gene cluster, the SAR11 cluster. SAR11 cluster genes, from an uncultured group of the {alpha} subclass of the class Proteobacteria, have been recovered from coastal and midoceanic waters of the North Atlantic and Pacific. We cloned and bidirectionally sequenced 23 new SAR11 cluster 16S rRNA genes, from 80 and 250 m im the Sargasso Sea and from surface coastal waters of the Atlantic and Pacific, and analyzed them with previously published sequences. Two SAR11 genes were obviously PCR chimeras, but the biological (nonchimeric) origins of most subgroups within the cluster were confirmed by independent recovery from separate gene libraries. Using group-specific oligonucleotide probes, we analyzed depth profiles of nucleic acids, targeting both amplified rDNAs and bulk RNAs. Two subgroups within the SAR11 cluster showed different highly depth-specific distributions. We conclude that some of the genetic diversity within the SAR11 gene cluster represents macroevolutionary divergence correlated with niche specialization. Furthermore, we demonstrate the utility for marine microbial ecology of oligonucleotide probes based on gene sequences amplified from natural populations and show that a detailed knowledge of sequence variability may be needed to effectively design these probes. 48 refs., 7 figs., 3 tabs.

  18. Thermodynamic properties of K{sub 2}U{sub 4}O{sub 12}(s) and K{sub 2}U{sub 4}O{sub 13}(s) by EMF and calorimetric measurements

    SciTech Connect

    Iyer, V.S.; Jayanthi, K.; Venugopal, V.

    1997-09-01

    The coexistence of K{sub 2}U{sub 4}O{sub 12}(s) and K{sub 2}U{sub 4}O{sub 13}(s) in the K-U-O system up to 1200 K was established. The EMF measurements over the above phase field were carried out using a calcia-stabilization zirconia solid electrolyte galvanic cell in the temperature range 1053 and 1222 K. The equilibrium oxygen partial pressure above the phase fields was calculated to be ln p(O{sub 2}) kPa{+-}0.09 = -31452/T + 25.065. The enthalpy increment values of K{sub 2}U{sub 4}O{sub 12}(s) and K{sub 2}U{sub 4}O{sub 13}(s) were measured using a high temperature Calvet calorimeter by drop method and the thermodynamic values were suggested for the compounds.

  19. Mapping a gene for Noonan Syndrome to the long arm of chromosome 12

    SciTech Connect

    Jamieson, G.R.; Wade, A.F.; Elsawi, M.

    1994-09-01

    Noonan syndrome is an autosomal dominant disorder of unknown origin characterized by typical facial features, short stature and congenital heart disease. Noonan syndrome is the second most common syndrome associated with congenital heart disease after Down`s syndrome. To localize the gene for Noonan syndrome, linkage studies were carried out in 19 multigeneration families. A total of 57 patients affected with Noonan syndrome out of a total of 106 members from 19 families were analyzed. All affected patients fulfilled the minimum diagnostic criteria for Noonan syndrome. In the largest family, 9 out of 29 members were affected. Genotypes using 200(CA)n microsatellite markers were analyzed and two markers D12S105 and D12S79 produced significantly positive LOD scores in this family (Zmax=4.32 at {theta}=0). Analysis using these and other markers were carried out in the 19 families and the LOD scores obtained were Zmax=3.73, Zmax=4.98 and Zmax=5.58 at {theta}=0.1 at the D12S105/D12S354/D12S79 loci, respectively. This is the first time that a locus for Noonan syndrome has been mapped. The identification of a gene for Noonan syndrome on chromosome 12q will enable us to understand further the development of the mammalian heart and factors involved in growth.

  20. Genotyping of a miso and soy sauce fermentation yeast, Zygosaccharomyces rouxii, based on sequence analysis of the partial 26S ribosomal RNA gene and two internal transcribed spacers.

    PubMed

    Suezawa, Yasuhiko; Suzuki, Motofumi; Mori, Haruhiko

    2008-09-01

    We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), the internal transcribed spacer 1, the 5.8S ribosomal RNA gene, and the internal transcribed spacer 2 (the ITS sequence) from 46 strains of miso and soy sauce fermentation yeast, Zygosaccharomyces rouxii and a closely related species, Z. mellis, for typing. Based on the 26S rDNA sequence analysis, the Z. rouxii strains were of two types, and the extent of sequence divergence between them was 2.6%. Based on the ITS sequence analysis, they were divided into seven types (I-VII). Between the type strain (type I) and type VI, in particular, a 12% difference was detected. The occurrence of these nine genotypes with a divergence of more than 1% in these two sequences suggests that Z. rouxii is a species complex including novel species and hybrids. Z. mellis strains were of two types (type alpha and type beta) based on the ITS sequence. Z. rouxii could clearly be distinguished from Z. mellis by 26S rDNA and ITS sequence analyses, but not by the 16% NaCl tolerance, when used as the sole key characteristic for differentiation between the two species. PMID:18776675

  1. Molecular phylogenetic lineage of Plagiopogon and Askenasia (Protozoa, Ciliophora) revealed by their gene sequences

    NASA Astrophysics Data System (ADS)

    Liu, An; Yi, Zhenzhen; Lin, Xiaofeng; Hu, Xiaozhong; Al-Farraj, Saleh A.; Al-Rasheid, Khaled A. S.

    2015-08-01

    Prostomates and haptorians are two basal groups of ciliates with limited morphological characteristics available for taxonomy. Morphologically, the structures used to identify prostomates and haptorians are similar or even identical, which generate heavy taxonomic and phylogenetic confusion. In present work, phylogenetic positions lineage of two rare genera, Plagiopogon and Askenasia, were investigated. Three genes including small subunit ribosomal RNA gene (hereafter SSU rDNA), internal transcribed spacer region (ITS region), and large subunit ribosomal RNA gene (LSU rDNA) were analyzed, 10 new sequences five species each. Our findings included 1) class Prostomatea and order Haptorida are multiphyletic; 2) it may not be appropriate to place order Cyclotrichiida in subclass Haptoria, and the systematic lineage of order Cyclotrichiida needs to be verified further; 3) genus Plagiopogon branches consistently within a clade covering most prostomes and is basal of clade Colepidae, implying its close lineage to Prostomatea; and 4) Askenasia is phylogenetically distant from the subclass Haptoria but close to classes Prostomatea, Plagiopylea and Oligohymenophorea. We supposed that the toxicyst of Askenasia may be close to taxa of prostomes instead of haptorians, and the dorsal brush is a more typical morphological characteristics of haptorians than toxicysts.

  2. Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription

    PubMed Central

    Cong, Rong; Das, Sadhan; Ugrinova, Iva; Kumar, Sanjeev; Mongelard, Fabien; Wong, Jiemin; Bouvet, Philippe

    2012-01-01

    Nucleolin is a multi-functional nucleolar protein that is required for ribosomal RNA gene (rRNA) transcription in vivo, but the mechanism by which nucleolin modulates RNA polymerase I (RNAPI) transcription is not well understood. Nucleolin depletion results in an increase in the heterochromatin mark H3K9me2 and a decrease in H4K12Ac and H3K4me3 euchromatin histone marks in rRNA genes. ChIP-seq experiments identified an enrichment of nucleolin in the ribosomal DNA (rDNA) coding and promoter region. Nucleolin is preferentially associated with unmethylated rRNA genes and its depletion leads to the accumulation of RNAPI at the beginning of the transcription unit and a decrease in UBF along the coding and promoter regions. Nucleolin is able to affect the binding of transcription termination factor-1 on the promoter-proximal terminator T0, thus inhibiting the recruitment of TIP5 and HDAC1 and the establishment of a repressive heterochromatin state. These results reveal the importance of nucleolin for the maintenance of the euchromatin state and transcription elongation of rDNA. PMID:22859736

  3. 18S rRNA Gene Variation among Common Airborne Fungi, and Development of Specific Oligonucleotide Probes for the Detection of Fungal Isolates

    PubMed Central

    Wu, Zhihong; Tsumura, Yoshihiko; Blomquist, Göran; Wang, Xiao-Ru

    2003-01-01

    In this study, we sequenced 18S rRNA genes (rDNA) from 49 fungal strains representing 31 species from 15 genera. Most of these species are common airborne fungi and pathogens that may cause various public health concerns. Sequence analysis revealed distinct divergence between Zygomycota and Ascomycota. Within Ascomycota, several strongly supported clades were identified that facilitate the taxonomic placement of several little-studied fungi. Wallemia appeared as the group most diverged from all the other Ascomycota species. Based on the 18S rDNA sequence variation, 108 oligonucleotide probes were designed for each genus and species included in this study. After homology searches and DNA hybridization evaluations, 33 probes were verified as genus or species specific. The optimal hybridization temperatures to achieve the best specificity for these 33 probes were determined. These new probes can contribute to the molecular diagnostic research for environmental monitoring. PMID:12957927

  4. Cytogenetic comparison between two allopatric populations of Astyanax altiparanae Garutti et Britski, 2000 (Teleostei, Characidae), with emphasis on the localization of 18S and 5S rDNA

    PubMed Central

    Pacheco, Rosiley Berton; da Rosa, Renata; Giuliano-Caetano, Lucia; Júlio Jr., Horácio Ferreira; Dias, Ana Lúcia

    2011-01-01

    Abstract Two populations of Astyanax altiparanae (Garutti & Britski, 2000) of the Água dos Patos stream/SP and lake Igapó/PR were analyzed. All individuals showed 2n = 50, however, different karyotypic formulae were observed. The population of the Água dos Patos stream showed 8m +24sm+6st+12a (NF=88) and the population of lake Igapó, 8m+28sm+4st+10a (NF=90). Nucleolus organizing regions (AgNORs) were observed in the terminal position on the short and long arm of different chromosomes of both populations, showing a variation from 3 to 4 chromosomes. Fluorescent in situ hybridization (FISH) using 18S rDNA probes revealed only one pair of chromosomes with fluorescent signals in the terminal site on the short arm in the Igapó lake population, while the population of Água dos Patos stream showed 4 fluorescence terminal signals, characterizing a system of simple and multiple NORs, respectively. 5S rDNA fluorescent signals were detected in the interstitial position of a pair of chromosomes in the two studied populations. Some AgNOR sites revealed to be GC-rich when stained with Chromomycin A3 (CMA3), however, AT positive regions were not observed. The data obtained show that, despite the conservation of the diploid number and location of 5S DNAr, differences in both the distribution of 18S rDNA and karyotypic formula among the populations were found, thus corroborating the existing data on chromosome variability in Astyanax altiparanae that can be significant for cytotaxonomy in this group. PMID:24260632

  5. Cytogenetic comparison between two allopatric populations of Astyanax altiparanae Garutti et Britski, 2000 (Teleostei, Characidae), with emphasis on the localization of 18S and 5S rDNA.

    PubMed

    Pacheco, Rosiley Berton; da Rosa, Renata; Giuliano-Caetano, Lucia; Júlio, Horácio Ferreira; Dias, Ana Lúcia

    2011-01-01

    Two populations of Astyanax altiparanae (Garutti & Britski, 2000) of the Água dos Patos stream/SP and lake Igapó/PR were analyzed. All individuals showed 2n = 50, however, different karyotypic formulae were observed. The population of the Água dos Patos stream showed 8m +24sm+6st+12a (NF=88) and the population of lake Igapó, 8m+28sm+4st+10a (NF=90). Nucleolus organizing regions (AgNORs) were observed in the terminal position on the short and long arm of different chromosomes of both populations, showing a variation from 3 to 4 chromosomes. Fluorescent in situ hybridization (FISH) using 18S rDNA probes revealed only one pair of chromosomes with fluorescent signals in the terminal site on the short arm in the Igapó lake population, while the population of Água dos Patos stream showed 4 fluorescence terminal signals, characterizing a system of simple and multiple NORs, respectively. 5S rDNA fluorescent signals were detected in the interstitial position of a pair of chromosomes in the two studied populations. Some AgNOR sites revealed to be GC-rich when stained with Chromomycin A3 (CMA3), however, AT positive regions were not observed. The data obtained show that, despite the conservation of the diploid number and location of 5S DNAr, differences in both the distribution of 18S rDNA and karyotypic formula among the populations were found, thus corroborating the existing data on chromosome variability in Astyanax altiparanae that can be significant for cytotaxonomy in this group. PMID:24260632

  6. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense.

    PubMed

    Jijón-Moreno, Saúl; Marcos-Jiménez, Cynthia; Pedraza, Raúl O; Ramírez-Mata, Alberto; de Salamone, I García; Fernández-Scavino, Ana; Vásquez-Hernández, Claudia A; Soto-Urzúa, Lucia; Baca, Beatriz E

    2015-06-01

    Plant growth-promoting bacteria of the genus Azospirillum are present in the rhizosphere and as endophytes of many crops. In this research we studied 40 Azospirillum strains isolated from different plants and geographic regions. They were first characterized by 16S rDNA restriction analysis, and their phylogenetic position was established by sequencing the genes 16S rDNA, ipdC, hisC1, and hisC2. The latter three genes are involved in the indole-3-pyruvic acid (IPyA) biosynthesis pathway of indole-3-acetic acid (IAA). Furthermore, the suitability of the 16S-23S rDNA intergenic spacer sequence (IGS) for the differentiation of closely related Azospirillum taxa and development of PCR protocols allows for specific detection of strains. The IGS-RFLP analysis enabled intraspecies differentiation, particularly of Azospirillum brasilense and Azospirillum lipoferum strains. Results demonstrated that the ipdC, hisC1, and hisC2 genes are highly conserved in all the assessed A. brasilense isolates, suggesting that these genes can be used as an alternative phylogenetic marker. In addition, IAA production determined by HPLC ranged from 0.17 to 98.2 μg mg(-1) protein. Southern hybridization with the A. brasilense ipdC gene probe did not show, a hybridization signal with A. lipoferum, Azospirillum amazonense, Azospirillum halopreferans and Azospirillum irakense genomic DNA. This suggests that these species produce IAA by other pathways. Because IAA is mainly synthesized via the IPyA pathway in A. brasilense strains, a species that is used worldwide in agriculture, the identification of ipdC, hisC1, and hisC2 genes by PCR may be suitable for selecting exploitable strains. PMID:25842039

  7. The African buffalo parasite Theileria. sp. (buffalo) can infect and immortalize cattle leukocytes and encodes divergent orthologues of Theileria parva antigen genes.

    PubMed

    Bishop, R P; Hemmink, J D; Morrison, W I; Weir, W; Toye, P G; Sitt, T; Spooner, P R; Musoke, A J; Skilton, R A; Odongo, D O

    2015-12-01

    African Cape buffalo (Syncerus caffer) is the wildlife reservoir of multiple species within the apicomplexan protozoan genus Theileria, including Theileria parva which causes East coast fever in cattle. A parasite, which has not yet been formally named, known as Theileria sp. (buffalo) has been recognized as a potentially distinct species based on rDNA sequence, since 1993. We demonstrate using reverse line blot (RLB) and sequencing of 18S rDNA genes, that in an area where buffalo and cattle co-graze and there is a heavy tick challenge, T. sp. (buffalo) can frequently be isolated in culture from cattle leukocytes. We also show that T. sp. (buffalo), which is genetically very closely related to T. parva, according to 18s rDNA sequence, has a conserved orthologue of the polymorphic immunodominant molecule (PIM) that forms the basis of the diagnostic ELISA used for T. parva serological detection. Closely related orthologues of several CD8 T cell target antigen genes are also shared with T. parva. By contrast, orthologues of the T. parva p104 and the p67 sporozoite surface antigens could not be amplified by PCR from T. sp. (buffalo), using conserved primers designed from the corresponding T. parva sequences. Collectively the data re-emphasise doubts regarding the value of rDNA sequence data alone for defining apicomplexan species in the absence of additional data. 'Deep 454 pyrosequencing' of DNA from two Theileria sporozoite stabilates prepared from Rhipicephalus appendiculatus ticks fed on buffalo failed to detect T. sp. (buffalo). This strongly suggests that R. appendiculatus may not be a vector for T. sp. (buffalo). Collectively, the data provides further evidence that T. sp. (buffalo). is a distinct species from T. parva. PMID:26543804

  8. The African buffalo parasite Theileria. sp. (buffalo) can infect and immortalize cattle leukocytes and encodes divergent orthologues of Theileria parva antigen genes

    PubMed Central

    Bishop, R.P.; Hemmink, J.D.; Morrison, W.I.; Weir, W.; Toye, P.G.; Sitt, T.; Spooner, P.R.; Musoke, A.J.; Skilton, R.A.; Odongo, D.O.

    2015-01-01

    African Cape buffalo (Syncerus caffer) is the wildlife reservoir of multiple species within the apicomplexan protozoan genus Theileria, including Theileria parva which causes East coast fever in cattle. A parasite, which has not yet been formally named, known as Theileria sp. (buffalo) has been recognized as a potentially distinct species based on rDNA sequence, since 1993. We demonstrate using reverse line blot (RLB) and sequencing of 18S rDNA genes, that in an area where buffalo and cattle co-graze and there is a heavy tick challenge, T. sp. (buffalo) can frequently be isolated in culture from cattle leukocytes. We also show that T. sp. (buffalo), which is genetically very closely related to T. parva, according to 18s rDNA sequence, has a conserved orthologue of the polymorphic immunodominant molecule (PIM) that forms the basis of the diagnostic ELISA used for T. parva serological detection. Closely related orthologues of several CD8 T cell target antigen genes are also shared with T. parva. By contrast, orthologues of the T. parva p104 and the p67 sporozoite surface antigens could not be amplified by PCR from T. sp. (buffalo), using conserved primers designed from the corresponding T. parva sequences. Collectively the data re-emphasise doubts regarding the value of rDNA sequence data alone for defining apicomplexan species in the absence of additional data. ‘Deep 454 pyrosequencing’ of DNA from two Theileria sporozoite stabilates prepared from Rhipicephalus appendiculatus ticks fed on buffalo failed to detect T. sp. (buffalo). This strongly suggests that R. appendiculatus may not be a vector for T. sp. (buffalo). Collectively, the data provides further evidence that T. sp. (buffalo). is a distinct species from T. parva. PMID:26543804

  9. Differentiation of Phylogenetically Related Slowly Growing Mycobacteria Based on 16S-23S rRNA Gene Internal Transcribed Spacer Sequences

    PubMed Central

    Roth, Andreas; Fischer, Marga; Hamid, Mohamed E.; Michalke, Sabine; Ludwig, Wolfgang; Mauch, Harald

    1998-01-01

    Interspecific polymorphisms of the 16S rRNA gene (rDNA) are widely used for species identification of mycobacteria. 16S rDNA sequences, however, do not vary greatly within a species, and they are either indistinguishable in some species, for example, in Mycobacterium kansasii and M. gastri, or highly similar, for example, in M. malmoense and M. szulgai. We determined 16S-23S rDNA internal transcribed spacer (ITS) sequences of 60 strains in the genus Mycobacterium representing 13 species (M. avium, M. conspicuum, M. gastri, M. genavense, M. kansasii, M. malmoense, M. marinum, M. shimoidei, M. simiae, M. szulgai, M. triplex, M. ulcerans, and M. xenopi). An alignment of these sequences together with additional sequences available in the EMBL database (for M. intracellulare, M. phlei, M. smegmatis, and M. tuberculosis) was established according to primary- and secondary-structure similarities. Comparative sequence analysis applying different treeing methods grouped the strains into species-specific clusters with low sequence divergence between strains belonging to the same species (0 to 2%). The ITS-based tree topology only partially correlated to that based on 16S rDNA, but the main branching orders were preserved, notably, the division of fast-growing from slowly growing mycobacteria, separate branching for M. simiae, M. genavense, and M. triplex, and distinct branches for M. xenopi and M. shimoidei. Comparisons of M. gastri with M. kansasii and M. malmoense with M. szulgai revealed ITS sequence similarities of 93 and 88%, respectively. M. marinum and M. ulcerans possessed identical ITS sequences. Our results show that ITS sequencing represents a supplement to 16S rRNA gene sequences for the differentiation of closely related species. Slowly growing mycobacteria show a high sequence variation in the ITS; this variation has the potential to be used for the development of probes as a rapid approach to mycobacterial identification. PMID:9431937

  10. Unusual dispersion of histone repeats on the whole chromosomal complement and their colocalization with ribosomal genes in Rachycentron canadum (Rachycentridae, Perciformes).

    PubMed

    Costa, Gideão W W F; Cioffi, Marcelo B; Bertollo, Luiz A C; Molina, Wagner F

    2014-01-01

    Rachycentron canadum, the only representative of the family Rachycentridae, has been the focus of biotechnological interest due to its significant potential in marine fish farming. The chromosome set of this species has been widely investigated with respect to the location of genes and multigene families. A FISH analysis was performed using 4 multigene families as probes, represented by 5S and 18S ribosomal genes and histones H2B-H2A and H3. Earlier data suggested that differential replication of heterochromatin could be partially associated with functional genes. Indeed, our results showed that the DNA contained in heterochromatic regions of R. canadum contains 5S and 18S ribosomal genes as well as the gene sequences of histones H2B-H2A and H3, which were colocalized. The distribution of H3 sequences in all heterochromatic regions, except in 13q, could indicate an important evolutionary role for this class of repetitive sequences. Besides, the presence of chromosome regions bearing multifunctional repetitive sequences formed by H2B-H2A/H3/18S rDNA and H2B-H2A/H3/5S rDNA clusters was demonstrated for the first time in fishes. The implications of differential histone gene extension and its functionality in the karyotype of R. canadum remain unknown. PMID:25341625

  11. Identification of Arcanobacterium pluranimalium by matrix-assisted laser desorption ionization-time of flight mass spectrometry and, as novel target, by sequencing pluranimaliumlysin encoding gene pla.

    PubMed

    Balbutskaya, A; Sammra, O; Nagib, S; Hijazin, M; Alber, J; Lämmler, C; Foster, G; Erhard, M; Wragg, P N; Abdulmawjood, A; Prenger-Berninghoff, E

    2014-01-31

    In the present study 13 Arcanobacterium pluranimalium strains isolated from various animal origin could successfully be identified phenotypically by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and genotypically by sequencing 16S rDNA and the pluranimaliumlysin encoding gene pla. The detection of mass spectra by MALDI-TOF MS and the novel genotypic approach using gene pla might help to identify A. pluranimalium in future and might elucidate the role this species plays in infections of animals. PMID:24345409

  12. One-step integration of multiple genes into the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Gao, Shuliang; Han, Linna; Zhu, Li; Ge, Mei; Yang, Sheng; Jiang, Yu; Chen, Daijie

    2014-12-01

    Yarrowia lipolytica is an unconventional yeast, and is generally recognized as safe (GRAS). It provides a versatile fermentation platform that is used commercially to produce many added-value products. Here we report a multiple fragment assembly method that allows one-step integration of an entire β-carotene biosynthesis pathway (~11 kb, consisting of four genes) via in vivo homologous recombination into the rDNA locus of the Y. lipolytica chromosome. The highest efficiency was 21%, and the highest production of β-carotene was 2.2 ± 0.3 mg per g dry cell weight. The total procedure was completed in less than one week, as compared to a previously reported sequential gene integration method that required n weeks for n genes. This time-saving method will facilitate synthetic biology, metabolic engineering and functional genomics studies of Y. lipolytica. PMID:25216641

  13. The katablepharids are a distant sister group of the Cryptophyta: A proposal for Katablepharidophyta divisio nova/ Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny.

    PubMed

    Okamoto, Noriko; Inouye, Isao

    2005-08-01

    The katablepharids are a morphologically well-defined group of heterotrophic flagellates. Since their original description in 1939, they have been classified in the Cryptophyceae (Cryptophyta) based on their similar cell shape, flagellar orientation, and the presence of ejectisomes visible by light microscopy. However, electron microscopy suggests that the katablepharids are distinct from cryptomonads. A possible affinity with the Alveolata has been proposed which is mainly based on the resemblance of their feeding apparatus to the apical complex of the Apicomplexa or to the tentacles of the Ciliophora. In this study, we provide the first SSU rDNA and beta-tubulin molecular sequence data for two katablepharids: Katablepharis japonica sp. nov. and Leucocryptos marina. We reveal that the katablepharids are not closely related to the Alveolata; rather, phylogenetic reconstruction analyses of SSU rDNA and beta-tubulin suggest that the katablepharids are a distant sister group of the Cryptophyta. We therefore conclude that the katablepharids should be a group equivalent to the Cryptophyta and propose Katablepharidophyta divisio nova (ICBN)/Kathablepharida phylum novum (ICZN). PMID:16171184

  14. Checklist of the species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) in fishes and turtles in Middle-America, and their delimitation based on sequences of the 28S rDNA.

    PubMed

    Pinacho-Pinacho, Carlos Daniel; Sereno-Uribe, Ana L; De León, Gerardo Pérez-Ponce; García-Varela, Martín

    2015-01-01

    Among the acanthocephalans, Neoechinorhynchus is one of the most speciose genera, with 116 described species distributed worldwide. The adults of Neoechinorhynchus are found in the intestine of freshwater and brackish water fish, as well as in freshwater turtles. In this study, a checklist of the congeneric species of Neoechinorhynchus occurring in Middle-American fish and turtles is presented. The checklist contains the records established in all published accounts, as well as novel data from survey work conducted in the region comprising Neotropical areas of Mexico, as well as some localities in Central America. The species delimitation criteria used to discriminate among species is based on molecular data. In the last years, a large database derived from sequences of the D2 + D3 domains of the large subunit of rDNA (28S) was generated for 262 specimens corresponding to nine species of Neoechinorhynchus. This molecular marker has shown to be useful in establishing species limits within Neoechinorhynchus and in resolving phylogenetic relationships at species level. Based on our results, the domains D2 + D3 of the 28S rDNA could be considered as potential DNA barcodes to complement mitochondrial DNA to discriminate among acanthocephalan species. PMID:26250025

  15. Reassignment of the land tortoise haemogregarine Haemogregarina fitzsimonsi Dias 1953 (Adeleorina: Haemogregarinidae) to the genus Hepatozoon Miller 1908 (Adeleorina: Hepatozoidae) based on parasite morphology, life cycle and phylogenetic analysis of 18S rDNA sequence fragments.

    PubMed

    Cook, Courtney A; Lawton, Scott P; Davies, Angela J; Smit, Nico J

    2014-06-13

    SUMMARY Research was undertaken to clarify the true taxonomic position of the terrestrial tortoise apicomplexan, Haemogregarina fitzsimonsi (Dias, 1953). Thin blood films were screened from 275 wild and captive South African tortoises of 6 genera and 10 species between 2009-2011. Apicomplexan parasites within films were identified, with a focus on H. fitzsimonsi. Ticks from wild tortoises, especially Amblyomma sylvaticum and Amblyomma marmoreum were also screened, and sporogonic stages were identified on dissection of adult ticks of both species taken from H. fitzsimonsi infected and apparently non-infected tortoises. Parasite DNA was extracted from fixed, Giemsa-stained tortoise blood films and from both fresh and fixed ticks, and PCR was undertaken with two primer sets, HEMO1/HEMO2, and HepF300/HepR900, to amplify parasite 18S rDNA. Results indicated that apicomplexan DNA extracted from tortoise blood films and both species of tick had been amplified by one or both primer sets. Haemogregarina  fitzsimonsi 18S rDNA sequences from tortoise blood aligned with those of species of Hepatozoon, rather than those of species of Haemogregarina or Hemolivia. It is recommended therefore that this haemogregarine be re-assigned to the genus Hepatozoon, making Hepatozoon fitzsimonsi (Dias, 1953) the only Hepatozoon known currently from any terrestrial chelonian. Ticks are its likely vectors. PMID:24923767

  16. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    SciTech Connect

    Ostrup, Olga; Hyttel, Poul; Klaerke, Dan A.; Collas, Philippe

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  17. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection.

    PubMed

    Zhuang, Yao; Ren, Hongqiang; Geng, Jinju; Zhang, Yingying; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-05-01

    This study investigated the inactivation of two antibiotic resistance genes (ARGs)-sul1 and tetG, and the integrase gene of class 1 integrons-intI1 by chlorination, ultraviolet (UV), and ozonation disinfection. Inactivation of sul1, tetG, and intI1 underwent increased doses of three disinfectors, and chlorine disinfection achieved more inactivation of ARGs and intI1 genes (chlorine dose of 160 mg/L with contact time of 120 min for 2.98-3.24 log reductions of ARGs) than UV irradiation (UV dose of 12,477 mJ/cm(2) for 2.48-2.74 log reductions of ARGs) and ozonation disinfection (ozonation dose of 177.6 mg/L for 1.68-2.55 log reductions of ARGs). The 16S rDNA was more efficiently removed than ARGs by ozone disinfection. The relative abundance of selected genes (normalized to 16S rDNA) increased during ozonation and with low doses of UV and chlorine disinfection. Inactivation of sul1 and tetG showed strong positive correlations with the inactivation of intI1 genes (for sul1, R (2)  = 0.929 with p < 0.01; for tetG, R (2)  = 0.885 with p < 0.01). Compared to other technologies (ultraviolet disinfection, ozonation disinfection, Fenton oxidation, and coagulation), chlorination is an alternative method to remove ARGs from wastewater effluents. At a chlorine dose of 40 mg/L with 60 min contact time, the selected genes inactivation efficiency could reach 1.65-2.28 log, and the cost was estimated at 0.041 yuan/m(3). PMID:25483976

  18. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes

    PubMed Central

    Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K.; Bindics, János; Ślusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L.; Tamaru, Hisashi

    2014-01-01

    Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48ANPL4 complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531

  19. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes.

    PubMed

    Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K; Bindics, János; Slusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L; Tamaru, Hisashi

    2014-11-11

    Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48A(NPL4) complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531

  20. Rate heterogeneity in six protein-coding genes from the holoparasite Balanophora (Balanophoraceae) and other taxa of Santalales

    PubMed Central

    Su, Huei-Jiun; Hu, Jer-Ming

    2012-01-01

    Background and Aims The holoparasitic flowering plant Balanophora displays extreme floral reduction and was previously found to have enormous rate acceleration in the nuclear 18S rDNA region. So far, it remains unclear whether non-ribosomal, protein-coding genes of Balanophora also evolve in an accelerated fashion and whether the genes with high substitution rates retain their functionality. To tackle these issues, six different genes were sequenced from two Balanophora species and their rate variation and expression patterns were examined. Methods Sequences including nuclear PI, euAP3, TM6, LFY and RPB2 and mitochondrial matR were determined from two Balanophora spp. and compared with selected hemiparasitic species of Santalales and autotrophic core eudicots. Gene expression was detected for the six protein-coding genes and the expression patterns of the three B-class genes (PI, AP3 and TM6) were further examined across different organs of B. laxiflora using RT-PCR. Key Results Balanophora mitochondrial matR is highly accelerated in both nonsynonymous (dN) and synonymous (dS) substitution rates, whereas the rate variation of nuclear genes LFY, PI, euAP3, TM6 and RPB2 are less dramatic. Significant dS increases were detected in Balanophora PI, TM6, RPB2 and dN accelerations in euAP3. All of the protein-coding genes are expressed in inflorescences, indicative of their functionality. PI is restrictively expressed in tepals, synandria and floral bracts, whereas AP3 and TM6 are widely expressed in both male and female inflorescences. Conclusions Despite the observation that rates of sequence evolution are generally higher in Balanophora than in hemiparasitic species of Santalales and autotrophic core eudicots, the five nuclear protein-coding genes are functional and are evolving at a much slower rate than 18S rDNA. The mechanism or mechanisms responsible for rapid sequence evolution and concomitant rate acceleration for 18S rDNA and matR are currently not well

  1. Assessment of bacterial diversity in agricultural by-product compost by sequencing of cultivated isolates and amplified rDNA restriction analysis.

    PubMed

    Chandna, Piyush; Mallik, Sarita; Kuhad, Ramesh Chander

    2013-08-01

    An investigation of bacterial diversity in compost was performed using molecular chronometer in order to reveal its phylogeny. Thirty-three bacterial isolates isolated from compost were analyzed by 16S rRNA gene sequencing which revealed phylogenetic lineage of class Bacilli, γ, β-Proteobacteria, and Actinobacteria. Among these lineages, isolates belonging to class Bacilli consisted of species from genera Staphylococcus, Bacillus, Terribacillus, and Lysinibacillus. From phylum Actinobacteria: Microbacterium barkeri and Kocuria sp. were identified. Other bacterial groups had phylogenetic linkage with genera Comamonas and Acidovorax (class β-Proteobacteria); Serratia, Klebsiella, and Enterobacter (class γ-Proteobacteria). Similar isolates were analyzed through ARDRA. Amplified product of 16S rRNA gene from each isolates was subjected to cleavage by enzymes HpaII, HinfI, and MspI in separate reaction tubes. HpaII generated 2-6 bands ranging from 90-688 bp, HinfI generated 2-5 bands of 71-1,038 bp, and MspI 2-7 bands of 69-793 bp. The restriction patterns from HpaII, HinfI, and MspI were normalized separately and combined by means of pattern recognition software "Diversity Database." HpaII had highest discrimination index (0.72) than HinfI (0.68) and MspI (0.65), and the combination of all three showed discrimination index (0.69). Numerical analysis of ARDRA patterns demonstrated sufficient phylogenetic information for characterizing bacterial diversity. Phylogenetic relationship obtained among isolates through ARDRA was compared with 16S rRNA gene sequence and ARDRA results showed sufficiently similar 16S rRNA gene sequence analysis, but not an overlapping. It has been observed that ARDRA technique facilitates the identification of bacteria in less than 36 h as compared to traditional 16S rRNA gene sequencing. PMID:23053087

  2. Phylogeny and classification of bacteria in the genera Clavibacter and Rathayibacter on the basis of 16s rRNA gene sequence analyses.

    PubMed Central

    Lee, I M; Bartoszyk, I M; Gundersen-Rindal, D E; Davis, R E

    1997-01-01

    A phylogenetic analysis by parsimony of 16S rRNA gene sequences (16S rDNA) revealed that species and subspecies of Clavibacter and Rathayibacter form a discrete monophyletic clade, paraphyletic to Corynebacterium species. Within the Clavibacter-Rathayibacter clade, four major phylogenetic groups (subclades) with a total of 10 distinct taxa were recognized: (I) species C. michiganensis; (II) species C. xyli; (III) species R. iranicus and R. tritici; and (IV) species R. rathayi. The first three groups form a monophyletic cluster, paraphyletic to R. rathayi. On the basis of the phylogeny inferred, reclassification of members of Clavibacter-Rathayibacter group is proposed. A system for classification of taxa in Clavibacter and Rathayibacter was developed based on restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified 16S rDNA sequences. The groups delineated on the basis of RFLP patterns of 16S rDNA coincided well with the subclades delineated on the basis of phylogeny. In contrast to previous classification systems, which are based primarily on phenotypic properties and are laborious, the RFLP analyses allow for rapid differentiation among species and subspecies in the two genera. PMID:9212413

  3. Physical mapping of 5S and 18S-5.8S-26S RNA gene families in polyploid series of Cenchrus ciliaris Linnaeus, 1771 (Poaceae)

    PubMed Central

    Kharrat-Souissi, Amina; Siljak-Yakovlev, Sonja; Pustahija, Fatima; Chaieb, Mohamed

    2012-01-01

    Abstract The Buffelgrass (Cenchrus ciliaris L., Poaceae) is one of the most important pasturage grasses due to its high productivity and good forage qualities. This species possess a high adaptability to bioclimatic constraints of arid zones and may be used for the restoration of degraded arid ecosystems. Tunisian populations present three ploidy levels (4x, 5x and 6x) with a basic chromosome number x=9. This study reported for the first time the distribution of the ribosomal genes (rRNA) for pentaploid and hexaploid cytotypes of Cenchrus ciliaris. Molecular cytogenetic study using double fluorescence in situ hybridization has shown that the two rDNA families, 5S and 18S-5.8S-26S (18S), displayed intraspecific variation in number of loci among different ploidy levels. Each ploidy level was characterized by specific number of both 5S and 18S rDNA loci (two loci in tetraploid, five in pentaploid and six in hexaploid level). For three studied cytotypes (4x, 5x and 6x) all 5S rDNA loci were localized on the subcentromeric region of chromosomes, while 18S loci were situated on the telomeric region of short chromosome arms. Data of the FISH experiments show proportional increase of ribosomal loci number during polyploidization processes. PMID:24260668

  4. rRNA Gene Expression of Abundant and Rare Activated-Sludge Microorganisms and Growth Rate Induced Micropollutant Removal.

    PubMed

    Vuono, David C; Regnery, Julia; Li, Dong; Jones, Zackary L; Holloway, Ryan W; Drewes, Jörg E

    2016-06-21

    The role of abundant and rare taxa in modulating the performance of wastewater-treatment systems is a critical component of making better predictions for enhanced functions such as micropollutant biotransformation. In this study, we compared 16S rRNA genes (rDNA) and rRNA gene expression of taxa in an activated-sludge-treatment plant (sequencing batch membrane bioreactor) at two solids retention times (SRTs): 20 and 5 days. These two SRTs were used to influence the rates of micropollutant biotransformation and nutrient removal. Our results show that rare taxa (<1%) have disproportionally high ratios of rRNA to rDNA, an indication of higher protein synthesis, compared to abundant taxa (≥1%) and suggests that rare taxa likely play an unrecognized role in bioreactor performance. There were also significant differences in community-wide rRNA expression signatures at 20-day SRT: anaerobic-oxic-anoxic periods were the primary driver of rRNA similarity. These results indicate differential expression of rRNA at high SRTs, which may further explain why high SRTs promote higher rates of micropollutant biotransformation. An analysis of micropollutant-associated degradation genes via metagenomics and direct measurements of a suite of micropollutants and nutrients further corroborates the loss of enhanced functions at 5-day SRT operation. This work advances our knowledge of the underlying ecosystem properties and dynamics of abundant and rare organisms associated with enhanced functions in engineered systems. PMID:27196630

  5. Molecular phylogenetics of cixiid planthoppers (Hemiptera: Fulgoromorpha): new insights from combined analyses of mitochondrial and nuclear genes.

    PubMed

    Ceotto, Paula; Kergoat, Gaël J; Rasplus, Jean-Yves; Bourgoin, Thierry

    2008-08-01

    The planthopper family Cixiidae (Hemiptera: Fulgoromorpha) comprises approximately 160 genera and 2000 species divided in three subfamilies: Borystheninae, Bothriocerinae and Cixiinae, the later with 16 tribes. The current paper represents the first attempt to estimate phylogenetic relationships within Cixiidae based on molecular data. We use a total of 3652bp sequence alignment of four genes: the mitochondrial coding genes Cytochrome c Oxidase subunit 1 (Cox1) and Cytochrome b (Cytb), a portion of the nuclear 18S rDNA and two non-contiguous portions of the nuclear 28S rDNA. The phylogenetic relationships of 72 terminal specimens were reconstructed using both maximum parsimony and Bayesian inference methods. Through the analysis of this empirical dataset, we also provide comparisons among different a priori partitioning strategies and the use of mixture models in a Bayesian framework. Our comparisons suggest that mixture models overcome the benefits obtained by partitioning the data according to codon position and gene identity, as they provide better accuracy in phylogenetic reconstructions. The recovered maximum parsimony and Bayesian inference phylogenies suggest that the family Cixiidae is paraphyletic in respect with Delphacidae. The paraphyly of the subfamily Cixiinae is also recovered by both approaches. In contrast to a morphological phylogeny recently proposed for cixiids, subfamilies Borystheninae and Bothriocerinae form a monophyletic group. PMID:18539050

  6. Gene Therapy

    PubMed Central

    Baum, Bruce J

    2014-01-01

    Applications of gene therapy have been evaluated in virtually every oral tissue, and many of these have proved successful at least in animal models. While gene therapy will not be used routinely in the next decade, practitioners of oral medicine should be aware of the potential of this novel type of treatment that doubtless will benefit many patients with oral diseases. PMID:24372817

  7. Trichoderma genes

    DOEpatents

    Foreman, Pamela; Goedegebuur, Frits; Van Solingen, Pieter; Ward, Michael

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.